WorldWideScience

Sample records for ultrasonic surgical instrument

  1. Debridement of vaginal radiation ulcers using the surgical Ultrasonic Aspirator

    International Nuclear Information System (INIS)

    Vanderburgh, E.; Nahhas, W.A.

    1990-01-01

    The surgical Ultrasonic Aspirator (USA) is a fairly new surgical instrument used for an increasingly wide range of procedures. This paper introduces a new application: debridement of vulvovaginal necrotic ulcers resulting from intracavitary radiation therapy. The ultrasonic aspirator allowed removal of the soft, necrotic tissue while preserving underlying healthy, firm tissue and blood vessels

  2. Rehabilitation with 4 zygomatic implants with a new surgical protocol using ultrasonic technique.

    Science.gov (United States)

    Mozzati, Marco; Mortellaro, Carmen; Arata, Valentina; Gallesio, Giorgia; Previgliano, Valter

    2015-05-01

    When the residual bone crest cannot allow the placement of standard implants, the treatment for complete arch rehabilitation of severely atrophic maxillae can be performed with 4 zygomatic implants (ZIs) and immediate function with predictable results in terms of aesthetics, function, and comfort for the patient. However, even if ZIs' rehabilitations showed a good success rate, this surgery is difficult and need a skillful operator. Complications in this kind of rehabilitation are not uncommon; the main difficulties can be related to the reduced surgical visibility and instrument control in a critical anatomic area. All the surgical protocols described in the literature used drilling techniques. Furthermore, the use of ultrasonic instruments in implant surgery compared with drilling instruments have shown advantages in many aspects of surgical procedures, tissues management, enhancement of control, surgical visualization, and healing. The aim of this study was to report on the preliminary experience using ultrasound technique for ZIs surgery in terms of safety and technical improvement. Ten consecutive patients with severely atrophic maxilla have been treated with 4 ZIs and immediate complete arch acrylic resin provisional prostheses. The patients were followed up from 30 to 32 months evaluating implant success, prosthetic success, and patient satisfaction with a questionnaire. No implants were lost during the study period, with a 100% implant and prosthetic success rate. Within the limitations of this preliminary study, these data indicate that ultrasonic implant site preparation for ZIs can be a good alternative to the drilling technique and an improvement for the surgeon.

  3. Development of ultrasonic instrument 'UT1000 Series'

    International Nuclear Information System (INIS)

    Ogura, Yukio; Ikeda, Toshimichi

    1984-01-01

    The ultrasonic flaw detectors with 'A-scope indication' have been frequently used as the means for confirming the soundness of structures and equipments, but there are problems in their operational, quantifying and recording capabilities. Recently, the digital ultrasonic measuring instrument of touch panel type ''UT 1000 Series'' has been developed, which resolves these problems by a single effort. This measuring instrument is that of portable type, which gives the digital output of measured results in real time only by lightly touching the peak point of an echo on the Brown tube. This instrument contains the rich software for measurement, and can measure the positions and dimensions of defects and the pressure on contact surfaces with high accuracy. 'A-scope indication' is the indication with an oscilloscope taking the intensity of echo and the propagation time of ultrasonic waves on the ordinate and abscissa, respectively. There are three types of the instrument, that is, for detecting defects, for measuring contact surface pressure and for both purposes. The size of the instrument is 240 mm width, 350 mm length and 175 mm height, and the weight is 8.5 kgf. The specification, function and features of the ultrasonic flaw detector, touch panel, gain setter, key board, microcomputer and others are reported. (Kako, I.)

  4. Tumour reduction with a Cavitron Ultrasonic Surgical Aspirator® in ...

    African Journals Online (AJOL)

    of a scarf made the patient appear natural and presentable. Figure 1: The fungating tumour before tumour reduction with a Cavitron Ultrasonic Surgical Aspirator®. Tumour reduction with a Cavitron Ultrasonic. Surgical Aspirator® in the palliative care of anaplastic thyroid cancer. CASE REPORT. JHR Becker,1,2 F Ghoor1,2.

  5. Surgical Instrument Sets for Special Operations Expeditionary Surgical Teams.

    Science.gov (United States)

    Hale, Diane F; Sexton, Justin C; Benavides, Linda C; Benavides, Jerry M; Lundy, Jonathan B

    The deployment of surgical assets has been driven by mission demands throughout years of military operations in Iraq and Afghanistan. The transition to the highly expeditious Golden Hour Offset Surgical Transport Team (GHOST- T) now offers highly mobile surgical assets in nontraditional operating rooms; the content of the surgical instrument sets has also transformed to accommodate this change. The 102nd Forward Surgical Team (FST) was attached to Special Operations assigned to southern Afghanistan from June 2015 to March 2016. The focus was to decrease overall size and weight of FST instrument sets without decreasing surgical capability of the GHOST-T. Each instrument set was evaluated and modified to include essential instruments to perform damage control surgery. The overall number of main instrument sets was decreased from eight to four; simplified augmentation sets have been added, which expand the capabilities of any main set. The overall size was decreased by 40% and overall weight decreased by 58%. The cardiothoracic, thoracotomy, and emergency thoracotomy trays were condensed to thoracic set. The orthopedic and amputation sets were replaced with an augmentation set of a prepackaged orthopedic external fixator set). An augmentation set to the major or minor basic sets, specifically for vascular injuries, was created. Through the reorganization of conventional FST surgical instrument sets to maintain damage control capabilities and mobility, the 102nd GHOST-T reduced surgical equipment volume and weight, providing a lesson learned for future surgical teams operating in austere environments. 2017.

  6. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  7. Ultrasonic imaging with a fixed instrument configuration

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-07-04

    Diffraction tomography is a technique based on an inversion of the wave equation which has been proposed for high-resolution ultrasonic imaging. While this approach has been considered for diagnostic medical applications, it has, until recently, been limited by practical limitations on the speed of data acquisition associated with instrument motions. This letter presents the results of an experimental study directed towards demonstrating tomography utilizing a fixed instrument configuration.

  8. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  9. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    Science.gov (United States)

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society

  10. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  11. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  12. The use of ultrasonic instrumentation in liquid/liquid extraction plant

    International Nuclear Information System (INIS)

    Asher, R.C.; Bradshaw, L.; Tolchard, A.C.

    1984-01-01

    Ultrasonic instruments can be used to determine many of the parameters of interest in a liquid/liquid extraction plant, eg liquid levels, the position of interfaces between immiscible liquids and the concentration of solutions. The determinations can often be made non-invasively. A number of instruments developed for a liquid/liquid extraction plant used for nuclear fuel reprocessing is described. These instruments have a wider application in liquid/liquid extraction plant in general. (author)

  13. Comparing surgical trays with redundant instruments with trays with reduced instruments: a cost analysis.

    Science.gov (United States)

    John-Baptiste, A; Sowerby, L J; Chin, C J; Martin, J; Rotenberg, B W

    2016-01-01

    When prearranged standard surgical trays contain instruments that are repeatedly unused, the redundancy can result in unnecessary health care costs. Our objective was to estimate potential savings by performing an economic evaluation comparing the cost of surgical trays with redundant instruments with surgical trays with reduced instruments ("reduced trays"). We performed a cost-analysis from the hospital perspective over a 1-year period. Using a mathematical model, we compared the direct costs of trays containing redundant instruments to reduced trays for 5 otolaryngology procedures. We incorporated data from several sources including local hospital data on surgical volume, the number of instruments on redundant and reduced trays, wages of personnel and time required to pack instruments. From the literature, we incorporated instrument depreciation costs and the time required to decontaminate an instrument. We performed 1-way sensitivity analyses on all variables, including surgical volume. Costs were estimated in 2013 Canadian dollars. The cost of redundant trays was $21 806 and the cost of reduced trays was $8803, for a 1-year cost saving of $13 003. In sensitivity analyses, cost savings ranged from $3262 to $21 395, based on the surgical volume at the institution. Variation in surgical volume resulted in a wider range of estimates, with a minimum of $3253 for low-volume to a maximum of $52 012 for high-volume institutions. Our study suggests moderate savings may be achieved by reducing surgical tray redundancy and, if applied to other surgical specialties, may result in savings to Canadian health care systems.

  14. Endotoxins in surgical instruments of hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Vania Regina Goveia

    2016-06-01

    Full Text Available Abstract OBJECTIVE To investigate endotoxins in sterilized surgical instruments used in hip arthroplasties. METHOD A descriptive exploratory study conducted in a public teaching hospital. Six types of surgical instruments were selected, namely: acetabulum rasp, femoral rasp, femoral head remover, chisel box, flexible bone reamer and femoral head test. The selection was based on the analysis of the difficulty in removing bone and blood residues during cleaning. The sample was made up of 60 surgical instruments, which were tested for endotoxins in three different stages. The EndosafeTM Gel-Clot LAL (Limulus Amebocyte Lysate method was used. RESULT There was consistent gel formation with positive analysis in eight instruments, corresponding to 13.3%, being four femoral rasps and four bone reamers. CONCLUSION Endotoxins in quantity ≥0.125 UE/mL were detected in 13.3% of the instruments tested.

  15. Overview of the ultrasonic instrumentation research in the MYRRHA project

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, M.; Leysen, W.; Van Dyck, D. [Belgian Nuclear Research Center SCK.CEN (Belgium)

    2015-07-01

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the required ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  16. Miniinvasive paracentetic drain surgical interventions under ultrasonic control concerning liquid formations of abdominal cavity

    Directory of Open Access Journals (Sweden)

    G.I. Ohrimenko

    2013-08-01

    Full Text Available Entry. Presently miniinvasive surgical interventions under ultrasonic control became the method of choice in treatment of quite a number of abdominal and retroperitoneal organs diseases, and their complications. These operations have a row of advantages, as compared to open and laparoscopic ones: comparative simplicity, insignificant infecting of abdominal region, least of intra- and postoperative complications. Actuality of problem is conditioned by that indications to the use of paracentetic drain surgical interventions, most optimal methods of preoperative diagnostic, features of postoperative treatment of patients remain not enough studied. Research aim. To study the results of diagnostics and treatment of patients with liquid formations of abdominal cavity that were exposed to miniinvasive surgical interventions under ultrasonic control and, on the basis of it, to work out an optimal curative diagnostic algorithm. Materials and research methods. The results of treatment of 25 patients with liquid formations of abdominal cavity are analyzed. They were submitted to miniinvasive paracentetic drain surgical interventions under ultrasonic control. The pseudocysts of pancreas were in 16 patients, abscesses of abdominal cavity – in 2 patients. Research results. Intraoperative complications were not marked. Postoperative complications were observed in 5 patients. Among them there were inadequate drainage of all cavities of multicamerate abscess of the liver in 2 patients, progress of sacculated uremic peritonitis developing in presence of ascites in one patient, and arrosive hemorrhage in the cavity of pancreas pseudocyst in 2 persons. It is determined that it is necessary to include the spiral computer tomography to the complex of preoperative inspection of patients that allows to diagnose multicamerate abscess of the liver in time and to drain all the additional cavities adequately. 2 patients after paracentetic drain surgical interventions

  17. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    Science.gov (United States)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  18. Evaluation of root-end microcrack formation following retropreparation using different ultrasonic instruments

    International Nuclear Information System (INIS)

    AlKahtani, Ahmed

    2009-01-01

    This study evaluated differences among various ultrasonic instruments in the development of root-end cracks following retropreparation of endodontically treated teeth. Three ultrasonic tips were compared: stainless steel, zirconium nitride and diamond. Fifty-seven single rooted extracted teeth were cleaned, shaped and obturated. Their crowns were removed. A 3 mm resection of the root-tip was completed using a straight fissure bur. The teeth were examined under a light microscope. The teeth that developed cracks after resection were discarded. The teeth were divided into three groups of 19 teeth each and a retropreparation was completed with one of the ultrasonic tips for each group. Teeth were again examined under a light microscope. The photomicrographs of the teeth before and after were compared. Examination of the specimens revealed that in the stainless steel group, 26% (5/19) of teeth developed cracks, in the zirconium nitride group, 10.5% (2/19) of teeth developed cracks and in the diamond group, 10.5% (2/19) of teeth developed cracks. The differences in crack formation among the three groups were not statistically significant. The results of the study suggested that more cracks may be evident microscopically in root-ends prepared with stainless steel ultrasonic instruments although this was not statistically significant. (author)

  19. Evaluation of Sensor Configurations for Robotic Surgical Instruments.

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús M; Harwin, William

    2015-10-27

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  20. Endotoxins in surgical instruments of hip arthroplasty

    OpenAIRE

    Goveia, Vania Regina; Mendoza, Isabel Yovana Quispe; Guimarães, Gilberto Lima; Ercole, Flavia Falci; Couto, Bráulio Roberto Gonçalves Marinho; Leite, Edna Marilea Meireles; Stoianoff, Maria Aparecida Resende; Ferreira, José Antonio Guimarães

    2016-01-01

    Abstract OBJECTIVE To investigate endotoxins in sterilized surgical instruments used in hip arthroplasties. METHOD A descriptive exploratory study conducted in a public teaching hospital. Six types of surgical instruments were selected, namely: acetabulum rasp, femoral rasp, femoral head remover, chisel box, flexible bone reamer and femoral head test. The selection was based on the analysis of the difficulty in removing bone and blood residues during cleaning. The sample was made up of 60...

  1. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    Directory of Open Access Journals (Sweden)

    Jesús M. Gómez-de-Gabriel

    2015-10-01

    Full Text Available Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  2. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús M.; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  3. Hand and ultrasonic instrumentation for orthograde root canal treatment of permanent teeth

    Directory of Open Access Journals (Sweden)

    Vinícius Pedrazzi

    2010-06-01

    Full Text Available Root canal treatment is a frequently performed dental procedure and is carried out on teeth in which irreversible pulpitis has led to necrosis of the dental pulp. Removal of the necrotic tissue remnants and cleaning and shaping of the root canal are important phases of root canal treatment. Treatment options include the use of hand and rotary instruments and methods using ultrasonic or sonic equipment. OBJECTIVES: The objectives of this systematic review of randomized controlled trials were to determine the relative clinical effectiveness of hand instrumentation versus ultrasonic instrumentation alone or in conjunction with hand instrumentation for orthograde root canal treatment of permanent teeth. MATERIAL AND METHODS: The search strategy retrieved 226 references from the Cochrane Oral Health Group Trials Register (7, the Cochrane Central Register of Controlled Trials (CENTRAL (12, MEDLINE (192, EMBASE (8 and LILACS (7. No language restriction was applied. The last electronic search was conducted on December 13th, 2007. Screening of eligible studies was conducted in duplicate and independently. RESULTS: Results were to be expressed as fixed-effect or random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confdence intervals. Heterogeneity was to be investigated including both clinical and methodological factors. No eligible randomized controlled trials were identifed. CONCLUSIONS: This review illustrates the current lack of published or ongoing randomized controlled trials and the unavailability of high-level evidence based on clinically relevant outcomes referring to the effectiveness of ultrasonic instrumentation used alone or as an adjunct to hand instrumentation for orthograde root canal treatment. In the absence of reliable research-based evidence, clinicians should base their decisions on clinical experience, individual circumstances and in conjunction with patients

  4. Surgical smoke.

    Science.gov (United States)

    Fan, Joe King-Man; Chan, Fion Siu-Yin; Chu, Kent-Man

    2009-10-01

    Surgical smoke is the gaseous by-product formed during surgical procedures. Most surgeons, operating theatre staff and administrators are unaware of its potential health risks. Surgical smoke is produced by various surgical instruments including those used in electrocautery, lasers, ultrasonic scalpels, high speed drills, burrs and saws. The potential risks include carbon monoxide toxicity to the patient undergoing a laparoscopic operation, pulmonary fibrosis induced by non-viable particles, and transmission of infectious diseases like human papilloma virus. Cytotoxicity and mutagenicity are other concerns. Minimisation of the production of surgical smoke and modification of any evacuation systems are possible solutions. In general, a surgical mask can provide more than 90% protection to exposure to surgical smoke; however, in most circumstances it cannot provide air-tight protection to the user. An at least N95 grade or equivalent respirator offers the best protection against surgical smoke, but whether such protection is necessary is currently unknown.

  5. Instrument for thickness measuring of a workpiece with the help of ultrasonic waves

    International Nuclear Information System (INIS)

    Wells, F.H.; Martin, R.

    1978-01-01

    The proposed ultrasonic measuring instrument has a generator for pulsed ultrasonic signals, a detector as well as a contact arrangement that connects both with the work piece. The transportation lag of the signals through the contact arrangements amounts to at least five times the transportation lag of the signals due to the thickness of a work piece. Furthermore there is an arrangement for the measurement of the delay between two successive echos from the back of the work piece with the help of a zero passage detector for the generation of a time-reference value on each echo signal. This permits an exact time control of the pulses which range in the field around nano seconds. The instrument is explained with 8 drawings and a detailed description. (RW) [de

  6. Electrical Bioimpedance-Controlled Surgical Instrumentation.

    Science.gov (United States)

    Brendle, Christian; Rein, Benjamin; Niesche, Annegret; Korff, Alexander; Radermacher, Klaus; Misgeld, Berno; Leonhardt, Steffen

    2015-10-01

    A bioimpedance-controlled concept for bone cement milling during revision total hip replacement is presented. Normally, the surgeon manually removes bone cement using a hammer and chisel. However, this procedure is relatively rough and unintended harm may occur to tissue at any time. The proposed bioimpedance-controlled surgical instrumentation improves this process because, for example, most risks associated with bone cement removal are avoided. The electrical bioimpedance measurements enable online process-control by using the milling head as both a cutting tool and measurement electrode at the same time. Furthermore, a novel integrated surgical milling tool is introduced, which allows acquisition of electrical bioimpedance data for online control; these data are used as a process variable. Process identification is based on finite element method simulation and on experimental studies with a rapid control prototyping system. The control loop design includes the identified process model, the characterization of noise as being normally distributed and the filtering, which is necessary for sufficient accuracy ( ±0.5 mm). Also, in a comparative study, noise suppression is investigated in silico with a moving average filter and a Kalman filter. Finally, performance analysis shows that the bioimpedance-controlled surgical instrumentation may also performs effectively at a higher feed rate (e.g., 5 mm/s).

  7. Gastroenterology-Urology Devices; Manual Gastroenterology-Urology Surgical Instruments and Accessories. Final rule; technical amendment.

    Science.gov (United States)

    2017-03-01

    The Food and Drug Administration (FDA) is amending the identification of manual gastroenterology-urology surgical instruments and accessories to reflect that the device does not include specialized surgical instrumentation for use with urogyencologic surgical mesh specifically intended for use as an aid in the insertion, placement, fixation, or anchoring of surgical mesh during urogynecologic procedures ("specialized surgical instrumentation for use with urogynecologic surgical mesh"). These amendments are being made to reflect changes made in the recently issued final reclassification order for specialized surgical instrumentation for use with urogynecologic surgical mesh.

  8. A comparison of root surface instrumentation using manual, ultrasonic and rotary instruments: an in vitro study using scanning electron microscopy.

    Science.gov (United States)

    Marda, Preeti; Prakash, Shobha; Devaraj, C G; Vastardis, S

    2012-01-01

    The commonly accepted idea concerning root planing is that excessive removal of cementum is not necessary for removal of endotoxins. The ideal instrument should enable the removal of all extraneous substances from the root surfaces, without causing any iatrogenic effects. To compare the remaining calculus, loss of tooth substance, and roughness of root surface after root planing with Gracey curette, ultrasonic instrument (Slimline insert FSI-SLI-10S), and DesmoClean rotary bur. The efficiency of calculus removal, the amount of lost tooth substance, and root surface roughness resulting from the use of hand curette, ultrasonic instrument, and rotary bur on 36 extracted mandibular incisors were examined by SEM. We used three indices to measure the changes: Remaining calculus index (RCI), Loss of tooth substance index (LTSI), and Roughness loss of tooth substance index (RLTSI). Twelve samples were treated with each instrument. The time required for instrumentation was also noted. Kruskal-Wallis ANOVA was used for multiple group comparisons and the Mann-Whitney test for group-wise comparisons. Analysis was carried out with SPSS software (version 13). The RCI and LTSI showed nonsignificant differences between the three groups. RLTSI showed a significant difference between Slimline and hand curette as well as Slimline and Desmo-Clean. Slimline showed the least mean scores for RCI, LTSI, and RLTSI. Thus, even though the difference was not statistically significant, Slimline insert was shown to be better than the other methods as assessed by the indices scores and the instrumentation time.

  9. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  10. Corrosion protection of reusable surgical instruments.

    Science.gov (United States)

    Shah, Sadiq; Bernardo, Mildred

    2002-01-01

    To understand the corrosion properties of surgical scissors, 416 stainless steel disks and custom electrodes were used as simulated surfaces under various conditions. These simulated surfaces were exposed to tap water and 400-ppm synthetic hard water as Ca2CO3 under different conditions. The samples were evaluated by various techniques for corrosion potential and the impact of environmental conditions on the integrity of the passive film. The electrodes were used to monitor the corrosion behavior by potentiodynamic polarization technique in water both in the presence and absence of a cleaning product. The surface topography of the 416 stainless steel disks was characterized by visual observations and scanning electron microscopy (SEM), and the surface chemistry of the passive film on the surface of the scissors was characterized by x-ray photoelectron spectroscopy (XPS). The results suggest that surgical instruments made from 416 stainless steel are not susceptible to uniform corrosion; however, they do undergo localized corrosion. The use of suitable cleaning products can offer protection against localized corrosion during the cleaning step. More importantly, the use of potentiodynamic polarization techniques allowed for a quick and convenient approach to evaluate the corrosion properties of surgical instruments under a variety of simulated-use environmental conditions.

  11. An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2015-09-01

    Full Text Available Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD instrument and an in vivo application for neonatal bone evaluation are introduced in this study. The UBBD provides several advantages, including noninvasiveness, non-ionizing radiation, portability, and simplicity. In this study, the backscatter signal could be measured within 5 s using the UBBD. Ultrasonic backscatter measurements were performed on 467 neonates (268 males and 199 females at the left calcaneus. The backscatter signal was measured at a central frequency of 3.5 MHz. The delay (T1 and duration (T2 of the backscatter signal of interest (SOI were varied, and the apparent integrated backscatter (AIB, frequency slope of apparent backscatter (FSAB, zero frequency intercept of apparent backscatter (FIAB, and spectral centroid shift (SCS were calculated. The results showed that the SOI selection had a direct influence on cancellous bone evaluation. The AIB and FIAB were positively correlated with the gestational age (|R| up to 0.45, P10 µs. Moderate positive correlations (|R| up to 0.45, P10 µs. The T2 mainly introduced fluctuations in the observed correlation coefficients. The moderate correlations observed with UBBD demonstrate the feasibility of using the backscatter signal to evaluate neonatal bone status. This study also proposes an explicit standard for in vivo SOI selection and neonatal cancellous bone assessment.

  12. Instrument maintenance of ultrasonic influences parameters measurement in technological processes

    Directory of Open Access Journals (Sweden)

    Tomal V. S.

    2008-04-01

    Full Text Available The contact and non-contact vibration meters for intermittent and continuous control of the vibration amplitude in the ultrasonic technological equipment have been developed. And in order to estimate the cavitation intensity in liquids the authors have developed cavitation activity indicators and cavitation sensitivity meters, allowing to measure the magnitude of the signal level in the range of maximum spectral density of cavitation noise. The developed instruments allow to improve the quality of products, reduce the defect rate and power consumption of equipment by maintaining optimum conditions of the process.

  13. 3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.

    Science.gov (United States)

    Wong, Julielynn Y; Pfahnl, Andreas C

    2016-09-01

    The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.

  14. Systems for tracking minimally invasive surgical instruments.

    Science.gov (United States)

    Chmarra, M K; Grimbergen, C A; Dankelman, J

    2007-01-01

    Minimally invasive surgery (e.g. laparoscopy) requires special surgical skills, which should be objectively assessed. Several studies have shown that motion analysis is a valuable assessment tool of basic surgical skills in laparoscopy. However, to use motion analysis as the assessment tool, it is necessary to track and record the motions of laparoscopic instruments. This article describes the state of the art in research on tracking systems for laparoscopy. It gives an overview on existing systems, on how these systems work, their advantages, and their shortcomings. Although various approaches have been used, none of the tracking systems to date comes out as clearly superior. A great number of systems can be used in training environment only, most systems do not allow the use of real laparoscopic instruments, and only a small number of systems provide force feedback.

  15. Endotoxins in surgical instruments of hip arthroplasty.

    Science.gov (United States)

    Goveia, Vania Regina; Mendoza, Isabel Yovana Quispe; Guimarães, Gilberto Lima; Ercole, Flavia Falci; Couto, Bráulio Roberto Gonçalves Marinho; Leite, Edna Marilea Meireles; Stoianoff, Maria Aparecida Resende; Ferreira, José Antonio Guimarães

    2016-01-01

    To investigate endotoxins in sterilized surgical instruments used in hip arthroplasties. A descriptive exploratory study conducted in a public teaching hospital. Six types of surgical instruments were selected, namely: acetabulum rasp, femoral rasp, femoral head remover, chisel box, flexible bone reamer and femoral head test. The selection was based on the analysis of the difficulty in removing bone and blood residues during cleaning. The sample was made up of 60 surgical instruments, which were tested for endotoxins in three different stages. The EndosafeTM Gel-Clot LAL (Limulus Amebocyte Lysate method) was used. There was consistent gel formation with positive analysis in eight instruments, corresponding to 13.3%, being four femoral rasps and four bone reamers. Endotoxins in quantity ≥0.125 UE/mL were detected in 13.3% of the instruments tested. Investigar endotoxinas em instrumentais cirúrgicos esterilizados empregados em artroplastias do quadril. Estudo exploratório, descritivo, desenvolvido em um hospital público de ensino. Foram selecionados seis tipos de instrumentais, a saber: raspa acetabular, raspa femural, saca-cabeça de fêmur, formão box, fresa de fêmur e cabeça de prova de fêmur. A seleção foi feita a partir da análise da dificuldade para a remoção de resíduos de sangue e osso durante a limpeza. A amostra foi constituída por 60 instrumentais cirúrgicos, que foram testados para endotoxinas em três momentos distintos. Foi utilizado o método de gel-clot pelo Limulus Amebócito Lisado (LAL) Endosafe(tm). Houve formação de gel consistente com análise positiva em oito instrumentais, o que corresponde a 13,3%, sendo quatro raspas de fêmur e quatro fresas de fêmur. Foram detectadas endotoxinas em quantidade ≥0,125 UE/mL em 13,3% dos instrumentais testados.

  16. 21 CFR 876.4730 - Manual gastroenterology-urology surgical instrument and accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual gastroenterology-urology surgical... OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4730 Manual gastroenterology-urology surgical instrument and accessories. (a) Identification...

  17. 21 CFR 872.4850 - Ultrasonic scaler.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  18. Recent technological advancements in laparoscopic surgical instruments

    Science.gov (United States)

    Subido, Edwin D. C.; Pacis, Danica Mitch M.; Bugtai, Nilo T.

    2018-02-01

    Laparoscopy was a progressive step to advancing surgical procedures as it minimised the scars left on the body after surgery, compared to traditional open surgery. Many years later, single-incision laparoscopic surgery (SILS) was created where, instead of having multiple incisions, only one incision is made or multiple small incisions in one location. SILS, or laparoendoscopic single-site surgery (LESS), may produce lesser scars but drawbacks for the surgeons are still present. This paper aims to present related literature of the recent technological developments in laparoscopic tools and procedure particularly in the vision system, handheld instruments. Tech advances in LESS will also be shown. Furthermore, this review intends to give an update on what has been going on in the surgical robot market and state which companies are interested and are developing robotic systems for commercial use to challenge Intuitive Surgical's da Vinci Surgical System that currently dominates the market.

  19. Treatment of Patellar Tendinopathy Refractory to Surgical Management Using Percutaneous Ultrasonic Tenotomy and Platelet-Rich Plasma Injection: A Case Presentation.

    Science.gov (United States)

    Nanos, Katherine N; Malanga, Gerard A

    2015-12-01

    Chronic proximal patellar tendinopathy is a common condition in sports medicine that may be refractory to nonoperative treatments, including activity modification, medications, and comprehensive rehabilitation. Percutaneous ultrasonic tenotomy is a recently developed technique designed to cut and debride tendinopathic tissue, thus promoting pain relief and functional recovery. We present a case of a collegiate athlete with chronic proximal patellar tendinopathy who was effectively treated with percutaneous ultrasonic tenotomy after not responding to extensive nonoperative treatment, surgical debridement, and platelet-rich plasma injections. Percutaneous ultrasonic tenotomy can be considered as a treatment option in patients presenting with refractory proximal patellar tendinopathy, including those who do not respond to previous operative intervention. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  20. Automated processing of endoscopic surgical instruments.

    Science.gov (United States)

    Roth, K; Sieber, J P; Schrimm, H; Heeg, P; Buess, G

    1994-10-01

    This paper deals with the requirements for automated processing of endoscopic surgical instruments. After a brief analysis of the current problems, solutions are discussed. Test-procedures have been developed to validate the automated processing, so that the cleaning results are guaranteed and reproducable. Also a device for testing and cleaning was designed together with Netzsch Newamatic and PCI, called TC-MIC, to automate processing and reduce manual work.

  1. Varying ultrasound power level to distinguish surgical instruments and tissue.

    Science.gov (United States)

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  2. Robotic-surgical instrument wrist pose estimation.

    Science.gov (United States)

    Fabel, Stephan; Baek, Kyungim; Berkelman, Peter

    2010-01-01

    The Compact Lightweight Surgery Robot from the University of Hawaii includes two teleoperated instruments and one endoscope manipulator which act in accord to perform assisted interventional medicine. The relative positions and orientations of the robotic instruments and endoscope must be known to the teleoperation system so that the directions of the instrument motions can be controlled to correspond closely to the directions of the motions of the master manipulators, as seen by the the endoscope and displayed to the surgeon. If the manipulator bases are mounted in known locations and all manipulator joint variables are known, then the necessary coordinate transformations between the master and slave manipulators can be easily computed. The versatility and ease of use of the system can be increased, however, by allowing the endoscope or instrument manipulator bases to be moved to arbitrary positions and orientations without reinitializing each manipulator or remeasuring their relative positions. The aim of this work is to find the pose of the instrument end effectors using the video image from the endoscope camera. The P3P pose estimation algorithm is used with a Levenberg-Marquardt optimization to ensure convergence. The correct transformations between the master and slave coordinate frames can then be calculated and updated when the bases of the endoscope or instrument manipulators are moved to new, unknown, positions at any time before or during surgical procedures.

  3. Standard practice for leaks using ultrasonics

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 Practice A, Pressurization—This practice covers procedures for calibration of ultrasonic instruments, location, and estimated measurements of gas leakage to atmosphere by the airborne ultrasonic technique. 1.2 In general practice this should be limited to leaks detected by two classifications of instruments, Class I and Class II. Class I instruments should have a minimum detectable leak rate of 6.7 × 10−7 mol/s (1.5 × 10−2 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Class II instruments should have a minimal detectable leak rate of 6.7 × 10−6 mol/s (1.5 × 10−1 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Refer to Guide E432 for additional information. 1.3 Practice B, Ultrasonic Transmitter—For object under test not capable of being pressurized but capable of having ultrasonic tone placed/injected into the test area to act as an ultrasonic leak trace source. 1.3.1 This practice is limited to leaks producing leakage o...

  4. 21 CFR 886.4350 - Manual ophthalmic surgical instrument.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual ophthalmic surgical instrument. 886.4350 Section 886.4350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... suturing needle, lachrymal probe, trabeculotomy probe, cornea-sclera punch, ophthalmic retractor...

  5. Ultrasonic partial discharge monitoring method on instrument transformers

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad

    2012-01-01

    Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.

  6. Effect of ultrasonic instrumentation on the bond strength of crowns cemented with zinc phosphate cement to natural teeth. An in vitro study

    Directory of Open Access Journals (Sweden)

    Antonio Braulino de Melo Filho

    2008-09-01

    Full Text Available Several studies have reported the benefits of sonic and/or ultrasonic instrumentation for root debridement, with most of them focusing on changes in periodontal clinical parameters. The present study investigated possible alterations in the tensile bond strength of crowns cemented with zinc phosphate cement to natural teeth after ultrasonic instrumentation. Forty recently extracted intact human third molars were selected, cleaned and stored in physiologic serum at 4°C. They received standard preparations, at a 16º convergence angle, and AgPd alloy crowns. The crowns were cemented with zinc phosphate cement and then divided into four groups of 10 teeth each. Each group was then subdivided into two subgroups, with one of the subgroups being submitted to 5,000 thermal cycles ranging from 55 ± 2 to 5 ± 2°C, while the other was not. Each group was submitted to ultrasonic instrumentation for different periods of time: group 1 - 0 min (control, group 2 - 5 min, group 3 - 10 min, and group 4 - 15 min. Tensile bond strength tests were performed with an Instron testing machine (model 4310. Statistical analysis was performed using ANOVA and Tukey's test at the 5% level of significance. A significant reduction in the tensile bond strength of crowns cemented with zinc phosphate and submitted to thermal cycles was observed at 15 min (196.75 N versus 0 min = 452.01 N, 5 min = 444.23 N and 10 min = 470.85 N. Thermal cycling and ultrasonic instrumentation for 15 min caused a significant reduction in tensile bond strength (p < .05.

  7. Custom ultrasonic instrumentation for flow measurement and real-time binary gas analysis in the CERN ATLAS experiment

    Science.gov (United States)

    Alhroob, M.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.

    2017-01-01

    The development of custom ultrasonic instrumentation was motivated by the need for continuous real-time monitoring of possible leaks and mass flow measurement in the evaporative cooling systems of the ATLAS silicon trackers. The instruments use pairs of ultrasonic transducers transmitting sound bursts and measuring transit times in opposite directions. The gas flow rate is calculated from the difference in transit times, while the sound velocity is deduced from their average. The gas composition is then evaluated by comparison with a molar composition vs. sound velocity database, based on the direct dependence between sound velocity and component molar concentration in a gas mixture at a known temperature and pressure. The instrumentation has been developed in several geometries, with five instruments now integrated and in continuous operation within the ATLAS Detector Control System (DCS) and its finite state machine. One instrument monitors C3F8 coolant leaks into the Pixel detector N2 envelope with a molar resolution better than 2ṡ 10-5, and has indicated a level of 0.14 % when all the cooling loops of the recently re-installed Pixel detector are operational. Another instrument monitors air ingress into the C3F8 condenser of the new C3F8 thermosiphon coolant recirculator, with sub-percent precision. The recent effect of the introduction of a small quantity of N2 volume into the 9.5 m3 total volume of the thermosiphon system was clearly seen with this instrument. Custom microcontroller-based readout has been developed for the instruments, allowing readout into the ATLAS DCS via Modbus TCP/IP on Ethernet. The instrumentation has many potential applications where continuous binary gas composition is required, including in hydrocarbon and anaesthetic gas mixtures.

  8. 3D printing of surgical instruments for long-duration space missions.

    Science.gov (United States)

    Wong, Julielynn Y; Pfahnl, Andreas C

    2014-07-01

    The first off-Earth fused deposition modeling (FDM) 3D printer will explore thermoplastic manufacturing capabilities in microgravity. This study evaluated the feasibility of FDM 3D printing 10 acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments on Earth. Three-point bending tests compared stiffness and yield strength between FDM 3D printed and conventionally manufactured ABS thermoplastic. To evaluate the relative speed of using four printed instruments compared to conventional instruments, 13 surgeons completed simulated prepping, draping, incising, and suturing tasks. Each surgeon ranked the performance of six printed instruments using a 5-point Likert scale. At a thickness of 5.75 mm or more, the FDM printing process had a less than 10% detrimental effect on the tested yield strength and stiffness of horizontally printed ABS thermoplastic relative to conventional ABS thermoplastic. Significant weakness was observed when a bending load was applied transversely to a 3D printed layer. All timed tasks were successfully performed using a printed sponge stick, towel clamp, scalpel handle, and toothed forceps. There was no substantial difference in time to completion of simulated surgical tasks with control vs. 3D printed instruments. Of the surgeons, 100%, 92%, 85%, 77%, 77%, and 69% agreed that the printed smooth and tissue forceps, curved and straight hemostats, tissue and right angle clamps, respectively, would perform adequately. It is feasible to 3D print ABS thermoplastic surgical instruments on Earth. Loadbearing structures were designed to be thicker, when possible. Printing orientations were selected so that the printing layering direction of critical structures would not be transverse to bending loads.

  9. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.

    Science.gov (United States)

    Yamamoto, Ikuo; Ota, Ren; Zhu, Rui; Lawn, Murray; Ishimatsu, Takakazu; Nagayasu, Takeshi; Yamasaki, Naoya; Takagi, Katsunori; Koji, Takehiko

    2015-01-01

    In the area of manufacturing surgical instruments, the ability to rapidly design, prototype and test surgical instruments is critical. This paper provides a simple case study of the rapid development of two bio-mechanism based surgical instruments which are ergonomic, aesthetic and were successfully designed, prototyped and conceptually tested in a very short period of time.

  10. The history of thoracic surgical instruments and instrumentation.

    Science.gov (United States)

    Hagopian, E J; Mann, C; Galibert, L A; Steichen, F M

    2000-02-01

    Thoracic surgical practice has evolved from the innovations of its pioneers. Beginning with the stethoscope discovered by Laënnec with his system of auscultation, to the tools we use in the dissection and control of the hilum of the lung for resection, our practice of thoracic surgery has been entwined with the development of instruments and instrumentation. The development of strategies to prevent death from the open pneumothorax began with manual control of the mediastinum and progressed through differential pressure to, finally, the technique of intubation and the methods of positive-pressure and insufflation anesthesia. The instruments we place in our hands are not enough to define our art. Entry into the chest would not be possible without the use of rib retractors, rib shears, and even periosteal elevators. Finally, to the present day of minimally invasive techniques and the application of thoracoscopy for therapeutic purposes, we find the efforts of our predecessors well developed. For the progression from the fear of the open pneumothorax to the present-day state of the ease of thoracotomy for lung resection we are indebted to those who gave so much of their time and, for some, their lives to death from tuberculosis, to allow the advancement of our practice of surgery. These great people should be remembered not only for their acceptance of novel ideas but also, more importantly, for their lack of fear of testing them.

  11. Quality control of disinfection in ultrasonic baths

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Technical University Dresden (Germany). Faculty of Mechanical Engineering; Jatzwauk, L. [University Hospital of the Technical University Dresden (Germany). Abt. Krankenhaushygiene

    2002-07-01

    Numerous investigations under laboratory conditions confirmed the microbicidal efficacy of ultrasonication. Morphological destruction was shown on bacteria and fungi as well as on different virus species. Ultrasonic treatment seems to increase the effect of different antibiotics and disinfectants. Reasons for this synergism are largely unknown and uninvestigated, but the active principle seems to bee the dispersing effect of ultrasonication in combination with the destruction of cell wall or cell membrane. Unfortunately no validation of test conditions exists for most of these investigations, regarding intensity and frequency of ultrasonic waves, temperature of liquid medium and measurement of cavitation which is an essential part of physical and chemical effects in ultrasonic baths. In contrast to most laboratory experiments sound density of ultrasound for treatment of medical instruments is below 1 W/cm{sup 2} because instruments will be destroyed under stronger ultrasonic conditions. The frequency is below 50 KHz. This paper describes bactericidal and fungicidal effects of low- intensity-ultrasonication and its synergistical support to chemical disinfection. (orig.)

  12. Characterization methods for ultrasonic test systems

    International Nuclear Information System (INIS)

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented

  13. Broken instrument retrieval with indirect ultrasonics in a primary molar.

    Science.gov (United States)

    Pk, Musale; Sc, Kataria; As, Soni

    2016-02-01

    The separation of a file during pulpectomy is a rare incident in primary teeth due to inherently wider and relatively straighter root canals. A broken instrument hinders the clinician from optimal preparation and obturation of the root canal system invariably leading to failure, although in such teeth, an extraction followed by suitable space maintenance is considered as the treatment of choice. This case report demonstrates successful nonsurgical retrieval of a separated H file fragment in 84. A 7-year-old girl was referred to the Department of Paedodontics and Preventive Dentistry for endodontic management of a primary tooth 84 with a dento-alveolar abscess. Her medical history was noncontributory. After diagnosing a broken H file in the mesio-lingual canal, the tooth was endodontically treated in two appointments. At the first session, a broken file was successfully retrieved after using low intensity ultrasonic vibrations through a DG 16 endodontic explorer viewed under an operating microscope. After abscess resolution, Vitapex root canal obturation with a preformed metal crown cementation was completed at a second session. The patient was recalled at 3, 6, 12 and 15 month interval and reported to be clinically asymptomatic and radiographically with complete furcal healing. Integration of microscopes and ultrasonics in paediatric dental practice has made it possible to save such teeth with a successful outcome. Favourable location of the separated file, relatively straighter root canal system and patient cooperation resulted in successful nonsurgical management in this case.

  14. Factors determining the potential for onward transmission of variant Creutzfeldt–Jakob disease via surgical instruments

    Science.gov (United States)

    Garske, Tini; Ward, Hester J.T; Clarke, Paul; Will, Robert G; Ghani, Azra C

    2006-01-01

    While the number of variant Creutzfeldt–Jakob disease (vCJD) cases continues to decline, concern has been raised that transmission could occur directly from one person to another through routes including the transfer of blood and shared use of surgical instruments. Here we firstly present data on the surgical procedures undertaken on vCJD patients prior to onset of clinical symptoms, which supports the hypothesis that cases via this route are possible. We then apply a mathematical framework to assess the potential for self-sustaining epidemics via surgical procedures. Data from hospital episode statistics on the rates of high- and medium-risk procedures in the UK were used to estimate model parameters, and sensitivity to other unknown parameters about surgically transmitted vCJD was assessed. Our results demonstrate that a key uncertainty determining the scale of an epidemic and whether it is self-sustaining is the number of times a single instrument is re-used, alongside the infectivity of contaminated instruments and the effectiveness of cleaning. A survey into the frequency of re-use of surgical instruments would help reduce these uncertainties. PMID:17015298

  15. Automatic localization of the da Vinci surgical instrument tips in 3-D transrectal ultrasound.

    Science.gov (United States)

    Mohareri, Omid; Ramezani, Mahdi; Adebar, Troy K; Abolmaesumi, Purang; Salcudean, Septimiu E

    2013-09-01

    Robot-assisted laparoscopic radical prostatectomy (RALRP) using the da Vinci surgical system is the current state-of-the-art treatment option for clinically confined prostate cancer. Given the limited field of view of the surgical site in RALRP, several groups have proposed the integration of transrectal ultrasound (TRUS) imaging in the surgical workflow to assist with accurate resection of the prostate and the sparing of the neurovascular bundles (NVBs). We previously introduced a robotic TRUS manipulator and a method for automatically tracking da Vinci surgical instruments with the TRUS imaging plane, in order to facilitate the integration of intraoperative TRUS in RALRP. Rapid and automatic registration of the kinematic frames of the da Vinci surgical system and the robotic TRUS probe manipulator is a critical component of the instrument tracking system. In this paper, we propose a fully automatic registration technique based on automatic 3-D TRUS localization of robot instrument tips pressed against the air-tissue boundary anterior to the prostate. The detection approach uses a multiscale filtering technique to identify and localize surgical instrument tips in the TRUS volume, and could also be used to detect other surface fiducials in 3-D ultrasound. Experiments have been performed using a tissue phantom and two ex vivo tissue samples to show the feasibility of the proposed methods. Also, an initial in vivo evaluation of the system has been carried out on a live anaesthetized dog with a da Vinci Si surgical system and a target registration error (defined as the root mean square distance of corresponding points after registration) of 2.68 mm has been achieved. Results show this method's accuracy and consistency for automatic registration of TRUS images to the da Vinci surgical system.

  16. Use of ultrasonic dissection in the early surgical management of periorbital haemangiomas.

    Science.gov (United States)

    Claude, O; Picard, A; O'Sullivan, N; Baccache, S; Momtchilova, M; Enjolras, O; Vazquez, M P; Diner, P A

    2008-12-01

    To evaluate the efficacy and safety of the early surgical excision of periorbital haemangiomas with an ultrasonic scalpel in infants at risk of visual impairment. A retrospective analysis of 67 infants diagnosed to be at risk of amblyopia from periorbital haemangiomas, treated consecutively with the Dissectron between 1994 and 2005. Ophthalmic outcome parameters included the pre- and postoperative measurement of visual axis occlusion, strabismus, astigmatism, and degree of amblyopia. Visual performance showed an overall improvement of 30% following treatment. Seventy-six patients were found to have abnormal ophthalmic examinations preoperatively, compared to 46 following surgery. After surgery, visual axis occlusion decreased from 73 to 6%; amblyopia decreased from 67 to 22%, strabismus decreased from 26 to 18% and astigmatism (>onedioptre) decreased from 66 to 31%. Mean astigmatism values decreased from 3.5 to 1.9 dioptres. No new cases of astigmatism, strabismus or amblyopia were diagnosed postoperatively. Three minor complications resolved with conservative treatment. All patients were satisfied with the outcome of their surgery. Early surgical excision of periorbital haemangiomas using the Dissectron in infants with an established risk of visual impairment is a safe and effective alternative to pharmacological therapy. The use of the Dissectron is associated with reduced operative times and a shorter hospital stay.

  17. Surgical site infections following instrumented stabilization of the spine

    Directory of Open Access Journals (Sweden)

    Dapunt U

    2017-09-01

    Full Text Available Ulrike Dapunt,1 Caroline Bürkle,1 Frank Günther,2 Wojciech Pepke,1 Stefan Hemmer,1 Michael Akbar1 1Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, 2Department for Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany Background: Implant-associated infections are still a feared complication in the field of orthopedics. Bacteria attach to the implant surface and form so-called biofilm colonies that are often difficult to diagnose and treat. Since the majority of studies focus on prosthetic joint infections (PJIs of the hip and knee, current treatment options (eg, antibiotic prophylaxis of implant-associated infections have mostly been adapted according to these results. Objective: The aim of this study was to evaluate patients with surgical site infections following instrumented stabilization of the spine with regard to detected bacteria species and the course of the disease. Patients and methods: We performed a retrospective single-center analysis of implant-associated infections of the spine from 2010 to 2014. A total of 138 patients were included in the study. The following parameters were evaluated: C-reactive protein serum concentration, microbiological evaluation of tissue samples, the time course of the disease, indication for instrumented stabilization of the spine, localization of the infection, and the number of revision surgeries required until cessation of symptoms. Results: Coagulase-negative Staphylococcus spp. were most commonly detected (n=69, 50%, followed by fecal bacteria (n=46, 33.3%. In 23.2% of cases, no bacteria were detected despite clinical suspicion of an infection. Most patients suffered from degenerative spine disorders (44.9%, followed by spinal fractures (23.9%, non-degenerative scoliosis (20.3%, and spinal tumors (10.1%. Surgical site infections occurred predominantly within 3

  18. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.

    Science.gov (United States)

    Ryu, Jiwon; Choi, Jaesoon; Kim, Hee Chan

    2013-01-01

    Robot-assisted minimally invasive surgery is effective for operations in limited space. Enhancing safety based on automatic tracking of surgical instrument position to prevent inadvertent harmful events such as tissue perforation or instrument collisions could be a meaningful augmentation to current robotic surgical systems. A vision-based instrument tracking scheme as a core algorithm to implement such functions was developed in this study. An automatic tracking scheme is proposed as a chain of computer vision techniques, including classification of metallic properties using k-means clustering and instrument movement tracking using similarity measures, Euclidean distance calculations, and a Kalman filter algorithm. The implemented system showed satisfactory performance in tests using actual robot-assisted surgery videos. Trajectory comparisons of automatically detected data and ground truth data obtained by manually locating the center of mass of each instrument were used to quantitatively validate the system. Instruments and collisions could be well tracked through the proposed methods. The developed collision warning system could provide valuable information to clinicians for safer procedures. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. The effect of intermittent passive ultrasonic irrigation and rotary instruments on microbial colonies of infected root canals

    International Nuclear Information System (INIS)

    AlMadi, Ebtissam M; Balto, Hanan A

    2008-01-01

    To study the effectiveness of reduction of E. faecalis in root canals with passive ultrasonic irrigation (PUI) of 2.25% NaOCl for 1.5 min intermittently during hand instrumentation and continuously after rotary instrumentation. Forty-eight extracted single rooted teeth were filled with E. faecalis suspension and divided into 4 groups. They were either hand instrumented alone using the stepback technique, hand instrumented with PUI of the 2.25% NaOCl intermittently for a total of 1.5 min during the instrumentation, rotary instrumented with ProFile 0.04 alone, or rotary instrumented with PUI of the irrigant for 1.5 min. There was significantly more bacterial growth in the hand instrumented group than in the hand instrumented group with PUI, and marginal significant difference in the hand instrumented group with PUI compared to the rotary instrumented group. No differences were found between the rotary instrumented groups. It was concluded that intermittent use of PUI of 2.25% NaOCl for a total of 1.5 min (half of the current recommended time) during hand instrumentation reduced bacterial colonies significantly. There was no difference in bacterial reduction when rotary instrumentation was used with or without PUI. (author)

  20. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    Directory of Open Access Journals (Sweden)

    Mitul Kumar Mishra

    2013-01-01

    Full Text Available Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface

  1. [The use of ultrasonic files in canal preparation].

    Science.gov (United States)

    Calas, P; Terrie, B

    1990-01-01

    The continuous high volume of irrigating solution delivered by the ultrasonic system facilitates the root canal debridement. An excellent cleaning of dentin wall is obtained even on surfaces unreached by the mechanical instrumentation. In order to obtain an efficacious preparation, the use of ultrasonic files were combined with instrumentation. This new technique is described in this article.

  2. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  3. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 12518

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2012-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. In 2010 Washington River Protection Solutions and the Pacific Northwest National Laboratory began evaluating the ultrasonic PulseEcho instrument to accurately identify critical velocities in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of >50 micrometers. In 2011 the PulseEcho instrument was further evaluated to identify critical velocities for slurries containing fast-settling, high-density particles with a mean particle diameter of <15 micrometers. This two-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  4. Instrument-mounted displays for reducing cognitive load during surgical navigation.

    Science.gov (United States)

    Herrlich, Marc; Tavakol, Parnian; Black, David; Wenig, Dirk; Rieder, Christian; Malaka, Rainer; Kikinis, Ron

    2017-09-01

    Surgical navigation systems rely on a monitor placed in the operating room to relay information. Optimal monitor placement can be challenging in crowded rooms, and it is often not possible to place the monitor directly beside the situs. The operator must split attention between the navigation system and the situs. We present an approach for needle-based interventions to provide navigational feedback directly on the instrument and close to the situs by mounting a small display onto the needle. By mounting a small and lightweight smartwatch display directly onto the instrument, we are able to provide navigational guidance close to the situs and directly in the operator's field of view, thereby reducing the need to switch the focus of view between the situs and the navigation system. We devise a specific variant of the established crosshair metaphor suitable for the very limited screen space. We conduct an empirical user study comparing our approach to using a monitor and a combination of both. Results from the empirical user study show significant benefits for cognitive load, user preference, and general usability for the instrument-mounted display, while achieving the same level of performance in terms of time and accuracy compared to using a monitor. We successfully demonstrate the feasibility of our approach and potential benefits. With ongoing technological advancements, instrument-mounted displays might complement standard monitor setups for surgical navigation in order to lower cognitive demands and for improved usability of such systems.

  5. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.

  6. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  7. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  8. Instrument for ultrasonic measurement of physical quantities of flowing media, especially the flow velocity

    International Nuclear Information System (INIS)

    Thun, N.; Brown, A.E.

    1977-01-01

    The invention is based on the task to present an instrument for ultrasonic measurement of flow velocities with high accuracy which may be produced substantially cheaper because of the use of a simple circuit design and normal components. The task is solved according to the invention by connecting the output of the first signal level transmitter as main signal and the output of the second signal level transmitter as auxiliary signal with a summing circuit forming a control signal by adding and/or subtracting the auxiliary signal to/from the main signal and providing for a switch, controlled by the transmitting direction, causing alternatingly two different delay times for the reference signal to become effective. (orig./RW) [de

  9. Ultrasonic dissection versus conventional electrocautery during gastrectomy for gastric cancer: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Sun, Z C; Xu, W G; Xiao, X M; Yu, W H; Xu, D M; Xu, H M; Gao, H L; Wang, R X

    2015-04-01

    Use of ultrasonic surgical instrument is gaining popularity for dissection and coagulation in open surgery. However, there is still no consensus on the efficacy and safety of its use compared with conventional surgical technique in open gastrectomy for gastric cancer. The aim of this meta-analysis was to evaluate the role and surgical outcomes of ultrasonic dissection (UD) compared with conventional electrocautery (EC). A systematic literature search was performed to identify all studies comparing UD and EC in gastric cancer surgery. Intraoperative and postoperative outcomes were compared using weighted mean differences (WMDs) and odds ratios (ORs). Five studies were included in this meta-analysis, comprising 489 patients. Meta-analysis results showed that compared with EC, UD was associated with significantly shorter operation time (P = 0.03), less intraoperative blood loss (P = 0.002), lower morbidity (P = 0.02), and reduced postoperative hospital stay (P = 0.03). However, there was no significant difference between the two surgical techniques with regards to postoperative abdominal drainage (P = 0.17), and total cost in hospital (P = 0.59). Compared to EC, the use of UD during open gastrectomy can provide several improved outcomes for operation time, intraoperative blood loss, overall morbidity, and postoperative hospital stay. It appears that UD can be used instead of conventional EC in open gastric cancer surgery, although more larger trials with long follow-up should be performed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Fabrication of internally instrumented reactor fuel rods

    International Nuclear Information System (INIS)

    Schmutz, J.D.; Meservey, R.H.

    1975-01-01

    Procedures are outlined for fabricating internally instrumented reactor fuel rods while maintaining the original quality assurance level of the rods. Instrumented fuel rods described contain fuel centerline thermocouples, ultrasonic thermometers, and pressure tubes for internal rod gas pressure measurements. Descriptions of the thermocouples and ultrasonic thermometers are also contained

  11. Ultrasonic wave propagation in powders

    Science.gov (United States)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  12. Influence of usage history, instrument complexity, and different cleaning procedures on the cleanliness of blood-contaminated dental surgical instruments

    NARCIS (Netherlands)

    Wu, G.; Yu, X.F.

    2009-01-01

    Our study assessed the factors that influence the resistance of blood residues on dental surgical instruments to washer‐disinfector-based cleaning procedures in a clinical setting. The use of 2 additional cleaning methods—presoaking and scrubbing by hand—and the use of newer and/or less structurally

  13. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  14. Protein adsorption on low temperature alpha alumina films for surgical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Cloud, A.N., E-mail: acloud@uark.ed [University of Arkansas, Fayetteville, AR 72701 (United States); Kumar, S. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia); Kavdia, M.; Abu-Safe, H.H.; Gordon, M.H. [University of Arkansas, Fayetteville, AR 72701 (United States)

    2009-08-31

    Bulk alumina has been shown to exhibit reduced protein adsorption, a property that can be exploited for developing alumina-coated surgical instruments and devices. Alpha alumina thin films were deposited on surgical stainless steel substrates to investigate the adsorption of a model protein (BSA, bovine serum albumin). The films were deposited at 480 {sup o}C by AC inverted cylindrical magnetron sputtering. Films were obtained at 6 kW and 50% oxygen partial pressure by volume. The presence of alpha-phase alumina has been shown by transmission electron microscopy. Results indicate that there was a 50% reduction in protein adsorption for samples with the alumina coating compared to those with no coating.

  15. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    International Nuclear Information System (INIS)

    Kovalev, Valeri I; Bartona, James S; Richardson, Patricia R; Jones, Anita C

    2006-01-01

    There is a risk of contamination of surgical instruments by infectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect ∼10 attomole/cm 2 with a scan speed of ∼3-10 cm 2 /s of the test instrument's surface. A theoretical analysis and experimental measurements will be discussed

  16. Ultrasonic implant site preparation using piezosurgery: a multicenter case series study analyzing 3,579 implants with a 1- to 3-year follow-up.

    Science.gov (United States)

    Vercellotti, Tomaso; Stacchi, Claudio; Russo, Crescenzo; Rebaudi, Alberto; Vincenzi, Giampaolo; Pratella, Umberto; Baldi, Domenico; Mozzati, Marco; Monagheddu, Chiara; Sentineri, Rosario; Cuneo, Tommaso; Di Alberti, Luca; Carossa, Stefano; Schierano, Gianmario

    2014-01-01

    This multicenter case series introduces an innovative ultrasonic implant site preparation (UISP) technique as an alternative to the use of traditional rotary instruments. A total of 3,579 implants were inserted in 1,885 subjects, and the sites were prepared using a specific ultrasonic device with a 1- to 3-year follow-up. No surgical complications related to the UISP protocol were reported for any of the implant sites. Seventy-eight implants (59 maxillary, 19 mandibular) failed within 5 months of insertion, for an overall osseointegration percentage of 97.82% (97.14% maxilla, 98.75% mandible). Three maxillary implants failed after 3 years of loading, with an overall implant survival rate of 97.74% (96.99% maxilla, 98.75% mandible).

  17. Data collection instrumentation for ultrasonic imaging under sodium

    International Nuclear Information System (INIS)

    McKnight, J.A.; Parker, J.A.

    1981-05-01

    A team at the Risley Nuclear Power Development Establishment has been developing apparatus for the production of ultrasonic images under opaque liquids. The technique is intended for examining objects under liquid sodium at 300 0 C, and the range of possible methods is restricted as a consequence. The method chosen uses pulse-echo ultrasonics combined with mechanical scanning to assemble the final image. The data is collected using a CAMAC system under the control of an Intel 8080 microprocessor. The data is analysed separately and presented on a colour display using a DEC LSl 11 microprocessor controlled system. To achieve the required performance a number of special electronic assemblies were made. A single image requires 2.5 M byte of data. The cost of using the apparatus on a Fast Reactor is such that it is prudent to provide back-up data collection through a data link, and to maximise the data collection rate. This causes problems with the interrupt cycle time of the CAMAC controller, which can be resolved using synchronous programs specifically tailored to each application. (author)

  18. Surgical infection in a videolaparoscopic cholecystectomy when using peracetic acid for the sterilization of instruments.

    Science.gov (United States)

    de Melo, Edluza Maria Viana Bezerra; Leão, Cristiano de Souza; Andreto, Luciana Marques; de Mello, Maria Júlia Gonçalves

    2013-01-01

    To determine the frequency of surgical site infection in patients undergoing laparoscopic cholecystectomy with instruments sterilized by peracetic acid. We conducted a retrospective, cohort, descriptive, cross-sectional study. Peracetic acid has been used for sterilization following the protocol recommended by the manufacturer. We observed the criteria and indicators of process and structure for preventing surgical site infection pre and intraoperatively. For epidemiological surveillance, outpatient visits were scheduled for the 15th and between the 30th and 45th days after discharge. Among the 247 patients, there were two cases of surgical site infection (0.8%). One patient was readmitted to systemic antibiotic therapy and percutaneous puncture; in the other the infection was superficial and followed at the clinic. Ethical issues prevent the conduction of a prospective study because of peracetic acid have been banned for the sterilization of instruments that penetrate organs and cavities. Nevertheless, these results encourage prospective case-control studies comparing its use (historical control) with ethylene oxide sterilization.

  19. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Valeri I [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Bartona, James S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Richardson, Patricia R [School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ (United Kingdom); Jones, Anita C [School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ (United Kingdom)

    2006-07-15

    There is a risk of contamination of surgical instruments by infectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect {approx}10 attomole/cm{sup 2} with a scan speed of {approx}3-10 cm{sup 2}/s of the test instrument's surface. A theoretical analysis and experimental measurements will be discussed.

  20. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    Science.gov (United States)

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Custom real-time ultrasonic instrumentation for simultaneous mixture and flow analysis of binary gases in the CERN ATLAS experiment

    CERN Document Server

    Alhroob, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Hasib, A.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.

    2017-01-01

    Custom ultrasonic instruments have been developed for simultaneous monitoring of binary gas mixture and flow in the ATLAS Inner Detector. Sound transit times are measured in opposite directions in flowing gas. Flow rate and sound velocity are respectively calculated from their difference and average. Gas composition is evaluated in real-time by comparison with a sound velocity/composition database, based on the direct dependence of sound velocity on component concentrations in a mixture at known temperature and pressure. Five devices are integrated into the ATLAS Detector Control System. Three instruments monitor coolant leaks into N2 envelopes of the silicon microstrip and Pixel detectors. Resolutions better than ±2×10−5±2×10−5 and ±2×10−4±2×10−4 are seen for C3F8 and CO2 leak concentrations in N2 respectively. A fourth instrument detects sub-percent levels of air ingress into the C3F8 condenser of the new thermosiphon coolant recirculator. Following extensive studies a fifth instrument was b...

  2. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  3. Studies on Section XI ultrasonic repeatability

    International Nuclear Information System (INIS)

    Jamison, T.D.; McDearman, W.R.

    1981-05-01

    A block representative of a nuclear component has been welded containing intentional defects. Acoustic emission data taken during the welding correlate well with ultrasonic data. Repetitive ultrasonic examinations have been performed by skilled operators using a procedure based on that desribed in ASME Section XI. These examinations were performed by different examination teams using different ultrasonic equipment in such a manner that the effects on the repeatability of the ultrasonic test method caused by the operator and by the use of different equipment could be estimated. It was tentatively concluded that when considering a large number of inspections: (1) there is no significant difference in indication sizing between operators, and (2) there is a significant difference in amplitude and defect sizing when instruments having different, Code acceptable operating characteristics are used. It was determined that the Section XI sizing parameters follow a bivariate normal distribution. Data derived from ultrasonically and physically sizing indications in nuclear components during farication show that the Section XI technique tends to overestimate the size of the reflectors

  4. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    Science.gov (United States)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  5. An ultrasonic instrument for measuring density and viscosity of tank waste

    International Nuclear Information System (INIS)

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.

    1997-01-01

    An estimated 381,000 m 3 /1.1 x 10 9 Ci of radioactive waste are stored in high-level waste tanks at the Hanford Savannah River, Idaho Nuclear Engineering and Environmental Laboratory, and West Valley facilities. This nuclear waste has created one of the most complex waste management and cleanup problems that face the United States. Release of radioactive materials into the environment from underground waste tanks requires immediate cleanup and waste retrieval. Hydraulic mobilization with mixer pumps will be used to retrieve waste slurries and salt cakes from storage tanks. To ensure that transport lines in the hydraulic system will not become plugged, the physical properties of the slurries must be monitored. Characterization of a slurry flow requires reliable measurement of slurry density, mass flow, viscosity, and volume percent of solids. Such measurements are preferably made with on-line nonintrusive sensors that can provide continuous real-time monitoring. With the support of the U.S. Department of Energy (DOE) Office of Environmental Management (EM-50), Argonne National Laboratory (ANL) is developing an ultrasonic instrument for in-line monitoring of physical properties of radioactive tank waste

  6. Ultrasonic correlator versus signal averager as a signal to noise enhancement instrument

    Science.gov (United States)

    Kishoni, Doron; Pietsch, Benjamin E.

    1989-01-01

    Ultrasonic inspection of thick and attenuating materials is hampered by the reduced amplitudes of the propagated waves to a degree that the noise is too high to enable meaningful interpretation of the data. In order to overcome the low Signal to Noise (S/N) ratio, a correlation technique has been developed. In this method, a continuous pseudo-random pattern generated digitally is transmitted and detected by piezoelectric transducers. A correlation is performed in the instrument between the received signal and a variable delayed image of the transmitted one. The result is shown to be proportional to the impulse response of the investigated material, analogous to a signal received from a pulsed system, with an improved S/N ratio. The degree of S/N enhancement depends on the sweep rate. This paper describes the correlator, and compares it to the method of enhancing S/N ratio by averaging the signals. The similarities and differences between the two are highlighted and the potential advantage of the correlator system is explained.

  7. [Surgical Roman instruments in the Museum of History of Medicine of the University of Rome "La Sapienza"].

    Science.gov (United States)

    Gazzaniga, V; Serarcangeli, C

    1999-01-01

    The Museum of History of Medicine at the University of Rome "La Sapienza" keeps numerous roman surgical instruments, dating from the 1st century A.D. This article offers a short review of the critical literature existing on the topic, together with a temporary catalogue of the instruments.

  8. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.

    Science.gov (United States)

    Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel

    2016-04-01

    Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical

  9. Analysis of risk factors for loss of lumbar lordosis in patients who had surgical treatment with segmental instrumentation for adolescent idiopathic scoliosis.

    Science.gov (United States)

    Trobisch, Per D; Samdani, Amer F; Betz, Randal R; Bastrom, Tracey; Pahys, Joshua M; Cahill, Patrick J

    2013-06-01

    Iatrogenic flattening of lumbar lordosis in patients with adolescent idiopathic scoliosis (AIS) was a major downside of first generation instrumentation. Current instrumentation systems allow a three-dimensional scoliosis correction, but flattening of lumbar lordosis remains a significant problem which is associated with decreased health-related quality of life. This study sought to identify risk factors for loss of lumbar lordosis in patients who had surgical correction of AIS with the use of segmental instrumentation. Patients were included if they had surgical correction for AIS with segmental pedicle screw instrumentation Lenke type 1 or 2 and if they had a minimum follow-up of 24 months. Two groups were created, based on the average loss of lumbar lordosis. The two groups were then compared and multivariate analysis was performed to identify parameters that correlated to loss of lumbar lordosis. Four hundred and seventeen patients were analyzed for this study. The average loss of lumbar lordosis at 24 months follow-up was an increase of 10° lordosis for group 1 and a decrease of 15° for group 2. Risk factors for loss of lumbar lordosis included a high preoperative lumbar lordosis, surgical decrease of thoracic kyphosis, and the particular operating surgeon. The lowest instrumented vertebra or spinopelvic parameters were two of many parameters that did not seem to influence loss of lumbar lordosis. This study identified important risk factors for decrease of lumbar lordosis in patients who had surgical treatment for AIS with segmental pedicle screw instrumentation, including a high preoperative lumbar lordosis, surgical decrease of thoracic kyphosis, and factors attributable to a particular operating surgeon that were not quantified in this study.

  10. Patients' perception of pain during ultrasonic debridement: a comparison between piezoelectric and magnetostrictive scalers.

    Science.gov (United States)

    Muhney, Kelly A; Dechow, Paul C

    2010-01-01

    To compare patients' perception of discomfort, vibration and noise levels between piezoelectric and the magnetostrictive ultrasonic units during periodontal debridement. Periodontal debridement was performed on 75 subjects using a split-mouth design. Two quadrants on the same side were instrumented with a piezoelectric ultrasonic device (EMS Swiss Mini Master® Piezon) and the remaining 2 quadrants were instrumented with a magnetostrictive ultrasonic device (Dentsply Cavitron® SPS™). Subjects marked between 0 and 100 along a visual analog scale (VAS) for each of the 3 variables immediately after treatment of each half of the dentition. Scores of the VAS were compared using a nonparametric test for paired data, the Wilcoxon Signed-Rank test. The level of significance was set at ptypes were almost equal. The results show that, on average, patients in this study prefer instrumentation with the piezoelectric as it relates to awareness of associated discomfort and vibration. The results of this study may assist the clinician in the decision over which ultrasonic device may prove more beneficial in decreasing patient discomfort and increasing patient compliance.

  11. Percutaneous ultrasonic tenotomy for chronic elbow tendinosis: a prospective study.

    Science.gov (United States)

    Barnes, Darryl E; Beckley, James M; Smith, Jay

    2015-01-01

    Elbow tendinopathy is the most common cause of elbow pain affecting active populations. Surgical excision is reserved for patients with refractory symptoms. Percutaneous ultrasonic tenotomy performed under local anesthesia also removes degenerated tissue and therefore provides an alternative treatment option to surgical excision. This investigation prospectively documented the safety and 1-year efficacy of ultrasonic percutaneous tenotomy performed by a single operator. Nineteen patients, aged 38 to 67 years, in whom >6 months of conservative management for medial (7) or lateral (12) elbow tendinopathy had failed were prospectively studied. All patients were treated with percutaneous ultrasonic tenotomy of the elbow by a single operator. Visual analog scale (VAS) for pain, the 11-item version of the Disabilities of the Arm, Shoulder, and Hand (Quick DASH) index, and the Mayo Elbow Performance Score (MEPS) were assessed by an independent observer before treatment and at 6 weeks, 3 months, 6 months, and 12 months after treatment. No procedural complications occurred. Total treatment time was elbow tendinopathy up to 1 year after the procedure. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Surgical instrument biocontaminant fluorescence detection in ambient lighting conditions for hospital reprocessing and sterilization department (Conference Presentation)

    Science.gov (United States)

    Baribeau, François; Bubel, Annie; Dumont, Guillaume; Vachon, Carl; Lépine, André; Rochefort, Stéphane; Massicotte, Martin; Buteau-Vaillancourt, Louis; Gallant, Pascal; Mermut, Ozzy

    2017-03-01

    Hospitals currently rely on simple human visual inspection for assessing cleanliness of surgical instruments. Studies showed that surgical site infections are in part attributed to inadequate cleaning of medical devices. Standards groups recognize the need to objectively quantify the amount of residues on surgical instruments and establish guidelines. We developed a portable technology for the detection of contaminants on surgical instruments through fluorescence following cleaning. Weak fluorescence signals are usually detected in the obscurity only with the lighting of the excitation source. The key element of this system is that it works in ambient lighting conditions, a requirement to not disturb the normal workflow of hospital reprocessing facilities. A biocompatible fluorescent dye is added to the detergent and labels the proteins of organic residues. It is resistant to the harsh environment in a washer-disinfector. Two inspection devices have been developed with a 488nm laser as the excitation source: a handheld scanner and a tabletop station using spectral-domain and time-domain ambient light cancellation schemes. The systems are eye safe and equipped with image processing and interfacing software to provide visual or audible warnings to the operator based on a set of adjustable signal thresholds. Micron-scale residues are detected by the system which can also evaluate soil size and mass. Unlike swabbing, it can inspect whole tools in real-time. The technology has been validated in an independent hospital decontamination research laboratory. It also has potential applications in the forensics, agro-food, and space fields. Technical aspects and results will be presented and discussed.

  13. Proposed new ultrasonic test bed

    International Nuclear Information System (INIS)

    Maxfield, B.W.

    1978-01-01

    Within the last four or five years, a great deal of progress has been made both here and in a number of other laboratories in developing techniques that will enable considerably more information to be obtained from the ultrasonic examination of an object. Some of these recent developments relate to information contained within the diffracted beam which does not return along the incident path. An ultrasonic examination based upon an evaluation of diffracted energy must use at least two transducers, one for transmission and the other for reception. Current indications are that even more reliable test results will be achieved using a receiving transducer that can scan a significant portion of the diffracted field including that portion which is back-reflected. In general, this scan can be interpreted most accurately if it follows a path related to the surface shape. If more than one region within the object is to be interrogated, then the transmitting transducer must also be scanned, again along a path related to the surface shape. The large quantity of information obtained as the result of such an examination must be subjected to sophisticated computer analysis in order to be displayed in a meaningful and intelligible manner. Although one motivation for building such an instrument is to explore new ultrasonic test procedures that are evolving from current laboratory research, this is neither the sole motivation nor the only use for this instrument. Such a mechanical and electronic device would permit conventional ultrasonic tests to be performed on parts of complex geometry without the expensive and time-consuming special fixturing that is currently required. May possible test geometries could be explored in practice prior to the construction of a specialized test apparatus. Hence, it would be necessary to design much, if any, flexibility into the special test apparatus

  14. Design and development of an ultrasonic pulser-receiver unit for non-destructive testing of materials

    International Nuclear Information System (INIS)

    Patankar, V.H.; Joshi, V.M.

    2002-11-01

    The pulser/receiver constitutes the most vital part of an ultrasonic flaw detector or an ultrasonic imaging system used for inspection of materials. The ultrasonic properties of the material and resolution requirements govern the choice of the frequency of ultrasound that can be optimally used. The pulser/receiver in turn decides the efficiency of excitation of the transducer and the overall signal to noise ratio of the system for best sensitivity and resolution. A variety of pulsers are used in the ultrasonic instruments employed for materials inspection. This report describes a square wave type of an ultrasonic pulser-receiver unit developed at Ultrasonic Instrumentation Section, Electronics Division, BARC. It has been primarily designed for excitation of the transducer that is used with a multi-channel ultrasonic imaging system ULTIMA 100M targeted for inspection of SS403 billets, which are in turn used as the base material for fabrication of end fittings for coolant channels of pressurized heavy water nuclear reactors (PHWRs). The design of the pulser is based upon very fast MOSFETs, configured as electronic switches. The pulser is operated with a linear bipolar H.V. supply (+/- 500V max.). The receiver provides a 60 dB gain with a -3 dB BW of 40 MHz. This pulser/receiver unit has been successfully interfaced with a 4 channel ULTIMA 100 M4 multichannel ultrasonic C-scan imaging system, also designed and developed by the authors at Ultrasonic Instrumentation Section (Electronics Division, BARC) and supplied to Centre for Design and Manufacturer - CDM, BARC. This system is being regularly used in C-scan imaging mode for volumetric inspection of SS403 billets for end fittings of 500 MWe PHWRs. (author)

  15. Management of Surgical Instruments Package in the Operating Room%手术室器械包的管理

    Institute of Scientific and Technical Information of China (English)

    刘萍; 张娟; 潘文琴; 戴榕娟

    2017-01-01

    Objective Cleaning, maintenance, disinfection and preoperative preparation of surgical instruments in the past are done by the operation room, but with the development of China's hospitals and national new surgical management practices, certain progress has been achieved in the integrated management of surgical instruments for the operating rooms.Practical experiences in the management were discussed in this article.MethodsIn order to improve work quality and work efficiency and to reduce cost in the management of instruments in operation room, we analyzed the current situation of the management of equipment in the operation room based on the reality and tried to find out the method of surgical instrument package innovation, including the production of classification photo album for the surgical instrument package, paper list of all equipments, and production of marking cards for the instruments that can stand the sterilization under high pressure.Results and Conclusion From the implementation point of view, the total loss rate is reduced from the original 0.43% to 0.14%,and the loss rate of the micro device from 0.725% to 0.23%, effectively reducing the device losses.Great progress has been made in the use of the new methods, the quality of the personnel, in charge of the surgical instruments, classification management and the mapping and marking of cards.%目的 手术器械包的清洗、保养、消毒灭菌和术前准备工作以往均由手术室自行完成,随着我国医院洁净手术室的发展和国家新手术管理规范的实施,手术器械管理实施手供一体化相关工作逐步取得一定的效果.方法 分析手术器械包的管理及成效,改善工作品质,提高工作效率,降低成本等情况;找出手术器械包新的管理方法,包括制作手术器械包分类相册,以及手术器械包中加入纸质的器械清单、制作能够高压灭菌的金属器械牌等手段.结果与结论

  16. Surgical smoke and infection control.

    NARCIS (Netherlands)

    Alp, E.; Bijl, D.; Bleichrodt, R.P.; Hansson, B.M.; Voss, A.

    2006-01-01

    Gaseous byproducts produced during electrocautery, laser surgery or the use of ultrasonic scalpels are usually referred to as 'surgical smoke'. This smoke, produced with or without a heating process, contains bio-aerosols with viable and non-viable cellular material that subsequently poses a risk of

  17. IVA Ultrasonic and Eddy Current NDE for ISS

    Data.gov (United States)

    National Aeronautics and Space Administration — The project intends to develop a combined Ultrasonic and Eddy Current nondestructive evaluation (NDE) instrument for IVA use on ISS. A suite of IVA and EVA NDE...

  18. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.

    Science.gov (United States)

    Zhao, Zijian; Voros, Sandrine; Weng, Ying; Chang, Faliang; Li, Ruijian

    2017-12-01

    Worldwide propagation of minimally invasive surgeries (MIS) is hindered by their drawback of indirect observation and manipulation, while monitoring of surgical instruments moving in the operated body required by surgeons is a challenging problem. Tracking of surgical instruments by vision-based methods is quite lucrative, due to its flexible implementation via software-based control with no need to modify instruments or surgical workflow. A MIS instrument is conventionally split into a shaft and end-effector portions, while a 2D/3D tracking-by-detection framework is proposed, which performs the shaft tracking followed by the end-effector one. The former portion is described by line features via the RANSAC scheme, while the latter is depicted by special image features based on deep learning through a well-trained convolutional neural network. The method verification in 2D and 3D formulation is performed through the experiments on ex-vivo video sequences, while qualitative validation on in-vivo video sequences is obtained. The proposed method provides robust and accurate tracking, which is confirmed by the experimental results: its 3D performance in ex-vivo video sequences exceeds those of the available state-of -the-art methods. Moreover, the experiments on in-vivo sequences demonstrate that the proposed method can tackle the difficult condition of tracking with unknown camera parameters. Further refinements of the method will refer to the occlusion and multi-instrumental MIS applications.

  19. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  20. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  1. NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    JE Daw; JL Rempe; BR Tittmann; B Reinhardt; P Ramuhalli; R Montgomery; HT Chien

    2012-09-01

    Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are less intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.

  2. Automated ultrasonic inspection using PULSDAT

    International Nuclear Information System (INIS)

    Naybour, P.J.

    1992-01-01

    PULSDAT (Portable Ultrasonic Data Acquisition Tool) is a system for recording the data from single probe automated ultrasonic inspections. It is one of a range of instruments and software developed by Nuclear Electric to carry out a wide variety of high quality ultrasonic inspections. These vary from simple semi-automated inspections through to multi-probe, highly automated ones. PULSDAT runs under the control of MIPS software, and collects data which is compatible with the GUIDE data display system. PULSDAT is therefore fully compatible with Nuclear Electric's multi-probe inspection systems and utilises all the reliability and quality assurance of the software. It is a rugged, portable system that can be used in areas of difficult access. The paper discusses the benefits of automated inspection and gives an outline of the main features of PULSDAT. Since April 1990 PULSDAT has been used in several applications within Nuclear Electric and this paper presents two examples: the first is a ferritic set-through nozzle and the second is an austenitic fillet weld. (Author)

  3. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  4. Dental Hygiene and Orthodontics: Effect of Ultrasonic Instrumentation on Bonding Efficacy of Different Lingual Orthodontic Brackets.

    Science.gov (United States)

    Scribante, Andrea; Sfondrini, Maria Francesca; Collesano, Vittorio; Tovt, Gaia; Bernardinelli, Luisa; Gandini, Paola

    2017-01-01

    Dental hygienists are often faced with patients wearing lingual orthodontic therapy, as ultrasonic instrumentation (UI) is crucial for oral health. As the application of external forces can lead to premature bonding failure, the aim of this study was to evaluate the effect of UI on shear bond strength (SBS) and on adhesive remnant index (ARI) of different lingual orthodontic brackets. 200 bovine incisors were divided into 10 groups. Four different lingual (STB, Ormco; TTR, Rocky Mountain Orthodontics; Idea, Leone; 2D, Forestadent) and vestibular control (Victory, 3M) brackets were bonded. UI was performed in half of specimens, whereas the other half did not receive any treatment. All groups were tested with a universal testing machine. SBS and ARI values were recorded. Statistical analysis was performed (significance: P = 0.05). TTR, Idea, and 2D lingual brackets significantly lowered SBS after UI, whereas for other braces no effect was recorded. Appliances with lower mesh area significantly reduced their adhesion capacity after UI. Moreover groups subjected to UI showed higher ARI scores than controls. UI lowered SBS of lingual appliances of small dimensions so particular care should be posed avoiding prolonged instrumentation around bracket base during plaque removal. Moreover, UI influenced also ARI scores.

  5. Artificial intelligence and ultrasonic tests in detection of defects

    International Nuclear Information System (INIS)

    Barrera Cardiel, G.; Fabian Alvarez, M. a.; Velez Martinez, M.; Villasenor, L.

    2001-01-01

    One of the most serious problems in the quality control of welded unions is the location, identification and classification of defects. As a solution to this problem, a technique for classification, applicable to welded unions done by electric arc welding as well as by friction, is proposed; it is based on ultrasonic signals. The neuronal networks proposed are Kohonen and Multilayer Percept ron, all in a virtual instrument environment. Currently the techniques most used in this field are: radiological analysis (X-rays) and ultrasonic analysis (ultrasonic waves). The X-ray technique in addition to being dangerous requires highly specialized personnel and equipment, therefore its use is restricted. The ultrasonic technique, in spite of being one of the most used for detection of discontinuities, requires personnel with wide experience in the interpretation of ultrasonic signals, this is a time-consuming process which necessarily increases its operation cost. The classification techniques that we propose turn out to be safe, reliable, inexpensive and easy to implement for the solution of this important problem. (Author) 8 refs

  6. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.

    Science.gov (United States)

    Loukas, Constantinos; Lahanas, Vasileios; Georgiou, Evangelos

    2013-12-01

    Despite the popular use of virtual and physical reality simulators in laparoscopic training, the educational potential of augmented reality (AR) has not received much attention. A major challenge is the robust tracking and three-dimensional (3D) pose estimation of the endoscopic instrument, which are essential for achieving interaction with the virtual world and for realistic rendering when the virtual scene is occluded by the instrument. In this paper we propose a method that addresses these issues, based solely on visual information obtained from the endoscopic camera. Two different tracking algorithms are combined for estimating the 3D pose of the surgical instrument with respect to the camera. The first tracker creates an adaptive model of a colour strip attached to the distal part of the tool (close to the tip). The second algorithm tracks the endoscopic shaft, using a combined Hough-Kalman approach. The 3D pose is estimated with perspective geometry, using appropriate measurements extracted by the two trackers. The method has been validated on several complex image sequences for its tracking efficiency, pose estimation accuracy and applicability in AR-based training. Using a standard endoscopic camera, the absolute average error of the tip position was 2.5 mm for working distances commonly found in laparoscopic training. The average error of the instrument's angle with respect to the camera plane was approximately 2°. The results are also supplemented by video segments of laparoscopic training tasks performed in a physical and an AR environment. The experiments yielded promising results regarding the potential of applying AR technologies for laparoscopic skills training, based on a computer vision framework. The issue of occlusion handling was adequately addressed. The estimated trajectory of the instruments may also be used for surgical gesture interpretation and assessment. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  8. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    International Nuclear Information System (INIS)

    1980-01-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  9. A comparison of dental ultrasonic technologies on subgingival calculus removal: a pilot study.

    Science.gov (United States)

    Silva, Lidia Brión; Hodges, Kathleen O; Calley, Kristin Hamman; Seikel, John A

    2012-01-01

    This pilot study compared the clinical endpoints of the magnetostrictive and piezoelectric ultrasonic instruments on calculus removal. The null hypothesis stated that there is no statistically significant difference in calculus removal between the 2 instruments. A quasi-experimental pre- and post-test design was used. Eighteen participants were included. The magnetostrictive and piezoelectric ultrasonic instruments were used in 2 assigned contra-lateral quadrants on each participant. A data collector, blind to treatment assignment, assessed the calculus on 6 predetermined tooth sites before and after ultrasonic instrumentation. Calculus size was evaluated using ordinal measurements on a 4 point scale (0, 1, 2, 3). Subjects were required to have size 2 or 3 calculus deposit on the 6 predetermined sites. One clinician instrumented the pre-assigned quadrants. A maximum time of 20 minutes of instrumentation was allowed with each technology. Immediately after instrumentation, the data collector then conducted the post-test calculus evaluation. The repeated analysis of variance (ANOVA) was used to analyze the pre- and post-test calculus data (p≤0.05). The null hypothesis was accepted indicating that there is no statistically significant difference in calculus removal when comparing technologies (p≤0.05). Therefore, under similar conditions, both technologies removed the same amount of calculus. This research design could be used as a foundation for continued research in this field. Future studies include implementing this study design with a larger sample size and/or modifying the study design to include multiple clinicians who are data collectors. Also, deposit removal with periodontal maintenance patients could be explored.

  10. Evaluation of computer-based ultrasonic inservice inspection systems

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T.

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems

  11. Output control of da Vinci surgical system's surgical graspers.

    Science.gov (United States)

    Johnson, Paul J; Schmidt, David E; Duvvuri, Umamaheswar

    2014-01-01

    The number of robot-assisted surgeries performed with the da Vinci surgical system has increased significantly over the past decade. The articulating movements of the robotic surgical grasper are controlled by grip controls at the master console. The user interface has been implicated as one contributing factor in surgical grasping errors. The goal of our study was to characterize and evaluate the user interface of the da Vinci surgical system in controlling surgical graspers. An angular manipulator with force sensors was used to increment the grip control angle as grasper output angles were measured. Input force at the grip control was simultaneously measured throughout the range of motion. Pressure film was used to assess the maximum grasping force achievable with the endoscopic grasping tool. The da Vinci robot's grip control angular input has a nonproportional relationship with the grasper instrument output. The grip control mechanism presents an intrinsic resistant force to the surgeon's fingertips and provides no haptic feedback. The da Vinci Maryland graspers are capable of applying up to 5.1 MPa of local pressure. The angular and force input at the grip control of the da Vinci robot's surgical graspers is nonproportional to the grasper instrument's output. Understanding the true relationship of the grip control input to grasper instrument output may help surgeons understand how to better control the surgical graspers and promote fewer grasping errors. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A new surgical method for penile girth enhancement.

    Science.gov (United States)

    Li, Xiaoge; Tao, Ling; Cao, Chuan; Shi, Haishan; Li, Le; Chen, Liang; Li, Shirong

    2015-01-01

    We developed a new surgical model of penile girth enhancement in dog, with minimal damage, fewer complications, and high success rate, to enable the experimental investigation of penile implants. We obtained materials for penile girth enhancement by processing the pericardium and blood vessel wall collected from pigs. Incisions were made at the penile bulb for the implantation of the materials, and facilitate observation and data collection, based on the anatomical features of dog's penis. We measured the girth of the flaccid penis before and after the operation, and erectile function at 1-month postoperation. In addition to evaluation of recovery from the incision and local pathological changes, ultrasonic examination was performed to monitor the long-term changes associated with implantation. The mean girth of the flaccid penis significantly increased from 7.37±0.40 cm before the operation, to 8.70±0.56 cm postoperation. Dogs resumed normal mating at 1 month after the operation, without any significant change in the mating time. Ultrasonic examination clearly illustrated the implants, and helped in the measurement of the distance between the materials and the baculum. Chinese Rural dog is a promising animal model for penile girth enhancement surgery. The findings demonstrated that surgical implantation into penile bulb was associated with less damage, faster postoperative recovery, and higher success. For the first time, ultrasonic examination provided objective data on the surgical outcomes of penile girth enhancement.

  13. A case study on the design of a modular surgical instrument for removing metastases using engineering design tools

    OpenAIRE

    Preca, George; Farrugia, Philip; Casha, Aaron; International Conference on Engineering and Product Design Education

    2014-01-01

    Metastatic cancer is a form of cancer stemming from a primary tumour that propagates to different organs and/or to different sites within the same organ. Studies have indicated that the chances of survival improve upon surgical removal of metastases. The overall goal of this research was to develop a modular surgical instrument that would be easy to use and manipulate and hence facilitate resection of metastases. This research forms part of a final year project carried out by a mechanical eng...

  14. A quantitative analysis of rotary, ultrasonic and manual techniques to treat proximally flattened root canals

    Directory of Open Access Journals (Sweden)

    Fabiana Soares Grecca

    2007-04-01

    Full Text Available OBJECTIVE: The efficiency of rotary, manual and ultrasonic root canal instrumentation techniques was investigated in proximally flattened root canals. MATERIAL AND METHODS: Forty human mandibular left and right central incisors, lateral incisors and premolars were used. The pulp tissue was removed and the root canals were filled with red die. Teeth were instrumented using three techniques: (i K3 and ProTaper rotary systems; (ii ultrasonic crown-down technique; and (iii progressive manual technique. Roots were bisected longitudinally in a buccolingual direction. The instrumented canal walls were digitally captured and the images obtained were analyzed using the Sigma Scan software. Canal walls were evaluated for total canal wall area versus non-instrumented area on which dye remained. RESULTS: No statistically significant difference was found between the instrumentation techniques studied (p<0.05. CONCLUSION: The findings of this study showed that no instrumentation technique was 100% efficient to remove the dye.

  15. Ultrasonic instrument for continuous measurement of liquid levels in sodium systems

    International Nuclear Information System (INIS)

    Boehmer, L.S.

    1975-01-01

    An ultrasonic level measurement system which provides a continuous digital readout over a range of 3-180 inches, was tested in 500 0 F liquid sodium. The system proved to be accurate and reliable, required no initial warm-up period and experienced no long term drift. Modifications can extend the present operating temperatures to greater than 1200 0 F

  16. Systems for tracking minimally invasive surgical instruments

    NARCIS (Netherlands)

    Chmarra, M. K.; Grimbergen, C. A.; Dankelman, J.

    2007-01-01

    Minimally invasive surgery (e.g. laparoscopy) requires special surgical skills, which should be objectively assessed. Several studies have shown that motion analysis is a valuable assessment tool of basic surgical skills in laparoscopy. However, to use motion analysis as the assessment tool, it is

  17. Surgical risks and perioperative complications of instrumented lumbar surgery in patients with liver cirrhosis

    Directory of Open Access Journals (Sweden)

    Tung-Yi Lin

    2014-02-01

    Full Text Available Background: Patients with liver cirrhosis have high surgical risks due to malnutrition, impaired immunity, coagulopathy, and encephalopathy. However, there is no information in English literature about the results of liver cirrhotic patients who underwent instrumented lumbar surgery. The purpose of this study is to report the perioperative complications, clinical outcomes and determine the surgical risk factors in cirrhotic patients. Methods: We retrospectively reviewed 29 patients with liver cirrhosis who underwent instrumented lumbar surgery between 1997 and 2009. The hepatic functional reserves of the patients were recorded according to the Child-Turcotte-Pugh scoring system. Besides, fourteen other variables and perioperative complications were also collected. To determine the risks, we divided the patients into two groups according to whether or not perioperative complications developed. Results: Of the 29 patients, 22 (76% belonged to Child class A and 7 (24% belonged to Child class B. Twelve patients developed one or more complications. Patients with Child class B carried a significantly higher incidence of complications than those with Child class A (p = 0.011. In the Child class A group, patients with 6 points had a significantly higher incidence of complications than those with 5 points (p = 0.025. A low level of albumin was significantly associated with higher risk, and a similar trend was also noted for the presence of ascites although statistical difference was not reached. Conclusion: The study concludes that patients with liver cirrhosis who have undergone instrumented lumbar surgery carry a high risk of developing perioperative complications, especially in those with a Child-Turcotte-Pugh score of 6 or more.

  18. Corticotomy-facilitated orthodontics using piezosurgery versus rotary instruments: an experimental study.

    Science.gov (United States)

    Farid, Karim A; Mostafa, Yehya A; Kaddah, Mohammed A; El-Sharaby, Fouad Aly

    2014-10-01

    The aim of this study was to evaluate corticotomy-facilitated orthodontics (CFO) using piezosurgery versus conventional rotary instruments. Ten healthy adult male mongrel dogs of comparable age with a complete set of permanent dentition with average weights between 13-17 kilograms were used. CFO using conventional rotary instruments versus piezosurgery was performed on each dog in a split mouth design. For every dog, mandibular 2nd premolar retraction on each side was attempted after extracting 3rd premolars followed by corticotomy-facilitated orthodontics using conventional rotary surgical burs on the left side and an ultrasonic piezosurgery system on the right side of the same animal. Intraoral measurements of the rate of tooth movement were taken with a sliding caliper. Measurements were performed by the same operator at the time of surgery (appliance delivery) and every month for six months. The dogs were sacrificed after six months from initiation of tooth movement to evaluate the amount of tooth movement for both conventional rotary and piezosurgery corticotomy techniques. A statistically significantly higher mean amount of tooth movement for conventional rotary instrument versus the piezosurgery corticotomy technique was observed at all time intervals. Tooth movement was 1.6 times faster when CFO was done using conventional rotary instruments as compared to a piezosurgery device.

  19. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and

  20. Achieving a predictable 24-hour return to normal activities after breast augmentation: part II. Patient preparation, refined surgical techniques, and instrumentation.

    Science.gov (United States)

    Tebbetts, John B

    2006-12-01

    The goal of this study was to develop practices that would allow patients undergoing subpectoral augmentation to predictably return to full normal activities within 24 hours after the operation, free of postoperative adjuncts. Part I of this study used motion and time study principles to reduce operative times, medication dosages, perioperative morbidity, and recovery times in augmentation mammaplasty. Part II of the study focuses on details of patient education, preoperative planning, instrumentation, and surgical technique modifications that were identified, modified, and implemented to achieve the results reported in part I. Two groups of 16 patients each (groups 1 and 2) were studied retrospectively for comparison to a third group of 627 patients (group 3) studied prospectively. Patients in group 1 had axillary partial retropectoral breast augmentations in 1982-1983, using dissociative anesthesia, blunt instrument implant pocket dissection, and Dow Corning, double-lumen implants containing 20 mg of methylprednisolone and 20 cc of saline in the outer lumen of the implants. Patients in group 2 (1990) had inframammary, retromammary augmentations by using a combination of blunt and electrocautery dissection, Surgitek Replicon polyurethane-covered, silicone gel-filled implants, and general endotracheal anesthesia. Patients in group 3 (1998 to 2001, n = 627) had inframammary partial retropectoral, inframammary retromammary, and axillary partial retropectoral augmentations under general endotracheal anesthesia. Refined practices and surgical techniques from studies of groups 1 and 2 were applied in group 3. Videotapes from operative procedures of groups 1 and 2 were analyzed with macromotion and micromotion study principles, and tables of events were formulated for each move during the operation for all personnel in the operating room. Extensive details of surgical technique were examined and reexamined in 13 different stages by using principles of motion and time

  1. Ultrastructural investigation of root canal dentine surface after application of active ultrasonic method

    Directory of Open Access Journals (Sweden)

    Mitić Aleksandar

    2008-01-01

    Full Text Available INTRODUCTION The basic work principle of all ultrasonic techniques is the piezoelectric effect of producing high frequency ultrasounds of small length, which are transmitted over the endodontic extensions or canal instruments into the root canal. When in contact with the tissue, ultrasonic vibrations are converted into mechanical oscillations. Ultrasonic waves and the obtained oscillations along with the synergic effect of irrigation bring about the elimination of smear layer from the root canal walls. OBJECTIVE The aim of the study was to ultrastucturally examine the effect of smear layer removal from the walls of canals by the application of the active ultrasonic method without irrigation, that is by the application of ultrasound and irrigation using distilled water and 2.5% NaOCl. METHOD The investigation comprised 35 single-canal, extracted human teeth. After removal of the root canal content, experimental samples were divided into three groups. According to the procedure required, the first group was treated by ultrasound without irrigation; the second one by ultrasound with irrigation using distilled water; and the third group was treated by ultrasound and irrigation using 2.5% NaOCl solution. The control samples were treated by machine rotating instruments (Pro-File and were rinsed by distilled water. RESULTS The obtained results showed that the ultrasonic treatment of the root canal without irrigation did not remove the smear layer. The dentine canals are masked, and big dentine particles are scattered on the intertubular dentine. The ultrasonic treatment by using irrigation with distilled water provides cleaner dentine walls and open dentine tubules but with smaller particles on the intertubular dentine. The ultrasound treatment by using irrigation with 2.5% NaOCl solution provides a clean intertubular dentine surface without a smear layer and clearly open dentine tubules. CONCLUSION Instrumentation of the root canal by application of

  2. An ultrasonic noncontact method to monitor the doneness of bakery products

    Science.gov (United States)

    Chimenti, D. E.; Faeth, L.

    2000-05-01

    The paper describes a method using ultrasonics and fluid dynamics to assess the state of "doneness" of bakery products, such as bread loaves, online and in situ. The problem in the baking industry is that bread doneness determined by time and temperature can be inaccurate, leaving some product underbaked. We describe a noncontact method using air-pulse excitation and air-coupled ultrasonic motion sensing to infer the state of doneness of the baking loaf while still in the oven and on a moving belt. The ultrasonic sensor operates at 100 kHz using a toneburst excitation and pitch-catch transducer geometry. The problem is one of detecting small (50 micron) movements in the loaf, whose position may vary up to several mm. Further, the loaf movements caused by the air-pulse excitation are rapid (20 to 50 msec). We present a signal-processing system, incorporating a boxcar integrator, that functions as a pulsed, time-domain acoustic interferometer. This instrument is capable of both the high time and spatial resolution essential for the successful operation of the instrument. We estimate a spatial resolution of 30 micron and a temporal resolution of 5 msec, using 100 kHz acoustic waves. The results of numerous in-oven measurements on one-pound bread loaves during the bake cycle will be presented to illustrate the performance of the instrument.

  3. Microcomputer-controlled ultrasonic data acquisition system

    International Nuclear Information System (INIS)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software

  4. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  5. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  6. Dynamic measurement of liquid film thickness in stratified flow by using ultrasonic echo technique

    International Nuclear Information System (INIS)

    Serizawa, A.; Nagane, K.; Kamei, T.; Kawara, Z.; Ebisu, T.; Torikoshi, K.

    2004-01-01

    We developed a technique to measure time-dependent local film thickness in stratified air-water flow over a horizontal plate by using a time of flight of ultrasonic transmission. The ultrasonic echoes reflected at the liquid/air interfaces are detected by a conventional ultrasonic instrumentation, and the signals are analyzed by a personal computer after being digitalized by an A/D converter to give the time of flight for the ultrasonic waves to run over a distance of twice of the film thickness. A 3.8 mm diameter probe type ultrasonic transducer was used in the present work which transmits and receives 10 MHz frequency ultrasonic waves. The estimated spatial resolution with this arrangement is 0.075 mm in film thickness for water. The time resolution, which depends on both the A/D converter and the memory capacity was up to several tens Hz. We also discussed the sensitivity of the method to the inclination angle of the interfaces. (author)

  7. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    Science.gov (United States)

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Getting the most out of your new plant with a chordal ultrasonic feedwater flow measurement system

    International Nuclear Information System (INIS)

    Estrada, Herb; Hauser, Ernie

    2007-01-01

    The economic advantages of a chordal ultrasonic feedwater flow measurement system over conventional (flow nozzle-based) feedwater instrumentation are analyzed for new plants having ratings ranging from 1100 MWe to 1600 MWe. Specifically, each of the following topics is considered: The value of a 1.7% increase in the rating of the new plant, made possible by the reduced uncertainty in the determination of thermal power. The value of reduced startup time owing to enhanced steam supply water level control. The value of the reduced feedwater pumping power brought about by the elimination of flow nozzles. The value of the reduced calibration burden owing to the elimination of the feedwater flow differential pressure transmitters and resistance thermometers. The net difference in the acquisition costs of the ultrasonic system versus conventional feedwater flow instrumentation. The net savings in installation costs of the ultrasonic system vis-a-vis conventional feedwater flow instrumentation. The potential savings in outage time due to the reduced frequency of low steam supply water level trips (scrams) of the reactor. (author)

  9. Density and Ultrasonic Characterization of Oil Palm Trunk Infected by Ganoderma Boninense Disease

    Science.gov (United States)

    Najmie, M. M. K.; Khalid, K.; Sidek, A. A.; Jusoh, M. A.

    2011-01-01

    Oil palm trunks infected by Ganoderma boninense disease have been studied using density and ultrasonic characterizations. The ultrasonic characterizations have been performed using a commercial ultrasonic instrument at the frequency of 54 kHz. The measurements have been done in 3 zones: inner zone, central zone and peripheral zone. It was found that the stem density of the oil palm infected by Ganoderma boninense disease was reduced by 50% in comparison to the original healthy trunk. From this effect the velocity of the ultrasonic wave propagated through the Longitudinal, Radial, and Tangential directions is lower for the trunk infected by Ganoderma boninense disease compared to a healthy trunk. For the 10 cm thickness of samples, the ultrasonic velocity for all transit directions was in range of 260 - 750 ms-1 for the infected sample, whereas for healthy samples was in the range of 460 - 900 ms-1. These results are very useful for the detection of the area which has been affected by the disease.

  10. Development of high-sensitivity ultrasonic techniques for in-service inspection of nuclear reactors

    International Nuclear Information System (INIS)

    Linzer, M.

    1977-01-01

    The principal objective of the program is to develop techniques to enhance the sensitivity of ultrasonic signals which are below the random noise of the system. A secondary objective is to develop instrumentation for improved discrimination of flaw signals from background ''clutter'' and for characterization of failure-related material properties through measurements of ultrasonic parameters such as velocity and attenuation. The improved techniques will be applied to detect flaws in nuclear reactor materials and components

  11. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    Science.gov (United States)

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (pelectrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  12. Automated ultrasonic examination of light water reactor systems

    International Nuclear Information System (INIS)

    Walter, J.H.

    1975-01-01

    An automated ultrasonic examination system has been developed to meet the pre- and inservice inspection requirements of light water reactors. This system features remotely-controlled travelling instrument carriers, computerized collection and storage or inspection data in a manner providing real time comparison against code standards, and computer control over the positioning of the instrument carriers to provide precise location data. The system is currently being utilized in the field for a variety of reactor inspections. The principal features of the system and the recent inspection experience are discussed. (author)

  13. The reliability of ultrasonic inspection and the critical defect size

    International Nuclear Information System (INIS)

    Vasilchenko, G.S.; Bely, V.E.; Ovchinnikov, A.V.; Rivkin, E.Yu.

    1991-01-01

    The ability to detect fabrication and service-induced defects in the welded joints of components and pipelines in nuclear power stations by ultrasonic inspection when this is conducted by using standard instruments and procedures appears to be insufficient. This fact was confirmed by the research carried out in PISC program and other studies. In order to increase the accuracy of measurement and to obtain the additional information on the character of any defect in ultrasonic testing as well as the validity of applying nondestructive testing data to strength calculation, scientific researches have been promoted and carried out in the USSR in a program under the guidance of NPO CNIITMASH. The reliability of the ultrasonic control of welded joints and the ways and means for its improvement are discussed. The presentation of the parameters realized by the ultrasonic inspection of defects in the form of schema for the use in strength calculation is explained. The calculation of stress intensity factor, the estimation of critical defect size, and the estimation of acceptable defect size are reported. (K.I.)

  14. Femoral Test Bed for Impedance Controlled Surgical Instrumentation

    Directory of Open Access Journals (Sweden)

    Christian Brendle

    2012-01-01

    Full Text Available The risk for patients during the standard procedure of revision of cemented artificial hip joints is unsatisfactorily highdue to its high level of invasiveness and limited access to the operative field. To reduce this risk we are developing anImpedance Controlled Surgical Instrumentation (ICOS system, which aims to establish real-time control during a BoneCement (BC milling process. For this, the relationship between the thickness of the BC and its frequency-dependentelectrical impedance is used to estimate the residual BC thickness. The aim is to avoid unintended cutting of boneby detecting the passage of the BC/bone boundary layer by the milling head. In a second step, an estimation of theresidual BC thickness will be used to improve process control. As a first step towards demonstrating the feasibility ofour approach, presented here are experimental studies to characterize the BC permittivity and to describe the process indetail. The results show that the permittivity properties of BC are dominated by its polymethyl methacrylate (PMMAfraction. Thus, PMMA can be used as a substitute for future experiments. Furthermore, a Femoral Test Bed (FTB wasdesigned. Using this setup we show it is feasible to accurately distinguish between slightly different thicknesses of BC.

  15. Surgical Outcome of Reduction and Instrumented Fusion in Lumbar Degenerative Spondylolisthesis

    Directory of Open Access Journals (Sweden)

    Farzad Omidi-Kashani

    2016-02-01

    Full Text Available Background: Lumbar degenerative spondylolisthesis (LDS is a degenerative slippage of the lumbar vertebrae. We aimed to evaluate the surgical outcome of degenerative spondylolisthesis with neural decompression, pedicular screw fixation, reduction, and posterolateral fusion. Methods: This before-after study was carried out on 45 patients (37 female and 8 male with LDS operated from August 2008 to January 2011. The patients’ pain and disability were assessed by visual analogue scale (VAS and Oswestry disability index (ODI questionnaire. In surgery, we applied distraction force to facilitate slip reduction. All the intra- and postoperative complications were recorded. The paired t-test and Pearson correlation coefficient were used for statistical analysis. Results: The mean age of patients and mean follow-up period were 58.3±3.5 years and 31.2±4.8 months, respectively. The mean slip correction rate was 52.2% with a mean correction loss of 4.8%. Preoperative VAS and ODI improved from 8.8 and 71.6 to postoperative 2.1 and 28.7, respectively. Clinical improvement was more prominent in more reduced patients, but Pearson coefficient could not find a significant correlation. Conclusion: Although spinal decompression with fusion and posterior instrumentation in surgical treatment of the patients with LDS result in satisfactory outcome, vertebral reduction cannot significantly enhance the clinical improvement.

  16. Microcomputer-controlled ultrasonic data acquisition system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software.

  17. The Use of Harmonic Scalpel for Free Flap Dissection in Head and Neck Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Sebastien Albert

    2012-01-01

    Full Text Available Surgeons conventionally use electrocautery dissection and surgical clip appliers to harvest free flaps. The ultrasonic Harmonic Scalpel is a new surgical instrument that provides high-quality dissection and hemostasis and minimizes tissue injury. The aim of this study was to evaluate the effectiveness and advantages of the ultrasonic Harmonic Scalpel compared to conventional surgical instruments in free flap surgery. This prospective study included 20 patients who underwent head and neck reconstructive surgery between March 2009 and May 2010. A forearm free flap was used for reconstruction in 12 patients, and a fibular flap was used in 8 patients. In half of the patients, electrocautery and surgical clips were used for free flap harvesting (the EC group, and in the other half of the patients, ultrasonic dissection was performed using the Harmonic Scalpel (the HS group. The following parameters were significantly lower in the HS group compared to the EC group: the operative time of flap dissection (35% lower in the HS group, blood loss, number of surgical clips and cost of surgical materials. This study demonstrated the effectiveness of the Harmonic Scalpel in forearm and fibular free flap dissections that may be extended to other free flaps.

  18. Effect of the precrack preparation with an ultrasonic instrument on the ceramic bracket removal

    Directory of Open Access Journals (Sweden)

    Yen-Liang Chen

    2015-08-01

    Conclusion: The ultrasonic precrack preparation can significantly decrease the debonding force and may guide the bracket debonding through a favorable fracture plane without damage to either the bracket or the enamel.

  19. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  20. Ultrasonic horn design for ultrasonic machining technologies

    Directory of Open Access Journals (Sweden)

    Naď M.

    2010-07-01

    Full Text Available Many of industrial applications and production technologies are based on the application of ultrasound. In many cases, the phenomenon of ultrasound is also applied in technological processes of the machining of materials. The main element of equipments that use the effects of ultrasound for machining technology is the ultrasonic horn – so called sonotrode. The performance of ultrasonic equipment, respectively ultrasonic machining technologies depends on properly designed of sonotrode shape. The dynamical properties of different geometrical shapes of ultrasonic horns are presented in this paper. Dependence of fundamental modal properties (natural frequencies, mode shapes of various sonotrode shapes for various geometrical parameters is analyzed. Modal analyses of the models are determined by the numerical simulation using finite element method (FEM design procedures. The mutual comparisons of the comparable parameters of the various sonotrode shapes are presented.

  1. [Piezosurgery for surgically assisted rapid maxillary expansion under local anesthesia].

    Science.gov (United States)

    Sun, Hao; Li, Biao; Sun, Hao; Liu, Zhixu; Wang, Xudong

    2014-08-01

    This study evaluates piezosurgery for surgically assisted rapid maxillary expansion (SARME) under local anesthesia. SARME was performed on adults with maxillary transverse deficiency under local anesthesia with a piezosurgical device. Fourteen patients (six males and eight females) underwent lateral maxillary osteotomies, midpalatal osteotomies, and bilateral pterygomaxillary disjunction. The feelings of patients during the operation were determined through questionnaires. All patients underwent SARME in the out-patient operating room. The surgical procedures were completed under local anesthesia. All patients exhibited satisfactory tolerance. Ultrasonic bone-cutting surgery was recently introduced as a feasible alternative to the conventional tools of cranio-maxillofacial surgery for its technical characteristics of precision and safety. The device used was unique in that cutting action occurred when the tool was employed on mineralized tissues, but stoped on soft tissues. The results of the questionnaires showed that eight (57.14%) patients felt a mild sensation of ultrasonic vibration, tweleve (85.7 1%) felt mild tolerable pain and tooth soreness during surgery, and eleven (78.57%) felt little fear and hardly heard the ultrasonic sound. Preoperative and postoperative six months later measurements showed an evident effect of expansion. Piezosurgery enabled patients to undergo all the steps of SARME under local anesthesia, but more cases and longer follow-up are needed to verif ' the results.

  2. Ultrasonic identity data storage and archival system

    International Nuclear Information System (INIS)

    Mc Kenzie, J.M.; Self, B.G.; Walker, J.E.

    1987-01-01

    Ultrasonic seals are being used to determine if an underwater stored spent fuel container has been compromised and can be used to determine if a nuclear material container has been compromised. The Seal Pattern Reader (SPAR) is a microprocessor controlled instrument which interrogates an ultrasonic seal to obtain its identity. The SPAR can compare the present identity with a previous identity, which it obtains from a magnetic bubble cassette memory. A system has been developed which allows an IAEA inspector to transfer seal information obtained at a facility by the SPAR to an IAEA-based data storage and retrieval system, using the bubble cassette memory. Likewise, magnetic bubbles can be loaded at the IAEA with seal signature data needed at a facility for comparison purposes. The archived signatures can be retrieved from the data base for relevant statistical manipulation and for plotting

  3. Head Injury and Intracranial Pressure Monitor Using Ultrasonic and Low-Frequency (ULFA) Detection

    National Research Council Canada - National Science Library

    Vo-Dinh, Tuan

    2000-01-01

    The main objective of this research project is the development of a non-invasive method and instrument for head injury detection and monitoring using a new approach based on ultrasonic and low-frequency acoustic (ULFA...

  4. Effects of vector ultrasonic system debridement and conventional instrumentation on the levels of TNF-α in gingival crevicular fluid of patients with chronic periodontitis.

    Science.gov (United States)

    Arpağ, Osman Fatih; Dağ, Ahmet; İzol, Bozan Serhat; Cimitay, Gülcan; Uysal, Ersin

    2017-12-01

    Tumor necrosis factor alpha (TNF-α) is an inflammatory mediator whose levels are increased in the gingival crevicular fluid and blood serum in the case of chronic periodontitis. The aim of this study was to determine the effect of vector ultrasonic system (VUS) on the levels of TNF-α in gingival crevicular fluid (GCF) and the clinical parameters in patients with chronic periodontitis. The study protocol was conducted using split-mouth design in 30 patients with chronic periodontitis. VUS and scaling and root planing (S/RP) were applied separately to 2 quadrants, including the upper and the lower jaws. At baseline and after 6 months, clinical parameters including plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL) were recorded, and concentrations of TNF-α in GCF were determined by enzyme-linked immunosorbent assay (ELISA). Intergroup comparisons were evaluated by the independent Students' t-test, and the Pearson correlation was used to determine the relationship between parameters. The level of significance was set at 5%. Both treatment modalities provided statistically significant improvements in clinical periodontal parameters and TNF-α levels after 6 months (p 0.05). The use of the vector ultrasonic system in the non-surgical treatment of chronic periodontitis presents beneficial improvements for the clinical attachment level and the probing pocket depth as well as TNF-α levels in GCF.

  5. New generation of digitized electronics in ultrasonic testing

    International Nuclear Information System (INIS)

    Rauschev, R.

    1985-01-01

    A fully digitized system of ultrasonic test electronics is described. Directly behind the transducer itself the instrumentation is operating completely digitally in order to obtain both higher accuracy and reproducibility and easier handling by the operator. Parameters can be stored and recalled for testing under equal conditions at a later date. As an example the application for high quality nuclear tube testing is explained in detail

  6. Enhancement of submarine pressure hull steel ultrasonic inspection using imaging and artificial intelligence

    Science.gov (United States)

    Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard

    1995-06-01

    The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.

  7. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  8. Efficacy of sonic and ultrasonic activation for removal of calcium hydroxide from mesial canals of mandibular molars: a microtomographic study.

    Science.gov (United States)

    Wiseman, Anne; Cox, Timothy C; Paranjpe, Avina; Flake, Natasha M; Cohenca, Nestor; Johnson, James D

    2011-02-01

    The purpose of this study was to use micro-computed tomography (micro-CT) scanning to evaluate the efficacy of sonic and passive ultrasonic irrigation (PUI) on calcium hydroxide (Ca[OH](2)) removal and to measure the volume and percentage of Ca(OH)(2) remaining in the root canal system. The root canals of 46 extracted human mandibular molar teeth were prepared with rotary instruments and randomly assigned to two experimental groups (n = 40) as well as positive and negative controls (n = 6). In each experimental group, 20 teeth were assigned to each irrigation protocol, sonic or passive ultrasonic irrigation. All experimental teeth and the positive controls were filled with Ca(OH)(2), whereas the negative control teeth did not receive Ca(OH)(2). All teeth were scanned using micro-CT scanning to determine the dressing volume. After 7 days, the Ca(OH)(2) was removed in the experimental groups using rotary instrumentation only, and the teeth were again scanned using micro-CT scanning to calculate volume and percentage of Ca(OH)(2) removed. Positive control teeth were not subjected to rotary instrumentation. Experimental samples were then irrigated using either sonic or passive ultrasonic and the volume of remaining Ca(OH)(2) was calculated using micro-CT. Remnants of Ca(OH)(2) were found in all experimental groups. No Ca(OH)(2) was found in the negative controls, whereas a mean of 8.7 mm(3) of Ca(OH)(2) was recorded in the positive controls. Rotary plus passive ultrasonic irrigation removed significantly more Ca(OH)(2) (85.7%) than rotary plus sonic irrigation (71.5%) (p < 0.001). The combination of rotary instrumentation and passive ultrasonic activation for 3 periods of 20 seconds results in significantly lower amounts of Ca(OH)(2) remnants in the canal compared with sonic irrigation. Copyright © 2011. Published by Elsevier Inc.

  9. Head Injury and Intracranial Pressure Monitor Using Ultrasonic and Low-Frequency Acoustic (ULFA) Detection

    National Research Council Canada - National Science Library

    Vo-Dinh, Tuan

    2001-01-01

    The main objective of this research project is the development of a non-invasive method and instrument for head injury detection and monitoring using a new approach based on ultrasonic and low-frequency acoustic (ULFA...

  10. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study.

    Science.gov (United States)

    Kwak, Sang-Won; Moon, Young-Mi; Yoo, Yeon-Jee; Baek, Seung-Ho; Lee, WooCheol; Kim, Hyeon-Cheol

    2014-11-01

    The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.

  11. The effect of different temperature and concentration of sodium hypochlorite on the elimination of E.Faecalis using rotary instrumentation and intermittent passive ultrasonic irrigation

    International Nuclear Information System (INIS)

    AlMadi, Ebtissam M

    2008-01-01

    The purpose of this study was to compare the intracanal bacterial reduction using rotary instrumentation and intermittent passive ultrasonic irrigation (IPUI) with different concentrations and temperatures of NaOCl in different canal tapers. The root canals of seventy-two extracted single-rooted teeth were instrumented up to size 20k file and inoculated with E. faecalis. The teeth were divided into 5 experimental groups and one control. The root canals in the control group were shaped to a 0.04 taper using ProFile rotary files, with 1.5 minute of IPUI by NaOCl at a concentration of 2.5% and room temperature of 25degreeC for 30 seconds at a time at three intervals. In Group 1, the canals were shaped to a 0.06 taper, and in Groups 2 and 3 - the temperature of NaOCl used was 37degreeC and 45degreeC respectively, and in Groups 4 and 5 - the concentrations of NaOCl were 1% and 5% respectively. The canals were incubated at 37 degree C for 48 hours and bacterial samples were obtained using paper points and plated on agar plates. The zones of bacterial growth were measured and statistical analysis was performed. There was significantly more bacterial growth in the control group than in Groups 1, 2, 3 and 5. Furthermore, there was a significant reduction in bacterial growth in Group V compared to Group 4. The result of this study showed that significant bacterial reduction in contaminated root canals could be obtained using intermittent passive ultrasonic irrigation combined with 2.5% NaOCl at 37degreeC in canals prepared to a taper of 0.06. In addition, complete bacterial eradication could be obtained using IPUI with 2.5% NaOCl at 45degreeC or 5% NaOCl at room temperature (37degreeC). (author)

  12. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  13. 21 CFR 880.6150 - Ultrasonic cleaner for medical instruments.

    Science.gov (United States)

    2010-04-01

    ... instruments by the emission of high frequency soundwaves. (b) Classification. Class I. The device, including any solutions intended for use with the device for cleaning and sanitizing the instruments, is exempt from the premarket notification procedures in subpart E of part 807 of this chapter, subject to the...

  14. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  15. Surgical navigation with QR codes

    Directory of Open Access Journals (Sweden)

    Katanacho Manuel

    2016-09-01

    Full Text Available The presented work is an alternative to established measurement systems in surgical navigation. The system is based on camera based tracking of QR code markers. The application uses a single video camera, integrated in a surgical lamp, that captures the QR markers attached to surgical instruments and to the patient.

  16. Special instrumentation developed for FARO and KROTOS FCI experiments: High temperature ultrasonic sensor and dynamic level sensor

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Jorzik, E.; Anselmi, M.

    1998-01-01

    Development and application of special instrumentation for FARO and KROTOS fuel-coolant interaction experiments at JRC-Ispra are described. A temperature sensor based on ultrasonic techniques is described with the discussion on the improvements in sensor fabrication technique and design. The sensor can be used to measure temperatures in the range from 1800 deg C to 3100 deg C with an accuracy of ± 50 deg C. The design allows local temperature measurements in multiple zones along the sensor element. This sensor has been used successfully in a number of FARO experiments where temperature distributions in molten corium pools have been measured. It will be also used in the future Phebus FP tests. Furthermore, a water level meter sensor based on the time domain reflectometry technique is described. This high speed sensor allows monitoring of liquid level under very demanding ambient conditions, as e.g. 5MPa, 550 K in FARO. This sensor has been successfully applied in a number of FARO and KROTOS tests where the water level rise caused by a molten corium and Al 2 O 3 pours have been measured. (author)

  17. Computer based ultrasonic system for mechanical and acoustical characterization of materials

    International Nuclear Information System (INIS)

    Rosly Jaafar; Mohd Rozni Mohd Yusof; Khaidzir Hamzah; Md Supar Rohani; Rashdi Shah Ahmad; Amiruddin Shaari

    2001-01-01

    Propagation of both modes of ultrasonic waves velocity i.e. longitudinal (compressional) and transverse (shear), propagating in a material are closely linked with the material's physical and mechanical properties. By measuring both velocity modes, materials' properties such as Young's, bulk and shear moduli, compressibility, Poisson ratio and acoustic impedance can be determined. This paper describes the development of a system that is able to perform the above tasks and is known as Computer Based Ultrasonic for Mechanical and Acoustical Characterisation of Materials (UMC). The system was developed in the NDT Instrumentation and Signal Processing (NDTSP) laboratory of the Physics Department, Universiti Teknologi Malaysia. Measurements were made on four solid samples, namely, glass, copper, mild steel and aluminium. The results of measurements obtained were found to be in good agreement with the values of measurements made using standard methods. The main advantage of using this system over other methods is that single measurement of two ultrasonic velocity modes yields six material's properties. (Author)

  18. Three-dimensional analyses of ultrasonic scaler oscillations.

    Science.gov (United States)

    Lea, Simon C; Felver, Bernhard; Landini, Gabriel; Walmsley, A Damien

    2009-01-01

    It is stated that the oscillation patterns of dental ultrasonic scalers are dependent upon whether the instrument is of a magnetostrictive or piezoelectric design. These patterns are then linked to differences in root surface debridement in vitro. Piezoelectric (A, P) and magnetostrictive (Slimline, TFI-3) ultrasonic scalers (three of each) were evaluated, loaded (100 g/200 g) and unloaded with a 3D laser vibrometer. Loads were applied to the probe tips via teeth mounted in a load-measuring device. Elliptical motion was demonstrated for all probes under loaded and unloaded conditions. Loading flattened the elliptical motion along the length of the probe. Unloaded, Slimline tip 1 was significantly different to tips 2 and 3 (p0.207). All TFI-3 tips were different to each other (p0.867). Generator power increased all Slimline and P tip vibrations (pultrasound production mechanism and are dependent upon probe shape and generator power. Loaded probes oscillated with an elliptical pattern.

  19. Ultrasonic superlensing jets and acoustic-fork sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org

    2017-05-18

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on “hyper” or “super” lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical ‘snail-fork’ shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices. - Highlights: • Ultrasonic

  20. Comparison of three retreatment techniques with ultrasonic activation in flattened canals using micro-computed tomography and scanning electron microscopy.

    Science.gov (United States)

    Bernardes, R A; Duarte, M A H; Vivan, R R; Alcalde, M P; Vasconcelos, B C; Bramante, C M

    2015-08-17

    To use micro-CT to quantitatively evaluate the amount of residual filling material after using several techniques to remove root fillings with and without ultrasonic activation and to analyse the cleanliness of the root canal walls and dentine tubules with scanning electron microscopy (SEM). The root canals of one hundred and eight human mandibular incisors were selected and instrumented with rotary files using the BioRace system up to file size 40, .04 taper. After instrumentation, the teeth were filled using a hybrid technique with gutta-percha and sealer then divided into three groups according to the method used for removing the root filling: G1-Reciproc (using only instrument R50), G2-ProTaper Universal retreatment system and G3-Manual (hand files and Gates-Glidden burs). All groups were divided into two subgroups depending on whether ultrasonic agitation was used with the irrigants. Micro-CT scans were taken before and after removal of the filling material to detect residual material in the canal. After micro-CT analysis, the roots were cut in half, imaged by SEM and scored based on the amount of surface covered by root filling remnants. The data were analysed statistically using a significance level of 5%. All groups had retained material in the root canals after instrumentation. The Reciproc method was associated with less retained material than the ProTaper and Manual methods. Ultrasonic activation significantly reduced the amount of residual root filling in all groups (P material. Ultrasonic activation improved the removal of root filling material in all groups. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  1. Is hospital information system relevant to detect surgical site infection? Findings from a prospective surveillance study in posterior instrumented spinal surgery.

    Science.gov (United States)

    Boetto, J; Chan-Seng, E; Lonjon, G; Pech, J; Lotthé, A; Lonjon, N

    2015-11-01

    Spinal instrumentation has a high rate of surgical site infection (SSI), but results greatly vary depending on surveillance methodology, surgical procedures, or quality of follow-up. Our aim was to study true incidence of SSI in spinal surgery by significant data collection, and to compare it with the results obtained through the hospital information system. This work is a single center prospective cohort study that included all patients consecutively operated on for spinal instrumentation by posterior approach over a six-month period regardless the etiology. For all patients, a "high definition" prospective method of surveillance was performed by the infection control (IC) department during at least 12 months after surgery. Results were then compared with findings from automatic surveillance though the hospital information system (HIS). One hundred and fifty-four patients were included. We found no hardly difference between "high definition" and automatic surveillance through the HIS, even if HIS tended to under-estimate the infection rate: rate of surgical site infection was 2.60% and gross SSI incidence rate via the hospital information system was 1.95%. Smoking and alcohol consumption were significantly related to a SSI. Our SSI rates to reflect the true incidence of infectious complications in posterior instrumented adult spinal surgery in our hospital and these results were consistent with the lower levels of published infection rate. In-house surveillance by surgeons only is insufficiently sensitive. Further studies with more patients and a longer inclusion time are needed to conclude if SSI case detection through the HIS could be a relevant and effective alternative method. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  3. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study

    Directory of Open Access Journals (Sweden)

    Sang-Won Kwak

    2014-11-01

    Full Text Available Objectives The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. Materials and Methods The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan or JT-5B (B&L Biotech Ltd.. The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1, J1 (JT-5B / Power-1, K4 (KIS-1D / Power-4, and J4 (JT-5B / Power-4. The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. Results There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05. The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Conclusions Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.

  4. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  5. A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tobias T Hägi

    Full Text Available There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a to establish a pocket model enabling mechanical removal of biofilm and b to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL fibroblasts.Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a hand-instrumentation with curettes (CUR, b ultrasonication (US, c subgingival air-polishing using erythritol (EAP and d subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX. The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz, the caused tooth substance-loss (thickness as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD.After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10. The lowest reduction was found after CUR (2 log10. Additionally, substance-loss was the highest when using CUR (128±40 µm in comparison with US (14±12 µm, EAP (6±7 µm and EAP-CHX (11±10 µm. Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts.The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and results

  6. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  7. Posterior Rigid Instrumentation of C7: Surgical Considerations and Biomechanics at the Cervicothoracic Junction. A Review of the Literature.

    Science.gov (United States)

    Bayoumi, Ahmed B; Efe, Ibrahim E; Berk, Selim; Kasper, Ekkehard M; Toktas, Zafer Orkun; Konya, Deniz

    2018-03-01

    The cervicothoracic junction is a challenging anatomic transition in spine surgery. It is commonly affected by different types of diseases that may significantly impair stability in this region. The seventh cervical vertebra (C7) is an atypical cervical vertebra with unique anatomic features compared to subaxial cervical spine (C3 to C6). C7 has relatively broader laminae, larger pedicles, smaller lateral masses, and a long nonbifid spinous process. These features allow a variety of surgical methods for performing posterior rigid instrumentation in the form of different types of screws, such as lateral mass screws, pedicle screws, transfacet screws, and intralaminar screws. Many biomechanical studies on cadavers have evaluated and compared different types of implants at C7. We reviewed PubMed/Medline by using specific combinations of keywords to summarize previously published articles that examined C7 posterior rigid instrumentation thoroughly in an experimental fashion on patients or cadavers with additional descriptive radiologic parameters for evaluation of the optimum surgical technique for each type. A total of 44 articles were reported, including 22 articles that discussed anatomic considerations (entry points, sagittal and axial trajectories, and features of screws) and another 22 articles that discussed the relevant biomechanical testing at this transitional region if C7 was directly involved in terms of receiving posterior rigid implants. C7 can accommodate different types of screws, which can provide additional benefits and risks based on availability of bony purchase, awareness of surgical technique, biomechanics, and anatomic considerations. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Evaluation of the performance of an ultrasonic cross-correlation flowmeter

    International Nuclear Information System (INIS)

    Bazerghi, H.; Serdula, K.J.

    1977-09-01

    An ultrasonic cross-correlation flowmeter, developed to assist in improving performance of heavy water plants, was evaluated. Overall performance of the flowmeter is satisfactory. The flowmeter is ideally suited to industrial applications and has an accuracy and repeatability comparable to many laboratory instruments. An accuracy of 3% is readily obtainable. This new 'clamp-on' portable flowmeter should prove useful in applications which provide flow measurements in systems where pipe penetration is too costly or not practical, verify or replace existing flowmeters, and measure flows in lines not previously instrumented to provide better control or to verify performance of systems

  9. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Evaluation of the safety and efficiency of novel metallic ultrasonic scaler tip on titanium surfaces.

    Science.gov (United States)

    Baek, Seung-Ho; Shon, Won-Jun; Bae, Kwang-Shik; Kum, Kee-Yeon; Lee, Woo-Cheol; Park, Young-Seok

    2012-11-01

    To evaluate the safety and efficiency of novel ultrasonic scaler tips, conventional stainless-steel tips, and plastic tips on titanium surfaces. Mechanical instrumentation was carried out using conventional ultrasonic scalers (EMS, Nyon, Switzerland) with novel metallic implant tip (BS), a plastic-headed tip (ES), a plastic tip (PS) and a conventional stainless-steel tip (CS) on 10 polished commercially pure titanium disks (Grade II) per group. Arithmetic mean roughness (R(a) ) and maximum height roughness (R(y) ) of titanium samples were measured and dissipated power of the scaler tip in the tip-surface junction was estimated to investigate the scaling efficiency. The instrumented surface morphology of samples was viewed with a scanning electron microscope (SEM) and surface profile of the each sample was investigated using contact mode with a commercial atomic force microscope (AFM). There were no significant differences in surface roughness (R(a) and R(y) ) among BS, ES, and PS group. However, CS group showed significant higher surface roughness (R(a) and R(y) ). The efficiency of CS tip is twice as much higher than that of BS tip, the efficiency of BS tip is 20 times higher than that of PS tip, and the efficiency of BS tip is 90 times higher than that of ES tip. Novel metallic copper alloy ultrasonic scaler tips may minimally influence the titanium surface, similar to plastic tip. Therefore, they can be a suitable instrument for implant maintenance therapy. © 2011 John Wiley & Sons A/S.

  11. Surgical smoke and ultrafine particles

    Directory of Open Access Journals (Sweden)

    Nowak Dennis

    2008-12-01

    Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.

  12. Ultrasonic decontamination robot

    International Nuclear Information System (INIS)

    Patenaude, R.S.

    1984-01-01

    An ultrasonic decontamination robot removes radioactive contamination from the internal surface of the inlet and outlet headers, divider plate, tube sheet, and lower portions of tubes of a nuclear power plant steam generator. A programmable microprocessor controller guides the movement of a robotic arm mounted in the header manway. An ultrasonic transducer having a solvent delivery subsystem through which ultrasonic action is achieved is moved by the arm over the surfaces. A solvent recovery suction tube is positioned within the header to remove solvent therefrom while avoiding interference with the main robotic arm. The solvent composition, temperature, pressure, viscosity, and purity are controlled to optimize the ultrasonic scrubbing action. The ultrasonic transducer is controlled at a power density, frequency, and on-off mode cycle such as to optimize scrubbing action within the range of transducer-to-surface distance and solvent layer thickness selected for the particular conditions encountered. Both solvent and transducer control actions are optimized by the programmable microprocessor. (author)

  13. Maximizing coupling strength of magnetically anchored surgical instruments: how thick can we go?

    Science.gov (United States)

    Best, Sara L; Bergs, Richard; Gedeon, Makram; Paramo, Juan; Fernandez, Raul; Cadeddu, Jeffrey A; Scott, Daniel J

    2011-01-01

    The Magnetic Anchoring and Guidance System (MAGS) includes an external magnet that controls intra-abdominal surgical instruments via magnetic attraction forces. We have performed NOTES (Natural Orifice Transluminal Endoscopic Surgery) and LESS (Laparoendoscopic Single Site) procedures using MAGS instruments in porcine models with up to 2.5-cm-thick abdominal walls, but this distance may not be sufficient in some humans. The purpose of this study was to determine the maximal abdominal wall thickness for which the current MAGS platform is suitable. Successive iterations of prototype instruments were developed; those evaluated in this study include external (134-583 g, 38-61 mm diameter) and internal (8-39 g, 10-22 mm diameter) components using various grades, diameters, thicknesses, and stacking/shielding/focusing configurations of permanent Neodymium-iron-boron (NdFeB) magnets. Nine configurations were tested for coupling strength across distances of 0.1-10 cm. The force-distance tests across an air medium were conducted at 0.5-mm increments using a robotic arm fitted with a force sensor. A minimum theoretical instrument drop-off (decoupling) threshold was defined as the separation distance at which force decreased below the weight of the heaviest internal component (39 g). Magnetic attraction forces decreased exponentially over distance. For the nine configurations tested, the average forces were 3,334 ± 1,239 gf at 0.1 cm, 158 ± 98 gf at 2.5 cm, and 8.7 ± 12 gf at 5 cm; the drop-off threshold was 3.64 ± 0.8 cm. The larger stacking configurations and magnets yielded up to a 592% increase in attraction force at 2.5 cm and extended the drop-off threshold distance by up to 107% over single-stack anchors. For the strongest configuration, coupling force ranged from 5,337 gf at 0.1 cm to 0 gf at 6.95 cm and yielded a drop-off threshold distance of 4.78 cm. This study suggests that the strongest configuration of currently available MAGS instruments is suitable for

  14. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  15. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    International Nuclear Information System (INIS)

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  16. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  17. A study on factors of dissatisfaction and stress of the blacksmiths resulting from the organizational culture in the surgical instrument industry of India.

    Science.gov (United States)

    Ghosh, Tirthankar; Das, Banibrata; Gangopadhyay, Somnath

    2011-07-01

    It is important to understand what motivates workers and the extent to which the organization and other contextual variables satisfy them. The aim of the study was to determine factors of dissatisfaction resulting from the organizational culture among the blacksmiths involved in the surgical instrument industry. Fifty male surgical blacksmiths each of the skilled and unskilled groups of the forging section were selected. Organizational Role Stress Scale was used to measure the individuals' role stress and several forms of conflict within an organization. Also, the organizational culture and personal involvement in an organization was measured among the surgical blacksmiths. The mean score for total role stress for Skilled was 71.7 and for unskilled was 77.2. The most frequent type of organizational culture was reported to be hierarchy, both by skilled and unskilled surgical blacksmiths, followed by market and clan culture. This study shows that the skilled surgical blacksmiths have lower level of stress and conflicts in comparison with unskilled surgical blacksmiths. Both skilled and unskilled surgical blacksmiths estimated their level of personal involvement as low and indicated insufficient involvement in work teams. The satisfaction of the employees with their status and role in the organizational culture was also poor for both skilled and unskilled surgical blacksmiths.

  18. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Directory of Open Access Journals (Sweden)

    Niederleithinger E.

    2013-07-01

    Full Text Available Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  19. Ultrasonic unit for line-by-line ultrasonic scanning of bodies

    International Nuclear Information System (INIS)

    Soldner, R.

    1978-01-01

    The ultrasonic unit for medical diagnostics operates by the sectorial scanning principle, which avoids direct coupling of the transducer head to the surface of the body. For this purpose, several transmitter/receiver units (approx. 100) are arranged on a partial ring of a circular arc and the ultrasonic beams, which can be triggered sequentially in time, are directed at a common intersection behind the ultrasonic window of the unit, i.e., outside the unit. A mechanical system is employed to set and adjust the partial ring carrying the transmitter/receiver units. (DG) [de

  20. Instrumentation for two-phase flow measurements in code verification experiments

    International Nuclear Information System (INIS)

    Fincke, J.R.; Anderson, J.L.; Arave, A.E.; Deason, V.A.; Lassahn, G.D.; Goodrich, L.D.; Colson, J.B.; Fickas, E.T.

    1981-01-01

    The development of instrumentation and techniques for the measurement of mass flow rate in two-phase flows conducted at the Idaho National Engineering Laboratory during the past year is briefly described. Instruments discussed are the modular drag-disc turbine transducer, the gamma densitometers, the ultrasonic densitometer, Pitot tubes, and full-flow drag screens. Steady state air-water and transient steam-water data are presented

  1. Glioma tissue obtained by modern ultrasonic aspiration with a simple sterile suction trap for primary cell culture and pathological evaluation.

    Science.gov (United States)

    Schroeteler, Juliane; Reeker, Ralf; Suero Molina, Eric; Brokinkel, Benjamin; Holling, Markus; Grauer, Oliver M; Senner, Volker; Stummer, Walter; Ewelt, Christian

    2014-01-01

    Ultrasonic aspiration is widely used in the resection of brain tumors. Nevertheless, tumor tissue fragments obtained by ultrasonic aspiration are usually discarded. In this study, we demonstrate that these fragments are possible sources of material for histopathological study and tissue culture and compare their microscopic features and viability in tissue culture of cavitron ultrasonic surgical aspirator tissue fragments. Brain tumor tissue collected by ultrasonic aspiration (CUSA EXcel®; Integra Radionics Inc.) in a simple sterile suction trap during resection was processed for primary cell culture. Cell viability and immunohistological markers were measured by the WST-1 test, microscopy and immunofluorescent evaluation. Six gliomas are presented to demonstrate that these tissue fragments show good preservation of histological detail and tissue viability in culture. Utilization of this material may facilitate pathological interpretation by providing a more representative sample of tumor histology as well as an adequate and sterile biosource of material for tissue culture studies.

  2. Electrocautery versus Ultracision versus LigaSure in Surgical Management of Hyperhidrosis.

    Science.gov (United States)

    Divisi, Duilio; Di Leonardo, Gabriella; De Vico, Andrea; Crisci, Roberto

    2015-12-01

    The aim of the study was to evaluate the sympathectomy procedures for primary hyperhidrosis in terms of complications and effectiveness. From January 2010 to September 2012 we performed 130 sympathectomies in 65 patients, 27 males (42%) and 38 females (58%). Electrocoagulation was used in 20 procedures (15%), ultrasonic scalpel in 54 (42%), and radiofrequency dissector in 56 (43%). Seven patients (11%) underwent bilateral sympathectomy in the same surgical session, while in 58 (89%) the right surgical approach was delayed 30 days from the first procedure. We noticed 12 complications (9%): (a) chest pain in 6 patients (4 with electrocoagulation, 1 with ultrasonic scalpel, and 1 with radiofrequency dissector), which disappeared in 20 ± 1 day; (b) paresthesias in 3 electrocoagulation patients, was solved in 23 ± 5 days; (c) bradycardia in 1 ultrasonic patient, normalized in 4th postoperative hour; (d) unilateral relapse in 2 electrocoagulation patients after the second side approach, positively treated in 1 patient by resurgery in video-assisted thoracoscopy (VAT). The quality-adjusted life year and the quality of life evaluation revealed a statistically significant improvement (p = 0.02) in excessive sweating and general satisfaction after surgery, with Ultracision and LigaSure showing better findings than electrocoagulation. The latest generation devices offered greater efficacy in the treatment of hyperhidrosis, minimizing complications and facilitating the resumption of normal work and social activity of patients. Georg Thieme Verlag KG Stuttgart · New York.

  3. Surgical management of an abdominal abscess in a Malayan tapir.

    Science.gov (United States)

    Lambeth, R R; Dart, A J; Vogelnest, L; Dart, C M; Hodgson, D R

    1998-10-01

    A captive Malayan tapir was observed to have inappetence, weight loss, signs of depression, mild dehydration and diarrhoea. Haematological and serum biochemical tests showed anaemia, hypoproteinaemia, hyperfibrinogenaemia and neutrophilia with a left shift. Ultrasonic examination of the abdomen under anaesthesia revealed a well-encapsulated abscess. The abscess was marsupialised to the ventral body wall. Culture of the pus produced a mixed bacterial growth. Antimicrobial therapy was based on bacterial sensitivity results. Follow-up ultrasonic examinations showed resolution of the abscess. Ninety-one days after surgery the tapir began regurgitating food and water. An abscess originating from the stomach and occluding the lumen of the duodenum was identified at surgery. The abscess ruptured during surgical manipulations and the tapir was euthanased.

  4. A study on factors of dissatisfaction and stress of the blacksmiths resulting from the organizational culture in the surgical instrument industry of India

    Directory of Open Access Journals (Sweden)

    Tirthankar Ghosh

    2011-01-01

    Full Text Available Background: It is important to understand what motivates workers and the extent to which the organization and other contextual variables satisfy them. The aim of the study was to determine factors of dissatisfaction resulting from the organizational culture among the blacksmiths involved in the surgical instrument industry. Materials and Methods: Fifty male surgical blacksmiths each of the skilled and unskilled groups of the forging section were selected. Organizational Role Stress Scale was used to measure the individuals′ role stress and several forms of conflict within an organization. Also, the organizational culture and personal involvement in an organization was measured among the surgical blacksmiths. Results: The mean score for total role stress for Skilled was 71.7 and for unskilled was 77.2. The most frequent type of organizational culture was reported to be hierarchy, both by skilled and unskilled surgical blacksmiths, followed by market and clan culture. Conclusion: This study shows that the skilled surgical blacksmiths have lower level of stress and conflicts in comparison with unskilled surgical blacksmiths. Both skilled and unskilled surgical blacksmiths estimated their level of personal involvement as low and indicated insufficient involvement in work teams. The satisfaction of the employees with their status and role in the organizational culture was also poor for both skilled and unskilled surgical blacksmiths.

  5. A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.

    2006-01-01

    This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1

  6. Freeman's transorbital lobotomy as an anomaly: A material culture examination of surgical instruments and operative spaces.

    Science.gov (United States)

    Collins, Brianne M; Stam, Henderikus J

    2015-05-01

    In 1946, Walter Freeman introduced the transorbital ice pick lobotomy. Touted as a procedure that could be learned and subsequently performed by psychiatrists outside of the operating room, the technique was quickly criticized by neurosurgeons. In this article, we take a material culture approach to consider 2 grounds upon which neurosurgeons based their objections-surgical instruments and operative spaces. On both counts, Freeman was in contravention of established normative neurosurgical practices and, ultimately, his technique was exposed as an anomaly by neurosurgeons. Despite its rejection, the transorbital lobotomy became entrenched in contemporary memory and remains the emblematic procedure of the psychosurgery era. (c) 2015 APA, all rights reserved).

  7. Helium-flow measurement using ultrasonic technique

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  8. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy.

    Science.gov (United States)

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2012-10-08

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope's instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications.

  9. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy

    Science.gov (United States)

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2012-01-01

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope’s instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications. PMID:23188360

  10. 手术污染器械保湿过程中的污染控制%Contamination control during wetting of contaminated surgical instruments

    Institute of Scientific and Technical Information of China (English)

    龚珊; 许多朵; 董薪

    2015-01-01

    目的:分析手术污染器械保湿以提高器械的清洗效果,确保手术安全。方法选择2014年3-6月污染的医疗器械1200件,分为保湿组与未保湿组,每组各600件,通过对手术污染器械处理过程中技术规范的实践,分析器械保湿对于提高器械清洗效果的重要性。结果在器械回收、转运、预清洗、正式清洗等环节中,不同时间保湿组细菌菌落数低于未保湿组,使用专用保湿剂抑制了细菌生长;保湿组目测及5倍放大镜下监测器械清洁合格率分别为100.0%、99.5%,均高于未保湿组的98.7%、97.8%;保湿组污染器械清洗后隐血试验合格率100.0%,高于未保湿组的98.7%。结论适当的保湿处理能提高器械清洗合格率,确保清洗质量,对于手术污染器械的感染控制有重要作用,为杜绝由于器械清洗不彻底引起医源性感染提供保证。%OBJECTIVE To analyze the wetting process of contaminated surgical instruments and improve cleanlinessso as to ensure the safety of surgical operation .METHODS Totally 1 200 contaminated items of surgical instruments during Mar .2014 to Jun .2014 were divided into two groups ,the wetted group and the non‐wetted group with 600 items in each group .The technical standard was implemented during the wetting management of contaminated surgical instruments .The results were analyzed to illustrate the importance of a wet condition for the benefit of improving sterilization .RESULTS During the processes of instrument recollection ,transfer ,pre‐cleaning and formal cleaning ,the bacterial colony count was less in the wetted group than in the non‐wetted group at each time point ,indicating that the use of specific humectant inhibited bacterial growth .The cleaning qualified rate reached 100 .0% by visual inspection and 99 .5% by magnifying glass in the wetted group ,higher than 98 .7% and 97 .8% in the non‐wetted group .The

  11. Face, content, and construct validity of four, inanimate training exercises using the da Vinci ® Si surgical system configured with Single-Site ™ instrumentation.

    Science.gov (United States)

    Jarc, Anthony M; Curet, Myriam

    2015-08-01

    Validated training exercises are essential tools for surgeons as they develop technical skills to use robot-assisted minimally invasive surgical systems. The purpose of this study was to show face, content, and construct validity of four, inanimate training exercises using the da Vinci (®) Si surgical system configured with Single-Site (™) instrumentation. New (N = 21) and experienced (N = 6) surgeons participated in the study. New surgeons (11 Gynecology [GYN] and 10 General Surgery [GEN]) had not completed any da Vinci Single-Site cases but may have completed multiport cases using the da Vinci system. They participated in this study prior to attending a certification course focused on da Vinci Single-Site instrumentation. Experienced surgeons (5 GYN and 1 GEN) had completed at least 25 da Vinci Single-Site cases. The surgeons completed four inanimate training exercises and then rated them with a questionnaire. Raw metrics and overall normalized scores were computed using both video recordings and kinematic data collected from the surgical system. The experienced surgeons significantly outperformed new surgeons for many raw metrics and the overall normalized scores derived from video review (p da Vinci Single-Site surgery and actually testing the technical skills used during da Vinci Single-Site surgery. In summary, the four training exercises showed face, content, and construct validity. Improved overall scores could be developed using additional metrics not included in this study. The results suggest that the training exercises could be used in an overall training curriculum aimed at developing proficiency in technical skills for surgeons new to da Vinci Single-Site instrumentation.

  12. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  13. Innovative instrumentation for VVERs based in non-invasive techniques

    International Nuclear Information System (INIS)

    Jeanneau, H.; Favennec, J.M.; Tournu, E.; Germain, J.L.

    2000-01-01

    Nuclear power plants such as VVERs can greatly benefit from innovative instrumentation to improve plant safety and efficiency. In recent years innovative instrumentation has been developed for PWRs with the aim of providing additional measurements of physical parameters on the primary and secondary circuits: the addition of new instrumentation is made possible by using non-invasive techniques such as ultrasonics and radiation detection. These innovations can be adapted for upgrading VVERs presently in operation and also in future VVERs. The following innovative instrumentation for the control, monitoring or testing at VVERs is described: 1. instrumentation for more accurate primary side direct measurements (for a better monitoring of the primary circuit); 2. instrumentation to monitor radioactivity leaks (for a safer plant); 3. instrumentation-related systems to improve the plant efficiency (for a cheaper kWh)

  14. In-vitro analysis of forces in conventional and ultrasonically assisted drilling of bone.

    Science.gov (United States)

    Alam, K; Hassan, Edris; Imran, Syed Husain; Khan, Mushtaq

    2016-05-12

    Drilling of bone is widely performed in orthopaedics for repair and reconstruction of bone. Current paper is focused on the efforts to minimize force generation during the drilling process. Ultrasonically Assisted Drilling (UAD) is a possible option to replace Conventional Drilling (CD) in bone surgical procedures. The purpose of this study was to investigate and analyze the effect of drilling parameters and ultrasonic parameters on the level of drilling thrust force in the presence of water irrigation. Drilling tests were performed on young bovine femoral bone using different parameters such as spindle speeds, feed rates, coolant flow rates, frequency and amplitudes of vibrations. The drilling force was significantly dropped with increase in drill rotation speed in both types of drilling. Increase in feed rate was more influential in raising the drilling force in CD compared to UAD. The force was significantly dropped when ultrasonic vibrations up to 10 kHz were imposed on the drill. The drill force was found to be unaffected by the range of amplitudes and the amount of water supplied to the drilling region in UAD. Low frequency vibrations with irrigation can be successfully used for safe and efficient drilling in bone.

  15. A single-blind controlled study of electrocautery and ultrasonic scalpel smoke plumes in laparoscopic surgery.

    Science.gov (United States)

    Fitzgerald, J Edward F; Malik, Momin; Ahmed, Irfan

    2012-02-01

    Surgical smoke containing potentially carcinogenic and irritant chemicals is an inevitable consequence of intraoperative energized dissection. Different energized dissection methods have not been compared directly in human laparoscopic surgery or against commonly encountered pollutants. This study undertook an analysis of carcinogenic and irritant volatile hydrocarbon concentrations in electrocautery and ultrasonic scalpel plumes compared with cigarette smoke and urban city air control samples. Once ethical approval was obtained, gas samples were aspirated from the peritoneal cavity after human laparoscopic intraabdominal surgery solely using either electrocautery or ultrasonic scalpels. All were adsorbed in Tenax tubes and concentrations of carcinogenic or irritant volatile hydrocarbons measured by gas chromatography. The results were compared with cigarette smoke and urban city air control samples. The analyzing laboratory was blinded to sample origin. A total of 10 patients consented to intraoperative gas sampling in which only one method of energized dissection was used. Six carcinogenic or irritant hydrocarbons (benzene, ethylbenzene, styrene, toluene, heptene, and methylpropene) were identified in one or more samples. With the exception of styrene (P = 0.016), a nonsignificant trend toward lower hydrocarbon concentrations was observed with ultrasonic scalpel use. Ultrasonic scalpel plumes had significantly lower hydrocarbon concentrations than cigarette smoke, with the exception of methylpropene (P = 0.332). No significant difference was observed with city air. Electrocautery samples contained significantly lower hydrocarbon concentrations than cigarette smoke, with the exception of toluene (P = 0.117) and methyl propene (P = 0.914). Except for toluene (P = 0.028), city air showed no significant difference. Both electrocautery and ultrasonic dissection are associated with significantly lower concentrations of the most commonly detected carcinogenic and

  16. Ultrasonic grinding method

    International Nuclear Information System (INIS)

    Miyahara, Shuji.

    1990-01-01

    An ultrasonic generator and a liquid supply nozzle are opposed to an object to be ground and a pump is started in this state to supply an organic solvent. Matters to be decontaminated which adheres to the surface of the object to be ground and are difficult to be removed by a mere mechanical removing method can be eliminated previously by the surface active effect of the organic solvent such as ethanol prior to the oscillation of the ultrasonic generator. Subsequently, when the ultrasonic generator is oscillated, scales in the floated state can be removed simply. Further, since the organic solvent can penetrate to provide the surface active effect even in such a narrow portion that the top end of the ultrasonic generator is difficult to the intruded at the surface of the object to be ground, the decontaminating treatment can be applied also to such a narrow portion. (T.M.)

  17. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  18. Shortened OR time and decreased patient risk through use of a modular surgical instrument with artificial intelligence.

    Science.gov (United States)

    Miller, David J; Nelson, Carl A; Oleynikov, Dmitry

    2009-05-01

    With a limited number of access ports, minimally invasive surgery (MIS) often requires the complete removal of one tool and reinsertion of another. Modular or multifunctional tools can be used to avoid this step. In this study, soft computing techniques are used to optimally arrange a modular tool's functional tips, allowing surgeons to deliver treatment of improved quality in less time, decreasing overall cost. The investigators watched University Medical Center surgeons perform MIS procedures (e.g., cholecystectomy and Nissen fundoplication) and recorded the procedures to digital video. The video was then used to analyze the types of instruments used, the duration of each use, and the function of each instrument. These data were aggregated with fuzzy logic techniques using four membership functions to quantify the overall usefulness of each tool. This allowed subsequent optimization of the arrangement of functional tips within the modular tool to decrease overall time spent changing instruments during simulated surgical procedures based on the video recordings. Based on a prototype and a virtual model of a multifunction laparoscopic tool designed by the investigators that can interchange six different instrument tips through the tool's shaft, the range of tool change times is approximately 11-13 s. Using this figure, estimated time savings for the procedures analyzed ranged from 2.5 to over 32 min, and on average, total surgery time can be reduced by almost 17% by using the multifunction tool.

  19. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Jones, Byron

    2013-09-13

    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  20. Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    OpenAIRE

    Abbagoni, Baba Musa; Yeung, Hoi

    2016-01-01

    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase ...

  1. Artificial intelligence and ultrasonic tests in detection of defects; Inteligencias artificiales y ensayos ultrasonicos para la deteccion de defectos

    Energy Technology Data Exchange (ETDEWEB)

    Barrera Cardiel, G.; Fabian Alvarez, M. a.; Velez Martinez, M.; Villasenor, L.

    2001-07-01

    One of the most serious problems in the quality control of welded unions is the location, identification and classification of defects. As a solution to this problem, a technique for classification, applicable to welded unions done by electric arc welding as well as by friction, is proposed; it is based on ultrasonic signals. The neuronal networks proposed are Kohonen and Multilayer Percept ron, all in a virtual instrument environment. Currently the techniques most used in this field are: radiological analysis (X-rays) and ultrasonic analysis (ultrasonic waves). The X-ray technique in addition to being dangerous requires highly specialized personnel and equipment, therefore its use is restricted. The ultrasonic technique, in spite of being one of the most used for detection of discontinuities, requires personnel with wide experience in the interpretation of ultrasonic signals, this is a time-consuming process which necessarily increases its operation cost. The classification techniques that we propose turn out to be safe, reliable, inexpensive and easy to implement for the solution of this important problem. (Author) 8 refs.

  2. A portable solution to enable guided ultrasonic inspection

    International Nuclear Information System (INIS)

    Enenkel, Laurent; Buechler, Johannes; Poirier, Jerome; Jervis David

    2012-01-01

    This paper describes the development and application of an innovative ultrasonic (UT) inspection system, which is 100% guided and menu-driven to reduce human error and ensure both inspection accuracy and productivity in the reliable and accurate non-destructive testing (NDT) of shafts, tubes, pipes, and other components and structures. Set-up is menu-directed with the minimum of instrument-specific training, allowing the integral operating software to calculate all the ultrasonic parameters for each task according to the inspection procedure and create an easy-to-follow inspection plan, using either phased array or conventional UT. The operator then scans the work piece, with an encoded scanner, which ensures that the inspection plan is strictly followed. Inspection data is transmitted to a review station in the industry-accepted, non-proprietary DICONDE protocol, allowing advanced analysis tools, such as real time, volume corrected imaging, to allow easier and more reliable image interpretation. By using GEs Rhythm software platform, inspection data can be reviewed and shared, reports generated and inspection results archived for traceability, tracking or further analysis.

  3. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    Science.gov (United States)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  4. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  5. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  6. Comparative study of conventional and ultrasonically-assisted bone drilling.

    Science.gov (United States)

    Alam, K; Ahmed, Naseer; Silberschmidt, V V

    2014-01-01

    Bone drilling is a well-known surgical procedure in orthopaedics and dentistry for fracture treatment and reconstruction. Advanced understanding of the mechanics of the drill-bone interaction is necessary to overcome challenges associated with the process and related postoperative complications. The aim of this study was to explore the benefits of a novel drilling technique, ultrasonically-assisted drilling (UAD), and its possible utilization in orthopaedic surgeries. The study was performed by conducting experiments to understand the basic mechanics of the drilling process using high speed filming of the drilling zone followed by measurements to quantify thrust force, surface roughness and cracking of the bone near the immediate vicinity of the hole with and without ultrasonic assistance. Compared to the spiral chips produced during conventional drilling (CD), UAD was found to break the chips in small pieces which facilitated their fast evacuation from the cutting region. In UAD, lower drilling force and better surface roughness was measured in drilling in the radial and longitudinal axis of the bone. UAD produced crack-free holes which will enhance postoperative performance of fixative devices anchoring the bone. UAD may be used as a possible substitute for CD in orthopaedic clinics.

  7. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  8. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  9. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  10. Under sodium ultrasonic viewing for Fast Breeder Reactors: a review

    International Nuclear Information System (INIS)

    Tarpara, Eaglekumar G.; Patankar, V.H.; Vijayan Varier, N.

    2016-09-01

    ultrasonic behavior in liquid metal environment, but data are insufficient to make a conclusion, based on the simulation model. The report is divided into four sections explaining design aspects of high temperature transducer assemblies utilized in liquid sodium, Ultrasonic imaging techniques and instrumentation for viewing of core of FBRs, various possible beam forming methods for high temperature imaging and simulation modeling for behavior of ultrasonic wave propagation in thermo-hydraulic condition. (author)

  11. Ultrasonic energy vs monopolar electrosurgery in laparoscopic cholecystectomy: a comparison of tissue damage

    Directory of Open Access Journals (Sweden)

    Mehdi Asgari

    2016-04-01

    Full Text Available Background: Laparoscopic cholecystectomy is a minimally invasive procedure whereby the gallbladder is removed using laparoscopic techniques. Monopolar electerosurgical energy is the method of dissection of gallbladder from liver bed. Ultrasonic energy causes less thermal damage and suggests an alternative to monopolar elevterocautery. Leptin is a tissue factor and C-reactive protein (CRP is an acute phase protein that builds up in surgical damages. In laparoscopy, pneumoperitoneum and thermal damage cause this increase. In this study, after completion of surgery with both methods, plasma leptin and CPR were measured. Next, the complications and benefits of the two methods were compared. Methods: This single blind randomized clinical trial was conducted on 78 patients who were candidate for laparoscopic cholecystectomy in surgery clinic of Razi Teaching Hospital in Ahvaz Jundishapur University of Medical Sciences from March 2013 to March 2015. Patients were divided randomly into two groups of ultrasonic and electerocautery. Then, leptin’s level and CRP’s level were measured at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in the two groups. Results: This study shows that the average rate of leptin at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. The average rate of CRP at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. Conclusion: The level of leptin and CRP shows that surgery with ultrasonic method will provoke the immune system less than electerocautery method.

  12. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    International Nuclear Information System (INIS)

    Silva, C E R; Alvarenga, A V; Costa-Felix, R P B

    2011-01-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Oe 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  13. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    Science.gov (United States)

    Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2011-02-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  14. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  15. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  16. Microbiological Effect of Essential Oils in Combination with Subgingival Ultrasonic Instrumentation and Mouth Rinsing in Chronic Periodontitis Patients

    Directory of Open Access Journals (Sweden)

    Toshiya Morozumi

    2013-01-01

    Full Text Available Thirty chronic periodontitis patients were randomly assigned to 3 groups: control, saline, and essential oil-containing antiseptic (EO. Subgingival plaque was collected from a total of 90 pockets across all subjects. Subsequently, subgingival ultrasonic instrumentation (SUI was performed by using EO or saline as the irrigation agent. After continuous mouth rinsing at home with EO or saline for 7 days, subgingival plaques were sampled again. Periodontopathic bacteria were quantified using the modified Invader PLUS assay. The total bacterial count in shallow pockets (probing pocket depth (PPD = 4-5 mm was significantly reduced in both saline (P<0.05 and EO groups (P<0.01. The total bacterial count (P<0.05 and Porphyromonas gingivalis (P<0.01 and Tannerella forsythia (P<0.05 count in deep pockets (PPD ≥6 mm were significantly reduced only in the EO group. In comparisons of the change ratio relative to baseline value of total bacteria counts across categories, both the saline and EO groups for PPD 4-5 mm and the EO group for PPD 6 mm showed a significantly low ratio (P<0.05. The adjunctive use of EO may be effective in reducing subgingival bacterial counts in both shallow and deep pockets. This trial is registered with UMIN Clinical Trials Registry UMIN000007484.

  17. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  18. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  19. Field testing and applications of the Ultrasonic Ranging and Data (USRAD) System

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Pickering, D.A.; Blair, M.S.; Espegren, M.L.; Nyquist, J.E.

    1989-01-01

    The Ultrasonic Ranging and Data (USRAD) System is a patented, computerized data acquisition system developed to relate the radiological surveyor's precise physical location to instantaneous radiation data taken during walk-on surveys. The USRAD System incorporates three technologies: radio frequency communications, ultrasonics, and microcomputers. Initial field testing of the USRAD System has resulted in several improvements to walk-on radiological surveys including real-time position data, reproducible survey results, on-site verification of survey coverage, on-site data reduction and graphics, and permanent data storage on magnetic media. Although the USRAD System was developed specifically for use with a gamma-ray detector, it is adaptable to other instruments. Applications of the USRAD System may include verification of remediated and uncontaminated areas, emergency response in mapping pollutant locations after accidents, and characterization of hazardous waste areas. 2 refs., 8 figs

  20. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  1. [Evaluation of Medical Instruments Cleaning Effect of Fluorescence Detection Technique].

    Science.gov (United States)

    Sheng, Nan; Shen, Yue; Li, Zhen; Li, Huijuan; Zhou, Chaoqun

    2016-01-01

    To compare the cleaning effect of automatic cleaning machine and manual cleaning on coupling type surgical instruments. A total of 32 cleaned medical instruments were randomly sampled from medical institutions in Putuo District medical institutions disinfection supply center. Hygiena System SUREII ATP was used to monitor the ATP value, and the cleaning effect was evaluated. The surface ATP values of the medical instrument of manual cleaning were higher than that of the automatic cleaning machine. Coupling type surgical instruments has better cleaning effect of automatic cleaning machine before disinfection, the application is recommended.

  2. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  3. 21 CFR 872.4565 - Dental hand instrument.

    Science.gov (United States)

    2010-04-01

    ... chisel, endodontic broach, dental wax carver, endodontic pulp canal file, hand instrument for calculus... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A...

  4. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  5. 21 CFR 882.4275 - Dowel cutting instrument.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dowel cutting instrument. 882.4275 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4275 Dowel cutting instrument. (a) Identification. A dowel cutting instrument is a device used to cut dowels of bone for bone grafting. (b...

  6. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonic deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  7. Instrument care: everyone's responsibility

    Directory of Open Access Journals (Sweden)

    Renée du Toit

    2011-12-01

    Full Text Available Everyone working in an ophthalmic operating theatre must be competent in the care, handling, storage, and maintenance of instruments. This will help to improve surgical outcomes, maintain an economic and affordable service for patients, and provide a safe environment for the wellbeing of patients and staff.Including instrument care in theatre courses and in-service training is one way of ensuring staff competence.

  8. Pneumatic-type surgical robot end-effector for laparoscopic surgical-operation-by-wire.

    Science.gov (United States)

    Lee, Chiwon; Park, Woo Jung; Kim, Myungjoon; Noh, Seungwoo; Yoon, Chiyul; Lee, Choonghee; Kim, Youdan; Kim, Hyeon Hoe; Kim, Hee Chan; Kim, Sungwan

    2014-09-05

    Although minimally invasive surgery (MIS) affords several advantages compared to conventional open surgery, robotic MIS systems still have many limitations. One of the limitations is the non-uniform gripping force due to mechanical strings of the existing systems. To overcome this limitation, a surgical instrument with a pneumatic gripping system consisting of a compressor, catheter balloon, micro motor, and other parts is developed. This study aims to implement a surgical instrument with a pneumatic gripping system and pitching/yawing joints using micro motors and without mechanical strings based on the surgical-operation-by-wire (SOBW) concept. A 6-axis external arm for increasing degrees of freedom (DOFs) is integrated with the surgical instrument using LabVIEW® for laparoscopic procedures. The gripping force is measured over a wide range of pressures and compared with the simulated ideal step function. Furthermore, a kinematic analysis is conducted. To validate and evaluate the system's clinical applicability, a simple peg task experiment and workspace identification experiment are performed with five novice volunteers using the fundamentals of laparoscopic surgery (FLS) board kit. The master interface of the proposed system employs the hands-on-throttle-and-stick (HOTAS) controller used in aerospace engineering. To develop an improved HOTAS (iHOTAS) controller, 6-axis force/torque sensor was integrated in the special housing. The mean gripping force (after 1,000 repetitions) at a pressure of 0.3 MPa was measured to be 5.8 N. The reaction time was found to be 0.4 s, which is almost real-time. All novice volunteers could complete the simple peg task within a mean time of 176 s, and none of them exceeded the 300 s cut-off time. The system's workspace was calculated to be 11,157.0 cm3. The proposed pneumatic gripping system provides a force consistent with that of other robotic MIS systems. It provides near real-time control. It is more durable than the

  9. Echodentography based on nonlinear time reversal tomography: Ultrasonic nonlinear signature identification

    Science.gov (United States)

    Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek

    2012-05-01

    This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.

  10. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  11. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  12. Teaching Surgical Hysteroscopy with a Computer

    Science.gov (United States)

    Lefebvre; Cote; Lefebvre

    1996-08-01

    Using a hysteroscope can be simulated on a computer. It will improve physician training by measuring basic knowledge and abilities, allow different interventions and anatomic variations, minimize the trauma of surgical intervention, and reduce operative casualties. An integrated questionnaire covers instrumentation, fluid infusion, power source, indications and preparation for endometrial ablation, surgical techniques, and complications to evaluate the user's knowledge. The operation simulation then proceeds. In the endometrial cavity, by virtual simulation, the operating field should appear in real time to allow physicians to adapt the trajectory of the instruments. The computer is an IBM PC compatible. We use a modified joystick with optical encoders to know the instrument position. The simulation can be repeated as desired. An evaluation system is integrated in the software to keep the user informed on the amount of burn area(s) that have been completed. This prototype model is available.

  13. Phased array concept for the ultrasonic inservice inspection of the spherical bottom of BWR-pressure vessels

    International Nuclear Information System (INIS)

    Brekow, G.; Wuestenberg, H.; Moehrle, W.; Schulz, E.

    1989-01-01

    The spherical bottom of BWR-pressure vessels contains holes for the nozzles of control rods and instrumentation. Up to now the detectable areas for the ultrasonic inspection are the accessible ligaments between the nozzles with an orientation parallel and transverse to the manipulator rails. Some licensing authorities demand an inspection technique capable of reliably detecting significant crack initiation in all critical areas near the cladding of the spherical inner surface. By order and in cooperation with the HEW we have developed a computer controlled equipment with two ultrasonic probes containing four linear arrays and a digitized A-scan storage for documentation and evaluation of inspection results. The manipulator guided probe movement in the paths between the nozzles of the spherical bottom is controlled by a computer program. This program determines for each array system and for each coupling position the beam angle as a function of the variable skewing angle to realize detection conditions suited to possible crack positions at the longitudinal, transverse and diagonal ligaments between the nozzles for control rods and instrumentation. (orig./HP)

  14. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  15. The effect of non-uniform temperature and velocity fields on long range ultrasonic measurement systems in MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wyer, Nicolas; Schram, Christophe [von Karman Institute For Fluids Dynamic (Belgium); Van Dyck, Dries; Dierckx, Marc [Belgian Nuclear Research Center (Belgium)

    2015-07-01

    SCK.CEN, the Belgian Nuclear Research Center, is developing MYRRHA, a generation IV liquid metal cooled nuclear research reactor. As the liquid metal coolant is opaque to light, normal visual feedback during fuel manipulations is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic based instrumentation is under development at SCK.CEN to provide feedback during operations under liquid metal. One of the tasks that will be tackled using ultrasound is the detection and localization of a potentially lost fuel assembly. In this application, the distance between ultrasonic sensor and target may be as large as 2.5 m. At these distances, non uniform velocity and temperature fields in the liquid metal potentially influence the propagation of the ultrasonic signals, affecting the performance of the ultrasonic systems. In this paper, we investigate how relevant temperature and velocity gradients inside the liquid metal influence the propagation of ultrasonic waves. The effect of temperature and velocity gradients are simulated by means of a newly developed numerical ray-tracing model. The performance of the model is validated by dedicated water experiments. The setup is capable of creating velocity and temperature gradients representative for MYRRHA conditions. Once validated in water, the same model is used to make predictions for the effect of gradients in the MYRRHA liquid metal environment. (authors)

  16. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  17. On the possible ultrasonic inspection of micro-bubbles generated by the optical fiber tip

    Directory of Open Access Journals (Sweden)

    V. V. Kazakov

    2016-09-01

    Full Text Available We demonstrate the possibility of detection and monitoring of bubbles emerging near the tip of an optical fiber by means of ultrasonic method. The excitation of bubbles at their resonant frequencies is performed using short ultrasonic pulses having a wide frequency range simultaneously with their modulation by means of a long pulse of a monochromatic frequency. This method allows detection of bubbles of various sizes. Used signal processing method, which allows increased bubble detection accuracy, is proposed for research in environments of biological-like medium which show continuous variations in structure and properties when exposed to optical emission. The method has been demonstrated on model objects: in a liquid and in a biological tissue phantom using various methods of bubble generation (hydrolysis and optical emission. We studied bubble formation by the tip of a fiber of the surgical laser LSP-007/10 “IRE Polus” with a wavelength of 0.97μm coated with a highly absorbing graphite layer.

  18. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  19. Retained Surgical Foreign Bodies after Surgery

    Directory of Open Access Journals (Sweden)

    Valon A. Zejnullahu

    2017-01-01

    Full Text Available The problem of retained surgical bodies (RSB after surgery is an issue for surgeons, hospitals and the entire medical team. They have potentially harmful consequences for the patient as they can be life threatening and usually, a further operation is necessary. The incidence of RSB is between 0.3 to 1.0 per 1,000 abdominal operations, and they occur due to a lack of organisation and communication between surgical staff during the process. Typically, the RSB are surgical sponges and instruments located in the abdomen, retroperitoneum and pelvis.

  20. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  1. Ultrasonic Linear Motor with Two Independent Vibrations

    Science.gov (United States)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  2. Surgical rehabilitation of patients with spinal neurotrophic decubitus

    Directory of Open Access Journals (Sweden)

    S. G. Shapovalov

    2016-01-01

    Full Text Available The greatest weight neurodystrophic process develops in traumatic spinal cord injury, appears as neurotrophic decubitus (bedsores. There is a high risk of wound infection in the event of pressure ulcers. Surgical repair of the skin integrity in spinal patients of 3 and 4 grade is a basic prerequisite for the further complex of the rehabilitation measures. Work objective: to develop the concept of innovative technologies of treatment of local physical impacts and to implement it in surgical system of rehabilitation of patients with spinal cord lesion with neurotrophic decubitus of 3 and 4 grade. Clinical studies subjected 49 (100% patients with spinal cord lesions and neurotrophic decubitus of 3 and 4 grade. All patients were divided into two groups: 1– (study group 1 29 patients; 2 – (control group 2 20 patients. The managed negative pressure system S042 NPWT VivanoTec (Hartmann, a method of ultrasonic cavitation (Sonoca%180, the system for the hydro surgery Versajet Smith and Nephew were used in the 1%st group. Traditional dressings for the preparation of a plastic closure of the wound defect neurotrophic decubitus of the grade 3%4 were used in the 2nd group. Statistical analysis was performed using package of Microsoft Excel%97 Statistica for Windows 6.0, SPSS 10.0 for Windows. The study showed that the use of complex methods of vacuum therapy, ultrasound cavitation and hydro surgical in the 1st group significantly reduces the duration of treatment compared with conservative methods in the 2nd group. In group 1, the mean duration of treatment was 19.9±13.9 days, in group 2 (comparison group – 40.0±28.2 days (p<0.05. The usage of physical methods (managed negative pressure system, ultrasonic processing method, hydro surgical system local treatment is a highly effective method of preparation neurotrophic decubitus grade 3 and 4 to the early recovery of the skin. Physical methods of local treatment have a positive effect on tissue

  3. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  4. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  5. Detailed simulation of ultrasonic inspections

    International Nuclear Information System (INIS)

    Chaplin, K.R.; Douglas, S.R.; Dunford, D.

    1997-01-01

    Simulation of ultrasonic inspection of engineering components have been performed at the Chalk River Laboratories of AECL for over 10 years. The computer model, called EWE for Elastic Wave Equations, solves the Elastic Wave Equations using a novel finite difference scheme. It simulates the propagation of an ultrasonic wave from the transducer to a flaw, the scatter of waves from the flaw, and measurement of signals at a receive transducer. Regions of different materials, water and steel for example, can be simulated. In addition, regions with slightly different material properties from the parent material can be investigated. The two major types of output are displays of the ultrasonic waves inside the component and the corresponding A-scans. EPRI and other organizations have used ultrasonic models for: defining acceptable ultrasonic inspection procedures, designing and evaluating inspection techniques, and for quantifying inspection reliability. The EWE model has been applied to the inspection of large pipes in a nuclear plant, gas pipeline welds and steam generator tubes. Most recent work has dealt with the ultrasonic inspection of pressure tubes in CANDU reactors. Pressure tube inspections can reliably detect and size defects; however, there are improvements that can be made. For example, knowing the sharpness of a flaw-tip is crucial for fitness for service assessments. Computer modelling of the ultrasonic inspection of flaws with different root radius has suggested inspection techniques that provide flaw tip radius information. A preliminary investigation of these methods has been made in the laboratory. The basis for the model will be reviewed at the presentation. Then the results of computer simulations will be displayed on a PC using an interactive program that analyzes simulated A-scans. This software tool gives inspection staff direct access to the results of computer simulations. (author)

  6. The effects of ultrasonic solidification on aluminum

    OpenAIRE

    Đorđević Slavko 1

    2003-01-01

    The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  7. The effects of ultrasonic solidification on aluminum

    Directory of Open Access Journals (Sweden)

    Đorđević Slavko 1

    2003-01-01

    Full Text Available The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  8. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  9. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  10. Stresses in ultrasonically assisted bone cutting

    International Nuclear Information System (INIS)

    Alam, K; Mitrofanov, A V; Silberschmidt, V V; Baeker, M

    2009-01-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  11. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  12. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  13. Which hemostatic device in thyroid surgery? A network meta-analysis of surgical technologies.

    Science.gov (United States)

    Garas, George; Okabayashi, Koji; Ashrafian, Hutan; Shetty, Kunal; Palazzo, Fausto; Tolley, Neil; Darzi, Ara; Athanasiou, Thanos; Zacharakis, Emmanouil

    2013-09-01

    Energy-based hemostatic devices are increasingly being used in thyroid surgery. However, there are several limitations with regard to the existing evidence and a paucity of guidelines on the subject. The goal of this review is to employ the novel evidence synthesis technique of a network meta-analysis to assess the comparative effectiveness of surgical technologies in thyroid surgery and contribute to enhanced governance in the field of thyroid surgery. Articles published between January 2000 and June 2012 were identified from Embase, Medline, Cochrane Library, and PubMed databases. Randomized controlled trials of any size comparing the use of ultrasonic coagulation (harmonic scalpel) or Ligasure either head-to-head or against the "clamp-and-tie" technique were included. Two reviewers independently critically appraised and extracted the data from each study. The number of patients who experienced postoperative events was extracted in dichotomous format or continuous outcomes. Odds ratios were calculated by a Bayesian network meta-analysis, and metaregression was used for pair-wise comparisons. Indirect and direct comparisons were performed and inconsistency was assessed. Thirty-five randomized controlled trials with 2856 patients were included. Ultrasonic coagulation ranked first (followed by Ligasure and then clamp-and-tie) with the lowest risk of postoperative hypoparathyroidism (odds ratio 1.43 [95% confidence interval (CI) 0.77-2.67] and 0.70 [CI 0.43-1.13], ultrasonic coagulation vs. Ligasure and ultrasonic coagulation vs. clamp-and-tie, respectively), least blood loss (-0.25 [CI -0.84 to -0.35] and -1.22 [CI -1.85 to -0.59]), and drain output (0.28 [CI -0.35 to -0.91] and -0.36 [CI -0.70 to -0.03]). From a health technology viewpoint, ultrasonic coagulation was associated with the shortest operative time (-0.66 [CI -1.17 to -0.14] and -1.29 [CI -1.59 to -1.00]) and hospital stay (-0.28 [CI -0.78 to 0.22] and -0.56 [CI -1.28 to 0.15]). The only exception

  14. Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types.

    Science.gov (United States)

    Meisberger, Eric W; Bakker, Sjoerd J G; Cune, Marco S

    2015-12-01

    Ultrasonic instrumentation under magnification may facilitate mobilization of screw remnants but may induce heat trauma to surrounding bone. An increase of 5°C is considered detrimental to osseointegration. The objective of this investigation was to examine the rise in temperature of the outer implant body after 30 s of ultrasonic instrumentation to the inner part, in relation to implant type, type of ultrasonic equipment, and the use of coolants in vitro. Two ultrasonic devices (Satelec Suprasson T Max and Electro Medical Systems (EMS) miniMaster) were used on five different implant types that were provided with a thermo couple (Astra 3.5 mm, bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm, and Straumann tissue level wide body regular neck 4.8 mm), either with or without cooling during 30 s. Temperature rise at this point in time is the primary outcome measure. In addition, the mean maximum rise in temperature (all implants combined) was assessed and statistically compared among devices, implant systems, and cooling mode (independent t-tests, ANOVA, and post hoc analysis). The Satelec device without cooling induces the highest temperature change of up to 13°C, particularly in both bone level implants (p < 0.05) but appears safe for approximately 10 s of continuous instrumentation, after which a cooling down period is rational. Cooling is effective for both devices. However, when the Satelec device is used with coolant for a longer period of time, a rise in temperature must be anticipated after cessation of instrumentation, and post-operational cooling is advised. The in vitro setup used in this experiment implies that care should be taken when translating the observations to clinical recommendations, but it is carefully suggested that the EMS device causes limited rise in temperature, even without coolant.

  15. Method and apparatus to characterize ultrasonically reflective contrast agents

    Science.gov (United States)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  16. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  17. Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding.

    Science.gov (United States)

    Roopa Rani, M; Rudramoorthy, R

    2013-03-01

    Ultrasonic horns are tuned components designed to vibrate in a longitudinal mode at ultrasonic frequencies. Reliable performance of such horns is normally decided by the uniformity of vibration amplitude at the working surface and the stress developed during loading condition. The horn design engineer must pay particular attention to designing a tool that will produce the desired amplitude without fracturing. The present work discusses horn configurations which satisfy these criteria and investigates the design requirements of horns in ultrasonic system. Different horn profiles for ultrasonic welding of thermoplastics have been characterized in terms of displacement amplitude and von-Mises stresses using modal and harmonic analysis. To validate the simulated results, five different horns are fabricated from Aluminum, tested and tuned to the operating frequency. Standard ABS plastic parts are welded using these horns. Temperature developed during the welding of ABS test parts using different horns is recorded using sensors and National Instruments (NIs) data acquisition system. The recorded values are compared with the predicted values. Experimental results show that welding using a Bezier horn has a high interface temperature and the welded joints had higher strength as compared to the other horn profiles. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. [Surgical manipulators in ear surgery: a future vision?].

    Science.gov (United States)

    Hofer, M; Dietz, A; Strauss, G

    2011-04-01

    Middle ear surgery bears a high risk for injury of difficult to differentiate risk structures. Thus, a precise preparation in this area must be the surgical task. However, there are human (tremor) and systematic limitations (OR setup, narrow access). Assistance systems in terms of manipulators are so far not part of the clinical routine. Although, they could compensate for the above mentioned limitations. MANIPULATORS: This work reviews existing surgical manipulator systems. The expected value is an elevated patient safety through improving surgical accuracy and the reduction of ergonomic deficits. CLINICAL APPLICATION AND DEVELOPMENT: In clinical application there are simply modified industrial robots, highly complex master slave systems and small miniature master slave systems which are directly located at the patient. A disadvantage of most systems is the limited number of applicable instruments. Often, only especially designed instruments can be used. The goal in development should be to create a compact, short distance operated master slave system. The usability of standard (already available) instruments with an easy integration into the surgical and sterilisation procedure would lower the threshold for acceptance of such systems.The surgeon will remain the key player. He can only work efficiently in an ergonomic environment and will always have the responsibility for the intervention. From the authors perspective, highly automated systems should not be the research goal. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  20. [The diagnostic value of ultrasonic elastography and ultrasonography comprehensive score in cervical lesions].

    Science.gov (United States)

    Lu, R; Xiao, Y

    2017-07-18

    Objective: To evaluate the clinical value of ultrasonic elastography and ultrasonography comprehensive scoring method in the diagnosis of cervical lesions. Methods: A total of 116 patients were selected from the Department of Gynecology of the first hospital affiliated with Central South University from March 2014 to September 2015.All of the lesions were preoperatively examined by Doppler Ultrasound and elastography.The elasticity score was determined by a 5-point scoring method. Calculation of the strain ratio was based on a comparison of the average strain measured in the lesion with the adjacent tissue of the same depth, size, and shape.All these ultrasonic parameters were quantified, added, and arrived at ultrasonography comprehensive scores.To use surgical pathology as the gold standard, the sensitivity, specificity, accuracy of Doppler Ultrasound, elasticity score and strain ratio methods and ultrasonography comprehensive scoring method were comparatively analyzed. Results: (1) The sensitivity, specificity, and accuracy of Doppler Ultrasound in diagnosing cervical lesions were 82.89% (63/76), 85.0% (34/40), and 83.62% (97/116), respectively.(2) The sensitivity, specificity, and accuracy of the elasticity score method were 77.63% (59/76), 82.5% (33/40), and 79.31% (92/116), respectively; the sensitivity, specificity, and accuracy of the strain ratio measure method were 84.21% (64/76), 87.5% (35/40), and 85.34% (99/116), respectively.(3) The sensitivity, specificity, and accuracy of ultrasonography comprehensive scoring method were 90.79% (69/76), 92.5% (37/40), and 91.38% (106/116), respectively. Conclusion: (1) It was obvious that ultrasonic elastography had certain diagnostic value in cervical lesions. Strain ratio measurement can be more objective than elasticity score method.(2) The combined application of ultrasonography comprehensive scoring method, ultrasonic elastography and conventional sonography was more accurate than single parameter.

  1. Adherence to the use of the surgical checklist for patient safety

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Sanches Maziero

    Full Text Available Objective: Evaluate adherence to the checklist of the Programa Cirurgias Seguras (safe surgery programme at a teaching hospital. Methods: Evaluative study conducted at a teaching hospital in the south of Brazil in 2012. Data were collected by means of non-participant observation in 20 hip and knee replacement surgeries and an instrument that was created for research based on the checklist and used by the institution. Results: In the observed procedures (n = 20 there was significant adhesion (p<0.05 to the instrument in relation to the verification of documentation, fasting, hair removal in the surgical site, absence of nail varnish and accessories, identification of the patient and surgical site on admission to the surgical unit, availability of blood and functionality of materials. However, there was no significant adherence to the checklist in the operating room in relation to patient identification, procedure and laterality, team introduction, surgical break and materials count. Conclusion: The results showed that the items on the checklist were verified nonverbally and there was no significant adherence to the instrument.

  2. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  3. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  4. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  5. 21 CFR 872.4120 - Bone cutting instrument and accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...

  6. Robotic technologies in surgical oncology training and practice.

    Science.gov (United States)

    Orvieto, Marcelo A; Marchetti, Pablo; Castillo, Octavio A; Coelho, Rafael F; Chauhan, Sanket; Rocco, Bernardo; Ardila, Bobby; Mathe, Mary; Patel, Vipul R

    2011-09-01

    The modern-day surgeon is frequently exposed to new technologies and instrumentation. Robotic surgery (RS) has evolved as a minimally invasive technique aimed to improve clinical outcomes. RS has the potential to alleviate the inherent limitations of laparoscopic surgery such as two dimensional imaging, limited instrument movement and intrinsic human tremor. Since the first reported robot-assisted surgical procedure performed in 1985, the technology has dramatically evolved and currently multiple surgical specialties have incorporated RS into their daily clinical armamentarium. With this exponential growth, it should not come as a surprise the ever growing requirement for surgeons trained in RS as well as the interest from residents to receive robotic exposure during their training. For this reason, the establishment of set criteria for adequate and standardized training and credentialing of surgical residents, fellows and those trained surgeons wishing to perform RS has become a priority. In this rapidly evolving field, we herein review the past, present and future of robotic technologies and its penetration into different surgical specialties. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis

    OpenAIRE

    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Zhang, Yupeng; Liu, Zheng

    2015-01-01

    Objective: The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation.Methods: Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reco...

  8. Ultrasonic characterization of yogurt fermentation process

    OpenAIRE

    IZBAIM , DRIS; FAIZ , BOUAZZA; MOUDDEN , ALI; MALAININE , MOHAMED; ABOUDAOUD , Idriss

    2012-01-01

    International audience; The objective of this work is to characterize the fermentation of yogurt based on an ultrasonic technique. Conventionally, the acidity of the yogurt is measured by a pH meter to determine the progress of fermentation. However, the pH meter should be cleaned and calibrated for each measurement and, therefore, this method is not practical. In this regard, ultrasonic techniques are fast, non-invasive and inexpensive. The measurement of ultrasonic parameters such as amplit...

  9. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    International Nuclear Information System (INIS)

    Yadawa, P K

    2012-01-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB 2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB 2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB 2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  10. Surgical Emphysema: A Rare Complication of a Simple Surgical Dental Extraction Without the Use of an Air-Driven Rotor.

    Science.gov (United States)

    Gowans, Keegan; Patel, Muneer; Lewis, Khari

    2017-03-01

    Surgical emphysema is a rare complication of dental extractions, often associated with the use of high-speed air rotors. This report describes a case of extensive surgical emphysema following a simple surgical extraction of a LL6 under local anaesthetic. There was no use of air-driven handpieces during the procedure. The patient developed extensive surgical emphysema bi-laterally in both cervical neck and facial planes. After prophylactic antibiotics with careful monitoring in a secondary care setting, the patient made a full unremarkable recovery. Clinical relevance: Simple extraction of teeth is a procedure carried out daily by most general dental practitioners. However, the risk of surgical emphysema without the use of high-speed air rotors or instruments using pressurized air/water is not well known or documented.

  11. Uncertainty estimation of ultrasonic thickness measurement

    International Nuclear Information System (INIS)

    Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain

    2009-01-01

    The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)

  12. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic fluids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is ...

  13. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  14. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  15. Ultrasonic attenuation in superconducting zinc

    International Nuclear Information System (INIS)

    Auluck, S.

    1978-01-01

    The differences in the Zn ultrasonic attenuation data of different workers are analyzed. The superconducting energy gaps deduced from our analysis of the ultrasonic-attenuation data of Cleavelin and Marshall are consistent with the gaps deduced from the knowledge of the Fermi surface and the electron-phonon mass enhancement factor

  16. Electromagnetic and ultrasonic techniques to evaluate stress states of components; Elektromagnetische und Ultraschallverfahren zur Spannungsanalyse an Bauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.; Kern, R.; Theiner, W.A. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, IZFP, Saarbruecken (Germany)

    1999-08-01

    The electromagnetic and ultrasonic techniques are comparably recent NDT methods for determination of stress states of components. They are simple in application, but require pre-measurement preparation: Electromagnetic techniques need calibration, and quantitative stress analysis by ultrasonic techniques needs reference values, i.e. verified materials-specific quantities to be obtained with representative specimens. Electromagnetic and ultrasonic techniques have been developed for specific tests at defined components, and the corresponding instruments and sensors have been used in practice for several years now. The paper summarizes fundamental aspects and explains the state of the art by means of several examples. (orig./CB) [Deutsch] Elektromagnetische und Ultraschallverfahren sind vergleichsweise neue zerstoerungsfreie Verfahren zur Bestimmung von Eigenspannungen in Bauteilen. Ihre Anwendung ist einfach, setzt aber Vorarbeiten voraus: Elektromagnetische Verfahren muessen kalibriert und zur quantitativen Spannungsanalyse mittels Ultraschallverfahren muessen materialspezifische Kenngroessen an repraesentativen Materialproben ermittelt werden. Elektromagnetische und Ultraschallverfahren sind fuer konkrete Anwendungen an Bauteilen entwickelt, angepasste Geraete und Sensoren seit Jahren in der Nutzung. Der Beitrag fasst die Grundlagen zusammen und stellt den Stand der Technik anhand ausgewaehlter Anwendungen dar. (orig.)

  17. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  18. Ultrasonic assisted hot metal powder compaction.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  20. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  1. Evaluation of surgically assisted rapid maxillary expansion with piezosurgery versus oscillating saw and chisel osteotomy - a randomized prospective trial.

    Science.gov (United States)

    Rana, Majeed; Gellrich, Nils-Claudius; Rana, Madiha; Piffkó, Jozsef; Kater, Wolfgang

    2013-02-17

    Ultrasonic bone-cutting surgery has been introduced as a feasible alternative to the conventional sharp instruments used in craniomaxillofacial surgery because of its precision and safety. The piezosurgery medical device allows the efficient cutting of mineralized tissues with minimal trauma to soft tissues. Piezoelectric osteotome has found its role in surgically assisted rapid maxillary expansion (SARME), a procedure well established to correct transverse maxillary discrepancies. The advantages include minimal risk to critical anatomic structures. The purpose of this clinical comparative study (CIS 2007-237-M) was to present the advantages of the piezoelectric cut as a minimally invasive device in surgically assisted, rapid maxillary expansion by protecting the maxillary sinus mucosal lining. Thirty patients (18 females and 12 males) at the age of 18 to 54 underwent a surgically assisted palatal expansion of the maxilla with a combined orthodontic and surgical approach. The patients were randomly divided into two separate treatment groups. While Group 1 received conventional surgery using an oscillating saw, Group 2 was treated with piezosurgery. The following parameters were examined: blood pressure, blood values, required medication, bleeding level in the maxillary sinus, duration of inpatient stay, duration of surgery and height of body temperature. The results displayed no statistically significant differences between the two groups regarding laboratory blood values and inpatient stay. The duration of surgery revealed a significant discrepancy. Deploying piezosurgery took the surgeon an average of 10 minutes longer than working with a conventional-saw technique. However, the observation of the bleeding level in the paranasal sinus presented a major and statistically significant advantage of piezosurgery: on average the bleeding level was one category above the one of the remaining patients. This method of piezoelectric surgery with all its advantages is going

  2. The Mechatronic System Design Of Ultrasonic Scanner For Inservice Inspection Of Research Reactor

    Science.gov (United States)

    Handono, Khairul; Kristedjo, K.; Awwaluddin, M.; Shobary, Ihsan

    2018-02-01

    The mechatronic system design of ultrasonic scanner for inservices inspection of Research Reactor has been conducted. The requirement designed must be reliable operated, safety to personnel and equipments, ease of maintenance and operation, protection of equipment mechanically, interchangeability of equipments and addition of the several model of probe immersion ultrasonic tranducer. In order to achieve the above goals and obtain the desired results, a mechatronic design based on mechanical and electronic practical experiences will be needed. In this paper consist of the mechanical design and the system mechanical movement using stepper motor control. The criteria and the methods of designs of mechanical and electronic equipments of the system have been discussed and investigated. A mechanical and instrumentation control system drawing and requirement of design will be presented as the outcome of the design. The designed of mechanical system is consequently simulated by solidwork software. The intention of the above research is to create solutions in different ways of inservice inspection of integrity of Reactor.

  3. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2014-01-01

    Full Text Available Ultrasonic vibration assisted micro end grinding (UAMEG is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.

  4. Lumber defect detection by ultrasonics

    Science.gov (United States)

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  5. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  6. Fundamentals and applications of ultrasonic waves

    CERN Document Server

    Cheeke, J David N

    2002-01-01

    Ultrasonics. A subject with applications across all the basic sciences, engineering, medicine, and oceanography, yet even the broader topic of acoustics is now rarely offered at undergraduate levels. Ultrasonics is addressed primarily at the doctoral level, and texts appropriate for beginning graduate students or newcomers to the field are virtually nonexistent.Fundamentals and Applications of Ultrasonic Waves fills that void. Designed specifically for senior undergraduates, beginning graduate students, and those just entering the field, it begins with the fundamentals, but goes well beyond th

  7. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  8. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2006-09-30

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating

  9. Evaluation of the Factors Affecting the Loss of Lumbar Lordosis in Surgical Treatment of Patients with Adolescent Idiopathic Scoliosis Using Segmental Instrumentation

    Directory of Open Access Journals (Sweden)

    Farshad Nikouei

    2016-12-01

    Full Text Available Background The identification of independent factors affecting the loss of lumbar lordosis can facilitate programmed surgery in adolescent idiopathic scoliosis (AIS patients especially with considering the importance of sagittal characteristics. Objectives This study aimed to investigate the factors affecting the amount of the loss of lumbar lordosis in surgical treatment of the patients with AIS using segmental instrumentation. Methods In this study which was conducted in three years, 91 AIS patients who underwent segmental instrumentation were studied and 63 patients remained in the study according to the inclusion criteria. All patients’ information was recorded on admission in separate forms and radiography results were coded and archived before the surgery for more evaluation. All patients were subject to standing whole spine radiograph again 12 months after the surgery. Ultimately, the information was put into predetermined forms and was used for a statistical analysis after the completion of forms. Results The mean age of the patients was 15.62 ± 3.09 years. The mean preoperative lumbar lordosis was 45.25 ± 12.17 degrees and the mean preoperative thoracic kyphosis was 41.54 ± 16.31 degrees. The mean postoperative lumbar lordosis was 34.37 ± 10.26 degrees. The mean postoperative thoracic kyphosis was obtained 26.56 ± 9.17. The mean surgical correction of thoracic kyphotic deformity and lumbar lordosis were correlated with each other with the correlation coefficient of 0.71 (P < 0.001. Men have more (16.62 ± 8.74 loss of lumbar lordosis than women (10.05 ± 8.53 (P < 0.001. There was not any significant correlation between the type (hook/hybrid of the instrumentation with the loss of lumbar lordosis (P = 0.07, P = 0.41. Conclusions Considering the findings of this study, the most important factor affecting the amount of post-operative loss of lumbar lordosis in segmental instrumentation in AIS patients is the amount of the

  10. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    Science.gov (United States)

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  11. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  12. Recent progress in online ultrasonic process monitoring

    Science.gov (United States)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  13. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  14. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  15. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    Science.gov (United States)

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of an ultrasonic process for soil remediation

    International Nuclear Information System (INIS)

    Wu, J.M.; Huang, H.S.; Livengood, C.D.

    1995-01-01

    An ultrasonic process for the detoxification of carbon tetrachloride- (CCl 4 - ) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl 4 concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl 4 concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl 4 concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed

  17. Ultrasonic characterization of vegetable oil product

    International Nuclear Information System (INIS)

    Sidek Hj Abd Aziz; Chow Sai Pew; Abdul Halim Shaari; Nor Azizah Shaari

    1992-01-01

    The ultrasonic wave velocity and attenuation of a number vegetable oil products were measured using an ultrasonic pulse echo overlap technique from room temperature up to 90 0 C. Among the liquid samples studied were refined bleach deodorized (RED) palm oil, palm olein, coconut oil, corn oil and soya bean oil. The velocity of sound in vegetable oil products varies from about 1200 to 200 ms-1 and decrease linearly as the temperature increases. The ultrasonic properties of the oil are much dependent on their viscosity, density, relaxation effect and vibrational anharmonicity

  18. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  19. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  20. Inline Ultrasonic Rheometry by Pulsed Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  1. Cost assessment of instruments for single-incision laparoscopic cholecystectomy

    DEFF Research Database (Denmark)

    Henriksen, Nadia A; Al-Tayar, Haytham; Rosenberg, Jacob

    2012-01-01

    Specially designed surgical instruments have been developed for single-incision laparoscopic surgery, but high instrument costs may impede the implementation of these procedures. The aim of this study was to compare the cost of operative implements used for elective cholecystectomy performed...

  2. A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation.

    Science.gov (United States)

    Qiu, Weibao; Zhou, Juan; Chen, Yan; Su, Min; Li, Guofeng; Zhao, Huixia; Gu, Xianyi; Meng, De; Wang, Congzhi; Xiao, Yang; Lam, Kwok Ho; Dai, Jiyan; Zheng, Hairong

    2017-12-01

    Fundamental insights into the function of the neural circuits often follows from the advances in methodologies and tools for neuroscience. Electrode- and optical- based stimulation methods have been used widely for neuro-modulation with high resolution. However, they are suffering from inherent invasive surgical procedure. Ultrasound has been proved as a promising technology for neuro-stimulation in a non-invasive manner. However, no portable ultrasound system has been developed particularly for neuro-stimulation. The utilities used currently are assembled by traditional functional generator, power amplifier, and general transducer, therefore, resulting in lack of flexibility. This paper presents a portable system to achieve ultrasonic neuro-stimulation to satisfy various studies. The system incorporated a high voltage waveform generator and a matching circuit that were optimized for neuro-stimulation. A new switching mode power amplifier was designed and fabricated. The noise generated by the power amplifier was reduced (about 30 dB), and the size and weight were smaller in contrast with commercial equipment. In addition, a miniaturized ultrasound transducer was fabricated using Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) 1-3 composite single crystal for the improved ultrasonic performance. The spatial peak temporal average pressure was higher than 250 kPa in the range of 0.5-5 MHz. In vitro and in vivo studies were conducted to show the performance of the system.

  3. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  5. Ultrasonic Abrasive Removal Of EDM Recast

    Science.gov (United States)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  6. Fundamentals of Medical Ultrasonics

    CERN Document Server

    Postema, Michiel

    2011-01-01

    This book sets out the physical and engineering principles of acoustics and ultrasound as used for medical applications. It covers the basics of linear acoustics, wave propagation, non-linear acoustics, acoustic properties of tissue, transducer components, and ultrasonic imaging modes, as well as the most common diagnostic and therapeutic applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

  7. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  8. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  9. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    Science.gov (United States)

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  10. Development of an intelligent ultrasonic welding defect classification software

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Jeong, Hee Don

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress in the research on this methodology, it has not been widely used in many practical ultrasonic inspections of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments based on their ultrasonic signals using various tools in artificial intelligence such as neural networks. This software shows the excellent performance in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks. This performance demonstrates the high possibility of this software as a practical tool for ultrasonic flaw classification in weldments.

  11. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  12. Ultrasonic imaging of metastatic carcinoma in thyroid gland

    International Nuclear Information System (INIS)

    Bai Ling; Yang Tao; Tang Ying; Mao Jingning; Chen Wei; Wang Wei

    2008-01-01

    Objectives: To explore the ultrasonic findings of metastatic thyroid carcinoma and to evaluate the diagnostic value of the ultrasonic imaging for patients with metastatic thyroid neoplasm. Methods: The ultrasonic imaging characteristics of ten patients who were diagnosed with metastatic thyroid carcinoma were retrospectively analyzed. In all the cases, fine-needle aspiration cytology (FNAC) of the thyroid was performed during the clinical diagnosis. Results: The ultrasonic images of the ten patients fell into four types: multiple nodules in the thyroid, single nodule in the thyroid, diffuse calcification and heterogeneous echo. Seven cases showed speckled calcific foci. Abnormal blood flow signal was found in 9 cases. Conclusion: The ultrasonic findings of metastatic carcinoma in the thyroid gland are various and non-specific. Color Doppler ultrasound may provide ample evidence. The diagnosis depends on FNAC. (authors)

  13. Computer-Assisted Technique for Surgical Tooth Extraction

    Directory of Open Access Journals (Sweden)

    Hosamuddin Hamza

    2016-01-01

    Full Text Available Introduction. Surgical tooth extraction is a common procedure in dentistry. However, numerous extraction cases show a high level of difficulty in practice. This difficulty is usually related to inadequate visualization, improper instrumentation, or other factors related to the targeted tooth (e.g., ankyloses or presence of bony undercut. Methods. In this work, the author presents a new technique for surgical tooth extraction based on 3D imaging, computer planning, and a new concept of computer-assisted manufacturing. Results. The outcome of this work is a surgical guide made by 3D printing of plastics and CNC of metals (hybrid outcome. In addition, the conventional surgical cutting tools (surgical burs are modified with a number of stoppers adjusted to avoid any excessive drilling that could harm bone or other vital structures. Conclusion. The present outcome could provide a minimally invasive technique to overcome the routine complications facing dental surgeons in surgical extraction procedures.

  14. Surgical Robotics Research in Cardiovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    Pohost, Gerald M; Guthrie, Barton L; Steiner, Charles

    2008-02-29

    This grant is to support a research in robotics at three major medical centers: the University of Southern California-USC- (Project 1); the University of Alabama at Birmingham-UAB-(Project 2); and the Cleveland Clinic Foundation-CCF-(Project 3). Project 1 is oriented toward cardiovascular applications, while projects 2 and 3 are oriented toward neurosurgical applications. The main objective of Project 1 is to develop an approach to assist patients in maintaining a constant level of stress while undergoing magnetic resonance imaging or spectroscopy. The specific project is to use handgrip to detect the changes in high energy phosphate metabolism between rest and stress. The high energy phosphates, ATP and phosphocreatine (PCr) are responsible for the energy of the heart muscle (myocardium) responsible for its contractile function. If the blood supply to the myocardium in insufficient to support metabolism and contractility during stress, the high energy phosphates, particularly PCr, will decrease in concentration. The high energy phosphates can be tracked using phosphorus-31 magnetic resonance spectroscopy ({sup 31}P MRS). In Project 2 the UAB Surgical Robotics project focuses on the use of virtual presence to assist with remote surgery and surgical training. The goal of this proposal was to assemble a pilot system for proof of concept. The pilot project was completed successfully and was judged to demonstrate that the concept of remote surgical assistance as applied to surgery and surgical training was feasible and warranted further development. The main objective of Project 3 is to develop a system to allow for the tele-robotic delivery of instrumentation during a functional neurosurgical procedure (Figure 3). Instrumentation such as micro-electrical recording probes or deep brain stimulation leads. Current methods for the delivery of these instruments involve the integration of linear actuators to stereotactic navigation systems. The control of these delivery

  15. Surgical Robotics Research in Cardiovascular Disease

    International Nuclear Information System (INIS)

    Pohost, Gerald M; Guthrie, Barton L; Steiner, Charles

    2008-01-01

    This grant is to support a research in robotics at three major medical centers: the University of Southern California-USC- (Project 1); the University of Alabama at Birmingham-UAB-(Project 2); and the Cleveland Clinic Foundation-CCF-(Project 3). Project 1 is oriented toward cardiovascular applications, while projects 2 and 3 are oriented toward neurosurgical applications. The main objective of Project 1 is to develop an approach to assist patients in maintaining a constant level of stress while undergoing magnetic resonance imaging or spectroscopy. The specific project is to use handgrip to detect the changes in high energy phosphate metabolism between rest and stress. The high energy phosphates, ATP and phosphocreatine (PCr) are responsible for the energy of the heart muscle (myocardium) responsible for its contractile function. If the blood supply to the myocardium in insufficient to support metabolism and contractility during stress, the high energy phosphates, particularly PCr, will decrease in concentration. The high energy phosphates can be tracked using phosphorus-31 magnetic resonance spectroscopy ( 31 P MRS). In Project 2 the UAB Surgical Robotics project focuses on the use of virtual presence to assist with remote surgery and surgical training. The goal of this proposal was to assemble a pilot system for proof of concept. The pilot project was completed successfully and was judged to demonstrate that the concept of remote surgical assistance as applied to surgery and surgical training was feasible and warranted further development. The main objective of Project 3 is to develop a system to allow for the tele-robotic delivery of instrumentation during a functional neurosurgical procedure (Figure 3). Instrumentation such as micro-electrical recording probes or deep brain stimulation leads. Current methods for the delivery of these instruments involve the integration of linear actuators to stereotactic navigation systems. The control of these delivery devices

  16. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  17. Ultrasonic thermometry for nuclear power plants

    International Nuclear Information System (INIS)

    Saravana Kumar, S.; Arunraj, A.L.R.; Swaminathan, K.

    2013-01-01

    Ultrasonic transducer provides a method of measurement of temperature in industrial tanks and boilers containing different liquids with varied salt content. This method is used to measure the average temperature continuously where other traditional methods available do not offer. Traditional methods used for temperature measurement like infrared thermometers, thermocouples, measures temperature at a single location. Numerous thermocouples are to be fixed at various part of the boiler in order to measure the temperature of the entire boiler, which incurs high cost. Reliability of the system decreases, with increasing number of thermocouples. When they fail at a point, the time incurred in finding the faulty part or faulty thermocouple is high. Ultrasonic transducer provides continuous measurement for all different characteristic liquids with higher accuracy and lesser response time. Fault location and clearance time is also less in ultrasonic measurement method, since only a couple of transducers used for the entire boiler structure. Additionally ultrasonic thermometry along support measuring electronic system can be built of low cost. (author)

  18. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  19. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  20. Ultrasonic monitoring system

    International Nuclear Information System (INIS)

    McLain, R.E.

    1975-01-01

    The ultrasonic monitoring system is used in LMFBR's, BWR's or PWR's. A remotely controlled, movable instrument carrier may be used which contains the piezo-electric transducer and is connected to the main control console by a transmission cable. An excitation pulse coming from a pulse generator is used to excite the transducer with a maximum of energy, independent of the length of the transmission line. Pulse width and pulse amplitude can be set without any direct interference into the transducer. For this purpose, a resistor whose impedance has been matched to that of the transmission line is connected to the input of the transmission line. Moreover, a capacitor for generation of the excitation pulse is coupled with the transmission line by means of a four-layer switching diode and is discharged. For termination of the excitation and the control pulses, respectively, another four-layer switching diode connected parallel to the capacitor quickly discharges the capacitor. The capacitor and the capacitance of the line constitute a voltage divider. In this way it is possible to change the length of the transmission line and, to safeguard the generation of a pulse of the desired amplitude, only vary the capacitance of the capacitor. (DG/RF) [de

  1. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  2. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  3. [ANALYSIS OF THE SURGICAL TREATMENT RESULTS IN THE THYROID GLAND DISEASES].

    Science.gov (United States)

    Tarashchenko, Yu N; Bolgov, M Yu

    2015-08-01

    The results of surgical treatment of the thyroid gland diseases were analyzed, including the specific morbidity rate, cosmetic effect of the operation, stationary treatment of patients duration, the operation radicalism. Improvement of the operation methods and introduction of modern electric surgical instruments have permitted to reduce the operation duration, the surgical access length, the rate of postoperative hypocalcaemia occurrence, duration of the patients stationary treatment.

  4. Ultrasonic inspection development at HEDL

    International Nuclear Information System (INIS)

    Day, C.K.; Mech, S.J.; Michaels, T.E.; Dixon, N.E.

    1978-01-01

    Ultrasonic testing methods and equipment are being developed to support preservice and in-service inspection of selected FFTF welds. A digital computer system is employed in the analysis of both simulated FFTF pipe sections and plate specimens containing fatigue cracks. It is anticipated that test evaluation standards containing fatigue cracks will partially eliminate questions formerly associated with weld test calibration producers by providing natural cracks which follow grain boundaries and stress patterns resembling piping situ conditions. Studies have revealed that commercial transducers may satisfy LMFBR ultrasonic pipe inspection applications: The test system evaluation included transducers and wedge coupling and fluid coupling materials which exhibited acceptable performance at temperatures to 2300C. Results are presented that demonstrate the feasibility of ultrasonic inspection of components immersed in sodium at temperatures to 2600C. (UK)

  5. Effect of decision making on ultrasonic examination performance

    International Nuclear Information System (INIS)

    Harris, D.H.

    1992-05-01

    A decision aid was developed to overcome examiner limitations in information processing and decision making during ultrasonic examinations. The aid provided a means of noting signal characteristics as they were observed during the examination, and of presenting them simultaneously for decision making. The aid also served as a way of providing detailed feedback on examination performance during training. The aid was incorporated into worksheets used for the conduct of practice examinations during ultrasonic examination training. To support the introduction and use of the decision aid, one hour of supplementary training was inserted in an existing 64-hour training course on ultrasonic detection of defects. This study represented a modest step in improving the performance of ultrasonic examinations in nuclear power plants. Findings indicated that aided decision making supported by limited training can significantly improve ultrasonic detection performance

  6. Short Lingual Osteotomy Using a Piezosurgery Ultrasonic Bone-Cutting Device During Sagittal Split Ramus Osteotomy.

    Science.gov (United States)

    Kawase-Koga, Yoko; Mori, Yoshiyuki; Kanno, Yuki; Hoshi, Kazuto; Takato, Tsuyoshi

    2015-10-01

    Short lingual osteotomy is a useful method for the performance of sagittal split ramus osteotomy involving interference between the proximal and distal bone fragments when lateral differences exist in the setback distance. However, this procedure occasionally results in abnormal fracture and nerve injury; expert surgical skill is thus required. We herein describe a novel technique involving the use of an ultrasonic bone-cutting device (Piezosurgery; Mectron Medical Technology, Carasco, Italy) for vertical osteotomy posterior to the mandibular foramen. Successful short lingual osteotomy was performed using this technique with avoidance of abnormal fracture and neurovascular bundle damage.

  7. RESULTS OF SURGICAL TREATMENT OF INFANTILE AND JUVENILE SCOLIOSIS USING VARIOUS INSTRUMENTATION

    Directory of Open Access Journals (Sweden)

    M. V. Mikhailovsky

    2015-01-01

    Full Text Available Introduction. The analysis Results of surgical treatment of growing children with infantile and juvenile scoliosis (IS can the optimal method of treatment select. In young children with significant growth potential spinal fusion may not be the best option as it limits further longitudinal growth of the spine and may to the thoracic insufficiency syndrome result. To address this problem recently several techniques focused, their have advantages and drawbacks.Material and methods. Since 2008 year 127 patients (64 girls, 63 boys aged (4.5 ± 2.1 years were operated on. In group I 65 patients were operated on using VEPTR (Vertical Expandable Prosthetic Titanium Rib instrumentation, in group II 42 patients using various spinal instrumentation. 20 patients with congenital kyphosis were excluded. The average follow-up time was (5.6 ± 1.1 years.Results. In group I average value of the primary scoliotic curve before surgery was (74.7 ± 22.9, secondary curve (42.8 ± 16.0, thoracic kyphosis (46.3 ± 27.4, lumbar lordosis (54.6 ± 14. Average value of the primary scoliotic curve after surgery was reduced to (51 ± 20 (correction 31.7%, at followup to (56.5 ± 18.5, secondary curve (31.8 ± 12.8 (25.7%, at follow-up to (32.4 ± 18.4, thoracic kyphosis (36.8 ± 20.8 (20,5%, at follow-up to (41.8 ± 21.0, lumbar lordosis (45.4 ± 12.7 (16,9%, at follow-up to (48.2 ± 11.7 (p < 0.05. Space available for lung before surgery was (84.5 ± 8.7 %, after surgery was (94.8 ± 6.7%, at follow-up increased to (98.6 ± 5.4 % (p < 0.05. Complications included 11 implant dislocations and 1 infection. In group II average value of the primary scoliotic curve before surgery was (87.6 ± 6.6, secondary curve (47.8 ± 4.6, thoracic kyphosis (61.4 ± 10.4, lumbar lordosis (61.8 ± 4.9. Average value of the primary scoliotic curve after surgery was reduced to 50.6 ± 5.3 (correction 42.3%, at follow-up to (66.1 ± 6.3

  8. Compact teleoperated laparoendoscopic single-site robotic surgical system: Kinematics, control, and operation.

    Science.gov (United States)

    Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter

    2017-12-01

    To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.

  9. On-line ultrasonic gas entrainment monitor

    International Nuclear Information System (INIS)

    Day, C.K.; Pedersen, H.N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes is described. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose

  10. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  11. Automatic data-driven real-time segmentation and recognition of surgical workflow.

    Science.gov (United States)

    Dergachyova, Olga; Bouget, David; Huaulmé, Arnaud; Morandi, Xavier; Jannin, Pierre

    2016-06-01

    With the intention of extending the perception and action of surgical staff inside the operating room, the medical community has expressed a growing interest towards context-aware systems. Requiring an accurate identification of the surgical workflow, such systems make use of data from a diverse set of available sensors. In this paper, we propose a fully data-driven and real-time method for segmentation and recognition of surgical phases using a combination of video data and instrument usage signals, exploiting no prior knowledge. We also introduce new validation metrics for assessment of workflow detection. The segmentation and recognition are based on a four-stage process. Firstly, during the learning time, a Surgical Process Model is automatically constructed from data annotations to guide the following process. Secondly, data samples are described using a combination of low-level visual cues and instrument information. Then, in the third stage, these descriptions are employed to train a set of AdaBoost classifiers capable of distinguishing one surgical phase from others. Finally, AdaBoost responses are used as input to a Hidden semi-Markov Model in order to obtain a final decision. On the MICCAI EndoVis challenge laparoscopic dataset we achieved a precision and a recall of 91 % in classification of 7 phases. Compared to the analysis based on one data type only, a combination of visual features and instrument signals allows better segmentation, reduction of the detection delay and discovery of the correct phase order.

  12. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  13. Instruments for non-destructive evaluation of advanced test reactor inpile tubes

    International Nuclear Information System (INIS)

    Livingston, R.A.; Beller, L.S.; Edgett, S.M.

    1986-01-01

    The Advanced Test Reactor is a 250 MW LWR used primarily for irradiation testing of materials contained in inpile tubes that pass through the reactor core. These tubes provided the high pressure and temperature water environment required for the test specimens. The reactor cooling water surrounding the inpile tubes is at much lower pressure and temperature. The structural integrity of the inpile tubes is monitored by routine surveillance to ensure against unplanned reactor shutdowns to replace defective inpile tubes. The improved instruments developed for inpile tube surveillance include a bore profilometer, ultrasonic flaw detetion system and bore diameter gauges. The design and function of these improved instruments is presented

  14. Bulk viscosity and ultrasonic attenuation in liquid metals

    International Nuclear Information System (INIS)

    Awasthi, O.N.; Murthy, B.V.S.

    1984-11-01

    Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)

  15. Ultrasonic techniques for fluids characterization

    CERN Document Server

    Povey, Malcolm J W

    1997-01-01

    This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Key Features * Appeals to anyone using ultrasound to study fluids * Provides the first detailed description of the ultrasound profiling technique for dispersions * Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat * Presents the l...

  16. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  17. Modern spinal instrumentation. Part 1: Normal spinal implants

    International Nuclear Information System (INIS)

    Davis, W.; Allouni, A.K.; Mankad, K.; Prezzi, D.; Elias, T.; Rankine, J.; Davagnanam, I.

    2013-01-01

    The general radiologist frequently encounters studies demonstrating spinal instrumentation, either as part of the patient's postoperative evaluation or as incidental to a study performed for another purpose. There are various surgical approaches and devices used in spinal surgery with an increased understanding of spinal and spinal implant biomechanics drives development of modern fixation devices. It is, therefore, important that the radiologist can recognize commonly used devices and identify their potential complications demonstrated on imaging. The aim of part 1 of this review is to familiarize the reader with terms used to describe surgical approaches to the spine, review the function and normal appearances of commonly used instrumentations, and understand the importance of the different fixation techniques. The second part of this review will concentrate on the roles that the different imaging techniques play in assessing the instrumented spine and the recognition of complications that can potentially occur.

  18. Introduction to special session on "ultrasonic transducers for harsh environments

    Science.gov (United States)

    Tittmann, B. R.; Reinhardt, B.; Daw, J.

    2018-04-01

    This work describes the results of experiments conducted as part of an instrumented lead test in-core in a nuclear reactor with the piezoelectric and magnetostrictive materials. The experiments exposed AlN, ZnO, BiT, Remendur, and Galfenol to more neutron radiation than found in the literature. The magnetostrictive sensors produce stable ultrasonic pulse-echoes throughout much of the irradiation. The BiT transducers could operate up until approximate 5 × 10^20 n/cm^2 (E>1MeV). The piezoelectric AlN operated well during the entire experiment. The results imply that now available are candidates for operation in harsh environments found in nuclear reactors and steam generator plants.

  19. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  20. Design and implementation of a wireless instrument adapter

    DEFF Research Database (Denmark)

    Laino, Kaori V.; Saathoff, Thore; Savarimuthu, Thiusius R.

    2018-01-01

    The evaluation of new methods for control and manipulation in minimally invasive robotic surgery requires a realistic setup. To decouple the evaluation of methods from overall clinical systems, we propose an instrument adapter for the S line EndoWrist\\c{opyright} instruments of the da Vinci...... surgical system. The adapter is small and lightweight and can be mounted to any robot to mimic motion. We describe its design and implementation, as well as a setup to calibrate instruments to study precise motion control. Our results indicate that each instrument requires individual calibration...

  1. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  2. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    Science.gov (United States)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  3. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  4. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  5. Determine bond strength by ultrasonic measurement

    International Nuclear Information System (INIS)

    Brown, C.M.

    1978-01-01

    Application of ultrasonic methods for the evaluation and measurement of bond strength has been the object of numerous investigations in the last fifteen years. Some investigators have reported good success (in limited application) while others have experienced dismal failure. One problem common to all investigations was the difficulty in extracting and isolating the many components which comprise the ultrasonic signal reflected from a bonded interface. Part of this problem was due to manually extracting individual parameters from large volumes of raw data. However, with the vast technology now available in the field of signal analysis and computerized data processing, it is feasible to isolate and analyze individual parameters within the ultrasonic signal for great volumes of raw data

  6. Numerical shaping of the ultrasonic wavelet

    International Nuclear Information System (INIS)

    Bonis, M.

    1991-01-01

    Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test

  7. Contact-free ultrasonic testing: applications to metrology and NDT

    International Nuclear Information System (INIS)

    Le Brun, A.

    1988-01-01

    In some cases classical ultrasonic testing is impossible because of adverse environment (high temperature, ionizing radiations, etc). Ultrasonic waves are created by laser impact and detected by electromagneto-acoustic transducers or laser interferometry. Association of ultrasonics generation by photoacoustic effect and reception by heterodyne interferometer is promising for the future [fr

  8. Ultrasonic actuation for MEMS dormancy-related stiction reduction

    Science.gov (United States)

    Kaajakari, Ville; Kan, Shyi-Herng; Lin, Li-Jen; Lal, Amit; Rodgers, M. Steven

    2000-08-01

    The use of ultrasonic pulses incident on surface micromachines has been shown to reduce dormancy-related failure. We applied ultrasonic pulses from the backside of a silicon substrate carrying SUMMiT processed surface micromachined rotors, used earlier as ultrasonic motors. The amplitude of the pulses was less than what is required to actuate the rotor (sub-threshold actuation). By controlling the ultrasonic pulse exposure time it was found that pulsed samples had smaller actuation voltages as compared to non-pulsed samples after twelve-hour dormancy. This result indicates that the micromachine stiction to surfaces during dormant period can be effectively eliminated, resulting in long-term stability of surface micromachines in critical applications.

  9. Ultrasonic techniques for measuring physical properties of fluids in harsh environments

    Science.gov (United States)

    Pantea, Cristian

    Ultrasonic-based measurement techniques, either in the time domain or in the frequency domain, include a wide range of experimental methods for investigating physical properties of materials. This discussion is specifically focused on ultrasonic methods and instrumentation development for the determination of liquid properties at conditions typically found in subsurface environments (in the U.S., more than 80% of total energy needs are provided by subsurface energy sources). Such sensors require materials that can withstand harsh conditions of high pressure, high temperature and corrosiveness. These include the piezoelectric material, electrically conductive adhesives, sensor housings/enclosures, and the signal carrying cables, to name a few. A complete sensor package was developed for operation at high temperatures and pressures characteristic to geothermal/oil-industry reservoirs. This package is designed to provide real-time, simultaneous measurements of multiple physical parameters, such as temperature, pressure, salinity and sound speed. The basic principle for this sensor's operation is an ultrasonic frequency domain technique, combined with transducer resonance tracking. This multipurpose acoustic sensor can be used at depths of several thousand meters, temperatures up to 250 °C, and in a very corrosive environment. In the context of high precision measurement of sound speed, the determination of acoustic nonlinearity of liquids will also be discussed, using two different approaches: (i) the thermodynamic method, in which precise and accurate frequency domain sound speed measurements are performed at high pressure and high temperature, and (ii) a modified finite amplitude method, requiring time domain measurements of the second harmonic at room temperature. Efforts toward the development of an acoustic source of collimated low-frequency (10-150 kHz) beam, with applications in imaging, will also be presented.

  10. The importance of the first ultrasonic exam of newborn hips.

    Science.gov (United States)

    Grubor, Predrag; Asotic, Mithat; Biscevic, Mirza; Grubor, Milan

    2012-01-01

    Developmental hip disorder (DHD) is a disorder in development of the acetabulum which remains abrupt (dysplasia) and probably consequential cranialisation of the femur head (luxation). The aim of this paper is to establish the total number of DHD and its subtypes at the first clinical and ultrasound exam of newborns in a retrospective-prospective study made in the period from 1st Jan 2006 through to 31 Dec 2010 at the Clinic for orthopaedics and traumatology in Banja Luka. In total 6132 patients were examined and 99 cases diagnosed with DHD (dysplasia and luxation). Ultrasonic exam was done by means of electronic probe of 5-12 MHz according to standard method after Graph. Girls were significantly more present (96%). Positive family anamnesis on DHD was present with 7.8% examinee, mainly with primiparas, and/ or with 77.8% children with DHD. Dominant intrauterine risk factors for DHD were: mal position of foetus in uterus (78.6%), oligoamnion (17.9%), malformation of the spinal column of the pregnant woman (3.6%), whereas with 38.4% of children with a certain form of DHD the following were found: breech presentation, caesarean section or twin pregnancy. The clinical exam indicated DHD with 8.87% examinee, out of which hip looseness was found with 5% examinees. Ultrasonic finding was positive with 99 examinee, that is with 1.61% of them (deficient and badly formed acetabulum, sleeked protrusion; 8 luxations and 91 dysplasia). Prophylactic measures were requested by 58.6% children (abductive bending and exercises), whereas 41.4 % needed non-intervention therapeutic measures (traction, Pavlik's straps, Graph's knickers, plastering), after which there were no children needing surgical correction of DHD. These data indicate that clinical exam is unreliable for DHD diagnostics, and that Ultrasonic diagnostics and treatment of DHD should start as early as possible applying atraumatic helping devices and procedures in the period when all structures are elastic, flexible and

  11. Load evaluation of the da Vinci surgical system for transoral robotic surgery.

    Science.gov (United States)

    Fujiwara, Kazunori; Fukuhara, Takahiro; Niimi, Koji; Sato, Takahiro; Kitano, Hiroya

    2015-12-01

    Transoral robotic surgery, performed with the da Vinci surgical system (da Vinci), is a surgical approach for benign and malignant lesions of the oral cavity and laryngopharynx. It provides several unique advantages, which include a 3-dimensional magnified view and ability to see and work around curves or angles. However, the current da Vinci surgical system does not provide haptic feedback. This is problematic because the potential risks specific to the transoral use of the da Vinci include tooth injury, mucosal laceration, ocular injury and mandibular fracture. To assess the potential for intraoperative injuries, we measured the load of the endoscope and the instrument of the da Vinci Si surgical system. We pressed the endoscope and instrument of the da Vinci Si against Load cell six times each and measured the dynamic load and the time-to-maximum load. We also struck the da Vinci Si endoscope and instrument against the Load cell six times each and measured the impact load. The maximum dynamic load was 7.27 ± 1.31 kg for the endoscope and 1.90 ± 0.72 for the instrument. The corresponding time-to-maximum loads were 1.72 ± 0.22 and 1.29 ± 0.34 s, but the impact loads were significantly lower than the dynamic load. It remains possible that a major load is exerted on adjacent structures by continuous contact with the endoscope and instrument of da Vinci Si. However, there is a minor delay in reaching the maximum load. Careful monitoring by an on-site assistant may, therefore, help prevent contiguous injury.

  12. NEET In-Pile Ultrasonic Sensor Enablement-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Daw; J. Rempe; J. Palmer; P. Ramuhalli; R. Montgomery; H.T. Chien; B. Tittmann; B. Reinhardt; P. Keller

    2014-09-01

    Ultrasonic technologies offer the potential to measure a range of parameters during irradiation of fuels and materials, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes under harsh irradiation test conditions. There are two primary issues that currently limit in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. The harsh nature of in-pile testing and the variety of desired measurements demand that an enhanced signal processing capability be developed to make in-pile ultrasonic sensors viable. To address these issues, the NEET ASI program funded a three year Ultrasonic Transducer Irradiation and Signal Processing Enhancements project, which is a collaborative effort between the Idaho National Laboratory, the Pacific Northwest National Laboratory, the Argonne National Laboratory, and the Pennsylvania State University. The objective of this report is to document the objectives and accomplishments from this three year project. As summarized within this document, significant work has been accomplished during this three year project.

  13. Extrinsic Fabry-Perot ultrasonic detector

    Science.gov (United States)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  14. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  15. The correlation between the ultrasonic elastic strain ratio of thyroid cancer and the malignant biological characteristics of cancer cells in the lesions

    OpenAIRE

    Li Ma; Rong Zhou; Yun-Zhu Li

    2017-01-01

    Objective: To study the correlation between the ultrasonic elastic strain ratio of thyroid cancer and the malignant biological characteristics of cancer cells in the lesions. Methods: A total of 90 patients with thyroid cancer who accepted surgical treatment in our hospital between March 2015 and September 2016 were selected as the observation group, and 50 patients who received surgery in our hospital during the same period and were with clear pathological diagnosis of thyroid...

  16. Internal properties assessment in agar wood trees using ultrasonic velocity measurement

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Mohamad Pauzi Ismail; Mat Rasol Awang; Mohd Fajri Osman; Fakhruzi, M.; Hashim, M.M.

    2010-01-01

    This paper presents the application of ultrasonic velocity in agar wood trees (Aquilaria crassna) with the purpose of evaluating the relationship of the ultrasonic velocity to the variations of internal properties of trees. In this study, three circular cross-sectional discs from the freshly cut tree were selected as samples. First sample with a big hole (decay) in the middle, second sample with internal resinous and the last one is the sample with no defects. The through transmission ultrasonic testing method was carried out using Tico ultrasonic pulse velocity tester which is from Switzerland. Two-dimensional image of internal properties evaluation by an ultrasonic investigation was obtained using Matlab. The results showed that the ultrasonic wave cannot pass through the internal decay or resinous so that the wave went round it and thus ultrasonic wave velocity significantly decreased by increasing the hole or resinous. The difference in color of the image generated by Matlab software based on variation of ultrasonic velocity between the internal decay area and its surrounding area was obvious. Therefore, the properties of internal properties of the three could be detected by ultrasonic line imaging technique. (author)

  17. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  18. Surgical management of Gerhardt syndrome.

    Science.gov (United States)

    Chirilă, M; Mureşan, R; Cosgarea, M; Tomescu, E

    2010-01-01

    Adduction bilateral vocal fold immobility syndrome may be due by both recurrent laryngeal nerves paralysis--Gerhardt syndrome--and all intrinsic laryngeal muscles paralysis--Riegel syndrome. Etiology of Gerhardt syndrome is thyroid surgery, intubation's maneuver, trauma, neurological disorders, extrala-ryngeal malignancies. The manifestations of Gerhardt syndrome are inspiratory dyspnea and slightly influenced voicing by paramedian vocal folds paralysis with an important narrowing of the airway at the glottic level. The surgical procedures for enlargement of the glottic space can be classified in many ways and their major characteristics are: changes at the glottic level; surgical approach: open neck or endoscopic, with or without opening of the mucosal lining; the need for tracheostomy; the equipment used. The aim of this review is to expound the variety of interventions through the last century marked by the development of the diagnostic methods, the anesthesia and the surgical armament with sophisticated instruments and technologies.

  19. Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo

    2005-01-01

    This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple

  20. The methodological quality of systematic reviews comparing temporomandibular joint disorder surgical and non-surgical treatment

    Directory of Open Access Journals (Sweden)

    Vasconcelos Belmiro CE

    2008-09-01

    Full Text Available Abstract Background Temporomandibular joint disorders (TMJD are multifactor, complex clinical problems affecting approximately 60–70% of the general population, with considerable controversy about the most effective treatment. For example, reports claim success rates of 70% and 83% for non-surgical and surgical treatment, whereas other reports claim success rates of 40% to 70% for self-improvement without treatment. Therefore, the purpose of this study was to (1 identify systematic reviews comparing temporomandibular joint disorder surgical and non-surgical treatment, (2 evaluate their methodological quality, and (3 evaluate the evidence grade within the systematic reviews. Methods A search strategy was developed and implemented for MEDLINE, Cochrane Library, LILACS, and Brazilian Dentistry Bibliography databases. Inclusion criteria were: systematic reviews (± meta-analysis comparing surgical and non-surgical TMJD treatment, published in English, Spanish, Portuguese, Italian, or German between the years 1966 and 2007(up to July. Exclusion criteria were: in vitro or animal studies; narrative reviews or editorials or editorial letters; and articles published in other languages. Two investigators independently selected and evaluated systematic reviews. Three different instruments (AMSTAR, OQAQ and CASP were used to evaluate methodological quality, and the results averaged. The GRADE instrument was used to evaluate the evidence grade within the reviews. Results The search strategy identified 211 reports; of which 2 were systematic reviews meeting inclusion criteria. The first review met 23.5 ± 6.0% and the second met 77.5 ± 12.8% of the methodological quality criteria (mean ± sd. In these systematic reviews between 9 and 15% of the trials were graded as high quality, and 2 and 8% of the total number of patients were involved in these studies. Conclusion The results indicate that in spite of the widespread impact of TMJD, and the multitude of

  1. The impact of the use of different types of gloves and bare hands for preparation of clean surgical instruments.

    Science.gov (United States)

    Bruna, Camila Quartim de Moraes; Souza, Rafael Queiroz de; Massaia, Irineu Francisco Silva; Cruz, Áurea Silveira; Graziano, Kazuko Uchikawa

    2016-10-10

    to determine if there are differences on the safety of the preparation of clean surgical instruments using different types of gloves and bare hands and evaluate the microbiological load of these preparations without gloves. laboratory procedure with a pragmatic approach, in which the samples were handled with different types of gloves and bare hands. In addition, cytotoxicity assays were carried out by means of the agar diffusion method. Further samples were subjected to microbiological analysis after being handled without gloves. none of the samples showed cytotoxic effect. All microbiological cultures showed growth of microorganisms, but no microorganism has been recovered after autoclaving. there were no differences in the cytotoxic responses regarding the use of different types of gloves and bare hands in the handling of clean surgical instruments, which could entail iatrogenic risk. It is noteworthy that the use of gloves involves increase in the costs of process and waste generation, and the potential allergenic risk to latex. determinar se existe diferenças na segurança do preparo de instrumentais cirúrgicos relacionada ao uso de distintos tipos de luvas e das mãos nuas no preparo, e avaliar a carga microbiológica destes preparados sem luvas. experimento laboratorial com abordagem pragmática, onde amostras foram manipuladas com diferentes tipos de luvas e com as mãos nuas, elaborado teste de citotoxicidade por meio da difusão em ágar. Outras Amostras sofreram análise microbiológica após serem manipuladas sem luvas. nenhuma das amostras apresentou efeito citotóxico. Todas as culturas microbiológicas apresentaram crescimento de microrganismos, embora nenhum microrganismo tenha sido recuperado após a autoclavação. não houve diferenças nas respostas citotóxicas relacionadas ao uso de diferentes tipos de luvas e das mãos nuas na manipulação do instrumental cirúrgico limpo que sinalizasse risco de iatrogenia. Ressalta-se que o uso de luvas

  2. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  3. Comparison between carbondioxide laser and cold instruments in treatment of vocal nodule

    International Nuclear Information System (INIS)

    Kundi, N.A.; Qayyum, A.; Ahmed, B.; Raza, M.

    2013-01-01

    Background: Vocal cord nodules are one of the most frequent disorders in both children and adults who use their voice excessively. Main symptom with which patient presents is hoarseness of voice. The treatment in early stages is voice therapy. Various methods are used for its treatment e.g. surgical removal with cold instruments and carbon dioxide laser ablation. Response to the treatment is measured by improvement in voice quality. Objective: To compare the results of Carbon dioxide laser and cold instruments in the treatment of vocal nodule. Study Design: Quasi-experimental study. Place and Duration of Study: This study was conducted at Otolaryngology Department Combined Military Hospital Rawalpindi. Patients and Methods: In this study 50 patients undergoing treatment of vocal cord nodule were included, 25 patients were treated by surgical removal with cold instruments and 25 patients were treated with carbon dioxide laser ablation. The main comparative outcomes were measured by patients' perception of voice quality (worse, same, improved) one week post operatively. Results: Improvement in voice quality with carbon dioxide laser was found to be clinically superior. Voice quality was significantly improved as compared to cold surgical instruments. Conclusion: Carbon dioxide laser causes early improvement in quality of voice as compared to cold instruments in the treatment of vocal nodules. (author)

  4. Hardware Developments of an Ultrasonic Tomography Measurement System

    Directory of Open Access Journals (Sweden)

    Hudabiyah ARSHAD AMARI

    2010-01-01

    Full Text Available This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ultrasonic transceiver. A prototype design of sensor’s jig that will hold 16 transceivers of 14.1mm has been design. Transmission-mode approach with fan beam technique has been used for sensing the flow of gas, liquid and solid. This paper also explains the circuitry designs for the Ultrasonic Tomography System.

  5. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  6. On line ultrasonic integrated backscatter

    International Nuclear Information System (INIS)

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  7. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir

    2012-04-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects and then utilized to account for instantaneous softening when ultrasonic energy is applied during deformation. Material model parameters are identified via inverse modeling, i.e. by using experimental data. The versatility and predictive ability of the model are demonstrated and the effect of ultrasonic intensity on the manufacturing process at hand is investigated and compared qualitatively with experimental results reported in the literature. © 2011 Elsevier B.V. All rights reserved.

  8. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Weber, M; Weiss, M [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  9. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H.; Weber, M.; Weiss, M. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  10. The outcome of laparoscopic cholecystectomy by ultrasonic dissection.

    LENUS (Irish Health Repository)

    Sasi, Walid

    2010-04-01

    Electrocautery remains the main energy form used for dissection in laparoscopic cholecystectomy. However, due to its many risks the search continues for safer and more efficient forms of energy. This chapter assesses the outcomes of dissection using ultrasonic energy as compared to monopolar electrocautery during laparoscopic cholecystectomy. Studies included are trials of prospectively randomized adult patients with symptomatic gallstone disease subject either ultrasonic or monopolar electrocautery dissection during laparoscopic cholecystectomy. Seven trials were included in this review, with a total patient number of 695 randomized to two dissection methods: 340 in the electrocautery group and 355 in the ultrasonic group. Ultrasonic dissection is shown to be superior to monopolar electrocautery in laparoscopic cholecystectomy. Disadvantages include a difficult maneuvering technique and overall cost. Appropriate training programs may be implemented to overcome the first disadvantage, and it might be argued that given the combined cost of factors associated with standard clip and cautery technique, cost issues may be outweighed by the benefits of ultrasonic dissection. However, this necessitates further cost-benefit analysis.

  11. Ultrasonic extraction of flavonoids and phenolics from loquat ...

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... ultrasonic pharmaceutical managing machine (Sinobest electronic. Co. Ltd., Jining, Shangdong ... During the ultrasonic treatment, the temperature ..... essential oil extraction by a hydrodistillation process using a 2(4) complete ...

  12. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  13. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  14. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-01-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc–10 kHz and 0–4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, T g = 69 °C), whose the glass transition temperature (T g ) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not

  15. Compact instrument for fluorescence image-guided surgery

    Science.gov (United States)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  16. Cementing quality evaluation with ultrasonic logs in fiberglass casings; Avaliacao da qualidade do cimento em revestimentos de fibra de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wellington; Lazaro, Andre F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The sonic and ultrasonic profiles are used as the main tools in assessing the cementing quality between formation and casing in oil wells. This assessment is important, because, if there is a failure in the primary cementing, both the structural integrity and zone isolation will be compromised. The sonic profiles are based on the acoustic energy attenuation in casing, cement and formation, while the ultrasonic profiles are based on the resonance of the wave pulse within the media where they travel (casings, cement and formation). The attenuation and resonance are due to the difference in the way the wave travel within these media. The acoustic impedance is the quantification of this difference, determining the refraction and reflection between the environments, and wave attenuation as well. In steel casings, this difference is meaningful, allowing the captured signals (reflected pulses) to be interpreted as good adhesion between cement and casing, or a lack of adhesion at some interval. In fiber glass casings, the impedance contrast between glass and cement is small and not detectable with the CBL/VDL sensors. The CBL/VDL tools provide an inefficient assessment of the quality of the cementing. The ultrasonic profile does not have this problem, theoretically. The goal of this work is to demonstrate and recommend the ultrasonic tool as the main instrument to assess the cementation quality in fiber glass casings. (author)

  17. The digital ultrasonic test unit for automatic equipment

    International Nuclear Information System (INIS)

    Hiraoka, T.; Matsuyama, H.

    1976-01-01

    The operations and features of the ultrasonic test unit used and the digital data processing techniques employed are described. This unit is used for a few hundred multi-channel automatic ultrasonic test equipment

  18. Ultrasonic standing wave preparation of a liquid cell for glucose measurements in urine by midinfrared spectroscopy and potential application to smart toilets.

    Science.gov (United States)

    Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2018-05-01

    Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Design of embedded system to determine liquid refractive index based on ultrasonic sensor using an ATMega328

    Science.gov (United States)

    Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.

    2018-05-01

    The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.

  20. Design of ultrasonic probe and evaluation of ultrasonic waves on E.coli in Sour Cherry Juice

    Directory of Open Access Journals (Sweden)

    B Hosseinzadeh Samani

    2015-09-01

    Full Text Available Introduction: The common method used for juice pasteurization is the thermal method since thermal methods contribute highly to inactivating microbes. However, applying high temperatures would lead to inefficient effects on nutrition and food value. Such effects may include vitamin loss, nutritional flavor loss, non-enzyme browning, and protein reshaping (Kuldiloke, 2002. In order to decrease the adverse effects of the thermal pasteurization method, other methods capable of inactivation of microorganisms can be applied. In doing so, non-thermal methods including pasteurization using high hydrostatic pressure processing (HPP, electrical fields, and ultrasound waves are of interest (Chen and Tseng, 1996. The reason for diminishing microbial count in the presence of ultrasonic waves could be due to the burst of very tiny bubbles developed by ultrasounds which expand quickly and burst in a short time. Due to this burst, special temperature and pressure conditions are developed which could initiate or intensify several physical and/or chemical reactions. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. Materials and methods: In order to supply uniform ultrasonic waves, a 1000 W electric generator (Model MPI, Switzerland working at 20±1 kHz frequency was used. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. For this purpose, a certain amount of sour cherry fruit was purchased from local markets. First, the fruits were washed, cleaned and cored. The prepared fruits were then dewatered using an electric juicer. In order to separate pulp suspensions and tissue components, the extracted juice was poured into a centrifuge with the speed of 6000 rpm for 20 min. For complete separation of the remaining suspended particles, the transparent portion of the extract was passed through a

  1. Miniaturized and general purpose fiber optic ultrasonic sources

    International Nuclear Information System (INIS)

    Biagi, E.; Fontani, S.; Masotti, L.; Pieraccini, M.

    1997-01-01

    Innovative photoacoustic sources for ultrasonic NDE, smart structure, and clinical diagnosis are proposed. The working principle is based on thermal conversion of laser pulses into a metallic film evaporated directly onto the tip of a fiber optic. Unique features of the proposed transducers are very high miniaturization and potential easy embedding in smart structure. Additional advantages, high bedding in smart structure. Additional advantages, high ultrasonic frequency, large and flat bandwidth. All these characteristics make the proposed device an ideal ultrasonic source

  2. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    Science.gov (United States)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  3. Study on the development of ultrasonic gas flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Park, Sang Gug; Yang, Kyu Hong; Jhang, Kyung Young

    2001-01-01

    Ultrasonic flowmeters have more advantages than the conventional method using pressure-difference. In these reasons, many advanced nations are already selling the commercial model. In RIST, we have been developed ultrasonic gas flow meter for the localization since a project was been contracted with POSCO in 1997. This paper describes a new ultrasonic gas flowmeter. This ultrasonic gas flowmeter is developed for accurate measurement of gases in a harsh environmental conditions. It is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. In this study, we had developed the commercial model about the first tested model and applied a completed system to the POSCO gas line. Its performance has already well been proven by extensive field tests for several months in POSCO, iron and steel making company

  4. Adjacent segment infection after surgical treatment of spondylodiscitis.

    Science.gov (United States)

    Siam, Ahmed Ezzat; El Saghir, Hesham; Boehm, Heinrich

    2016-03-01

    This is the first case series to describe adjacent segment infection (ASI) after surgical treatment of spondylodiscitis (SD). Patients with SD, spondylitis who were surgically treated between 1994 and 2012 were included. Out of 1187 cases, 23 (1.94 %) returned to our institution (Zentralklinik Bad Berka) with ASI: 10 males, 13 females, with a mean age of 65.1 years and a mean follow-up of 69 months. ASI most commonly involved L3-4 (seven patients), T12-L1 (five) and L2-3 (four). The mean interval between operations of primary infection and ASI was 36.9 months. All cases needed surgical intervention, debridement, reconstruction and fusion with longer instrumentation, with culture and sensitivity-based postoperative antimicrobial therapy. At last follow-up, six patients (26.1 %) were mobilized in a wheelchair with a varying degree of paraplegia (three had pre-existing paralysis). Three patients died within 2 months after the ASI operation (13 %). Excellent outcomes were achieved in five patients, and good in eight. Adjacent segment infection after surgical treatment of spondylodiscitis is a rare complication (1.94 %). It is associated with multimorbidity and shows a high mortality rate and a high neurological affection rate. Possible explanations are: haematomas of repeated micro-fractures around screw loosening, haematogenous spread, direct inoculation or a combination of these factors. ASI may also lead to proximal junctional kyphosis, as found in this series. We suggest early surgical intervention with anterior debridement, reconstruction and fusion with posterior instrumentation, followed by antimicrobial therapy for 12 weeks. Level IV retrospective uncontrolled case series.

  5. Method of noncontacting ultrasonic process monitoring

    Science.gov (United States)

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  6. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ultrasonic monitoring of Iberian fat crystallization during cold storage

    International Nuclear Information System (INIS)

    Corona, E; García-Pérez, J V; Santacatalina, J V; Peña, R; Benedito, J

    2012-01-01

    The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.

  8. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  9. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    Science.gov (United States)

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  10. P-Scan provides accuracy and repeatability in ultrasonics

    International Nuclear Information System (INIS)

    Keys, R.L.

    1987-01-01

    The P-Scan (Projection image scanning technique) is an automated ultrasonic inspection technique, developed to overcome the problems with accuracy and repeatability experienced with manual ultrasonic systems. The equipment and its applications are described. (author)

  11. Ultrasonic experiment on hydrate formation of a synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shicai; Fan, Shuanshi; Liang, Deqing; Zhang, Junshe; Feng, Ziping

    2005-07-01

    The effect of ultrasonic on the induction time and formation rate of natural gas hydrates was investigated in a stainless steel cell in this study. The results show that the induction time with ultrasonic was about 1/6 of that without ultrasonic and only about 1/10 if rehydration after decomposition in water-gas system. In sodium dodecyl sulfate (SDS) solution-gas system, the critical micellar concentration (CMC) was not identified with ultrasonic. The formation rate and storage capacity of hydrate increased with increasing SDS concentration at a range of 0 to 800ppm. However, the increase was insignificant as the SDS concentration increased from 600 to 800ppm, (Author)

  12. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity

    DEFF Research Database (Denmark)

    Svennebring, J.; Manneberg, O.; Skafte-Pedersen, Peder

    2009-01-01

    We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the c......We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field...... sample feeding, a set of several manipulation functions performed in series is demonstrated: sample bypass-injection-aggregation and retention-positioning. Finally, we demonstrate transillumination microscopy imaging Of Ultrasonically trapped COS-7 cell aggregates. Biotechnol. Bioeng. 2009;103: 323-328....

  13. Defect detection and sizing in ultrasonic imaging

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Chapuis, N.; Magnin, I.

    1991-01-01

    This paper introduces imaging processing developed with the SPARTACUS system in the field of ultrasonic testing. The aim of the imaging processing is to detect and to separate defects echoes from background noise. Image segmentation and particularities of ultrasonic images are the base of studied methods. 4 figs.; 6 refs [fr

  14. Reproducibility problems of in-service ultrasonic testing results

    International Nuclear Information System (INIS)

    Honcu, E.

    1974-01-01

    The reproducibility of the results of ultrasonic testing is the basic precondition for its successful application in in-service inspection of changes in the quality of components of nuclear power installations. The results of periodic ultrasonic inspections are not satisfactory from the point of view of reproducibility. Regardless, the ultrasonic pulse-type method is suitable for evaluating the quality of most components of nuclear installations and often the sole method which may be recommended for inspection with regard to its technical and economic aspects. (J.B.)

  15. Further Investigations on Simultaneous Ultrasonic Coal Flotation

    Directory of Open Access Journals (Sweden)

    Safak Gokhan Ozkan

    2017-09-01

    Full Text Available This study investigates the flotation performance of a representative hard coal slime sample (d80 particle size of minus 0.2 mm obtained from the Prosper-Haniel coal preparation plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell refurbished from an old ultrasonic cleaning bath (2.5 L volume equipped with a single frequency (35 kHz and two different power levels (80–160 W and a sub-aeration-type flotation machine operating at a stable impeller speed (1200 rpm and air rate (2.5 L/min. The reagent combination for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages (40–300 g/t with controlling water temperature (20–25 °C at natural pH (6.5–7.0. The batch coal flotation results were analyzed by comparing the combustible recovery (% and separation efficiency (% values, taking mass yield and ash concentrations of the froths and tailings into account. It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the floated products with lower ash values than the conventional flotation despite using similar reagent dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

  16. Increased epidermal laser fluence through simultaneous ultrasonic microporation

    Science.gov (United States)

    Whiteside, Paul J. D.; Chininis, Jeff A.; Schellenberg, Mason W.; Qian, Chenxi; Hunt, Heather K.

    2016-03-01

    Lasers have demonstrated widespread applicability in clinical dermatology as minimally invasive instruments that achieve photogenerated responses within tissue. However, before reaching its target, the incident light must first transmit through the surface layer of tissue, which is interspersed with chromophores (e.g. melanin) that preferentially absorb the light and may also generate negative tissue responses. These optical absorbers decrease the efficacy of the procedures. In order to ensure that the target receives a clinically relevant dose, most procedures simply increase the incident energy; however, this tends to exacerbate the negative complications of melanin absorption. Here, we present an alternative solution aimed at increasing epidermal energy uence while mitigating excess absorption by unintended targets. Our technique involves the combination of a waveguide-based contact transmission modality with simultaneous high-frequency ultrasonic pulsation, which alters the optical properties of the tissue through the agglomeration of dissolved gasses into micro-bubbles within the tissue. Doing so effectively creates optically transparent pathways for the light to transmit unobstructed through the tissue, resulting in an increase in forward scattering and a decrease in absorption. To demonstrate this, Q-switched nanosecond-pulsed laser light at 532nm was delivered into pig skin samples using custom glass waveguides clad in titanium and silver. Light transmission through the tissue was measured with a photodiode and integrating sphere for tissue with and without continuous ultrasonic pulsation at 510 kHz. The combination of these techniques has the potential to improve the efficiency of laser procedures while mitigating negative tissue effects caused by undesirable absorption.

  17. Development and application of the ultrasonic technologies in nuclear engineering

    International Nuclear Information System (INIS)

    Lebedev, Nikolay; Krasilnikov, Dmitry; Vasiliev, Albert; Dubinin, Gennady; Yurmanov, Viktor

    2012-09-01

    Efficiency of some traditional chemical technologies in different areas could be significantly increased by adding ultrasonic treatment. For example, ultrasonic treatment was found to improve make-up water systems, decontamination procedures, etc. Improvement of traditional chemical technologies with implementation of ultrasonic treatment has allowed to significantly reducing water waste, including harmful species and radioactive products. The report shows the examples of the recent ultrasonic technology development and application in Russian nuclear engineering. They are as follows: - Preliminary cleaning of surfaces of in-pile parts (e.g. control sensors) prior to their assemblage and welding - Decontamination of grounds and metal surfaces of components with a complex structure -Decrease in sliding friction between fuel rods and grids during VVER reactor fuel assembly manufacturing -Removal of deposits from reactor fuel surfaces in VVER-440s -Increasing the density and strength of pressed sintered items while making fuel pellets and fuel elements, especially mixed-oxide fuel Surface cleanness is very important for the fuel assembly manufacturing, especially prior to welding. An ultrasonic technology for surface cleaning (from graphite and other lubricants, oxides etc.) was developed and implemented. The ultrasonic cleaning is applicable to the parts having both simple shape and different holes. Ultrasonic technology has allowed to improve the surface quality and environmental safety. Ultrasonic treatment appears to be expedient to intensify the chemical decontamination of solid radioactive waste from grounds of different fractions to metallic components. Ultrasonic treatment reduces the decontamination process duration up to 100 times as much. Excellent decontamination factor was received even for the ground fractions below 1 mm. It should be noted that alternative decontamination techniques (e.g. hydraulic separation) are poorly applicable for such ground

  18. An inverse method for crack characterization from ultrasonic B-Scan images

    International Nuclear Information System (INIS)

    Faur, M.; Roy, O.; Benoist, PH.; Morisseau, PH.

    1996-01-01

    Concern has been expressed about the capabilities of performing non destructive evaluation (NDE) of flaws located near to the outer surface in nuclear pressurized water reactor (PWR) vessels. The ultrasonic examination of PWR is accomplished from the inside with ultrasonic focused transducers working in the pulse echo mode. By recording the echoes as a function of time, the Ascan representation may be obtained. Many ultrasonic flaw detectors used for NDE are based on the simple Ascan concept involving measuring a time interval called 'time of flight'. By combining the Ascan concept synchronized transducer scanning, one can produce Bscan images that are two dimensional descriptions of the flaw interaction with the ultrasonic field. In the following, the flaw is assumed to be an axially oriented crack (the most serious flaw to be found in a pressurized component). In the case of the outer surface cracks (OSC's), analyzing and interpreting ultrasonic Ascan images become difficult because of the various reflections of the ultrasonic beam on the crack and on the outer surface (the so-called corner effect). Methods for automatic interpretation of ultrasonic experimental data are currently under investigation. In this paper, we present an inverse method for determining the geometrical characteristics of OSC's from ultrasonic Bscan images. The direct model used for the inversion procedure predicts synthetic Bscan images of ultrasonic examination of blocks containing planar defects interrogated by focused probes. (authors)

  19. Ultrasonic calibration assembly

    International Nuclear Information System (INIS)

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  20. Very high temperature ultrasonic thermometer

    International Nuclear Information System (INIS)

    Jorzik, E.

    1983-01-01

    An ultrasonic thermometer comprises an electric pulse transducer head, a pulse transmission line, a notched sensor wire attached to and extending along the axis of said transmission line and a sheath enclosing the transmission line and the sensor wire, a portion of the interior face of the sheath being covered by a stuffing material along at least the length of the notched part of the sensor wire, such that contact between the sensor wire and the stuffing material does not substantially give rise to reflection of an ultrasonic pulse at the point of contact. (author)

  1. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  2. [Organising an instrumental elective abortion].

    Science.gov (United States)

    Brûlé, Annie

    2015-12-01

    Family planning centres are structures designed to receive and care for women requesting elective abortions. Here the specially trained, dedicated teams offer personalised care. The instrumental elective abortion is prepared in the same way as a surgical procedure and is subject to the same monitoring. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  4. Evolution of surgical skills training

    Science.gov (United States)

    Roberts, Kurt E; Bell, Robert L; Duffy, Andrew J

    2006-01-01

    Surgical training is changing: one hundred years of tradition is being challenged by legal and ethical concerns for patient safety, work hours restrictions, the cost of operating room time, and complications. Surgical simulation and skills training offers an opportunity to teach and practice advanced skills outside of the operating room environment before attempting them on living patients. Simulation training can be as straight forward as using real instruments and video equipment to manipulate simulated “tissue” in a box trainer. More advanced, virtual reality simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. The Accreditation Council of Graduate Medical Education’s (ACGME) has mandated the development of novel methods of training and evaluation. Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and to credential surgeons as technically competent. Simulators in their current form have been demonstrated to improve the operating room performance of surgical residents. Development of standardized training curricula remains an urgent and important agenda, particularly for minimal invasive surgery. An innovative and progressive approach, borrowing experiences from the field of aviation, can provide the foundation for the next century of surgical training, ensuring the quality of the product. As the technology develops, the way we practice will continue to evolve, to the benefit of physicians and patients. PMID:16718842

  5. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  6. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per

    2005-07-01

    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  7. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  8. Chemical coloring on stainless steel by ultrasonic irradiation.

    Science.gov (United States)

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Simulation of the Two-Phase Liquid – Gas Flow through Ultrasonic Transceivers Application in Ultrasonic Tomography

    Directory of Open Access Journals (Sweden)

    Zulkarnay Zakaria

    2010-01-01

    Full Text Available In this paper, ultrasonic transmission mode tomography was used to visualize the two phase liquid/gas flow in a pipe/vessel. The sensing element consists of 8, 16 and 32 units ultrasonic transceivers were used to cover the pipe cross-section at different time. The motivation of this paper is to analyze the optimum numbers of transceivers which can give the best performance in providing better image of the two phase liquid/gas flow. This paper also details the development of the system including the ultrasonic transduction circuits, the electronic measurement circuits, the data acquisition system and the image reconstruction techniques. Ten conditions of liquid-gas flow have been simulated. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases while the 32 transceivers has provided the best image for the ten conditions applied.

  10. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  11. Experiences in using ultrasonic holography with numerical and optical reconstruction

    International Nuclear Information System (INIS)

    Schmitz, V.; Wosnitza, M.

    1978-01-01

    At present, ultrasonic holography can resolve and image faults of 1 mm and more and with distances of one ultrasonic wavelength. The main field of application is for thick-walled structural components. Depending on the expected orientation, test probe arrangements as in standard ultrasonic testing are chosen. (orig./RW) [de

  12. Improvement of solar ethanol distillation using ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Jaruwat Jareanjit

    2016-08-01

    Full Text Available This report presents a study on the use of ultrasonic waves in solar ethanol distillation to investigate the performance of ultrasonic waves at a frequency of 30 kHz and at 100 Watts that were installed in the inlet area of a 10-litre distillation tank. Based on the non-continuous distillation process (batch distillation, the experiment demonstrated that using ultrasonic waves in solar ethanol distillation caused the average concentration of hourly distilled ethanol to be higher than that of a normal system (solar ethanol distillation without ultrasonic wave at the same or higher distillation rate and hourly distillation volume. The ultrasonic wave was able to enhance the separation of ethanol from the solution (water-ethanol mixture through solar distillation. The amount of pure ethanol product from each distilled batch was clearly larger than the amount of product obtained from a normal system when the initial concentration of ethanol was lower than 50%v/v (% by volume, where an average of approximately 40% and 20% are obtained for an initial ethanol concentration of 10%v/v and 30%v/v, respectively. Furthermore, the distillation rate varied based on the solar radiation value.

  13. Void detection beneath reinforced concrete sections: The practical application of ground-penetrating radar and ultrasonic techniques

    Science.gov (United States)

    Cassidy, Nigel J.; Eddies, Rod; Dods, Sam

    2011-08-01

    Ground-penetrating radar (GPR) and ultrasonic 'pulse echo' techniques are well-established methods for the imaging, investigation and analysis of steel reinforced concrete structures and are important civil engineering survey tools. GPR is, arguably, the more widely-used technique as it is suitable for a greater range of problem scenarios (i.e., from rebar mapping to moisture content determination). Ultrasonic techniques are traditionally associated with the engineering-based, non-destructive testing of concrete structures and their integrity analyses (e.g., flaw detection, shear/longitudinal velocity determination, etc). However, when used in an appropriate manner, both techniques can be considered complementary and provide a unique way of imaging the sub-surface that is suited to a range of geotechnical problems. In this paper, we present a comparative study between mid-to-high frequency GPR (450 MHz and 900 MHz) and array-based, shear wave, pulse-echo ultrasonic surveys using proprietary instruments and conventional GPR data processing and visualisation techniques. Our focus is the practical detection of sub-metre scale voids located under steel reinforced concrete sections in realistic survey conditions (e.g., a capped, relict mine shaft or vent). Representative two-dimensional (2D) sections are presented for both methods illustrating the similarities/differences in signal response and the temporal-spatial target resolutions achieved with each technique. The use of three-dimensional data volumes and time slices (or 'C-scans') for advanced interpretation is also demonstrated, which although common in GPR applications is under-utilised as a technique in general ultrasonic surveys. The results show that ultrasonic methods can perform as well as GPR for this specific investigation scenario and that they have the potential of overcoming some of the inherent limitations of GPR investigations (i.e., the need for careful antenna frequency selection and survey design in

  14. Design and implementation of a PC-based image-guided surgical system.

    Science.gov (United States)

    Stefansic, James D; Bass, W Andrew; Hartmann, Steven L; Beasley, Ryan A; Sinha, Tuhin K; Cash, David M; Herline, Alan J; Galloway, Robert L

    2002-11-01

    In interactive, image-guided surgery, current physical space position in the operating room is displayed on various sets of medical images used for surgical navigation. We have developed a PC-based surgical guidance system (ORION) which synchronously displays surgical position on up to four image sets and updates them in real time. There are three essential components which must be developed for this system: (1) accurately tracked instruments; (2) accurate registration techniques to map physical space to image space; and (3) methods to display and update the image sets on a computer monitor. For each of these components, we have developed a set of dynamic link libraries in MS Visual C++ 6.0 supporting various hardware tools and software techniques. Surgical instruments are tracked in physical space using an active optical tracking system. Several of the different registration algorithms were developed with a library of robust math kernel functions, and the accuracy of all registration techniques was thoroughly investigated. Our display was developed using the Win32 API for windows management and tomographic visualization, a frame grabber for live video capture, and OpenGL for visualization of surface renderings. We have begun to use this current implementation of our system for several surgical procedures, including open and minimally invasive liver surgery.

  15. Failed fuel rod detection method by ultrasonic wave

    International Nuclear Information System (INIS)

    Takamatsu, Masatoshi; Muraoka, Shoichi; Ono, Yukio; Yasojima, Yujiro.

    1990-01-01

    Ultrasonic wave signals sent from an ultrasonic receiving element are supplied to an evaluation circuit by way of a gate. A table for gate opening and closing timings at the detecting position in each of the fuel rods in a fuel assembly is stored in a memory. A fuel rod is placed between an ultrasonic transmitting element and the receiving element to determine the positions of the transmitting element and the receiving element by positional sensors. The opening and closing timings at the positions corresponding to the result of the detection are read out from the table, and the gates are opened and closed by the timing. This can introduce the ultrasonic wave signals transmitted through a control rod always to the evaluation circuit passing through the gate. Accordingly, the state of failure of the fuel rod can be detected accurately. (I.N.)

  16. Ultrasonic weld testing.

    Science.gov (United States)

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  17. System and technique for ultrasonic determination of degree of cooking

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J [Richland, WA; Diaz, Aaron A [W. Richland, WA; Judd, Kayte M [Richland, WA; Pappas, Richard A [Richland, WA; Cliff, William C [Richland, WA; Pfund, David M [Richland, WA; Morgen, Gerald P [Kennewick, WA

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  18. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    Science.gov (United States)

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. An ultrasonic waveguide for nuclear power plants

    International Nuclear Information System (INIS)

    Watkins, R.D.; Gillespie, A.B.; Deighton, M.O.; Pike, R.B.

    1983-01-01

    The value of ultrasonic techniques in nuclear plants is well established. However, in most cases nuclear power plants present an extremely hostile environment for an ultrasonic transducer. The paper presents a novel technique for introducing an ultrasound into hostile liquid environments using a new form of ultrasonic waveguide. Using this approach, a standard transducer arrangement is sited in a hospitable area and conveys the ultrasound along the guide to the required beam-emission collection position. The design of a single-mode ultrasonic waveguide is described. The ultrasound is conveyed along a stainless steel strip of rectangular cross-section. The transference of energy between the strip and the liquid is achieved through a highly efficient mode-conversion process. This process overcomes the usual problems of mis-match of acoustic impedances of stainless steel and liquids, and also produces a highly collimated beam of ultrasound. Tests of a 10-m-long waveguide using these techniques are described, achieving signal-to-noise ratios in the region of 40 dB. (author)

  20. Energy-Based Analysis of Ultrasonically Assisted Turning

    Directory of Open Access Journals (Sweden)

    G.A. Volkov

    2011-01-01

    Full Text Available The process of ultrasonically-assisted turning (UAT is a superposition of vibration of a cutting tool on its standard movement in conventional turning (CT. The former technique has several advantages compared with the latter, one of the main being a significant decrease in the level of cutting forces. In this paper the effects observed in UAT are analysed employing ideas of dynamic fracture mechanics. The active stage of loading duration depends heavily on ultrasonic frequency and the cutting speed; he application of the fracture criterion based on the notion of incubation time makes it possible to calculate a dependence of this duration on its threshold amplitude. An estimation of energy, necessary to create a threshold pulse in the material, is made by solving the contact Hertz problem. The obtained time dependence of energy has a marked minimum. Thus, the existence of energy-efficient loading duration is demonstrated. This explains the decrease in the cutting force resulting from superimposed ultrasonic vibration. The obtained results are in agreement with experiments on ultrasonic assisted machining of aluminium and Inconel 718 alloy.

  1. Wear reduction through piezoelectrically-assisted ultrasonic lubrication

    International Nuclear Information System (INIS)

    Dong, Sheng; J Dapino, Marcelo

    2014-01-01

    Traditional lubricants are undesirable in harsh aerospace environments and certain automotive applications. Ultrasonic vibrations can be used to reduce and modulate the effective friction coefficient between two sliding surfaces. This paper investigates the relationship between friction force reduction and wear reduction in ultrasonically lubricated surfaces. A pin-on-disc tribometer is modified through the addition of a piezoelectric transducer which vibrates the pin at 22 kHz in the direction perpendicular to the rotating disc surface. Friction and wear metrics including volume loss, surface roughness, friction forces and apparent stick-slip effects are measured without and with ultrasonic vibrations at three different sliding velocities. SEM imaging and 3D profilometry are used to characterize the wear surfaces and guide model development. Over the range of speeds considered, ultrasonic vibrations reduce the effective friction force up to 62% along with a wear reduction of up to 49%. A simple cube model previously developed to quantify friction force reduction is implemented which describes wear reduction within 15% of the experimental data. (paper)

  2. Intercomparison of principal hydrometric instruments; Third phase, Evaluation of ultrasonic velocity meters for flow measurement in streams, canals, and estuaries

    Science.gov (United States)

    Melching, Charles S.; Meno, Michael W.

    1998-01-01

    As part of the World Meteorological Organization (WMO) project Intercomparison of Principal Hydrometric Instruments, Third Phase, a questionnaire was prepared by the U.S. Geological Survey (USGS) on the application of Ultrasonic Velocity Meters (UVM's) for flowmeasurement in streams, canals, and estuaries. In 1996, this questionnaire was distributed internationally by the WMO and USGS, and distributed within the United States by the USGS. Completed questionnaires were returned by 26 agencies in 7 countries (Canada, France, Germany, The Netherlands, Switzerland, the United Kingdom, and the United States). The completed questionnaires described geometric and streamflow conditions, system configurations, and reasons for applying UVM systems for 260 sites, thus providing information on the applicability of UVM systems throughout the world. The completed questionnaires also provided information on operational issues such as (1) methods used to determine and verify UVM ratings, (2) methods used to determine the mean flow velocity for UVM systems, (3) operational reliability of UVM systems, (4) methods to estimate missing data, (5) common problems with UVM systems and guidelines to mitigate these problems, and (6) personnel training issues. The completed questionnaires also described a few unique or novel applications of UVM systems. In addition to summarizing the completed questionnaires, this report includes a brief overview of UVM application and operation, and a short summary of current (1998) information from UVM system manufacturers regarding system cost and capabilities. On the basis of the information from the completed questionnaires and provided by the manufacturers, the general applicability of UVM systems is discussed. In the finalisation of this report the financial support provided by the US National Committee for Scientific Hydrology is gratefully acknowledged.

  3. functional outcome and quality of life after surgical management

    African Journals Online (AJOL)

    Objective: To determine the functional outcome and quality of life of acetabular ... Outcome measures: Modified Merle d'Aubigne scale and “Squat and Smile” test for functional outcome. ..... limited number of implants, few surgical instruments.

  4. Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators

    Science.gov (United States)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    A shape reminiscent of a dog bone has been found to be superior to other shapes for mechanical-amplification horns that are components of piezoelectrically driven actuators used in a series of related devices denoted generally as ultrasonic/sonic drill/corers (USDCs). The first of these devices was reported in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. The dog-bone shape was conceived especially for use in a more recent device in the series, denoted an ultrasonic/ sonic gopher, that was described in Ultrasonic/Sonic Mechanisms for Drilling and Coring (NPO-30291), NASA Tech Briefs, Vol. 27, No. 9 (September 2003), page 65. The figure shows an example of a dog-bone-shaped horn and other components of an ultrasonic gopher. Prerequisite to a meaningful description of this development is an unavoidably lengthy recapitulation of the principle of operation of a USDC and, more specifically, of the ultrasonic/sonic gopher as described previously in NASA Tech Briefs. The ultrasonic actuator includes a stack of piezoelectric rings, the horn, a metal backing, and a bolt that connects the aforementioned parts and provides compressive pre-strain to the piezoelectric stack to prevent breakage of the rings during extension. The stack of piezoelectric rings is excited at the resonance frequency of the overall ultrasonic actuator. Through mechanical amplification by the horn, the displacement in the ultrasonic vibration reaches tens of microns at the tip of the horn. The horn hammers an object that is denoted the free mass because it is free to move longitudinally over a limited distance between hard stops: The free mass bounces back and forth between the ultrasonic horn and a tool bit (a drill bit or a corer). Because the longitudinal speed of the free mass is smaller than the longitudinal speed of vibration of the tip of the horn, contact between the free mass and the horn tip usually occurs at a

  5. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  7. The effect of music on robot-assisted laparoscopic surgical performance.

    Science.gov (United States)

    Siu, Ka-Chun; Suh, Irene H; Mukherjee, Mukul; Oleynikov, Dmitry; Stergiou, Nick

    2010-12-01

    Music is often played in the operating room to increase the surgeon's concentration and to mask noise. It could have a beneficial effect on surgical performance. Ten participants with limited experience with the da Vinci robotic surgical system were recruited to perform two surgical tasks: suture tying and mesh alignment when classical, jazz, hip-hop, and Jamaican music were presented. Kinematics of the instrument tips of the surgical robot and surface electromyography of the subjects were recorded. Results revealed that a significant music effect was found for both tasks with decreased time to task completion (P = .005) and total travel distance (P = .021) as well as reduced muscle activations ( P = .016) and increased median muscle frequency (P = .034). Subjects improved their performance significantly when they listened to either hip-hop or Jamaican music. In conclusion, music with high rhythmicity has a beneficial effect on robotic surgical performance. Musical environment may benefit surgical training and make acquisition of surgical skills more efficient.

  8. Correlación entre la localización del lente intraocular, según biomicroscopia ultrasónica,y diferentes parámetros quirúrgicos en pacientes operados de catarata Correlation between the location of the intraocular lens according to ultrasonic biomicroscopy and several surgical parameters in patients operated from cataract

    Directory of Open Access Journals (Sweden)

    Eneida de la C Pérez Candelaria

    2010-01-01

    Full Text Available OBJETIVO: Determinar la correlación entre la localización del lente intraocular en cámara posterior por biomicroscopia ultrasónica, diferentes parámetros quirúrgicos en pacientes operados de catarata. MÉTODOS: Se realizó un estudio descriptivo, prospectivo y transversal en el Instituto Cubano de Oftalmología «Ramón Pando Ferrer», durante el período de enero a junio del 2007. Se estudiaron variables como: edad, sexo, etiología de la catarata, técnica quirúrgica, localización del lente intraocular según biomicroscopia ultrasónica, así como complicaciones transoperatorias y posoperatorias. RESULTADOS: El 79 % de todos los pacientes operados tenían entre 60 y 79 años de edad y algo más de la mitad correspondió al sexo femenino con un 59 %. La catarata senil fue la etiología que predominó con un 74 % y en el 68 % de los casos el lente se localizó por biomicroscopia ultrasónica en el saco capsular. En los ojos donde el lente intraocular se localizó fuera del saco, la proporción de complicaciones transoperatorias y posoperatorias fueron significativamente mayoritarias, mientras que en los ojos donde el lente intraocular se encontraba en el saco, la mayoría no presentó complicaciones transoperatorias ni posoperatorias. CONCLUSIONES: Las diferencias entre las distintas localizaciones del lente intraocular se encontraron con significación estadística en el tipo de catarata, la presencia de complicaciones transoperatorias y posoperatorias, sin embargo, no se encontró relación estadística significativa entre la localización del lente intraocular con la técnica quirúrgica utilizada.OBJECTIVE: To determine the correlation between the location of the intraocular lens in the posterior chamber using ultrasonic biomicroscopy and the different surgical parameters in patients operated from cataract. METHODS: A prospective, descriptive and cross-sectional study was carried out in "Ramón Pando Ferrer" Cuban Institute of

  9. Development of phased-array ultrasonic testing probe

    International Nuclear Information System (INIS)

    Kawanami, Seiichi; Kurokawa, Masaaki; Taniguchi, Masaru; Tada, Yoshihisa

    2001-01-01

    Phased-array ultrasonic testing was developed for nondestructive evaluation of power plants. Phased-array UT scans and focuses an ultrasonic beam to inspect areas difficult to inspect by conventional UT. We developed a highly sensitive piezoelectric composite, and designed optimized phased-array UT probes. We are applying our phased-array UT to different areas of power plants. (author)

  10. Automated ultrasonic testing--capabilities, limitations and methods

    International Nuclear Information System (INIS)

    Beller, L.S.; Mikesell, C.R.

    1977-01-01

    The requirements for precision and reproducibility of ultrasonic testing during inservice inspection of nuclear reactors are both quantitatively and qualitatively more severe than most current practice in the field can provide. An automated ultrasonic testing (AUT) system, which provides a significant advancement in field examination capabilities, is described. Properties of the system, its application, and typical results are discussed

  11. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  12. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    Science.gov (United States)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  13. A combined ultrasonic flow meter and binary vapour mixture analyzer for the ATLAS silicon tracker

    CERN Document Server

    Bates, R; Berry, S; Berthoud, J; Bitadze, A; Bonneau, P; Botelho-Direito, J; Bousson, N; Boyd, G; Bozza, G; Da Riva, E; Degeorge, C; DiGirolamo, B; Doubek, M; Giugni, D; Godlewski, J; Hallewell, G; Katunin, S; Lombard, D; Mathieu, M; McMahon, S; Nagai, K; Perez-Rodriguez, E; Rossi, C; Rozanov, A; Vacek, V; Vitek, M; Zwalinski, L

    2013-01-01

    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) evaporative coolant to a blend containing 10-25% of C2F6 (hexafluoro-ethane). Such a change will reduce the evaporation temperature to assure thermal stability following radiation damage accumulated at full LHC luminosity. Central to this upgrade is a new ultrasonic instrument in which sound transit times are continuously measured in opposite directions in flowing gas at known temperature and pressure to deduce the C3F8/C2F6 flow rate and mixture composition. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. Several geometries for the instrument are in use or under evaluation. An instrument with a pinched axial geometry intended for analysis and measurement of moderate flow rates has demonstrated a mixture resolution of 3.10-3 for C3F8/C2F6 molar mixtures with 20%C2F6, and a flow resolution of 2% of full scale for mass flows up to 30gs-...

  14. Actively adjustable step-type ultrasonic horns in longitudinal vibration

    Science.gov (United States)

    Lin, Shuyu; Guo, Hao; Xu, Jie

    2018-04-01

    Actively adjustable longitudinal step-type ultrasonic horns are proposed and studied. The horn is composed of a traditional ultrasonic horn and piezoelectric material. In practical applications, this kind of step-type ultrasonic horn is mechanically excited by an ultrasonic transducer and the piezoelectric material is connected to an adjustable electric impedance. In this research, the effects of the electric impedance and of the location of the piezoelectric material on the performance of the horn are studied. It is shown that when the electric resistance is increased, the resonance frequency of the horn is increased; the displacement magnification is increased when the piezoelectric material is located in the large end and decreased when the piezoelectric material is located in the small end of the horn. The displacement magnification for the piezoelectric material in the large end is larger than that for the piezoelectric material in the small end of the horn. Some step-type ultrasonic horns are designed and manufactured; the resonance frequency and the displacement magnification are measured by means of POLYTEC Laser Scanning vibrometer. It is shown that the theoretical resonance frequency and the displacement magnification are in good agreement with the measured results. It is concluded that by means of the insertion of the piezoelectric material in the longitudinal horn, the horn performance can be adjusted by changing the electric impedance and the location of the piezoelectric material in the horn. It is expected that this kind of adjustable ultrasonic horns can be used in traditional and potential ultrasonic technologies where the vibrational performance adjustment is needed.

  15. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  16. Removal of simulated biofilm: a preclinical ergonomic comparison of instruments and operators.

    Science.gov (United States)

    Graetz, Christian; Plaumann, Anna; Rauschenbach, Sebastian; Bielfeldt, Jule; Dörfer, Christof E; Schwendicke, Falk

    2016-07-01

    Periodontal scaling might cause musculoskeletal disorders, and scaling instruments might not only have different effectiveness and efficiency but also differ in their ergonomic properties. The present study assessed ergonomic working patterns of experienced (EO) and less experienced operators (LO) when using hand and powered devices for periodontal scaling and root planning. In an experimental study using periodontally affected manikins, sonic (AIR), ultrasonic (TIG) and hand instruments (GRA) were used by 11 operators (7 EO/4 LO) during simulated supportive periodontal therapy. Using an electronic motion monitoring system, we objectively assessed the working frequency and positioning of hand, neck and head. Operators' subjective evaluation of the instruments was recorded using a questionnaire. Hand instruments were used with the lowest frequency (2.57 ± 1.08 s(-1)) but greatest wrist deviation (59.57 ± 53.94°). EO used instruments more specifically than LO, and generally worked more ergonomically, with less inclination of head and neck in both the frontal and sagittal planes, especially when using hand instruments. All groups found hand instruments more tiring and difficult to use than powered instruments. Regardless of operators' experience, powered instruments were used more ergonomically and were subjectively preferred compared to hand instruments. The use of hand instruments has potential ergonomic disadvantages. However, with increasing experience, operators are able to recognise and mitigate possible risks.

  17. Ultrasonic testing using time of flight diffraction technique (TOFD)

    International Nuclear Information System (INIS)

    Khurram Shahzad; Ahmad Mirza Safeer Ahmad; Muhammad Asif Khan

    2009-04-01

    This paper describes the ultrasonic testing using Time Flight Diffraction (TOFD) Technique for welded samples having different types and sizes of defects. TOFD is a computerized ultrasonic system, able to scan, store and evaluate indications in terms of location, through thickness and length in a more easy and convenient. Time of Flight Diffraction Technique (TOFD) is more fast and easy technique for ultrasonic testing as we can examine a weld i a single scan along the length of the weld with two probes known as D-scan. It shows the image of the complete weld with the defect information. The examinations were performed on carbon steel samples used for ultrasonic testing using 70 degree probes. The images for different type of defects were obtained. (author)

  18. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  19. Ultrasonic Generation and Optimization for EMAT

    International Nuclear Information System (INIS)

    Jian, X.; Dixon, Steve; Edwards, Rachel S.

    2005-01-01

    A model for transient ultrasonic wave generation by EMATs in non-magnetic metals is presented. It combines analytical solutions currently available and FEM to calculate ultrasonic bulk and Rayleigh waves generated by the EMAT. Analytical solutions are used as they can be calculated quickly on a standard mathematical computer package. Calculations agree well with the experimental measurement. The model can be used to optimize EMAT design, and has explained some of the results from our previous published measurements

  20. Longitudinal ultrasonic waves dispersion in bars

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    The exhibition intends to review some aspects of the propagation of the longitudinal ultrasonic pulses shortly in bars of traverse section uniform.Aspects they are part of the denominated geometric dispersion of the pulses.This phenomenon It can present like an additional complication in the ultrasonic essay of low frequency of thin pieces in structures and machines but takes place former ex professed in some applications of the wave guides been accustomed to in the prosecution of signs

  1. Ultrasonic hot powder compaction of Ti-6Al-4V.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-07-01

    Power ultrasonic has been recently employed in a wide variety of manufacturing processes among which ultrasonic assisted powder compaction is a promising powder materials processing technique with significant industrial applications. The products manufactured by the powder metallurgy commonly consist of residual porosities, material impurities, structural non-homogeneities and residual stress. In this paper, it is aimed to apply power ultrasonic to the hot consolidation process of Ti-6Al-4V titanium alloy powder in order to improve mechanical properties. To do this, the effects of ultrasonic power and process temperature and pressure were considered and then deeply studied through a series of experiments. It was shown that the addition of ultrasonic vibration leads to a significant improvement in the consolidation performance and the mechanical strength of the fabricated specimens. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Detecting accuracy of flaws by manual and automatic ultrasonic inspections

    International Nuclear Information System (INIS)

    Iida, K.

    1988-01-01

    As the final stage work in the nine year project on proving tests of the ultrasonic inspection technique applied to the ISI of LWR plants, automatic ultrasonic inspection tests were carried out on EDM notches, surface fatigue cracks, weld defects and stress corrosion cracks, which were deliberately introduced in full size structural components simulating a 1,100 MWe BWR. Investigated items are the performance of a newly assembled automatic inspection apparatus, detection limit of flaws, detection resolution of adjacent collinear or parallel EDM notches, detection reproducibility and detection accuracy. The manual ultrasonic inspection of the same flaws as inspected by the automatic ultrasonic inspection was also carried out in order to have comparative data. This paper reports how it was confirmed that the automatic ultrasonic inspection is much superior to the manual inspection in the flaw detection rate and in the detection reproducibility

  3. A Miniature Probe for Ultrasonic Penetration of a Single Cell

    Directory of Open Access Journals (Sweden)

    Mingfei Xiao

    2009-05-01

    Full Text Available Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

  4. A study on the development of a real-time intelligent system for ultrasonic flaw classification

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun; Lee, Seung Seok

    1998-01-01

    In spite of significant progress in research on ultrasonic pattern recognition it is not widely used in many practical field inspection in weldments. For the convenience of field application of this methodology, following four key issues have to be suitably addressed; 1) a software where the ultrasonic pattern recognition algorithm is efficiently implemented, 2) a real-time ultrasonic testing system which can capture the digitized ultrasonic flaw signal so the pattern recognition software can be applied in a real-time fashion, 3) database of ultrasonic flaw signals in weldments, which is served as a foundation of the ultrasonic pattern recognition algorithm, and finally, 4) ultrasonic features which should be invariant to operational variables of the ultrasonic test system. Presented here is the recent progress in the development of a real-time ultrasonic flaw classification by the novel combination of followings; an intelligent software for ultrasonic flaw classification in weldments, a computer-base real-time ultrasonic nondestructive evaluation system, database of ultrasonic flaw signals, and invariant ultrasonic features called 'normalized features.'

  5. Research of the ultrasonic testing parts reconditioned by welding

    Directory of Open Access Journals (Sweden)

    C. Petriceanu

    2016-07-01

    Full Text Available The paper presents the results obtained following the nondestructive ultrasonic testing of crankpin shaft of a crankshaft that were reconditioned by welding. After the ultrasonic testing, the reconditioned samples were cut and subjected to visual testing and microstructure examination. When the results obtained following the nondestructive tests were analyzed, it was observed that the ultrasonic nondestructive testing method is an efficient way to determine the conformity of the areas that were reconditioned by welding.

  6. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir; El Sayed, Tamer

    2012-01-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects

  7. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  8. Ultrasonic imaging of material flaws exploiting multipath information

    Science.gov (United States)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  9. Analysis of ultrasonic techniques for the characterization of microfiltration polymeric membranes

    International Nuclear Information System (INIS)

    Lucas, Carla S.; Baroni, Douglas B.; Costa, Antonio M.L.M.; Bittencourt, Marcelo S.Q.

    2009-01-01

    The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain. (author)

  10. Nondestructive evaluation of a cermet coating using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Roge, B.; Fahr, A.; Giguere, J.S.R.; McRae, K.I.

    2002-01-01

    This paper describes a series of experiments conducted to characterize cermet coatings using conventional ultrasonic and eddy current techniques as well as an ultrasonic leaky surface wave method. The results demonstrate the ability of these techniques to detect the presence of artificial defects on the surface or beneath the surface of the coating. In addition, ultrasonic tests in particular ultrasonic leaky surface waves demonstrate the ability to detect the presence of manufacturing flaws. Ultrasonic time-of-flight and eddy current quadrature measurements also show sensitivity to variations in coating thickness

  11. Consistency of performance of robot-assisted surgical tasks in virtual reality.

    Science.gov (United States)

    Suh, I H; Siu, K-C; Mukherjee, M; Monk, E; Oleynikov, D; Stergiou, N

    2009-01-01

    The purpose of this study was to investigate consistency of performance of robot-assisted surgical tasks in a virtual reality environment. Eight subjects performed two surgical tasks, bimanual carrying and needle passing, with both the da Vinci surgical robot and a virtual reality equivalent environment. Nonlinear analysis was utilized to evaluate consistency of performance by calculating the regularity and the amount of divergence in the movement trajectories of the surgical instrument tips. Our results revealed that movement patterns for both training tasks were statistically similar between the two environments. Consistency of performance as measured by nonlinear analysis could be an appropriate methodology to evaluate the complexity of the training tasks between actual and virtual environments and assist in developing better surgical training programs.

  12. Reproducibility of the results in ultrasonic testing

    International Nuclear Information System (INIS)

    Chalaye, M.; Launay, J.P.; Thomas, A.

    1980-12-01

    This memorandum reports on the conclusions of the tests carried out in order to evaluate the reproducibility of ultrasonic tests made on welded joints. FRAMATOME have started a study to assess the dispersion of results afforded by the test line and to characterize its behaviour. The tests covered sensors and ultrasonic generators said to be identical to each other (same commercial batch) [fr

  13. Inspection of austenitic welds with ultrasonic phased array technology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F. [Tecnatom (Spain); Dutruc, R.; Ferriere, R. [Metalscan (France)

    2011-07-01

    This series of slides presents the use of ultrasonic phased array technology in the inspection of austenitic welds. The inspection from outside surface (the inspection is performed in contact using wedges to couple the probe to the outer surface of the component) shows that longitudinal wave is the most adequate for perpendicular scans and transversal ultrasonic wave is the most adequate for parallel scans. Detection and length sizing are performed optimally in perpendicular scans. The inspection from inside surface shows: -) Good results in the detection of defects (Sizing has met the requirements imposed by the Authority of the Russian Federation); -) The new design of the mechanical equipment and of the numerous ultrasonic beams refracted by the array probes has increased the volume inspected. The design of the mechanical equipment has also allowed new areas to be inspected (example a piping weld that was not accessible from the outer surface; -) The ultrasonic procedure and Inspection System developed have been validated by the Authority of the Russian Federation. Phase array technique supplies solutions to solve accessibility concerns and improve the ultrasonic inspections of nuclear components

  14. Clinical Performance of Emergency Surgical Officers in Southern ...

    African Journals Online (AJOL)

    GB

    The proportion of cesarean and instrumental deliveries over the total deliveries were 13% and 0.7%, respectively. Explorative laparotomies and appendectomies were the majority of the non-obstetric emergency operations. Interviewed staff in the respective hospitals stated that ESOs' clinical decision making, surgical skill ...

  15. Transoral endoscopic thyroidectomy vestibular approach (TOETVA) for Graves' disease: a comparison of surgical results with open thyroidectomy.

    Science.gov (United States)

    Jitpratoom, Pornpeera; Ketwong, Khwannara; Sasanakietkul, Thanyawat; Anuwong, Angkoon

    2016-12-01

    Transoral endoscopic thyroidectomy vestibular approach (TOETVA) provides excellent cosmetic results from its potential for scar-free operation. The procedure has been applied successfully for Graves' disease by the authors of this work and compared with the standard open cervical approach to evaluate its safety and outcomes. From January 2014 to November 2016, a total of 97 patients with Graves' disease were reviewed retrospectively. Open thyroidectomy (OT) and TOETVA were performed in 49 patients and 46 patients, respectively. For TOETVA, a three-port technique through the oral vestibule was utilized. The thyroidectomy was done endoscopically using conventional laparoscopic instruments and an ultrasonic device. Patient demographics and surgical variables, including operative time, blood loss, and complications, were investigated and compared. TOETVA was performed successfully in all 45 patients, although conversion to open surgery was deemed necessary in one patient. All patient characteristics for both groups were similar. Operative time was shorter for the OT group compared to the TOETVA group, which totaled 101.97±24.618 and 134.11±31.48 minutes, respectively (PGraves' disease in comparison to the standard open cervical approach. It is considered a viable alternative for patients who have been indicated for surgery with excellent cosmetic results.

  16. Ultrasonic testing X gammagraphy

    International Nuclear Information System (INIS)

    Mello Campos, A.M. de

    1989-01-01

    The experience of 10 years for substituting gammagraphy tests by ultrasonic tests is related. A comparative evaluation of data obtained from both techniques applied to welded butt joints is presented. (author)

  17. Study of Individual Characteristic Abdominal Wall Thickness Based on Magnetic Anchored Surgical Instruments

    Directory of Open Access Journals (Sweden)

    Ding-Hui Dong

    2015-01-01

    Full Text Available Background: Magnetic anchored surgical instruments (MASI, relying on magnetic force, can break through the limitations of the single port approach in dexterity. Individual characteristic abdominal wall thickness (ICAWT deeply influences magnetic force that determines the safety of MASI. The purpose of this study was to research the abdominal wall characteristics in MASI applied environment to find ICAWT, and then construct an artful method to predict ICAWT, resulting in better safety and feasibility for MASI. Methods: For MASI, ICAWT is referred to the thickness of thickest point in the applied environment. We determined ICAWT through finding the thickest point in computed tomography scans. We also investigated the traits of abdominal wall thickness to discover the factor that can be used to predict ICAWT. Results: Abdominal wall at C point in the middle third lumbar vertebra plane (L3 is the thickest during chosen points. Fat layer thickness plays a more important role in abdominal wall thickness than muscle layer thickness. "BMI-ICAWT" curve was obtained based on abdominal wall thickness of C point in L3 plane, and the expression was as follow: f(x = P1 × x 2 + P2 × x + P3, where P1 = 0.03916 (0.01776, 0.06056, P2 = 1.098 (0.03197, 2.164, P3 = −18.52 (−31.64, −5.412, R-square: 0.99. Conclusions: Abdominal wall thickness of C point at L3 could be regarded as ICAWT. BMI could be a reliable predictor of ICAWT. In the light of "BMI-ICAWT" curve, we may conveniently predict ICAWT by BMI, resulting a better safety and feasibility for MASI.

  18. Building a framework for ergonomic research on laparoscopic instrument handles.

    Science.gov (United States)

    Li, Zheng; Wang, Guohui; Tan, Juan; Sun, Xulong; Lin, Hao; Zhu, Shaihong

    2016-06-01

    Laparoscopic surgery carries the advantage of minimal invasiveness, but ergonomic design of the instruments used has progressed slowly. Previous studies have demonstrated that the handle of laparoscopic instruments is vital for both surgical performance and surgeon's health. This review provides an overview of the sub-discipline of handle ergonomics, including an evaluation framework, objective and subjective assessment systems, data collection and statistical analyses. Furthermore, a framework for ergonomic research on laparoscopic instrument handles is proposed to standardize work on instrument design. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Ultrasonic texture characterization of aluminum, zirconium and titanium alloys

    International Nuclear Information System (INIS)

    Anderson, A.J.

    1997-01-01

    This work attempts to show the feasibility of nondestructive characterization of non-ferrous alloys. Aluminum alloys have a small single crystal anisotropy which requires very precise ultrasonic velocity measurements for derivation of orientation distribution coefficients (ODCs); the precision in the ultrasonic velocity measurement required for aluminum alloys is much greater than is necessary for iron alloys or other alloys with a large single crystal anisotropy. To provide greater precision, some signal processing corrections need to be applied to account for the inherent, half-bandwidth offset in triggered pulses when using a zero-crossing technique for determining ultrasonic velocity. In addition, alloys with small single crystal anisotropy show a larger dependence on the single crystal elastic constants (SCECs) when predicting ODCs which require absolute velocity measurements. Attempts were made to independently determine these elastics constants in an effort to improve correlation between ultrasonically derived ODCs and diffraction derived ODCs. The greater precision required to accurately derive ODCs in aluminum alloys using ultrasonic nondestructive techniques is easily attainable. Ultrasonically derived ODCs show good correlation with derivations made by Bragg diffraction techniques, both neutron and X-ray. The best correlation was shown when relative velocity measurements could be used in the derivations of the ODCs. Calculation of ODCs in materials with hexagonal crystallites can also be done. Because of the crystallite symmetries, more information can be extracted using ultrasonic techniques, but at a cost of requiring more physical measurements. Some industries which use materials with hexagonal crystallites, e.g. zirconium alloys and titanium, have traditionally used texture parameters which provide some specialized measure of the texture. These texture parameters, called Kearns factors, can be directly related to ODCs

  20. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    International Nuclear Information System (INIS)

    Shoupeng, Song; Zhou, Jiang

    2017-01-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry. (paper)

  1. High-power ultrasonic processing: Recent developments and prospective advances

    Science.gov (United States)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  2. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    International Nuclear Information System (INIS)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-01-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures. (paper)

  3. Fundamentals and Applications of Ultrasonic Waves

    CERN Document Server

    Cheeke, J David N

    2012-01-01

    Designed specifically for newcomers to the field, this fully updated second edition begins with fundamentals and quickly advances beyond general wave concepts into an in-depth treatment of ultrasonic waves in isotropic media. Focusing on the physics of acoustic waves, their propagation, technology, and applications, this accessible overview of ultrasonics includes accounts of viscoelasticity and multiple scattering. It examines new technologies, including atomic force acoustic microscopy, lasers, micro-acoustics, and nanotechnology. In addition, it highlights both direct and indirect applicati

  4. The ultrasonic shop map and its use in preservice inspection

    International Nuclear Information System (INIS)

    Caplan, J.S.

    1975-01-01

    Prior to the introduction of Section X1 of the ASME Code on Inservice Inspection, a plan was introduced by Westinghouse to perform ultrasonic examinations of areas of high stress and high fluence of reactor pressure vessels in the manufacturer's shop and subsequent to the shop hydrostatic test. The tests provided a shop reference map of ultrasonic responses to use in subsequent preservice and inservice inspections, and attempted to locate any ultrasonic reflections beyond the acceptance standards of ASME Section III and, later, of Section X1. The history of the program is reviewed. Thirty-six vessels were examined during 1970 to 1973. As a result of indications discovered during ultrasonic examination repairs were carried out on five of these. Details are given of inspections and repairs. A summary is also given of the indications detected and of the correlations between the ultrasonic evaluation and actual flow characteristics. (U.K.)

  5. An intelligent software approach to ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress on this methodology, it has not been widely used in practical ultrasonic inspection of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments using various tools in artificial intelligence such as neural networks. This software shows excellent performances in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks.

  6. Ultrasonic testing device having an adjustable water column

    Science.gov (United States)

    Roach, Dennis P.; Neidigk, Stephen O.; Rackow, Kirk A.; Duvall, Randy L.

    2015-09-01

    An ultrasonic testing device having a variable fluid column height is disclosed. An operator is able to adjust the fluid column height in real time during an inspection to to produce optimum ultrasonic focus and separate extraneous, unwanted UT signals from those stemming from the area of interest.

  7. Metrological control of instruments, equipment and measurement system for ultrasonic meters of flow; Controle metrologico de instrumentos, equipamentos e sistema de medicao para medidores ultra-sonicos de vazao

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Oscar de

    2004-07-01

    Following the actual tendency to obtaining greater precision in Natural Gas measurement, in the past few years the use of Ultrasonic Flow Meters as Custody Transfer applications has grown significantly. There are several units currently operating in Brazil. The legislation for model approval, measure system certification and periodical metrological control of the above mentioned equipment, is currently under elaboration final stage. It was placed under public inquire through the 'Portaria 037' of 2004 of INMETRO, which proposes the authorization to perform the Metrological control by the Operator, once it has a quality system implemented according NBR ISO 9001-2000 and/or ISO 17025. This paper describes the verification procedure adopted by most of ultrasonic meters manufacturers. It also describes the application of the procedure for create the 'Metrological Control System of the Measurement System' of a 12'' Ultrasonic Meter installed and operating, with 3 years operation's data. (author)

  8. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  9. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Gynecomastia associated with herniated nipples: an optimal surgical approach.

    Science.gov (United States)

    Jaiswal, Rohit; Pu, Lee L Q

    2012-04-01

    Gynecomastia is a common disorder observed in male plastic surgery patients. Treatment options may include observation, surgical excision, or liposuction techniques. Congenital herniated nipple is a more rare condition, especially in male patients. We present the case of a 12-year-old boy with bilateral gynecomastia and herniated nipple-areolar complexes. A staged repair was undertaken in this patient with grade 2 gynecomastia. The first operation was ultrasonic liposuction bilaterally, yielding 200 mL of aspirate from the left and 400 mL on the right, to correct the gynecomastia. The second procedure, performed 6 months later, was a bilateral periareolar mastopexy to repair the herniated nipple-areolar complexes. The result of the first procedure was flattened and symmetrical breast tissue bilaterally, essentially a correction of the gynecomastia. The herniated nipples were still present, however. Bilateral periareolar mastopexies were then performed with resulting reduction of the herniations. There were no complications with either procedure, and a good cosmetic result was achieved. A staged surgical approach was successful in correcting both conditions with an excellent aesthetic result and the advantage of decreased risk for nipple complications.

  11. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    International Nuclear Information System (INIS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-01-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until –10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method. (paper)

  12. Review of emerging surgical robotic technology.

    Science.gov (United States)

    Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry

    2018-04-01

    The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.

  13. Ultrasonic leak detection

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1977-01-01

    A scanning ultrasonic microphone was used to detect the presence and locate the sources of hydraulic noises in piping systems in a reactor environment. The intensity changes of the noises correspond to changes of flow conditions within the system caused by throttled valves, flow rate changes, and leaks. (author)

  14. System of acquisition and analysis of ultrasonic data

    International Nuclear Information System (INIS)

    Vaubert, Y.; Birac, A.M.; Saglio, R.

    1982-08-01

    An original system of acquisition and analysis of ultrasonic data collected during examinations named STADUS-PRODUS has been developed by C.E.A. in Saclay. First developed for the needs of in-service inspection of PWR vessels, it is now used for the different automatic ultrasonic controls with various tools

  15. Study the Possibility of Using an Elastomeric Blend as a Plastic Interfacial media in Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Auda Jabbar Braihi

    2017-03-01

    Full Text Available This work tries to study the using of bromobutyle / butyle elasomeric blends in ultrasonic transducers as a dry plastic interfacial media to inspect porous materials such as concrete and refractory materials which can absorb liquid medias , through the study of acoustic impedance characteristics at interfaces . These characteristics include acoustic impedance , the percentage of energy reflected, dB loss, Power ratios expressions , and Pressure ratios expressions (Reflection Coefficient & Transmission Coefficient . They are studied by using ultrasonic instrument named CSI (type CCT- 4 with 26 KHz frequency . Also, this research try to specify the suitable bromobutyle / butyle blend for immersion inspect through the matching between the acoustic impedance of the blend and that of water. Samples preparation achieved in Babylon Tiers Factory. Results showed that by increasing bromobutyle ratio in the blend both reflection coefficient and the percentage of energy reflected increased while acoustic impedance and Transmission Coefficient have been decreased. Also, the results show that 20 bromobutyle / 80 butyle is the suitable blend for immersion tests.

  16. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    Science.gov (United States)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  17. Ultrasonically enhanced disintegration. Polymers, sludge, and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Groenroos, A.

    2010-05-15

    There are a great variety of potential applications of high-intensity ultrasonic energy. Of these, cleaning, plastic pounding, and at present also sludge disintegration and the remediation of contaminated soil are probably the best known and offer the most general market for high-intensity ultrasonics. All developments within the area of ultrasound applications lead to the creation of environmentally friendly processes and compounds, emphasizing the role of ultrasound in 'green chemistry'. Ultrasound technology is considered not easy to use in industrial processes, since devices providing high sonic energy are not easy to construct. This thesis investigates on a semi-pilot scale if it is possible to enhance the disintegration of three quite different samples: polymers, sludge, and contaminated soil by using ultrasound. The results indicate that it is possible to enhance the disintegration of polymers by means of ultrasonic power only when the cavitation threshold is exceeded. Above the cavitation threshold, the most extensive degradation took place at the lowest ultrasonic frequency used. The biggest decrease (from 115,000 g/mol to 30,000 g/mol) in relative molecular mass (RMM) was observed when the concentration of polyvinyl alcohol (PVA) was the lowest (1.0%). However, in the case of carboxymethylcellulose (CMC) it was observed that when viscosity was not adjusted there is an optimum polymer concentration (1.5-2.0%) where degradation is most efficient. The thesis shows that the extent of ultrasonic depolymerization decreases with decreasing molecular mass of the CMC polymer. The study also reveals that ultrasonic irradiation causes narrowing of the molecular mass distribution. The degradation of CMC polymer proceeded linearly and the rate of ultrasonic depolymerization decreased with decreasing molecular mass. In cases where the initial dynamic viscosities of polymer solutions were not the same, the sonolytic degradation of CMC polymer mainly depended

  18. Absorption and dispersion of ultrasonic waves

    CERN Document Server

    Herzfeld, Karl F; Massey, H S W; Brueckner, Keith A

    1959-01-01

    Absorption and Dispersion of Ultrasonic Waves focuses on the influence of ultrasonics on molecular processes in liquids and gases, including hydrodynamics, energy exchange, and chemical reactions. The book first offers information on the Stokes-Navier equations of hydrodynamics, as well as equations of motion, viscosity, formal introduction of volume viscosity, and linearized wave equation for a nonviscous fluid. The manuscript then ponders on energy exchange between internal and external degrees of freedom as relaxation phenomenon; effect of slow energy exchange on sound propagation; differe

  19. A capacitive ultrasonic transducer based on parametric resonance.

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  20. Signal analysis approach to ultrasonic evaluation of diffusion bond quality

    International Nuclear Information System (INIS)

    Thomas, Graham; Chinn, Diane

    1999-01-01

    Solid state bonds like the diffusion bond are attractive techniques for joining dissimilar materials since they are not prone to the defects that occur with fusion welding. Ultrasonic methods can detect the presence of totally unbonded regions but have difficulty sensing poor bonded areas where the substrates are in intimate contact. Standard ultrasonic imaging is based on amplitude changes in the signal reflected from the bond interface. Unfortunately, amplitude alone is not sensitive to bond quality. We demonstrated that there is additional information in the ultrasonic signal that correlates with bond quality. In our approach, we interrogated a set of dissimilar diffusion bonded samples with broad band ultrasonic signals. The signals were digitally processed and the characteristics of the signals that corresponded to bond quality were determined. These characteristics or features were processed with pattern recognition algorithms to produce predictions of bond quality. The predicted bond quality was then compared with the destructive measurement to assess the classification capability of the ultrasonic technique

  1. Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device.

    Science.gov (United States)

    Hahn, Paul; Carrasco-Zevallos, Oscar; Cunefare, David; Migacz, Justin; Farsiu, Sina; Izatt, Joseph A; Toth, Cynthia A

    2015-07-01

    To characterize the first in-human intraoperative imaging using a custom prototype spectral-domain microscope-integrated optical coherence tomography (MIOCT) device during vitreoretinal surgery with instruments in the eye. Under institutional review board approval for a prospective intraoperative study, MIOCT images were obtained at surgical pauses with instruments held static in the vitreous cavity and then concurrently with surgical maneuvers. Postoperatively, MIOCT images obtained at surgical pauses were compared with images obtained with a high-resolution handheld spectral-domain OCT (HHOCT) system with objective endpoints, including acquisition of images acceptable for analysis and identification of predefined macular morphologic or pathologic features. Human MIOCT images were successfully obtained before incision and during pauses in surgical maneuvers. MIOCT imaging confirmed preoperative diagnoses, such as epiretinal membrane, full-thickness macular hole, and vitreomacular traction and demonstrated successful achievement of surgical goals. MIOCT and HHOCT images obtained at surgical pauses in two cohorts of five patients were comparable with greater than or equal to 80% correlation in 80% of patients. Real-time video-imaging concurrent with surgical manipulations enabled, for the first time using this device, visualization of dynamic instrument-retina interaction with targeted OCT tracking. MIOCT is successful for imaging at surgical pauses and for real-time image guidance with implementation of targeted OCT tracking. Even faster acquisition speeds are currently being developed with incorporation of a swept-source MIOCT engine. Further refinements and investigations will be directed toward continued integration for real-time volumetric imaging of surgical maneuvers. Ongoing development of seamless MIOCT systems will likely transform surgical visualization, approaches, and decision-making.

  2. Quality assurance of brazed copper plates through advanced ultrasonic NDE

    OpenAIRE

    Segreto, T.; Caggiano, A.; Teti, R.

    2016-01-01

    Ultrasonic non-destructive methods have demonstrated great potential for the detection of flaws in a material under examination. In particular, discontinuities produced by welding, brazing, and soldering are regularly inspected through ultrasonic techniques. In this paper, an advanced ultrasonic non-destructive evaluation technique is applied for the quality control of brazed copper cells in order to realize an accelerometer prototype for cancer proton therapy. The cells are composed of two h...

  3. Manufacturing technologies for ultrasonic transducers in a broad frequency range

    OpenAIRE

    Gebhardt, Sylvia; Hohlfeld, Kai; Günther, Paul; Neubert, Holger

    2018-01-01

    According to the application field, working frequency of ultrasonic transducers needs to be tailored to a certain value. Low frequency ultrasonic transducers with working frequencies of 1 kHz to 1 MHz are especially interesting for sonar applications, whereas high frequency ultrasonic transducers with working frequencies higher than 15 MHz are favorable for high-resolution imaging in biomedical and non-destructive evaluation. Conventional non-destructive testing devices and clinical ultrasoun...

  4. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis.

    Science.gov (United States)

    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Liu, Zheng; Zhang, Yupeng

    2015-01-01

    The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. The mean follow-up was 36.9 months (range: 24-62 months). The kyphotic angle ranged from 15.2-35.1° preoperatively, with an average measurement of 27.8°. The American Spinal Injury Association (ASIA) score system was used to evaluate the neurological deficits and erythrocyte sedimentation rate (ESR) used to judge the activity of TB. Spinal TB was completely cured in all 17 patients. There was no recurrent TB infection. The postoperative kyphotic angle was 6.6-10.2°, 8.1° in average, and there was no significant loss of the correction at final follow-up. Solid fusion was achieved in all cases. Neurological condition in all patients was improved after surgery. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation can be a feasible and effective method the in treatment of single-segment lumbar spinal TB.

  5. Microbiological evaluation of ultrasonic nebulization for disinfecting dental impressions.

    Science.gov (United States)

    Mendonca, Marcio Jose; Rafael, Renata Santos; Camilotti, Veridiana; Menolli, Rafael Andrade; Sicoli, Eliseu Augusto; Teixeira, Nancielli; Sinhoreti, Mario Alexandre Coelho

    2013-07-01

    Disinfecting dental impressions is necessary to decrease the risk of cross-contamination in dental offices. Ultrasonic nebulization has been mentioned as a microbicidal technique that can be used to disinfect contaminated dental impressions. This study compared the microbicidal effect of 2% glutaraldehyde and 0.2% peracetic acid for the disinfection of dental impressions made with vinyl polysiloxane, using 2 disinfection methods: immersion and ultrasonic nebulization. Bactericial efficacy was examined using Staphylococcus aureus and Bacillus atrophaeus as indicators. Thirty impressions were obtained and distributed randomly in 5 groups (n = 6). Group 1 was immersed in 2% glutaraldehyde immersion for 10 minutes, Group 2 was immersed in 0.2% peracetic acid for 10 minutes, Group 3 underwent ultrasonic nebulization for 10 minutes in 2% glutaraldehyde solution, Group 4 underwent ultrasonic nebulization for 10 minutes in 0.2% peracetic acid solution, and Group 5 was a control group that received no disinfectant. Both solutions experienced a 100% reduction in microorganisms following ultrasonic nebulization, as did peracetic acid following immersion; however, immersion in glutaraldehyde demonstrated lower values of reduction in B atrophaeus group, with a statistically significant difference compared with the other experimental groups.

  6. Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam

    Science.gov (United States)

    Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.

    2018-04-01

    The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.

  7. Development of automatic ultrasonic testing system and its application

    International Nuclear Information System (INIS)

    Oh, Sang Hong; Matsuura, Toshihiko; Iwata, Ryusuke; Nakagawa, Michio; Horikawa, Kohsuke; Kim, You Chul

    1997-01-01

    The radiographic testing (RT) has been usually applied to a nondestructive testing, which is carried out on purpose to detect internal defects at welded joints of a penstock. In the case that RT could not be applied to, the ultrasonic testing (UT) was performed. UT was generally carried out by manual scanning and the inspections data were recorded by the inspector in a site. So, as a weak point, there was no objective inspection records correspond to films of RT. It was expected that the automatic ultrasonic testing system by which automatic scanning and automatic recording are possible was developed. In this respect, the automatic ultrasonic testing system was developed. Using newly developed the automatic ultrasonic testing system, test results to the circumferential welded joints of the penstock at a site were shown in this paper.

  8. Measuring patient participation in surgical treatment decision-making from healthcare professionals' perspective.

    Science.gov (United States)

    Heggland, Liv-Helen; Mikkelsen, Aslaug; Øgaard, Torvald; Hausken, Kjell

    2014-02-01

    To develop, empirical test, and validate an instrument measuring patient participation in surgical treatment decision-making from healthcare professionals' perspective. Since the advent of New Public Management in many Western countries, patient participation in healthcare decision-making has been considered to be a best practice. A common notion is that well-educated and well-informed public want to choose their own treatments and providers and want to ask questions about the quality of their health services. Survey. A self-report-measuring instrument was designed and administered to 620 healthcare professionals. Items were developed, validated and tested by 451 nurses and physicians working in six surgical wards in a University Hospital in Norway. A 16-item scale with the following four dimensions was developed: information dissemination, formulation of options, integration of information and control. Factor analysis procedures and reliability testing were performed. A one-way, between-groups analysis of variance was conducted to compare doctors' and nurses' opinions on four dimensions of patient participation in surgical treatment decision-making. This article shows that patient participation in surgical treatment decision-making can be measured by a 16-item scale and four distinct dimensions. The analysis demonstrated a reasonable level of construct validity and reliability. Nurses and physicians have a positive attitude towards patient participation overall, but the two groups differ in the extent to which they accept the idea of patient participation in treatment decision-making. The instrument can be a tool for managers and healthcare professionals in the implementation of patient participation in clinical practice. Data from the instrument can be useful to identify health services being provided and what areas that could strengthen patient participation. © 2013 Blackwell Publishing Ltd.

  9. Study of ultrasonic imagine of spleen in patients with leukemia

    International Nuclear Information System (INIS)

    Zheng Hui; Zhou Chunyan; Jiang Ju; Luo Liying; Huang Yanhong

    2011-01-01

    To investigate spleen ultrasonic imagine in patients with leukemia and to provide basis information for preventing and treat disease,the spleens imaging of 158 patients with leukemia were detected by B mode ultrasonicgraphy and the data of clinical medical examination were analyzed.The results showed that the spleens' ultrasonic imagine of patients with leukemia were not related to the degree of anemia.The ultrasonic imagines of spleen in patients with chronic leukemia were different to the other kinds of leukemia.The ultrasonic imagine of spleens in leukemia patients are related to types and development of leukemia.The B-ultrasound screening should be used to help clinical diagnosis and treatment of patients with leukemia. (authors)

  10. Pre and post garter spring repositioning ultrasonic inspection of pressure tubes

    International Nuclear Information System (INIS)

    Desimone, C.; Katchadjian, P.; Tacchia, Mauricio

    1997-01-01

    This paper present a description of the ultrasonic cracked hydride blister detections system used for pre and post inspection of pressure tubes during garter spring repositioning in CNE (Embalse Nuclear Power Station). Ultrasonic system setup configuration, transducers characteristics, blister detection head, calibration of parameters, operating procedure, records of ultrasonic inspections and evaluation. (author) [es

  11. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  12. Evaluation of ultrasonic technique to characterize the concentration of boric acid in liquid medium

    International Nuclear Information System (INIS)

    Kohara, Richard Yuzo Ramida

    2015-01-01

    This dissertation is to analyze the viability of using ultrasonic technique to characterize the concentration of boric acid in liquid medium non-invasively, therefore, ultrasonic tests were performed relating different boric acid concentrations with the travel time of the ultrasonic wave, also were evaluated factors able to mask the characterization of these concentrations by ultrasonic technique. The results showed that the ultrasonic technique allows the characterization of boric acid concentrations in liquid medium in very simple terms by the ultrasonic wave travel time, requiring further studies in complex conditions. (author)

  13. Contribution of dynamic focusing to ultrasonic defect characterization

    International Nuclear Information System (INIS)

    Mahaut, S.

    1997-01-01

    Non destructive testing of vessels of pressurized water reactors uses ultrasonic focused transducers, with spherically shaped emitting surface or requiring an acoustic lens. But a mechanically focused transducer has to be used for a given inspection zone and for a fixed control configuration. The aim of this thesis is to improve ultrasonic defect characterization using adaptive dynamic focusing. Such a technique makes use of a ultrasonic defect characterization using adaptive dynamic focusing. Such a technique makes use of an ultrasonic transducer split into an array of individually controlled elements, allowing to apply delay and amplitude laws, calculated from modeling or experimentally deduced. Acoustical characteristics of the ultrasonic beam in the inspected specimen this can be electronically controlled; refraction angle, depth focusing, beam width. We briefly describe in the first chapter a theoretical modeling of the ultrasonic field radiated through a fluid/solid interface, extended to phase array transducers. This model is based on the integral formulation of Rayleigh, modified to take into account transmission through a fluid/solid (homogeneous and isotropic), of planar or cylindrical shape. In the second chapter an experimental study of this technique, with delay and amplitude laws given from the model, is presented, showing the efficiency of this method to adjust the acoustic performances. In he third chapter, experimental delay laws, extracted from the time distribution of signals received by the array (issued from a preliminary detected reflector), are used to provide an optimal imaging of the defect. This self-focusing procedure shows to adapt to a defect without using theoretical delays. The last chapter is dedicated to different applications devoted to improved defect characterization. The first application uses amplitude distribution received by the array, pointing out geometric characteristics of the reflector, while the second application

  14. A new deconvolution method applied to ultrasonic images

    International Nuclear Information System (INIS)

    Sallard, J.

    1999-01-01

    This dissertation presents the development of a new method for restoration of ultrasonic signals. Our goal is to remove the perturbations induced by the ultrasonic probe and to help to characterize the defects due to a strong local discontinuity of the acoustic impedance. The point of view adopted consists in taking into account the physical properties in the signal processing to develop an algorithm which gives good results even on experimental data. The received ultrasonic signal is modeled as a convolution between a function that represents the waveform emitted by the transducer and a function that is abusively called the 'defect impulse response'. It is established that, in numerous cases, the ultrasonic signal can be expressed as a sum of weighted, phase-shifted replicas of a reference signal. Deconvolution is an ill-posed problem. A priori information must be taken into account to solve the problem. The a priori information translates the physical properties of the ultrasonic signals. The defect impulse response is modeled as a Double-Bernoulli-Gaussian sequence. Deconvolution becomes the problem of detection of the optimal Bernoulli sequence and estimation of the associated complex amplitudes. Optimal parameters of the sequence are those which maximize a likelihood function. We develop a new estimation procedure based on an optimization process. An adapted initialization procedure and an iterative algorithm enables to quickly process a huge number of data. Many experimental ultrasonic data that reflect usual control configurations have been processed and the results demonstrate the robustness of the method. Our algorithm enables not only to remove the waveform emitted by the transducer but also to estimate the phase. This parameter is useful for defect characterization. At last the algorithm makes easier data interpretation by concentrating information. So automatic characterization should be possible in the future. (author)

  15. Development of an Educational Game to Set Up Surgical Instruments on the Mayo Stand or Back Table: Applied Research in Production Technology.

    Science.gov (United States)

    Paim, Crislaine Pires Padilha; Goldmeier, Silvia

    2017-01-10

    Existing research suggests that digital games can be used effectively for educational purposes at any level of training. Perioperative nursing educators can use games to complement curricula, in guidance and staff development programs, to foster team collaboration, and to give support to critical thinking in nursing practice because it is a complex environment. To describe the process of developing an educational game to set up surgical instruments on the Mayo stand or back table as a resource to assist the instructor in surgical instrumentation training for students and nursing health professionals in continued education. The study was characterized by applied research in production technology. It included the phases of analysis and design, development, and evaluation. The objectives of the educational game were developed through Bloom's taxonomy. Parallel to the physical development of the educational game, a proposed model for the use of digital elements in educational game activities was applied to develop the game content. The development of the game called "Playing with Tweezers" was carried out in 3 phases and was evaluated by 15 participants, comprising students and professional experts in various areas of knowledge such as nursing, information technology, and education. An environment was created with an initial screen, menu buttons containing the rules of the game, and virtual tour modes for learning and assessment. The "digital" nursing student needs engagement, stimulation, reality, and entertainment, not just readings. "Playing with Tweezers" is an example of educational gaming as an innovative teaching strategy in nursing that encourages the strategy of involving the use of educational games to support theoretical or practical classroom teaching. Thus, the teacher does not work with only 1 type of teaching methodology, but with a combination of different methodologies. In addition, we cannot forget that skill training in an educational game does not

  16. Ultrasonic Ranging System With Increased Resolution

    Science.gov (United States)

    Meyer, William E.; Johnson, William G.

    1987-01-01

    Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.

  17. Ultrasonic process for detoxification of groundwater

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, H.S.; Livengood, C.D.

    1991-01-01

    In this paper, we present the results of an investigation of the ultrasonic irradiation of carbon tetrachloride at various pH values, temperatures, and power intensities. Kinetic data and selected chemical mechanism are discussed and proposed. To study oxidant efficiency, chemical oxidants, such as hydrogen peroxide, are also considered. This work is part of a project entitled ''Ultrasonic Process for Detoxification of Groundwater and Soil,'' sponsored by the US Department of Energy, Office of Technology Development, to develop an innovative process for the effective destruction of chlorinated organics in soil and groundwater

  18. Ultrasonic Testing of NIF Amplifier FAU Top Plates

    International Nuclear Information System (INIS)

    Chinn, D.J.; Huber, R.D.; Haskins, J.J.; Rodriguez, J.A.; Souza, P.R.; Le, T.V.

    2002-01-01

    A key component in the National Ignition Facility (NIF) laser optic system is the amplifier frame assembly unit (FAU). The cast aluminum top plate that supports the FAU is required to withstand loads that would occur during an earthquake with a recurrence period of 1000 years. The stringent seismic requirements placed on the FAU top plate induced a study of the cast aluminum material used in the top plate. Ultrasonic testing was used to aid in characterizing the aluminum material used in the plates. This report documents the work performed using contact ultrasonic testing to characterize the FAU top plate material. The ultrasonic work reported here had 3 objectives: (1) inspect the plate material before cyclic testing conducted at the Pacific Earthquake Engineering Research Center (PEER); (2) determine the overall quality of individual plates; and (3) detect large defects in critical areas of individual plates. Section III, ''Pre-cyclic test inspection'', describes work performed in support of Objective 1. Section IV, ''Ultrasonic field measurements'', describes work performed in support of Objectives 2 and 3

  19. Methanolysis of triolein by low frequency ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Starvarache, Carmen; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokuro [Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2008-02-15

    Methanolysis of triolein was investigated at room temperature by 40 kHz ultrasonic irradiation to make biodiesel fuel as methyl esters. It was found that the yield of methyl esters strongly depended on the amount of KOH and the molar ratio of methanol to triolein (M/T) and was highest at the M/T molar ratio of 6/1, KOH concentration of 1 wt% and irradiation time of 30 min. In addition, the effects of sonication on the methanolysis of triolein were discussed in comparison to the effects of stirring experiments. The optimum condition under stirring experiments showed that the molar ratio of M/T, KOH concentration and reaction time were 6/1, 1.5 wt% and 4 h, respectively. These results clearly indicated that the ultrasonic irradiation method would be a promising one compared to the conventional stirring method. The high yield under the ultrasonic irradiation condition would be due to high speed mixing and mass transfer between the methanol and triolein as well as the formation of a microemulsion resulting from the ultrasonic cavitation phenomenon. (author)

  20. Methanolysis of triolein by low frequency ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Duc Hanh [Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan)], E-mail: hoangduchanh75@yahoo.com; Nguyen The Dong [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Starvarache, Carmen; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokuro [Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan)

    2008-02-15

    Methanolysis of triolein was investigated at room temperature by 40 kHz ultrasonic irradiation to make biodiesel fuel as methyl esters. It was found that the yield of methyl esters strongly depended on the amount of KOH and the molar ratio of methanol to triolein (M/T) and was highest at the M/T molar ratio of 6/1, KOH concentration of 1 wt% and irradiation time of 30 min. In addition, the effects of sonication on the methanolysis of triolein were discussed in comparison to the effects of stirring experiments. The optimum condition under stirring experiments showed that the molar ratio of M/T, KOH concentration and reaction time were 6/1, 1.5 wt% and 4 h, respectively. These results clearly indicated that the ultrasonic irradiation method would be a promising one compared to the conventional stirring method. The high yield under the ultrasonic irradiation condition would be due to high speed mixing and mass transfer between the methanol and triolein as well as the formation of a microemulsion resulting from the ultrasonic cavitation phenomenon.