WorldWideScience

Sample records for ultrasonic scanning mechanism

  1. Ultrasonic unit for line-by-line ultrasonic scanning of bodies

    International Nuclear Information System (INIS)

    Soldner, R.

    1978-01-01

    The ultrasonic unit for medical diagnostics operates by the sectorial scanning principle, which avoids direct coupling of the transducer head to the surface of the body. For this purpose, several transmitter/receiver units (approx. 100) are arranged on a partial ring of a circular arc and the ultrasonic beams, which can be triggered sequentially in time, are directed at a common intersection behind the ultrasonic window of the unit, i.e., outside the unit. A mechanical system is employed to set and adjust the partial ring carrying the transmitter/receiver units. (DG) [de

  2. Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality

    International Nuclear Information System (INIS)

    Park, Ik Gun

    1994-01-01

    This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to 10μm extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques

  3. P-Scan provides accuracy and repeatability in ultrasonics

    International Nuclear Information System (INIS)

    Keys, R.L.

    1987-01-01

    The P-Scan (Projection image scanning technique) is an automated ultrasonic inspection technique, developed to overcome the problems with accuracy and repeatability experienced with manual ultrasonic systems. The equipment and its applications are described. (author)

  4. Review of P-scan computer-based ultrasonic inservice inspection system. Supplement 1

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.

    1995-12-01

    This Supplement reviews the P-scan system, a computer-based ultrasonic system used for inservice inspection of piping and other components in nuclear power plants. The Supplement was prepared using the methodology described in detail in Appendix A of NUREG/CR-5985, and is based on one month of using the system in a laboratory. This Supplement describes and characterizes: computer system, ultrasonic components, and mechanical components; scanning, detection, digitizing, imaging, data interpretation, operator interaction, data handling, and record-keeping. It includes a general description, a review checklist, and detailed results of all tests performed

  5. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  6. P-scan, a new system for ultrasonic weld inspection

    International Nuclear Information System (INIS)

    Lund, S.A.; Iversen, S.E.; Holst, H.

    1978-01-01

    The P-scan method is explained. It is described how the new P-scan system improves the ultrasonic method by adding means for visualization, data storage and documentation. Three different scanners are described: One designed for manual operation, another for automatic operation and a third for semiautomatic operation. The p'scan image of an ultrasonically examined test plate is presented and discussed. The variable Display Level (i.e. the inspection sensitivity) facility is described. The main advantage of this facility is the fact that the level can be varied at any time after the inspection. (orig.) [de

  7. Signal Processing Effects for Ultrasonic Guided Wave Scanning of Composites

    International Nuclear Information System (INIS)

    Roth, D.J.; Cosgriff, L.M.; Martin, R.E.; Burns, E.A.; Teemer, L.

    2005-01-01

    The goal of this ongoing work is to optimize experimental variables for a guided wave scanning method to obtain the most revealing and accurate images of defect conditions in composite materials. This study focuses on signal processing effects involved in forming guided wave scan images. Signal processing is involved at two basic levels for deriving ultrasonic guided wave scan images. At the primary level, NASA GRC has developed algorithms to extract over 30 parameters from the multimode signal and its power spectral density. At the secondary level, there are many variables for which values must be chosen that affect actual computation of these parameters. In this study, a ceramic matrix composite sample having a delamination is characterized using the ultrasonic guided wave scan method. Energy balance and decay rate parameters of the guided wave at each scan location are calculated to form images. These images are compared with ultrasonic c-scan and thermography images. The effect of the time portion of the waveform processed on image quality is assessed by comparing with images formed using the total waveform acquired

  8. Determination of plant components degradation using ultrasonic C-scan

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Suhairy Sani; Abdul Nassir Ibrahim

    2002-01-01

    C-scan Ultrasonic Inspection technique is increasingly used for the assessment of plant integrity. Due to the advancement of the equipment, Probability of Detection (POD) of this technique increased significantly as compared with the conventional techniques. Thus in many cases, the technique is accepted by engineers to be used to replace the conventional inspection methods such as visual inspections, thickness gauging and ultrasonic B-Scan. Thickness gauging and ultrasonic B-scan is still widely used by industries. However, both techniques have their own disadvantages. The most notable disadvantages of these techniques are related to the reliability of readings given by the equipment. In addition to this, thickness gauge would only provide data at certain points and B-scan would only provide data for certain lines. This paper presents and discusses results of C-scan measurement performed in power generation, chemical and petro-chemical plants. Due to its high accuracy, results from these measurements were used to establish the true condition of plant and to calculate its remaining safe life. Results presented in this paper include those related to corrosion, erosion and lamination in acid and gas pipelines, finger sludge catcher, steam drums in vessels and piping and electron beam machine. (Author)

  9. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  10. Case-based classification of ultrasonic b-scans: case-base organisation and case retrieval

    NARCIS (Netherlands)

    Jarmulak, J.

    1998-01-01

    Dutch Railways use a special train for the ultrasonic inspection of rails. The output of the ultrasonic scanning system installed on the train consists of echo images - so-called B-scans. The B-scans are classified according to the images of rail constructions, noise artefacts, and/or defects that

  11. Equipment for examination of bodies by means of ultrasonic scanning

    International Nuclear Information System (INIS)

    Hoelzler, G.

    1977-01-01

    Equipment for linear or surface scanning of bodies by ultrasonics where an ultrasonic applicator, consisting of rows of transducer elements arranged one beside the other and made of e.g. piezoelectric crystal plates, and a control unit is used. Control and cadencing of the transducer elements is performed in groups of four or five of neighboring transducers. For control there may be provided for adjacent or engaging scanning of the groups. By this means the number of transducer elements is reduced e.g. by a factor of 2. (orig.) [de

  12. An application of ultrasonic inspection system (INER-SCAN) inspecting generator retaining rings

    International Nuclear Information System (INIS)

    Chen, L.C.; Hwang, S.C.

    1994-01-01

    The performances of the automatic ultrasonic inspecting and imaging system (INER-SCAN) developed by the NDT laboratory of the Institute of Nuclear Energy Research have been enhanced and much more improved to commercial level. With appropriate rearrangements of software libraries, it is used to inspect generator retaining rings which are critical structural rotor components that support the end-turn regions of the rotor wingings against centrifugal forces. The use of the INER-SCAN provides distinct advantages over other systems in terms of the reliability of inspection and the flexibility of system performance modifications. The INER-SCAN system assists users to select and modify ultrasonic parameters under computer-aided environment. In addition, the INER-SCAN system contains the necessary software functions to image the ultrasonic data (A-SCAN, B-SCAN, B'-SCAN, C-SCAN). The use of the imaging system makes it quite easy to evaluate various test parameters and their effects on the discrimination between geometric and IGSCC reflectors. Through experimental test, it is recognized that the system has powerful detectable capability which can find 0.2mm-depth slight scratch on the inner surface of retaining rings. This system can also be used on different generator retaining rings (different in terms of hidden design features) without the need for access to the dimension of retaining ring

  13. Design and development of Pc-based TOFD ultrasonic scanning system for welds inspection

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismai; Muhammad Faiz Mohd Shukri; Amry Amin Abas

    2010-01-01

    This paper describes the design and development of a portable PC-based ultrasonic scanning system for industrial applications. The system which is called TOFD Ultrasonic Scanning System (TOFUSS) is used to create a gray scale imaging techniques are applied to the RF (AC) signal phase and enables weld integrity to be observed in real time. TOFD consists of a separate ultrasonic transmitter and receiver. The Probes are aimed at the same point in the weld volume. The entire weld is flooded with ultrasound allowing inspection of the weld. With a time of flight path, the ultrasonic velocity and the spatial relationship of the two probes, location and height of the defects can be very accurately calculated. The algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0. (author)

  14. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  15. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Greenhalgh, F.G.

    1975-01-01

    An apparatus is described for moving an ultrasonic scanning mechanism over the interior surface of a pressure vessel and comprising a mast for supporting the scanning mechanism inside the vessel and a carriage for traversing the mast within the vessel, the mast being pivotably secured to the carriage so that when the ultrasonic scanning mechanism contacts the interior surface of the pressure vessel the mast is caused to pivot. (auth)

  16. On multiple crack identification by ultrasonic scanning

    Science.gov (United States)

    Brigante, M.; Sumbatyan, M. A.

    2018-04-01

    The present work develops an approach which reduces operator equations arising in the engineering problems to the problem of minimizing the discrepancy functional. For this minimization, an algorithm of random global search is proposed, which is allied to some genetic algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous identification of several linear cracks forming an array in an elastic medium by using the circular Ultrasonic scanning.

  17. An inverse method for crack characterization from ultrasonic B-Scan images

    International Nuclear Information System (INIS)

    Faur, M.; Roy, O.; Benoist, PH.; Morisseau, PH.

    1996-01-01

    Concern has been expressed about the capabilities of performing non destructive evaluation (NDE) of flaws located near to the outer surface in nuclear pressurized water reactor (PWR) vessels. The ultrasonic examination of PWR is accomplished from the inside with ultrasonic focused transducers working in the pulse echo mode. By recording the echoes as a function of time, the Ascan representation may be obtained. Many ultrasonic flaw detectors used for NDE are based on the simple Ascan concept involving measuring a time interval called 'time of flight'. By combining the Ascan concept synchronized transducer scanning, one can produce Bscan images that are two dimensional descriptions of the flaw interaction with the ultrasonic field. In the following, the flaw is assumed to be an axially oriented crack (the most serious flaw to be found in a pressurized component). In the case of the outer surface cracks (OSC's), analyzing and interpreting ultrasonic Ascan images become difficult because of the various reflections of the ultrasonic beam on the crack and on the outer surface (the so-called corner effect). Methods for automatic interpretation of ultrasonic experimental data are currently under investigation. In this paper, we present an inverse method for determining the geometrical characteristics of OSC's from ultrasonic Bscan images. The direct model used for the inversion procedure predicts synthetic Bscan images of ultrasonic examination of blocks containing planar defects interrogated by focused probes. (authors)

  18. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  19. Inspection of austenitic welds with ultrasonic phased array technology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F. [Tecnatom (Spain); Dutruc, R.; Ferriere, R. [Metalscan (France)

    2011-07-01

    This series of slides presents the use of ultrasonic phased array technology in the inspection of austenitic welds. The inspection from outside surface (the inspection is performed in contact using wedges to couple the probe to the outer surface of the component) shows that longitudinal wave is the most adequate for perpendicular scans and transversal ultrasonic wave is the most adequate for parallel scans. Detection and length sizing are performed optimally in perpendicular scans. The inspection from inside surface shows: -) Good results in the detection of defects (Sizing has met the requirements imposed by the Authority of the Russian Federation); -) The new design of the mechanical equipment and of the numerous ultrasonic beams refracted by the array probes has increased the volume inspected. The design of the mechanical equipment has also allowed new areas to be inspected (example a piping weld that was not accessible from the outer surface; -) The ultrasonic procedure and Inspection System developed have been validated by the Authority of the Russian Federation. Phase array technique supplies solutions to solve accessibility concerns and improve the ultrasonic inspections of nuclear components

  20. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  1. Experience with automatic ultrasonic testing with the P-scan system

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1989-01-01

    In this contribution, there is a report on experience in the automated ultrasonic testing of Austenitic components with the P-scan system. Examples of testing Austenitic joints and mixed joints on pipeline systems in the primary circuit of nuclear powerstations are discussed. Further, the mechanised measurement of wall thickness of pipelines endangered by erosion and corrosion is dealt with. (MM) [de

  2. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    Science.gov (United States)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  3. Case of minute hepatocellular carcinoma found by CT scan and diagnosed cytology under the ultrasonic aspiration transducer

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Waichi; Moriai, Norihiko; Komatsu, Kanji [Yuri Kumiai Sogo Hospital, Akita (Japan)

    1983-11-01

    CT scan detected a suspected minute hepatocellular carcinoma in a case of liver cirrhosis followed up for more than 10 years. A definite diagnosis was established by ultrasonic guided aspiration cytology. The cancer was resected using ultrasonic examination during operation.

  4. Automated ultrasonic inspection system for nuclear power stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The automated system of ultrasonic inspection which was used to conduct weld inspections of the complex primary system of the Borselle PWR station is described. It relies upon mechanically traversing purpose designed multi-crystal ultrasonic probes along the welds. A number of probes are switched sequentially to provide a continuous scan. A typical scan rate of 120 scan/sec is achieved by a multiplexer capable of switching transmitter and receiver individually. The system has wide applications in other industries. (U.K.)

  5. Background Noise Removal in Ultrasonic B-scan Images Using Iterative Statistical Techniques

    NARCIS (Netherlands)

    Wells, I.; Charlton, P. C.; Mosey, S.; Donne, K. E.

    2008-01-01

    The interpretation of ultrasonic B-scan images can be a time-consuming process and its success depends on operator skills and experience. Removal of the image background will potentially improve its quality and hence improve operator diagnosis. An automatic background noise removal algorithm is

  6. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    Directory of Open Access Journals (Sweden)

    Caterina Casavola

    2018-04-01

    Full Text Available Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT on T-pull samples made by carbon fiber reinforced polymers (CFRP and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  7. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    Science.gov (United States)

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  8. The quasi-harmonic ultrasonic polar scan for material characterization: experiment and numerical modeling.

    Science.gov (United States)

    Kersemans, Mathias; Martens, Arvid; Van Den Abeele, Koen; Degrieck, Joris; Pyl, Lincy; Zastavnik, Filip; Sol, Hugo; Van Paepegem, Wim

    2015-04-01

    Conventionally, the ultrasonic polar scan (UPS) records the amplitude or time-of-flight in transmission using short ultrasonic pulses for a wide range of incidence angles, resulting in a fingerprint of the critical bulk wave angles of the material at the insonified spot. Here, we investigate the use of quasi-harmonic ultrasound (bursts) in a polar scan experiment, both experimentally and numerically. It is shown that the nature of the fingerprint drastically changes, and reveals the positions of the leaky Lamb angles. To compare with experiments, both plane wave and bounded beam simulations have been performed based on the recursive stiffness matrix method. Whereas the plane wave computations yield a pure Lamb wave angle fingerprint, this is no longer valid for the more realistic case of a bounded beam. The experimental recordings are fully supported by the bounded beam simulations. To complement the traditional amplitude measurement, experimental and numerical investigations have been performed to record, predict and analyze the phase of the transmitted ultrasonic beam. This results in the conceptual introduction of the 'phase polar scan', exposing even more intriguing and detailed patterns. In fact, the combination of the amplitude and the phase polar scan provides the complete knowledge about the complex transmission coefficient for every possible angle of incidence. This comprehensive information will be very valuable for inverse modeling of the local elasticity tensor based on a single UPS experiment. Finally, the UPS method has been applied for the detection of an artificial delamination. Compared to the pulsed UPS, the quasi-harmonic UPS (both the amplitude and phase recording) shows a superior sensitivity to the presence of a delamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg{sub 2}Si/Al composite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jixing, E-mail: linjixing@163.com [Department of Material Engineering, Zhejiang Industry & Trade Vocational College, Wenzhou 325003 (China); College of Materials Science and Engineering, Jilin University, Changchun 130000 (China); Bai, Guangzhu [Department of Material Engineering, Zhejiang Industry & Trade Vocational College, Wenzhou 325003 (China); School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Liu, Zheng [School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Niu, Liyuan [Department of Material Engineering, Zhejiang Industry & Trade Vocational College, Wenzhou 325003 (China); Li, Guangyu [College of Materials Science and Engineering, Jilin University, Changchun 130000 (China); Wen, Cuie [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2016-08-01

    In situ Mg{sub 2}Si/Al composites are receiving increasing attention for industrial applications because of their inherently stable interfaces, light weight, excellent combination of mechanical properties and low processing costs. The composite is formed through in situ nucleation and growth of a reinforcing phase Mg{sub 2}Si from the parent matrix during solidification. In this study, we report the effect of ultrasonic stirring with different times on the solidification structure and mechanical properties of in situ Mg{sub 2}Si/Al composites. X-ray diffraction analysis, optical microscopy and scanning electron microscopy were used to analyze the microstructural evolution of the composites. The mechanical properties of the composites were tested by using hardness and tensile testers. Our results showed that 40 s ultrasonic stirring resulted in the optimal impact on the refining both the primary and eutectic Mg{sub 2}Si particles and improving the shapes of the primary Mg{sub 2}Si particles. The composites with 40 s ultrasonic stirring exhibited simultaneously enhanced tensile strength and elongation and the tensile fracture morphology was shown to be quasi-cleavage with a large number of dimples. This study proves that ultrasonic stirring is effective in degassing, removal of impurities, refining, and improving the shapes of the reinforcing phase, leading to significantly enhance the mechanical performance of the composites. - Highlights: • Ultrasonic technique shows excellent impact during Al composite processing. • Ultrasonic stirring improves the shapes of Mg{sub 2}Si particles with higher circularity. • Ultrasonic stirring results in an increase in the tensile strength of the composite. • Ultrasonic stirring leads to a significantly increased elongation of the composite. • Tensile fracture of composite with ultrasonic stirring shows more ductile features.

  10. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    Science.gov (United States)

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Accurate three dimensional characterization of ultrasonic sound fields (by computer controlled rotational scanning)

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, T.

    1981-07-01

    A rotational scanning system has recently been developed at Risoe National Laboratory. It allows sound fields from ultrasonic transducers to be examined in 3 dimensions. Using different calculation and plotting programs, any section in the sound field can be plotted. Results from examination of transducers for automatic inspection are presented. (author)

  12. Fatigue fracture of steel after mechanical and ultrasonic strengthening

    International Nuclear Information System (INIS)

    Stotskij, I.M.

    1978-01-01

    Fatigue fracture surfaces of samples after mechanical and ultrasonic strengthening have been studied metallographically and by electron fractography. Studied was the 40Kh steel hardened from 850 deg and then tempered at 180 deg or at 550 deg C. The ultrasound power was 25 kWt, the frequency was 20 kHz, the sample rotation velocity was 39.5 m/min. Mechanical and ultrasonic treatment was found to cause structural changes (formation of a white layer) and deformation of the material under the layer. The fatigue cracks were extending beyond the white layer; their propagation involved generation and coalescence of microcracks on account of segregation of carbides. It is concluded that mechanical and ultrasonic treatment should be used for increasing the fatigue strength of low and average strength materials rather than hardened or low-tempered ones

  13. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  14. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.

    Science.gov (United States)

    Wang, Fen; Wang, Yong; Ji, Min

    2005-08-31

    Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.

  15. Ultrasonic evaluation of the physical and mechanical properties of granites.

    Science.gov (United States)

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  16. Development of Ultrasonic Modulation Probe for Fluorescence Tomography Based on Acousto-Optic Effect

    Directory of Open Access Journals (Sweden)

    Trinh Quang Duc

    2011-01-01

    Full Text Available We have developed an ultrasonic probe for fluorescence modulation to image fluorescence within biological tissues. The probe consists of a focused ultrasonic transducer mounted on actuators for mechanical fan scanning, which can be used in contact with the measuring object aiming for clinical application. The mechanical fan scanning employed in the probe has a beneficial feature of portability. As a result, fluorescent beads, which were localized with the diameter of 2 mm at 20 mm depth in a pork meat tissue, were detected with resolution of 3 mm. The system performance denotes the feasibility of development towards the final goal of ultrasonic fluorescence modulation tomography for clinical applications.

  17. Ultrasonic examination of ceramics and composites for porosities in an automatic scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Gundtoft, H.E.

    1988-05-01

    Using a very precise scanning system and computer evaluation, we can get quantitative results from automatic ultrasonic examination. In this paper two examples dealing with nonmetallic materials are presented. In a ceramic plate (>1 inch thick) small spherical prorosities (down to 0.1 mm) would harm the final product. Several artificial defects made in the plate were used for calibration and optimisation of the technique. Areas with with a microscope. Good agreement with the predicted values from the ultrasonic examination was found. From the NDT-examination the exact position of a porosity is known in all 3 coordinates (x, y and z). The size of the defect can also be measured. A single porosity with a diameter of 0.1 mm can be detected. Carbon-reinforced composites were examined. 8 prepregs were stacked and hardened in an autoclave to form a sheet (1 mm thick). Air trapped in the material resulted in porosities in the final product. A double trough transmission-scanning technique was used for the examination. The porosity percentages were determined by the NDT-technique, and agreement with destructivly determined values on samples from the same sheet was found.

  18. Research into Thermal Sprayed Coatings with Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    Justinas Gargasas

    2012-01-01

    Full Text Available Research on thermal sprayed coatings with ultrasonic methods is the main object of this thesis. Metal surface coating was applied to modify its mechanical and physical-chemical properties and resistance to external impact and improve aesthetics. Spraying was carried out by scanning the rotating sample of 30 cm/s speed. Surface microstructure, ultrasonic thickness, porosity, micro hardness and surface modulus tests performed. Conclusions were formulated.Article in Lithuanian

  19. Variable-Frequency Ultrasonic Treatment on Microstructure and Mechanical Properties of ZK60 Alloy during Large Diameter Semi-Continuous Casting

    Directory of Open Access Journals (Sweden)

    Xingrui Chen

    2017-05-01

    Full Text Available Traditional fixed-frequency ultrasonic technology and a variable-frequency ultrasonic technology were applied to refine the as-cast microstructure and improve the mechanical properties of a ZK60 (Mg–Zn–Zr alloy during large diameter semi-continuous casting. The acoustic field propagation was obtained by numerical simulation. The microstructure of the as-cast samples was characterized by optical and scanning electron microscopy. The variable-frequency ultrasonic technology shows its outstanding ability in grain refinement compared with traditional fixed-ultrasonic technology. The variable-frequency acoustic field promoted the formation of small α-Mg globular grains and changed the distribution and morphology of β-phases throughout the castings. Ultimate tensile strength and elongation are increased to 280 MPa and 8.9%, respectively, which are 19.1% and 45.9% higher than the values obtained from billets without ultrasonic treatment and are 11.6% and 18.7% higher than fixed-frequency ultrasound treated billets. Different refinement efficiencies appear in different districts of billets attributed to the sound attenuation in melt. The variable-frequency acoustic field improves the refinement effect by enhancing cavitation-enhanced heterogeneous nucleation and dendrite fragmentation effects.

  20. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    Science.gov (United States)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be

  1. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    Science.gov (United States)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the , , in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  2. A study on the inclusion sizing using immersion ultrasonic C-scan imaging

    International Nuclear Information System (INIS)

    Chen, D; Xiao, H F; Li, M; Xu, J W

    2017-01-01

    Inclusion sizing, especially for large inclusions greater than 30μm provides important reference for metallurgical process control and fatigue life assessment of steel. Ultrasonic non-destructive testing (NDT) shows great advantages in detecting infrequently occurred large inclusions than eddy current, magnetic particle, microscopic or macroscopic examination procedures. In this paper, the performance of inclusion sizing by immersion ultrasonic C-scan imaging is studied numerically. A two-dimensional model that consists of spherically focused transducer, water couplant and steel with embedded inclusion is established and solved numerically by the finite element method. The signal intensity distributions of inclusion with different sizes are acquired and the effects of inclusion type, shape, orientation on signal intensity distribution are analysed. The results show that the 6dB-drop threshold has the smallest relative error compared with the 12dB-drop threshold and the full-drop threshold, which is better for determining inclusion size larger than 100μm. Experiment is also performed to validate the simulated results. (paper)

  3. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Challender, R.S.

    1975-01-01

    A carriage-supported manipulator for taking an ultrasonic scanner mechanism into a coolant nozzle of a nuclear reactor pressure vessel is described. The manupulator is rotatable about the axis of the nozzle and is radially expansible to urge the scanner mechanism into a scanning position within the nozzle

  4. Ultrasonic NDE and mechanical testing of fiber placement composites

    Science.gov (United States)

    Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.

    2002-05-01

    A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.

  5. Ultrasonic inspection of the strength member weld of transit and pioneer heat sources

    International Nuclear Information System (INIS)

    Dudley, W.A.

    1975-01-01

    A nondestructive technique was developed which allows ultrasonic inspection of the closure weld for the strength member component in plutonium-238 radioisotopic heat sources. The advantage of the ultrasonic approach, over that of the more commonly used radiographic one, is the recognized superiority of ultrasonic testing for identifying lack-of-weld penetration (LOP) when accompanied by incomplete diffusion bonding. The ultrasonic technique, a transverse mode scan of the weld for detection of LOP, is primarily accomplished by use of a holding fixture which permits the vented heat source to be immersed into an inspection tank. The mechanical portion of the scanning system is a lathe modified with an inspection tank and a manipulator. This scanning system has been used in the past to inspect SNAP-27 heat sources. The analyzer-transducer combination used in the inspection is capable of detecting a channel type flaw with a side wall depth of 0.076 mm (0.003 in.) in a weld standard. (U.S.)

  6. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  7. Combined Ultrasonic Elliptical Vibration and Chemical Mechanical Polishing of Monocrystalline Silicon

    Directory of Open Access Journals (Sweden)

    Liu Defu

    2016-01-01

    Full Text Available An ultrasonic elliptical vibration assisted chemical mechanical polishing(UEV-CMP is employed to achieve high material removal rate and high surface quality in the finishing of hard and brittle materials such as monocrystalline silicon, which combines the functions of conventional CMP and ultrasonic machining. In theultrasonic elliptical vibration aided chemical mechanical polishingexperimental setup developed by ourselves, the workpiece attached at the end of horn can vibrate simultaneously in both horizontal and vertical directions. Polishing experiments are carried out involving monocrystalline silicon to confirm the performance of the proposed UEV-CMP. The experimental results reveal that the ultrasonic elliptical vibration can increase significantly the material removal rate and reduce dramatically the surface roughness of monocrystalline silicon. It is found that the removal rate of monocrystalline silicon polished by UEV-CMP is increased by approximately 110% relative to that of conventional CMP because a passive layer on the monocrystalline silicon surface, formed by the chemical action of the polishing slurry, will be removed not only by the mechanical action of CMP but also by ultrasonic vibration action. It indicates that the high efficiency and high quality CMP of monocrystalline silicon can be performed with the proposed UEV-CMP technique.

  8. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2014-01-01

    Full Text Available Ultrasonic vibration assisted micro end grinding (UAMEG is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.

  9. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and

  10. Proposed new ultrasonic test bed

    International Nuclear Information System (INIS)

    Maxfield, B.W.

    1978-01-01

    Within the last four or five years, a great deal of progress has been made both here and in a number of other laboratories in developing techniques that will enable considerably more information to be obtained from the ultrasonic examination of an object. Some of these recent developments relate to information contained within the diffracted beam which does not return along the incident path. An ultrasonic examination based upon an evaluation of diffracted energy must use at least two transducers, one for transmission and the other for reception. Current indications are that even more reliable test results will be achieved using a receiving transducer that can scan a significant portion of the diffracted field including that portion which is back-reflected. In general, this scan can be interpreted most accurately if it follows a path related to the surface shape. If more than one region within the object is to be interrogated, then the transmitting transducer must also be scanned, again along a path related to the surface shape. The large quantity of information obtained as the result of such an examination must be subjected to sophisticated computer analysis in order to be displayed in a meaningful and intelligible manner. Although one motivation for building such an instrument is to explore new ultrasonic test procedures that are evolving from current laboratory research, this is neither the sole motivation nor the only use for this instrument. Such a mechanical and electronic device would permit conventional ultrasonic tests to be performed on parts of complex geometry without the expensive and time-consuming special fixturing that is currently required. May possible test geometries could be explored in practice prior to the construction of a specialized test apparatus. Hence, it would be necessary to design much, if any, flexibility into the special test apparatus

  11. Development of fuel number reader by ultrasonic imaging techniques

    International Nuclear Information System (INIS)

    Omote, T.; Yoshida, T.

    1991-01-01

    This paper reports on a spent fuel ID number reader using ultrasonic imaging techniques that has been developed to realize efficient and automatic verification of fuel numbers, thereby to reduce mental load and radiation exposure for operators engaged in the verification task. The ultrasonic imaging techniques for automatic fuel number recognition are described. High-speed and high reliability imaging of the spent fuel ID number are obtained by using linear array type ultrasonic probe. The ultrasonic wave is scanned by switching array probe in vertical direction, and scanned mechanically in horizontal direction. Time for imaging of spent fuel ID number on assembly was confirmed less than three seconds by these techniques. And it can recognize spent fuel ID number even if spent fuel ID number can not be visualized by an optical method because of depositing fuel number regions by soft card. In order to recognize spent fuel ID number more rapidly and more reliably, coded fuel number expressed by plural separate recesses form is developed. Every coded fuel number consists of six small holes (about 1 mm dia.) and can be marked adjacent to the existing fuel number expressed by letters and numbers

  12. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration.

    Science.gov (United States)

    Boufi, Sami; Bel Haaj, Sihem; Magnin, Albert; Pignon, Frédéric; Impéror-Clerc, Marianne; Mortha, Gérard

    2018-03-01

    In this paper, the disintegration of starch (waxy and standard starch) granules into nanosized particles under the sole effect of high power ultrasonication treatment in water/isopropanol is investigated, by using wide methods of analysis. The present work aims at a fully characterization of the starch nanoparticles produced by ultrasonication, in terms of size, morphology and structural properties, and the proposition of a possible mechanism explaining the top-down generation of starch nanoparticles (SNPs) via high intensity ultrasonication. Dynamic light scattering measurements have indicated a leveling of the particle size to about 40nm after 75min of ultrasonication. The WAXD, DSC and Raman have revealed the amorphous character of the SNPs. FE-SEM. AFM observations have confirmed the size measured by DLS and suggested that SNPs exhibited 2D morphology of platelet-like shapes. This morphology is further supported by SAXS. On the basis of data collected from the different characterization techniques, a possible mechanism explaining the disintegration process of starch granules into NPs is proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Computer based ultrasonic system for mechanical and acoustical characterization of materials

    International Nuclear Information System (INIS)

    Rosly Jaafar; Mohd Rozni Mohd Yusof; Khaidzir Hamzah; Md Supar Rohani; Rashdi Shah Ahmad; Amiruddin Shaari

    2001-01-01

    Propagation of both modes of ultrasonic waves velocity i.e. longitudinal (compressional) and transverse (shear), propagating in a material are closely linked with the material's physical and mechanical properties. By measuring both velocity modes, materials' properties such as Young's, bulk and shear moduli, compressibility, Poisson ratio and acoustic impedance can be determined. This paper describes the development of a system that is able to perform the above tasks and is known as Computer Based Ultrasonic for Mechanical and Acoustical Characterisation of Materials (UMC). The system was developed in the NDT Instrumentation and Signal Processing (NDTSP) laboratory of the Physics Department, Universiti Teknologi Malaysia. Measurements were made on four solid samples, namely, glass, copper, mild steel and aluminium. The results of measurements obtained were found to be in good agreement with the values of measurements made using standard methods. The main advantage of using this system over other methods is that single measurement of two ultrasonic velocity modes yields six material's properties. (Author)

  14. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  15. Workability and mechanical properties of ultrasonically cast Al–Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Mula, Suhrit; Pabi, S.K.; Koch, Carl C; Padhi, P.; Ghosh, S.

    2012-01-01

    Workability and mechanical properties of the ultrasonically cast Al–X wt% Al 2 O 3 (X=2, 3.57 and 4.69) metal matrix nanocomposites were reported in the present investigation. The Al–Al 2 O 3 (average size ∼10 nm) composites showed maximum reduction ratios of 2, 1.75 and 1.41 at room temperature, and 8, 7 and 6 at 300 °C. The elastic modulus, nanoindentation hardness, microhardness and Vickers hardness were measured on the as-cast, cold and hot rolled specimens. The tensile properties were also evaluated for the as-cast composites for different wt% of reinforcement. The microstructural examination was done by optical, scanning and transmission electron microscopy. The strength and workability of the nanocomposites were discussed in the light of dislocation/particle interaction, particle size and its concentration, inter-particle spacing and working temperature. 2 wt% of Al 2 O 3 reinforcement showed better combination of workability and mechanical properties possibly due to better distribution of particulates in the matrix.

  16. Ultrasonic and mechanical soil washing processes for the remediation of heavy-metal-contaminated soil

    Science.gov (United States)

    Kim, Seulgi; Lee, Wontae; Son, Younggyu

    2016-07-01

    Ultrasonic/mechanical soil washing process was investigated and compared with ultrasonic process and mechanical process using a relatively large lab-scale sonoreactor. It was found that higher removal efficiencies were observed in the combined processes for 0.1 and 0.3 M HCl washing liquids. It was due to the combination effects of macroscale removal for the overall range of slurry by mechanical mixing and microscale removal for the limited zone of slurry by cavitational actions.

  17. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  18. Ultrasonic signal processing and B-SCAN imaging for nondestructive testing. Application to under - cladding - cracks

    International Nuclear Information System (INIS)

    Theron, G.

    1988-02-01

    Crack propagation under the stainless steel cladding of nuclear reactor vessels is monitored by ultrasonic testing. This work study signal processing to improve detection and sizing of defects. Two possibilities are examined: processing of each individual signal and simultaneous processing of all the signals giving a B-SCAN image. The bibliographic study of time-frequency methods shows that they are not suitable for pulses. Then decomposition in instantaneous frequency and envelope is used. Effect of interference of 2 close echoes on instantaneous frequency is studies. The deconvolution of B-SCAN images is obtained by the transducer field. A point-by-point deconvolution method, less noise sensitive, is developed. B-SCAN images are processed in 2 phases: interface signal processing and deconvolution. These calculations improve image accuracy and dynamics. Water-stell interface and ferritic-austenitic interface are separated. Echoes of crack top are visualized and crack-hole differentiation is improved [fr

  19. Comparison of three retreatment techniques with ultrasonic activation in flattened canals using micro-computed tomography and scanning electron microscopy.

    Science.gov (United States)

    Bernardes, R A; Duarte, M A H; Vivan, R R; Alcalde, M P; Vasconcelos, B C; Bramante, C M

    2015-08-17

    To use micro-CT to quantitatively evaluate the amount of residual filling material after using several techniques to remove root fillings with and without ultrasonic activation and to analyse the cleanliness of the root canal walls and dentine tubules with scanning electron microscopy (SEM). The root canals of one hundred and eight human mandibular incisors were selected and instrumented with rotary files using the BioRace system up to file size 40, .04 taper. After instrumentation, the teeth were filled using a hybrid technique with gutta-percha and sealer then divided into three groups according to the method used for removing the root filling: G1-Reciproc (using only instrument R50), G2-ProTaper Universal retreatment system and G3-Manual (hand files and Gates-Glidden burs). All groups were divided into two subgroups depending on whether ultrasonic agitation was used with the irrigants. Micro-CT scans were taken before and after removal of the filling material to detect residual material in the canal. After micro-CT analysis, the roots were cut in half, imaged by SEM and scored based on the amount of surface covered by root filling remnants. The data were analysed statistically using a significance level of 5%. All groups had retained material in the root canals after instrumentation. The Reciproc method was associated with less retained material than the ProTaper and Manual methods. Ultrasonic activation significantly reduced the amount of residual root filling in all groups (P material. Ultrasonic activation improved the removal of root filling material in all groups. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Ultrasonic testing using time of flight diffraction technique (TOFD)

    International Nuclear Information System (INIS)

    Khurram Shahzad; Ahmad Mirza Safeer Ahmad; Muhammad Asif Khan

    2009-04-01

    This paper describes the ultrasonic testing using Time Flight Diffraction (TOFD) Technique for welded samples having different types and sizes of defects. TOFD is a computerized ultrasonic system, able to scan, store and evaluate indications in terms of location, through thickness and length in a more easy and convenient. Time of Flight Diffraction Technique (TOFD) is more fast and easy technique for ultrasonic testing as we can examine a weld i a single scan along the length of the weld with two probes known as D-scan. It shows the image of the complete weld with the defect information. The examinations were performed on carbon steel samples used for ultrasonic testing using 70 degree probes. The images for different type of defects were obtained. (author)

  1. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  2. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study.

    Science.gov (United States)

    Kwak, Sang-Won; Moon, Young-Mi; Yoo, Yeon-Jee; Baek, Seung-Ho; Lee, WooCheol; Kim, Hyeon-Cheol

    2014-11-01

    The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.

  3. Ultrasonic micro-burnishing in view of eco-materials processing

    International Nuclear Information System (INIS)

    Han, C.-H.; Kim, C.S.

    2002-01-01

    Surface finishing using ultrasonic vibration has been introduced as an eco-materials process in view of the fact that essentially no chemical lubricants of environmental impact are required for the process. An example of a recent application in manufacturing is given. Using a specially designed ultrasonic burnishing tool, we have carried out experiments on aluminum and steel, making surface roughness and hardness measurements and taking photographs of surface morphology using a scanning electron microscope These results are compared with those from ordinary burnishing. Based on the results, the contributions to the measured mechanical properties of each load from the total contact load onto the workpiece surface are discussed, and distinguishing features of surface finishing process using ultrasonic vibration have emerged. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

  4. Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers.

    Science.gov (United States)

    Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao; Fuh, Jerry Ying Hsi

    2018-05-17

    Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters.

  5. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  6. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  7. Mechanisms of convective and boiling heat transfer enhancement via ultrasonic vibration

    International Nuclear Information System (INIS)

    Kim, Yi Gu; Kim, Ho Young; Kang, Seoung Min; Kang, Byung Ha; Lee, Jin Ho

    2003-01-01

    This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when the local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism

  8. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    Science.gov (United States)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  9. Detection of delamination defects in plate type fuel elements applying an automated C-Scan ultrasonic system

    International Nuclear Information System (INIS)

    Katchadjian, P.; Desimone, C.; Ziobrowski, C.; Garcia, A.

    2002-01-01

    For the inspection of plate type fuel elements to be used in Research Nuclear Reactors it was applied an immersion pulse-echo ultrasonic technique. For that reason an automated movement system was implemented according to the axes X, Y and Z that allows to automate the test and to show the results obtained in format of C-Scan, facilitating the immediate identification of possible defects and making repetitive the inspection. In this work problems found during the laboratory tests and factors that difficult the inspection are commented. Also the results of C-Scans over UMo fuel elements with pattern defects are shown. Finally, the main characteristics of the transducer with the one the better results were obtained are detailed. (author)

  10. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study

    Directory of Open Access Journals (Sweden)

    Sang-Won Kwak

    2014-11-01

    Full Text Available Objectives The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. Materials and Methods The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan or JT-5B (B&L Biotech Ltd.. The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1, J1 (JT-5B / Power-1, K4 (KIS-1D / Power-4, and J4 (JT-5B / Power-4. The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. Results There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05. The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Conclusions Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.

  11. Mechanized scaling with ultrasonics: Perils and proactive measures

    Directory of Open Access Journals (Sweden)

    Rashmi Paramashivaiah

    2013-01-01

    Full Text Available Mechanized scaling for plaque removal is a routine procedure in the practice of periodontics. Though it appears innocuous by itself, there are retinues of hazards associated with it on various organ systems in the body. Some of these unwanted effects and measures to avoid or ameliorate the same are elaborated here. Exposure to ultrasonic scaling is inevitable before any other treatment procedure. Aerosol contamination, vibrational hazards, thermal effects on the dental pulp, altered vascular dynamics, disruption in electromagnetic device, diminished hearing and dental unit waterline contamination are some of the probable off-shoots a patient has to bear. Uses of barrier devices, proper attention to usage of equipment, protection for ear and water treatment are few of solutions for the same. Though documented evidence for the existence of all effects is lacking, it is never the less significant for the overall safety of the patient. A conscientious clinician should therefore inculcate the available steps to overcome the hazards of ultrasonic scaling.

  12. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  13. Mechanical spectroscopy, internal friction and ultrasonic attenuation: Collection of works

    International Nuclear Information System (INIS)

    Magalas, L.B.

    2009-01-01

    An extensive collection of recommended books and proceedings from numerous conferences on internal friction, mechanical spectroscopy, and ultrasonic attenuation is provided. Reflecting the complicated history of the 20th century, books published in English and in Russian are presented in two separate sections. International and national conferences organized in various countries are listed. Supplementary lists referring to conferences held in the People's Republic of China, Poland, Russia, the Soviet Union, and Ukraine are also provided. The interesting evolution of mechanical spectroscopy from internal friction and ultrasonic attenuation in solids is clearly demonstrated, and a choice list of retrospective papers illustrates the evolution of the field. A brief review of mechanical spectroscopy, therefore, is included. Numerous research areas investigated by internal friction and mechanical spectroscopy are addressed, including point defect relaxations, electronic and phonon relaxations, dislocation relaxations, grain boundary relaxations, domain induced relaxations (magnetic, ferroelectric), magnetomechanical relaxations, phase transformations, glass transitions, interface effects as well as a wide array of applications specific to physics and materials science. For many years now, there has been a definite need to provide a thorough list of references that might cover major national conferences and books published in English and other languages. This work strives to achieve this goal.

  14. Soft tissue-preserving computer-aided impression: a novel concept using ultrasonic 3D-scanning.

    Science.gov (United States)

    Vollborn, Thorsten; Habor, Daniel; Pekam, Fabrice Chuembou; Heger, Stefan; Marotti, Juliana; Reich, Sven; Wolfart, Stefan; Tinschert, Joachim; Radermacher, Klaus

    2014-01-01

    Subgingival preparations are often affected by blood and saliva during impression taking, regardless of whether one is using compound impression techniques or intraoral digital scanning methods. The latter are currently based on optical principles and therefore also need clean and dry surfaces. In contrast, ultrasonic waves are able to non-invasively penetrate gingiva, saliva, and blood, leading to decisive advantages, as cleaning and drying of the oral cavity becomes unnecessary. In addition, the application of ultrasound may facilitate the detection of subgingival structures without invasive manipulation, thereby reducing the risk of secondary infection and treatment time, and increasing patient comfort. Ultrasound devices commonly available for medical application and for the testing of materials are only suitable to a limited extent, as their resolution, precision, and design do not fulfill the requirements for intraoral scanning. The aim of this article is to describe the development of a novel ultrasound technology that enables soft tissue-preserving digital impressions of preparations for the CAD/CAM-based production of dental prostheses. The concept and development of the high-resolution ultrasound technique and the corresponding intraoral scanning system, as well as the integration into the CAD/CAM process chain, is presented.

  15. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  16. Effect of ultrasonic frequency on the mechanism of formic acid sono-lysis

    International Nuclear Information System (INIS)

    Chave, T.; Nikitenko, S.I.; Navarro, N.M.; Pochon, P.; Bisel, I.

    2011-01-01

    The kinetics and mechanism of formic acid sono-chemical degradation were studied at ultrasonic frequencies of 20, 200, and 607 kHz under argon atmosphere. Total yield of HCOOH sono-chemical degradation increases approximately 6-8-fold when the frequency increased from 20 to 200 or to 607 kHz. At low ultrasonic frequencies, HCOOH degradation has been attributed to oxidation with OH . radicals from water sono-lysis and to the HCOOH decarboxylation occurring at the cavitation bubble-liquid interface. With high-frequency ultrasound, the sono-chemical reaction is also influenced by HCOOH dehydration. Whatever the ultrasonic frequency, the sono-lysis of HCOOH yielded H 2 and CO 2 in the gas phase as well as trace, amounts of oxalic acid and formaldehyde in the liquid phase. However, CO and CH 4 formations were only detected under high frequency ultrasound. The most striking difference between low frequency and high frequency ultrasound is that the sono-lysis of HCOOH at high ultrasonic frequencies initiates Fischer-Tropsch hydrogenation of carbon monoxide. (authors)

  17. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    Science.gov (United States)

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-05-01

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Spinodal decomposition mechanism study on the duplex stainless steel UNS S31803 using ultrasonic speed measurements

    International Nuclear Information System (INIS)

    Albuquerque, Victor Hugo C. de; Macedo Silva, Edgard de; Pereira Leite, Josinaldo; Pindo de Moura, Elineudo; Araujo Freitas, Vera Lucia de; Tavares, Joao Manuel R.S.

    2010-01-01

    This work, focuses on the spinodal decomposition mechanism study on the duplex stainless steel duplex UNS S31803, composed by austenite (γ) and ferrite (α) phases, at 425 o C and 475 o C temperatures by ultrasonic speed measurements. This temperature range is responsible for the transformation mechanism of α initial phase to α phases (poor in chromium) and α' (rich in chromium) by spinodal decomposition. The techniques to accomplish this analysis are based mainly on X-ray diffraction measures and ultrasonic speed. The obtained results show that it is possible to conclude that the use of ultrasonic speed measurements indicates a promising technique for following-up the phase transformation and spinodal decomposition on the steel studied.

  19. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  20. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  1. Ultrasonic characterization of GRC with high percentage of fly ash substitution.

    Science.gov (United States)

    Genovés, V; Gosálbez, J; Miralles, R; Bonilla, M; Payá, J

    2015-07-01

    New applications of non-destructive techniques (NDT) with ultrasonic tests (attenuation and velocity by means of ultrasonic frequency sweeps) have been developed for the characterization of fibre-reinforced cementitious composites. According to new lines of research on glass-fibre reinforced cement (GRC) matrix modification, two similar GRC composites with high percentages of fly ash and different water/binder ratios will be studied. Conventional techniques have been used to confirm their low Ca(OH)(2) content (thermogravimetry), fibre integrity (Scanning Electron Microscopy), low porosity (Mercury Intrusion Porosimetry) and good mechanical properties (compression and four points bending test). Ultrasound frequency sweeps allowed the estimation of the attenuation and pulse velocity as functions of frequency. This ultrasonic characterization was correlated successfully with conventional techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Numerical Simulation and Experimental Investigation of the Viscoelastic Heating Mechanism in Ultrasonic Plasticizing of Amorphous Polymers for Micro Injection Molding

    Directory of Open Access Journals (Sweden)

    Bingyan Jiang

    2016-05-01

    Full Text Available Ultrasonic plasticizing of polymers for micro-injection molding has been proposed and studied for its unique potential in materials and energy-saving. In our previous work, we have demonstrated the characteristics of the interfacial friction heating mechanism in ultrasonic plasticizing of polymer granulates. In this paper, the other important heating mechanism in ultrasonic plasticizing, i.e., viscoelastic heating for amorphous polymer, was studied by both theoretical modeling and experimentation. The influence mechanism of several parameters, such as the initial temperature of the polymer, the ultrasonic frequency, and the ultrasonic amplitude, was investigated. The results from both numerical simulation and experimentation indicate that the heat generation rate of viscoelastic heating can be significantly influenced by the initial temperature of polymer. The glass transition temperature was found to be a significant shifting point in viscoelastic heating. The heat generation rate is relatively low at the beginning and can have a steep increase after reaching glass transition temperature. In comparison with the ultrasonic frequency, the ultrasonic amplitude has much greater influence on the heat generation rate. In light of the quantitative difference in the viscoelastic heating rate, the limitation of the numerical simulation was discussed in the aspect of the assumptions and the applied mathematical models.

  3. STADUS - Ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Saglio, Robert; Birac, A.M.; Frappier, J.C.

    1982-05-01

    The CEA (Commissariat a l'Energie Atomique) has developed a system for the acquisition and analysis of data recorded during ultrasonic testing. Initially this system was designed and built for the needs of in-service inspection of PWR type power reactors. It is in far wider use today for miscellaneous automatic ultrasonic inspection procedures. This system records, in digital form, the ultrasonic data supplied by the transducers (maximum 16 simultaneous channels), and the geometric coordinates defining the position of the inspection tool. Based on these data, which are recorded on floppy disk, this system helps to display data in the form of A SCAN, B SCAN and C SCAN images. In addition, processing programs of data transfer from the STADUS floppy disks have been developed and inserted on computers more powerful than the one used in the STADUS system. These programs serve to obtain different fault charts on an adjustable scale, as well as listings concerning the defect positions and dimensions [fr

  4. Chemical coloring on stainless steel by ultrasonic irradiation.

    Science.gov (United States)

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanisms of microstructure formation under the influence of ultrasonic vibrations

    Science.gov (United States)

    Rakita, Milan

    Positive effects of ultrasound on crystallization have been known for almost 90 years. Application of ultrasound has been very successful in many industries, most notably in chemistry, creating a new branch of science - sonochemistry. However, ultrasonication has not found wide commercial application in the solidification processing. The reason for that is the complexity of underlying phenomena and the lack of predicting models which correlate processing parameters with the properties of a product. The purpose of this study is to give some contribution toward better understanding of mechanisms that lead to changes in the solidifying microstructure. It has been found that, under experimental conditions used in this work, cavitation-induced nucleation is the major contributor to the grain refinement. Ultrasonication at minimal supercoolings is expected to give maximal grain refinement. Dendrite fragmentation has not shown to be a significant contributor to the grain refinement. Dendrite fragmentation is maximal if done by bubbles that come in contact with the solidifying phase, or that are created there. Alloys/solutions with long solidification interval, or wide mushy zone, are expected to exhibit more dendrite fragmentation. Bubbles are recognized as a crucial feature in ultrasonication. Their size distribution in the liquid phase prior to ultrasonication dictates the cavitation threshold and intensity of cavitation. For the first time, radiation pressure has been recognized as potentially significant factor in grain refinement. In the experimental setup used in this study, acoustic pressure at the main (driving) frequency is not substantial to cause significant fragmentation, and only dendrites close to the sonotrode were fragmented. However, application of ultrasound with frequencies that are several times higher than the current industrial practice could substantially increase dendrite fragmentation. Appearance of fractional harmonics has also been recognized

  6. Detailed simulation of ultrasonic inspections

    International Nuclear Information System (INIS)

    Chaplin, K.R.; Douglas, S.R.; Dunford, D.

    1997-01-01

    Simulation of ultrasonic inspection of engineering components have been performed at the Chalk River Laboratories of AECL for over 10 years. The computer model, called EWE for Elastic Wave Equations, solves the Elastic Wave Equations using a novel finite difference scheme. It simulates the propagation of an ultrasonic wave from the transducer to a flaw, the scatter of waves from the flaw, and measurement of signals at a receive transducer. Regions of different materials, water and steel for example, can be simulated. In addition, regions with slightly different material properties from the parent material can be investigated. The two major types of output are displays of the ultrasonic waves inside the component and the corresponding A-scans. EPRI and other organizations have used ultrasonic models for: defining acceptable ultrasonic inspection procedures, designing and evaluating inspection techniques, and for quantifying inspection reliability. The EWE model has been applied to the inspection of large pipes in a nuclear plant, gas pipeline welds and steam generator tubes. Most recent work has dealt with the ultrasonic inspection of pressure tubes in CANDU reactors. Pressure tube inspections can reliably detect and size defects; however, there are improvements that can be made. For example, knowing the sharpness of a flaw-tip is crucial for fitness for service assessments. Computer modelling of the ultrasonic inspection of flaws with different root radius has suggested inspection techniques that provide flaw tip radius information. A preliminary investigation of these methods has been made in the laboratory. The basis for the model will be reviewed at the presentation. Then the results of computer simulations will be displayed on a PC using an interactive program that analyzes simulated A-scans. This software tool gives inspection staff direct access to the results of computer simulations. (author)

  7. Analytical modelling for ultrasonic surface mechanical attrition treatment

    Directory of Open Access Journals (Sweden)

    Guan-Rong Huang

    2015-07-01

    Full Text Available The grain refinement, gradient structure, fatigue limit, hardness, and tensile strength of metallic materials can be effectively enhanced by ultrasonic surface mechanical attrition treatment (SMAT, however, never before has SMAT been treated with rigorous analytical modelling such as the connection among the input energy and power and resultant temperature of metallic materials subjected to SMAT. Therefore, a systematic SMAT model is actually needed. In this article, we have calculated the averaged speed, duration time of a cycle, kinetic energy and kinetic energy loss of flying balls in SMAT for structural metallic materials. The connection among the quantities such as the frequency and amplitude of attrition ultrasonic vibration motor, the diameter, mass and density of balls, the sample mass, and the height of chamber have been considered and modelled in details. And we have introduced the one-dimensional heat equation with heat source within uniform-distributed depth in estimating the temperature distribution and heat energy of sample. In this approach, there exists a condition for the frequency of flying balls reaching a steady speed. With these known quantities, we can estimate the strain rate, hardness, and grain size of sample.

  8. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A. [Berkeley Sensor and Actuator Center, University of California, Davis, 1 Shields Avenue, Davis, California 95616 (United States); Tang, H.; Boser, B. E. [Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States); Tsai, J. M.; Daneman, M. [InvenSense, Inc., 1745 Technology Drive, San Jose, California 95110 (United States)

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  9. Sonochemical analysis of the output of ultrasonic dental descalers

    OpenAIRE

    King, David

    2010-01-01

    Ultrasonic descalers are used in dentistry to remove calculus and other contaminants from teeth. One mechanism which may assist in the cleaning is cavitation generated in cooling water around the descaler. The spatial distribution of cavitation around three designs of descaler tips and under three load conditions has been observed using sonochemiluminescence from a luminol solution and compared with the vibratory motion of the tips in a water bath, characterised by scanning laser vibrometry. ...

  10. Actively adjustable step-type ultrasonic horns in longitudinal vibration

    Science.gov (United States)

    Lin, Shuyu; Guo, Hao; Xu, Jie

    2018-04-01

    Actively adjustable longitudinal step-type ultrasonic horns are proposed and studied. The horn is composed of a traditional ultrasonic horn and piezoelectric material. In practical applications, this kind of step-type ultrasonic horn is mechanically excited by an ultrasonic transducer and the piezoelectric material is connected to an adjustable electric impedance. In this research, the effects of the electric impedance and of the location of the piezoelectric material on the performance of the horn are studied. It is shown that when the electric resistance is increased, the resonance frequency of the horn is increased; the displacement magnification is increased when the piezoelectric material is located in the large end and decreased when the piezoelectric material is located in the small end of the horn. The displacement magnification for the piezoelectric material in the large end is larger than that for the piezoelectric material in the small end of the horn. Some step-type ultrasonic horns are designed and manufactured; the resonance frequency and the displacement magnification are measured by means of POLYTEC Laser Scanning vibrometer. It is shown that the theoretical resonance frequency and the displacement magnification are in good agreement with the measured results. It is concluded that by means of the insertion of the piezoelectric material in the longitudinal horn, the horn performance can be adjusted by changing the electric impedance and the location of the piezoelectric material in the horn. It is expected that this kind of adjustable ultrasonic horns can be used in traditional and potential ultrasonic technologies where the vibrational performance adjustment is needed.

  11. The STADUS ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Frappier, J.C.; Birac, A.M.; Saglio, R.

    1983-01-01

    The use of the PRODUS software for real-time system management results in definitely improved date acquisition, although signal arrival is, of course, a random process. As regards data processing and display; the STADUS-PRODUS combination provides the operator with a high degree of flexibility in changing the parameters from which the three standard A-SCAN, B-SCAN, and C-SCAN displays are generated. STADUS effectivity has been demonstrated in the field through the many reactor vessel inspections performed to date. The system has been a key element in the success of underclad cracking detection and evaluation methods. The STADUS equipment, designed and built by CEA, has the advantage of being capable of acquiring a large number of ultrasonic date simultaneously generated by several transducers (up to sixteen), and to immediately process the date for creating pictures of the zone under examination, as required by the operator. Through these improvements in ultrasonic data acquisition and interpretation, the STADUS system helps enhance the quality of automatic ultrasonic examinations

  12. Development of automatic ultrasonic testing system and its application

    International Nuclear Information System (INIS)

    Oh, Sang Hong; Matsuura, Toshihiko; Iwata, Ryusuke; Nakagawa, Michio; Horikawa, Kohsuke; Kim, You Chul

    1997-01-01

    The radiographic testing (RT) has been usually applied to a nondestructive testing, which is carried out on purpose to detect internal defects at welded joints of a penstock. In the case that RT could not be applied to, the ultrasonic testing (UT) was performed. UT was generally carried out by manual scanning and the inspections data were recorded by the inspector in a site. So, as a weak point, there was no objective inspection records correspond to films of RT. It was expected that the automatic ultrasonic testing system by which automatic scanning and automatic recording are possible was developed. In this respect, the automatic ultrasonic testing system was developed. Using newly developed the automatic ultrasonic testing system, test results to the circumferential welded joints of the penstock at a site were shown in this paper.

  13. A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.

    2006-01-01

    This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1

  14. Assessment of cumulative damage by using ultrasonic C-scan on carbon fiber/epoxy composites under thermal cycling

    Directory of Open Access Journals (Sweden)

    Marcos Yutaka Shiino

    2012-08-01

    Full Text Available In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.

  15. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  16. Development of phased-array ultrasonic testing probe

    International Nuclear Information System (INIS)

    Kawanami, Seiichi; Kurokawa, Masaaki; Taniguchi, Masaru; Tada, Yoshihisa

    2001-01-01

    Phased-array ultrasonic testing was developed for nondestructive evaluation of power plants. Phased-array UT scans and focuses an ultrasonic beam to inspect areas difficult to inspect by conventional UT. We developed a highly sensitive piezoelectric composite, and designed optimized phased-array UT probes. We are applying our phased-array UT to different areas of power plants. (author)

  17. Ultrasonic leak detection

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1977-01-01

    A scanning ultrasonic microphone was used to detect the presence and locate the sources of hydraulic noises in piping systems in a reactor environment. The intensity changes of the noises correspond to changes of flow conditions within the system caused by throttled valves, flow rate changes, and leaks. (author)

  18. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Ripeng Jiang

    2014-07-01

    Full Text Available The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  19. Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting

    International Nuclear Information System (INIS)

    Tan, Haihui; Xu, Guanghua; Tao, Tangfei; Zhang, Sicong; Luo, Ailing

    2016-01-01

    Highlights: • Optimal defrosting mode for finned-tube evaporator is S0 mode. • Stress excited by ultrasonic vibration is larger than ice adhesion stress 0.4 MPa. • Frequency matching can enhance the defrosting efficiency effectively. • Ultrasonic vibration can effectively suppressing the frost deposition. • Thermal comfort and heat transfer efficiency enhanced with ultrasonic vibration. - Abstract: Frosting deposited on the outdoor coil of air-source heat pump (ASHP) units deteriorates the operational performance and energy efficiency. Therefore, periodic defrosting is necessary. First, the dispersion curves for the propagation mechanism of an ultrasonic guided wave in the evaporator are determined through numerical calculation. In addition, the shear stress and vibration characteristics under ultrasonic excitation are analysed using finite element method (FEM). Finally, the vibration amplitude and defrosting performance of ultrasonic vibration is analysed. The numerical calculation results indicate that three guided wave modes exist in the evaporator, including both A0 and S0 modes of the Lamb wave and SH0 mode of the SH wave, with the optimal defrosting mode being S0 of the Lamb wave. The FEM results show that the vibrational shapes of S0 mode and longitudinal mode clearly exists in the fin and tube, the torsional and flexural modes also exist in the tube, and the FEM results are consistent with the numerical calculation results. The impedance analysis and laser vibrometer results indicate that the resonance frequency shifting, electro-acoustic converting efficiency and vibration energy decrease is due to increasing external load. The ultrasonic defrosting experimental results indicate that ultrasonic vibration can suppress frost deposit on the fin surface.

  20. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  1. A numerical model for ultrasonic measurements of swelling and mechanical properties of a swollen PVA hydrogel.

    Science.gov (United States)

    Lohakan, M; Jamnongkan, T; Pintavirooj, C; Kaewpirom, S; Boonsang, S

    2010-08-01

    This paper presents a numerical model for the evaluation of mechanical properties of a relatively thin hydrogel. The model utilizes a system identification method to evaluate the acoustical parameters from ultrasonic measurement data. The model involves the calculation of the forward model based on an ultrasonic wave propagation incorporating diffraction effect. Ultrasonic measurements of a hydrogel are also performed in a reflection mode. A Nonlinear Least Square (NLS) algorithm is employed to minimize difference between the results from the model and the experimental data. The acoustical parameters associated with the model are effectively modified to achieve the minimum error. As a result, the parameters of PVA hydrogels namely thickness, density, an ultrasonic attenuation coefficient and dispersion velocity are effectively determined. In order to validate the model, the conventional density measurements of hydrogels were also performed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibo [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@mail.tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The present work integrates 3D digital optical microscopy (OM), nano-indentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to systematically investigate the effect of electropulsing on the surface mechanical properties and microstructure of AISI 304 stainless steel during the ultrasonic surface rolling process (USRP). Compared with the original USRP, the introduction of electropulsing with optimal parameters can effectively facilitate surface crack healing and improve surface hardness and wear resistance dramatically, and the residual compressive stress is further enhanced. Meanwhile, more martensite phase and fewer deformation twins can be found in the strengthened layer. Rapid improvement of the surface mechanical properties should be attributed to the ultra-refined grains, accelerated martensitic phase transformation and suppressed deformation twining induced by the coupling effect of USRP and electropulsing. The high strain rate given by USRP, increased stacking fault energy and accelerated dislocation mobility caused by electropulsing are likely the primary intrinsic reasons for the observed phenomena.

  3. Implementation of efficient trajectories for an ultrasonic scanner using chaotic maps

    Science.gov (United States)

    Almeda, A.; Baltazar, A.; Treesatayapun, C.; Mijarez, R.

    2012-05-01

    Typical ultrasonic methodology for nondestructive scanning evaluation uses systematic scanning paths. In many cases, this approach is time inefficient and also energy and computational power consuming. Here, a methodology for the scanning of defects using an ultrasonic echo-pulse scanning technique combined with chaotic trajectory generation is proposed. This is implemented in a Cartesian coordinate robotic system developed in our lab. To cover the entire search area, a chaotic function and a proposed mirror mapping were incorporated. To improve detection probability, our proposed scanning methodology is complemented with a probabilistic approach of discontinuity detection. The developed methodology was found to be more efficient than traditional ones used to localize and characterize hidden flaws.

  4. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P. [Riso National Lab. (Denmark)

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  5. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    International Nuclear Information System (INIS)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-01-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today

  6. Evaluation of computer-based ultrasonic inservice inspection systems

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T.

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems

  7. Development and Implementation of an Ultrasonic Method to Characterize Acoustic and Mechanical Fingernail Properties

    Science.gov (United States)

    Vacarescu, Rares Anthony

    The human fingernail is a vital organ used by humans on a daily basis and can provide an immense supply of information based on the biological feedback of the body. By studying the quantitative mechanical and acoustic properties of fingernails, a better understanding of the scarcely-investigated field of ungual research can be explored. Investigating fingernail properties with the use of pulse-echo ultrasound is the aim of this thesis. This thesis involves the application of a developed portable ultrasonic device in a hospital-based data collection and the advancement of ultrasonic methodology to include the calculation of acoustic impedance, density and elasticity. The results of the thesis show that the reflectance method can be utilized to determine fingernail properties with a maximum 17% deviation from literature. Repeatability of measurements fell within a 95% confidence interval. Thus, the ultrasonic reflectance method was validated and may have potential clinical and cosmetic applications.

  8. Simulation of a circular phased array for a portable ultrasonic polar scan

    Science.gov (United States)

    Daemen, Jannes; Kersemans, Mathias; Martens, Arvid; Verboven, Erik; Delrue, Steven; Van Paepegem, Wim; Degrieck, Joris; Van Den Abeele, Koen

    2018-04-01

    The development of new composite materials, often anisotropic in nature, requires intricate approaches to characterize these materials and to detect internal defects. The Ultrasonic Polar Scan (UPS) is able to achieve both goals. During an UPS experiment, a material spot is insonified at several angles Ψ(θ,ϕ), after which the reflected or transmitted signal is recorded. While excellent results have been obtained using an in-house developed 5-axis scanner, UPS measurements with the current set-up are too lengthy and cumbersome for in-situ industrial application. Therefore, we propose to replace the complex mechanical steering of the transducers by a hemispherical phased array consisting of small PZT elements. This allows to create a compact and portable setup without compromising the current data quality. By successively activating a specific set of elements of the array and choosing appropriate inter-element time delays, the beam can be electronically steered from any angle to a fixed position on the targeted sample. Consequently, UPS reflection measurements can be performed at this position from a wide range of angles in a timeframe of seconds. Additionally, by using apodization windows, it is possible to efficiently reduce the intensity of unwanted side lobes and to create a phase profile which closely resembles that of a bounded plane wave, leading to an easier interpretation of the recorded data. The appropriate time delays and apodization parameters can be found though a multi-objective inverse problem in which both the phase profile and the side lobe reduction are optimized. This approach enables the creation of an effective beam profile to be used during UPS experiments for the characterization and inspection of composite materials. Our simulation approach is a crucial step towards a next-generation UPS device for industrial applications and in-field measurements.

  9. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Challender, R.S.

    1975-01-01

    Apparatus is described for use in carrying out ultrasonic inspection of coolant nozzles of nuclear reactor pressure vessels. It comprises a manipulator for supporting an ultrasonic scanning transducer within the coolant nozzle. The manipulator is carried by a support located within the pressure vessel and comprises a pair of legs pivotable in caliper manner to span the base of the nozzle. Means are provided for pivoting the legs together to enable free entry of the manipulator and scanning transducer into the nozzle, and for pivoting the legs apart to bring the transducer into an operating position adjacent to the wall of the nozzle. The manipulator is rotatable within the nozzle to enable scanning of its interior surface. (U.K.)

  10. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  11. Ultrasonic phased arrays for nondestructive inspection of forgings

    International Nuclear Information System (INIS)

    Wuestenberg, H.; Rotter, B.; Klanke, H.P.; Harbecke, D.

    1993-01-01

    Ultrasonic examinations on large forgings like rotor shafts for turbines or components for nuclear reactors are carried out at various manufacturing stages and during in-service inspections. During the manufacture, most of the inspections are carried out manually. Special in-service conditions, such as those at nuclear pressure vessels, have resulted in the development of mechanized scanning equipment. Ultrasonic probes have improved, and well-adapted sound fields and pulse shapes and based on special imaging procedures for the representation of the reportable reflectors have been applied. Since the geometry of many forgings requires the use of a multitude of angles for the inspections in-service and during manufacture, phased-array probes can be used successfully. The main advantages of the phased-array concept, e.g. the generation of a multitude of angles with the typical increase of redundancy in detection and quantitative evaluation and the possibility to produce pictures of defect situations, will be described in this contribution

  12. Research towards ultrasonic systems to assist in-vessel manipulations in liquid metal cooled reactors

    International Nuclear Information System (INIS)

    Dierckx, Marc; Van-Dyck, Dries

    2013-06-01

    We describe the state of the art of the research towards ultrasonic measurement methods for use in lead-bismuth cooled liquid metal reactors. Our current research activities are highly focused on specific tasks in the MYRRHA system, which is a fast spectrum research reactor cooled with the eutectic mixture of lead and bismuth (LBE) and is conceived as an accelerator driven system capable of operating in both sub-critical and critical mode. As liquid metal is opaque to light, normal visual feedback during fuel manipulations in the reactor vessel is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic measurement techniques have been proposed and even developed in the past for operation in sodium cooled reactors. To our knowledge, no such systems have ever been deployed in lead based reactors and we are the first to have a research program in this direction as will be detailed in this paper. We give an overview of the acoustic properties of LBE and compare them with the properties of sodium and water to theoretically show the feasibility of ultrasonic systems operating in LBE. In the second part of the paper we discuss the results of the validation experiments in water and LBE. A typical scene is ultrasonically probed by a mechanical scanning system while the signals are processed to render a 3D visualization on a computer screen. It will become clear that mechanical scanning is capable of producing acceptable images but that it is a time consuming process that is not fit to solve the initial task to providing feedback during manipulations in the reactor vessel. That is why we propose to use several dedicated ultrasonic systems each adapted to a specific task and capable to provide real-time feedback of the ongoing manipulations, as is detailed in the third and final part of the paper. (authors)

  13. Enhancement of crack detection in stud bolts of nuclear reactor by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon-Hyun; Choi, Sang-Woo; Oh, Won-Deok

    2004-01-01

    The stud bolt is one of crucial parts for safety of reactor vessels in nuclear power plants. Crack initiation and propagation were reported in stud bolts using closure of reactor vessel and head. Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure and radioactive leakage from nuclear reactor. In conventional ultrasonic testing for inspection of stud bolts, crack was detected by using shadow effect. It takes too much time to inspect stud bolt by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread. In this study, the signal processing technique for enhancing conventional ultrasonic technique and the advanced ultrasonic phased array technique were introduced for inspect stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. The phased array technique provides fast inspection and can be applied for structure of complex shape. There are sector scanning and linear scanning methods in phased array technique, and these scanning methods were applied to inspect stud bolt and detectability was investigated. (author)

  14. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  15. Laser ultrasonics for civil engineering : some applications in development for concrete non destructive testing

    International Nuclear Information System (INIS)

    Abraham, O; Cottineau, L-M; Durand, O; Popovics, J S

    2011-01-01

    Non destructive testing of civil engineering infrastructures is becoming of primary importance for their diagnosis, residual time life estimation and/or structural health monitoring. A particularity of civil engineering application is the large size of the survey zones and the expected low cost of inspection. In this context non contact ultrasonics may offer the possibility to built robots that can automatically scan large areas (or eventually be integrated in moving vehicles) to recover mechanical properties of material or to perform imagery for geometrical information recovery. In this paper we present two possible applications of in situ laser ultrasonics : one is the detection of voids in tendon duct with the impact echo method, the other is the use of surface waves to recover mechanical properties of the first centimetres of concrete structures (here after called cover concrete).

  16. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    Science.gov (United States)

    Lu, Yipeng

    phantom. Finally, a novel ultrasonic fingerprint sensor was demonstrated using a 24x8 array of 22 MHz PMUTs with 100 microm pitch, fully integrated with 180 nm CMOS circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20x8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D PDMS fingerprint phantom (10 mm by 8 mm) at a 1.2 mm distance from the array.

  17. Inverse method for effects characterization from ultrasonic b-scan images

    International Nuclear Information System (INIS)

    Faur, M.

    1999-02-01

    In service inspections of French nuclear pressure water reactor vessels are carried out automatically in complete immersion from the inside by means of ultrasonic focused probes working in the pulse echo mode. Concern has been expressed about the capabilities of performing non destructive evaluation of the Outer Surface Defects (OSD), i.e. defects located in the vicinity of the outer surface of the inspected components. OSD are insonified by both a direct field that passes through the inner surface (water/steel) of the component containing the defect and a secondary field reflected from the outer surface. Consequently, the Bscan images, containing the signatures of such defects, are complicated and their interpretation is a difficult task. This work deals with extraction of the maximum available information for characterizing OSD from ultrasonic Bscan images. Our main objectives are to obtain the type of OSD and their geometric parameters by means of two specific inverse methods. The first method is used for the identification of the geometrical parameters of the equivalent planar OSD from segmented Bscan images. Ultrasonic equivalent defect sizing model-based methods may be used to size a defect in a material by obtaining a best-fit simple equivalent shape that matches the ultrasonic observed data. We illustrate the application of such an equivalent sizing OSD method that is based on a simplified direct model. The major drawback of this identification method, as used to date, is that only a part of the useful information contained into original Bscan image, i.e. segmented Bscan image, is used for defect characterization. Moreover, it requires the availability of defect classification information (i.e. if the defect is volumetric or planer, e. g. a crack or a lack of fusion), which, generally, may be as difficult to obtain as the defect parameters themselves. Therefore, we propose a parameter estimation method for extracting complementary information on the defect

  18. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A Small Crack Length Evaluation Technique by Electronic Scanning

    International Nuclear Information System (INIS)

    Cho, Yong Sang; Kim, Jae Hoon

    2009-01-01

    The results of crack evaluation by conventional UT(Ultrasonic Test)is highly depend on the inspector's experience or knowledge of ultrasound. Phased array UT system and its application methods for small crack length evaluation will be a good alternative method which overcome present UT weakness. This study was aimed at checking the accuracy of crack length evaluation method by electronic scanning and discuss about characteristics of electronic scanning for crack length evaluation. Especially ultrasonic phased array with electronic scan technique was used in carrying out both sizing and detect ability of crack as its length changes. The response of ultrasonic phased array was analyzed to obtain the special method of determining crack length without moving the transducer and detectability of crack minimal length and depth from the material. A method of crack length determining by electronic scanning for the small crack is very real method which has it's accuracy and verify the effectiveness of method compared to a conventional crack length determination

  20. Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks

    Directory of Open Access Journals (Sweden)

    C. Galán-Marín

    2013-01-01

    Full Text Available The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, and energy dispersive X-ray fluorescence (EDXRF techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.

  1. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    Science.gov (United States)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  2. Experimental issues at ultrasonically aided micro-EDM of CoCr alloys

    Directory of Open Access Journals (Sweden)

    Marinescu Niculae

    2017-01-01

    Full Text Available The paper deals with researches of microtopography obtained at different working modes at ultrasonically aided micro-electrical discharge machining (μEDM+US and pure micro-EDM, using both commanded and relaxation pulses. Images of machined surface taken with scanning electron microscope were analyzed in correlation with chemical composition of samples detected by X rays spectrometer. This led to some explanations of material removal mechanism, aiming at improvement of process modelling and performances increase of μEDM+US.

  3. Application of ultrasonic phased array technique for inspection of stud bolts in nuclear reactor vessel

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Ho; Park, Min Su; Cho, Youn Ho; Park, Moon Ho

    2004-01-01

    The stud bolt is one of crucial parts for safety of reactor vessels in nuclear power plants. Cracks initiation and propagation were reported in stud bolts using closure of reactor vessel and head. Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure and radioactive leakage from nuclear reactor. In conventional ultrasonic testing for inspection of stud bolts, crack was detected by using shadow effect. It take too much time to inspect stud bolt by using conventional ultrasonic technique. In addition, there were numerous spurious signal reflected from every thread. In this study, the advanced ultrasonic phased array technique was introduced for inspect stud bolts. The phased array technique provide fast inspection and high detectability of defects. There are sector scanning and linear scanning method in phased array technique, and these scanning methods were applied to inspect stud bolt and detectability was investigated.

  4. The Effect of Ultrasonic Treatment on Thermal Stability of the Cured Epoxy/Layered Silicate Nanocomposite

    Directory of Open Access Journals (Sweden)

    N. Y. Yuhana

    2012-01-01

    Full Text Available The effect of ultrasonic treatment on thermal stability of binary systems containing epoxy and organic chemically modified montmorillonite (Cloisite 30B was studied. Differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA, transmission electron microscopy (TEM, and wide angle X-ray diffraction (WAXD analysis were utilized. The mixing of epoxy and Cloisite 30B nanocomposites was performed by mechanical stirring, followed by 1 or 3-hour ultrasonic treatment, and polyetheramine as the curing agent. Both XRD and TEM analyses confirmed that the intercalation of Cloisite 30B was achieved. The d0 spacings for silicate in cured sample prepared at 1- and 3-hour duration of ultrasonic treatment were about 21 and 18 Å, respectively. This shows that shorter duration or ultrasonic treatment may be preferable to achieve higher d0 spacing of clay. This may be attributed to the increase in viscosity as homopolymerization process occurred, which restricts silicate dispersion. The 1-hour sonicated samples seem to be more thermally stable during the glass transition, but less stable during thermal decomposition process.

  5. Structural model of standard ultrasonic transducer array developed for FEM analysis of mechanical crosstalk.

    Science.gov (United States)

    Celmer, M; Opieliński, K J; Dopierała, M

    2018-02-01

    One of the reasons of distortions in ultrasonic imaging are crosstalk effects. They can be divided into groups according to the way of their formation. One of them is constituted by mechanical crosstalk, which is propagated by a construction of a multi-element array of piezoelectric transducers. When an individual transducer is excited, mechanical vibrations are transferred to adjacent construction components, thereby stimulating neighboring transducers to an undesired operation. In order to explore ways of the propagation of such vibrations, the authors developed the FEM model of the array of piezoelectric transducers designed for calculations in COMSOL Multiphysics software. Simulations of activating individual transducers and calculated electrical voltages appearing on transducers unstimulated intentionally, were performed in the time domain in order to assess the propagation velocity of different vibration modes through the construction elements. On this basis, conclusions were drawn in terms of the participation of various construction parts of the array of piezoelectric transducers in the process of creating the mechanical crosstalk. The elaborated FEM model allowed also to examine the ways aimed at reducing the transmission of mechanical crosstalk vibrations through the components of the array. Studies showed that correct cuts in the fasteners and the front layer improve the reduction of the mechanical crosstalk effect. The model can become a helpful tool in the process of design and modifications of manufactured ultrasonic arrays particularly in terms of mechanical crosstalk reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ultrasonic grinding method

    International Nuclear Information System (INIS)

    Miyahara, Shuji.

    1990-01-01

    An ultrasonic generator and a liquid supply nozzle are opposed to an object to be ground and a pump is started in this state to supply an organic solvent. Matters to be decontaminated which adheres to the surface of the object to be ground and are difficult to be removed by a mere mechanical removing method can be eliminated previously by the surface active effect of the organic solvent such as ethanol prior to the oscillation of the ultrasonic generator. Subsequently, when the ultrasonic generator is oscillated, scales in the floated state can be removed simply. Further, since the organic solvent can penetrate to provide the surface active effect even in such a narrow portion that the top end of the ultrasonic generator is difficult to the intruded at the surface of the object to be ground, the decontaminating treatment can be applied also to such a narrow portion. (T.M.)

  7. Wave propagation visualization in an experimental model for a control rod drive mechanism assembly

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Jeong, Hyomi; Kong, Churl-Won

    2011-01-01

    Highlights: → We fabricate a full-scale mock-up of the control rod drive mechanism (CRDM) assembly in the upper reactor head of the nuclear power plant. → An ultrasonic propagation imaging method using a scanning laser ultrasonic generator is proposed to visualize and simulate ultrasonic wave propagation around the CRDM assembly. → The ultrasonic source location and frequency are simulated by changing the sensor location and the band pass-filtering zone. → The ultrasonic propagation patterns before and after cracks in the weld and nozzle of the CRDM assembly are analyzed. - Abstract: Nondestructive inspection techniques such as ultrasonic testing, eddy current testing, and visual testing are being developed to detect primary water stress corrosion cracks in control rod drive mechanism (CRDM) assemblies of nuclear power plants. A unit CRDM assembly consists of a reactor upper head including cladding, a penetration nozzle, and J-groove dissimilar metal welds with buttering. In this study, we fabricated a full-scale CRDM assembly mock-up. An ultrasonic propagation imaging (UPI) method using a scanning laser ultrasonic generator is proposed to visualize and simulate ultrasonic wave propagation around the thick and complex CRDM assembly. First, the proposed laser UPI system was validated for a simple aluminium plate by comparing the ultrasonic wave propagation movie (UWPM) obtained using the system with numerical simulation results reported in the literature. Lamb wave mode identification and damage detectability, depending on the ultrasonic frequency, were also included in the UWPM analysis. A CRDM assembly mock-up was fabricated in full-size and its vertical cross section was scanned using the laser UPI system to investigate the propagation characteristics of the longitudinal and Rayleigh waves in the complex structure. The ultrasonic source location and frequency were easily simulated by changing the sensor location and the band pass filtering zone

  8. Comparison of heating deposition patterns for stacked linear phased array and fixed focus ultrasonic hyperthermia applicators

    International Nuclear Information System (INIS)

    Ocheltree, K.B.; Benkeser, P.J.; Frizzell, L.A.; Cain, C.A.

    1985-01-01

    An ultrasonic stacked linear phased array applicator for hyperthermia has been designed to heat tumors at depths from 5 to 10 cm. The power deposition pattern for this applicator is compared to that for a fixed focus applicator for several different scan paths. The power deposition pattern for the stacked linear phased array shows hot spots that are not observed for the mechanically scanned fixed focus applicator. These hot spots are related to the skewed power deposition pattern resulting from scanning the focus off the center of the linear arrays. The overall performance of the stacked linear phased array applicator is compared to that of a fixed focus applicator

  9. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Michael Plaksin

    2014-01-01

    Full Text Available Low-intensity ultrasonic waves can remotely and nondestructively excite central nervous system (CNS neurons. While diverse applications for this effect are already emerging, the biophysical transduction mechanism underlying this excitation remains unclear. Recently, we suggested that ultrasound-induced intramembrane cavitation within the bilayer membrane could underlie the biomechanics of a range of observed acoustic bioeffects. In this paper, we show that, in CNS neurons, ultrasound-induced cavitation of these nanometric bilayer sonophores can induce a complex mechanoelectrical interplay leading to excitation, primarily through the effect of currents induced by membrane capacitance changes. Our model explains the basic features of CNS acoustostimulation and predicts how the experimentally observed efficacy of mouse motor cortical ultrasonic stimulation depends on stimulation parameters. These results support the hypothesis that neuronal intramembrane piezoelectricity underlies ultrasound-induced neurostimulation, and suggest that other interactions between the nervous system and pressure waves or perturbations could be explained by this new mode of biological piezoelectric transduction.

  10. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  11. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  12. Effect of Discontinuous Ultrasonic Treatment on Mechanical Properties and Microstructure of Cast Al413-SiCnp Nanocomposites

    Directory of Open Access Journals (Sweden)

    M.R. Dehnavi

    2015-05-01

    Full Text Available Effects of discontinuous ultrasonic treatment on the microstructure, nanoparticle distribution, and mechanical properties of cast Al413-SiCnp nanocomposites were studied. The results showed that discontinuous ultrasonic treatment was more effective in improving the mechanical properties of the cast nanocomposites than the equally timed continuous treatment. The yield and ultimate tensile strengths of Al413-2%SiCnp nanocomposites discontinuously treated for two 20 minute periods increased by about 126% and 100% compared to those of the monolithic sample, respectively. These improvements were about 107% and 94% for the nanocomposites continuously treated for a single 40 minute period. The improvement in the mechanical properties was associated with severe refinement of the microstructure, removal of the remaining gas layers on the particles surfaces, more effective fragmentation of the remaining agglomerates as well as improved wettability and distribution of the reinforcing particles during the first stage of solidification.

  13. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  14. Advanced Ultrasonic Tomograph of Children's Bones

    Science.gov (United States)

    Lasaygues, Philippe; Lefebvre, Jean-Pierre; Guillermin, Régine; Kaftandjian, Valérie; Berteau, Jean-Philippe; Pithioux, Martine; Petit, Philippe

    This study deals with the development of an experimental device for performing ultrasonic computed tomography (UCT) on bone in pediatric degrees. The children's bone tomographs obtained in this study, were based on the use of a multiplexed 2-D ring antenna (1 MHz and 3 MHz) designed for performing electronic and mechanical scanning. Although this approach is known to be a potentially valuable means of imaging objects with similar acoustical impedances, problems arise when quantitative images of more highly contrasted media such as bones are required. Various strategies and various mathematical procedures for modeling the wave propagation based on Born approximations have been developed at our laboratory, which are suitable for use with pediatric cases. Inversions of the experimental data obtained are presented.

  15. Data collection instrumentation for ultrasonic imaging under sodium

    International Nuclear Information System (INIS)

    McKnight, J.A.; Parker, J.A.

    1981-05-01

    A team at the Risley Nuclear Power Development Establishment has been developing apparatus for the production of ultrasonic images under opaque liquids. The technique is intended for examining objects under liquid sodium at 300 0 C, and the range of possible methods is restricted as a consequence. The method chosen uses pulse-echo ultrasonics combined with mechanical scanning to assemble the final image. The data is collected using a CAMAC system under the control of an Intel 8080 microprocessor. The data is analysed separately and presented on a colour display using a DEC LSl 11 microprocessor controlled system. To achieve the required performance a number of special electronic assemblies were made. A single image requires 2.5 M byte of data. The cost of using the apparatus on a Fast Reactor is such that it is prudent to provide back-up data collection through a data link, and to maximise the data collection rate. This causes problems with the interrupt cycle time of the CAMAC controller, which can be resolved using synchronous programs specifically tailored to each application. (author)

  16. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  17. Stand for visual ultrasonic testing of spent fuel

    International Nuclear Information System (INIS)

    Czajkowski, W.; Borek-Kruszewska, E.

    2001-01-01

    A stand for visual and ultrasonic testing of spent fuel, constructed under Strategic Governmental Programme for management of spent fuel and radioactive waste, is presented in the paper. The stand, named 'STEND-1', built up at the Institute of Atomic Energy in Swjerk, is appointed for underwater visual testing of spent fuel elements type MR6 and WWR by means of TV-CCD camera and image processing system and for ultrasonic scanning of external surface of these elements by means of video scan immersion transducer and straight UHT connector. 'STEND-1' is built using flexible in use, high-tensile, anodized aluminum profiles. All the profiles feature longitudinal grooves to accommodate connecting elements and for the attachment of accessories at any position. They are also characterised by straight-through core bores for use with standard fastening elements and to accommodate accessory components. Stand, equipped with automatic control and processing system based on personal computer, may be manually or automatically controlled. Control system of movements of the camera in the vertical axis and rotational movement of spent fuel element permits to fix chosen location of fuel element with accuracy better than 0.1 mm. High resolution of ultrasonic method allows to record damages of outer surface of order 0.1 mm. The results of visual testing of spent fuel are recorded on video tape and then may be stored on the hard disc of the personal computer and presented in shape of photo or picture. Only selected damage surfaces of spent fuel elements are tested by means of ultrasonic scanning. All possibilities of the stand and results of visual testing of spent fuel type WWR are presented in the paper. (author)

  18. Evolution of the Ultrasonic Inspection of Heavy Rotor Forgings Over the Last Decades

    Science.gov (United States)

    Zimmer, A.; Vrana, J.; Meiser, J.; Maximini, W.; Blaes, N.

    2010-02-01

    All types of heavy forgings that are used in energy machine industry, rotor shafts as well as discs, retaining rings or tie bolts are subject to extensive nondestructive inspections before they are delivered to the customer. Due to the availability of the parts in simple shapes, these forgings are very well suited for full volmetric inspections using ultrasound. In the beginning, these inspections were carried out manually, using straight beam probes and analogue equipment. Higher requirements in reliability, efficiency, safety and power output in the machines have lead to higher requirements for the ultrasonic inspection in the form of more scanning directions, higher sensitivity demands and improved documentation means. This and the increasing use of high alloy materials for ever growing parts, increase the need for more and more sophisticated methods for testing the forgings. Angle scans and sizing technologies like DGS have been implemented, and for more than 15 years now, mechanized and automated inspections have gained importance since they allow better documentation as well as easier evaluation of the recorded data using different views (B- C- or D-Scans), projections or tomography views. The latest major development has been the availability of phased array probes to increase the flexibility of the inspection systems. Many results of the ongoing research in ultrasonic's have not been implemented yet. Today's availability of fast computers, large and fast data storages allows saving RF inspection data and applying sophisticated signal processing methods. For example linear diffraction tomography methods like SAFT offer tools for 3D reconstruction of inspection data, simplifying sizing and locating of defects as well as for improving signal to noise ratios. While such methods are already applied in medical ultrasonic's, they are still to be implemented in the steel industry. This paper describes the development of the ultrasonic inspection of heavy forgings

  19. The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process.

    Science.gov (United States)

    Xuan, Yang; Nastac, Laurentiu

    2018-02-01

    Recent studies showed that the microstructure and mechanical properties of aluminum based nanocomposites can be significantly improved when ultrasonic cavitation and solidification processing is used. This is because ultrasonic cavitation processing plays an important role not only in degassing and dispersion of the nanoparticles, but also in breaking up the dendritic grains and refining the as-cast microstructure. In the present study, A356 alloy and Al 2 O 3 nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles were added into the molten A356 alloy and dispersed via ultrasonic cavitation processing. Ultrasonic cavitation was applied over various temperature ranges during molten alloy cooling and solidification to investigate the grain structure formation and the nanoparticle dispersion behavior. Optical Microscopy and Scanning Electron Microscopy were used to investigate in detail the differences in the microstructure characteristics and the nanoparticle distribution. Experimental results indicated that the ultrasonic cavitation processing and Al 2 O 3 nanoparticles play an important role for microstructure refinement. In addition, it was shown in this study that the Al 2 O 3 nanoparticles modified the eutectic phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Scanning Mechanism of the FY-3 Microwave Humidity Sounder

    Science.gov (United States)

    Schmid, Manfred; Jing, Li; Hehr, Christian

    2010-01-01

    Astrium GmbH Germany, developed the scanning equipment for the instrument package of the MicroWave Humidity Sounder (MWHS) flying on the FY-3 meteorological satellite (FY means Feng Yun, Wind and Cloud) in a sun-synchronized orbit of 850-km altitude and at an inclination of 98.8 . The scanning mechanism rotates at variable velocity comprising several acceleration / deceleration phases during each revolution. The Scanning Mechanism contains two output shafts, each rotating a parabolic offset Antenna Reflector. The mechanism is operated in closed loop by means of redundant control electronics. MWHS is a sounding radiometer for measurement of global atmospheric water vapour profiles. An Engineering Qualification Model was developed and qualified and a first Flight Model was launched early 2008. The system is now working for more than two years successful in orbit. A second Flight Model of the Antenna Scanning Mechanism and of its associated control electronics was built and delivered to the customer for application on the follow-on spacecraft that will be launched by the end of 2010.

  1. Current status of automated ultrasonic pipe inspection systems - ISI of stainless steel piping systems in BWR power plants

    International Nuclear Information System (INIS)

    Jeong, P.

    1985-01-01

    The field of ultrasonics nondestructive testing is constantly expanding its ability of acquiring data and its speed by implementing a computer into the testing system. The computer made it possible to store massive test data into a compact magnetic hard disk for permanent records. The data outputs are displayed on the color CRT screen, and varieties of image display methods, such as A-scan, B-scan, C-scan, P-scan, or many other 3 dimensional isometric views and the modified display techniques are available to an operator. Various hardcopy machines are now a part of the testing system so that the displayed data outputs can be easily copied and filed for permanent documentation. The faster and more accurate mechanized scanners are gradually being substituted for the conventional manual scanning method which has been a major time consuming part of the testing operation. When all such improvements are combined into an integral unit, a reliable, fully automated ultrasonic testing system can by made. The fully automated ultrasonic testing system is needed not only for fast data acquisition, processing, and reliable data display, but also, even more importantly, for considerable reduction of human intervention, which could be a critical factor under the severely limited field environment. Obviously, in the past several years, tremendous accomplishments have been made in automating the test system, and many such systems are being used in the field. However, most of the existing automated systems are still bulky in size and the displayed data is often difficult to interpret to the field operators. Major effect should, therefore, be directed to size reduction of the system as well as improvement on the system reliability

  2. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  3. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    Science.gov (United States)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially

  4. A study on the nondestructive evaluation of carbon/carbon disk using ultrasonics

    International Nuclear Information System (INIS)

    Im, Kwang Hee; Yang, In Young; Jeong, Hyun Jo

    1998-01-01

    It is useful to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity for carbon/carbon (C/C) composites because the manufacturing of C/C brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to attributable to the manufacturing process. In a carbon/carbon brake disk manufactured by a combination of pitch impregnation and CVI(Vapor infiltration method), the spatial variation of ultrasonic velocity was measured and found to be consistent with the nonuniform densification behavior in the manufacturing process. Low frequency(5 MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. These results were compared with those obtained by dry-coupling ultrasonics. A good correlation was found between ultrasonic velocity and material density on a set of small blocks cut out of the disk. Pulse-echo C-scans at higher frequency (25 MHz) were used to image near-sulfate material property anomalies associated with certain steps in the manufacturing process, such as the placement of spacers between disks during the final CVI.

  5. Preliminary investigation of ultrasonic shear wave holography with a view to the inspection of pressure vessels

    International Nuclear Information System (INIS)

    Aldridge, E.E.; Clare, A.B.; Shepherd, D.A.

    1975-01-01

    The manner in which holography would fit into the general scheme of pressure vessel inspection is discussed. Compared to conventional A, B and C presentations holography requires a different processing of the ultrasonic signal and a mechanical scan which may be more demanding than that normally provided for a C display. Preliminary results are presented of the examination of artificial defects in steel plate using shear wave holography. (author)

  6. Remote Inspection Techniques for Reactor Internals of Liquid Metal Reactor by using Ultrasonic Waveguide Sensor

    International Nuclear Information System (INIS)

    Joo, Young Sang; Kim, Seok Hun; Lee, Jae Han

    2006-02-01

    The primary components such as a reactor core, heat exchangers, pumps and internal structures of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection and continuous monitoring as major in-service inspection (ISI) methods of reactor internal structures. Reactor core and internal structures of LMR can not be visually examined due to an opaque liquid sodium. The under-sodium viewing and remote inspection techniques by using an ultrasonic wave should be applied for the in-service inspection of reactor internals. The remote inspection techniques using ultrasonic wave have been developed and applied for the visualization and ISI of reactor internals. The under sodium viewing technique has a limitation for the application of LMR due to the high temperature and irradiation environment. In this study, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium viewing and remote inspection. The Lamb wave propagation of a waveguide sensor has been analyzed and the zero-order antisymmetric A 0 plate wave was selected as the application mode of the sensor. The A 0 plate wave can be propagated in the dispersive low frequency range by using a liquid wedge clamped to the waveguide. A new technique is presented which is capable of steering the radiation beam angle of a waveguide sensor without a mechanical movement of the sensor assembly. The steering function of the ultrasonic radiation beam can be achieved by a frequency tuning method of the excitation pulse in the dispersive range of the A 0 mode. The technique provides an opportunity to overcome the scanning limitation of a waveguide sensor. The beam steering function has been evaluated by an experimental verification. The ultrasonic C-scanning experiments are performed in water and the feasibility of the ultrasonic waveguide sensor has been verified. The various remote inspection

  7. Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics.

    Science.gov (United States)

    Akbas, Hatice Zehra; Aydin, Zeki; Yilmaz, Onur; Turgut, Selvin

    2017-01-01

    The effects of the homogenization process on the structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics have been investigated using an ultrasonic homogenization and conventional mechanical methods. The reagents were homogenized using an ultrasonic processor with high-intensity ultrasonic waves and using a compact mixer-shaker. The components and crystal types of the powders were determined by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The complex permittivity (ε ' , ε″) and AC conductivity (σ') of the samples were analyzed in a wide frequency range of 20Hz to 2MHz at room temperature. The structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics strongly depend on the homogenization process in a solid-state reaction method. Using an ultrasonic processor with high-intensity ultrasonic waves based on acoustic cavitation phenomena can make a significant improvement in producing high-purity BaTiO 3 ceramics without carbonate impurities with a small dielectric loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Stresses in ultrasonically assisted bone cutting

    International Nuclear Information System (INIS)

    Alam, K; Mitrofanov, A V; Silberschmidt, V V; Baeker, M

    2009-01-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  9. The Effect of Ultrasonic Waves on Sugar Extraction and Mechanical Properties of Sugar Beet

    Directory of Open Access Journals (Sweden)

    K Hedayati

    2013-09-01

    Full Text Available Sugar, which can be extracted from sugar cane and sugar beet, is one of the most important ingredients of food. Conducting more research to increase the extraction efficiency of sugar is necessary due to high production of sugar beet and its numerous processing units in northern Khorasan province. In this research, the effect of temperature, time and the frequency of ultrasonic waves on mechanical properties of sugar beet and its extraction rate of sugar in moisture content of 75% were studied. In this regard, an ultrasonic bath in laboratory scale was used. The studied parameters and their levels were frequency in three levels (zero, 25 and 45 KHz, temperature in three levels (25, 50 and 70 ° C and the imposed time of ultrasonic waves in three levels (10, 20 and 30 min. Samples were prepared using planned experiments and the results were compared with control sugar beet samples. A Saccharimeter was used to measure the concenteration of sugar in samples. Two different types of probe including semi-spherical end and the other one with sharpened edges were used to measure mechanical properties. The studied parameters of frequency, temperature and time showed significant effect on sugar extraction and their resulted effect in optimized levels revealed up to 56% increase in sugar extraction compared with control samples. The obtained values of elastic modulus and shear modulus showed a decreasing trend. The obtained values of total energy of rupture, the total energy of shear, the maximum force of rupture, and the yield point of rupture showed an increasing trend. The frequency had no significant effect on the yield point of rupture and shear force.

  10. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    Science.gov (United States)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  11. Implementation of Ultrasonic Immersion Technique for Babbitt Metal Debonding in Turbine Bearing

    International Nuclear Information System (INIS)

    Jung, Gye Jo; Park, Sang Ki; Cho, Yong Sang; Park, Byung Cheol; Kil, Doo Song

    2004-01-01

    This study is aimed for the implementation of ultrasonic method to assess the reliability of turbine bearings. A modified ultrasonic immersion technique was carried out in both laboratory experiment and field application. From the laboratory results, we confirmed that the condition of interface layer between the babbitt and base metal be monitored by the C-Scan. The C-scan image by the ultrasonic immersion test can be used successfully to observe the condition of interface layer. The testing with a focused transducer provides a promising approach for estimating the extent of the damaged region and observing the interface layer effectively. The difference of the ultrasonic reflection ratio between the bonding and debonding area at the interface layer is one of the key parameters for assessing the extent of the damaged area; additionally, the reflection amplitude exhibits a favorable correlation with the overall damage level. The technique developed in this study was applied to the inspection of the turbine bearings at several power plants in Korea whereby the applicability in the field can be ascertained

  12. Implementation of Ultrasonic Immersion Technique for Babbitt Metal Debonding in Turbine Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Gye Jo; Park, Sang Ki; Cho, Yong Sang; Park, Byung Cheol; Kil, Doo Song [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2004-08-15

    This study is aimed for the implementation of ultrasonic method to assess the reliability of turbine bearings. A modified ultrasonic immersion technique was carried out in both laboratory experiment and field application. From the laboratory results, we confirmed that the condition of interface layer between the babbitt and base metal be monitored by the C-Scan. The C-scan image by the ultrasonic immersion test can be used successfully to observe the condition of interface layer. The testing with a focused transducer provides a promising approach for estimating the extent of the damaged region and observing the interface layer effectively. The difference of the ultrasonic reflection ratio between the bonding and debonding area at the interface layer is one of the key parameters for assessing the extent of the damaged area; additionally, the reflection amplitude exhibits a favorable correlation with the overall damage level. The technique developed in this study was applied to the inspection of the turbine bearings at several power plants in Korea whereby the applicability in the field can be ascertained

  13. Real-time measurement of relative sensor position changes using ultrasonic signal evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yastrebova, O.; Bulavinov, A.; Kroening, M. [Fraunhofer Institute Nondestructive Testing IZFP, Saarbruecken (Germany)

    2008-07-01

    Ultrasonic testing is considered to be one of the most commonly applied nondestructive testing techniques for flaw detection and material characterization. Traditional Nondestructive Testing (NDT) provides detection of material discontinuities that may cause failure within the designed lifetime of a part or component. In addition, Quantitative Nondestructive Testing (QNDT) provides means to obtain required information about type, size and location of deficiencies to the integrity of the inspected structure and further use under specific, given load conditions. The ''Acoustic Mouse'' technique has been developed as a tool for manual ultrasonic inspection to provide test results that can be evaluated quantitatively. The ultrasonic data are processed by real-time variation methods to extract position information from backscattered acoustic noise and geometric scatter signals in the inspection volume. The position and positional changes of the ''Acoustic Mouse'' sensor (transducer) are determined by the sequential analysis of ultrasonic data (highresolution sector-scans), which are acquired and reconstructed using the Sampling Phased Array technique. The results of first experiments conducted with linear scanning and intentional lift-offs demonstrate sufficient accuracy in position measurements. (orig.)

  14. A Laser-based Ultrasonic Inspection System to Detect Micro Fatigue Cracks

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Park, Moon Cheol; Lim, Chang Hwan; Cha, Hyung Ki

    2005-01-01

    Laser-based ultrasonic techniques have been established as a viable non-contact alternative to piezoelectric transducers for generating and receiving ultrasound. Laser-based ultrasonic inspection system provides a number of advantages over the conventional generation by piezoelectric transducers, especially a non-contact generation and detection of ultrasonic waves, high spatial scanning resolution, controllable narrow-band and wide-band spectrum, absolute measurements of the moving distance, use of fiber optics, and an ability to operate on curved and rough surfaces and at hard-to-access locations like a nuclear power plant. Ochiai and Miura used the laser-based ultrasound to detect micro fatigue cracks for the inspection of a material degradation in nuclear power plants. This widely applicable laser-based ultrasonic inspection system is comparatively expensive and provides low signal-to-noise ratio to measure ultrasound by using the laser interferometer. Many studies have been carried out to improve the measuring efficiency of the laser interferometer. One of the widely used laser interferometer types to measure the ultrasound is the Confocal Fabry-Perot Interferometer(CFPI). The measurement gain of the CFPI is slightly and continually varied according to the small change of the cavity length and the fluctuations of the measuring laser beam frequency with time. If we continually adjust the voltage of a PZT which is fixed to one of the interferometer mirrors, the optimum working point of the CFPI can be fixed. Though a static stabilizer can fix the gain of the CFPI where the CW laser beam is targeted at one position, it can not be used when the CW laser beam is scanned like a scanning laser source(SLS) technique. A dynamic stabilizer can be used for the scanning ultrasonic inspection system. A robust dynamic stabilizer is needed for an application to the industrial inspection fields. Kromine showed that the SLS technique is effective to detect small fatigue cracks

  15. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests

    International Nuclear Information System (INIS)

    Kemnitz, P.; Richter, U.; Klueber, H.

    1997-01-01

    In nuclear power plants many of the welds in austenitic tubes have to be inspected by means of ultrasonic techniques. If component-identical test pieces are available, they are used to qualify the ultrasonic test technology. Acoustic field measurements on such test blocks give information whether the beam of the ultrasonic transducer reaches all critical parts of the weld region and which transducer type is best suited. Acoustic fields have been measured at a bimetallic, a V-shaped and a narrow gap weld in test pieces of wall thickness 33, 25 and 17 mm, respectively. Compression wave transducers 45, 60 and 70 and 45 shear wave transducers have been included in the investigation. The results are presented: (1) as acoustic C-scans for one definite probe position, (2) as series of C-scans for the probe moving on a track perpendicular to the weld, (3) as scan along the weld and (4) as effective beam profile. The influence of the scanning electrodynamic probe is also discussed. (orig.)

  16. Measurements of the gap/displacement and development of the ultrasonic temperature measuring system applied to severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Cho, Young Ro; Park, Rae Jun; Kim, Sang Baik; Sim, Chul Moo

    2001-02-01

    This report, in order to measure quantitative LAVA experimental results, focuses on measuring the gap formed on the lower head vessel using a ultrasonic pulse echo method and neutron radiography, measuring displacement of the lower head vessel using capacitance method, building a measuring system and developing high temperature measurement system using ultrasonic method. The scope of gap measurement and system development using the ultrasonic method is 2-dimensional image processing using tomographical B scan method and 2- and 3-dimensional image processing using C scan methods based on the one dimensional time domain A scan signal. For some test specimen, the gap size is quantitative represented apply C scan methods. The important ultrasonic image processing technique is on the development of accurate position control system. The requirements of the position control system are a contact technique on the test specimen and a fine moving technique. Since the specimen is hemispherical, the contact technique is very difficult. Therefore, the gap measurement using the ultrasonic pulse echo method was applied developing the position controlling scanner system. Along with the ultrasonic method, neutron radiography method using KAERI's neutron source was attempted 4 times and the results are compared. The fine displacement of the hemispherical specimen was measured using a capacitive displacement sensor. The requirements for this measuring technique are fixing of the capacitance sensor to the experimental facilities and a remote control position varying system. This remote control position varying system was manufactured with a electrical motor. The development of a high temperature measuring system using a ultrasonic method the second year plan, is performed with developing a sensor which can measure up to 2300 deg C

  17. Mechanized ultrasonic examination of piping systems in nuclear power plants

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1988-01-01

    The success of mechanized ultrasonic examination applied on welds in piping systems in nuclear power plants is highly dependent on its careful preparation. From the development of an adequate examination technique to its implementation on site, many problems are to be solved. This is especially the case when dealing with austenitic welds or dissimilar metal welds. In addition to the specific needs for examination technique based on material properties and requirements for minimum flaw size detection, accessibility and radiation aspects have to be considered. A crew of skilled and highly trained examination personnel is required. Experience in various nuclear power plants, - BWR's and PWR's of different designs - has shown, that even difficult examination problems can be successfully solved, provided that there is a good preparation. The necessary step by step proceeding is illustrated by examples concerning mechanized examination. Preservice inspections and in-service inspections with specific requirements, due to the types of flaws to be found or the type of material concerned, are discussed

  18. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking

  19. P-scan - Further development and adaptation to field work. Final report

    International Nuclear Information System (INIS)

    1981-08-01

    The Swedish Plant Inspectorate (SA) has carried out field tests with P-scan ultrasonic equipment under a grant from the Swedish Nuclear Power Inspectorate (SKI). The aim was to use P-scan in the field and gather experience regarding methods and problems in mechanical testing of tubes and components. The field tests were done by the nuclear power department section for repeat testing in conjunction with routine tests of tubes and components in Ringhals 2 and Barsebaeck 1 reactors. Each test was accomplished at 8 inspection areas. The following brief conclusions can be drawn: P-scan has advantages in respect to documentation, evaluation and analysis of test data. The present set of Scanning units require considerable improvements. General specifications for a mechanized future tube and component test system have been collected. The system has a wide application in tests of many, uniform items which are easily accessible, such as pipelines for example. In the hear term the use of the P-scan system is limited to special applications where its documentation principle can be utilized. During the test period 1981 the use of P-scan with focussing detector is planned. The goal is to combine a refined ultrasound technique with P-scan system recorder technique.(G.B.)

  20. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  1. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  2. Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Visualization of Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Sang; Park, Chang-Gyu; Lee, Jae-Han; Lim, Sa-Hoe

    2008-01-15

    The reactor core and internal structures of a sodium-cooled fast reactor (SFR) can not be visually examined due to the opaque sodium. The examination of the internal structures is possible by using ultrasonics to penetrate the sodium. The under-sodium viewing technique using an ultrasonic wave should be applied for the in-service inspection of the reactor internals. Immersion sensors and waveguide sensors have been utilized for the under-sodium viewing application. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor can operate in a hostile environment, such as liquid metal at a high temperature in the presence of high radiation. The waveguide sensor has the advantages of simplicity and reliability, but limits in its movement. A new plate-type waveguide sensor has been developed to overcome the limitations of previous waveguide sensors. And a novel ultrasonic technique has been suggested. The technique is capable of steering a radiation beam of a waveguide sensor without a mechanical movement of the waveguide sensor. The control of the radiation beam angle can be achieved by a frequency tuning method of the excitation pulse in the dispersive low frequency range of the A{sub 0} Lamb wave. A waveguide sensor assembly has been designed for the actual application of undersodium visual inspection in sodium-cooled fast reactor. The main purpose of this study is achievement of feasibility of ultrasonic waveguide sensor technology to the application of undersodium viewing. Under-water C-scan imaging test was carried out by using 10 m long waveguide sensor assembly. It was confirmed that the test target could be clearly visualized and the resolution of C-scan image could be less than 2 mm.

  3. Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Visualization of Sodium Fast Reactor

    International Nuclear Information System (INIS)

    Joo, Young-Sang; Park, Chang-Gyu; Lee, Jae-Han; Lim, Sa-Hoe

    2008-01-01

    The reactor core and internal structures of a sodium-cooled fast reactor (SFR) can not be visually examined due to the opaque sodium. The examination of the internal structures is possible by using ultrasonics to penetrate the sodium. The under-sodium viewing technique using an ultrasonic wave should be applied for the in-service inspection of the reactor internals. Immersion sensors and waveguide sensors have been utilized for the under-sodium viewing application. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor can operate in a hostile environment, such as liquid metal at a high temperature in the presence of high radiation. The waveguide sensor has the advantages of simplicity and reliability, but limits in its movement. A new plate-type waveguide sensor has been developed to overcome the limitations of previous waveguide sensors. And a novel ultrasonic technique has been suggested. The technique is capable of steering a radiation beam of a waveguide sensor without a mechanical movement of the waveguide sensor. The control of the radiation beam angle can be achieved by a frequency tuning method of the excitation pulse in the dispersive low frequency range of the A 0 Lamb wave. A waveguide sensor assembly has been designed for the actual application of undersodium visual inspection in sodium-cooled fast reactor. The main purpose of this study is achievement of feasibility of ultrasonic waveguide sensor technology to the application of undersodium viewing. Under-water C-scan imaging test was carried out by using 10 m long waveguide sensor assembly. It was confirmed that the test target could be clearly visualized and the resolution of C-scan image could be less than 2 mm

  4. Analysis of ultrasonic beam profile due to change of elements' number for phased array transducer (part 2)

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1998-01-01

    The phased array offers many advantages and improvements over conventional single-element transducers such as the straight-beam and angle-beam. The advantages of array sensors for large structures are two folds; firstly, array transducers provide a method of rapid beam steering and sequential addressing of a large area of interest without requiring mechanical or manual scanning which is particularly important in real-time application. Secondly, array transducer provide a method of dynamic focusing, in which the focal length of the ultrasonic beam varies as the pulse propagates through the material. There are some parameters such as number, size, center to center space of elements to design phased array transducer. In previous study. the characteristics of beam steering and dynamic focusing had been simulated for ultrasonic SH-wave with varying the number of phased array transducer's element. In this study, the characteristic of beam steering for phased array transducer has been simulated for ultrasonic SH-wave on the basis of Huygen's principle with varying center to center space of elements. Ultrasonic beam directivity and focusing due to change of time delay of each element were discussed with varying center to center space of elements.

  5. Final results of double-shell tank 241-AY-102 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AY-102. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AY-102 primary tank wall and welds. The inspection found some indication of insignificant general and local wall thinning with no cracks detected

  6. Final results of double-shell tank 241-AN-105 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AN-105. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AN-105 primary tank wall primary knuckle, and secondary tank bottom. The inspection found some indication of general and local wall thinning with no cracks detected

  7. Mechanism and kinetics of parathion degradation under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yao Juanjuan, E-mail: yao_juanjuan@yahoo.cn [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China); Gao Naiyun; Li Cong; Li Lei; Xu Bin [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China)

    2010-03-15

    The parathion degradation under ultrasonic irradiation in aqueous solution was investigated. The results indicate that at the conditions in question, degradation rate of parathion decreased with increasing initial concentration and decreasing power. The optimal frequency for parathion degradation was 600 kHz. The free radical reactions predominate in the sonochemical degradation of parathion and the reaction zones are predominately at the bubble interface and, to a much lesser extent, in bulk solution. The gas/liquid interfacial regions are the real effective reaction sites for sonochemical degradation of parathion. The reaction can be well described as a gas/liquid heterogeneous reaction which obeys a kinetic model based on Langmuir-Hinshelwood model. The main pathways of parathion degradation by ultrasonic irradiation were also proposed by qualitative and quantitative analysis of organic and inorganic byproducts. It is indicated that the N{sub 2} in air takes part in the parathion degradation through the formation of {center_dot}NO{sub 2} under ultrasonic irradiation. Parathion is decomposed into paraoxon and 4-nitrophenol in the first step via two different pathways, respectively, which is in agreement with the theoretical molecular orbital (MO) calculations.

  8. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    Directory of Open Access Journals (Sweden)

    Mitul Kumar Mishra

    2013-01-01

    Full Text Available Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface

  9. New developments in ultrasonic imaging of the chest and other body organs

    International Nuclear Information System (INIS)

    Campbell, G.W.; Anderson, A.L.

    1978-01-01

    The ultrasonic imaging system described herein was developed to measure chest-wall thickness and the percentage of fat in the chest and around other body organs. The system uses pulse-echo techniques to transmit and detect sound waves reflected from the interfaces of body organs and adjacent tissue. A computer draws these interfaces on color scans, and a code is used to exponentially average data from several points on each scan to find the average thicknesses of the chest wall and fat layers. These average thicknesses are then used to adjust x-ray calibration factors for plutonium lung counters. The correction factor for three subjects measured for fat content ranging from 12.6 to 22.2% was 18 to 41%. The ultrasonic system also defines the shape and position of the kidneys and liver so we are able to more accurately place detectors on the body during in-vivo radiation measurements. We have also developed a technique for displaying the interfaces from a series of ultrasonic chest scans to produce a topographical map that enables us to better understand the shape and contour of the lung and chest-wall interface

  10. Ultrasonic Phased Array Techniques for Detection of Flaws of Stud Bolts in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Choi, Sang Woo

    2006-01-01

    The reactor vessel body and closure head are fastened with the stud bolt that is one of crucial parts for safety of the reactor vessels in nuclear power plants. It is reported that the stud bolt is often experienced by fatigue cracks initiated at threads. Stud bolts are inspected by the ultrasonic technique during the overhaul periodically for the prevention of failure which leads to radioactive leakage from the nuclear reactor. The conventional ultrasonic inspection for stud bolts was mainly conducted by reflected echo method based on shadow effect. However, in this technique, there were numerous spurious signals reflected from every oblique surfaces of the thread. In this study, ultrasonic phased array technique was applied to investigate detectability of flaws in stud bolts and characteristics of ultrasonic images corresponding to different scanning methods, that is, sector and linear scan. For this purpose, simplified stud bolt specimens with artificial defects of various depths were prepared

  11. Design of signal reception and processing system of embedded ultrasonic endoscope

    Science.gov (United States)

    Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin

    2009-11-01

    Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.

  12. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Weber, M; Weiss, M [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  13. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H.; Weber, M.; Weiss, M. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  14. An ultrasonic methodology for muscle cross section measurement of support space flight

    Science.gov (United States)

    Hatfield, Thomas R.; Klaus, David M.; Simske, Steven J.

    2004-09-01

    The number one priority for any manned space mission is the health and safety of its crew. The study of the short and long term physiological effects on humans is paramount to ensuring crew health and mission success. One of the challenges associated in studying the physiological effects of space flight on humans, such as loss of bone and muscle mass, has been that of readily attaining the data needed to characterize the changes. The small sampling size of astronauts, together with the fact that most physiological data collection tends to be rather tedious, continues to hinder elucidation of the underlying mechanisms responsible for the observed changes that occur in space. Better characterization of the muscle loss experienced by astronauts requires that new technologies be implemented. To this end, we have begun to validate a 360° ultrasonic scanning methodology for muscle measurements and have performed empirical sampling of a limb surrogate for comparison. Ultrasonic wave propagation was simulated using 144 stations of rotated arm and calf MRI images. These simulations were intended to provide a preliminary check of the scanning methodology and data analysis before its implementation with hardware. Pulse-echo waveforms were processed for each rotation station to characterize fat, muscle, bone, and limb boundary interfaces. The percentage error between MRI reference values and calculated muscle areas, as determined from reflection points for calf and arm cross sections, was -2.179% and +2.129%, respectively. These successful simulations suggest that ultrasound pulse scanning can be used to effectively determine limb cross-sectional areas. Cross-sectional images of a limb surrogate were then used to simulate signal measurements at several rotation angles, with ultrasonic pulse-echo sampling performed experimentally at the same stations on the actual limb surrogate to corroborate the results. The objective of the surrogate sampling was to compare the signal

  15. Ultrasonic hot powder compaction of Ti-6Al-4V.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-07-01

    Power ultrasonic has been recently employed in a wide variety of manufacturing processes among which ultrasonic assisted powder compaction is a promising powder materials processing technique with significant industrial applications. The products manufactured by the powder metallurgy commonly consist of residual porosities, material impurities, structural non-homogeneities and residual stress. In this paper, it is aimed to apply power ultrasonic to the hot consolidation process of Ti-6Al-4V titanium alloy powder in order to improve mechanical properties. To do this, the effects of ultrasonic power and process temperature and pressure were considered and then deeply studied through a series of experiments. It was shown that the addition of ultrasonic vibration leads to a significant improvement in the consolidation performance and the mechanical strength of the fabricated specimens. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints

    Science.gov (United States)

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-01-01

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553

  17. Ultrasonic assisted hot metal powder compaction.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  19. Ultrasonic detection technology based on joint robot on composite component with complex surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Juan; Xu, Chunguang; Zhang, Lan [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China)

    2014-02-18

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order to express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.

  20. Scanning electron microscopic evaluation of efficacy of 17% Ethylenediaminetetraacetic acid and chitosan for smear layer removal with ultrasonics: An In vitro study

    Directory of Open Access Journals (Sweden)

    Aradhana Babu Kamble

    2017-01-01

    Full Text Available Introduction: The main aim of root canal treatment is cleaning, shaping and then obturating three dimensionally to prevent reinfection. This includes chemicomechanical cleansing by instrumentation and the use of irrigating solutions. Therefore, the purpose of this study was to compare the smear layer removal from root canal dentine subjected to two root canal irrigants, 17% EDTA and 0.2% Chitosan, a new irrigant using Scanning Electron Microscope. Methodology: 40 single rooted premolars were decoronated followed by instrumentation with I Race files and intermediate irrigation with 3% sodium hypochlorite and activation with ultrasonics. Then the samples were longitudinally sectioned and place in the respective test solutions and their controls for 5 minutes. Scanning Electron Microscopic evaluation was further carried out. Results: The results of the present study indicates that the Chitosan which was proved effective in removing smear layer. Conclusion: A moderate concentration of 0.2% chitosan removes the smear layer with greater efficiency.

  1. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  2. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  3. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  4. Novel approach of wavelet analysis for nonlinear ultrasonic measurements and fatigue assessment of jet engine components

    Science.gov (United States)

    Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2018-04-01

    Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.

  5. Advanced ultrasonic field system: a status report

    International Nuclear Information System (INIS)

    Mikesell, C.R.; Beller, L.S.

    1984-02-01

    An advanced ultrasonic system was developed to obtain highly reproducible inspection data and to overcome certain limitations encountered with the manual scanning method. Experience from field operations from 1976 through 1980 is discussed. The scope includes a description of the computer controlled system, personnel training, inservice inspections, data analysis, and current upgrading of the system

  6. System for ultrasonic examination

    International Nuclear Information System (INIS)

    Lund, S.A.; Kristensen, W.D.

    1987-01-01

    A computerized system for the recording of flaw images by ultrasonic examination according to the pulse-echo method includes at least one ultrasonic probe which can be moved in steps over the surface of an object along a rectilinear scanning path. Digital signals containing information on the successive positions of the sound beam, on echo amplitudes, and on the lengths of sound paths to reflectors inside the object, are processed and used for the accumulated storage of circular patterns of echo amplitude data in a matrix memory associated with a sectional plane through the object. A video screen terminal controls the system and transforms the accumulated data into displays of sectional flaw images of greatly improved precision and sharpness of definition. A gradual transfer of filtered data from a number of parallel sectional planes to three further matrix memories associated with projection planes at right angles to each other permits presentation in three dimensions of equally improved projection flaw images. (author) 2 figs

  7. Ultrasonic and mechanical behavior of green and partially sintered alumina: Effects of slurry consolidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, C.H.; Garcia, V.J.; Smith, R.M. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering; Roberts, R.A. [Iowa State Univ., Ames, IA (United States)

    1998-10-01

    Green and partially sintered compacts of {alpha}-Al{sub 2}O{sub 3} powder were made by filtration of aqueous suspensions under three conditions: (i) electrostatic stabilization without any organic additive, (ii) strong flocculation near the isoelectric point without any organic additive, and (iii) weak flocculation by the use of maltodextrin or oxalic acid additives. The authors evaluated relationships between the macroscopic and interparticle mechanical behavior of these compacts using model correlations with measurements of diametral compression, ultrasonic velocity, and ultrasonic attenuation. Although type iii green specimens were less dense than type i, type iii exhibited significant increases in velocity, macroscopic Young`s modulus, interparticle-contact stiffness, and diametral compressive strength, suggesting that the mechanism of stiffening/strengthening entailed interparticle bridging of maltodextrin or oxalic acid. These properties were significantly reduced upon heating type iii specimens to 500 C, suggesting that pyrolysis of surface-adsorbed maltodextrin and oxalic acid may have reduced the interparticle stiffness and strength. In contrast, negligible changes in these properties occurred upon heating type i specimens to the same temperature. Despite small increases in packing density, significant decreases in attenuation and significant increases in velocity, interparticle-contact stiffness, and Young`s modulus occurred upon heating all specimens to {ge}700 C, suggesting the formation of interparticle necks by solid-state sintering.

  8. Finite Element Simulation of the Shear Effect of Ultrasonic on Heat Exchanger Descaling

    Science.gov (United States)

    Lu, Shaolv; Wang, Zhihua; Wang, Hehui

    2018-03-01

    The shear effect on the interface of metal plate and its attached scale is an important mechanism of ultrasonic descaling, which is caused by the different propagation speed of ultrasonic wave in two different mediums. The propagating of ultrasonic wave on the shell is simulated based on the ANSYS/LS-DYNA explicit dynamic analysis. The distribution of shear stress in different paths under ultrasonic vibration is obtained through the finite element analysis and it reveals the main descaling mechanism of shear effect. The simulation result is helpful and enlightening to the reasonable design and the application of the ultrasonic scaling technology on heat exchanger.

  9. Design and development of an ultrasonic pulser-receiver unit for non-destructive testing of materials

    International Nuclear Information System (INIS)

    Patankar, V.H.; Joshi, V.M.

    2002-11-01

    The pulser/receiver constitutes the most vital part of an ultrasonic flaw detector or an ultrasonic imaging system used for inspection of materials. The ultrasonic properties of the material and resolution requirements govern the choice of the frequency of ultrasound that can be optimally used. The pulser/receiver in turn decides the efficiency of excitation of the transducer and the overall signal to noise ratio of the system for best sensitivity and resolution. A variety of pulsers are used in the ultrasonic instruments employed for materials inspection. This report describes a square wave type of an ultrasonic pulser-receiver unit developed at Ultrasonic Instrumentation Section, Electronics Division, BARC. It has been primarily designed for excitation of the transducer that is used with a multi-channel ultrasonic imaging system ULTIMA 100M targeted for inspection of SS403 billets, which are in turn used as the base material for fabrication of end fittings for coolant channels of pressurized heavy water nuclear reactors (PHWRs). The design of the pulser is based upon very fast MOSFETs, configured as electronic switches. The pulser is operated with a linear bipolar H.V. supply (+/- 500V max.). The receiver provides a 60 dB gain with a -3 dB BW of 40 MHz. This pulser/receiver unit has been successfully interfaced with a 4 channel ULTIMA 100 M4 multichannel ultrasonic C-scan imaging system, also designed and developed by the authors at Ultrasonic Instrumentation Section (Electronics Division, BARC) and supplied to Centre for Design and Manufacturer - CDM, BARC. This system is being regularly used in C-scan imaging mode for volumetric inspection of SS403 billets for end fittings of 500 MWe PHWRs. (author)

  10. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    International Nuclear Information System (INIS)

    Yadawa, P K

    2012-01-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB 2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB 2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB 2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  11. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  12. Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Gil; Lee, Sang-Hwa [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Lee, Jung-Moo, E-mail: jmoolee@kims.re.kr [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Cho, Young-Hee [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Kim, Su-Hyeon [Metal Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Yoon, Woon-Ha [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of)

    2016-07-04

    The effects of ultrasonic melt treatment (UST) on the microstructure and mechanical properties of Al-12.2Si-3.3Cu-2.4Ni-0.8Mg-0.1Fe (wt%) piston alloy were systematically investigated. Rigid colonies consisting of primary Si, eutectic Si, Mg{sub 2}Si and various aluminides (ε-Al{sub 3}Ni, δ-Al{sub 3}CuNi, π-Al{sub 8}FeMg{sub 3}Si{sub 6}, γ-Al{sub 7}Cu{sub 4}Ni, Q-Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and θ-Al{sub 2}Cu) were observed in the as-cast alloys. The sizes of the secondary phases, eutectic cell and grain were significantly decreased by UST because of the enhanced nucleation of each phase under ultrasonic irradiation. The yield strength, tensile strength and elongation at 25 °C were significantly improved by UST mainly because of the refinement of the microstructures. Both tensile strength and elongation at 350 °C were also improved by UST despite the unchanged yield strength.

  13. Ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 by using Nb2O5 nano catalyst

    Directory of Open Access Journals (Sweden)

    Gunvant H. Sonawane

    2016-09-01

    Full Text Available The ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 accompanied by Nb2O5 nano catalysts were studied. The structure and morphology of synthesized Nb2O5 nano catalyst was investigated using scanning election microscopy (SEM, Electron dispersive X-ray spectroscopy (EDS and X-ray diffraction (XRD.The effects of various experimental parameters such as the Basic Red-2 concentration, catalyst dose, pH and addition of H2O2 on the ultrasonic, photocatalytic and sonophotocatalytic degradation were investigated. Photocatalytic and sonophotocatalytic degradation of Basic Red-2 was strongly affected by initial dye concentration, catalyst dose, H2O2 addition and pH. Basic pH (pH-10 was favored for the ultrasonic (US, photocatalytic (UV + Nb2O5 and sonophotocatalytic (US + UV + Nb2O5 degradation of Basic Red-2 by using Nb2O5 nano catalyst. The ultrasonic degradation of Basic Red-2 was enhanced by the addition of photocatalyst. Then, the effect of Nb2O5 dose on photocatalytic and sonophotocatalytic degradation were studied, and it was found that increase in catalyst dose increase in the percentage degradation of Basic Red-2. In addition, the effects of H2O2 on ultrasonic, photolytic, photocatalytic and sonophotocatalytic degradation was also investigated, and it was found that H2O2 enhances the % degradation of Basic Red-2. The possible mechanism of ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 reported by LC-MS shows generation of different degradation products

  14. Visualization and quantitative research of stress corrosion cracking using the three-dimensional phased array ultrasonic technique

    International Nuclear Information System (INIS)

    Kitazawa, So; Kono, Naoyuki; Kudo, Takeshi; Isaka, Katsumi

    2013-01-01

    The three-dimensional phased-array (3D-PA) ultrasonic technique has been applied to a stress corrosion cracking (SCC) in base metal, and its results for sizing have been quantitatively evaluated. The 3D-PA allows operators to scan objects volumetrically and to display results as 3D images facilitating evaluation processes considerably. The scanning pattern used is called the moving rotational sectorial-scan (MRS-scan) and it is composed of many sectors of different azimuth angles as moving the probe linearly. The MRS-scan significantly improves the inspection of flaws without skillful searching motion of the probe, because the flaws are stereoscopically insonified by a number of ultrasonic beams coming from various directions. The SCC was evaluated by the MRS-scan with a matrix array probe. Not only the deepest tip but also all parts of the crack were able to be successfully visualized and sized with an accuracy of the root mean square error of 0.9 mm. (author)

  15. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    International Nuclear Information System (INIS)

    Hu, Hong Wei; Jeong, Hyun Jo

    2017-01-01

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law

  16. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hong Wei [Changsha University of Science and Technology, Changsha (China); Jeong, Hyun Jo [Div. of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2017-04-15

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law.

  17. Ultrasonication, lyophilization, freezing and storage effects on fat loss during mechanical infusion of expressed human milk

    International Nuclear Information System (INIS)

    Dhar, J.; Davidson, A.G.F.; Martinez, F.E.; Barr, S.; Desai, I.D.; Nakai, S.

    1995-01-01

    Ultrasonic homogenization was extended to situations where expressed human milk needs to be stored before being administered. We investigated whether the effect of ultrasonication would persist during storage in the frozen or lyophilized form. Recovery of fat was higher in ultrasonicated and frozen milk (stored for both 1 and 4 mo), than in milk stored following ultrasonication and lyophilization. The low tat recovery from stored lyophilized milk was increased by ultrasonicating the milk after storage and reconstitution (instead of prior to storage). Protein recovery was virtually complete with both methods

  18. Overview of the ultrasonic instrumentation research in the MYRRHA project

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, M.; Leysen, W.; Van Dyck, D. [Belgian Nuclear Research Center SCK.CEN (Belgium)

    2015-07-01

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the required ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  19. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  20. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.

    Science.gov (United States)

    Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R

    2018-02-01

    This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    Directory of Open Access Journals (Sweden)

    A. Haidar

    2005-05-01

    Full Text Available We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a 90° angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  2. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    Science.gov (United States)

    Kassem, A.; Sawan, M.; Boukadoum, M.; Haidar, A.

    2005-12-01

    We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP) core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a[InlineEquation not available: see fulltext.] angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  3. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  4. Prediction of strength of wood composite materials using ultrasonic

    International Nuclear Information System (INIS)

    Mahmoud, M.K.; Emam, A.

    2005-01-01

    Wood is a biological material integrating a very large variability of its mechanical properties (tensile and compressive), on the two directional longitudinal and transverse Ultrasonic method has been utilized to measure both wood physical and / or wood mechanical properties. The aim of this article is to show the development of ultrasonic technique for quality evaluation of trees, wood material and wood based composites. For quality assessment of these products we discuss the nondestructive evaluation of different factors such as: moisture content, temperature, biological degradation induced by bacterial attack and fungal attack. These techniques were adapted for trees, timber and wood based composites. The present study discusses the prediction of tensile and compressive strength of wood composite materials using ultrasonic testing. Empirical relationships between the tensile properties, compression strength and ultrasonic were proposed. The experimental results indicate the possibility of establishing a relationship between tensile strength and compression values. Moreover, the fractures in tensile and compressive are discussed by photographic

  5. Analytical ultrasonics for characterization of metallurgical microstructures and transformations

    Science.gov (United States)

    Rosen, M.

    1986-01-01

    The application of contact (piezoelectric) and noncontact (laser generation and detection) ultrasonic techniques for dynamic investigation of precipitation hardening processes in aluminum alloys, as well as crystallization and phase transformation in rapidly solidified amorphous and microcrystalline alloys is discussed. From the variations of the sound velocity and attenuation the precipitation mechanism and kinetics were determined. In addition, a correlation was established between the observed changes in the velocity and attenuation and the mechanical properties of age-hardenable aluminum alloys. The behavior of the elastic moduli, determined ultrasonically, were found to be sensitive to relaxation, crystallization and phase decomposition phenomena in rapidly solidified metallic glasses. Analytical ultrasonics enables determination of the activation energies and growth parameters of the reactions. Therefrom theoretical models can be constructed to explain the changes in mechanical and physical properties upon heat treatment of glassy alloys. The composition dependence of the elastic moduli in amorphous Cu-Zr alloys was found to be related to the glass transition temperature, and consequently to the glass forming ability of these alloys. Dynamic ultrasonic analysis was found to be feasible for on-line, real-time, monitoring of metallurgical processes.

  6. Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.

    Science.gov (United States)

    Chong, See Yenn; Todd, Michael D

    2018-05-01

    Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  8. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  9. Ultrasonic characterization of cancellous bone using apparent integrated backscatter

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, B K [Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States); III, C I Jones [Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States); Caldwell, G J [Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States); Kaste, S C [Department of Diagnostic Imaging, St Jude Children' s Research Hospital, Memphis, TN 38105 (United States)

    2006-06-07

    Apparent integrated backscatter (AIB) is a measure of the frequency-averaged (integrated) backscattered power contained in some portion of a backscattered ultrasonic signal. AIB has been used extensively to study soft tissues, but its usefulness as a tissue characterization technique for cancellous bone has not been demonstrated. To address this, we performed measurements on 17 specimens of cancellous bone over two different frequency ranges using a 1 MHz and 5 MHz broadband ultrasonic transducer. Specimens were obtained from bovine tibiae and prepared in the shape of cubes (15 mm side length) with faces oriented along transverse (anterior, posterior, medial and lateral) and longitudinal (superior and inferior) principal anatomic directions. A mechanical scanning system was used to acquire multiple backscatter signals from each direction for each cube. AIB demonstrated highly significant linear correlations with bone mineral density (BMD) for both the transverse (R{sup 2} = 0.817) and longitudinal (R{sup 2} = 0.488) directions using the 5 MHz transducer. In contrast, the correlations with density were much weaker for the 1 MHz transducer (R{sup 2} = 0.007 transverse, R{sup 2} = 0.228 longitudinal). In all cases where a significant correlation was observed, AIB was found to decrease with increasing BMD.

  10. [The use of ultrasonic files in canal preparation].

    Science.gov (United States)

    Calas, P; Terrie, B

    1990-01-01

    The continuous high volume of irrigating solution delivered by the ultrasonic system facilitates the root canal debridement. An excellent cleaning of dentin wall is obtained even on surfaces unreached by the mechanical instrumentation. In order to obtain an efficacious preparation, the use of ultrasonic files were combined with instrumentation. This new technique is described in this article.

  11. An Ultrasonic Wheel-Array Probe

    Science.gov (United States)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.

    2004-02-01

    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  12. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  13. Transverse section scanning mechanism

    International Nuclear Information System (INIS)

    Doherty, E.J.

    1978-01-01

    Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)

  14. Physical and chemical mechanism underlying ultrasonically enhanced hydrochloric acid leaching of non-oxidative roasting of bastnaesite.

    Science.gov (United States)

    Zhang, Dongliang; Li, Mei; Gao, Kai; Li, Jianfei; Yan, Yujun; Liu, Xingyu

    2017-11-01

    In this study, we investigated an alternative to the conventional hydrochloric acid leaching of roasted bastnaesite. The studies suggested that the rare earth oxyfluorides in non-oxidatively roasted bastnaesite can be selectively leached only at elevated temperatures Further, the Ce(IV) in oxidatively roasted bastnaesite does not leach readily at low temperatures, and it is difficult to induce it to form a complex with F - ions in order to increase the leaching efficiency. Moreover, it is inevitably reduced to Ce(III) at elevated temperatures. Thus, the ultrasonically-assisted hydrochloric acid leaching of non-oxidatively roasted bastnaesite was studied in detail, including, the effects of several process factors and the, physical and chemical mechanisms underlying the leaching process. The results show that the leaching rate for the ultrasonically assisted process at 55°C (65% rare earth oxides) is almost the same as that for the conventional leaching process at 85°C. Based on the obtained results, it is concluded that ultrasonic cavitation plays a key role in the proposed process, resulting not only in a high shear stress, which damages the solid surface, but also in the formation of hydroxyl radicals (OH) and hydrogen peroxide (H 2 O 2 ). Standard electrode potential analysis and experimental results indicate that Ce(III) isoxidized by the hydroxyl radicals to Ce(IV), which can be leached with F - ions in the form of a complex, and that the Ce(IV) can subsequently be reduced to Ce(III) by the H 2 O 2. This prevents the Cl - ions in the solution from being oxidized to form chlorine. These results imply that the ultrasonically-assisted process can be used for the leaching of non-oxidatively roasted bastnaesite at low temperatures in the absence of a reductant. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ultrasonic Transducer Design for the Axial Flaw Detection of Dissimilar Metal Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Kim, Yong Sik; Yang, Seung Han

    2011-01-01

    Dissimilar metal welds in nuclear power plant are known as very susceptible to PWSCC flaws, and periodically inspected by the qualified inspector and qualified procedure during in-service inspection period. According to field survey data, the majority of their DMWs are located on tapered nozzle or adjacent to a tapered component. These types of configurations restrict examination access and also limit examination volume coverage. Additionally, circumferential scan for axially oriented flaw is very difficult to detect located on tapered surface because the transducer can't receive flaw response from reflector for miss-orientation. To overcome this miss-orientation, it is necessary adapt skewed ultrasonic transducer accommodate tapered surface. The skewed refracted longitudinal ultrasonic transducer designed by modeling and manufactured from the modelling result for axial flaw detection. Experimental results showed that the skewed refracted longitudinal ultrasonic transducer get higher flaw response than non-skewed refracted longitudinal ultrasonic transducer

  16. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    Science.gov (United States)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  17. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  18. Efficacy of sonic and ultrasonic activation for removal of calcium hydroxide from mesial canals of mandibular molars: a microtomographic study.

    Science.gov (United States)

    Wiseman, Anne; Cox, Timothy C; Paranjpe, Avina; Flake, Natasha M; Cohenca, Nestor; Johnson, James D

    2011-02-01

    The purpose of this study was to use micro-computed tomography (micro-CT) scanning to evaluate the efficacy of sonic and passive ultrasonic irrigation (PUI) on calcium hydroxide (Ca[OH](2)) removal and to measure the volume and percentage of Ca(OH)(2) remaining in the root canal system. The root canals of 46 extracted human mandibular molar teeth were prepared with rotary instruments and randomly assigned to two experimental groups (n = 40) as well as positive and negative controls (n = 6). In each experimental group, 20 teeth were assigned to each irrigation protocol, sonic or passive ultrasonic irrigation. All experimental teeth and the positive controls were filled with Ca(OH)(2), whereas the negative control teeth did not receive Ca(OH)(2). All teeth were scanned using micro-CT scanning to determine the dressing volume. After 7 days, the Ca(OH)(2) was removed in the experimental groups using rotary instrumentation only, and the teeth were again scanned using micro-CT scanning to calculate volume and percentage of Ca(OH)(2) removed. Positive control teeth were not subjected to rotary instrumentation. Experimental samples were then irrigated using either sonic or passive ultrasonic and the volume of remaining Ca(OH)(2) was calculated using micro-CT. Remnants of Ca(OH)(2) were found in all experimental groups. No Ca(OH)(2) was found in the negative controls, whereas a mean of 8.7 mm(3) of Ca(OH)(2) was recorded in the positive controls. Rotary plus passive ultrasonic irrigation removed significantly more Ca(OH)(2) (85.7%) than rotary plus sonic irrigation (71.5%) (p < 0.001). The combination of rotary instrumentation and passive ultrasonic activation for 3 periods of 20 seconds results in significantly lower amounts of Ca(OH)(2) remnants in the canal compared with sonic irrigation. Copyright © 2011. Published by Elsevier Inc.

  19. Verification of split spectrum technique for ultrasonic inspection of welded structures in nuclear reactors

    International Nuclear Information System (INIS)

    Ericsson, L.; Stepinski, T.

    1992-01-01

    Ultrasonic nondestructive inspection of materials is often limited by the presence of backscattered echoes from the material structure. A digital signal processing technique for removal of this material noise, referred to as split spectrum processing (SSP), has been developed and verified using simple laboratory experiments during the last decade. However, application of the split spectrum processing algorithm to industrial conditions has been rarely reported. In the paper the results of the practical evaluation of the SSP technique are presented. A number of different ultrasonic transducers were used for acquiring echoes from artificial flaws as well as natural cracks. The flaws were located in test blocks employed by the Swedish Nuclear Power Companies as reference during ultrasonic inspection of nuclear reactor vessels. The acquired ultrasonic A-scan signals were processed off-line using specially developed algorithms on a personal computer (PC). The experiments show evidence that properly tuned SSP algorithms result in a considerable improvement of the signal to material noise ratio. The enhancements were similar irrespective of the features of the transducer used or the nature of the inspected flaw. The problems related to the development of self-tuning SSP algorithms for on-line processing of B-scans are discussed. (author)

  20. Ultrasonic Surface Treatment of Titanium Alloys. The Submicrocrystalline State

    Science.gov (United States)

    Klimenov, V. A.; Vlasov, V. A.; Borozna, V. Y.; Klopotov, A. A.

    2015-09-01

    The paper presents the results of the research on improvement of physical-and- mechanical properties of titanium alloys VT1-0 and VT6 by modification of surfaces using ultrasonic treatment, and a comprehensive study of the microstructure and mechanical properties of modified surface layers. It has been established that exposure to ultrasonic treatment leads to formation in the surface layer of a structure with an average size of elements 50 - 100 nm, depending on the brand of titanium alloy.

  1. Ultrasonic inspectability of austenitic stainless steel and dissimilar metal weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Pudovikov, S.; Bulavinov, A.; Kroening, M. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren IZFP, Saarbruecken (Germany)

    2008-07-01

    Since their invention in 1912, austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, austenitic stainless steel material is qualified to meet the design criteria of high quality, safety related applications, for example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The ''Sampling Phased Array'' technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with image reconstruction techniques using ''SynFoc'' algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priory, we implement a new phase adjustment called ''Reverse Phase Matching'' technique. This algorithm permits the acquisition of phase-corrected A-scans that represent the actual sound propagation in the anisotropic structure; this technique can be utilized for image reconstruction. (orig.)

  2. A study on non-contact ultrasonic technique for on-line inspection of CFRP

    International Nuclear Information System (INIS)

    Lee, Seung-Joon; Park, Won-Su; Lee, Joon-Hyun; Byun, Joon-Hyung

    2007-01-01

    The advantages of carbon fiber reinforced plastic materials (CFRP) are: they are light structure materials, they have corrosion resistance, and higher specific strength and elasticity. The recently developed 3-dimentional fiber placement system is able to produce a more complex and various shaped structures due to less limitations of a product shape according to the problem in conventional fabrication process. This fiber placement system stacks the narrow prepreg tape on the mold according to the designed sequence and thickness. Non-destructive evaluation was rquired for these composites to evaluate changes in strength caused by defects such as delamination and porosity. Additionally, the expectent quality should be satisfied for the high cost fabrication process using the fiber placement system. Therefore, an on line non-destructive evaluation system is required and real-time complement is needed when the defects are detected [1]. Defect imaging by the ultrasonic C-scan method is a useful technique for defect detection in CFRP. However, the conventional ultrasonic C-scan technique cannot be applied during the fabrication process because the test piece should be immersed into the water. Therefore, non-contact ultrasonic techniques should be applied during the fabricating process. For the development of non-contact ultrasonic techniques available in non-destructive evaluation of CFRP, a recent laser-generated ultrasonic technique and an air-coupled transducer that transmit and receive ultrasounds in the air are studied [2-3]. In this study, generating and receiving techniques of laser-generated ultrasound and the characteristics of received signals upon the internal defects of CFRO were studied for non-contact inspection

  3. Application of Phased Array Ultrasonic Testing (PAUT) on Single V-Butt Weld Integrity Determination

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsudin; Norhazleena Azaman

    2015-01-01

    Phased Array Ultrasonic Testing (PAUT) utilizes arrays of piezoelectric elements that are embedded in an epoxy base. The benefit of having such kind of array is that beam forming such as steering and focusing the beam front possible. This enables scanning patterns such as linear scan, sectorial scan and depth focusing scan to be performed. Ultrasonic phased array systems can potentially be employed in almost any test where conventional ultrasonic flaw detectors have traditionally been used. Weld inspection and crack detection are the most important applications, and these tests are done across a wide range of industries including aerospace, power generation, petrochemical, metal billet and tubular goods suppliers, pipeline construction and maintenance, structural metals, and general manufacturing. Phased arrays can also be effectively used to profile remaining wall thickness in corrosion survey applications. The benefits of PAUT are simplifying inspection of components of complex geometry, inspection of components with limited access, testing of welds with multiple angles from a single probe and increasing the probability of detection while improving signal-to-noise ratio. This paper compares the result of inspection on several specimens using PAUT as to digital radiography. The specimens are welded plates with single V-butt weld made of carbon steel. Digital radiography is done using blue imaging plate with x-ray source. PAUT is done using Olympus MX2 with 5 MHz probe consisting of 64 elements. The location, size and length of defect is compared. (author)

  4. Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators

    Science.gov (United States)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    A shape reminiscent of a dog bone has been found to be superior to other shapes for mechanical-amplification horns that are components of piezoelectrically driven actuators used in a series of related devices denoted generally as ultrasonic/sonic drill/corers (USDCs). The first of these devices was reported in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. The dog-bone shape was conceived especially for use in a more recent device in the series, denoted an ultrasonic/ sonic gopher, that was described in Ultrasonic/Sonic Mechanisms for Drilling and Coring (NPO-30291), NASA Tech Briefs, Vol. 27, No. 9 (September 2003), page 65. The figure shows an example of a dog-bone-shaped horn and other components of an ultrasonic gopher. Prerequisite to a meaningful description of this development is an unavoidably lengthy recapitulation of the principle of operation of a USDC and, more specifically, of the ultrasonic/sonic gopher as described previously in NASA Tech Briefs. The ultrasonic actuator includes a stack of piezoelectric rings, the horn, a metal backing, and a bolt that connects the aforementioned parts and provides compressive pre-strain to the piezoelectric stack to prevent breakage of the rings during extension. The stack of piezoelectric rings is excited at the resonance frequency of the overall ultrasonic actuator. Through mechanical amplification by the horn, the displacement in the ultrasonic vibration reaches tens of microns at the tip of the horn. The horn hammers an object that is denoted the free mass because it is free to move longitudinally over a limited distance between hard stops: The free mass bounces back and forth between the ultrasonic horn and a tool bit (a drill bit or a corer). Because the longitudinal speed of the free mass is smaller than the longitudinal speed of vibration of the tip of the horn, contact between the free mass and the horn tip usually occurs at a

  5. Track type ultrasonic inspection device

    International Nuclear Information System (INIS)

    Kajiyama, Shigeru; Sasaki, Tsukasa; Takahisa, Kazuo.

    1993-01-01

    The present invention concerns an improvement of a scanning device disposed near an object to be inspected such as a nuclear pressure vessel and having an ultrasonic probe, mounted thereon that travel along a running track. Specifically, one of wheel supports on both sides is attached being secured to the scanning device. The other of the supports is capable of fixing and releasing, as well as providing and releasing pressure to and from wheels upon mounting and detachment. This enables to provide a structure capable of pressing the wheels of the running device to the plane of the track and release thereof. Accordingly, it is possible to improve the running performance, reduce the size and weight and shorten the time for mounting and detachment of the running inspection device. (I.S.)

  6. Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks

    Science.gov (United States)

    2013-01-01

    In 1990, NASA grounded its space shuttle fleet. The reason: leaks detected in the hydrogen fuel systems of the Space Shuttles Atlantis and Columbia. Unless the sources of the leaks could be identified and fixed, the shuttles would not be safe to fly. To help locate the existing leaks and check for others, Kennedy Space Center engineers used portable ultrasonic detectors to scan the fuel systems. As a gas or liquid escapes from a leak, the resulting turbulence creates ultrasonic noise, explains Gary Mohr, president of Elmsford, New York-based UE Systems Inc., a long-time leader in ultrasonic detector technologies. "In lay terms, the leak is like a dog whistle, and the detector is like the dog ear." Because the ultrasound emissions from a leak are highly localized, they can be used not only to identify the presence of a leak but also to help pinpoint a leak s location. The NASA engineers employed UE s detectors to examine the shuttle fuel tanks and solid rocket boosters, but encountered difficulty with the devices limited range-certain areas of the shuttle proved difficult or unsafe to scan up close. To remedy the problem, the engineers created a long-range attachment for the detectors, similar to "a zoom lens on a camera," Mohr says. "If you are on the ground, and the leak is 50 feet away, the detector would now give you the same impression as if you were only 25 feet away." The enhancement also had the effect of reducing background noise, allowing for a clearer, more precise detection of a leak s location.

  7. Assessment of microstructure stability of cold worked Ti-modified austenitic stainless steel during aging using ultrasonic velocity measurements and correlation with mechanical properties

    International Nuclear Information System (INIS)

    Vasudevan, M.; Palanichamy, P.

    2003-01-01

    As ultrasonic velocity is sensitive to the changes in texture, it is a more reliable technique than mechanical property measurements for assessment of microstructural stability (recrystallization behaviour) of cold worked alloy where recrystallization is coupled with precipitation. Hence ultrasonic velocity measurements have been employed for studying the influence of Ti/C ratio on the microstructural stability of cold worked Ti-modified austenitic stainless steel during isochronal aging. In this alloy precipitation of TiC is known to retard recovery and recrystallization. The variation in ultrasonic velocity with aging temperature exhibited a three stage behaviour at all three frequencies employed (2, 10 and 20 MHz) and correlated well with the microstructural changes. Based on the microstructural investigations, the three stages have been identified to be recovery, progress of recrystallization and completion of recrystallization. There was one to one correspondence between the variation in the hardness, strength values and the variation in the ultrasonic velocity values as a function of aging temperature in assessing the microstructural changes, except when the interaction between the TiC precipitation and recrystallization is stronger

  8. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    Science.gov (United States)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  9. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    Science.gov (United States)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  10. Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2010-01-01

    Copper thin film on silane modified poly(ethylene terephthalate) (PET) substrate was fabricated by ultrasonic-assisted electroless deposition. The composition and topography of copper plating PET films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Peel adhesion strength, as high as 16.7 N/cm, was achieved for the planting copper layer to the modified PET substrate with ultrasonic-assisted deposition; however, a relative low value as 11.9 N/cm was obtained for the sample without ultrasonic vibration by the same measurement. The electrical conductivity of Cu film was changed from 7.9 x 10 4 to 2.1 x 10 5 S/cm by using ultrasonic technique. Ultrasonic operation has the significant merits of fast deposition and formation of good membranes for electroless deposition of Cu on PET film.

  11. Enhanced mechanical behaviors of gradient nano-grained austenite stainless steel by means of ultrasonic impact treatment

    Directory of Open Access Journals (Sweden)

    Xinjun Yang

    Full Text Available The gradient nano-grained (GNG structure was formed on the top layer of AISI 304 in the presence of coarse grains (CG by means of ultrasonic impact treatment (UIT. The impact velocity was 5 m/s and the coverage changed from 3000% to 9000% in order to obtain the microstructure GNG/CG materials. The tensile test and small punch test (SPT were further carried out in order to investigate the mechanical behaviors of the GNG/CG 304 at the different stress states. The results indicated that the yield strength of GNG/CG 304 obtained by tensile test and SPT increased at the small expense of ductility. The stress triaxiality T played an important role in the deformation behavior of GNG/CG 304. An increased T-value in the region of biaxial stretching of small punch specimen (T = 2/3 led to an improved ductility compared with that noted in the case of uniaxial tensile specimen. The strain rate sensitivity m of GNG/CG 304 was 0.0468 that was estimated to be 25-fold greater than the coarse material. The yield strength of GNG/CG 304 at 400 °C was 1.6-fold greater than the coarse material at ambient temperature due to the thermal stability of the GNG layer. Thus, the GNG structure could improve the comprehensive mechanical performances of AISI 304 with a balance of strength and ductility. Keywords: GNG structure, Mechanical behaviors, Small punch test, Ultrasonic impact treatment, Austenite stainless steel

  12. Structural damage detection using deep learning of ultrasonic guided waves

    Science.gov (United States)

    Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.

    2018-04-01

    Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.

  13. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC)

    Science.gov (United States)

    Patra, Subir; Banerjee, Sourav

    2017-01-01

    Material state awareness of composites using conventional Nondestructive Evaluation (NDE) method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC) is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz) scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy. PMID:29258256

  14. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC

    Directory of Open Access Journals (Sweden)

    Subir Patra

    2017-12-01

    Full Text Available Material state awareness of composites using conventional Nondestructive Evaluation (NDE method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy.

  15. Ultrasonic process for detoxification of groundwater

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, H.S.; Livengood, C.D.

    1991-01-01

    In this paper, we present the results of an investigation of the ultrasonic irradiation of carbon tetrachloride at various pH values, temperatures, and power intensities. Kinetic data and selected chemical mechanism are discussed and proposed. To study oxidant efficiency, chemical oxidants, such as hydrogen peroxide, are also considered. This work is part of a project entitled ''Ultrasonic Process for Detoxification of Groundwater and Soil,'' sponsored by the US Department of Energy, Office of Technology Development, to develop an innovative process for the effective destruction of chlorinated organics in soil and groundwater

  16. Linear ultrasonic motor for absolute gravimeter.

    Science.gov (United States)

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 2D biological representations with reduced speckle obtained from two perpendicular ultrasonic arrays.

    Science.gov (United States)

    Rodriguez-Hernandez, Miguel A; Gomez-Sacristan, Angel; Sempere-Payá, Víctor M

    2016-04-29

    Ultrasound diagnosis is a widely used medical tool. Among the various ultrasound techniques, ultrasonic imaging is particularly relevant. This paper presents an improvement to a two-dimensional (2D) ultrasonic system using measurements taken from perpendicular planes, where digital signal processing techniques are used to combine one-dimensional (1D) A-scans were acquired by individual transducers in arrays located in perpendicular planes. An algorithm used to combine measurements is improved based on the wavelet transform, which includes a denoising step during the 2D representation generation process. The inclusion of this new denoising stage generates higher quality 2D representations with a reduced level of speckling. The paper includes different 2D representations obtained from noisy A-scans and compares the improvements obtained by including the denoising stage.

  18. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  19. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    Science.gov (United States)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  20. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Yan

    2018-02-01

    Full Text Available Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  1. Ultrasonic horn design for ultrasonic machining technologies

    Directory of Open Access Journals (Sweden)

    Naď M.

    2010-07-01

    Full Text Available Many of industrial applications and production technologies are based on the application of ultrasound. In many cases, the phenomenon of ultrasound is also applied in technological processes of the machining of materials. The main element of equipments that use the effects of ultrasound for machining technology is the ultrasonic horn – so called sonotrode. The performance of ultrasonic equipment, respectively ultrasonic machining technologies depends on properly designed of sonotrode shape. The dynamical properties of different geometrical shapes of ultrasonic horns are presented in this paper. Dependence of fundamental modal properties (natural frequencies, mode shapes of various sonotrode shapes for various geometrical parameters is analyzed. Modal analyses of the models are determined by the numerical simulation using finite element method (FEM design procedures. The mutual comparisons of the comparable parameters of the various sonotrode shapes are presented.

  2. Ultrasonic coal-wash for de-ashing and de-sulfurization. Experimental investigation and mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ambedkar, B. [Indian Institute of Technology Madras, Chennai (India). Dept. of Chemical Engineering

    2012-07-01

    This study focuses on the physical aspects of ultrasonic de-ashing and de-sulfurization, such as cavitation, streaming and their combined effects. Ambedkar Balraj proposes an ultrasound-assisted coal particle breakage mechanism and explores aqueous and solvent-based ultrasonic techniques for de-ashing and de-sulfurization. Ambedkar designs a Taguchi L-27 fractional-factorial matrix to assess the individual effects of key process variables. In this volume he also describes process optimization and scale-up strategies. The author provides a mechanism-based model for ultrasonic reagent-based coal de-sulfurization, proposes a flow diagram for ultrasonic methods of high-throughput coal-wash and discusses the benefits of ultrasonic coal-wash. Coal will continue to be a major fuel source for the foreseeable future and this study helps improve its use by minimising ash and sulfur impurities.

  3. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    International Nuclear Information System (INIS)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung

    2016-01-01

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived

  4. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-10-15

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

  5. Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method

    International Nuclear Information System (INIS)

    Narasimha Murthy, I.; Venkata Rao, D.; Babu Rao, J.

    2012-01-01

    Highlights: ► Nano structured fly ash has been produced by 30 h milling time. ► Al–fly ash nano composites were produced by ultrasonic cavitation route. ► A homogeneous distribution of nano fly ash particles was observed in the matrix. ► No additional contamination in the nano composites from the atmosphere. ► Presence of nano fly ash leads to improvement in the strength of the composites. -- Abstract: In this paper an attempt has been made to modify the micro sized fly ash into nano structured fly ash using high energy ball mill. Ball milling was carried out for the total duration of 30 h. The sample was taken out after every 5 h of milling for characterizing. The nano structured fly ash was characterized for its crystallite size and lattice strain by using X-ray diffractometer. It was found that a steady decrease in the crystallite size and increased lattice strain was observed with milling time; the crystallite size at 30 h milling time was found to be 23 nm. The fresh fly ash particles are mostly spherical in shape; whereas the shape of the 30 h milled fly ash particles is irregular and the surface morphology is rough. Al–fly ash nano composites were produced by ultrasonic cavitation route successfully. Scanning electron microscopy images of nano composites reveal a homogeneous distribution of the nano fly ash particles in the AA 2024 matrix. Energy dispersive spectroscopy analysis of nano composites reveals that the fabricated nano composite did not contain any additional contamination from the atmosphere. As the amount of nano fly ash is increasing the hardness of the composite also increasing. The nano fly ash addition leads to improvement in the compression strength of the composites.

  6. Synthesis of Calcite Nano Particles from Natural Limestone assisted with Ultrasonic Technique

    Science.gov (United States)

    Handayani, M.; Sulistiyono, E.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    This article represents a precipitation method assisted with ultrasonic process to synthesize precipitated calcium carbonate nano particles from natural limestone. The synthesis of nanoparticles material of precipitated calcium carbonate from commercial calcium carbonate was done for comparison. The process was performed using ultrasonic waves at optimum condition, that is, at temperature of 80oC for 10 minutes with various amplitudes. Synthesized precipitated calcium carbonate nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Particle Size Analyzer (PSA). The result of PSA measurements showed that precipitated calcium carbonate nano particles was obtained with the average size of 109 nm.

  7. System and process for ultrasonic characterization of deformed structures

    Science.gov (United States)

    Panetta, Paul D [Williamsburg, VA; Morra, Marino [Richland, WA; Johnson, Kenneth I [Richland, WA

    2011-11-22

    Generally speaking, the method of the present invention is performed by making various ultrasonic scans at preselected orientations along the length of a material being tested. Data from the scans are then plotted together with various calculated parameters that are calculated from this data. Lines or curves are then fitted to the respective plotted points. Review of these plotted curves allows the location and severity of defects within these sections to be determined and quantified. With this information various other decisions related to how, when or whether repair or replacement of a particular portion of a structure can be made.

  8. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  9. Energy-Based Analysis of Ultrasonically Assisted Turning

    Directory of Open Access Journals (Sweden)

    G.A. Volkov

    2011-01-01

    Full Text Available The process of ultrasonically-assisted turning (UAT is a superposition of vibration of a cutting tool on its standard movement in conventional turning (CT. The former technique has several advantages compared with the latter, one of the main being a significant decrease in the level of cutting forces. In this paper the effects observed in UAT are analysed employing ideas of dynamic fracture mechanics. The active stage of loading duration depends heavily on ultrasonic frequency and the cutting speed; he application of the fracture criterion based on the notion of incubation time makes it possible to calculate a dependence of this duration on its threshold amplitude. An estimation of energy, necessary to create a threshold pulse in the material, is made by solving the contact Hertz problem. The obtained time dependence of energy has a marked minimum. Thus, the existence of energy-efficient loading duration is demonstrated. This explains the decrease in the cutting force resulting from superimposed ultrasonic vibration. The obtained results are in agreement with experiments on ultrasonic assisted machining of aluminium and Inconel 718 alloy.

  10. A versatile nondestructive evaluation imaging workstation

    Science.gov (United States)

    Chern, E. James; Butler, David W.

    1994-01-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  11. Ultrasonic Measurement of Corrosion Depth Development in Concrete Exposed to Acidic Environment

    Directory of Open Access Journals (Sweden)

    Fan Yingfang

    2012-01-01

    Full Text Available Corrosion depth of concrete can reflect the damage state of the load-carrying capacity and durability of the concrete structures servicing in severe environment. Ultrasonic technology was studied to evaluate the corrosion depth quantitatively. Three acidic environments with the pH level of 3.5, 2.5, and 1.5 were simulated by the mixture of sulfate and nitric acid solutions in the laboratory. 354 prism specimens with the dimension of 150 mm × 150 mm × 300 mm were prepared. The prepared specimens were first immersed in the acidic mixture for certain periods, followed by physical, mechanical, computerized tomography (CT and ultrasonic test. Damage depths of the concrete specimen under different corrosion states were obtained from both CT and ultrasonic test. Based on the ultrasonic test, a bilinear regression model is proposed to estimate the corrosion depth. It is shown that the results achieved by ultrasonic and CT test are in good agreement with each other. Relation between the corrosion depth of concrete specimen and the mechanical indices such as mass loss, compressive strength, and elastic modulus is discussed in detail. It can be drawn that the ultrasonic test is a reliable nondestructive way to measure the damage depth of concrete exposed to acidic environment.

  12. Ultrasonic characterization of defective porcelain tiles

    Directory of Open Access Journals (Sweden)

    Eren, E.

    2012-08-01

    Full Text Available The aim of this work is the optimization of ultrasonic methods in the non-destructive testing of sintered porcelain tiles containing defects. For this reason, a silicon nitride ball, carbon black and PMMA (Polymethylmethacrylate were imbedded in porcelain tile granules before pressing to make special defects in tiles. After sintering at 1220ºC, the time of flight of the ultrasonic waves and ultrasonic signal amplitudes through the sintered porcelain tiles were measured by a contact ultrasonic transducer operating on pulse-echo mode. This method can allow for defect detection using the A-scan. The results of the test showed that the amplitude of the received peak for a defective part is smaller than for a part which has no defects. Depending on the size, shape and position of the defect, its peak can be detected. Additionally, an immersion pulse-echo C-scan method was also used to differentiate between defects in porcelain tiles. By using this technique, it is possible to determine the place and shape of defects. To support the results of the ultrasonic investigation, a SEM characterization was also made.

    El fin principal de este trabajo es la optimización de métodos ultrasónicos en la prueba no destructiva de azulejos sinterizados de porcelana que contienen defectos. Por lo tanto, bolas del nitruro de silicio, negros de carbón y PMMA (polimetilmetacrilato fueron encajados en gránulos del azulejo de porcelana antes de presionar para hacer defectos especiales en azulejos. Después de sinterizado en 1220ºC, el tiempo de vuelo de las ondas ultrasónicas fue medido a través del azulejo sinterizado de la porcelana. El tiempo del vuelo de ondas ultrasónicas fue medido por un transductor de contacto ultrasónico operando en modo eco-pulso. Este método puede permitir la detección de defectos usando escaneo-A. Los resultados de la prueba demostraron que la amplitud del pico recibido por partes defectuosas es más pequeño que la parte

  13. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  14. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC.

    Science.gov (United States)

    Yuan, Jie; Xiao, Jin; Li, Fachuang; Wang, Bingjie; Yao, Zhen; Yu, Bailie; Zhang, Liuyun

    2018-03-01

    Spent cathode carbon (SCC) from aluminum electrolysis has been treated in ultrasonic-assisted caustic leaching and acid leaching process, and purified SCC used as carbon source to synthesize silicon carbide (SiC) was investigated. Chemical and mineralogical properties have been characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and thermogravimetry and differential scanning calorimetry (TGA-DSC). Various experimental factors temperature, time, liquid-solid ratio, ultrasonic power, and initial concentration of alkali or acid affecting on SCC leaching result were studied. After co-treatment with ultrasonic-assisted caustic leaching and acid leaching, carbon content of leaching residue was 97.53%. SiC power was synthesized by carbothermal reduction at 1600 °C, as a result of yield of 76.43%, and specific surface area of 4378 cm 2 /g. This is the first report of using purified SCC and gangue to prepare SiC. The two industrial wastes have been used newly as secondary sources. Furthermore, ultrasonic showed significant effect in SCC leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ultrasonic boiler inspection and economic analysis guidelines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Boiler tube failures cause approximately 6% availability loss of large fossil-fired power generating plants. This loss can be reduced by systematic approaches using ultrasonic examination and root cause failure analysis methods. Two projects sponsored by EPRI have provided utility engineers with guidelines for performing ultrasonic examinations and with details on 22 types of tube failure mechanisms. A manual has been published that provides descriptions of typical locations, superficial appearances, damage mechanisms, metallurgy, microstructural changes, likely root causes, and potential corrective actions. Application of the principles in the manual is being demonstrated in an EPRI-funded project at 10 electric utilities over the next two years. Guidelines have been published that prescribe the activities necessary for ultrasonic examinations of boiler tubes. Eight essential elements of a boiler examination should be performed to assure that possible economic benefits are obtained. Work was supported by EPRI under RP 1890 and RP 1865. A software package has been developed for effectively planning inspections for wall thinning in fossil-fired boiler tubing. The software assists in minimizing costs associated with maintenance, such as inspection and repair, while the life of the boiler is maximized

  16. Rotary bending fatigue properties of Inconel 718 alloys by ultrasonic nanocrystal surface modification technique

    Directory of Open Access Journals (Sweden)

    Jun-Hyong Kim

    2015-08-01

    Full Text Available This study investigates the influence of ultrasonic nanocrystal surface modification (UNSM technique on fatigue properties of SAE AMS 5662 (solution treatment of Inconel 718 alloys. The fatigue properties of the specimens were investigated using a rotary bending fatigue tester. Results revealed that the UNSM-treated specimens showed longer fatigue life in comparison with those of the untreated specimens. The improvement in fatigue life of the UNSM-treated specimens is attributed mainly to the induced compressive residual stress, increased hardness, reduced roughness and refined grains at the top surface. Fractured surfaces were analysed using a scanning electron microscopy (SEM in order to give insight into the effectiveness of UNSM technique on fracture mechanisms and fatigue life.

  17. Looking Below the Surface with Ultrasonic Phased Array

    International Nuclear Information System (INIS)

    Cinson, Anthony D.; Crawford, Susan L.

    2010-01-01

    This article is a brief tutorial on the benefits of volumetric ultrasonic phased array line scanning. The article describes the need, the approach, and the methods/practices used to analyze the data for flaw detection and characterization in the nuclear power plant component arena. If you are inspecting the integrity of nuclear power plant components during a scheduled outage, time is likely against you. Time is a luxury that most inspectors do not possess in their daily jobs. They are required to quickly and efficiently perform nondestructive testing (NDT) on various components within the nuclear power plant facility. In addition to the obvious financial impacts ($1M+ per day) of prolonging planned outages, time constraints also are put in place for the safety and health of the inspectors. For instance, while working in highly radioactive or contaminated environments of the plant, inspectors have a limited window of time to volumetrically inspect components for flaws, such as cracks, defects or other anomalies that might lead to leakage or failure during operation. In the interest of simplicity, flaws are limited to cracks for our purposes. Ultrasonic phased array volumetric line scanning is emerging as a powerful tool that allows for quick inspections of components that had been very time-consuming using earlier technologies.

  18. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  19. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    Science.gov (United States)

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  20. An implementation of signal processing algorithms for ultrasonic NDE

    International Nuclear Information System (INIS)

    Ericsson, L.; Stepinski, T.

    1994-01-01

    Probability of detection flaws during ultrasonic pulse-echo inspection is often limited by the presence of backscattered echoes from the material structure. A digital signal processing technique for removal of this material noise, referred to as split spectrum processing (SSP), has been developed and verified using laboratory experiments during the last decade. The authors have performed recently a limited scale evaluation of various SSP techniques for ultrasonic signals acquired during the inspection of welds in austenitic steel. They have obtained very encouraging results that indicate promising capabilities of the SSP for inspection of nuclear power plants. Thus, a more extensive investigation of the technique using large amounts of ultrasonic data is motivated. This analysis should employ different combinations of materials, flaws and transducers. Due to the considerable number of ultrasonic signals required to verify the technique for future practical use, a custom-made computer software is necessary. At the request of the Swedish nuclear power industry the authors have developed such a program package. The program provides a user-friendly graphical interface and is intended for processing of B-scan data in a flexible way. Assembled in the program are a number of signal processing algorithms including traditional Split Spectrum Processing and the more recent Cut Spectrum Processing algorithm developed by them. The program and some results obtained using the various algorithms are presented in the paper

  1. Design, fabrication and commissioning of motorized scanning bed mechanism for shadow shield whole body counting system

    International Nuclear Information System (INIS)

    Arun, B.; Varalakshimi, S.; Manohari, M.; Mathiyarasu, R.

    2012-01-01

    A new scanning bed mechanism for shadow shield counting system is designed, fabricated and commissioned at RSD, IGCAR. The present motorized scanning bed mechanism has varying scan speeds, state of art limit sensors, smooth bed movement, touch screen based software controlled operation parameters with UPS power back-up. In view of the improved personnel safety the entire system has been designed to operate with low voltage power supply (24V). The evaluation demonstrated that the incorporation of the new motorized scanning mechanism has not affected the counting performance of the shadow shield wholebody counting system. (author)

  2. Control of hydrodynamic cavitation using ultrasonic

    Science.gov (United States)

    Chatterjee, Dhiman; Arakeri, Vijay H.

    2003-11-01

    Hydrodynamic cavitation is known to have many harmful effects like surface damage and generation of noise. We investigated the use of ultrasonics to control traveling bubble cavitation. Ultrasonic pressure field, produced by a piezoelectric crystal, was applied to modify the nuclei size distribution. Effects of continuous-wave (CW) and pulsed excitations were studied. At low dissolved gas content the CW-mode performed better than the pulsed one, whereas for high gas content the pulsed one was more effective. The dominant mechanisms were Bjerknes force and rectified diffusion in these two cases. Simultaneous excitation by two crystals in CW and pulsed modes was seen to control cavitation better.

  3. Residual stress determination of rail tread using a laser ultrasonic technique

    International Nuclear Information System (INIS)

    Wang, Jing; Feng, Qibo

    2015-01-01

    A non-destructive method for measuring the residual stress on rail tread that uses a laser-generated ultrasonic technique is proposed. The residual stress distribution of different parts on both the new rail and used rail were examined. The surface acoustic waves (SAWs) are excited by a scanning line laser and detected by a laser ultrasonic detection system. A digital correlation method was used for calculating the changes in velocity of SAWs, which reflects the stress distribution. A wavelet de-noising technique and a least square fit were used for signal processing to improve the measurement accuracy. The effects of ultrasonic propagation distance and surface roughness on the determination of residual stress were analyzed and simulated. Results from the study demonstrate that the stress distribution results are accordant with the practical situation, and the laser-generated SAWs technique is a promising tool for the determination of residual stress in the railway inspection and other industrial testing fields. (paper)

  4. Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%.

    Science.gov (United States)

    Kamel, M M; Helmy, H M; Mashaly, H M; Kafafy, H H

    2010-01-01

    The dyeing of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% has been studied with both conventional and ultrasonic techniques. The effect of dye concentration, dye bath pH, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with both techniques were compared. Colour strength values obtained were found to be higher with ultrasonic than with conventional heating. The results of fastness properties of the dyed fabrics were studied. X-ray and Scanning Electron Microscope SEM were carried out on dyed samples using both methods of dyeing to find out an explanation for the better dyeability of acrylic fabrics with (US) method. Dyeing kinetics of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% using conventional and ultrasonic conditions were compared. The time/dye-uptake isotherms are revealing the enhanced dye-uptake in the second phase of dyeing. The values of dyeing rate constant, half-time of dyeing and standard affinity and ultrasonic efficiency have been calculated and discussed.

  5. Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter

    Science.gov (United States)

    Kihara, Takashi; Harada, Toshihiro; Kato, Masahiro; Nakano, Kiyoshi; Murakami, Osamu; Kikusui, Takefumi; Koshida, Nobuyoshi

    2006-01-01

    As one of the functional properties of ultrasound generator based on efficient thermal transfer at the nanocrystalline silicon (nc-Si) layer surface, its potential as an ultrasonic simulator of vocalization signals is demonstrated by using the acoustic data of mouse-pup calls. The device composed of a surface-heating thin-film electrode, an nc-Si layer, and a single-crystalline silicon (c-Si) wafer, exhibits an almost completely flat frequency response over a wide range without any mechanical surface vibration systems. It is shown that the fabricated emitter can reproduce digitally recorded ultrasonic mouse-pups vocalizations very accurately in terms of the call duration, frequency dispersion, and sound pressure level. The thermoacoustic nc-Si device provides a powerful physical means for the understanding of ultrasonic communication mechanisms in various living animals.

  6. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  7. Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since Michael Faraday

    CSIR Research Space (South Africa)

    Mwakikunga, BW

    2014-01-01

    Full Text Available This review outlines, in great detail, the history of the phenomenon of ultrasonic nebulization of liquids since the discovery of such an effect by Michael Faraday and the explanation of the phenomenon by capillary wave mechanism and “cavitation...

  8. Methodology of investigation of the effect of ultrasonic oscillations on mechanical properties of structural materials in a wide range of temperatures and strain rates

    International Nuclear Information System (INIS)

    Bakay, S.O.; Gurin, V.A.; Gurin, I.V.; Neklyudov, I.M.; Gorbatenko, V.M.; Netesov, V.M.; Dub, S.N.

    2007-01-01

    The present message is devoted to the description of a method of research of influence of ultrasound on physicomechanical properties of constructional materials during plastic deformation in vacuum. The functional diagram and the description of created experimental facility which allows to carry out researches by this method is resulted. The created method and the equipment it has been approved for studying influence of ultrasound on physicomechanical properties of carbon composite materials of nuclear industry. Mechanical properties of carbon - carbon composite materials are investigated in a range of temperatures from room up to 600 degree C, at various strain rates, in conditions of ultrasonic vibrations and without them. The analysis of results received is carried out at use of a method of mechanical tests of samples of carbon before ultrasonic processing on nanohardness. The comparative estimation of the received experimental data is resulted

  9. Ultrasonic spectroscopy applications in condensed matter physics and materials science

    CERN Document Server

    Leisure, Robert G

    2017-01-01

    Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

  10. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  11. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt.

    Science.gov (United States)

    Dong, Fang; Li, Xiaoqian; Zhang, Lihua; Ma, Liyong; Li, Ruiqing

    2016-07-01

    Ultrasound radiation rods play a key role in introducing ultrasonic to the grain refinement of large-size cast aluminum ingots (with diameter over 800 mm), but the severe cavitation corrosion of radiation rods limit the wide application of ultrasonic in the metallurgy field. In this paper, the cavitation erosion of Ti alloy radiation rod (TARR) in the semi-continuous direct-chill casting of 7050 Al alloy was investigated using a 20 kHz ultrasonic vibrator. The macro/micro characterization of Ti alloy was performed using an optical digital microscopy and a scanning electron microscopy, respectively. The results indicated that the cavitation erosion and the chemical reaction play different roles throughout different corrosion periods. Meanwhile, the relationship between mass-loss and time during cavitation erosion was measured and analyzed. According to the rate of mass-loss to time, the whole cavitation erosion process was divided into four individual periods and the mechanism in each period was studied accordingly. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Theoretical and Experimental Study on Vibration Propagation in PMMA Components in Ultrasonic Bonding Process

    Directory of Open Access Journals (Sweden)

    Yibo Sun

    2017-03-01

    Full Text Available Ultrasonic bonding has an increasing application in the micro assembly of polymeric micro-electro mechanical systems (MEMS with high requirements for fusion precision. In the ultrasonic bonding process, the propagation of ultrasonic vibration in polymer components is related to the interfacial fusion, which can be used as a monitoring parameter to control ultrasonic energy. To study the vibration propagation in viscoelastic polymer components, finite element analysis on the bonding of poly methyl methacrylate (PMMA micro connector to substrate for microfluidic system is carried out. Curves of propagated vibration amplitude corresponding to interfacial temperatures are obtained. The ultrasonic vibration propagated in PMMA components are measured through experiments. The theoretical and experimental results are contrasted to analyze the change mechanism of vibration propagation related to temperature. Based on the ultrasonic bonding process controlled by the feedback of vibration propagation, interfacial fusions at different vibration propagation states are obtained through experiments. Interfacial fusion behavior is contrasted to the propagated vibration amplitude in theoretical and experimental studies. The relation between vibration propagation and fusion degree is established with the proper parameter range for the obtained high quality bonding.

  13. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  14. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.

    Science.gov (United States)

    Wear, Keith A; Nagaraja, Srinidhi; Dreher, Maureen L; Sadoughi, Saghi; Zhu, Shan; Keaveny, Tony M

    2017-10-01

    Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (pmechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone. Published by Elsevier Inc.

  15. Development of pulse-echo ultrasonic propagation imaging system and its delivery to Korea Air Force

    Science.gov (United States)

    Ahmed, Hasan; Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon; Ihn, Jeong-Beom

    2017-04-01

    This paper proposes a full-field pulse-echo ultrasonic propagation imaging (FF-PE-UPI) system for non-destructive evaluation of structural defects. The system works by detection of bulk waves that travel through the thickness of a specimen. This is achieved by joining the laser beams for the ultrasonic wave generation and sensing. This enables accurate and clear damage assessment and defect localization in the thickness with minimum signal processing since bulk waves are less susceptible to dispersion during short propagation through the thickness. The system consists of a Qswitched laser for generating the aforementioned waves, a laser Doppler vibrometer (LDV) for sensing, optical elements to combine the generating and sensing laser beams, a dual-axis automated translation stage for raster scanning of the specimen and a digitizer to record the signals. A graphical user interface (GUI) is developed to control all the individual blocks of the system. Additionally, the software also manages signal acquisition, processing, and display. The GUI is created in C++ using the QT framework. In view of the requirements posed by the Korean Air Force(KAF), the system is designed to be compact and portable to allow for in situ inspection of a selected area of a larger structure such as radome or rudder of an aircraft. The GUI is designed with a minimalistic approach to promote usability and adaptability while masking the intricacies of actual system operation. Through the use of multithreading the software is able to show the results while a specimen is still being scanned. This is achieved by real-time and concurrent acquisition, processing, and display of ultrasonic signal of the latest scan point in the scan area.

  16. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the

  17. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    International Nuclear Information System (INIS)

    Bosse, J. L.; Huey, B. D.; Tovee, P. D.; Kolosov, O. V.

    2014-01-01

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm 2 unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular

  18. Correlation vs. Causation: The Effects of Ultrasonic Melt Treatment on Cast Metal Grain Size

    Directory of Open Access Journals (Sweden)

    J. B. Ferguson

    2014-10-01

    Full Text Available Interest in ultrasonic treatment of liquid metal has waxed and waned for nearly 80 years. A review of several experiments representative of ultrasonic cavitation treatment of Al and Mg alloys shows that the theoretical mechanisms thought to be responsible for grain refinement are (1 cavitation-induced increase in melting temperature predicted by the Clausius-Clapeyron equation and (2 cavitation-induced wetting of otherwise unwetted insoluble particles. Neither of these theoretical mechanisms can be directly confirmed by experiment, and though they remain speculative, the available literature generally assumes that one or the other or both mechanisms are active. However, grain size is known to depend on temperature of the liquid, temperature of the mold, and cooling rate of the entire system. From the reviewed experiments, it is difficult to isolate temperature and cooling rate effects on grain size from the theoretical effects. Ultrasonic treatments of Al-A356 were carried out to isolate such effects, and though it was found that ultrasound produced significant grain refinement, the treatments also significantly chilled the liquid and thereby reduced the pouring temperature. The grain sizes attained closely correlated with pouring temperature suggesting that ultrasonic grain refinement is predominantly a result of heat removal by the horn and ultrasonic stirring.

  19. Ultrasonic detection of cracks in uniaxial glass fibre rods

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-01-01

    Full Text Available Conference on Computational and Applied Mechanics SACAM06 Cape Town, 16-18 January 2006 �SACAM ULTRASONIC DETECTION OF CRACKS IN UNIAXIAL GLASS FIBRE RODS Derren Wood and Philip Loveday Sensor Science and Technology, CSIR Materials Science... means of detecting internal and/or surface damage in composites which is safe, quick and relatively cost effective. Various ultrasonic techniques have been applied in the past to detect defects in composite media, the most well known being perhaps...

  20. Evaluation of the safety and efficiency of novel metallic ultrasonic scaler tip on titanium surfaces.

    Science.gov (United States)

    Baek, Seung-Ho; Shon, Won-Jun; Bae, Kwang-Shik; Kum, Kee-Yeon; Lee, Woo-Cheol; Park, Young-Seok

    2012-11-01

    To evaluate the safety and efficiency of novel ultrasonic scaler tips, conventional stainless-steel tips, and plastic tips on titanium surfaces. Mechanical instrumentation was carried out using conventional ultrasonic scalers (EMS, Nyon, Switzerland) with novel metallic implant tip (BS), a plastic-headed tip (ES), a plastic tip (PS) and a conventional stainless-steel tip (CS) on 10 polished commercially pure titanium disks (Grade II) per group. Arithmetic mean roughness (R(a) ) and maximum height roughness (R(y) ) of titanium samples were measured and dissipated power of the scaler tip in the tip-surface junction was estimated to investigate the scaling efficiency. The instrumented surface morphology of samples was viewed with a scanning electron microscope (SEM) and surface profile of the each sample was investigated using contact mode with a commercial atomic force microscope (AFM). There were no significant differences in surface roughness (R(a) and R(y) ) among BS, ES, and PS group. However, CS group showed significant higher surface roughness (R(a) and R(y) ). The efficiency of CS tip is twice as much higher than that of BS tip, the efficiency of BS tip is 20 times higher than that of PS tip, and the efficiency of BS tip is 90 times higher than that of ES tip. Novel metallic copper alloy ultrasonic scaler tips may minimally influence the titanium surface, similar to plastic tip. Therefore, they can be a suitable instrument for implant maintenance therapy. © 2011 John Wiley & Sons A/S.

  1. Automated ultrasonic scanning of flat plate nuclear fuel

    International Nuclear Information System (INIS)

    Barna, B.A.

    1979-01-01

    One of the most challenging problems in Non-Destructive Testing lies in making the inspection as rapid, precise, cost effective and operator independent as possible. Only by optimizing these four factors can a technology take full advantage of the quality control possible with NDT. This paper describes a highly complex application of high frequency ultrasonics to image extremely small and difficult to detect flaws in a production line environment. The objects of interest are flat plate nuclear fuel used in the Advanced Test Reactor at the Idaho National Engineering Laboratory. The plates are fabricated by hot rolling a sandwich of alloyed uranium fuel and aluminum cladding. After rolling, the block is flattened to a long thin plate approximately 1.27 m (55 inches) long, 102 mm (4 inches) wide and 1.25 mm (0.050 inches) thick. The core, or fuel area is nominally 0.75 mm (0.030 inches) thick with 0.25 mm (0.010 inches) of aluminum bonded to both sides. As might be expected the fabrication is a sensitive process which can introduce several flaws detrimental to the reactor operation if they are undetected. Two of the characteristics that must be examined are the cladding thickness of the aluminum left over the fuel and the quality of bond between the cladding and the fuel. If either the cladding is too thin or the bonding inadequate thermal and/or corrosive activity can crack the protective cladding

  2. Ultrasonic Fingerprint Sensor With Transmit Beamforming Based on a PMUT Array Bonded to CMOS Circuitry.

    Science.gov (United States)

    Jiang, Xiaoyue; Tang, Hao-Yen; Lu, Yipeng; Ng, Eldwin J; Tsai, Julius M; Boser, Bernhard E; Horsley, David A

    2017-09-01

    In this paper, we present a single-chip 65 ×42 element ultrasonic pulse-echo fingerprint sensor with transmit (TX) beamforming based on piezoelectric micromachined ultrasonic transducers directly bonded to a CMOS readout application-specific integrated circuit (ASIC). The readout ASIC was realized in a standard 180-nm CMOS process with a 24-V high-voltage transistor option. Pulse-echo measurements are performed column-by-column in sequence using either one column or five columns to TX the ultrasonic pulse at 20 MHz. TX beamforming is used to focus the ultrasonic beam at the imaging plane where the finger is located, increasing the ultrasonic pressure and narrowing the 3-dB beamwidth to [Formula: see text], a factor of 6.4 narrower than nonbeamformed measurements. The surface of the sensor is coated with a poly-dimethylsiloxane (PDMS) layer to provide good acoustic impedance matching to skin. Scanning laser Doppler vibrometry of the PDMS surface was used to map the ultrasonic pressure field at the imaging surface, demonstrating the expected increase in pressure, and reduction in beamwidth. Imaging experiments were conducted using both PDMS phantoms and real fingerprints. The average image contrast is increased by a factor of 1.5 when beamforming is used.

  3. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  4. Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys

    International Nuclear Information System (INIS)

    Ramirez, A.; Qian Ma; Davis, B.; Wilks, T.; StJohn, D.H.

    2008-01-01

    High-intensity ultrasonic treatment (UT) for grain refinement of magnesium alloys has been investigated using a novel theoretical approach in order to better understand its grain-refining potential and the mechanism of nucleation. The process demonstrated significantly superior grain-refining potency to carbon inoculation for Al-containing magnesium alloys but inferior potency to zirconium for Al-free alloys. Details revealed by applying the theoretical approach to ultrasonic grain refinement provide new clues to understanding the mechanism of grain nucleation by UT

  5. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  6. Modification of Surface Roughness and Area of FeCrAl Substrate for Catalytic Converter using Ultrasonic Treatment

    Directory of Open Access Journals (Sweden)

    Yanuandri Putrasari

    2012-03-01

    Full Text Available Surface roughness and area play important role especially in deposition and reaction of the catalyst in the catalytic converter substrate. The aim of this paper is to show the modification of surface roughness and area of FeCrAl substrate for catalytic converter using ultrasonic method. The method was conducted by agitating the FeCrAl in 10 minutes 35 kHz ultrasonic cleaning bath. The  surface roughness, morphology, and chemical components of FeCrAl catalytic converter substrate after ultrasonic treatment were analyzed using atomic force microscope (AFM and examined with scanning electron microscope (SEM in combination with energy dispersive X-ray spectroscopy (EDS. The ultrasonic treatment assisted with Al2O3 powders successfully increased the roughness and surface area of FeCrAl better than SiC powders. 

  7. On the relationships between ultrasonic calling and anxiety-related behavior in rats

    Energy Technology Data Exchange (ETDEWEB)

    Schwarting, R.K.W.; Wöhr, M. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany)

    2012-03-23

    In the present review, the phenomenon of ultrasonic vocalization in rats will be outlined, including the three classes of vocalizations, namely 40-kHz calls of pups, and 22- and 50-kHz calls of juvenile and adult rats, their general relevance to behavioral neuroscience, and their special relevance to research on anxiety, fear, and defense mechanisms. Here, the emphasis will be placed on 40- and 22-kHz calls, since they are typical for various situations with aversive properties. Among other topics, we will discuss whether such behavioral signals can index a certain affective state, and how these signals can be used in social neuroscience, especially with respect to communication. Furthermore, we will address the phenomenon of inter-individual variability in ultrasonic calling and what we currently know about the mechanisms, which may determine such variability. Finally, we will address the current knowledge on the neural and pharmacological mechanisms underlying 22-kHz ultrasonic vocalization, which show a substantial overlap with mechanisms known from other research on fear and anxiety, such as those involving the periaqueductal gray or the amygdala.

  8. On the relationships between ultrasonic calling and anxiety-related behavior in rats

    International Nuclear Information System (INIS)

    Schwarting, R.K.W.; Wöhr, M.

    2012-01-01

    In the present review, the phenomenon of ultrasonic vocalization in rats will be outlined, including the three classes of vocalizations, namely 40-kHz calls of pups, and 22- and 50-kHz calls of juvenile and adult rats, their general relevance to behavioral neuroscience, and their special relevance to research on anxiety, fear, and defense mechanisms. Here, the emphasis will be placed on 40- and 22-kHz calls, since they are typical for various situations with aversive properties. Among other topics, we will discuss whether such behavioral signals can index a certain affective state, and how these signals can be used in social neuroscience, especially with respect to communication. Furthermore, we will address the phenomenon of inter-individual variability in ultrasonic calling and what we currently know about the mechanisms, which may determine such variability. Finally, we will address the current knowledge on the neural and pharmacological mechanisms underlying 22-kHz ultrasonic vocalization, which show a substantial overlap with mechanisms known from other research on fear and anxiety, such as those involving the periaqueductal gray or the amygdala

  9. The mechanism of PTFE and PE friction deposition: a combined scanning electron and scanning force microscopy study on highly oriented polymeric sliders

    NARCIS (Netherlands)

    Schönherr, Holger; Schaeben, H.; Vancso, Gyula J.

    1998-01-01

    The mechanism of friction deposition of polytetrafluoroethylene (PTFE) and polyethylene (PE) was studied by scanning electron (SEM) and scanning force microscopy (SFM) on the worn surfaces of PTFE and PE sliders that were used in friction deposition on glass substrates. These surfaces exhibited a

  10. SYNTHESIS AND CHARACTERISTICS OF GRAFT COPOLYMERS OF POLY (BUTYL ACRYLATE AND CELLULOSE WITH ULTRASONIC PROCESSING AS A MATERIAL FOR OIL ABSORPTION

    Directory of Open Access Journals (Sweden)

    Ping Qu

    2011-11-01

    Full Text Available A series of materials used for oil absorption based on cellulose fiber grafted with butyl acrylate (BuAc have been prepared by radical polymerization under ultrasonic waves processing. Effects of ultrasonic dose for the maximum graft yield were considered. The dependency of optimum conditions for oil absorption rate on parameters such as ultrasonic processing time and ultrasonic power were also determined. Fourier infrared (FT-IR analysis was used to confirm the chemical reaction taking place between cellulose and butyl acrylate. The thermogravimetric behavior of the graft copolymer was characterized by thermogravimetric analysis (TGA. Scanning electron microscope (SEM analysis was used to determine the surface structure of the grafted material. With the increase of the ultrasonic treatment dose, the surface of the ultrasonic processed material became more regular, and the material was transformed into a homogeneous network polymer having a good structure and good adsorbing ability.

  11. Ultrasonic imaging of materials under unconventional circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Declercq, Nico Felicien, E-mail: declercqdepatin@gatech.edu; McKeon, Peter, E-mail: declercqdepatin@gatech.edu; Liu, Jingfei; Shaw, Anurupa [Georgia Institute of Technology, UMI Georgia Tech - CNRS 2958, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, Laboratory for Ultrasonic Nondestructive Evaluation, 2 rue Marconi, 5070 Met-technopole (France); Slah, Yaacoubi [Institut de Soudure, 4 Bvd Henri Becquerel, Espace Cormontaigne, 57937 Yutz (France)

    2015-03-31

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. “Ultrasonic Imaging of materials” covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirect images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America’s and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD’s to show rainbow patterns under sunlight, can cause spooky images and erroneous

  12. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  13. Parametric Investigation on Microstructure and Mechanical Properties of Ultrasonic spot welded Aluminium to Copper sheets

    Science.gov (United States)

    Prasad Satpathy, Mantra; Das Mohapatra, Kasinath; Sahoo, Ananda Kumar; Sahoo, Susanta Kumar

    2018-03-01

    Ultrasonic welding is one of the promising solid state welding methods which have been widely used to join highly conductive materials like aluminum and copper. Despite these applications in the automotive field, other industries also have a strong interest to adopt this process for joining of various advanced alloys. In some of its applications, poor weld strength and sticking of the workpiece to the tool are issues. Thus, an attempt has been taken in the present study to overcome these issues by performing experiments with a suitable range of weld parameters. The major objectives of this study are to obtain a good joint strength with a reduced sticking phenomenon and microstructure of Al-Cu weld coupons. The results uncovered the mechanical strength of the joint increased up to 0.34 sec of weld time and afterward, it gradually decreased. Meantime, the plastic deformation in the weld zone enhanced the formation of an intermetallic layer of 1.5 μm thick, and it is composed of mainly Al2Cu compound. The temperature evolved during the welding process is also measured by thermocouples to show its relationship with the plastic deformation. The present work exemplifies a finer understanding of the failure behavior of joints and provides an insight of ultrasonic welding towards the improvement in the quality of weld.

  14. Structural damage identification based on laser ultrasonic propagation imaging technology

    Science.gov (United States)

    Chia, Chen-Ciang; Jang, Si-Gwang; Lee, Jung-Ryul; Yoon, Dong-Jin

    2009-06-01

    An ultrasonic propagation imaging (UPI) system consisted of a Q-switched Nd-YAG pulsed laser and a galvanometer laser mirror scanner was developed. The system which requires neither reference data nor fixed focal length could be used for health monitoring of curved structures. If combined with a fiber acoustic wave PZT (FAWPZT) sensor, it could be used to inspect hot target structures that present formidable challenges to the usage of contact piezoelectric transducers mainly due to the operating temperature limitation of transducers and debonding problem due to the mismatch of coefficient of thermal expansion between the target, transducer and bonding material. The inspection of a stainless steel plate with a curvature radius of about 4 m, having 2mm×1mm open-crack was demonstrated at 150°C using a FAWPZT sensor welded on the plate. Highly-curved surfaces scanning capability and adaptivity of the system for large laser incident angle up to 70° was demonstrated on a stainless steel cylinder with 2mm×1mm open-crack. The imaging results were presented in ultrasonic propagation movie which was a moving wavefield emerged from an installed ultrasonic sensor. Damages were localized by the scattering wavefields. The result images enabled easy detection and interpretation of structural defects as anomalies during ultrasonic wave propagation.

  15. Microstructural and mechanical properties of Al–SiO{sub 2} nanocomposite foams produced by an ultrasonic technique

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, A., E-mail: am_salehi85@yahoo.com [Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch (Iran, Islamic Republic of); Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Babakhani, A., E-mail: babakhani@um.ac.ir [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Zebarjad, S. Mojtaba, E-mail: mojtabazebarjad@shirazu.ac.ir [Department of Materials Engineering, Faculty of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-06-25

    In this study, nanocomposite foams reinforced with different weight percentages of silicon dioxide nanoparticles (0.25, 0.5, 0.75 and 1.0 wt%) were fabricated using the ultrasonic and stir casting techniques. For this purpose heat treated TiH{sub 2} was used as foaming agent. Microstructural studies were done by optical microscope and scanning electron microscope. Hardness evaluation of precursor nanocomposites showed that the hardness was significantly increased by the addition of SiO{sub 2} nanoparticles and Al–0.75 wt% SiO{sub 2} nanocomposite makes the highest hardness. Evaluation of compressive behavior of Al–SiO{sub 2} nanocomposite foams showed that the plateau stress increases more than 3 times as the foam relative density increases from 0.09 to 0.16. Energy absorption of Al–SiO{sub 2} nanocomposite foams has been found to be dependent on both relative density and structural properties.

  16. Evaluation of the Weldability in Spot Welding using Ultrasonic Technique

    International Nuclear Information System (INIS)

    Hong, Min Sung; Kim, No Hyu

    2005-01-01

    Spot welding is the most widely used in automotive and aerospace industries. The quality of weld depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates is much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary not only to develop the criterion to evaluate the quality of weld but also to obtain the optimal welding conditions for the better performance. In this paper, the steel plates, 0.5 mm through 1.5 mm thickness, have been spot welded at different welding conditions and the nugget sizes are examined by ultrasonic technique (C-scan type). The relationships between the nugget sizes and the weldability have been investigated. The result of ultrasonic technique shows the good agreement with that of the tensile test

  17. Evaluation of the Weldability in Spot Welding using Ultrasonic Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Sung [Ajou University, Suwon (Korea, Republic of); Kim, No Hyu [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2005-06-15

    Spot welding is the most widely used in automotive and aerospace industries. The quality of weld depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates is much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary not only to develop the criterion to evaluate the quality of weld but also to obtain the optimal welding conditions for the better performance. In this paper, the steel plates, 0.5 mm through 1.5 mm thickness, have been spot welded at different welding conditions and the nugget sizes are examined by ultrasonic technique (C-scan type). The relationships between the nugget sizes and the weldability have been investigated. The result of ultrasonic technique shows the good agreement with that of the tensile test

  18. Synthesis of strontium substituted barium titanate nanoparticles by mechanical alloying and high power ultrasonication destruction

    Energy Technology Data Exchange (ETDEWEB)

    Yustanti, Erlina, E-mail: erlina.yustanti@ui.ac.id [Graduate Program of Material Science, Faculty of Mathematics and Natural Sciences University of Indonesia Jl. Salemba Raya No. 04 Jakarta 10430 (Indonesia); Department of Metallurgy, Faculty of Engineering University of Sultan AgengTirtayasa Jl. Jenderal Sudirman KM 03 Cilegon-Banten 65134 (Indonesia); Hafizah, Mas Ayu Elita, E-mail: kemasayu@yahoo.com; Manaf, Azwar, E-mail: azwar@ui.ac.id [Graduate Program of Material Science, Faculty of Mathematics and Natural Sciences University of Indonesia Jl. Salemba Raya No. 04 Jakarta 10430 (Indonesia)

    2016-04-19

    This paper reports the particle and crystallite size characterizations of mechanically alloyed Ba{sub (1-x)}Sr{sub x}TiO{sub 3} (BST) with x = 0.3 and 0.7 prepared with the assistance of a high-power sonicator. Analytical grade BaCO{sub 3}, TiO{sub 2} and SrCO{sub 3} precursors with a purity of greater than 99 wt.% were mixed and milled using a planetary ball mill to a powder weight ratio of 10:1. Powders obtained after 20 hours of milling time were then sintered at 1200°C for 4 hours to form crystalline powders.These powders were further treated ultrasonically under a fixed 6.7 gr/l particle concentration in demineralized water for 1, 3, 5, 7 hours and a fixed ultrasonic irradiation time of 1 hour to the dispersion of 6.7; 20; 33.3 gr/l concentrations. As to the results of crystallite size characterization, it is demonstrated that the mean crystallite size of BST with x = 0.3 and 0.7 undergo a slight change after the first 1 hour irradiation time and then remain almost unchanged. This was in contrary to the particle size in which the mean particle size of BST with x = 0.3 increased from 765 nm to 1405 nm after 7 hours irradiation time, while that of x = 0.7 increased from 505 nm to 1298 nm after 3 hours and then reduced back to the initial size after 7 hours ultra sonication time. The increase in particle size was due to large of cohesive forces among fine particles. It is also demonstrated that the concentration of particles in a dispersion with anionic surfactant do not effective to reduce the particle sizes ultrasonically. Nanoparticles with the mean size respectively 40 and 10 times larger than their respective crystallite size were successfully obtained respectively in x = 0.3 and x = 0.7.

  19. Synthesis of strontium substituted barium titanate nanoparticles by mechanical alloying and high power ultrasonication destruction

    International Nuclear Information System (INIS)

    Yustanti, Erlina; Hafizah, Mas Ayu Elita; Manaf, Azwar

    2016-01-01

    This paper reports the particle and crystallite size characterizations of mechanically alloyed Ba (1-x) Sr x TiO 3 (BST) with x = 0.3 and 0.7 prepared with the assistance of a high-power sonicator. Analytical grade BaCO 3 , TiO 2 and SrCO 3 precursors with a purity of greater than 99 wt.% were mixed and milled using a planetary ball mill to a powder weight ratio of 10:1. Powders obtained after 20 hours of milling time were then sintered at 1200°C for 4 hours to form crystalline powders.These powders were further treated ultrasonically under a fixed 6.7 gr/l particle concentration in demineralized water for 1, 3, 5, 7 hours and a fixed ultrasonic irradiation time of 1 hour to the dispersion of 6.7; 20; 33.3 gr/l concentrations. As to the results of crystallite size characterization, it is demonstrated that the mean crystallite size of BST with x = 0.3 and 0.7 undergo a slight change after the first 1 hour irradiation time and then remain almost unchanged. This was in contrary to the particle size in which the mean particle size of BST with x = 0.3 increased from 765 nm to 1405 nm after 7 hours irradiation time, while that of x = 0.7 increased from 505 nm to 1298 nm after 3 hours and then reduced back to the initial size after 7 hours ultra sonication time. The increase in particle size was due to large of cohesive forces among fine particles. It is also demonstrated that the concentration of particles in a dispersion with anionic surfactant do not effective to reduce the particle sizes ultrasonically. Nanoparticles with the mean size respectively 40 and 10 times larger than their respective crystallite size were successfully obtained respectively in x = 0.3 and x = 0.7.

  20. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    Science.gov (United States)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  1. A feasiblity study of an ultrasonic test phantom arm

    Science.gov (United States)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  2. Ultrasonic features and radionuclide correlation in liver cell adenoma and focal nodular hyperlasia.

    Science.gov (United States)

    Sandler, M A; Petrocelli, R D; Marks, D S; Lopez, R

    1980-05-01

    Ultrasonic features of three cases of liver cell adenoma (LCA) and two cases of focal nodular hyperplasia (FNH) are presented. These tumors have similar sonographic appearances presenting either as solid masses or containing sonolucent areas due to hemorrhage or necrosis. Although these ultrasonic features in patients with an area of decreased activity on 99mTc-sulfur colloid (Tc-SC) liver scans are not specific for LCA or FNH, such findings in the appropriate clinical setting are suggestive of these lesions. The combination of a solid mass on ultrasonography and a normal Tc-SC radioisotope liver study may be relatively specific for uncomplicated FNH.

  3. Ultrasonic features and radionuclide correlation in liver cell adenoma and focal nodular hyperplasia

    International Nuclear Information System (INIS)

    Sandler, M.A.; Petrocelli, R.D.; Marks, D.S.; Lopez, R.

    1980-01-01

    Ultrasonic features of three cases of liver cell adenoma (LCA) and two cases of focal nodular hyperplasia (FNH) are presented. These tumors have similar sonographic appearances presenting either as solid masses or containing sonolucent areas due to hemorrhage or necrosis. Although these ultrasonic features in patients wth an area of decreased activity on /sup 99m/Tc-sulfur colloid (Tc-SC) liver scans are not specific for LCA or FNH, such findings in the appropriate clinical setting are suggestive of these lesions. The combination of a solid mass on ultrasonography and a normal Tc-SC radioisotope liver study may be relatively specific for uncomplicated FNH

  4. Ultrasonic decontamination robot

    International Nuclear Information System (INIS)

    Patenaude, R.S.

    1984-01-01

    An ultrasonic decontamination robot removes radioactive contamination from the internal surface of the inlet and outlet headers, divider plate, tube sheet, and lower portions of tubes of a nuclear power plant steam generator. A programmable microprocessor controller guides the movement of a robotic arm mounted in the header manway. An ultrasonic transducer having a solvent delivery subsystem through which ultrasonic action is achieved is moved by the arm over the surfaces. A solvent recovery suction tube is positioned within the header to remove solvent therefrom while avoiding interference with the main robotic arm. The solvent composition, temperature, pressure, viscosity, and purity are controlled to optimize the ultrasonic scrubbing action. The ultrasonic transducer is controlled at a power density, frequency, and on-off mode cycle such as to optimize scrubbing action within the range of transducer-to-surface distance and solvent layer thickness selected for the particular conditions encountered. Both solvent and transducer control actions are optimized by the programmable microprocessor. (author)

  5. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  6. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  7. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    relationship between attenuation and water to cement (w/c) ratio. A phenomenological model based on the existence of fluid-filled capillary voids is used to help explain the experimentally observed behavior. Overall this research shows the potential of using ultrasonic attenuation to quantitatively characterize cement paste. The absorption and scattering losses can be related to the individual microstructural elements of hardened cement paste. By taking a fundamental, mechanics-based approach, it should be possible to add additional components such as scattering by aggregates or even microcracks in a systematic fashion and eventually build a realistic model for ultrasonic wave propagation study for concrete.

  8. Small scale imaging using ultrasonic tomography

    International Nuclear Information System (INIS)

    Zakaria, Z.; Abdul Rahim, R.; Megat Ali, M.S.A.; Baharuddin, M.Y.; Jahidin, A.H.

    2009-01-01

    Ultrasound technology progressed through the 1960 from simple A-mode and B-mode scans to today M-mode and Doppler two dimensional (2-D) and even three dimensional (3-D) systems. Modern ultrasound imaging has its roots in sonar technology after it was first described by Lord John Rayleigh over 100 years ago on the interaction of acoustic waves with media. Tomography technique was developed as a diagnostic tool in the medical area since the early of 1970s. This research initially focused on how to retrieve a cross sectional images from living and non-living things. After a decade, the application of tomography systems span into the industrial area. However, the long exposure time of medical radiation-based method cannot tolerate the dynamic changes in industrial process two phase liquid/ gas flow system. An alternative system such as a process tomography systems, can give information on the nature of the flow regime characteristic. The overall aim of this paper is to investigate the use of a small scale ultrasonic tomography method based on ultrasonic transmission mode tomography for online monitoring of liquid/ gas flow in pipe/ vessel system through ultrasonic transceivers application. This non-invasive technique applied sixteen transceivers as the sensing elements to cover the pipe/ vessel cross section. The paper also details the transceivers selection criteria, hardware setup, the electronic measurement circuit and also the image reconstruction algorithm applied. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases. (author)

  9. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  10. Recent experiences with ultrasonic inservice inspection systems with phased array probes on spherical bottoms of boiling water reactors

    International Nuclear Information System (INIS)

    Wustenberg, H.; Brekow, G.; Erhard, A.; Hein, E.

    1988-01-01

    The special geometry of the spherical bottom of boiling water reactors with control rods and measuring nozzles requires a very special surveillance technique during the in-service inspection. Reside visual inspection an ultrasonic inspection has been established due to the requirements of German authorities. A first application of a new phased array system took place August 1987. The 100% inspection of a spherical bottom had been enabled by the application of phased array probes with electronically controlled skewing angles. The data acquisition had been based on the storage of whole A-scans, which had been pixellized into 256 points. This A-scan storage procedure makes possible the application of a simple and fast algorithm to present the data as TD-(time displacement)-scans. Defect reconstruction by echotomographique approaches are under development. This paper presents the ultrasonic technique applied including the phased array probes, the electronic system, as well as the software package used for the control of the inspection parameters depending on the probe position

  11. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification.

    Science.gov (United States)

    Hou, Xiaoning; Qin, Haifeng; Gao, Hongyu; Mankoci, Steven; Zhang, Ruixia; Zhou, Xianfeng; Ren, Zhencheng; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Dong, Yalin; Ye, Chang

    2017-09-01

    Magnesium alloys have tremendous potential for biomedical applications due to their good biocompatibility, osteoconductivity, and degradability, but can be limited by their poor mechanical properties and fast corrosion in the physiological environment. In this study, ultrasonic nanocrystal surface modification (UNSM), a recently developed surface processing technique that utilizes ultrasonic impacts to induce plastic strain on metal surfaces, was applied to an AZ31B magnesium (Mg) alloy. The mechanical properties, corrosion resistance, and biocompatibility of the alloy after UNSM treatment were studied systematically. Significant improvement in hardness, yield stress and wear resistance was achieved after the UNSM treatment. In addition, the corrosion behavior of UNSM-treated AZ31B was not compromised compared with the untreated samples, as demonstrated by the weight loss and released element concentrations of Mg and Al after immersion in alpha-minimum essential medium (α-MEM) for 24h. The in vitro biocompatibility of the AZ31B Mg alloys toward adipose-derived stem cells (ADSCs) before and after UNSM processing was also evaluated using a cell culture study. Comparable cell attachments were achieved between the two groups. These studies showed that UNSM could significantly improve the mechanical properties of Mg alloys without compromising their corrosion rate and biocompatibility in vitro. These findings suggest that UNSM is a promising method to treat biodegradable Mg alloys for orthopaedic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Using Ultrasonic Lamb Waves To Measure Moduli Of Composites

    Science.gov (United States)

    Kautz, Harold E.

    1995-01-01

    Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.

  13. The rodent ultrasound production mechanism.

    Science.gov (United States)

    Roberts, L H

    1975-03-01

    Rodents produce two types of sounds, audible and ultrasonic, that differ markedly in physical structure. Studies of sound production in light gases show that whereas the audible cries appear to be produced, as in the case of most other mammals, by vibrating structures in the larynx, the ultrasonic cries are produced by a different mechanism, probably a whistle. 'Bird-call' whistles are shown to have all the properties of rodent ultrasonic cries and to mimic them in almost every detail. Thus it is concluded that rodents have two distinct sound production mechanisms, one for audible cries and one for ultrasonic cries.

  14. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  15. Steady reconstruction process - development, testing and comparison in ultrasonic testing

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Schmitz, V.

    1986-01-01

    The fault parameters can be extracted from a few data of high quality in steady test procedures. The boundary conditions for the successful use of such a process were researched and found, so that by using theoretical models for the elasto-dynamic interaction of fault and ultrasonics, a concentration of wavefronts instead of resonances and a wide band careful collection of data makes a physical interpretation in the form of specific geometry torques possible. Models of the interaction of ultrasonics and faults for two fault geometries (cracks and pores) were developed which permit the calculation of A scans of any bandwidth and with any angle of scatter for the direct and mode converted parts of the elastic ultrasonic scatter wave. The curved pressure and shear waves including the mode converted bending fields over an angular range of 360deg were experimentally recorded. Their agreement including the additional wavefronts caused by the close field of the crack bending field is close. Classification of torques is done on two examples (crack, cylinder) for evaluation purposes. It was found that a classification was possible according to the sign of the a 1 polynomial coefficient. (orig./HP) [de

  16. Assessment of precipitates of isothermal aged austenitic stainless steel using measurement techniques of ultrasonic attenuation

    International Nuclear Information System (INIS)

    Kim, Hun Hee; Kim, Hak Joon; Song, Sung Jin; Lim, Byeong Soo; Kim, Kyung Cho

    2014-01-01

    AISI 316L stainless steel is widely used as a structural material of high temperature thermoelectric power plants, since austenitic stainless steel has excellent mechanical properties. However, creep damage is generated in these components, which are operated under a high temperature and high pressure environment. Several researches have been done on how microstructural changes of precipitates affect to the macroscopic mechanical properties. And they investigate the relation between ultrasonic parameters and metallurgical results. But, these studies are limited by experiment results only. In this paper, attenuations of ultrasonic with isothermal damaged AISI 316L stainless steel were measured. Also, simulation of ultrasonic attenuation with variation of area fraction and size of precipitates were performed. And, from the measured attenuations, metallographic data and simulation results, we investigate the relations between the ultrasonic attenuations and the material properties which is area fraction of precipitates for the isothermal damaged austenitic stainless steel specimens. And, we studied parametric study for investigation of the relation between ultrasonic parameters and metallurgical results of the isothermal damaged AISI 316L stainless steel specimens using numerical methods.

  17. Ultrasonic monitoring on the Electron Beam Welding line at Techmeta during manufacturing of the CMS magnet conductor.

    CERN Multimedia

    Benoit CURE

    2002-01-01

    The ultrasonic non-destructive method allows testing the EBW interface high-strength aluminium alloy / high-purity aluminium. The testing technique implemeted by EMPA is a Phased array system amplitude C-scan with immersion pulse-echo-technique.

  18. Ultrasonic process for destruction of chlorinated organic compounds in aqueous solution

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, Hann S.

    1993-01-01

    Laboratory investigations of the ultrasonic process for destruction of low concentrations of carbon tetrachloride (CCl 4 ) into nonhazardous end products were carried out in a bench-scale batch reactor, equipped with a 600-W ultrasonic power supply. Process parameters studied included irradiation time, concentration, steady-state operating temperature, pH, and the intensity of applied ultrasonic-wave energy. High destruction efficiencies of greater than 99% were achieved through this process, and the irradiation time and the intensity of applied energy were identified to be the most important process parameters. The irradiation time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. In addition, a detailed chemical reaction mechanism for the destruction of CCl 4 in water was formulated. The agreement between the model and experimental results is generally good

  19. Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods

    Science.gov (United States)

    Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.

    Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.

  20. Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys.

    Science.gov (United States)

    Sheng, Minqi; Wang, Chao; Zhong, Qingdong; Wei, Yinyin; Wang, Yi

    2010-01-01

    In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd(2)O(3) in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn(3)(PO(4))(2).4H(2)O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd(2)O(3) reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.

  1. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping

    International Nuclear Information System (INIS)

    Darling, E M

    2011-01-01

    Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.

  2. Recent Development in Ultrasonic Guided Waves for Aircraft and Composite Materials

    International Nuclear Information System (INIS)

    Rose, Joseph L.

    2009-01-01

    Emphasis in the paper is placed on describing guided wave successes and challenges for applications in aircraft and composite materials inspection. Guided wave imaging methods discussed includes line of sight, tomography, guided wave C-scan, phased array, and ultrasonic vibration methods. Applications outlined encircles lap splice, bonded repair patch, fuselage corrosion, water loaded structures, delamination, and ice detection and de-icing of various structures.

  3. Focused ultrasonic wave testing, in immersion of spent fuel cans

    International Nuclear Information System (INIS)

    Poinboeuf, P.; Furlan, J.

    1984-10-01

    To detect weak and very weak damage of the fuel can, ultrasonic testing has been used. For that, a simple mechanical device, allowing to maintain an optimal ultrasonic focussing on irradiated cans, is presented. Its aim is to correct the variation of the incidence angle due to the possible ovalization of pins. After a description of the device, the results obtained with tests carried out on non-irradiated cans, including artificial ovalized regions, standard defects, are presented. After the description of the adaptation of this mechanism on a test bench which allows an helicoidal exploration of pins, some results obtained in hot cell during examinations experimental pins and previously tested by Foucault current [fr

  4. Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration

    International Nuclear Information System (INIS)

    Lin Shuyu; Tian Hua

    2008-01-01

    A sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is studied. The transducer consists of front and back metal masses, and coaxially segmented, thickness polarized piezoelectric ceramic thin rings. For this kind of sandwich piezoelectric transducers in thickness vibration, it is required that the lateral dimension of the transducer is sufficiently large compared with its longitudinal dimension so that no lateral displacements in the transducer can occur (laterally clamped). In this paper, the thickness vibration of the piezoelectric ceramic stack consisting of a number of identical piezoelectric ceramic thin rings is analysed and its electro-mechanical equivalent circuit is obtained. The resonance frequency equation for the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is derived. Based on the frequency equation, two sandwich piezoelectric ceramic ultrasonic transducers are designed and manufactured, and their resonance frequencies are measured. It is shown that the measured resonance frequencies are in good agreement with the theoretical results. This kind of sandwich piezoelectric ultrasonic transducer is expected to be used in megasonic ultrasonic cleaning and sonochemistry where high power and high frequency ultrasound is needed

  5. Defects in ultrasonic vocalization of cadherin-6 knockout mice.

    Directory of Open Access Journals (Sweden)

    Ryoko Nakagawa

    Full Text Available BACKGROUND: Although some molecules have been identified as responsible for human language disorders, there is still little information about what molecular mechanisms establish the faculty of human language. Since mice, like songbirds, produce complex ultrasonic vocalizations for intraspecific communication in several social contexts, they can be good mammalian models for studying the molecular basis of human language. Having found that cadherins are involved in the vocal development of the Bengalese finch, a songbird, we expected cadherins to also be involved in mouse vocalizations. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether similar molecular mechanisms underlie the vocalizations of songbirds and mammals, we categorized behavioral deficits including vocalization in cadherin-6 knockout mice. Comparing the ultrasonic vocalizations of cadherin-6 knockout mice with those of wild-type controls, we found that the peak frequency and variations of syllables were differed between the mutant and wild-type mice in both pup-isolation and adult-courtship contexts. Vocalizations during male-male aggression behavior, in contrast, did not differ between mutant and wild-type mice. Open-field tests revealed differences in locomotors activity in both heterozygote and homozygote animals and no difference in anxiety behavior. CONCLUSIONS/SIGNIFICANCE: Our results suggest that cadherin-6 plays essential roles in locomotor activity and ultrasonic vocalization. These findings also support the idea that different species share some of the molecular mechanisms underlying vocal behavior.

  6. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  7. Investigation of the visible light photocatalytic activity of BiVO4 prepared by sol gel method assisted by ultrasonication.

    Science.gov (United States)

    Deebasree, J P; Maheskumar, V; Vidhya, B

    2018-07-01

    Visible light induced photocatalyst BiVO 4 with monoclinic scheelite structure has been synthesised via sol gel method assisted by ultrasonication. The prepared samples were characterised using X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis diffused reflectance spectroscopy (DRS) techniques. The photocatalytic efficiency was evaluated by decolourisation of MB under visible light irradiation. The effect of ultrasound output power on the properties of BiVO 4 during and after preparation by sol-gel method has been compared with normal agitated sample (As prepared). The power of ultrasonic vibration has been varied and an ideal output power which yields better catalytic efficiency is determined. BiVO 4 sonicated with 80 W during preparation 80 W (D) exhibited relatively high surface area, better surface morphology and better catalytic efficiency compared to other samples which were sonicated with 100, 160 and 200 W. The results signify that the photodegradation rate of BiVO 4 80 W (D) sample is high up to 96% in 90 min compared to other samples. Change in morphology leading to better catalytic efficiency was obtained just by exposing the sample to ultrasonic radiation without addition of any surfactant. The recovery test showed that the sample was stable for four consecutive cycles. Using radical test, a reasonable mechanism for photodegradation has been proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy.

    Science.gov (United States)

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2012-10-08

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope's instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications.

  9. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy

    Science.gov (United States)

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2012-01-01

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope’s instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications. PMID:23188360

  10. Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Zhanjie Li

    2018-02-01

    Full Text Available To realize high efficiency, low/no damage and high precision machining of tungsten carbide used for lens mold, a high frequency ultrasonic vibration cutting system was developed at first. Then, tungsten carbide was precisely machined with a polycrystalline diamond (PCD tool assisted by the self-developed high frequency ultrasonic vibration cutting system. Tool wear mechanism was investigated in ductile regime machining of tungsten carbide. The cutter back-off phenomenon in the process was analyzed. The subsequent experimental results of ultra-precision machining with a single crystal diamond tool showed that: under the condition of high frequency ultrasonic vibration cutting, nano-scale surface roughness can be obtained by the diamond tool with smaller tip radius and no defects like those of ground surface were found on the machined surface. Tool wear mechanisms of the single crystal diamond tool are mainly abrasive wear and micro-chipping. To solve the problem, a method of inclined ultrasonic vibration cutting with negative rake angle was put forward according to force analysis, which can further reduce tool wear and roughness of the machined surface. The investigation was important to high efficiency and quality ultra-precision machining of tungsten carbide.

  11. Effect of ultrasonic streaming on intra-dentinal disinfection and penetration of calcium hydroxide paste in endodontic treatment

    Directory of Open Access Journals (Sweden)

    Marcela Paola Castro ARIAS

    Full Text Available ABSTRACT Objective The antimicrobial effect of ultrasonic agitation of calcium hydroxide (CH pastes in infected bovine dentin and their penetrability were evaluated using confocal laser scanning microscopy (CLSM and microbiological culture. Material and Methods Fifty-two bovine teeth were infected with Enterococcus faecalis using a new contamination protocol; then they received CH paste and were divided into groups with or without ultrasound. Ultrasonic agitation was conducted for 1 min with a plain point insert. After 15 d, the CLSM analyzed the viable and dead bacteria with Live and Dead assay. The dentinal wall debris was collected by burs, and the colony forming units (CFU/mL were counted. The penetrability of the paste inside dentinal tubules was tested using the B-rodamine dye. Results The calcium hydroxide paste showed better results with the use of ultrasonic agitation (p<0.05. Conclusion The ultrasonic agitation of CH paste increased its antimicrobial action and was responsible for intradentinal penetration with the fulfilment of the tubules.

  12. Coded ultrasonic remote control without batteries

    International Nuclear Information System (INIS)

    Gerhardy, C; Burlage, K; Schomburg, W K

    2009-01-01

    A concept for battery-less remote controls has been developed based on mechanically actuated beams and micro whistles generating ultrasound signals. These signals need to be frequency or time coded to increase the number of signals which can be distinguished from each other and environmental ultrasound. Several designs for generating coded ultrasonic signals have been investigated

  13. Disk Refining and Ultrasonication Treated Sugarcane Bagasse Residues for Poly(Vinyl Alcohol) Bio-composites

    Science.gov (United States)

    Qingzheng Cheng; Zhaohui Tong; Luisa Dempere; Lonnie Ingram; Letian Wang; J.Y. Zhu

    2013-01-01

    Disk refining and ultrasonication treated sugarcane bagasse residues reclaimed from the waste stream of a simplified bioethanol process after fermentation were used to fabricate biobased composites with poly(vinyl alcohol) (PVA) by film casting. The morphologies and the size distributions of residue particles were characterized by scanning electronic microscopy and...

  14. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  15. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2010-04-02

    Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  16. High-speed biometrics ultrasonic system for 3D fingerprint imaging

    Science.gov (United States)

    Maev, Roman G.; Severin, Fedar

    2012-10-01

    The objective of this research is to develop a new robust fingerprint identification technology based upon forming surface-subsurface (under skin) ultrasonic 3D images of the finger pads. The presented work aims to create specialized ultrasonic scanning methods for biometric purposes. Preliminary research has demonstrated the applicability of acoustic microscopy for fingerprint reading. The additional information from internal skin layers and dermis structures contained in the scan can essentially improve confidence in the identification. Advantages of this system include high resolution and quick scanning time. Operating in pulse-echo mode provides spatial resolution up to 0.05 mm. Technology advantages of the proposed technology are the following: • Full-range scanning of the fingerprint area "nail to nail" (2.5 x 2.5 cm) can be done in less than 5 sec with a resolution of up to 1000 dpi. • Collection of information about the in-depth structure of the fingerprint realized by the set of spherically focused 50 MHz acoustic lens provide the resolution ~ 0.05 mm or better • In addition to fingerprints, this technology can identify sweat porous at the surface and under the skin • No sensitivity to the contamination of the finger's surface • Detection of blood velocity using Doppler effect can be implemented to distinguish living specimens • Utilization as polygraph device • Simple connectivity to fingerprint databases obtained with other techniques • The digitally interpolated images can then be enhanced allowing for greater resolution • Method can be applied to fingernails and underlying tissues, providing more information • A laboratory prototype of the biometrics system based on these described principles was designed, built and tested. It is the first step toward a practical implementation of this technique.

  17. Computerized hydraulic scanning system for quantitative non destructive examination

    International Nuclear Information System (INIS)

    Gundtoft, H.E.

    1982-01-01

    A hydraulic scanning system with five degrees of freedom is described. It is primarily designed as a universal system for fast and accurate ultrasonic inspection of materials for their internal variation in properties. The whole system is controlled by a minicomputer which also is used for evaluating and presenting of the results of the inspection. (author)

  18. Ultrasonic Study of Dislocation Dynamics in Lithium -

    Science.gov (United States)

    Han, Myeong-Deok

    1987-09-01

    Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.

  19. Babcock experience of automated ultrasonic non-destructive testing of PWR pressure vessels during manufacture

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.; Scruton, G.

    1990-01-01

    Major developments in ultrasonic techniques, equipment and systems for automated inspection have lead, over a period of about ten years, to the regular application of sophisticated computer-controlled systems during the manufacture of nuclear reactor pressure vessels. Ten years ago the use of procedures defined in a code such as ASME XI might have been considered sufficient, but it is now necessary, as was demonstrated by the results of the UKAEA defect detection trials and the PISC II trials, to apply more comprehensive arrays of probes and higher test sensitivities. The ultrasonic techniques selected are demonstrated to be adequate by modelling or test-block exercises, the automated systems applied are subject to stringent quality assurance testing, and very rigorous inspection procedures are used in conjunction with a high degree of automation to ensure reproducibility of inspection quality. The state-of-the-art in automated ultrasonic testing of pressure vessels by Babcock is described. Current developments by the company, including automated flaw recognition, integrated modelling of inspection capability, and the use of electronically scanned variable-angle probes are reviewed. Examples quoted include the automated ultrasonic inspections of the Sizewell B pressurized water reactor vessel. (author)

  20. Effects of ultrasonic disintegration of excess sludge obtained in disintegrators of different constructions.

    Science.gov (United States)

    Zielewicz, Ewa; Tytła, Malwina

    2015-01-01

    The ultrasonic disintegration of excess sludge is placed after the mechanical thickening but before the digestion tanks in order to intensify the process of sludge stabilization. The effects obtained directly after ultrasonic disintegration depend on many factors and can be grouped in two main categories: factors affecting the quality of sludge and those associated with the construction of disintegrators and its parameters. The ultrasonic disintegration research was carried out using three types of structural solutions of disintegrators. Two of them, that is, WK-2000 ultrasonic generator (P = 400 W) working with a thin sonotrode and WK-2010 ultrasonic generator (P = 100-1000 W) working with a new type construction emitter lens sonotrode, were compared with the influence of a washer with a flat emitter. The investigations have shown that in the same sludge, using the same value of volumetric energy, the resulting effect depends on the construction of the ultrasonic disintegrator, that is, design of the head and the ratio between the field of the emitter and the field of the chamber in sonicated medium.

  1. Research progress on microstructure evolution of semi-solid aluminum alloys in ultrasonic field and their rheocasting

    Directory of Open Access Journals (Sweden)

    Wu Shusen

    2014-07-01

    Full Text Available The effects of ultrasonic vibration (UV treatment on microstructure of semi-solid aluminum alloys and the application of UV in rheocasting process are reviewed. Good semi-solid slurry can be produced by high-intensity UV process for aluminum alloys. The microstructures of Al-Si, Al-Mg and Al-Cu alloys produced by rheocasting assisted with UV are compact and with fine grains. The mechanical properties of the UV treated alloys are increased by about 20%-30%. Grain refinement of the alloys is generally considered because of cavitation and acoustic streaming caused by UV. Apart from these mechanisms, a hypothesis of the fuse of dendrite root caused by capillary infiltration in the ultrasonic field, as well as a mechanism of crystallites falling off from the mould-wall and crystal multiplication by mechanical vibration effect in indirect ultrasonic vibration are proposed to explain the microstructure evolution of the alloys.

  2. Electromagnetic acoustic transducers noncontacting ultrasonic measurements using EMATS

    CERN Document Server

    Hirao, Masahiko

    2017-01-01

    This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs’ low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs’ contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical ...

  3. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  4. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  5. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    Science.gov (United States)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  6. A novel in-plane mode rotary ultrasonic motor

    Directory of Open Access Journals (Sweden)

    Lu Xiaolong

    2014-04-01

    Full Text Available Ultrasonic motors have the merits of high ratio of torque to volume, high positioning precision, intrinsic holding torque, etc., compared to the conventional electromagnetic motors. There have been several potential applications for this type of motor in aerospace exploration, but bearings and bonding mechanism of the piezoelectric ring in the motors limit the performance of them in the space operation conditions. It is known that the Langevin type transducer has excellent energy efficiency and reliability. Hence using the Langevin type transducer in ultrasonic motors may improve the reliability of piezoelectric motors for space applications. In this study, a novel in-plane mode rotary ultrasonic motor is designed, fabricated, and characterized. The proposed motor operates in in-plane vibration mode which is excited by four Langevin-type bending vibrators separately placed around a ring-shaped stator. Two tapered rotors are assembled to the inner ring of the stator and clamped together by a screw nut. In order to make the motor more stable and convenient to fix, a thin cylindrical support is placed under the stator ring. Due to its no-bearing structure and Langevin transducer excitation, the prototype ultrasonic motor may operate well in aeronautic and astronautic environments.

  7. Pulsed infrared thermography for assessment of ultrasonic welds

    Science.gov (United States)

    McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.

    2018-03-01

    Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.

  8. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis.

    Science.gov (United States)

    Silva, M Z; Gouyon, R; Lepoutre, F

    2003-06-01

    Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.

  9. A portable solution to enable guided ultrasonic inspection

    International Nuclear Information System (INIS)

    Enenkel, Laurent; Buechler, Johannes; Poirier, Jerome; Jervis David

    2012-01-01

    This paper describes the development and application of an innovative ultrasonic (UT) inspection system, which is 100% guided and menu-driven to reduce human error and ensure both inspection accuracy and productivity in the reliable and accurate non-destructive testing (NDT) of shafts, tubes, pipes, and other components and structures. Set-up is menu-directed with the minimum of instrument-specific training, allowing the integral operating software to calculate all the ultrasonic parameters for each task according to the inspection procedure and create an easy-to-follow inspection plan, using either phased array or conventional UT. The operator then scans the work piece, with an encoded scanner, which ensures that the inspection plan is strictly followed. Inspection data is transmitted to a review station in the industry-accepted, non-proprietary DICONDE protocol, allowing advanced analysis tools, such as real time, volume corrected imaging, to allow easier and more reliable image interpretation. By using GEs Rhythm software platform, inspection data can be reviewed and shared, reports generated and inspection results archived for traceability, tracking or further analysis.

  10. Contribution of dynamic focusing to ultrasonic defect characterization

    International Nuclear Information System (INIS)

    Mahaut, S.

    1997-01-01

    Non destructive testing of vessels of pressurized water reactors uses ultrasonic focused transducers, with spherically shaped emitting surface or requiring an acoustic lens. But a mechanically focused transducer has to be used for a given inspection zone and for a fixed control configuration. The aim of this thesis is to improve ultrasonic defect characterization using adaptive dynamic focusing. Such a technique makes use of a ultrasonic defect characterization using adaptive dynamic focusing. Such a technique makes use of an ultrasonic transducer split into an array of individually controlled elements, allowing to apply delay and amplitude laws, calculated from modeling or experimentally deduced. Acoustical characteristics of the ultrasonic beam in the inspected specimen this can be electronically controlled; refraction angle, depth focusing, beam width. We briefly describe in the first chapter a theoretical modeling of the ultrasonic field radiated through a fluid/solid interface, extended to phase array transducers. This model is based on the integral formulation of Rayleigh, modified to take into account transmission through a fluid/solid (homogeneous and isotropic), of planar or cylindrical shape. In the second chapter an experimental study of this technique, with delay and amplitude laws given from the model, is presented, showing the efficiency of this method to adjust the acoustic performances. In he third chapter, experimental delay laws, extracted from the time distribution of signals received by the array (issued from a preliminary detected reflector), are used to provide an optimal imaging of the defect. This self-focusing procedure shows to adapt to a defect without using theoretical delays. The last chapter is dedicated to different applications devoted to improved defect characterization. The first application uses amplitude distribution received by the array, pointing out geometric characteristics of the reflector, while the second application

  11. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  12. An ultrasonic phased array applicator for deep localized hyperthermia

    International Nuclear Information System (INIS)

    Ocheltree, K.B.; Benkeser, P.J.; Foster, S.G.; Frizzell, L.A.; Cain, C.A.

    1984-01-01

    The use of an ultrasonic phased array applicator presents a major advantage over the fixed beam ultrasonic applicators which are typically used for clinical hyperthermia. Such an applicator allows focal region placement in the three dimensional treatment field by electronic steering instead of mechanical movement of the transducer assembly. The design of an array is discussed theoretically, considering that the constraints on grating lobes and power output for hyperthermic applications are quite different from those for imaging. The effects of various design parameters are discussed. Experimental results are presented for several arrays for frequencies under 1 Mhz

  13. An ultrasonic inspection tool for production tubulars

    Energy Technology Data Exchange (ETDEWEB)

    Newton, K; Martin, R; Ravenscroft, F [AEA Technology, Harwell (United Kingdom)

    1994-06-01

    Advances in ultrasonic technology, high temperature techniques and remote processing power are enabling a new generation of inspection tools to be developed. This paper describes a particular new ultrasonic caliper system, developed by AEA Technology, with the aim of providing improved information about the condition of production tubulars of oil and gas wells. The system is designed to provide enhanced surface area coverage compared to the current devices, which are typically mechanical 'finger' calipers. It also provides a non-contacting measure of corrosion and wear together with direct on-line output and automated data analysis. The new tool is designed to operate in oil and gas, vertical or deviated wells and has the potential for modification to inspect small diameter pipes in topside or other plant. (author)

  14. Some aspects of finite element modelling of ultrasonically aided micro-EDM of CoCr alloys

    Directory of Open Access Journals (Sweden)

    Ghiculescu Daniel

    2017-01-01

    Full Text Available The paper deals with finite element modelling of micromachining CoCr alloys by ultrasonically aided electrical discharge machining. This hybrid machining process has two components: a thermal one due to EDM, and a mechanical one to ultrasonic assistance. Both components were modelled using Thermal and Structural Mechanics time dependent modules of Comsol Multiphysics. The results were compared with the experimental data obtained in our laboratories, proving a good agreement and offering some solutions for machining optimization.

  15. Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing

    International Nuclear Information System (INIS)

    Sridharan, Niyanth; Wolcott, Paul; Dapino, Marcelo; Babu, S.S.

    2016-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique. In this work characterization using electron back scatter diffraction was performed on aluminum–titanium dissimilar metal welds made using a 9 kW ultrasonic additive manufacturing system. The results showed that the aluminum texture at the interface after ultrasonic additive manufacturing is similar to aluminum texture observed during accumulative roll bonding of aluminum alloys. It is finally concluded that the underlying mechanism of bond formation in ultrasonic additive manufacturing primarily relies on severe shear deformation at the interface.

  16. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.

    Science.gov (United States)

    Tian, Yang; Liu, Zhilin; Li, Xiaoqian; Zhang, Lihua; Li, Ruiqing; Jiang, Ripeng; Dong, Fang

    2018-05-01

    Ultrasonic sonotrodes play an essential role in transmitting power ultrasound into the large-scale metallic casting. However, cavitation erosion considerably impairs the in-service performance of ultrasonic sonotrodes, leading to marginal microstructural refinement. In this work, the cavitation erosion behaviour of ultrasonic sonotrodes in large-scale castings was explored using the industry-level experiments of Al alloy cylindrical ingots (i.e. 630 mm in diameter and 6000 mm in length). When introducing power ultrasound, severe cavitation erosion was found to reproducibly occur at some specific positions on ultrasonic sonotrodes. However, there is no cavitation erosion present on the ultrasonic sonotrodes that were not driven by electric generator. Vibratory examination showed cavitation erosion depended on the vibration state of ultrasonic sonotrodes. Moreover, a finite element (FE) model was developed to simulate the evolution and distribution of acoustic pressure in 3-D solidification volume. FE simulation results confirmed that significant dynamic interaction between sonotrodes and melts only happened at some specific positions corresponding to severe cavitation erosion. This work will allow for developing more advanced ultrasonic sonotrodes with better cavitation erosion-resistance, in particular for large-scale castings, from the perspectives of ultrasonic physics and mechanical design. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A new multiple channel data recording system for mechanised ultrasonic testing of pipes and nozzles by A-scan processing

    International Nuclear Information System (INIS)

    Heumueller, R.; Rathgeb, W.; Szafarska, E.; Bertus, N.; Erhard, A.; Montag, H.J.; Wuestenberg, H.

    1989-01-01

    A system of equipment for ultrasonic testing in nuclear technique is introduced. This is a four channel ultrasonic equipment, which consists of a manipulator suitable for components, up to four conventional test heads, a test head connection box connected with them via 20 metres of coaxial cable, a documentation unit for signal detection and conversion, a data collection computer for parametricising the equipment, measurement display and representation and a disc memory. The advantages of this test system lie in its easy use because of the compact equipment dimensions, in the data collection of the complete A picture by the documentation unit and in the flexible evaluation of the collected data by the computer. (MM) [de

  18. Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods

    Directory of Open Access Journals (Sweden)

    Christian eDavid

    2015-07-01

    Full Text Available Several methods are compared for the detection of moving capillary fronts in spontaneous imbibition experiments where water invades dry porous rocks. These methods are: (i the continuous monitoring of the mass increase during imbibition, (ii the imaging of the water front motion using X-ray CT scanning, (iii the use of ultrasonic measurements allowing the detection of velocity, amplitude and spectral content of the propagating elastic waves, and (iv the combined use of X-ray CT scanning and ultrasonic monitoring. It is shown that the properties of capillary fronts depend on the heterogeneity of the rocks, and that the information derived from each method on the dynamics of capillary motion can be significantly different. One important result from the direct comparison of the moving capillary front position and the P wave attributes is that the wave amplitude is strongly impacted before the capillary front reaches the sensors, in contrast with the velocity change which is concomitant with the fluid front arrival in the sensors plane.

  19. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.

    Science.gov (United States)

    Kim, Hee-Young; Park, Dong June; Kim, Jong-Yea; Lim, Seung-Taik

    2013-10-15

    Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2-6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    Science.gov (United States)

    Hu, B.; Lerch, J. E.; Chavan, A. H.; Weber, J. K. R.; Tamalonis, A.; Suthar, K. J.; DiChiara, A. D.

    2017-09-01

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analyses. Our results show that this style of transducer produces a strong acoustic beam with a total divergence angle of 10°, a near-field point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.

  1. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, B.; Lerch, J. E.; Chavan, A. H.; Weber, J. K. R.; Tamalonis, A.; Suthar, K. J.; DiChiara, A. D.

    2017-09-04

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analyses. Our results show that this style of transducer produces a strong acoustic beam with a total divergence angle of 10 degree, a near-field point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments

  2. Hybrid numerical-experimental optical investigation of the contact zone of ultrasonic motors

    Science.gov (United States)

    Ostasevicius, Vytautas; Palevicius, Arvydas; Ragulskis, Minvydas; Janusas, Giedrius; Pilkauskas, Kestutis

    2005-09-01

    Ultrasonic motors have seen application in areas needing compact, efficient, and intermittent motion. Such applications include: camera auto focus lenses, watch motors, compact paper handling, microrobots, medicine and etc.. They are characterized by high torque at low rotational speed, simple mechanical design and good controllability. Compared with electromagnetic actuators, there is no danger of interference due to electromagnetic induction because no magnetic field is used and ultrasonic motors are more quiet since speed-reduction gears are not required. A polarization vector of the piezoceramic element and location of excitation electrodes on its surface determine the resonance modes of the high frequency vibration exciter. In its turn the modes of vibration play a key role in the functionality of ultrasonic motor. There are analyzed two different regimes of operation--when the contact zone of the resonator performs elliptic and unidirectional motions. Though the mechanical characteristics of the ultrasonic motor in both cases are comparable, detailed analysis of the contact surface shows very different wears. Laser holography is used to identify and control the regimes of motion of actuator. Experimental results are compared with computer simulations. Contact surfaces are analyzed by atomic force microscope (AFM) before experiment, after 10 minutes and after 50 minutes of operation.

  3. Ultrasonic Investigations on Polonides of Ba, Ca, and Pb

    Science.gov (United States)

    Singh, Devraj; Bhalla, Vyoma; Bala, Jyoti; Wadhwa, Shikha

    2017-10-01

    The temperature-dependent mechanical and ultrasonic properties of barium, calcium, and lead polonides (BaPo, CaPo, and PbPo) were investigated in the temperature range 100-300 K. The second- and third-order elastic constants (SOECs and TOECs) were computed using Coulomb and Born-Mayer potential and these in turn have been used to estimate other secondary elastic properties such as strength, anisotropy, microhardness, etc. The theoretical approach followed the prediction that BaPo, CaPo, and PbPo are brittle in nature. PbPo is found to be the hardest amongst the chosen compounds. Further the SOECs and TOECs are applied to determine ultrasonic velocities, Debye temperature, and acoustic coupling constants along , , and orientations at room temperature. Additionally thermal conductivity has been computed using Morelli and Slack's approach along different crystallographic directions at room temperature. Finally ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms has been computed for BaPo, CaPo, and PbPo. The behaviour of these compounds is similar to that of semi-metals with thermal relaxation time of the order 10-11 s. The present computation study is reasonably in agreement with the available theoretical data for the similar type of materials.

  4. Point spread functions and deconvolution of ultrasonic images.

    Science.gov (United States)

    Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten

    2015-03-01

    This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.

  5. Statistical physics of medical ultrasonic images

    International Nuclear Information System (INIS)

    Wagner, R.F.; Insana, M.F.; Brown, D.G.; Smith, S.W.

    1987-01-01

    The physical and statistical properties of backscattered signals in medical ultrasonic imaging are reviewed in terms of: 1) the radiofrequency signal; 2) the envelope (video or magnitude) signal; and 3) the density of samples in simple and in compounded images. There is a wealth of physical information in backscattered signals in medical ultrasound. This information is contained in the radiofrequency spectrum - which is not typically displayed to the viewer - as well as in the higher statistical moments of the envelope or video signal - which are not readily accessed by the human viewer of typical B-scans. This information may be extracted from the detected backscattered signals by straightforward signal processing techniques at low resolution

  6. A novel serrated columnar phased array ultrasonic transducer

    Science.gov (United States)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  7. Improving tribological properties of (Zn–Ni)/nano Al{sub 2}O{sub 3} composite coatings produced by ultrasonic assisted pulse plating

    Energy Technology Data Exchange (ETDEWEB)

    Ataie, Sayed Alireza, E-mail: ataie_s_alireza@metaleng.iust.ac.ir; Zakeri, Alireza

    2016-07-25

    In this study pulse electroplating was used to deposit the composite coating of (Zn–Ni) strengthened by Al{sub 2}O{sub 3} nanoparticles on mild steel plate. The effect of Al{sub 2}O{sub 3} fraction and ultrasonic irradiation on the properties of the composite coating was also investigated. Scanning electron microscopy and energy dispersive spectroscopy techniques were employed to characterize the morphology and composition of the coating. Topography and surface roughness were investigated by atomic force microscopy. Also in order to evaluate the mechanical properties of the coating micro hardness and wear tests were conducted. It was found that coating hardness was increased from 538 HV to 750 HV and friction coefficient was decreased from 0.588 to 0.392. Results revealed that tribological properties of coating could be improved significantly by using suitable ultrasonic intensity simultaneously with pulse plating. - Highlights: • SEM indicated on the elimination of cracks and pores when ultrasounds were used. • XRD result showed nano sized grains of Zn–Ni matrix was developed in this research. • Simultaneous pulse plating and ultrasonic conditions improved the properties of the coating. • A (Zn–Ni)/nano alumina uniform composite coating for especial applications was developed. • Micro hardness and wear behavior of the coating was modified by intensifying the ultrasound.

  8. Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Martin; Effner, Ute Antonie; Milmann, Boris; Voelker, Christoph; Wiggenhauser, Herbert [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany); Mauke, Ralf [The Federal Office for Radiation Protection, Salzgitter (Germany)

    2015-07-01

    For the closure of radioactive waste disposal facilities engineered barriers- so called ''drift seals'' are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced.

  9. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    International Nuclear Information System (INIS)

    Silva, C E R; Alvarenga, A V; Costa-Felix, R P B

    2011-01-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Oe 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  10. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    Science.gov (United States)

    Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2011-02-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  11. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    Science.gov (United States)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  12. Central corneal thickness measurements in unoperated eyes and eyes after PRK for myopia using Pentacam, Orbscan II, and ultrasonic pachymetry.

    Science.gov (United States)

    Kim, Sun Woong; Byun, Yeo Jue; Kim, Eung Kweon; Kim, Tae-im

    2007-11-01

    To compare central corneal thickness measurements obtained in unoperated eyes and eyes after myopic photorefractive keratectomy (PRK) using a rotating Scheimpflug camera (Pentacam), a scanning slit corneal topography system (Orbscan II), and ultrasonic pachymetry. Corneal thickness was measured using Pentacam, Orbscan II, and ultrasonic pachymetry in 25 unoperated eyes (unoperated group), 24 eyes 1 to 3 months after myopic PRK (early postoperative PRK group), and 21 eyes 4 months or more after myopic PRK (late postoperative PRK group). In the unoperated group, corneal thickness measurements were similar for all three methods (P=.125). In the early postoperative PRK group, Orbscan measurements were thinner than Pentacam and ultrasonic measurements by a mean of 69.4 microm and 63.4 microm (PPRK group, Orbscan measurements were thinner than Pentacam measurements by a mean of 36.0 microm (P=.017). Pentacam and ultrasonic pachymetry measurements were similar for all three groups with a mean difference of approximately 10 microm. Following myopic PRK, Pentacam was comparable to ultrasonic pachymetry in measuring corneal thickness, whereas Orbscan measurements were thinner.

  13. Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy

    Science.gov (United States)

    Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin

    2018-05-01

    The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.

  14. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  15. Wireless power transmission using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Kural, A; Pullin, R; Featherston, C; Holford, K; Paget, C

    2011-01-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  16. Wireless power transmission using ultrasonic guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Kural, A; Pullin, R; Featherston, C; Holford, K [School of Engineering, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 2AA (United Kingdom); Paget, C, E-mail: kurala@cardiff.ac.uk [Airbus Operations Ltd, New Filton Road, BS99 7AR Bristol (United Kingdom)

    2011-07-19

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  17. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  18. The Mechatronic System Design Of Ultrasonic Scanner For Inservice Inspection Of Research Reactor

    Science.gov (United States)

    Handono, Khairul; Kristedjo, K.; Awwaluddin, M.; Shobary, Ihsan

    2018-02-01

    The mechatronic system design of ultrasonic scanner for inservices inspection of Research Reactor has been conducted. The requirement designed must be reliable operated, safety to personnel and equipments, ease of maintenance and operation, protection of equipment mechanically, interchangeability of equipments and addition of the several model of probe immersion ultrasonic tranducer. In order to achieve the above goals and obtain the desired results, a mechatronic design based on mechanical and electronic practical experiences will be needed. In this paper consist of the mechanical design and the system mechanical movement using stepper motor control. The criteria and the methods of designs of mechanical and electronic equipments of the system have been discussed and investigated. A mechanical and instrumentation control system drawing and requirement of design will be presented as the outcome of the design. The designed of mechanical system is consequently simulated by solidwork software. The intention of the above research is to create solutions in different ways of inservice inspection of integrity of Reactor.

  19. Ablation of synovial pannus using microbubble-mediated ultrasonic cavitation in antigen-induced arthritis in rabbits.

    Science.gov (United States)

    Qiu, Li; Jiang, Yong; Zhang, Lingyan; Wang, Lei; Luo, Yan

    2012-12-01

    To investigate the ablative effectiveness of microbubble-mediated ultrasonic cavitation for treating synovial pannus and to determine a potential mechanism using the antigen-induced arthritis model (AIA). Ultrasonic ablation was performed on the knee joints of AIA rabbits using optimal ultrasonic ablative parameters. Rabbits with antigen-induced arthritis were randomly assigned to 4 groups: (1) the ultrasound (US) + microbubble group; (2) the US only group; (3) the microbubble only group, and (4) the control group. At 1 h and 14 days after the first ablation, contrast-enhanced ultrasonography (CEUS) monitoring and pathology synovitis score were used to evaluate the therapeutic effects. Synovial necrosis and microvascular changes were also measured. After the ablation treatment, the thickness of synovium and parameters of time intensity curve including derived peak intensity and area under curve were measured using CEUS, and the pathology synovitis score in the ultrasound + microbubble group was significantly lower than that found in the remaining groups. No damage was observed in the surrounding normal tissues. The mechanism underlying the ultrasonic ablation was related to microthrombosis and microvascular rupture that resulted in synovial necrosis. The results suggest that microbubble-mediated ultrasonic cavitation should be applied as a non-invasive strategy for the treatment of synovial pannus in arthritis under optimal conditions.

  20. A Simulation Tool for Ultrasonic Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Adarsh; Mohan, K. V.; Karthikeyan, Soumya; Krishnamurthy, C. V.; Balasubramaniam, Krishnan [Indian Institute of Technology, Tamil Nadu (India)

    2006-06-15

    A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment for immersion and contact modes of inspection. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, a description of the various features of SIMULTSONIC is given followed by examples illustrating the capability of SIMULTSONIC to deal with inspection of canonical objects such as pipes. In particular, the use of SIMULTSONIC in the inspection of very thin-walled pipes (with 450 urn wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes

  1. Development of PSI and ISI technique

    International Nuclear Information System (INIS)

    Chung, M.K.; Park, D.Y.; Choi, S.P.; Kim, H.J.; Moon, Y.S.; Shon, G.H.; Kim, T.S.

    1983-01-01

    This report describes the experimental results of the subjects selected from the PSI/ISI related problems which encountered by us in 1982. The main contents are 1) the characteristics of the typical ECT signals from the steam generator tubes of nuclear power plant and the results of ECT evaluation of Kori-1 steam generators, 2) the experimental result for the research for directional effects of ultrasonic transducers, 3) the basic experiment for the ultrasonic testing technique by immersion testing method, 4) how to write the scan plan of the mechanized ultrasonic testing for nuclear reactor. Attached appendix is a part of necessary materials for the scan plan of the mechanized ultrasonic testing for Kori-2 nuclear reactor. (Author)

  2. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    Science.gov (United States)

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan. Copyright © 2014. Published by Elsevier B.V.

  3. Evaluation of Die-Attach Bonding Using High-Frequency Ultrasonic Energy for High-Temperature Application

    Science.gov (United States)

    Lee, Jong-Bum; Aw, Jie-Li; Rhee, Min-Woo

    2014-09-01

    Room-temperature die-attach bonding using ultrasonic energy was evaluated on Cu/In and Cu/Sn-3Ag metal stacks. The In and Sn-3Ag layers have much lower melting temperatures than the base material (Cu) and can be melted through the heat generated during ultrasonic bonding, forming intermetallic compounds (IMCs). Samples were bonded using different ultrasonic powers, bonding times, and forces and subsequently aged at 300°C for 500 h. After aging, die shear testing was performed and the fracture surfaces were inspected by scanning electron microscopy. Results showed that the shear strength of Cu/In joints reached an upper plateau after 100 h of thermal aging and remained stable with aging time, whereas that of the Cu/Sn-3Ag joints decreased with increasing aging time. η-Cu7In4 and (Cu,Au)11In9 IMCs were observed at the Cu/In joint, while Cu3Sn and (Ag,Cu)3Sn IMCs were found at the Cu/Sn-3Ag joint after reliability testing. As Cu-based IMCs have high melting temperatures, they are highly suitable for use in high-temperature electronics, but can be formed at room temperature using an ultrasonic approach.

  4. Ultrasonic defect sizing using decibel drop methods. III

    International Nuclear Information System (INIS)

    Mills, C.; Goszczynski, J.; Mitchell, A.B.

    1988-03-01

    An earlier study on the use of ultrasonic decibel drop sizing methods for determining the length and vertical extent of flaws in welded steel sections was based on the scanning of machined flaws and fabrication flaws. The present study utilized the techniques developed to perform a similar study of the type of flaws expected to develop during service (e.g. fatigue cracks). The general findings are that: a) the use of decibel drops of less than 14 dB generally undersize the length of fatigue cracks; and b) the use of decibel drop methods to determine vertical extent is questionable

  5. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  6. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  7. Joining NbTi superconductors by ultrasonic welding

    International Nuclear Information System (INIS)

    Hafstrom, J.W.; Killpatrick, D.H.; Niemann, R.C.; Purcell, J.R.; Thresh, H.R.

    1976-01-01

    An important consideration in the design and construction of large, high-field, superconducting magnets is the capability to fabricate reliable, high-strength, low-resistance joints. A process for joining NbTi, copper stabilized, superconducting composites by ultrasonic welding is described. This process yields a joint strength comparable to that of the superconducting composite and a resistivity significantly lower than achieved by conventional soft soldering. The superconducting properties of the composite are not affected by the joining process. Scarfing the joint to maintain a constant conductor cross section does not degrade its electrical or mechanical properties. The application of the ultrasonic joining process, including process control, scarfing, and NDT procedures, in the construction of the superconducting magnet (U.S. SCMS) for the joint U. S. -- Soviet MHD program is described

  8. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  9. Ultrasonic assessment of additive manufactured Ti-6Al-4V

    Science.gov (United States)

    Schehl, Norman; Kramb, Vicki; Dierken, Josiah; Aldrin, John; Schwalbach, Edwin; John, Reji

    2018-04-01

    Additive Manufacturing (AM) processes offer the potential for manufacturing cost savings and rapid insertion into service through production of near net shape components for complicated structures. Use of these parts in high reliability applications such as those in the aerospace industry will require nondestructive characterization methods to ensure post-process material quality in as-built condition. Ultrasonic methods can be used for this quality verification. Depending on the application, the service life of AM components can be sensitive to the part surface condition. The surface roughness and layered structure inherent to the electron-beam powder-bed fusion process necessitates new approaches to evaluate subsurface material integrity in its presence. Experimental methods and data analytics may improve the evaluation of as-built additively manufactured materials. This paper discusses the assessment of additively manufactured EBM Ti-6Al-4V panels using ultrasonic methods and the data analytics applied to evaluate material integrity. The assessment was done as an exploratory study as the discontinuities of interest in these test samples were not known when the measurements were performed. Water immersion ultrasonic techniques, including pulse-echo and through transmission with 10 MHz focused transducers, were used to explore the material integrity of as-built plates. Subsequent destructive mechanical tests of specimens extracted from the plates provided fracture locations indicating critical flaws. To further understand the effect of surface-roughness, an evaluation of ultrasonic response in the presence of as-built surfaces and with the surface removed was performed. The assessment of additive manufactured EBM Ti-6Al-4V panels with ultrasonic techniques indicated that ultrasonic energy was attenuated by the as-built surface roughness. In addition, feature detection was shown to be sensitive to experimental ultrasonic parameters and flaw morphology.

  10. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S A

    1998-08-01

    unidirectional glass/PET laminate are compared with ultrasonic and mechanical test results. Finally, the capabilities and limitations of the applied ultrasonic method are discussed. (au) 15 tabs., 103 ills., 203 refs.

  11. Study on thermal, mechanical and adsorption properties of amine-functionalized MCM-41/PMMA and MCM-41/PS nanocomposites prepared by ultrasonic irradiation.

    Science.gov (United States)

    Mohammadnezhad, Gholamhossein; Abad, Saeed; Soltani, Roozbeh; Dinari, Mohammad

    2017-11-01

    In this study, two common industrial polymers, poly(methyl methacrylate) (PMMA) and polystyrene (PS), were incorporated into amine-functionalized MCM-41 mesoporous silica as reinforcement agents via an ultrasonic assisted method as a facile, fast, eco-friendly, and versatile synthetic tool. Amino functionalization of MCM-41 were performed by 3-aminopropyl triethoxysilane as a coupling agent and it is denoted as APTS-MCM-41. The obtained nanocomposites (NCs), APTS-MCM-41/PMMA and APTS-MCM-41/PS, were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM), and thermogravimetric analysis (TGA). Their mechanical properties were also probed via stress-strain curves and improved tensile properties were observed in the NCs relative to the neat polymers. Additionally, APTS-MCM-41/PMMA exhibited better mechanical properties than APTS-MCM-41/PS. Sorption studies were carried out on the two NCs and the effect of different process parameters, namely, pH, contact time, and initial Cd(II) concentration investigated in batch mode. Pseudo-second order and intraparticle diffusion models explain the Cd(II) kinetics more effectively for APTS-MCM-41/PMMA and APTS-MCM-41/PS, respectively. The adsorption isotherm data fitted well to Langmuir isotherm for both NCs and the maximum monolayer adsorption capacities were found to be 24.75mg/g and 10.42mg/g for APTS-MCM-41/PMMA and APTS-MCM-41/PS, respectively. The results demonstrate that the NCs show potential for use in adsorption of heavy metal ion such as Cd(II) from aqueous media. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation.

    Science.gov (United States)

    Pu, Yuanyuan; Zou, Qingsong; Hou, Dianzhi; Zhang, Yiping; Chen, Shan

    2017-01-20

    Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R 2 >0.99. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  14. Modeling and optimization of a novel two-axis mirror-scanning mechanism driven by piezoelectric actuators

    International Nuclear Information System (INIS)

    Jing, Zijian; Xu, Minglong; Feng, Bo

    2015-01-01

    Mirror-scanning mechanisms are a key component in optical systems for diverse applications. However, the applications of existing piezoelectric scanners are limited due to their small angular travels. To overcome this problem, a novel two-axis mirror-scanning mechanism, which consists of a two-axis tip-tilt flexure mechanism and a set of piezoelectric actuators, is proposed in this paper. The focus of this research is on the design, theoretical modeling, and optimization of the piezoelectric-driven mechanism, with the goal of achieving large angular travels in a compact size. The design of the two-axis tip-tilt flexure mechanism is based on two nonuniform beams, which translate the limited linear output displacements of the piezoelectric actuators into large output angles. To exactly predict the angular travels, we built a voltage-angle model that characterizes the relationship between the input voltages to the piezoelectric actuators and the output angles of the piezoelectric-driven mechanism. Using this analytical model, the optimization is performed to improve the angular travels. A prototype of the mirror-scanning mechanism is fabricated based on the optimization results, and experiments are implemented to test the two-axis output angles. The experimental result shows that the angular travels of the scanner achieve more than 50 mrad, and the error between the analytical model and the experiment is about 11%. This error is much smaller than the error for the model built using the previous method because the influence of the stiffness of the mechanical structure on the deformation of the piezoelectric stack is considered in the voltage-angle model. (paper)

  15. Study on Electric field assisted low frequency (20 kHz) ultrasonic spray

    Science.gov (United States)

    Chae, Ilkyeong; Seong, Baekhoon; Marten, Darmawan; Byun, Doyoung

    2015-11-01

    Ultrasonic spray is one of the fabulous techniques to discharge small size of droplets because it utilizes ultrasonic vibration on nozzle. However, spray patterns and size of ejected droplet is hardly controlled in conventional ultrasonic spray method. Therefore, here we present electric field assisted ultrasonic spray, which combined conventional technique with electric field in order to control spray pattern and droplet size precisely. Six kinds of various liquid (D.I water, Ethanol, Acetone, Iso-propanol, Toluene, Hexane) with various dielectric constants were used to investigate the mechanism of this method. Also, PIV (Particle Image Velocimetry) was used and various variables were obtained including spray angle, amplitude of liquid vibration, current, and size distribution of ejected droplets. Our electric field assisted ultrasonic spray show that the standard deviation of atomized droplet was decreased up to 39.6%, and it shows the infinite possibility to be utilized in various applications which require precise control of high transfer efficiency. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014-023284).

  16. Influence of use of ultrasound on the mechanical properties of plated pieces by welding in ultrasonic field

    Directory of Open Access Journals (Sweden)

    Gh. Amza

    2015-07-01

    Full Text Available Plating by welding in an ultrasonic field represents a technological solution to increase resistance to corrosion and / or wear of pieces of the machinery industry. Research has been carried out for two types of parts, namely a piece of flange end type and bonnet type made of AISI 4130 steel, and as filler material for plating was used Inconel 625 Fe developed as electrode wire with a diameter of ø 1.2 / mm. The plating was done by depositing a single layer by welding in ultrasonic field, welding process in Ar 100/ % environment non-consumable tungsten electrode, WIG process, and when using ultrasonic activation it was used a longitudinal and a transverse wave with a frequency of 15 / kHz. For pieces plated by welding there have been made attempts of the hardness and tensile and bend shock.

  17. Development of Ultrasonic Visual Inspection Program for In-Vessel Structures of SFR

    International Nuclear Information System (INIS)

    Joo, Y. S.; Park, C. G.; Lee, J. H.

    2009-02-01

    As the liquid sodium of a sodium-cooled fast reactor (SFR) is opaque to light, a conventional visual inspection is unavailable for the evaluation of the in-vessel structures under a sodium level. ASME Section XI Division 3 provides rules and guidelines for an in-service inspection (ISI) and testing of the components of SFR. For the ISI of in-vessel structures, the ASME code specifies visual examinations. An ultrasonic wave should be applied for an under-sodium visual inspection of the in-vessel structures. The plate-type waveguide sensor has been developed and the feasibility of the waveguide sensor technique has been successfully demonstrated for an ultrasonic visual inspection of the in-vessel structures of SFR. In this study, the C-scan image mapping program (Under-Sodium MultiView) is developed to apply this waveguide sensor technology to an under-sodium visual inspection of in-vessel structures in SFR by using a LabVIEW graphical programming language. The Under-Sodium MultiVIEW program has the functions of a double rotating scanner motion control, a high power pulser receiver control, a image mapping and a signal processing. The performance of Under-Sodium MultiVIEW program was verified by a C-scanning test

  18. Compact and air-transportable ultrasonic turbine disc bore inspection system

    International Nuclear Information System (INIS)

    Larsen, R.E.; Leon-Salamanca, T.

    1990-01-01

    A compact, lightweight, air-transportable ultrasonic inspection system for bore and keyway regions of shrunk-on turbine discs has been developed. The system utilizes a proprietary ultrasound liquid coupling technique in conjunction with a single pair of gimballed search units to achieve rapid and thorough coverage of bores and keyways in both heavy nuclear and standard fossil discs of nearly any size and having any conceivable web surface contour. Search unit positioning and angulation parameter settings are established in near real-time through a computation algorithm based on a compact vector ray tracing protocol. Modular construction and the use of lightweight, stiff materials throughout facilitates air shipment of the system and its rapid deployment at continental and overseas field sites. Mechanical and ultrasonic features of the system are described. Development and application of the computation algorithm to the ultrasonic inspection of heavy discs at an overseas power station is discussed

  19. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  20. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  1. Ultrasonic investigations on polonides of Ba, Ca, and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Devraj; Bhalla, Vyoma [Amity School of Engineering and Technology, New Delhi (India). Dept. of Applied Physics; Bala, Jyoti [Amity School of Engineering and Technology, New Delhi (India). Dept. of Applied Physics; Guru Gobind Singh Indraprastha Univ., New Delhi (India). USICT; Wadhwa, Shikha [Amity Univ., Noida (India). Amity Inst. of Nanotechnology

    2017-07-01

    The temperature-dependent mechanical and ultrasonic properties of barium, calcium, and lead polonides (BaPo, CaPo, and PbPo) were investigated in the temperature range 100-300 K. The second- and third-order elastic constants (SOECs and TOECs) were computed using Coulomb and Born-Mayer potential and these in turn have been used to estimate other secondary elastic properties such as strength, anisotropy, microhardness, etc. The theoretical approach followed the prediction that BaPo, CaPo, and PbPo are brittle in nature. PbPo is found to be the hardest amongst the chosen compounds. Further the SOECs and TOECs are applied to determine ultrasonic velocities, Debye temperature, and acoustic coupling constants along left angle 100 right angle, left angle 110 right angle, and left angle 111 right angle orientations at room temperature. Additionally thermal conductivity has been computed using Morelli and Slack's approach along different crystallographic directions at room temperature. Finally ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms has been computed for BaPo, CaPo, and PbPo. The behaviour of these compounds is similar to that of semi-metals with thermal relaxation time of the order 10{sup -11} s. The present computation study is reasonably in agreement with the available theoretical data for the similar type of materials.

  2. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  3. High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation.

    Science.gov (United States)

    Chang, Yanjiao; Yan, Xiaoxia; Wang, Qian; Ren, Lili; Tong, Jin; Zhou, Jiang

    2017-07-15

    The purpose of this work was to develop an approach to produce size controlled starch nanoparticles (SNPs), via precipitation with high efficiency and low cost. High concentration starch aqueous pastes (up to 5wt.%) were treated by ultrasound. Viscosity measurements and size exclusion chromatography characterization revealed that, after 30min ultrasonic treatment, viscosity of the starch pastes decreased two orders of magnitude and the weight average molecular weight of the starch decreased from 8.4×10 7 to 2.7×10 6 g/mol. Dynamic light scattering measurements and scanning electron microscopy observations showed that the SNPs prepared from the starch pastes with ultrasonic treatments were smaller (∼75nm) and more uniform. Moreover, SNPs could be obtained using less non-solvents. X-ray diffraction results indicated that effect of the ultrasonic treatment on crystalline structure of the SNPs was negligible. Ultrasound can be utilized to prepare smaller SNPs through nanoprecipitation with higher efficiency and lower cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  5. High Resolution Ultrasonic Method for 3D Fingerprint Representation in Biometrics

    Science.gov (United States)

    Maev, R. Gr.; Bakulin, E. Y.; Maeva, E. Y.; Severin, F. M.

    Biometrics is an important field which studies different possible ways of personal identification. Among a number of existing biometric techniques fingerprint recognition stands alone - because very large database of fingerprints has already been acquired. Also, fingerprints are an important evidence that can be collected at a crime scene. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. Ultrasonic method of fingerprint imaging was originally introduced over a decade as the mapping of the reflection coefficient at the interface between the finger and a covering plate and has shown very good reliability and free from imperfections of previous two methods. This work introduces a newer development of the ultrasonic fingerprint imaging, focusing on the imaging of the internal structures of fingerprints (including sweat pores) with raw acoustic resolution of about 500 dpi (0.05 mm) using a scanning acoustic microscope to obtain images and acoustic data in the form of 3D data array. C-scans from different depths inside the fingerprint area of fingers of several volunteers were obtained and showed good contrast of ridges-and-valleys patterns and practically exact correspondence to the standard ink-and-paper prints of the same areas. Important feature reveled on the acoustic images was the clear appearance of the sweat pores, which could provide additional means of identification.

  6. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  7. Acoustic streaming induced by an ultrasonically oscillating endodontic file

    NARCIS (Netherlands)

    Verhaagen, B.; Boutsioukis, C.; van der Sluis, L.W.M.; Versluis, M.

    2014-01-01

    Ultrasonically activated irrigation is an advanced dental technique for irrigation of the root canal system during a root canal treatment. The basic cleaning mechanism is a result of acoustic streaming induced by an oscillating file, leading to mixing of the irrigant and pressure and shear stresses

  8. Acoustic streaming induced by an ultrasonically oscillating endodontic file

    NARCIS (Netherlands)

    Verhaagen, B.; Boutsioukis, C.; van der Sluis, L. W. M.; Versluis, M.

    Ultrasonically activated irrigation is an advanced dental technique for irrigation of the root canal system during a root canal treatment. The basic cleaning mechanism is a result of acoustic streaming induced by an oscillating file, leading to mixing of the irrigant and pressure and shear stresses

  9. Through Thickness Ultrasonic Testing and Its Use in Characterising ...

    African Journals Online (AJOL)

    The stiffness coefficients of different types of limestone were determined using the through thickness ultrasonic test and measurements of size and weight, and the results obtained verified using aluminium specimens of known mechanical properties. The values of density and stiffness coefficients obtained for the various ...

  10. Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: Comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness.

    Science.gov (United States)

    Ezeh, Collins I; Tomatis, Marco; Yang, Xiaogang; He, Jun; Sun, Chenggong

    2018-01-01

    Amine functionalized layered double hydroxide (LDHs) adsorbents prepared using three different routes: co-precipitation, sono-chemical and ultrasonic-assisted high pressure hydrothermal. The prepared adsorbent samples were characterized using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The performance of the prepared adsorbents was tested in a controlled thermal-swing adsorption process to measure its adsorption capacity, regeneration and cyclic efficiencies subsequently. The characterisation results were compared with those obtained using the conventional preparation routes but taking into account of the impact of sonochemical and hydrothermal pre-treatment on textural properties, adsorption capacity, regeneration and cyclic efficiencies. Textural results depicts a surge in surface area of the adsorbent synthesised by hydrothermal route (311m 2 /g) from 25 to 171m 2 /g for conventional and ultrasonic routes respectively. Additionally, it has been revealed from the present study that adsorbents prepared using ultrasonic-assisted hydrothermal route exhibit a better CO 2 uptake capacity than that prepared using sonochemical and conventional routes. Thus, the ultrasonic-assisted hydrothermal treatment can effectively promote the adsorption capacity of the adsorbent. This is probably due to the decrease of moderate (M-O) and weak (OH - groups) basic sites with subsequent surge in the number of strong basic sites (O 2- ) resulting from the hydrothermal process. Moreover, the cyclic adsorption efficiency of the ultrasonic mediated process was found to be 76% compared with 60% for conventional and 53% for hydrothermal routes, respectively. According to the kinetic model analysis, adsorption mechanism is mostly dominated by physisorption before amine

  11. Nondestructive evaluation ultrasonic methods for construction materials

    International Nuclear Information System (INIS)

    Chilibon, I.; Zisu, T.; Raetchi, V.

    2002-01-01

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  12. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  13. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  14. Application of the ultrasonic phased array technique to alloy 182 weld inspection in PWR

    International Nuclear Information System (INIS)

    Hsiao, Chu Chung; Shie, Namg Chian; Chu, Shyr Liang; Lee, Sou See; Toung, Jean Chung; Su, Liang Chun; Yang, Hai Ming

    2006-01-01

    Cracks were found in nickel-based welds frequently in some nuclear power plants. The development of inspection technique capability of finding these cracks is thus in great demand. The difficulties of inspection and evaluation for nickel-based welds include ultrasonic reflection of interface of dissimilar materials, ultrasonic distortion of anisotropic microstructure, and signal-to-noise ratio reduction of coarse grain. In this study, an Alloy 182 mock-up with the same size and material properties as in the field is designed and fabricated. The Alloy 182 mock-up specimen contains various cracks and notches for calibration. Phased array UT and other ultrasonic inspection techniques are used in this study. Based on the experiment results, the phased array probe with 2D dual crystals and low frequency (1.5MHz) longitudinal wave is found to perform well. Finally, phased array ultrasonic testing technique has been approved to be an effectively nondestructive test method for DMW with real size testing block involved. Typically, phased array probe can generate sharp tip diffraction signal and thus reliable and accurate result can be obtained for sizing the defect. Furthermore, phased array probe can also generate various angles and focal lengths and thus combinatorial effect can be achieved for several traditional probes. With a full understanding of the beam behavior and an optimized delay laws, the phased away ultrasonic technique integrated with an automatic scanner will achieve not only to save scanning time but also to reduce the amount of radiation exposure on field inspection.

  15. Ultrasonically synthesized organic liquid-filled chitosan microcapsules: part 2: characterization using AFM (atomic force microscopy) and combined AFM-confocal laser scanning fluorescence microscopy.

    Science.gov (United States)

    Mettu, Srinivas; Ye, Qianyu; Zhou, Meifang; Dagastine, Raymond; Ashokkumar, Muthupandian

    2018-04-25

    Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.2% to 25% v/v. The effect of acetic acid concentration and size of the individual microcapsules on the strength was probed. The deformations and forces required to rupture the microcapsules were also measured. Three dimensional deformations of microcapsules under large applied loads were obtained by the combination of Laser Scanning Confocal Microscopy (LSCM) with Atomic Force Microscopy (AFM). The stiffness, and hence the modulus, of the microcapsules was found to decrease with an increase in size with the average stiffness ranging from 82 to 111 mN m-1 and average Young's modulus ranging from 0.4 to 6.5 MPa. The forces required to rupture the microcapsules varied from 150 to 250 nN with deformations of the microcapsules up to 62 to 110% relative to their radius, respectively. Three dimensional images obtained using laser scanning confocal microscopy showed that the microcapsules retained their structure and shape after being subjected to large deformations and subsequent removal of the loads. Based on the above observations, the oil filled chitosan crosslinked microcapsules are an ideal choice for use in the food and pharmaceutical industries as they would be able to withstand the process conditions encountered.

  16. Surface quality prediction model of nano-composite ceramics in ultrasonic vibration-assisted ELID mirror grinding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Chen, Fan; Jia, Xiao-feng; Zhao, Chong-yang; Wang, Xiao-bo [Henan Polytechnic University, Jiaozuo (China)

    2017-04-15

    Ultrasonic vibration-assisted Electrolytic in-process dressing (ELID) grinding is a highly efficient and highly precise machining method. The surface quality prediction model in ultrasonic vibration-assisted ELID mirror grinding was studied. First, the interaction between grits and workpiece surface was analyzed according to kinematic mechanics, and the surface roughness model was developed. The variations in surface roughness under different parameters was subsequently calculated and analyzed by MATLAB. Results indicate that compared with the ordinary ELID grinding, ultrasonic vibration-assisted ELID grinding is superior, because it has more stable and better surface quality and has an improved range of ductile machining.

  17. Recording length criteria as applied in ultrasonic testing

    International Nuclear Information System (INIS)

    Fischer, E.; Kroening, M.; Schober, H.; Fischdick, H.

    1983-01-01

    An appreciable method used to assess the quality and integrity of safety-related components in light water reactors is the ultrasonic examination, in which case great importance is attributed to the criteria pertaining to recording length and permissible defect size. The development of the recording length criteria as applied when employing this method of examination is portrayed, the latter being based on the criteria which have proven themselves throughout long years of practice in the examination of conventional components. When taking these criteria into account the application of conventional ultrasonic techniques often leads to problems in the case of thick-walled components the reason being that indications are overrated. Taking the design of reactor components as the basic point of consideration, modified criteria are derived particularly when the size of discontinuities calculated by fracture mechanics analyses is taken into account. The introduction of new ultrasonic examination techniques such as, for example, focussed probes revealed that a considerably more realistic assessment is possible and consequently results in a reduction of unnecessary repairs. A comparison of the size of indications determined using conventional and analytical technqiues renders possible the anchoring of an intermediate stage in the evaluation of indications which is encompassed in the consideration of the bundle divergence. Thus a new concept is realized for the evaluation of ultrasonic indications detected in reactor components, which in the meantime has found its way into the associated regulatory guides. (orig.)

  18. Ultrasonic-assisted chemical reduction synthesis and structural characterization of copper nanoparticles

    Science.gov (United States)

    Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Thanh-Quoc, Nguyen; Ha, Do Tuong

    2018-04-01

    Copper nanoparticles, due to their special properties, small dimensions and low-cost preparation, have many potential applications such as in optical, electronics, catalysis, sensors, antibacterial agents. In this study, copper nanoparticles were synthesized by chemical reduction method with different conditions in order to investigate the optimum conditions which gave the smallest (particle diameter) dimensions. The synthesis step used copper (II) acetate salt as precursor, ascorbic acid as reducing agent, glycerin and polyvinylpyrrolidone (PVP) as protector and stabilizer. The assistance of ultrasonic was were considered as the significant factor affecting the size of the synthesized particles. The results showed that the copper nanoparticles have been successfully synthesized with the diameter as small as 20-40 nm and the conditions of ultrasonic waves were 48 kHz of frequency, 20 minutes of treated time and 65-70 °C of temperature. The synthesized copper nanoparticles were characterized by optical absorption spectrum, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectrometry.

  19. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  20. Echodentography based on nonlinear time reversal tomography: Ultrasonic nonlinear signature identification

    Science.gov (United States)

    Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek

    2012-05-01

    This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.

  1. A Combined Structural and Electromechanical FE Approach for Industrial Ultrasonic Devices Design

    Science.gov (United States)

    Schorderet, Alain; Prenleloup, Alain; Colla, Enrico

    2011-05-01

    Ultrasonic assistance is widely used in manufacturing, both for conventional (e.g. grinding, drilling) and non-conventional (e.g. EDM) processes. Ultrasonic machining is also used as a stand alone process for instance for micro-drilling. Industrial application of these processes requires increasingly efficient and accurate development tools to predict the performance of the ultrasonic device: the so-called sonotrode and the piezo-transducer. This electromechanical system consists of a structural part and of a piezo-electrical part (actuator). In this paper, we show how to combine two simulation softwares—for stuctures and electromechanical devices—to perform a complete design analysis and optimization of a sonotrode for ultrasonic drilling applications. The usual design criteria are the eigenfrequencies of the desired vibrational modes. In addition, during the optimization phase, one also needs to consider the maximum achievable displacement for a given applied voltage. Therefore, one must be able to predict the electromechanical behavior of the integrated piezo-structure system, in order to define, adapt and optimize the electric power supply as well as the control strategy (search, tracking of the eigenfrequency). In this procedure, numerical modelling follows a two-step approach, by means of a solid mechanics FE code (ABAQUS) and of an electromechanical simulation software (ATILA). The example presented illustrates the approach and describes the obtained results for the development of an industrial sonotrode system dedicated to ultrasonic micro-drilling of ceramics. The 3D model of the sonotrode serves as input for generating the FE mesh in ABAQUS and this mesh is then translated into an input file for ATILA. ABAQUS results are used to perform the first optimization step in order to obtain a sonotrode design leading to the requested modal behaviour—eigen-frequency and corresponding dynamic amplification. The second step aims at evaluating the dynamic

  2. 21 CFR 872.4850 - Ultrasonic scaler.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  3. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging

    Directory of Open Access Journals (Sweden)

    Elaheh Taghaddos

    2015-06-01

    Full Text Available Piezoelectric materials have been vastly used in ultrasonic transducers for medical imaging. In this paper, firstly, the most promising lead-free compositions with perovskite structure for medical imaging applications have been reviewed. The electromechanical properties of various lead-free ceramics, composites, and single crystals based on barium titanate, bismuth sodium titanate, potassium sodium niobate, and lithium niobate are presented. Then, fundamental principles and design considerations of ultrasonic transducers are briefly described. Finally, recent developments in lead-free ultrasonic probes are discussed and their acoustic performance is compared to lead-based transducers. Focused transducers with different beam focusing methods such as lens focusing and mechanical shaping are explained. Additionally, acoustic characteristics of lead-free probes including the pulse-echo results as well as their imaging capabilities for various applications such as phantom imaging, in vitro intravascular ultrasound imaging of swine aorta, and in vivo or ex vivo imaging of human eyes and skin are reviewed.

  4. B-scan technique for localization and characterization of fatigue cracks around fastener holes in multi-layered structures

    Science.gov (United States)

    Hopkins, Deborah; Datuin, Marvin; Aldrin, John; Warchol, Mark; Warchol, Lyudmila; Forsyth, David

    2018-04-01

    The work presented here aims to develop and transition angled-beam shear-wave inspection techniques for crack localization at fastener sites in multi-layer aircraft structures. This requires moving beyond detection to achieve reliable crack location and size, thereby providing invaluable information for maintenance actions and service-life management. The technique presented is based on imaging cracks in "True" B-scans (depth view projected in the sheets along the beam path). The crack traces that contribute to localization in the True B-scans depend on small, diffracted signals from the crack edges and tips that are visible in simulations and experimental data acquired with sufficient gain. The most recent work shows that cracks rotated toward and away from the central ultrasonic beam also yield crack traces in True B-scans that allow localization in simulations, even for large obtuse angles where experimental and simulation results show very small or no indications in the C-scans. Similarly, for two sheets joined by sealant, simulations show that cracks in the second sheet can be located in True B-scans for all locations studied: cracks that intersect the front or back wall of the second sheet, as well as relatively small mid-bore cracks. These results are consistent with previous model verification and sensitivity studies that demonstrate crack localization in True B-scans for a single sheet and cracks perpendicular to the ultrasonic beam.

  5. A Reference-Free and Non-Contact Method for Detecting and Imaging Damage in Adhesive-Bonded Structures Using Air-Coupled Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Timotius Yonathan Sunarsa

    2017-12-01

    Full Text Available Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.

  6. Enhancing Biodiesel from Kemiri Sunan Oil Manufacturing using Ultrasonics

    Science.gov (United States)

    Supriyadi, Slamet; Purwanto; Anggoro, Didi Dwi; Hermawan

    2018-02-01

    Kemiri Sunan (Reutalis trisperma (Blanco) Airy Shaw) is a potential plant to be developed as biodiesel feedstock. The advantage of Kemiri Sunan seeds when compared to other biodiesel raw materials is their high oil content. This plant is also very good for land conservation. Due the increasingly demand for biodiesel, research and new methods to increase its biodiesel production continue to be undertaken. The weakness of conventional biodiesel manufacturing process is in the mixing process in which mechanical stirring and heating in the trans-esterification process require more energy and a longer time. A higher and stronger mixing process is required to increase the contact area between the two phases of the mixed substance to produce the emulsion. Ultrasonic is a tool that can be useful for a liquid mixing process that tends to be separated. Ultrasonic waves can cause mixing intensity at the micro level and increase mass transfer, so the reaction can be performed at a much faster rate. This study is to figure out the effect of ultrasonic irradiation on the transesterification process of biodiesel from Kemiri Sunan Oil.

  7. Nonlinear ultrasonic wave modulation for online fatigue crack detection

    Science.gov (United States)

    Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark

    2014-02-01

    This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.

  8. Imaging techniques for ultrasonic testing; Bildgebende Verfahren fuer die Ultraschallpruefung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [German] Dieser Seminarband enthaelt 16 Vortraege mit folgenden Themen: 1. Von der Bildgebung bis zur Quantifizierung - Ultraschallverfahren in der medizinischen Diagnostik; 2. SAFT, TOFD, Phased Array

  9. Ultrasonic Communication Project, Phase 1, FY1999

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, H.D.; Akerman, M.A.; Baylor, V.M.

    2000-06-01

    This Phase 1 project has been successful in identifying, exploring, and demonstrating methods for ultrasonic-based communication with an emphasis on the application of digital signal processing techniques. During the project, at the direction of the agency project monitor, particular attention was directed at sending and receiving ultrasonic data through air and through pipes that would be commonly found in buildings. Efforts were also focused on development of a method for transmitting computer files ultrasonically. New methods were identified and evaluated for ultrasonic communication. These methods are based on a technique called DFS. With DFS, individual alphanumeric characters are broken down into a sequence of bits, and each bit is used to generate a discrete ultrasonic frequency. Characters are then transmitted one-bit-at-a-time, and reconstructed by the receiver. This technique was put into practice through the development of LabVIEW{trademark}VIs. These VIs were integrated with specially developed electronic circuits to provide a system for demonstrating the transmission and reception/reconstruction of typed messages and computer files. Tests were performed to determine the envelope for ultrasound transmission through pipes (with and without water) versus through air. The practical aspects of connections, efficient electronics, impedance matching, and the effect of damping mechanisms were all investigated. These tests resulted in a considerable number of reference charts that illustrate the absorption of ultrasound through different pipe materials, both with and without water, as a function of distance. Ultrasound was found to be least attenuated by copper pipe and most attenuated by PVC pipe. Water in the pipe provides additional damping and attenuation of ultrasonic signals. Dramatic improvements are observed, however, in ultrasound signal strength if the transducers are directly coupled to the water, rather than simply attaching them to the outside of

  10. Field-Induced Deformation as a Mechanism for Scanning Tunneling Microscopy Based Nanofabrication

    DEFF Research Database (Denmark)

    Hansen, Ole; Ravnkilde, Jan Tue; Quaade, Ulrich

    1998-01-01

    The voltage between tip and sample in a scanning tunneling microscope (STM) results in a large electric field localized near the tip apex. The mechanical stress due to this field can cause appreciable deformation of both tip and sample on the scale of the tunnel gap. We derive an approximate...

  11. Rodent ultrasonic vocalizations are bound to active sniffing behavior

    Directory of Open Access Journals (Sweden)

    Yevgeniy B Sirotin

    2014-11-01

    Full Text Available During rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5-10 Hz. During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings. We used automated analysis to examine the relationship between breathing patterns and vocalization over long time periods. Rat ultrasonic vocalizations (USVs, ’50 kHz’ were emitted within stretches of active sniffing (5−10 Hz and were largely absent during periods of passive breathing (1-4 Hz. Because ultrasound was tightly linked to the exhalation phase, the sniffing cycle segmented vocal production into discrete calls and imposed its theta rhythmicity on their timing. In turn, calls briefly prolonged exhalations, causing an immediate drop in sniffing rate. Similar results were obtained in mice. Our results show that ultrasonic vocalizations are an integral part of the rhythmic orofacial behavioral ensemble. This complex behavioral program is thus involved not only in active sensing but also in the temporal structuring of social communication signals. Many other social signals of mammals, including monkey calls and human speech, show structure in the theta range. Our work points to a mechanism for such structuring in rodent ultrasonic vocalizations.

  12. Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2009-01-01

    Electroless deposition of Cu on poly(ethylene terephthalate) (PET) fabric modified with 3-mercaptopropyltriethoxysilane was investigated. Morphology, composition, structure, thermal decomposing behavior of copper coating PET fabric after ultrasonic washing in water for 1 h were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectrometer, X-ray diffraction (XRD), and thermogravimetric analysis (TG), respectively. Copper plating on modified fabric has good adherence stability and high electric conductivity before and after ultrasonic washing, while copper coating fabric without modification is easily destroyed during the washing process, which leads to the textile changing from conductor to dielectric. As the copper weight on the treated fabric is 28 g/m 2 , the shielding effectiveness (SE) is more than 54 dB at frequency ranging from 0.01 MHz to 18 GHz.

  13. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  14. Ultrasonic nonlinearity of AISI316 austenitic steel subjected to long-term isothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Won Sik; Kim, Chung Seok [Dept. of Materials Science and Engineering, Chosun University, Gwangju (Korea, Republic of)

    2014-06-15

    This study presents the ultrasonic nonlinearity of AISI316 austenitic stainless steels subjected to longterm isothermal aging. These steels are attractive materials for use in industrial mechanical structures because of their strength at high-temperatures and their chemical stability. The test materials were subjected to accelerated heat-treatment in an electrical furnace for a predetermined aging duration. The variations in the ultrasonic nonlinearity and microstructural damage were carefully evaluated through observation of the microstructure. The ultrasonic nonlinearity stiffly dropped after aging for up to 1000 h and, then, monotonously decreased. The polygonal shape of the initial grain structures changed to circular, especially as the annealing twins in the grains dissolved and disappeared. The delta ferrite on the grain boundaries could not be observed at 1000 h of aging, and these continuously transformed into their sigma phases. Consequently, in the intial aging period, the rapid decrease in the ultrasonic nonlinearity was caused by voids, dislocations, and twin annihilation. The continuous monotonic decrease in the ultrasonic nonlinearity after the first drop resulted from the generation of Cr{sub 23}C{sub 6} precipitates and σ phases.

  15. Impact of ultrasonic assisted triangular lattice like arranged dispersion of nanoparticles on physical and mechanical properties of epoxy-TiO2 nanocomposites.

    Science.gov (United States)

    Goyat, M S; Ghosh, P K

    2018-04-01

    Emerging ex-situ technique, ultrasonic dual mixing (UDM) offers unique and hitherto unapproachable opportunities to alter the physical and mechanical properties of polymer nanocomposites. In this study, triangular lattice-like arranged dispersion of TiO 2 nanoparticles (average size ∼ 48 nm) in the epoxy polymer has been attained via concurrent use of a probe ultra-sonicator and 4 blades pitched impeller which collectively named as UDM technique. The UDM processing of neat epoxy reveals the generation of triangular lattice-like arranged nanocavities with nanoscale inter-cavity spacing. The UDM processing of epoxy-TiO 2 nanocomposites reveals two unique features such as partial and complete entrapping of the nanoparticles by the nanocavities leading the arranged dispersion of particles in the epoxy matrix. Pristine TiO 2 nanoparticles were dispersed in the epoxy polymer at loading fractions of up to 20% by weight. The results display that the arranged dispersion of nanoparticles is very effective at enhancing the glass transition temperature (T g ) and tensile properties of the epoxy at loading fractions of 10 wt%. We quantify a direct relationship among three important parameters such as nanoparticle content, cluster size, and inter-particle spacing. Our results offer a novel understanding of these parameters on the T g and tensile properties of the epoxy nanocomposites. The tensile fracture surfaces revealed several toughening mechanisms such as particle pull-out, plastic void growth, crack deflection, crack bridging and plastic deformation. We show that a strong nanoparticle-matrix interface led to the enhanced mechanical properties due to leading toughening mechanisms such as crack deflection, plastic deformation and particle pull-out. We showed that the UDM has an inordinate prospective to alter the dispersion state of nanoparticles in viscous polymer matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Interracial Structure and Formation Mechanism of Ultrasonic-assisted Brazed Joint of SiC Ceramics with Al-12Si Filler Metals in Air

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Chen; Ruishan Xie; Zhiwei Lai; Lei Liu; Jiuchun Yan; Guisheng Zou

    2017-01-01

    Ultrasonic-assisted brazing of SiC ceramics was performed by filling with an Al--12Si alloy at a low temperature of 620 ℃ in air.The interfacial characteristics and formation mechanism were investigated.The joint shear strength reached 84-94 MPa using the ultrasonic time of 2-16 s.The fracture morphology showed that the fracture path initiated and propagated in the joint alloy.The thin film of amorphous SiO2 that formed on the SiC surface was non-uniformly decomposed and diffused into the liquid Al-12Si alloy under the cavitation erosion effect of ultrasound.Abnormal isolated blocks of Al2SiO5 compounds formed at the interface between Al--12Si and a thicker SiO2 layer formed during the thermal oxidation treatment of the SiC ceramic.The SiO2 layer on the SiC ceramic did not hinder or impair the wetting and bonding process,and a stronger bond could form between Al-12Si and SiO2 or SiC in ultrasonicassisted brazing.

  17. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonic deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  18. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    Science.gov (United States)

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Preliminary study on rotary ultrasonic machining of Bk-7 optical glass rod

    International Nuclear Information System (INIS)

    Hamzah, E.; Izman, S.; Khoo, C.Y.; Zainal Abidin, N.N.

    2007-01-01

    This paper presents an experimental observation on rotary ultrasonic machining (RUM) of BK7 optical glass rod. BK7 is a common technical optical glass for high quality optical components due to its high linear optical transmission in the visible range and is chemically stable. RUM is a hybrid machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining (USM) and it is non-thermal, non-chemical, creates no change in the microstructure, chemical or physical properties of the work piece. In the RUM, a controlled static load is applied to the rotating core drill with metal bonded diamond abrasive and is ultrasonically vibrated in the axial direction. A water-soluble coolant was used to cool the tool and sample during machining processes. By using DOE (Design of Experiment) approach, the effect of spindle speed and feed rate to the ultrasonic machinability had been developed. The main effects and two-factor interactions of process parameters (spindle speed) and feed rate) on output variables (MRR, surface roughness, opaqueness, chipping thickness and chipping size) are studied. (author)

  20. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  1. Study on the Influence of Refreshment/Activation Cycles and Irrigants on Mechanical Cleaning Efficiency During Ultrasonic Activation of the Irrigant

    NARCIS (Netherlands)

    van der Sluis, Lucas W. M.; Vogels, Maikel P. J. M.; Verhaagen, Bram; Macedo, Ricardo; Wesselink, Paul R.

    Introduction: The aims of this study were to evaluate dentin debris removal from the root canal during ultrasonic activation of sodium hypochlorite (2% and 10%), carbonated water, and distilled water and to determine the influence of 3 ultrasonic refreshment/activation cycles of the irrigant by

  2. Study on the influence of refreshment/activation cycles and irrigants on mechanical cleaning efficiency during ultrasonic activation of the irrigant

    NARCIS (Netherlands)

    van der Sluis, L.W.M.; Vogels, M.P.J.M.; Verhaagen, B.; Macedo, R.; Wesselink, P.R.

    2010-01-01

    Introduction: The aims of this study were to evaluate dentin debris removal from the root canal during ultrasonic activation of sodium hypochlorite (2% and 10%), carbonated water, and distilled water and to determine the influence of 3 ultrasonic refreshment/activation cycles of the irrigant by

  3. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    Science.gov (United States)

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain

  4. Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core

    Science.gov (United States)

    Blacklock, Natalie Erin

    During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of

  5. Quality control of disinfection in ultrasonic baths

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Technical University Dresden (Germany). Faculty of Mechanical Engineering; Jatzwauk, L. [University Hospital of the Technical University Dresden (Germany). Abt. Krankenhaushygiene

    2002-07-01

    Numerous investigations under laboratory conditions confirmed the microbicidal efficacy of ultrasonication. Morphological destruction was shown on bacteria and fungi as well as on different virus species. Ultrasonic treatment seems to increase the effect of different antibiotics and disinfectants. Reasons for this synergism are largely unknown and uninvestigated, but the active principle seems to bee the dispersing effect of ultrasonication in combination with the destruction of cell wall or cell membrane. Unfortunately no validation of test conditions exists for most of these investigations, regarding intensity and frequency of ultrasonic waves, temperature of liquid medium and measurement of cavitation which is an essential part of physical and chemical effects in ultrasonic baths. In contrast to most laboratory experiments sound density of ultrasound for treatment of medical instruments is below 1 W/cm{sup 2} because instruments will be destroyed under stronger ultrasonic conditions. The frequency is below 50 KHz. This paper describes bactericidal and fungicidal effects of low- intensity-ultrasonication and its synergistical support to chemical disinfection. (orig.)

  6. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  7. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    Science.gov (United States)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR

  8. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  9. Preparation and characterization of CNTs/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation.

    Science.gov (United States)

    Yin, Xiaochun; Li, Sai; He, Guangjian; Feng, Yanhong; Wen, Jingsong

    2018-05-01

    In this work, design and development of a new melt mixing method and corresponding mixer for polymer materials were reported. Effects of ultrasonic power and sonication time on the carbon nanotubes (CNTs) filled ultra high molecular weight polyethylene (UHMWPE) nanocomposites were experimentally studied. Transmission Electron Microscopy images showed that homogeneous dispersion of CNTs in intractable UHMWPE matrix is successfully realized due to the synergetic effect of ultrasonic wave and extensional deformation without any aid of other additives or solvents. Differential scanning calorimetry results revealed an increase in crystallinity and crystallization rate due to the finer dispersion of the CNTs in the matrix which act as nucleating point. Composites' complex viscosity and storage modulus decreased sharply at first and then leveled off with the increase of sonication time or the ultrasonic power. The thermal stability and the tensile strength of the CNTs/UHMWPE nanocomposites improved by using this novel mixing method. This is the first method that combined the ultrasonic wave and the extensional deformation in which the elongation rate, sonication time and ultrasonic power can be adjusted simultaneously during mixing. The novel mixer offers several advantages such as environment-friendly, high mixing efficiency, self-cleaning and wide adaptability to materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cavitation occurrence around ultrasonic dental scalers

    OpenAIRE

    Felver, Bernhard; King, David C; Lea, Simon C; Price, Gareth J; Damien Walmsley, A

    2009-01-01

    Ultrasonic scalers are used in dentistry to remove calculus and other contaminants from teeth. One mechanism which may assist in the cleaning is cavitation generated in cooling water around the scaler. The vibratory motion of three designs of scaler tip in a water bath has been characterised by laser vibrometry, and compared with the spatial distribution of cavitation around the scaler tips observed using sonochemiluminescence from a luminol solution. The type of cavitation was confirmed by a...

  11. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  12. Ultrasonic examination of JBK-75 strip material

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material [1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)], feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches [0.28 mm deep (0.011 in., about 17% of the strip thickness)] were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests

  13. Ultrasonic pretreatment for enhanced saccharification and fermentation of ethanol production from corn

    Science.gov (United States)

    Montalbo-Lomboy, Melissa T.

    The 21st Century human lifestyle has become heavily dependent on hydrocarbon inputs. Energy demand and the global warming effects due to the burning of fossil fuels have continued to increase. Rising awareness of the negative environmental and economic impacts of hydrocarbon dependence has led to a resurgence of interest in renewable energy sources such as ethanol. Fuel ethanol is known to be a cleaner and renewable source of energy relative to gasoline. Many studies have agreed that fuel ethanol has reduced greenhouse gas (GHG) emissions and has larger overall energy benefits compared to gasoline. Currently, the majority of the fuel ethanol in the United States is produced from corn using dry-grind milling process. The typical dry-grind ethanol plant incorporates jet cooking using steam to cook the corn slurry as pretreatment for saccharification; an energy intensive step. In aiming to reduce energy usage, this study evaluated the use of ultrasonics as an alternative to jet cooking. Ultrasonic batch experiments were conducted using a Branson 2000 Series bench-scale ultrasonic unit operating at a frequency of 20 kHz and a maximum output of 2.2 kW. Corn slurry was sonicated at varying amplitudes from 192 to 320 mumpeak-to-peak(p-p) for 0-40 seconds. Enzyme stability was investigated by adding enzyme (STARGEN(TM)001) before and after sonication. Scanning electron micrograph (SEM) images and particle size distribution analysis showed a nearly 20-fold size reduction by disintegration of corn particles due to ultrasonication. The results also showed a 30% improvement in sugar release of sonicated samples relative to the control group (untreated). The efficiency exceeded 100% in terms of relative energy gain from the additional sugar released due to ultrasonication compared to the ultrasonic energy applied. Interestingly, enzymatic activity was enhanced when sonicated at low and medium power. This result suggested that ultrasonic energy did not denature the enzymes

  14. Study on the Influence of Refreshment/Activation Cycles and Irrigants on Mechanical Cleaning Efficiency During Ultrasonic Activation of the Irrigant

    NARCIS (Netherlands)

    van der Sluis, Lucas W.M.; Vogels, Maikel P.J.M.; Verhaagen, B.; Macedo, Ricardo; Wesselink, Paul R.

    2010-01-01

    Introduction The aims of this study were to evaluate dentin debris removal from the root canal during ultrasonic activation of sodium hypochlorite (2% and 10%), carbonated water, and distilled water and to determine the influence of 3 ultrasonic refreshment/activation cycles of the irrigant by using

  15. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  16. Study of Defect Sizing in Carbon Steel Butt Welds using Conventional Ultrasonic Technique and Phased Array Ultrasonic

    International Nuclear Information System (INIS)

    Amry Amin Abas; Noorhazleena Azaman; Mohd Yusnisyam Mohd Yusoff

    2016-01-01

    Ultrasonic testing is a proven reliable method which is able to detect and measure the size of defects in butt welds with acceptable tolerance. Recent advancement of technology has introduced a computerized technique which is phased array. Phased array employs focal law that enable focusing and steering of beam at the active aperture axis. This enables one line scanning but covering the whole weld volume as compared to conventional technique which employs aster scan and multiple probes to completely cover the whole weld volume. Phased array also gives multiple data view which assist the interpreter. This paper is about the study of these two techniques and technical analysis of comparison between the two. The conventional technique is performed using GE USM GO with 4 MHz 45 degrees shear wave probe. The phased array technique uses OLYMPUS OMNISCAN MX2 with 5L64 linear array probe with 16 elements aperture and 55 degrees wedge emitting shear wave into the specimen. Sensitivity of both techniques are based on 1.5 mm Side Drilled Hole. The results are compared and analysis such as defect sizing and defect type determination are performed. (author)

  17. Assessment of Excess Sludge Ultrasonic, Mechanical and Hybrid Pretreatment in Relation to the Energy Parameters

    Directory of Open Access Journals (Sweden)

    Łukasz Skórkowski

    2018-04-01

    Full Text Available Anaerobic digestion is the most common stabilization process at large sewage treatment plants. To improve its effects, a sludge pre-conditioning process called disintegration is recommended. The aim of the presented study was to compare the direct effects of various types of mechanical disintegration, performed for the same excess sludge, in relation to the energy parameters and effectiveness of the process. Four different disintegration methods were used: mechanical disintegration in semi-technical and laboratory scale homogenizing mixers, ultrasonic disintegration (US and combined (hybrid process. The disintegration was performed for volumetric energy EV = 4.67–100 kWh m−3, the results were evaluated based on dispersion (kdCOD, kdCST, lysis (kdSCOD, acidification (kdVFA and nutrient release (kdTN, kdTP disintegration indicators. The statistical analysis of the results indicates the influence of disintegrator type (mixer/US/hybrid, scale (laboratory/semi-technical and energy input on the direct results of disintegration. Hybrid disintegration delivered better direct results than two pre-treatment processes used separately. The efficiency of the hybrid process defined as the increase of the indicator (disintegration products—∆FCOD, ∆SCOD per unit of energy was considerably higher than for a single stage disintegration process.

  18. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  19. Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2004-01-01

    Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented

  20. Analysis of the magnetic properties nanoscale barium hexaferrite (BHF) prepared by milling and ultrasonic method

    International Nuclear Information System (INIS)

    Novizal; Edie, Sasito; Manawan, Mykel T.E.

    2016-01-01

    Barium hexaferrite (BHF) is well established material which widely used respectively as permanent magnets. In this research, we report our recent investigation on magnetic properties analysis of barium hexaferrite (BHF) compounds with a ratio of Fe/Ba: 11 prepared by a mechanical alloying process and high power ultrasonic destruction to promote the soft magnetic properties. The investigation carried out by Scanning Electron Microscope (SEM) shows the grain size between 500-1500 nm, it indicates that each grain is composed of several crystallites or polycrystalline. By mean of X-ray diff raction revealed the phase composition and the mean crystallite size <70 nm. The Characterization of the magnetic properties of the effects of downsizing the particle size of ∼ 200 nm to ∼ 50 nm by the ultasonik method provide saturation value of 0.35 T, remanent 0.24 T and the coercivity is 115 kA / m. (paper)

  1. Interferometer scanning mechanisms and metrology at ABB: recent developments and future perspectives

    Science.gov (United States)

    Grandmont, Frédéric; Buijs, Henry; Mandar, Julie

    2017-11-01

    Interferometers are devices meant to create an interference pattern between photons emitted from a given target of interest. In most cases, this interference pattern must be scanned over time or space to reveal useful information about the target (ex.: radiance spectra or a star diameter). This scanning is typically achieved by moving mirrors at a precision a few orders of magnitude smaller than the wavelength under study. This sometimes leads to mechanism requirements of especially high dynamic range equivalent to 30 bits or more (ex. Sub-nanometer precision over stoke of tens of cms for spectroscopy or tens of meters for astronomical spatial interferometry). On top of this mechanical challenge, the servo control of the mirror position involves obtaining relative distance measurement between distant optical elements with similar if not better dynamic range. The feedback information for such servo-control loop is usually the optical path difference (OPD) measured with a metrology laser beam injected in the interferometer. Over the years since the establishement of the Fourier Transform Spectrometers (FTS) in the 60's as a standard spectroscopic tools, many different approaches have been used to accomplish this task. When it comes to space however, not all approaches are successful. The design challenge can be viewed as analogous to that of scene scanning modules with the exception that the sensitivity and precision are much finer. These mechanisms must move freely to allow fine corrections while remaining stiff to reject external perturbations with frequencies outside of the servo control system reach. Space also brings the additional challenges of implementing as much redundancy as possible and offering protection during launch for these sub-systems viewed as critical single point failures of the payloads they serve.

  2. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  3. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    Science.gov (United States)

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ultrasonic Linear Motor with Two Independent Vibrations

    Science.gov (United States)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  5. Ultrasonic recording and display techniques for the inspection of nuclear power plant

    International Nuclear Information System (INIS)

    Ely, R.W.; Hall, G.D.; Johnson, A.; Pascoe, P.T.

    1985-01-01

    This paper describes four systems: MDU, PURDIE, LAURA and DRUID, under development as ultrasonic recording and display techniques for the inspection of nuclear power plant. The MDU system plots either plan or sectional views of the component under test onto a bistable storage screen. PURDIE is a system based around a video cassette recorder which has been modified to record ultrasonic A-scan waveforms and probe positional information. MDU and PURDIE are portable systems, for use under difficult site conditions. They may be manufactured in quantity to satisfy the demanding inspection programmes of nuclear power stations. LAURA is a desk top replay system for the video cassette tapes produced on site by PURDIE. DRUID is a digital desk top replay/display system incorporating a high resolution colour graphics terminal and therefore offering more flexibility and improved display formats. The systems are compatible with each other and some component units are directly interchangeable between the various systems

  6. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  7. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  8. Advanced ultrasonic inspections

    International Nuclear Information System (INIS)

    Ghia, S.

    1990-08-01

    Acoustic Emission (AE) continuous monitoring and periodical inspections by advanced ultrasonic have been applied to evaluate defect evolution within a PWR reduced scale (1:5) pressure vessel subjected to cyclic mechanical fatigue test. This experimental activity has been carried out in the frame of the Primary Circuit Component Life Prediction programme. In the time period covered by this report actions were performed as following: (1) Ultrasonic examination by multifrequency acoustic holography to evaluate defect evolution subsequently repair and heat treatment of the R2 vessel carried out in March 1988. For the purpose, measurements were performed both at 0 and 200 bar of internal pressure. As uniformity of the procedures adopted, for calibration and testing, made the results comparable with the previous ones no evidence for significant growing of the examined defects has been found. (2) Acoustic emission monitoring has then been carried out during fatigue test from 416000 to 565000 fatigue cycles. Analysis of a large amount of data has been performed paying particular attention to the distinction between friction phenomena and crack growth in order to obtain a correct diagnosis of flaw evolution. The signal duration distribution and the correlation of AE appearance time versus load cycle phase were considered to characterise stick-slip processes. A general intensification of AE activity has been recorded during this last period of monitoring and previous known AE sources were confirmed together with the appearance of new AE sources some of them correlable with real defects

  9. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    Britt, R.H.; Pounds, D.W.; Stuart, J.S.; Lyons, B.E.; Saxer, E.L.

    1984-01-01

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  10. Wireless ultrasonic wavefield imaging via laser for hidden damage detection inside a steel box girder bridge

    International Nuclear Information System (INIS)

    An, Yun-Kyu; Song, Homin; Sohn, Hoon

    2014-01-01

    This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge. (paper)

  11. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F. J., E-mail: wangfujun@tju.edu.cn; Liang, C. M.; Tian, Y. L.; Zhao, X. Y.; Zhang, D. W. [Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhang, H. J. [Tianjin Key Laboratory of Modern Mechatronics Equipment Technology, School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2015-12-15

    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  12. Ultrasonic Histotripsy for Tissue Therapy

    Science.gov (United States)

    Pahk, K. J.; Dhar, D. K.; Malago, M.; Saffari, N.

    2015-01-01

    Hepatocyte transplantation has been considered and investigated as a promising and alternative method to liver transplantation for treating liver-based metabolic disorder in newborns over the past two decades. Although some clinical trials have been conducted and shown clinical benefits and outcomes, it is difficult to deliver and achieve a desired level of integration and transplantation of hepatocytes in the liver parenchyma. To overcome this problem, this work introduces an alternative method to a portal-infused-hepatocyte cell transplantation. To improve the level of engraftment of transplantable hepatocytes, these are injected directly into cavities generated by ultrasonic histotripsy. Histotripsy is an extracorporeal noninvasive technique which has been recently developed using high intensity focused ultrasound (HIFU) for inducing tissue fractionation with no coagulative necrosis. The exact mechanisms for the tissue fractionation are not well understood yet; but the possible mechanisms are thought to be a combination of nonlinear wave propagation effect, explosive bubble growth and ultrasonic atomization. The main objectives of this work are to demonstrate the feasibility of this new cell therapy and evaluate and distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion. In the present work, numerical studies on the bubble dynamics (the Gilmore-Akulichev bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov equation) and both ex- and in vivo liver experiments are conducted with histological analysis (haematoxylin and eosin stain). The numerical and the experimental results suggest that (a) the acoustic emissions emitted during the thermal ablation and the histotripsy exposure can be distinguished both numerically and experimentally and (b) the proposed cell therapy may potentially form an effective and safe clinical treatment for replacing and correcting disordered hepatocytes, although the

  13. Ultrasonic Histotripsy for Tissue Therapy

    International Nuclear Information System (INIS)

    Pahk, K J; Saffari, N; Dhar, D K; Malago, M

    2015-01-01

    Hepatocyte transplantation has been considered and investigated as a promising and alternative method to liver transplantation for treating liver-based metabolic disorder in newborns over the past two decades. Although some clinical trials have been conducted and shown clinical benefits and outcomes, it is difficult to deliver and achieve a desired level of integration and transplantation of hepatocytes in the liver parenchyma. To overcome this problem, this work introduces an alternative method to a portal-infused-hepatocyte cell transplantation. To improve the level of engraftment of transplantable hepatocytes, these are injected directly into cavities generated by ultrasonic histotripsy. Histotripsy is an extracorporeal noninvasive technique which has been recently developed using high intensity focused ultrasound (HIFU) for inducing tissue fractionation with no coagulative necrosis. The exact mechanisms for the tissue fractionation are not well understood yet; but the possible mechanisms are thought to be a combination of nonlinear wave propagation effect, explosive bubble growth and ultrasonic atomization. The main objectives of this work are to demonstrate the feasibility of this new cell therapy and evaluate and distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion. In the present work, numerical studies on the bubble dynamics (the Gilmore-Akulichev bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov equation) and both ex- and in vivo liver experiments are conducted with histological analysis (haematoxylin and eosin stain). The numerical and the experimental results suggest that (a) the acoustic emissions emitted during the thermal ablation and the histotripsy exposure can be distinguished both numerically and experimentally and (b) the proposed cell therapy may potentially form an effective and safe clinical treatment for replacing and correcting disordered hepatocytes, although the

  14. The effects of ultrasonic solidification on aluminum

    OpenAIRE

    Đorđević Slavko 1

    2003-01-01

    The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  15. The effects of ultrasonic solidification on aluminum

    Directory of Open Access Journals (Sweden)

    Đorđević Slavko 1

    2003-01-01

    Full Text Available The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  16. A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Hsin-Min Lee

    2017-01-01

    Full Text Available Focusing on the feature of porosity in bamboo charcoal, this study applies the ultrasonic-assisted vibration method to perform surface polishing of the silicon wafer workpiece. The self-developed bamboo charcoal polishing spindle and ultrasonic- assisted vibration mechanism are attached to a single lapping machine. In the machining process, ultrasonic vibration enables the diamond slurry to smoothly pass through the microscopic holes of bamboo charcoal; the end of the bamboo charcoalis able to continue machining on the surface of the workpiece through the grasping force which exists in the microscopic holes. Under the polishing and machining parameters of ultrasonic-assisted vibration, with a diamond slurry concentration of 0.3%, the experimental results show a polishing time of 20 min, a loading of 25 N on the workpiece surface, a spindle speed of 1200 rpm, a vibration frequency of 30 kHz and the original surface roughness value of Ra 0.252 μm equals that of a mirror-like surface at Ra 0.017 μm. These research results prove that by using bamboo charcoal and ultrasonic-assisted vibration for polishing, a very good improvement can be achieved on the workpiece surface.

  17. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  18. Three-dimensional analyses of ultrasonic scaler oscillations.

    Science.gov (United States)

    Lea, Simon C; Felver, Bernhard; Landini, Gabriel; Walmsley, A Damien

    2009-01-01

    It is stated that the oscillation patterns of dental ultrasonic scalers are dependent upon whether the instrument is of a magnetostrictive or piezoelectric design. These patterns are then linked to differences in root surface debridement in vitro. Piezoelectric (A, P) and magnetostrictive (Slimline, TFI-3) ultrasonic scalers (three of each) were evaluated, loaded (100 g/200 g) and unloaded with a 3D laser vibrometer. Loads were applied to the probe tips via teeth mounted in a load-measuring device. Elliptical motion was demonstrated for all probes under loaded and unloaded conditions. Loading flattened the elliptical motion along the length of the probe. Unloaded, Slimline tip 1 was significantly different to tips 2 and 3 (p0.207). All TFI-3 tips were different to each other (p0.867). Generator power increased all Slimline and P tip vibrations (pultrasound production mechanism and are dependent upon probe shape and generator power. Loaded probes oscillated with an elliptical pattern.

  19. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  20. The effectiveness of chemical denture cleansers and ultrasonic device in biofilm removal from complete dentures

    Directory of Open Access Journals (Sweden)

    Patrícia Costa Cruz

    2011-12-01

    Full Text Available Adequate denture hygiene can prevent and treat infection in edentulous patients. They are usually elderly and have difficulty for brushing their teeth. OBJECTIVE: This study evaluated the efficacy of complete denture biofilm removal using chemical (alkaline peroxide-effervescent tablets, mechanical (ultrasonic and combined (association of the effervescent and ultrasonic methods. MATERIAL AND METHODS: Eighty complete denture wearers participated in the experiment for 21 days. They were distributed into 4 groups (n=20: (1 Brushing with water (Control; (2 Effervescent tablets (Corega Tabs; (3 Ultrasonic device (Ultrasonic Cleaner, model 2840 D; (4 Association of effervescent tablets and ultrasonic device. All groups brushed their dentures with a specific brush (Bitufo and water, 3 times a day, before applying their treatments. Denture biofilm was collected at baseline and after 21 days. To quantify the biofilm, the internal surfaces of the maxillary complete dentures were stained and photographed at 45º. The photographs were processed and the areas (total internal surface stained with biofilm quantified (Image Tool 2.02. The percentage of the biofilm was calculated by the ratio between the biofilm area multiplied by 100 and the total area of the internal surface of the maxillary complete denture. RESULTS: The Kruskal-Wallis test was used for comparison among groups followed by the Dunn multiple-comparison test. All tests were performed respecting a significance level of 0.05. Significant difference was found among the treatments (KW=21.18; P<0.001, the mean ranks for the treatments and results for Dunn multiple comparison test were: Control (60.9; Chemical (37.2; Mechanical (35.2 and Combined (29.1. CONCLUSION: The experimental methods were equally effective regarding the ability to remove biofilm and were superior to the control method (brushing with water. Immersion in alkaline peroxide and ultrasonic vibration can be used as auxiliary agents

  1. Applications of Flexible Ultrasonic Transducer Array for Defect Detection at 150 °C

    Directory of Open Access Journals (Sweden)

    Jiunn-Woei Liaw

    2013-01-01

    Full Text Available In this study, the feasibility of using a one dimensional 16-element flexible ultrasonic transducer (FUT array for nondestructive testing at 150 °C is demonstrated. The FUT arrays were made by a sol-gel sprayed piezoelectric film technology; a PZT composite film was sprayed on a titanium foil of 75 µm thickness. Since the FUT array is flexible, it was attached to a steel pipe with an outer diameter of 89 mm and a wall thickness of 6.5 mm at 150 °C. Using the ultrasonic pulse-echo mode, pipe thickness measurements could be performed. Moreover, using the ultrasonic pulse-echo and pitch-catch modes of each element of FUT array, the defect detection was performed on an Al alloy block of 30 mm thickness with a side-drilled hole (SDH of f3 mm at 150 °C. In addition, a post-processing algorithm based on the total focusing method was used to process the full matrix of these A-scan signals of each single transmitter and multi-receivers, and then the phase-array image was obtained to indicate this defect- SDH. Both results show the capability of FUT array being operated at 150 °C for the corrosion and defect detections.

  2. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    Directory of Open Access Journals (Sweden)

    Francisco J. Cañete

    2016-02-01

    Full Text Available Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression.

  3. A new ultrasonic signal amplification method for detection of bacteria

    Science.gov (United States)

    Kant Shukla, Shiva; Resa López, Pablo; Sierra Sánchez, Carlos; Urréjola, José; Segura, Luis Elvira

    2012-10-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 105 cells ml-1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity.

  4. A new ultrasonic signal amplification method for detection of bacteria

    International Nuclear Information System (INIS)

    Shukla, Shiva Kant; López, Pablo Resa; Sánchez, Carlos Sierra; Segura, Luis Elvira; Urréjola, José

    2012-01-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 10 5 cells ml −1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity. (paper)

  5. Ultrasonic examination of defects close to the outer surface

    International Nuclear Information System (INIS)

    Benoist, P.; Serre, M.; Champigny, F.

    1986-11-01

    During the examination of a pressurized water reactor vessel with an in Service Inspection Machine (MIS), various welds are scanned with immersion ultrasonic focused transducers from the inside of the vessel. Defects close to the outer surface are sometimes detected, and sizing with the successive 6 dB drop method leads to oversize some indications; this is caused by various reflections on the outer wall; the corner echo is of particular importance here. CEA and EDF have started an experimental program in order to study the response of volumetric and planar defects located near the outer surface. We present here the first results obtained with artificial defects. 2 refs

  6. Effect of ultrasonic intensity and frequency on oil/heavy-oil recovery from different wettability rocks

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, K.; Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    This study identified the mechanisms that are responsible for additional oil recovery that is often observed following an earthquake. It focused on the theory that harmonics of low frequency waves create high frequency waves as they penetrate into rock formations. A series of experiments were conducted on oil-wet rocks with high oil viscosities. The objective was to better understand how ultrasonic energy affects oil recovery at core and pore scale. Cylindrical sandstone cores were placed in imbibition cells to examine how the presence of initial water saturation can affect recovery, and how the recovery changes for different oil viscosities. An increase in oil recovery was observed with ultrasonic energy in all cases. The additional recovery with ultrasonic energy lessened as the oil viscosity increased. Ultrasonic intensity and frequency were shown to be critical to the performance, which is important since ultrasonic waves have limited penetration into porous medium. This is a key disadvantage for commercializing this promising process for well stimulation. Therefore, the authors designed a set-up to measure the ultrasonic energy penetration capacity in different media, notably air, water and slurry. The set-up could identify which types of reservoirs are most suitable for ultrasonic application. Imbibition experiments revealed that ultrasonic radiation increases recovery, and is much more significant in oil wet cases, where initial water saturation facilitate oil recovery. Higher frequency showed a higher rate of recovery compared to lower frequency, but the ultimate recovery was not changed substantially. 46 refs., 1 tab., 16 figs.

  7. Advanced defect detection algorithm using clustering in ultrasonic NDE

    Science.gov (United States)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  8. Ultrasonic friction power during thermosonic Au and Cu ball bonding

    International Nuclear Information System (INIS)

    Shah, A; Mayer, M; Zhou, Y; Qin, I; Huynh, C; Meyer, M

    2010-01-01

    The ultrasonic friction power during thermosonic ball bonding with Au and Cu wires, both 25 μm in diameter, is derived with an improved method from experimental measurements during the bonding process. Experimental data include the current delivered to the ultrasonic transducer and the tangential force measured using piezoresistive microsensors integrated close to the Al bonding pad. The improvement results from a new, more accurate method to derive the mechanical compliance of the ultrasonic system. The method employs a bond process modification in which the ultrasonic current is ramped up sequentially in three steps. In the first two steps, the ultrasonic current is set to levels that are too low to cause sliding. The bonding takes place during the third step, when the current is ramped up to the optimum value required for making good quality bonds. The ultrasonic compliance values are derived from the first two steps and are 8.2 ± 0.5 μm N -1 and 7.7 ± 0.5 μm N -1 for the Au and Cu processes, respectively. These values are determined within an average error estimate of ±6%, substantially lower than the ±10% estimated with a previously reported method. The ultrasonic compliance in the case of Au is 6% higher due to the lower elastic modulus of Au compared with that of Cu. Typical maximum values of relative sliding amplitude of ultrasonic friction at the interface are 655 nm and 766 nm for the Au and Cu processes. These values are 81% of the free-air vibration amplitude of the bonding capillary tip for the respective ultrasonic current settings. Due to bond growth, which damps relative motion between the ball and the pad, the final relative amplitude at the bond interface is reduced to 4% of the equivalent free-air amplitude. Even though the maximum value of relative amplitude is 17% higher in the Cu process compared with the Au process, the average total interfacial sliding is 519 μm in the Cu process, which is 31% lower than that in the Au process (759

  9. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, James [Johns Hopkins Univ., Baltimore, MD (United States)

    2017-12-06

    Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been developed to ensure repeatability of these types of measurements. However, the use of couplants and the pressures used to effectively couple transducers to samples can bias measurements and produce results that are not wholly related to the properties of the graphite itself. In this work, we have investigated the use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These methods use laser-based transmitters and receivers to gather data and do not require use of ultrasonic couplants or mechanical contact with the sample. As a result, information directly related to the elastic responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and shear modulus in a range of nuclear graphites including those that are being considered for use in future nuclear reactors. These results have been analyzed to assess the contributions of porosity and microcracking to the elastic responses of these graphites. Laser-based methods have also been used to assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific changes in porosity. These data were used to develop new models for the elastic responses of nuclear graphites and these models have been used to infer specific changes in graphite microstructure that occur during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform shear-wave birefringence measurements and have shown

  10. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor

    Science.gov (United States)

    Deng, Shi-ting; Yu, Hong; Liu, Di; Bi, Yong-guang

    2017-10-01

    To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.

  11. Three Different Approaches for Localization in a Corridor Environment by Means of an Ultrasonic Wide Beam

    Directory of Open Access Journals (Sweden)

    Luigi Spedicato

    2013-03-01

    Full Text Available In this paper the authors present three methods to detect the position and orientation of an observer, such as a mobile robot, with respect to a corridor wall. They use an inexpensive sensor to spread a wide ultrasonic beam. The sensor is rotated by means of an accurate servomotor in order to propagate ultrasonic waves towards a regular wall. Whatever the wall material may be the scanning surface appears to be an acoustic reflector as a consequence of low air impedance. The realized device is able to give distance information in each motor position and thus permits the derivation of a set of points as a ray trace-scanner. The dataset contains points lying on a circular arc and relating to strong returns. Three different approaches are herein considered to estimate both the slope of the wall and its minimum distance from the sensor. Slope and perpendicular distance are the parameters of a target plane, which may be calculated in each observer's position to predict its new location. Experimental tests and simulations are shown and discussed by scanning from different stationary locations. They allow the appreciation of the effectiveness of the proposed approaches.

  12. A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation.

    Science.gov (United States)

    Byeon, Jeong Hoon; Kim, Young-Woo

    2012-01-01

    A polyol synthesis of silver nanoparticles in the presence of ultrasonic irradiation was compared with other configurations (at ambient temperature, 120° C, and 120 °C with injected solutions) in the absence of ultrasonic irradiation in order to obtain systematic results for morphology and size distribution. For applying ultrasonic irradiation, rather fine and uniform spherical silver particles (21±3.7 nm) were obtained in a simple (at ambient temperature without mechanical stirring) and fast (within 4 min, 3.61×10(-3) mol min(-1)) manner than other cases (at ambient temperature (for 8 h, 0.03×10(-3) mol min(-1)): 86±16.8 nm, 120 °C (for 12 min, 1.16×10(-3) mol min(-1)): 64±14.9 nm, and 120 °C with injected solutions (during 12 min): 35±6.8 nm; all other cases contained anisotropic shaped particles). Even though the temperature of polyol reaction reached only at 80 °C (silver particle and surrounding components) by ultrasonic irradiation might induce a better formation kinetics and morphological uniformity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Method and apparatus to characterize ultrasonically reflective contrast agents

    Science.gov (United States)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  14. Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment

    International Nuclear Information System (INIS)

    Lee, Jeong Ki; Park, Moon Ho; Park, Ki Sung; Lee, Jae Ho; Lim, Sung Jin

    2004-01-01

    Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants

  15. Influence of gas law on ultrasonic behaviour of porous media under pressure.

    Science.gov (United States)

    Griffiths, S; Ayrault, C

    2010-06-01

    This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.

  16. Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

    International Nuclear Information System (INIS)

    Haddadi, Farid; Tsivoulas, Dimitrios

    2016-01-01

    High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in a thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.

  17. Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Farid, E-mail: farid.haddadi@gmail.com [Clemson University–International Center for Automotive Research (CU-ICAR), #347, 4 Research Drive, Greenville, SC 29607 (United States); School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Tsivoulas, Dimitrios, E-mail: dim.tsivoulas@gmail.com [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Clean Energy/Nuclear Services, Amec Foster Wheeler, 601 Faraday Street, Birchwood Park, Warrington WA3 6GN (United Kingdom)

    2016-08-15

    High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in a thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.

  18. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    Science.gov (United States)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  19. High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring.

    Science.gov (United States)

    Tsai, Wei-Yu; Huang, Guan-Rong; Wang, Kuang-Kuo; Chen, Chin-Fu; Huang, J C

    2017-04-26

    Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.

  20. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.