WorldWideScience

Sample records for ultrasonic nondestructive measurement

  1. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  2. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  3. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  4. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    International Nuclear Information System (INIS)

    Boubenia, R; Rosenkrantz, E; P, P; Ferrandis, J-Y; Despetis, F

    2016-01-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten). (paper)

  5. Measurement of void swelling in thick non-uniformly irradiated 304 stainless steel blocks using nondestructive ultrasonic techniques

    International Nuclear Information System (INIS)

    Garner, F.A.; Okita, T.; Isobe, Y.; Etoh, J.; Sagisaka, M.; Matsunaga, T.; Freyer, P.D.; Huang, Y.; Wiezorek, J.M.K.; Porter, D.L.

    2015-01-01

    Void swelling is of potential importance in PWR austenitic internals, especially in components that will see higher doses during plant lives beyond 40 years. Proactive surveillance of void swelling is required to identify its emergence before swelling reaches levels that cause high levels of embrittlement and distortion. Non-destructive measurements of ultrasonic velocity can measure swelling at fractions of a percent. To demonstrate the feasibility of this technique for PWR application we have investigated five blocks of 304 stainless steel that were irradiated in the EBR-II fast reactor. These blocks were of hexagonal cross-section, with thickness of about 50 mm and lengths of about 218-245 mm. They were subjected to significant axial and radial gradients in gamma heating, temperature and dpa rate, producing complex internal distributions of swelling, reaching about 3.5% maximum at an off-center mid-core position. Swelling decreases both the density and the elastic moduli, thereby impacting the ultrasonic velocity. Concurrently, carbide precipitates form, producing increases in density and decreases in elastic moduli. Using blocks from both low and high dpa levels it was possible to separate the ultrasonic contributions of voids and carbides. Time-of-flight ultrasonic measurements were used to non-destructively measure the internal distribution of void swelling. These distributions were confirmed using non-destructive profilometry followed by destructive cutting to provide density change and electron microscopy data. It was demonstrated that the four measurement types produce remarkably consistent results. Therefore ultrasonic measurements offer great promise for in-situ surveillance of voids in PWR core internals. (authors)

  6. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  7. Experimental POD measurement using ultrasonic phased arrays for incorporating nondestructive testes in probabilistic failure analyses

    International Nuclear Information System (INIS)

    Kurz, Jochen H.; Dobmann, Gerd; Juengert, Anne; Dugan, Sandra; Roos, Eberhard

    2011-01-01

    In nuclear facilities, nondestructive tests are carried out during construction and during inspections. The type and extent of the tests are specified in the KTA rules. All tests must be qualified. In the past, the qualifications were made by extensive performance demonstrations of the test teams and equipment, which were judged by experts. This provided primarily pragmatic information on fault detection performance. In the USA, qualification of EPRI test teams also includes testing of test pieces with hidden (unknown) defects, of which a certain percentage must be detected. There is still a lack of information on the probability of detection (POD), in the form of POD curves, of specific defects in given test situations, using specifically selected testing techniques. Quantification of POD and the integration of relevant data in the probabilistic evaluation chain is one of the key goals of a research project whose first results are presented here. The concept of the project and first results of ultrasonic tests are presented. Defect distributions in the test pieces, experiment planning, and test specifications are gone into more closely. One of the most important goals is the specification of the residual uncertainty of components failure on the basis of the investigations. An outlook is presented for this.

  8. Nondestructive evaluation ultrasonic methods for construction materials

    International Nuclear Information System (INIS)

    Chilibon, I.; Zisu, T.; Raetchi, V.

    2002-01-01

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  9. NDE (Nondestructive examination) by ultrasonic, photo-elastic, strain measuring and FEM (Finite Element Method)

    International Nuclear Information System (INIS)

    Gu Fangyu; Zeng Xiao

    1990-01-01

    It is considered impossible to inspect flaw by using ordinary mechanical measuring methods. In this paper, it is found that the stree and strain distortions of pressure vessel with 2D linear shape crack in the deep location appear the 'cat effect' on the surface of stracture, and that the location and size of the crack can be determined with strain measuring and FEM according to 'cat effect' of strain distortion

  10. Building Of Training Program Of Non-Destructive Testing For Concrete Structures (Part 1: Radiographic testing; Ultrasonic pulse velocity measurement; Nuclear moisture-density gauge)

    International Nuclear Information System (INIS)

    Nguyen Le Son; Phan Chanh Vu; Pham The Hung; Vu Huy Thuc

    2007-01-01

    Non-destructive testing methods (NDT) have been identified as a strong candidate for remote sensing of concrete structures over recent years. This has accelerated the powerful development of the NDT techniques in Vietnam. Hence, there is an urgent need to promote the awareness of NDT methods which could give an improved estimate of the condition concrete. Building of training program of non-destructive testing for concrete structures is a necessary duty, in aiming to build a unified training program, possibly satisfying the requirements on training as well as researching. Under the framework of the basic VAEC project (CS/07/02-03), a training program for the first 03 NDT methods: 1. Radiographic testing; 2. Ultrasonic pulse velocity measurement; 3. Nuclear moisture- density gauge was prepared. The main products of this project include: 1. Set out 03 training notes for 03 methods; 2. Set out the practical exercises to train for 03 methods; 3. Editing a set of examination questions in aiming to familiarize with various questions in 03 trained methods; 4. Fabricating practical test specimens to demonstrate for 03 techniques. (author)

  11. Ultrasonic nondestructive evaluation systems industrial application issues

    CERN Document Server

    Callegari, Sergio; Montisci, Augusto; Ricci, Marco; Versaci, Mario

    2015-01-01

    This book covers the practical implementation of ultrasonic NDT techniques in an industrial environment, discussing several issues that may emerge and proposing strategies for addressing them successfully.  It aims to bridge advanced academic research results and their application to industrial procedures. The topics covered in the text range from the basic operation of an ultrasonic NDT system to the simulation of the measurement operations; from the choice and generation of the signals energizing the system to the different ways of exploiting the probes and their output signals; and from quality assessment evaluation to the use of soft computing techniques for classification. Throughout the text, an effort is made to embrace a system view where the physical and technological aspects of sensing are addressed together with higher abstraction levels, such as signal and information processing. Consequently, the book aims at guiding the reader through the various tasks requested for developing a complete ultras...

  12. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.

  13. Non-destructive evaluation of concrete using ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Lawson, I.

    2008-06-01

    Ultrasonic pulse velocity is one of the most popular non-destructive techniques used in the assessment of concrete properties. This thesis investigates the relationship between using ultrasonic pulse velocity (UPV) and the conventional compressive strength tests to determine concrete uniformity. The specimens used in the studies were made of concrete with a paste content of 18% and the constituents of the specimens varied in different water-cement ratios (w/c). The UPV measurement and compressive strength tests were carried out at the concrete age of 2, 7, 15 and 28 days. The UPV and the compressive strength of concrete increase with age, but the growth rate varies with mixture proportion. A relationship curve is drawn between UPV and compressive strength for concrete having different w/c from 0.35 to 0.7. Tests were also performed using Ultrasonic Pulse Velocity Method (UPVM) in detecting discontinuity and determining its depth during the early age of concrete. The test results indicate that the UPVM can be used to assess the in-situ properties of concrete or for quality control on site. The accuracy of the UPVM in detecting discontinuities ranges from 55.75 to 98.70% for ages 3 to 28 (full strength) respectively. (au)

  14. Mathematical modelling of ultrasonic non-destructive evaluation

    Directory of Open Access Journals (Sweden)

    Larissa Ju Fradkin

    2001-01-01

    Full Text Available High-frequency asymptotics have been used at our Centre to develop codes for modelling pulse propagation and scattering in the near-field of the ultrasonic transducers used in NDE (Non-Destructive Evaluation, particularly of walls of nuclear reactors. The codes are hundreds of times faster than the direct numerical codes but no less accurate.

  15. Ultrasonic and advanced methods for nondestructive testing and material characterization

    National Research Council Canada - National Science Library

    Chen, C. H

    2007-01-01

    ... and physics among others. There are at least two dozen NDT methods in use. In fact any sensor that can examine the inside of material nondestructively is useful for NDT. However the ultrasonic methods are still most popular because of its capability, flexibility, and relative cost effectiveness. For this reason this book places a heavy emphasis...

  16. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  17. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  18. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  19. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  20. Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality

    International Nuclear Information System (INIS)

    Park, Ik Gun

    1994-01-01

    This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to 10μm extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques

  1. A Monte Carlo approach applied to ultrasonic non-destructive testing

    Science.gov (United States)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  2. A study on the nondestructive evaluation of carbon/carbon disk using ultrasonics

    International Nuclear Information System (INIS)

    Im, Kwang Hee; Yang, In Young; Jeong, Hyun Jo

    1998-01-01

    It is useful to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity for carbon/carbon (C/C) composites because the manufacturing of C/C brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to attributable to the manufacturing process. In a carbon/carbon brake disk manufactured by a combination of pitch impregnation and CVI(Vapor infiltration method), the spatial variation of ultrasonic velocity was measured and found to be consistent with the nonuniform densification behavior in the manufacturing process. Low frequency(5 MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. These results were compared with those obtained by dry-coupling ultrasonics. A good correlation was found between ultrasonic velocity and material density on a set of small blocks cut out of the disk. Pulse-echo C-scans at higher frequency (25 MHz) were used to image near-sulfate material property anomalies associated with certain steps in the manufacturing process, such as the placement of spacers between disks during the final CVI.

  3. Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Sik [Safetech Co. Ltd., Kimhae (Korea, Republic of); Oh, Yong Jun [Hanbat National Univ., Daejon (Korea, Republic of); Nam, Soo Woo [KISTI ReSEAT Program, Seoul (Korea, Republic of)

    2011-12-15

    It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creepfatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

  4. Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method

    International Nuclear Information System (INIS)

    Park, Seok Kyun; Baek, Un Chan; Lee, Han Bum; Kim, Myoung Mo

    2000-01-01

    The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of a various column in SRC structure in this study. The advantages and limitations of this method for non-destructive inspection in top down construction joints are investigated. As a result, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints using ultrasonic method

  5. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    Science.gov (United States)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  6. Ultrasonic measurements and technologies

    CERN Document Server

    Kočiš, Štefan

    1996-01-01

    An impulse for writing this book has originated from the effort to sum­ marize and publicise the acquired results of a research team at the De­ partment of Automation of the Faculty of Electrical Engineering and In­ formatics, Slovak Technical University in Bratislava. The research team has been involved for a long time with control problems for machine production mechanisms and, in recent (approximately 15) years, its effort was aimed mostly at the control of electrical servosystems of robots. Within this scope, the members of the authors' staff solved the State Re­ search Task Ultrasonic sensing of the position of a robot hand, which was coordinated by the Institute of Technical Cybernetics of the Slovak Academy of Sciences in Bratislava. The problem was solved in a complex way, i.e. from a conceptual de­ sign of the measurement, through the measurement and evaluation sys­ tem, up to connection to the control system of a robot. Compensation of the atmospheric influence on the precision of measurement,...

  7. Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack

    International Nuclear Information System (INIS)

    Bostroem, A.

    2001-12-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the

  8. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    Science.gov (United States)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the

  9. Ultrasonic extensometer measures bolt preload

    Science.gov (United States)

    Daniels, C. M., Jr.

    1978-01-01

    Extensometer using ultrasonic pulse reflections to measure elongations in tightened belts and studs is much more accurate than conventional torque wrenches in application of specified preload to bolts and other threaded fasteners.

  10. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    Science.gov (United States)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  11. Modelling of ultrasonic nondestructive testing of cracks in claddings

    International Nuclear Information System (INIS)

    Bostroem, Anders; Zagbai, Theo

    2006-05-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The present project has been concerned with the modelling of defects in claddings. A cladding is a layer of material that is put on for corrosion protection, in the nuclear power industry this layer is often an austenitic steel that is welded onto the surface. The cladding is usually anisotropic and to some degree it is most likely also inhomogeneous, particularly in that the direction of the anisotropy is varying. This degree of inhomogeneity is unknown but probably not very pronounced so for modelling purposes it may be a valid assumption to take the cladding to be homogeneous. However, another important complicating factor with claddings is that the interface between the cladding and the base material is often corrugated. This corrugation can have large effects on the transmission of ultrasound through the interface and can thus greatly affect the detectability of defects in the cladding. In the present project the only type of defect that is considered is a planar crack that is situated inside the cladding. The investigations are, furthermore, limited to two dimensions, and the crack is then only a straight line. The crack can be arbitrarily oriented and situated, but it must not intersect the interface to the base material. The crack can be surface-breaking, and this is often the case of most practical interest, but it should then be

  12. Modelling of ultrasonic nondestructive testing of cracks in claddings

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Anders; Zagbai, Theo [Calmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Mechanics

    2006-05-15

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The present project has been concerned with the modelling of defects in claddings. A cladding is a layer of material that is put on for corrosion protection, in the nuclear power industry this layer is often an austenitic steel that is welded onto the surface. The cladding is usually anisotropic and to some degree it is most likely also inhomogeneous, particularly in that the direction of the anisotropy is varying. This degree of inhomogeneity is unknown but probably not very pronounced so for modelling purposes it may be a valid assumption to take the cladding to be homogeneous. However, another important complicating factor with claddings is that the interface between the cladding and the base material is often corrugated. This corrugation can have large effects on the transmission of ultrasound through the interface and can thus greatly affect the detectability of defects in the cladding. In the present project the only type of defect that is considered is a planar crack that is situated inside the cladding. The investigations are, furthermore, limited to two dimensions, and the crack is then only a straight line. The crack can be arbitrarily oriented and situated, but it must not intersect the interface to the base material. The crack can be surface-breaking, and this is often the case of most practical interest, but it should then be

  13. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    Science.gov (United States)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  14. Nondestructive assay measurements applied to reprocessing plants

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lee, R. Stephen; Ottmar, Herbert; Guardini, Sergio

    1999-01-01

    Nondestructive assay for reprocessing plants relies on passive gamma-ray spectrometry for plutonium isotopic and plutonium mass values of medium-to-low-density samples and holdup deposits; on active x-ray fluorescence and densitometry techniques for uranium and plutonium concentrations in solutions; on calorimetry for plutonium mass in product; and passive neutron techniques for plutonium mass in spent fuel, product, and waste. This paper will describe the radiation-based nondestructive assay techniques used to perform materials accounting measurements. The paper will also discuss nondestructive assay measurements used in inspections of reprocessing plants [ru

  15. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    International Nuclear Information System (INIS)

    Silva, C E R; Alvarenga, A V; Costa-Felix, R P B

    2011-01-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Oe 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  16. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  17. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    Science.gov (United States)

    Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2011-02-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  18. Nondestructive ultrasonic characterization of armor grade silicon carbide

    Science.gov (United States)

    Portune, Andrew Richard

    Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy

  19. Basic Principles and Utilization Possibilities’ of Ultrasonic Phased Array in Material Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Dagmar Faktorova

    2004-01-01

    Full Text Available The paper deals with the basic principles of operation and with the utilization possibilities of phased array (PA in materials nondestructive testing (NDT. The first part deals with description of PA arrangement modes, which enable to generate, focus and steer the ultrasonic beem. The second part deals with the description of electromagnetic acoustic transducer PA operation. The last part deals with the description of the utilization of PA in nondestructive testing of conductive materials and the advantages of PA utilization in inhomogeneous materials NDT.

  20. Laser ultrasonic receivers based on photorefractive materials in non-destructive testing

    International Nuclear Information System (INIS)

    Zamiri Hosseinzadeh, S.

    2014-01-01

    The field of laser ultrasonics is one of the most interesting topics in which laser light is used for the generation and the detection of ultrasound waves in materials. This contactless method is extremely useful for materials inspection being nondestructive and contactless, especially for hazardous environments. In this method a pulsed laser with a short pulse length of e.g. nano- or even picoseconds is focused on the surface of a specimen and then ultrasonic waves, nanometer vibrations, such as surface and bulk waves are generated and propagate in all directions on to the material. For contactless detection of ultrasonic waves several interferometers such as confocal Fabry-Perot, Michelson, and long path difference interferometers have been applied. Each of them has its individual advantages and disadvantages concerning, e.g., frequency responses and sensitivity. However, most of these interferometers work best on mirror-like surfaces and exhibit reduced sensitivity on rough surfaces. Also these kinds of interferometer are sensible to external noise as air fluctuations, sample vibrations or thermal deformations, thus requiring relatively complex stabilization techniques. This hinders their applicability in industrial applications with harsh environmental conditions. As an alternative to the before mentioned techniques interferometers based on photorefractive materials (PR) have been established. A typical two wave mixing interferometer (TWMI) configuration enables broadband ultrasonic measurements on rough surfaces. These types of interferometers have a good sensitivity up to 3e-7 nm(W/Hz) 1/2 spatially for samples with a high rough surface unlike the Michelson interferometer. By using ferroelectric photorefractive crystals such as LiNbO:Fe+2, sensitivity even is enhanced to 4e-8 nm(W/Hz) 1/2 but response time in these crystals is slower. In this work, contactless interferometer set ups based on photorefractive materials such as BSO (Bismuth Silicon Oxide: Bi 12

  1. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    Science.gov (United States)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  2. Nondestructive evaluation of a cermet coating using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Roge, B.; Fahr, A.; Giguere, J.S.R.; McRae, K.I.

    2002-01-01

    This paper describes a series of experiments conducted to characterize cermet coatings using conventional ultrasonic and eddy current techniques as well as an ultrasonic leaky surface wave method. The results demonstrate the ability of these techniques to detect the presence of artificial defects on the surface or beneath the surface of the coating. In addition, ultrasonic tests in particular ultrasonic leaky surface waves demonstrate the ability to detect the presence of manufacturing flaws. Ultrasonic time-of-flight and eddy current quadrature measurements also show sensitivity to variations in coating thickness

  3. Uncertainty management in knowledge based systems for nondestructive testing-an example from ultrasonic testing

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    The use of fuzzy logic, as a framework for uncertainty management, in a knowledge-based system (KBS) for ultrasonic testing of austenitic stainless steels is described. Parameters that may contain uncertain values are identified. Methodologies to handle uncertainty in these parameters using fuzzy logic are detailed. The overall improvement in the performance of the knowledge-based system after incorporating fuzzy logic is discussed. The methodology developed being universal, its extension to other KBS for nondestructive testing and evaluation is highlighted. (author)

  4. Ultrasonic phased arrays for nondestructive inspection of forgings

    International Nuclear Information System (INIS)

    Wuestenberg, H.; Rotter, B.; Klanke, H.P.; Harbecke, D.

    1993-01-01

    Ultrasonic examinations on large forgings like rotor shafts for turbines or components for nuclear reactors are carried out at various manufacturing stages and during in-service inspections. During the manufacture, most of the inspections are carried out manually. Special in-service conditions, such as those at nuclear pressure vessels, have resulted in the development of mechanized scanning equipment. Ultrasonic probes have improved, and well-adapted sound fields and pulse shapes and based on special imaging procedures for the representation of the reportable reflectors have been applied. Since the geometry of many forgings requires the use of a multitude of angles for the inspections in-service and during manufacture, phased-array probes can be used successfully. The main advantages of the phased-array concept, e.g. the generation of a multitude of angles with the typical increase of redundancy in detection and quantitative evaluation and the possibility to produce pictures of defect situations, will be described in this contribution

  5. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  6. Finite-element model of ultrasonic NDE [nondestructive evaluation

    International Nuclear Information System (INIS)

    Lord, W.

    1989-07-01

    An understanding of the way in which ultrasound interacts with defects in materials is essential to the development of improved nondestructive testing procedures for the inspection of critical power plant components. Traditionally, the modeling of such phenomena has been approached from an analytical standpoint in which appropriate assumptions are made concerning material properties, geometrical constraints and defect boundaries in order to arrive at closed form solutions. Such assumptions, by their very nature, tend to inhibit the development of complete input/output NDT system models suitable for predicting realistic piezoelectric transducer signals from the interaction of pulsed, finite-aperture ultrasound with arbitrarily shaped defects in the kinds of materials of interest to the utilities. The major thrust of EPRI Project RP 2687-2 is to determine the feasibility of applying finite element analysis techniques to overcome these problems. 85 refs., 64 figs., 3 tabs

  7. Geometrical Feature Extraction from Ultrasonic Time Frequency Responses: An Application to Nondestructive Testing of Materials

    Directory of Open Access Journals (Sweden)

    Naranjo Valery

    2010-01-01

    Full Text Available Signal processing is an essential tool in nondestructive material characterization. Pulse-echo inspection with ultrasonic energy provides signals (A-scans that can be processed in order to obtain parameters which are related to physical properties of inspected materials. Conventional techniques are based on the use of a short-term frequency analysis of the A-scan, obtaining a time-frequency response (TFR, to isolate the evolution of the different frequency-dependent parameters. The application of geometrical estimators to TFRs provides an innovative way to complement conventional techniques based on the one-dimensional evolution of an A-scan extracted parameter (central or centroid frequency, bandwidth, etc.. This technique also provides an alternative method of obtaining similar meaning and less variance estimators. A comparative study of conventional versus new proposed techniques is presented in this paper. The comparative study shows that working with binarized TFRs and the use of shape descriptors provide estimates with lower bias and variance than conventional techniques. Real scattering materials, with different scatterer sizes, have been measured in order to demonstrate the usefulness of the proposed estimators to distinguish among scattering soft tissues. Superior results, using the proposed estimators in real measures, were obtained when classifying according to mean scatterer size.

  8. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  9. Do's and dont's of nondestructive assay measurements

    International Nuclear Information System (INIS)

    Menlove, H.O.

    Some of the problem areas and recommended procedures in the application of nondestructive analysis (NDA) instrumentation are discussed. To limit the scope of the present guide, only radiometric NDA techniques employing neutron and gamma signatures are considered. Thus, measurement techniques which primarily make use of alpha particles, beta particles, muonic x rays, heat signatures, etc., are not included. (U.S.)

  10. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    Science.gov (United States)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  11. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    International Nuclear Information System (INIS)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-01-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures. (paper)

  12. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    Directory of Open Access Journals (Sweden)

    Cheng Huan Xin

    2016-01-01

    Full Text Available This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circuit, ultrasonic signal. Design of preamplifier, controllable gain amplifier two-stage amplifier circuit for receiving signal is amplified. Including data acquisition circuit detection circuit and A/D conversion circuit, single chip microcomputer and the LabVIEW platform via A serial port communication agreement. In the aspect of software design, the design of the EMAT pipe nondestructive testing system based on LabVIEW human-computer interaction interface.

  13. Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties

    International Nuclear Information System (INIS)

    Kim, Chung Seok; Park, Ik Keun

    2012-01-01

    The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

  14. Nondestructive nuclear measurement in the fuel cycle. Part 1

    International Nuclear Information System (INIS)

    Lyoussi, A.

    2005-01-01

    Nondestructive measurement techniques are today widely used in practically all steps of the fuel cycle. This article is devoted to the presentation of the control and characterization needs and to the main passive nondestructive nuclear methods used: 1 - nondestructive nuclear measurement, needs and motivation: nuclear fuel cycle, nondestructive nuclear measurements (passive and active methods), comments; 2 - main passive nondestructive nuclear measurement methods: gamma spectroscopy (principle, detectors, electronic systems, data acquisition and signal processing, domains of application, main limitations), passive neutronic measurements (needs and motivations, neutron detectors, total neutronic counting, neutronic coincidences counting, neutronic multiplicities counting, comments). (J.S.)

  15. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    Science.gov (United States)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  16. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P. [Riso National Lab. (Denmark)

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  17. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    International Nuclear Information System (INIS)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-01-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today

  18. Remote measurement of corrosion using ultrasonic techniques

    International Nuclear Information System (INIS)

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  19. Computer control in nondestructive testing illustrated by an automatic ultrasonic tube inspection system

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, N.

    1976-06-01

    In Risoe's automatic tube inspection system, data (more than half a million per tube) from ultrasonic dimension measurements and defect inspections are fed into a computer that simultaneously calculates and evaluates the results. (author)

  20. Nondestructive measurement of environmental radioactive strontium

    Directory of Open Access Journals (Sweden)

    Saiba Shuntaro

    2014-03-01

    Full Text Available The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days, Cs-134 (2.1 years, Cs-137 (30 years, Sr-89 (51 days, and Sr-90 (29 years. We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  1. Application of Neuro-Wavelet Algorithm in Ultrasonic-Phased Array Nondestructive Testing of Polyethylene Pipelines

    Directory of Open Access Journals (Sweden)

    Reza Bohlouli

    2012-01-01

    Full Text Available Polyethylene (PE pipelines with electrofusion (EF joining is an essential method of transportation of gas energy. EF joints are weak points for leakage and therefore, Nondestructive testing (NDT methods including ultrasonic array technology are necessary. This paper presents a practical NDT method of fusion joints of polyethylene piping using intelligent ultrasonic image processing techniques. In the proposed method, to detect the defects of electrofusion joints, the NDT is applied based on an ANN-Wavelet method as a digital image processing technique. The proposed approach includes four steps. First an ultrasonic-phased array technique is used to provide real time images of high resolution. In the second step, the images are preprocessed by digital image processing techniques for noise reduction and detection of ROI (Region of Interest. Furthermore, to make more improvement on the images, mathematical morphology techniques such as dilation and erosion are applied. In the 3rd step, a wavelet transform is used to develop a feature vector containing 3-dimensional information on various types of defects. In the final step, all the feature vectors are classified through a backpropagation-based ANN algorithm. The obtained results show that the proposed algorithms are highly reliable and also precise for NDT monitoring.

  2. Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials

    Science.gov (United States)

    Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.

    2018-04-01

    Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.

  3. Study of the simulation of working of ultrasonic equipment in order to optimize the nondestructive control conditions

    International Nuclear Information System (INIS)

    Drai, R.

    1986-01-01

    The aim of this study is, for the long run, to define one or several procedures of ultrasonic nondestructive testing, allowing the use of the equipment, at their best conditions. In this work, the behaviour of the testing system is simulated. The water bounded by a reflector plane is taken as a propagation medium. The testing equipment is considered as a system composed by a set of sub-systems (generator, cable, transducers and reception amplifier). Each of these sub-systems is modelled by its respective transfer functions. Thus, an experimental procedure for measuring sub-system characteristics is given in order to calculate the different transfer functions. With this model, we have the possibility to obtain, by calculation, all signals given by testing system for any combination of these parameters: damping, attenuation, cable length... So, it is possible to establish prior to the test, the adequate conditions for the testing system (high sensitivity, good resolution or good compromise between both)

  4. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  5. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for ultrasonic test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice facilitates the interoperability of ultrasonic imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E 2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E 2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, transfer and archival storage. The goal of Practice E 2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E 2339 provides a data dictionary and set of information modules that are applicable to all NDE modalities. This practice supplements Practice E 2339 by providing information object definitions, information ...

  6. An ultrasonic methodology to non-destructively estimate the grain orientation in an anisotropic weld

    Directory of Open Access Journals (Sweden)

    Wirdelius Håkan

    2014-06-01

    Full Text Available The initial step towards a non-destructive technique that estimates grain orientation in an anisotropic weld is presented in this paper. The purpose is to aid future forward simulations of ultrasonic NDT of this kind of weld to achieve a better result. A forward model that consists of a weld model, a transmitter model, a receiver model and a 2D ray tracing algorithm is introduced. An inversion based on a multi-objective genetic algorithm is also presented. Experiments are conducted for both P and SV waves in order to collect enough data used in the inversion. Calculation is conducted to fulfil the estimation with both the synthetic data and the experimental data. Concluding remarks are presented at the end of the paper.

  7. Thickness measurement by using cepstrum ultrasonic signal processing

    International Nuclear Information System (INIS)

    Choi, Young Chul; Yoon, Chan Hoon; Choi, Heui Joo; Park, Jong Sun

    2014-01-01

    Ultrasonic thickness measurement is a non-destructive method to measure the local thickness of a solid element, based on the time taken for an ultrasound wave to return to the surface. When an element is very thin, it is difficult to measure thickness with the conventional ultrasonic thickness method. This is because the method measures the time delay by using the peak of a pulse, and the pulses overlap. To solve this problem, we propose a method for measuring thickness by using the power cepstrum and the minimum variance cepstrum. Because the cepstrums processing can divides the ultrasound into an impulse train and transfer function, where the period of the impulse train is the traversal time, the thickness can be measured exactly. To verify the proposed method, we performed experiments with steel and, acrylic plates of variable thickness. The conventional method is not able to estimate the thickness, because of the overlapping pulses. However, the cepstrum ultrasonic signal processing that divides a pulse into an impulse and a transfer function can measure the thickness exactly.

  8. A portable nondestructive assay measurement control system

    International Nuclear Information System (INIS)

    Palmer, M.E.

    1984-01-01

    Portable nondestructive assay (NDA) of plutonium processing hoods, solvent extraction columns, glove boxes, filters, and other items is required for both nuclear materials accountability and criticality control purposes. The Plutonium Finishing Plant has hundreds of such items that require routine portable NDA measurement. Previous recordkeeping of NDA measurements consisted of boxes of papers containing results and notebooks containing notes for each item to be measured. If the notes for any item were lost, new measurement parameters had to be calculated for that item. As a result, subsequent measurements could no longer be directly compared with previous results for that item due to possible changes in measurement parameters. The new portable NDA management system keeps all the necessary information in a computerized data base. Technicians are provided with a computer-generated drawing of each item to be measured, which also contains comments, measurement points, measurement parameters, and a form for filling in the raw data. After the measurements are made, the technician uses the computer to calculate and print out the results

  9. Rotary union for use with ultrasonic thickness measuring probe

    Science.gov (United States)

    Nachbar, Henry D.

    1992-01-01

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body.

  10. Rotary union for use with ultrasonic thickness measuring probe

    International Nuclear Information System (INIS)

    Nachbar, H.D.

    1992-01-01

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs

  11. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  12. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    Science.gov (United States)

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  13. Nondestructive hall coefficient measurements using ACPD techniques

    Science.gov (United States)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  14. Ultrasonic imaging algorithms with limited transmission cycles for rapid nondestructive evaluation.

    Science.gov (United States)

    Moreau, Ludovic; Drinkwater, Bruce W; Wilcox, Paul D

    2009-09-01

    Imaging algorithms recently developed in ultrasonic nondestructive testing (NDT) have shown good potential for defect characterization. Many of them are based on the concept of collecting the full matrix of data, obtained by firing each element of an ultrasonic phased array independently, while collecting the data with all elements. Because of the finite sound velocity in the test structure, 2 consecutive firings must be separated by a minimum time interval. Depending on the number of elements in a given array, this may become problematic if data must be collected within a short time, as it is often the case, for example, in an industrial context. An obvious way to decrease the duration of data capture is to use a sparse transmit aperture, in which only a restricted number of elements are used to transmit ultrasonic waves. This paper compares 2 approaches aimed at producing an image on the basis of restricted data: the common source method and the effective aperture technique. The effective aperture technique is based on the far-field approximation, and no similar approach exists for the near-field. This paper investigates the performance of this technique in near-field conditions, where most NDT applications are made. First, these methods are described and their point spread functions are compared with that of the Total Focusing Method (TFM), which consists of focusing the array at every point in the image. Then, a map of efficiency is given for the different algorithms in the near-field. The map can be used to select the most appropriate algorithm. Finally, this map is validated by testing the different algorithms on experimental data.

  15. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  16. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  17. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  18. Nondestructive nuclear measurement in the fuel cycle. Part 2

    International Nuclear Information System (INIS)

    Lyoussi, A.

    2005-01-01

    Nondestructive measurement techniques are today widely used in practically all steps of the fuel cycle. This article is devoted to the presentation of the control and characterization needs and to the main active nondestructive nuclear methods used: 1 - main active nondestructive nuclear measurement methods: active neutronic measurement (needs and motivations, physical principle, measurement of delayed neutrons following a continuous irradiation, measurement of prompt neutrons (differential die-away technique - DDT), measurement of prompt and delayed neutrons (Sphincs method), neutronic method coupled to gamma spectroscopy), measurement by induced photo-fissions (needs and motivations, physical principle); 2 - conclusion. (J.S.)

  19. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    International Nuclear Information System (INIS)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob

    2015-01-01

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  20. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob [Dept. of Medical Biotechnology, Dongguk University Biomedi Campus, Goyang (Korea, Republic of)

    2015-04-15

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  1. Uncertainty estimation of ultrasonic thickness measurement

    International Nuclear Information System (INIS)

    Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain

    2009-01-01

    The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)

  2. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    Science.gov (United States)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  3. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    Science.gov (United States)

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  4. Non-destructive Inspection of Multi-layered Composite Using Ultrasonic Signal Processing

    International Nuclear Information System (INIS)

    Ng, S C; Ismail, N; Ali, Aidy; Sahari, Barkawi; Yusof, J M; Chu, B W

    2011-01-01

    Composites exhibit higher strength and stiffness, better design practice and greater corrosion resistance compare to metal material. However, composites are susceptible to impact damage and the typical damage behaviour in the laminated composites is fibre-breakage and delamination. Detection of failure in laminated composites is complicated compared with ordinary non-destructive testing for metal materials as they are sensitive to echoes drown in noise due to the properties of the constituent materials and the multi-layered structure of the composites. In the current study, the detection of failure in multi-layered composite materials is investigated. To obtain a high probability of defect detection in composite materials, signal processing algorithms were used to resolve echoes associated with defects in glass fibre-reinforced plastics (GRP) detected by using ultrasonic testing. Pulse-echo method with single transducer was used to transmit and receive ultrasound. The obtained signals were processed to reduce noise and to extract suitable features. Results were validated on GRP with and without defects in order to demonstrate the feasibility of the method on defect detection in composites.

  5. Ultrasonic non-destructive testing on CFC monoblock divertor mock-up

    International Nuclear Information System (INIS)

    Ezato, K.; Taniguchi, M.; Sato, K.; Araki, M.; Akiba, M.

    2001-01-01

    Non-destructive ultrasonic testing has been applied for the characterization of joints by means of a polymer transducer. One of the advantages of the polymer transducer is flexibility in its shape and the possibility to install multiple transducers in one probe, which can reduce the time for inspection. As a first step, the size effect of the transducer on the resolution and sensitivity was examined to detect the joint flaw. Transducers with circumferential angles of 5 , 10 and 30 were tested. For this test a small divertor element with a driller hole was prepared, which simulates a joint defect. The transducers with angles of 30 could not characterize the size of the artificial joint flaw. On the contrary, the size of the artificial defect was successfully detected with an accuracy of 90% by means of the transducers with angles of 5 and 10 . From the viewpoint of the sensitivity of the detection of the joint flaw, the transducer with the angle of 10 is appropriate because it could detect the largest intensity of the reflected signal caused by the same artificial defect of the joint interface. (orig.)

  6. Community survey on reference blocks and transducers for non-destructive ultrasonic testing

    International Nuclear Information System (INIS)

    Vinche, C.; Borloo, E.; Jehenson, P.

    1978-01-01

    In the frame of the European programmes 'Standards and Reference Substances' and 'Reference Materials and Methods' (BCR) the Commission of the European Communities, in conjunction with National experts launched in 1975 an inquiry on reference blocks and transducers for non-destructive ultrasonic testing. This inquiry which is complementary to a general survey made in 1971-1972 by the Commission on Reference Materials (Ref. EUR Report 1973. EUR 4886. d,f,i,n,e) was felt necessary and prepared by a specialists group from the Community Countries and the Joint Research Centre (JRC), Ispra Establishment (the list of these specialists is indicated on p. 2 of the questionnaire). The results of this survey, collated by the JRC Ispra Members have been discussed by the group of specialists and form the subject of this report. On bases of mailing lists submitted by national specialists, 215 organizations have been contacted; the fields of activity of these organizations are mainly: metallurgy, machine parts, technical assistance, aeronautics, power stations and research, 73 organizations have replied to the questionnaire. Most answers were obained from organizations dealing with metallurgy, machine parts manufacturers and technical consultants. The annexes supply a detailed analysis of the results given, on a national basis

  7. Development of ultrasonic heat transfer tube thickness measurement apparatus. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Toshihiro; Katoh, Chiaki; Yanagihara, Takao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Suetugu, Hidehiko; Yano, Masaya [Sumitomo Chemical Co., Ltd., Tokyo (Japan)

    2003-01-01

    The demonstration test for evaluating reliability of the acid recovery evaporator at Rokkasho Reprocessing Plant has been carried out at JAERI. For the nondestructive measurement of the thickness of heat transfer tubes of the acid recovery evaporator in corrosion test, we have developed thickness measurement apparatus for heat transfer tubes by ultrasonic immersion method with high resolution. The ultrasonic prove in a heat transfer tube can be moved vertically and radially. The results obtained by this apparatus coincident well with those obtained by a destructive method using an optical microscope. (author)

  8. Ultrasonic transverse velocity calibration of standard blocks for use in non-destructive testing

    International Nuclear Information System (INIS)

    Silva, C E R; Braz, D S; Maggi, L E; Felix, R P B Costa

    2015-01-01

    Standard blocks are employed in the verification of the equipment used in Ultrasound Non-Destructive Testing. To assure the metrology reliability of all the measurement process, it is necessary to calibrate or certify these Standard blocks. In this work, the transverse wave velocity and main dimensions were assessed according to the specifications ISO Standards. For transverse wave velocity measurement, a 5 MHz transverse wave transducer, a waveform generator, an oscilloscope and a computer with a program developed in LabVIEW TM were used. Concerning the transverse wave velocity calibration, only two Standard blocks of the 4 tested is in accordance with the standard

  9. Real-time measurement of relative sensor position changes using ultrasonic signal evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yastrebova, O.; Bulavinov, A.; Kroening, M. [Fraunhofer Institute Nondestructive Testing IZFP, Saarbruecken (Germany)

    2008-07-01

    Ultrasonic testing is considered to be one of the most commonly applied nondestructive testing techniques for flaw detection and material characterization. Traditional Nondestructive Testing (NDT) provides detection of material discontinuities that may cause failure within the designed lifetime of a part or component. In addition, Quantitative Nondestructive Testing (QNDT) provides means to obtain required information about type, size and location of deficiencies to the integrity of the inspected structure and further use under specific, given load conditions. The ''Acoustic Mouse'' technique has been developed as a tool for manual ultrasonic inspection to provide test results that can be evaluated quantitatively. The ultrasonic data are processed by real-time variation methods to extract position information from backscattered acoustic noise and geometric scatter signals in the inspection volume. The position and positional changes of the ''Acoustic Mouse'' sensor (transducer) are determined by the sequential analysis of ultrasonic data (highresolution sector-scans), which are acquired and reconstructed using the Sampling Phased Array technique. The results of first experiments conducted with linear scanning and intentional lift-offs demonstrate sufficient accuracy in position measurements. (orig.)

  10. Determine bond strength by ultrasonic measurement

    International Nuclear Information System (INIS)

    Brown, C.M.

    1978-01-01

    Application of ultrasonic methods for the evaluation and measurement of bond strength has been the object of numerous investigations in the last fifteen years. Some investigators have reported good success (in limited application) while others have experienced dismal failure. One problem common to all investigations was the difficulty in extracting and isolating the many components which comprise the ultrasonic signal reflected from a bonded interface. Part of this problem was due to manually extracting individual parameters from large volumes of raw data. However, with the vast technology now available in the field of signal analysis and computerized data processing, it is feasible to isolate and analyze individual parameters within the ultrasonic signal for great volumes of raw data

  11. Non-destructive ultrasonic techniques for classifying and reconstructing defects; ALOK, phased arrays, holography-SAFT

    International Nuclear Information System (INIS)

    Hoeller, P.; Schmitz, V.; Mueller, W.; Gebhardt, W.; Barbian, O.A.

    1983-01-01

    The only way to achieve ultrasonic testing methods capable of reconstructing defects or inhomogeneities is to measure those data that are related to the geometry of the reflector. These are phase and time-of-flight as a function of the locus of incidence. For this purpose several synthetic aperture methods have been developed in recent years by our institute: ALOK and phased arrays as searching and analysing systems, especially for in-service inspection of nuclear power plants; and holography and SAFT as analysing systems. Their ability to detect, localize, classify and reconstruct defects is discussed. (author)

  12. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)

    2016-10-15

    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  13. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  14. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  15. Ultrasonic Measurement of Corrosion Depth Development in Concrete Exposed to Acidic Environment

    Directory of Open Access Journals (Sweden)

    Fan Yingfang

    2012-01-01

    Full Text Available Corrosion depth of concrete can reflect the damage state of the load-carrying capacity and durability of the concrete structures servicing in severe environment. Ultrasonic technology was studied to evaluate the corrosion depth quantitatively. Three acidic environments with the pH level of 3.5, 2.5, and 1.5 were simulated by the mixture of sulfate and nitric acid solutions in the laboratory. 354 prism specimens with the dimension of 150 mm × 150 mm × 300 mm were prepared. The prepared specimens were first immersed in the acidic mixture for certain periods, followed by physical, mechanical, computerized tomography (CT and ultrasonic test. Damage depths of the concrete specimen under different corrosion states were obtained from both CT and ultrasonic test. Based on the ultrasonic test, a bilinear regression model is proposed to estimate the corrosion depth. It is shown that the results achieved by ultrasonic and CT test are in good agreement with each other. Relation between the corrosion depth of concrete specimen and the mechanical indices such as mass loss, compressive strength, and elastic modulus is discussed in detail. It can be drawn that the ultrasonic test is a reliable nondestructive way to measure the damage depth of concrete exposed to acidic environment.

  16. Statistical analysis of ultrasonic measurements in concrete

    Science.gov (United States)

    Chiang, Chih-Hung; Chen, Po-Chih

    2002-05-01

    Stress wave techniques such as measurements of ultrasonic pulse velocity are often used to evaluate concrete quality in structures. For proper interpretation of measurement results, the dependence of pulse transit time on the average acoustic impedance and the material homogeneity along the sound path need to be examined. Semi-direct measurement of pulse velocity could be more convenient than through transmission measurement. It is not necessary to assess both sides of concrete floors or walls. A novel measurement scheme is proposed and verified based on statistical analysis. It is shown that Semi-direct measurements are very effective for gathering large amount of pulse velocity data from concrete reference specimens. The variability of measurements is comparable with that reported by American Concrete Institute using either break-off or pullout tests.

  17. Microwave Detection of Laser Ultrasonic for Non-Destructive Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we describe a program to develop a high-performance, cost-effective and robust microwave receiver prototype for multi-purpose Non-Destructive...

  18. Numeric ultrasonic image processing method: application to non-destructive testing of stainless austenitic steel welds

    International Nuclear Information System (INIS)

    Corneloup, G.

    1988-09-01

    A bibliographic research on the means used to improve the ultrasonic inspection of heterogeneous materials such as stainless austenitic steel welds has shown, taking into account the first analysis, a signal assembly in the form of an image (space, time) which carries an original solution to fault detection in highly noisy environments. A numeric grey-level ultrasonic image processing detection method is proposed based on the research of a certain determinism, in the way which the ultrasonic image evolves in space and time in the presence of a defect: the first criterion studies the horizontal stability of the gradients in the image and the second takes into account the time-transient nature of the defect echo. A very important rise in the signal-to-noise ratio obtained in welding inspections evidencing defects (real and artificial) is shown with the help of a computerized ultrasonic image processing/management system, developed for this application [fr

  19. Fatigue crack growth studies on a tee junction using ultrasonic non-destructive methods

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Ramesh, A.S.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    Fatigue cracks need to be detected and sized to maintain structural integrity. The significance of cracks detected in service must also be assessed. This paper describes the on-line ultrasonic testing carried out on a Tee joint subjected to fatigue loading. The initiation and growth of the cracks were monitored for every 5,000 cycles up to 40,000 cycles. The study demonstrated the use of ultrasonic testing for fatigue crack growth detection and sizing. (author)

  20. Fractal dimension analysis for robust ultrasonic non-destructive evaluation (NDE) of coarse grained materials

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2018-04-01

    Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.

  1. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  2. Nondestructive fission gas release measurement and analysis

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Packard, D.R.

    1993-01-01

    Siemens Power Corporation (SPC) has performed reactor poolside gamma scanning measurements of fuel rods for fission gas release (FGR) detection for more than 10 yr. The measurement system has been previously described. Over the years, the data acquisition system, the method of spectrum analysis, and the means of reducing spectrum interference have been significantly improved. A personal computer (PC)-based multichannel analyzer (MCA) package is used to collect, display, and store high-resolution gamma-ray spectra measured in the fuel rod plenum. A PC spread sheet is used to fit the measured spectra and compute sample count rates after Compton background subtraction. A Zircaloy plenum spacer is often used to reduce positron annihilation interference that can arise from the INCONEL reg-sign plenum spring used in SPC-manufactured fuel rods

  3. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    Science.gov (United States)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  4. Ultrasonic velocity measurements- a potential sensor for intelligent processing of austenitic stainless steels

    International Nuclear Information System (INIS)

    Venkadesan, S.; Palanichamy, P.; Vasudevan, M.; Baldev Raj

    1996-01-01

    Development of sensors based on Non-Destructive Evaluation (NDE) techniques for on-line sensing of microstructure and properties requires a thorough knowledge on the relation between the sensing mechanism/measurement of an NDE technique and the microstructure. As a first step towards developing an on-line sensor for studying the dynamic microstructural changes during processing of austenitic stainless steels, ultrasonic velocity measurements have been carried out to study the microstructural changes after processing. Velocity measurements could follow the progress of annealing starting from recovery, onset and completion of recrystallization, sense the differences in the microstructure obtained after hot deformation and estimate the grain size. This paper brings out the relation between the sensing method based on ultrasonic velocity measurements and the microstructure in austenitic stainless steel. (author)

  5. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    Directory of Open Access Journals (Sweden)

    Margherita Capriotti

    2017-06-01

    Full Text Available This paper discusses a non-destructive evaluation (NDE technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI from ground service equipment (GSE, such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  6. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Science.gov (United States)

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  7. Ultrasonic surface measurements at the Porta Nigra, Trier, and the Neptungrotte, Park Sanssouci Potsdam

    Science.gov (United States)

    Meier, Thomas; Auras, Michael; Fehr, Moritz; Köhn, Daniel

    2015-04-01

    Ultrasonic measurements along profiles at the surface of an object are well suited to characterize non-destructively weathering of natural stone near the surface. Ultrasonic waveforms of surface measurements in the frequency range between 10 kHz and 300 kHz are often dominated by the Rayleigh wave - a surface wave that is mainly sensitive to the velocity and attenuation of S-waves in the upper 0.3 cm to 3 cm. The frequency dependence of the Rayleigh wave velocity may be used to analyze variations of the material properties with depth. Applications of ultrasonic surface measurements are shown for two buildings: the Roman Porta Nigra in Trier from the 3rd century AD and the Neptungrotte at Park Sanssouci in Potsdam designed by von Knobelsdorff in the 18th century. Both buildings belong to the world cultural heritage and restorations are planned for the near future. It is interesting to compare measurements at these two buildings because they show the applicability of ultrasonic surface measurements to different natural stones. The Porta Nigra is made of local sandstones whereas the facades of the Neptungrotte are made of Carrara and Kauffunger marble. 71 and 46 surface measurements have been carried out, respectively. At both buildings, Rayleigh-wave group velocities show huge variations. At the Porta Nigra they vary between ca. 0.4 km/s and 1.8 km/s and at the Neptungrotte between ca. 0.7 km/s and 3.0 km/s pointing to alterations in the Rayleigh- and S-wave velocities of more than 50 % due to weathering. Note that velocities of elastic waves may increase e.g. because of the formation of black crusts like at the Porta Nigra or they may be strongly reduced due to weathering. The accuracy of the ultrasonic surface measurements, its reproducibility, and the influence of varying water saturation are discussed. Options for the analysis of ultrasonic waveforms are presented ranging from dispersion analysis to full waveform inversions for one-dimensional and two

  8. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  9. Nondestructive assay instrument for measurement of plutonium in solutions

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hsue, F.; Li, T.K.; Canada, T.R.

    1979-01-01

    A nondestructive assay (NDA) instrument that measures the 239 Pu content in solutions, using a passive gamma-ray spectroscopy technique, has been developed and installed in the LASL Plutonium Processing Facility. A detailed evaluation of this instrument has been performed. The results show that the instrument can routinely determine 239 Pu concentrations of 1 to 500 g/l with accuracies of 1 to 5% and assay times of 1 to 2 x 10 3 s

  10. Ultrasonic trap for light scattering measurement

    Science.gov (United States)

    Barton, Petr; Pavlu, Jiri

    2017-04-01

    Light scattering is complex phenomenon occurring widely in space environments, including the dense dusty clouds, nebulas or even the upper atmosphere of the Earth. However, when the size of the dust (or of other scattering center) is close to the incident light wavelength, theoretical determination is difficult. In such case, Mie theory is to be used but there is a lack of the material constants for most space-related materials. For experimental measurement of light scattering, we designed unique apparatus, based on ultrasonic trap. Using acoustic levitation we are able to capture the dust grain in midair, irradiate it with laser, and observe scattering directly with goniometer-mounted photodiode. Advantage of this approach is ability to measure directly in the air (thus, no need for the carrier medium) and possibility to study non-spherical particles. Since the trap development is nearly finished and initial experiments are carried out, the paper presents first tests on water droplets.

  11. Ultrasonic velocity measurements in expanded liquid mercury

    International Nuclear Information System (INIS)

    Suzuki, K.; Inutake, M.; Fujiwaka, S.

    1977-10-01

    In this paper we present the first results of the sound velocity measurements in expanded liquid mercury. The measurements were made at temperatures up to 1600 0 C and pressures up to 1700 kg/cm 2 by means of an ultrasonic pulse transmission/echo technique which was newly developed for such high temperature/pressure condition. When the density is larger than 9 g/cm 3 , the observed sound velocity decreases linearly with decreasing density. At densities smaller than 9 g/cm 3 , the linear dependence on the density is no longer observed. The observed sound velocity approaches a minimum near the liquid-gas critical point (rho sub(cr) asymptotically equals 5.5 g/cm 3 ). The existing theories for sound velocity in liquid metals fail to explain the observed results. (auth.)

  12. Kalman filter analysis of delayed neutron nondestructive assay measurements

    International Nuclear Information System (INIS)

    Aumeier, S. E.

    1998-01-01

    The ability to nondestructively determine the presence and quantity of fissile and fertile nuclei in various matrices is important in several nuclear applications including international and domestics safeguards, radioactive waste characterization and nuclear facility operations. Material irradiation followed by delayed neutron counting is a well known and useful nondestructive assay technique used to determine the fissile-effective content of assay samples. Previous studies have demonstrated the feasibility of using Kalman filters to unfold individual isotopic contributions to delayed neutron measurements resulting from the assay of mixes of uranium and plutonium isotopes. However, the studies in question used simulated measurement data and idealized parameters. We present the results of the Kalman filter analysis of several measurements of U/Pu mixes taken using Argonne National Laboratory's delayed neutron nondestructive assay device. The results demonstrate the use of Kalman filters as a signal processing tool to determine the fissile and fertile isotopic content of an assay sample from the aggregate delayed neutron response following neutron irradiation

  13. Noncontact ultrasonic nondestructive evaluation/inspection using laser generation and air coupled transducer

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Kim, Hong Joon; Cemiglia, Donatella; Djordjevic, Boro

    2001-01-01

    Ultrasonic MDE/I methods have been demonstrated as very effective tool in characterization of cracks and structural defects such as bond-line failures. Most of the ultrasonic testing is performed using conventional contact ultrasonic transducers that cannot be readily adapted to automation and field application. However, for large area inspection contact type is time consuming and as a result, it is important to develop a rapid and more efficient ultrasonic technique. In this paper, laser generation and air-coupled detection of ultrasound is proposed as a solution of non-contact method with no requirement of a coupling medium, and the bond quality of adhesively bonded and riveted aluminum lap splice joints is investigated as an application. A Q-switched Nd:YAG laser and a periodic transmission mask are used to generate a selected Lamb mode. The experimental show that multi-line laser source produces significant directed ultrasound and that the presence of defects can be detected reliably from the attenuation of signal amplitude. These results demonstrate that the proposed technique is well suitable and flexible for non-contact NDE/I applications.

  14. Babcock experience of automated ultrasonic non-destructive testing of PWR pressure vessels during manufacture

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.; Scruton, G.

    1990-01-01

    Major developments in ultrasonic techniques, equipment and systems for automated inspection have lead, over a period of about ten years, to the regular application of sophisticated computer-controlled systems during the manufacture of nuclear reactor pressure vessels. Ten years ago the use of procedures defined in a code such as ASME XI might have been considered sufficient, but it is now necessary, as was demonstrated by the results of the UKAEA defect detection trials and the PISC II trials, to apply more comprehensive arrays of probes and higher test sensitivities. The ultrasonic techniques selected are demonstrated to be adequate by modelling or test-block exercises, the automated systems applied are subject to stringent quality assurance testing, and very rigorous inspection procedures are used in conjunction with a high degree of automation to ensure reproducibility of inspection quality. The state-of-the-art in automated ultrasonic testing of pressure vessels by Babcock is described. Current developments by the company, including automated flaw recognition, integrated modelling of inspection capability, and the use of electronically scanned variable-angle probes are reviewed. Examples quoted include the automated ultrasonic inspections of the Sizewell B pressurized water reactor vessel. (author)

  15. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    OpenAIRE

    Cheng Huan Xin; Meng Xiang Yong; Li Jing; Cheng Li

    2016-01-01

    This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT) metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circu...

  16. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  17. Improved ultrasonic nondestructive testing of pressure vessels. Annual progress report, August 1, 1975--July 31, 1976

    International Nuclear Information System (INIS)

    Frederick, J.R.; Fairchild, R.C.; Anderson, B.H.

    1977-07-01

    A synthetic aperture focusing technique for ultrasonic testing (SAFT UT) is described. The technique employs a single scanned transducer operating in pulse-echo mode with digital data acquisition and synthetic aperture post-processing to provide high lateral and longitudinal resolution. The extension of previously developed algorithms to provide volumetric processing and display is described. The design of a refreshed grey-scale display to provide interactive display of SAFT UT data is described

  18. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique

    International Nuclear Information System (INIS)

    Entine, Gerald; Afshari, Sia; Verlinden, Matt

    1990-01-01

    The demand for new high-performance plastics has greatly increased with advances in the performance characteristics of sophisticated reinforced engineering resins. However, conventional methods for the evaluation of the glass and filler contents of reinforced plastics are destructive, labor intensive, and time consuming. We have developed a new instrument, to address this problem, which provides for the rapid, accurate, and nondestructive measurement of glass or filler content in reinforced plastics. This instrument utilizes radiation transmission and scattering techniques for analytical measurement of glass, graphite and other fillers used in reinforced plastics. (author)

  19. Ultrasonic Surface Measurements for the investigation of superficial alteration of natural stones

    Science.gov (United States)

    Meier, Thomas; Auras, Michael; Bilgili, Filiz; Christen, Sandra; Cristiano, Luigia; Krompholz, Rolf; Mosca, Ilaria; Rose, David

    2013-04-01

    Seismic waveform analysis is applicable also to the centimeter and decimeter scale for non-destructive testing of pavement, facades, plaster, sculptures, or load-bearing structures like pillars. Mostly transmission measurements are performed and travel-times of first arriving P-waves are considered that have limited resolution for the upper centimeters of an object. In contrast, surface measurements are well suited to quantify superficial alterations of material properties e.g. due to weathering. A number of surface measurements have been carried out in the laboratory as well as on real structures in order to study systematically the information content of ultrasonic waveforms and their variability under real conditions. As a preposition for ultrasonic waveform analysis, reproducible, broad-band measurements have to be carried out with a definite radiation pattern and an about 1 mm accuracy of the measurement geometry. We used special coupling devices for effective ultrasonic surface measurements in the laboratory as well as at real objects. Samples of concrete with varying composition and samples of natural stone - marble, tuff, and sandstone - were repeatedly weathered and tested by ultrasonic measurements. The resistance of the samples to weathering and the penetration depth of the weathering are analyzed. Furthermore, material specific calibration curves for changes in velocities of elastic waves due to weathering can be obtained by these tests. Tests on real structures have been carried out for marble (Schlossbrücke, Berlin) and sandstone (Porta Nigra, Trier). Altogether, these test measurements show clearly that despite of the internal inhomogeneity of many real objects, their surface roughness and topography especially ultrasonic Rayleigh waves are well suited to study material alterations in the upper centimeters. Dispersion of Rayleigh waves may be inverted for shear-wave velocity as a function of depth.

  20. Helium-flow measurement using ultrasonic technique

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  1. Tone burst generator for a Non-Destructive Testing system based on ultrasonic guided waves

    OpenAIRE

    Jiménez Sánchez, Daniel

    2011-01-01

    English: This PFC provides a design of a tested and specific tone-burst generator circuit for a Non-Destructive System based on ultrasonid guided waves. This circuit includes a complementary protection circuit for the NDT system working in a pulse-echo configuration. In this paper, a brief state f art about different driving circuits employed in distinct NDE systems is presented. Castellano: El PFC proporciona un diseño electrónico específico y probado de un circuito excitador de salvas (C...

  2. Challenges of Non-Destructive Assay Waste Measurement

    International Nuclear Information System (INIS)

    Shull, A.H.

    2003-01-01

    Historically, the Savannah River Site (SRS) routinely produced special nuclear material (SNM), which provided stable measurement conditions for the non-destructive assay (NDA) methods. However, the main mission of SRS has changed from the production of SNM to the processing of waste and material stabilization. Currently, the purpose of processing is to recover the SNM from the waste and stabilization materials, much of which is from other DOE facilities. These missions are usually of a short duration, but require non-destructive assay (NDA) accountability measurements on materials of varying composition and geometric configuration. These missions usually have cost and time constraints, which sometimes require re-application of existing NDA methods to waste measurements. Usually, each new material or re-application of the NDA method to a different SNM campaign requires new standards and timely re-calibration of the method. These constraints provide numerous challenges for the NDA methods, particularly in the area of measurement uncertainty. This paper will discuss the challenges of these situations, mainly from a measurement and statistical point of view and provide some possible solutions to the problems encountered. Specific examples will be discussed for the segmented gamma scanner (SGS), neutron multiplicity counter (NMC) and passive neutron coincidence counter (PNCC), which are some of the most common NDA instruments at SRS

  3. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    Science.gov (United States)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  4. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  5. Nondestructive characterization of materials (ultrasonic and micromagnetic techniques) for strength and toughness prediction and the detection of early creep damage

    International Nuclear Information System (INIS)

    Dobmann, G.; Kroening, M.; Theiner, W.; Willems, H.; Fiedler, U.

    1995-01-01

    In recent years, nondestructive testing techniques for materials characterization have been developed in Germany under the sponsorship of the Ministry of Research and Development, as part of the Reactor Safety Research Programme, in order to provide techniques for PSI and ISI that are sensitive and reliable, in particular with respect to the prediction of strength and toughness. As ferritic steels (pressure vessels and pipelines in the primary circuit) are of special interest, R and D was concentrated on micromagnetic techniques which are sensitive to the microstructure and its changes under service and/or repair conditions. In order to characterize microstructural states superimposed by residual stresses in an unambiguous way, numerical modelling was applied using advanced tools of mathematical approximation theory, i.e. multiregression algorithms and neural networks.For the detection of early creep damage in fossil power plant applications, i.e. micropores and their subsequent development to linked pores and microcracks, besides the micromagnetic techniques an ultrasonic technique was also applied and optimized for in situ applications on components such as pipe bends. Whereas the ultrasonic technique is sensitive to pore concentrations as small as about 0.2%, the parameters of the micromagnetic techniques are mainly influenced by temperature- and load-induced microstructural changes occurring in service, dependent on the steel quality. The techniques are applied at two pipe bends (steel grades 14MoV63 and X20CrMoV121) loaded under near practical conditions during seven inspection intervals between 2048h and 21000h to evaluate the progress of damage. (orig.)

  6. A Gaussian beam method for ultrasonic non-destructive evaluation modeling

    Science.gov (United States)

    Jacquet, O.; Leymarie, N.; Cassereau, D.

    2018-05-01

    The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.

  7. Standard guide for making quality nondestructive assay measurements

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide is a compendium of Quality Measurement Practices for performing measurements of radioactive material using nondestructive assay (NDA) instruments. The primary purpose of the guide is to assist users in arriving at quality NDA results, that is, results that satisfy the end user’s needs. This is accomplished by providing an acceptable and uniform basis for the collection, analysis, comparison, and application of data. The recommendations are not compulsory or prerequisites to achieving quality NDA measurements, but are considered contributory in most areas. 1.2 This guide applies to the use of NDA instrumentation for the measurement of nuclear materials by the observation of spontaneous or stimulated nuclear radiations, including photons, neutrons, or the flow of heat. Recommended calibration, operating, and assurance methods represent guiding principles based on current NDA technology. The diversity of industry-wide nuclear materials measurement applications and instrumentation precludes disc...

  8. Feasibility of ultrasonic and eddy current methods for measurement of residual stress in shot peened metals

    International Nuclear Information System (INIS)

    Lavrentyev, Anton I.; Stucky, Paul A.; Veronesi, William A.

    2000-01-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to nondestructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper presents preliminary results from a feasibility study examining the use of ultrasonic and eddy current NDE methods for residual stress measurement in components where the stress has been introduced by shot peening. With an ultrasonic method, a variation of ultrasonic surface wave speed with shot peening intensity was measured. Near surface conductivity was measured by eddy current methods. Since the effective penetration depth of both methods employed is inversely related to the excitation frequency, by making measurements at different frequencies, each method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity range of 4C to 16C. The experimental results obtained demonstrate a correlation between peening intensity and Rayleigh wave velocity and between peening intensity and conductivity. The data suggests either of the methods may be suitable, with limitations, for detecting unsatisfactory levels of shot peening. Several factors were found to contribute to the measured responses: surface roughness, near surface plastic deformation (cold work) and residual stress. The contribution of each factor was studied experimentally. The feasibility of residual stress determination from the measured data is discussed

  9. Assessment and Calibration of Ultrasonic Measurement Errors in Estimating Weathering Index of Stone Cultural Heritage

    Science.gov (United States)

    Lee, Y.; Keehm, Y.

    2011-12-01

    Estimating the degree of weathering in stone cultural heritage, such as pagodas and statues is very important to plan conservation and restoration. The ultrasonic measurement is one of commonly-used techniques to evaluate weathering index of stone cultual properties, since it is easy to use and non-destructive. Typically we use a portable ultrasonic device, PUNDIT with exponential sensors. However, there are many factors to cause errors in measurements such as operators, sensor layouts or measurement directions. In this study, we carried out variety of measurements with different operators (male and female), different sensor layouts (direct and indirect), and sensor directions (anisotropy). For operators bias, we found that there were not significant differences by the operator's sex, while the pressure an operator exerts can create larger error in measurements. Calibrating with a standard sample for each operator is very essential in this case. For the sensor layout, we found that the indirect measurement (commonly used for cultural properties, since the direct measurement is difficult in most cases) gives lower velocity than the real one. We found that the correction coefficient is slightly different for different types of rocks: 1.50 for granite and sandstone and 1.46 for marble. From the sensor directions, we found that many rocks have slight anisotropy in their ultrasonic velocity measurement, though they are considered isotropic in macroscopic scale. Thus averaging four different directional measurement (0°, 45°, 90°, 135°) gives much less errors in measurements (the variance is 2-3 times smaller). In conclusion, we reported the error in ultrasonic meaurement of stone cultural properties by various sources quantitatively and suggested the amount of correction and procedures to calibrate the measurements. Acknowledgement: This study, which forms a part of the project, has been achieved with the support of national R&D project, which has been hosted by

  10. Ultrasonic Derivative Measurements of Bone Strain During Exercise, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations, Inc., in collaboration with the SUNY Stony Brook, proposes to extend ultrasonic pulsed phase locked loop (PPLL) derivative measurements to the...

  11. Ultrasonic signal processing and B-SCAN imaging for nondestructive testing. Application to under - cladding - cracks

    International Nuclear Information System (INIS)

    Theron, G.

    1988-02-01

    Crack propagation under the stainless steel cladding of nuclear reactor vessels is monitored by ultrasonic testing. This work study signal processing to improve detection and sizing of defects. Two possibilities are examined: processing of each individual signal and simultaneous processing of all the signals giving a B-SCAN image. The bibliographic study of time-frequency methods shows that they are not suitable for pulses. Then decomposition in instantaneous frequency and envelope is used. Effect of interference of 2 close echoes on instantaneous frequency is studies. The deconvolution of B-SCAN images is obtained by the transducer field. A point-by-point deconvolution method, less noise sensitive, is developed. B-SCAN images are processed in 2 phases: interface signal processing and deconvolution. These calculations improve image accuracy and dynamics. Water-stell interface and ferritic-austenitic interface are separated. Echoes of crack top are visualized and crack-hole differentiation is improved [fr

  12. Beginning of fish defrosting by using non-destructive ultrasonic technique

    International Nuclear Information System (INIS)

    Malainine, M; Faiz, B; Izbaim, D; Aboudaoud, I; Moudden, A; Maze, G

    2012-01-01

    During the experiments carried out on the monitoring and the study of fish defrosting by an ultrasonic technique, we have difficulties in detecting the beginning of the thawing which is an important criterion of fish quality control. To address this problem, we use the Singular Value Decomposition method (SVD) which is a mathematical tool that permits to separate the high and low energies of an histogram. The image representing low energy signals indicates the start of the thawing by showing an echo that was hidden in the original image for cod fish. Using transducers for central frequencies above 500 kHz the observed results are not very good. Therefore, this method is suitable for fish which fat content is medium or low.

  13. Universality of Nonclassical Nonlinearity Applications to Non-Destructive Evaluations and Ultrasonic

    CERN Document Server

    Delsanto, Pier Paolo

    2006-01-01

    This book comes as a result of the research work developed in the framework of two international projects: the European Science Foundation supported program NATEMIS (Nonlinear Acoustic Techniques for Micro-Scale Damage Diagnostics) and a Los Alamos-based international network. The main topics of both the programs and the book cover the phenomenology, theory and applications of Nonclassical Nonlinearity (NCNL). NCNL techniques have been found in recent years to be extremely powerful (up to 1000 times more than the corresponding linear techniques) in a wide range of applications, including Material Characterization, Ultrasonics, Geophysics and Maintenance and Restoration of artifacts. These techniques are being adopted as the main inspection and research tool in another European program: AERONEWS (Health monitoring of aircraft by nonlinear elastic wave propagation). In the future, the proposed Universality of NCNL is expected to extend the range of applications to numerous other fields and scientific discipline...

  14. Field nondestructive assay measurements as applied to process inventories

    International Nuclear Information System (INIS)

    Westsik, G.A.

    1979-08-01

    An annual process equipment holdup inventory measurement program for a plutonium processing plant was instituted by Rockwell Hanford Operations (Rockwell) at Richland, Washington. The inventories, performed in 1977 and 1978, were designed to improve plutonium accountability and control. The inventory method used field nondestructive assay (NDA) measurement techniques with portable electronics and sodium iodide detectors. Access to and movement of plutonium in work areas was curtailed during the inventory process using administrative controls. Comparison of the two annual inventories showed good reproducibility of results within the calculated error ranges. For items where no plutonium movement occurred and which contained greater than 20 grams plutonium, the average measurement difference between the two inventories was 22%. The procedures and equipment used and the operational experience from the inventories are described

  15. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, M. W., E-mail: mkepa@staffmail.ed.ac.uk; Huxley, A. D. [SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Ridley, C. J.; Kamenev, K. V. [Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2016-08-15

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe{sub 2}.

  16. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Jones, Byron

    2013-09-13

    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  17. Measurement of transitional flow in pipes using ultrasonic flowmeters

    Energy Technology Data Exchange (ETDEWEB)

    Zheng-Gang, Liu; Guang-Sheng, Du; Zhu-Feng, Shao; Qian-Ran, He; Chun-Li, Zhou, E-mail: lzhenggang@sdu.edu.cn [School of Energy and Power Engineering, Qian-Fo-shan campus, Shandong University, Jinan City 250061, Shandong Province (China)

    2014-10-01

    The accuracy of an ultrasonic flowmeter depends on the ratio k of average profile velocity of pipe and average velocity of an ultrasonic propagation path. But there is no appropriate method of calculating k for transition flow. In this paper, the velocity field of the transition flow in a pipe is measured by particle image velocimetry. On this basis, the k of U-shaped and V-shaped ultrasonic flowmeter is obtained when Reynolds number is between 2000 and 20 000. It is shown that the k is constant when the Reynolds number is in the range of 2000–2400 and 5400–20 000, and the k decreases with the increasing of Re when the Reynolds number is 2400–5400. The results of study can be used to improve the measurement accuracy of ultrasonic flowmeters when flow is transition flow and can provide help for the study of pipe flow. (paper)

  18. Use of Ultrasonic Technology for Soil Moisture Measurement

    Science.gov (United States)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.

    1997-01-01

    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  19. Nondestructive measurement of the grid ratio using a single image

    International Nuclear Information System (INIS)

    Pasciak, A. S.; Jones, A. Kyle

    2009-01-01

    The antiscatter grid is an essential part of modern radiographic systems. Since the introduction of the antiscatter grid, however, there have been few methods proposed for acceptance testing and verification of manufacturer-supplied grid specifications. The grid ratio (r) is an important parameter describing the antiscatter grid because it affects many other grid quality metrics, such as the contrast improvement ratio (K), primary transmission (T p ), and scatter transmission (T s ). Also, the grid ratio in large part determines the primary clinical use of the grid. To this end, the authors present a technique for the nondestructive measurement of the grid ratio of antiscatter grids. They derived an equation that can be used to calculate the grid ratio from a single off-focus flat field image by exploiting the relationship between grid cutoff and off-focus distance. The calculation can be performed by hand or with included analysis software. They calculated the grid ratios of several different grids throughout the institution, and afterward they destructively measured the grid ratio of a nominal r8 grid previously evaluated with the method. They also studied the sensitivity of the method to technical factors and choice of parameters. With one exception, the results for the grids found in the institution were in agreement with the manufacturer's specifications and international standards. The nondestructive evaluation of the r8 grid indicated a ratio of 7.3, while the destructive measurement indicated a ratio of 7.53±0.28. Repeated evaluations of the same grid yielded consistent results. The technique provides the medical physicist with a new tool for quantitative evaluation of the grid ratio, an important grid performance criterion. The method is robust and repeatable when appropriate choices of technical factors and other parameters are made.

  20. Development of an ultrasonic nondestructive inspection method for impact damage detection in composite aircraft structures

    Science.gov (United States)

    Capriotti, M.; Kim, H. E.; Lanza di Scalea, F.; Kim, H.

    2017-04-01

    High Energy Wide Area Blunt Impact (HEWABI) due to ground service equipment can often occur in aircraft structures causing major damages. These Wide Area Impact Damages (WAID) can affect the internal components of the structure, hence are usually not visible nor detectable by typical one-sided NDE techniques and can easily compromise the structural safety of the aircraft. In this study, the development of an NDI method is presented together with its application to impacted aircraft frames. The HEWABI from a typical ground service scenario has been previously tested and the desired type of damages have been generated, so that the aircraft panels could become representative study cases. The need of the aircraft industry for a rapid, ramp-friendly system to detect such WAID is here approached with guided ultrasonic waves (GUW) and a scanning tool that accesses the whole structure from the exterior side only. The wide coverage of the specimen provided by GUW has been coupled to a differential detection approach and is aided by an outlier statistical analysis to be able to inspect and detect faults in the challenging composite material and complex structure. The results will be presented and discussed with respect to the detection capability of the system and its response to the different damage types. Receiving Operating Characteristics curves (ROC) are also produced to quantify and assess the performance of the proposed method. Ongoing work is currently aimed at the penetration of the inner components of the structure, such as shear ties and C-frames, exploiting different frequency ranges and signal processing techniques. From the hardware and tool development side, different transducers and coupling methods, such as air-coupled transducers, are under investigation together with the design of a more suitable scanning technique.

  1. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per

    2005-07-01

    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  2. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  3. Nondestructive testing technology for measurement coatings thickness on material

    International Nuclear Information System (INIS)

    Yang Mingtai; Wu Lunqiang; Zhang Lianping

    2008-01-01

    The principle, applicability range, advantage and disadvantage of electromagnetic, eddy current method, β backscatter method and XRF methods for nondestructive testing coating thickness of material have been reviewed. The relevant apparatus and manufacturers have been summarized. And the application and developmental direction of manufacturers for nondestructive testing coatings thickness has been foreshowed. (authors)

  4. High-temperature ultrasonic measurements applied to directly heated samples

    International Nuclear Information System (INIS)

    Moore, R.I.; Taylor, R.E.

    1984-01-01

    High-temperature ultrasonic measurements of Young's modulus were made of graphite samples heated directly. The samples were cylindrical rods of the same geometry as that used in the multiproperty apparatus for simultaneous/consecutive measurements of a number of thermophysical properties to high temperatures. The samples were resonated in simple longitudinal vibration modes. Measurements were performed up to 2000 K. Incorporation of ultrasonic measurements of Young's modulus in the capabilities of the multiproperty apparatus is valuable because (i) ultrasonic measurements can be related to normal destructive measurements of this property; (ii) they can be used for screening materials or acceptance testing of specimens; (iii) they can be used to increase the understanding of thermophysical properties and property correlations. (author)

  5. First nondestructive measurements of power MOSFET single event burnout cross sections

    International Nuclear Information System (INIS)

    Oberg, D.L.; Wert, J.L.

    1987-01-01

    A new technique to nondestructively measure single event burnout cross sections for N-channel power MOSFETs is presented. Previous measurements of power MOSFET burnout susceptibility have been destructive and thus not conducive to providing statistically meaningful burnout probabilities. The nondestructive technique and data for various device types taken at several accelerators, including the LBL Bevalac, are documented. Several new phenomena are observed

  6. Nondestructive measurement for radionuclide concentration distribution in soil column

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Ohnuki, Toshihiko; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1985-01-01

    A nondestructive method has been studied for determining the concentration of radionuclide (Cs-137) distributed in a soil column. The concentration distribution was calculated from the counting rate distribution using the efficiency matrix of a detector. The concentration distribution obtained by this method, with measuring efficiencies of theoretical calculation, coincides well with that obtained by the destructive sampling method. This method is, therefore, found to be effective for the measurement of one dimensional concentration distribution. The measuring limit of this method is affected not only by the radionuclide concentration but also by the shape of concentration distribution in a soil column and also by the way it is divided into concentration blocks. It is found that, the radioactive concentration up to 2.6 x 10 -4 μCi/g (9.62 Bq/g), and also the distribution up to where the concentration reduces to half at every 1 cm of depth, can be measured by this system. The concentration blocks can be divided into 1 cm of thickness as a minimum value. (author)

  7. Development of nondestructive measurement of cold work rate, (2)

    International Nuclear Information System (INIS)

    Kamimura, Hideaki; Igarashi, Miyuki; Satoh, Masakazu; Miura, Makoto

    1978-01-01

    Cold-worked type 316 stainless steel will be used as fuel cladding material for the proto-type fast reactor MONJU. Cold work rate is an important parameter in swelling behavior of fuel cladding. It has been shown that austenitic stainless steel undergoes martensitic transformation during cold working. Nondestructive evaluation of cold work rate will be expected by measuring residual magnetism produced in the presence of martensitic phase when cold worked austenitic stainless steel is magnetized. In the previous work, the residual magnetism of cladding tubes of type 316 stainless steel was measured. The results have shown high degree of the correlation between residual magnetism and cold work rate. This paper reports the results of measurement on cold-rolled type 316 stainless steel plate samples. Dimensions of the specimens are 100 mm long and 3.5 and 7 mm wide. The apparatus and experimental procedures were similar to the previous work. Good agreement was found between the estimated cold work rate obtained in the previous work and that for cold rolled plate specimens. Measurement of residual magnetism in identical direction with magnetization showed smaller dispersion of data as compared with that in transverse direction. The residual magnetism near specimen surface hardly decreased when the surface of specimen was chemically removed. The reason for the comparative decrease in residual magnetism at 10% and 15% cold work rate is not clear. (Wakatsuki, Y.)

  8. Non-destructive measurement technologies for nuclear safeguards

    International Nuclear Information System (INIS)

    Gavron, A.

    1998-04-01

    There are three aspects that need to be in place in order to maintain a valid safeguards system: (1) Physical protection; guarding the access to nuclear materials using physical protection and surveillance. (2) Accounting systems; computer based accounting systems that provide the current location of nuclear materials, quantities, and the uncertainty in the assayed values. (3) Measurement systems; detectors, data acquisition systems and data analysis methods that provide accurate assays of nuclear material quantities for the accounting system. The authors expand on this third aspect, measurement systems, by discussing nondestructive assay (NDA) techniques. NDA is defined as the quantitative or qualitative determination of the kind and/or amount of nuclear material in an item without alteration or invasion of the item. This is contrasted with destructive analysis which is the process of taking small samples from the item in question, analyzing those samples by chemical analysis, destroying the original nature of the samples in the process (hence the term destructive), and applying the results to the entire item. Over the past 30 years, numerous techniques, using the atomic and nuclear properties of the actinides, have been developed for reliable, rapid, accurate, and tamper-proof NDA of nuclear materials. The authors distinguish between two types of measurements: the first involving the detection of spontaneously emitted radiation, produced by the natural radioactive decay processes; the second involving the detection of induced radiation, produced by irradiating the sample with an external radiation source

  9. Initial evaluation of ultrasonic attenuation measurements for estimating fracture toughness of RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. Jr.; Green, R.E. Jr. [Johns Hopkins Univ., Baltimore, MD (United States). Center for Nondestructive Evaluation

    1999-08-01

    Neutron bombardment of reactor pressure vessel (RPV) steels causes reductions in fracture toughness in these steels, termed neutron irradiation embrittlement. Currently, there are no accepted methods for nondestructive determination of the extent of the irradiation embrittlement nor the actual fracture toughness of the reactor pressure vessel. This paper provides initial results of an effort addressing the use of ultrasonic attenuation as a suitable parameter for nondestructive determination of irradiation embrittlement in RPV steels. (orig.)

  10. Feasibility of nondestructive assay measurements in uranium enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Walton, R.B.

    1978-04-01

    Applications of nondestructive assay methods to measurement problems in uranium enrichment facilities are reviewed. The results of a number of test and evaluation projects that were performed over the last decade at ORGDP and Portsmouth are presented. Measurements of the residual holdup in the top enrichment portion of the shut-down K-25 cascade were made with portable neutron and gamma-ray detectors, and inventory estimates based on these data were in good agreement with ORGDP estimates. In the operating cascade, the tests showed that portable NaI detectors are effective for monitoring NaF and alumina media for gaseous effluent traps and that gas phase enrichments and inventories, as well as large deposits of uranium, can be detected with portable neutron and gamma-ray instrumentation. A wide variety of scrap and waste materials, including barrier and compressor blades, incinerator ash and trapping media, and miscellaneous waste, were measured using passive gamma-ray and neutron methods and 14-MeV neutron interrogation. Methods developed for rapid verification of UF/sub 6/ in shipping containers with portable neutron and gamma-ray instruments are now used routinely by safeguards inspectors. Passive assay methods can also be used to measure continuously the enrichments of /sup 235/U and /sup 234/U in the UF/sub 6/ product and tails withdrawals of a gaseous diffusion plant. A system that was developed and installed in the extended-range product withdrawal station of the Portsmouth facility measures enrichment with a relative accuracy of 0.5%. A stand-alone neutron detector has also been successfully evaluated for the measurement of the isotopic abundance of /sup 234/U in UF/sub 6/ in sample cylinders, an application of potential importance to Minor Isotope Safeguards Technology. Recommendations are made on the role of NDA measurements for enrichment plant safeguards, including additional tests and evaluations that may be needed, particularly for advanced uranium

  11. Using Ultrasonic Lamb Waves To Measure Moduli Of Composites

    Science.gov (United States)

    Kautz, Harold E.

    1995-01-01

    Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.

  12. Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States); Zammerachi, Mattia [Univ. of Minnesota, Minneapolis, MN (United States); Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of this round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration

  13. Bullet Ultrasonic Obstruction Detection & Distance Measurement Using AVR Microcontroller

    Directory of Open Access Journals (Sweden)

    Satish Pandey

    2008-08-01

    Full Text Available This paper describes the practical implementation of a short range ultrasonic obstruction detection and distance measurement device. By employing an ultrasonic transducer pair for producing ultrasonic sounds and sensing the reflected sound waves, the obstructions are detected. The hardware interface uses an Atmel ATmega8 AVR microcontroller to facilitate the generation of 40 kHz signal burst which is used in the transmitter circuit, and also to process the received signal for measuring the time of flight of reflected waves and exact distance of the obstruction. The program for this device is developed in WinAVR, and the code generated is dumped into microcontroller using AVR Studio. Educational aspects of this project include the mastery of a programming language and corresponding tools, the design of a functional and intuitive embedded application, and the development of appropriate hardware to build the device.

  14. Procedure for the creation of reproducible acoustic coupling using the ultrasonic contact method for nondestructive testing of materials

    International Nuclear Information System (INIS)

    Tomilov, B.V.

    1979-01-01

    The transducer is pressed to the specimen, a lubricating coating being applied as an intermediate layer. By means of a vibrator belonging to the transducer there are generated vibrations, the growth rate of the amplitude of the reflected signal picked up being observed. This growth rate is monotonously decreasing. If the growth rate is abruptly decreasing or if the amplitude of the measured signal remains constant the vibrator is turned off, because now good acoustic contact is established. After a short time of waiting for the residual stress of the transducer to decay, recording of the ultrasonic parameters may then be taken up. The method can be applied to thickness measurements and inhomogeneous materials with low surface quality. (RW) [de

  15. Ultrasonic Nondestructive Evaluation of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) During Large-Scale Load Testing and Rod Push-Out Testing

    Science.gov (United States)

    Johnston, Patrick H.; Juarez, Peter D.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.

  16. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    Science.gov (United States)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  17. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    Science.gov (United States)

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  18. Ultrasonic attenuation measurements and 'glassy' behaviour of neutron irradiated quartz

    International Nuclear Information System (INIS)

    Laermans, C.; Esteves, V.; Vanelstraete, A.

    1986-01-01

    The ultrasonic attenuation of longitudinal acoustic waves in slightly disordered crystalline quartz has been measured over a temperature range from 1.3 to 300 K, using the pulse-echo technique. Neutron irradiation is demonstrated to increase the ultrasonic attenuation at low temperatures indicating the presence of two-level tunneling systems similar to those of glasses. The present low-temperature acoustic results agree with a frequency independence and a T 3 behaviour for the relaxation process predicted by the two-level tunneling TLS-model where the regime ωT 1 >> 1 holds. (author)

  19. Feasibility of using ultrasonic pulse velocity to measure the bond between new and old concrete

    Directory of Open Access Journals (Sweden)

    Fareed Hameed Majeed

    2017-11-01

    Full Text Available Connecting new and old concrete is required in many practical situations, such as repairing, strengthening or extending existing reinforced concrete buildings or members. In addition to using this technique at construction joints. It is obvious the practical difficulties to measure the bond attained at the interface surface between the new and old concrete. Doing the destructive shear test at the interface surface is not an option in most practical cases due to its destructive character. So, this paper aims to study the feasibility of using the nondestructive ultrasonic pulse velocity to evaluate the bond attained at the interface surface between new and old concrete. An experimental work has been done to 24 specimens of normal and high strength concrete, with and without using an epoxy bonding agent at the interface that connect the two materials. The results of experiments clearly shown that this method can be used to evaluate the acquired bond between the new and old concrete.

  20. Nondestructive testing method

    International Nuclear Information System (INIS)

    Porter, J.F.

    1996-01-01

    Nondestructive testing (NDT) is the use of physical and chemical methods for evaluating material integrity without impairing its intended usefulness or continuing service. Nondestructive tests are used by manufaturer's for the following reasons: 1) to ensure product reliability; 2) to prevent accidents and save human lives; 3) to aid in better product design; 4) to control manufacturing processes; and 5) to maintain a uniform quality level. Nondestructive testing is used extensively on power plants, oil and chemical refineries, offshore oil rigs and pipeline (NDT can even be conducted underwater), welds on tanks, boilers, pressure vessels and heat exchengers. NDT is now being used for testing concrete and composite materials. Because of the criticality of its application, NDT should be performed and the results evaluated by qualified personnel. There are five basic nondestructive examination methods: 1) liquid penetrant testing - method used for detecting surface flaws in materials. This method can be used for metallic and nonmetallic materials, portable and relatively inexpensive. 2) magnetic particle testing - method used to detect surface and subsurface flaws in ferromagnetic materials; 3) radiographic testing - method used to detect internal flaws and significant variation in material composition and thickness; 4) ultrasonic testing - method used to detect internal and external flaws in materials. This method uses ultrasonics to measure thickness of a material or to examine the internal structure for discontinuities. 5) eddy current testing - method used to detect surface and subsurface flaws in conductive materials. Not one nondestructive examination method can find all discontinuities in all of the materials capable of being tested. The most important consideration is for the specifier of the test to be familiar with the test method and its applicability to the type and geometry of the material and the flaws to be detected

  1. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Rymantas Kazys

    2015-08-01

    Full Text Available An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%.

  2. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  3. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-08-07

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%).

  4. Stress measurement and bolt tensioning by ultrasonic methods

    International Nuclear Information System (INIS)

    Smith, J.F.; Greiner, J.D.

    1980-01-01

    In the past decade, a new technique has been developed for measuring tensile stresses in solids. This ultrasonic technique has been used thus far primarily for measuring fastener tension. The precision of measurement is routinely to 2-3% and, with special care, to approx. 1%. The method is insensitive to the frictional losses which plague tensioning by torque wrench. Though the approach is relatively new, it promises a wide range of applicability

  5. Stress Measurement and Bolt Tensioning by Ultrasonic Methods

    Science.gov (United States)

    Smith, J. F.; Greiner, John D.

    1980-07-01

    In the past decade, a new technique has been developed for measuring tensile stresses in solids. This ultrasonic technique has been used thus far primarily for measuring fastener tension. The precision of measurement is routinely to 2-3% and, with special care, to ˜1%. The method is insensitive to the frictional losses which plague tensioning by torque wrench. Though the approach is relatively new, it promises a wide range of applicability.

  6. Timelapse ultrasonic tomography for measuring damage localization in geomechanics laboratory tests.

    Science.gov (United States)

    Tudisco, Erika; Roux, Philippe; Hall, Stephen A; Viggiani, Giulia M B; Viggiani, Gioacchino

    2015-03-01

    Variation of mechanical properties in materials can be detected non-destructively using ultrasonic measurements. In particular, changes in elastic wave velocity can occur due to damage, i.e., micro-cracking and particles debonding. Here the challenge of characterizing damage in geomaterials, i.e., rocks and soils, is addressed. Geomaterials are naturally heterogeneous media in which the deformation can localize, so that few measurements of acoustic velocity across the sample are not sufficient to capture the heterogeneities. Therefore, an ultrasonic tomography procedure has been implemented to map the spatial and temporal variations in propagation velocity, which provides information on the damage process. Moreover, double beamforming has been successfully applied to identify and isolate multiple arrivals that are caused by strong heterogeneities (natural or induced by the deformation process). The applicability of the developed experimental technique to laboratory geomechanics testing is illustrated using data acquired on a sample of natural rock before and after being deformed under triaxial compression. The approach is then validated and extended to time-lapse monitoring using data acquired during plane strain compression of a sample including a well defined layer with different mechanical properties than the matrix.

  7. Ultrasonic downcomer flow measurements for recirculating steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Janzen, Victor, E-mail: Victor.Janzen@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON, Canada K0 J 1J0 (Canada); Luloff, Brian [Canadian Nuclear Laboratories, Chalk River, ON, Canada K0 J 1J0 (Canada); Sedman, Ken [Nuclear Safety Analysis & Support Department, Bruce Power, Toronto, ON, Canada M5G 1X6 (Canada)

    2015-08-15

    Highlights: • Measuring recirculating flow in nuclear steam generators provides useful information. • Flow measurements shed light on component performance and degradation mechanisms. • Commonly used ultrasonic technology and application methods are described. • Results of measurements at several power reactors are summarized. • Potential improvements in reliability and flexibility of application are suggested. - Abstract: Measurements of downcomer flow in nuclear steam generators can provide unique fitness for service and performance indicators related to overall thermalhydraulic performance, safety related secondary-side setpoints and certain forms of degradation. This paper reviews the benefits of downcomer-flow measurements to nuclear power–plant operators, and describes methods that are commonly used. It summarizes the history and state-of-the-art of the most widely used technology, non-intrusive ultrasonic systems, including field applications at several nuclear power plants. It also describes the technical challenges that remain, and summarizes recent technical developments and future improvements.

  8. Directivity measurements in aluminum using a laser ultrasonics system

    International Nuclear Information System (INIS)

    Sakamoto, J M S; Pacheco, G M; Tittmann, B R; Baba, A

    2011-01-01

    A laser ultrasonics system was setup to measure the directivity (angular dependence pattern) of the amplitude of ultrasonic waves generated in aluminum samples. A pulsed Nd:YAG laser operating at 1064 nm optical wavelength, with typical pulse width (FWHM) of 8 ns, and energy per pulse of 450 mJ, was used to generate the ultrasound waves in the samples. The laser detection system was a Mach-Zehnder interferometer with typical noise-limited resolution of 0.25 nm (rms), frequency range from 50 kHz to 20 MHz, and measurement range from -75 nm/V to +75 nm/V. Two different optical spot sizes of the Nd:YAG laser were used to generate waves in the ablation regime: one was focused and the other was unfocused. Using the obtained data, the directivity graphics were drawn and compared with the theoretical curves, showing a good agreement. The experiments showed the directivity as a function of the optical spot size. For a point ultrasonic source (or focused optical spot), the directivity shows that the longitudinal waves present considerable amplitude in all directions. For a larger ultrasonic source (or an unfocused optical spot) the directivity shows that the longitudinal waves are generated with the higher amplitudes inside angles around ±10 0 .

  9. Nondestructive testing of materials

    International Nuclear Information System (INIS)

    NUKEM has transferred know-how from reactor technology to materials testing. The high and to a large extent new quality standards in the nuclear industry necessitate reliable measuring and testing equipment of the highest precision. Many of the tasks presented to us could not be solved with the equipment available on the market, for which reason we have developed our own measuring, testing and control systems. We have therefore acquired considerable experience in dealing with specific measuring, testing and control tasks and can handle even out-of-the-way problems that are submitted to us from a wide variety of fields. Our mechanical systems for the checking of close-tolerance gaps, the automatic determination of pellet dimensions and the measurement of absolute lengths and absolute velocities are in use in many different industrial fields. We have succeeded in solving unusual testing and sorting problems with the aid of automated surface testing equipment working on optical principles. Our main activities in the field of non-destructive testing have been concentrated on ultrasonic and eddy current testing and, of late, acoustic emission analysis. NUKEM ultrasonic systems are notable for their high defect detection rate and testing accuracy, combined with high testing speed. The equipment we supply includes ultrasonic rotary systems for the production testing of quality tubes, ultrasonic immersion systems for the final testing of reactor cladding tubes, weld testing equipment, and test equipment for the bonds in multi-layer plates. (orig./RW) [de

  10. NDE Research At Nondestructive Measurement Science At NASA Langley

    Science.gov (United States)

    1989-06-01

    length of 68 inches and a ply orientation of 90-(+/-)60-90-90 would have a fundemental frequency of 10 hertz. This is how the third tube was...Perez, "A relationship between ultrasonic integrated backscatter and myocar- dial contractile function," J. Clin. Invest . 76, 2151-2160 (1985

  11. Design and development of an ultrasonic pulser-receiver unit for non-destructive testing of materials

    International Nuclear Information System (INIS)

    Patankar, V.H.; Joshi, V.M.

    2002-11-01

    The pulser/receiver constitutes the most vital part of an ultrasonic flaw detector or an ultrasonic imaging system used for inspection of materials. The ultrasonic properties of the material and resolution requirements govern the choice of the frequency of ultrasound that can be optimally used. The pulser/receiver in turn decides the efficiency of excitation of the transducer and the overall signal to noise ratio of the system for best sensitivity and resolution. A variety of pulsers are used in the ultrasonic instruments employed for materials inspection. This report describes a square wave type of an ultrasonic pulser-receiver unit developed at Ultrasonic Instrumentation Section, Electronics Division, BARC. It has been primarily designed for excitation of the transducer that is used with a multi-channel ultrasonic imaging system ULTIMA 100M targeted for inspection of SS403 billets, which are in turn used as the base material for fabrication of end fittings for coolant channels of pressurized heavy water nuclear reactors (PHWRs). The design of the pulser is based upon very fast MOSFETs, configured as electronic switches. The pulser is operated with a linear bipolar H.V. supply (+/- 500V max.). The receiver provides a 60 dB gain with a -3 dB BW of 40 MHz. This pulser/receiver unit has been successfully interfaced with a 4 channel ULTIMA 100 M4 multichannel ultrasonic C-scan imaging system, also designed and developed by the authors at Ultrasonic Instrumentation Section (Electronics Division, BARC) and supplied to Centre for Design and Manufacturer - CDM, BARC. This system is being regularly used in C-scan imaging mode for volumetric inspection of SS403 billets for end fittings of 500 MWe PHWRs. (author)

  12. Research and realization of ultrasonic gas flow rate measurement based on ultrasonic exponential model.

    Science.gov (United States)

    Zheng, Dandan; Hou, Huirang; Zhang, Tao

    2016-04-01

    For ultrasonic gas flow rate measurement based on ultrasonic exponential model, when the noise frequency is close to that of the desired signals (called similar-frequency noise) or the received signal amplitude is small and unstable at big flow rate, local convergence of the algorithm genetic-ant colony optimization-3cycles may appear, and measurement accuracy may be affected. Therefore, an improved method energy genetic-ant colony optimization-3cycles (EGACO-3cycles) is proposed to solve this problem. By judging the maximum energy position of signal, the initial parameter range of exponential model can be narrowed and then the local convergence can be avoided. Moreover, a DN100 flow rate measurement system with EGACO-3cycles method is established based on NI PCI-6110 and personal computer. A series of experiments are carried out for testing the new method and the measurement system. It is shown that local convergence doesn't appear with EGACO-3cycles method when similar-frequency noises exist and flow rate is big. Then correct time of flight can be obtained. Furthermore, through flow calibration on this system, the measurement range ratio is achieved 500:1, and the measurement accuracy is 0.5% with a low transition velocity 0.3 m/s. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  14. Electromagnetic acoustic transducers noncontacting ultrasonic measurements using EMATS

    CERN Document Server

    Hirao, Masahiko

    2017-01-01

    This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs’ low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs’ contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical ...

  15. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  16. Performance considerations of ultrasonic distance measurement with well defined properties

    International Nuclear Information System (INIS)

    Elmer, Hannes; Schweinzer, Herbert

    2005-01-01

    Conventional ultrasonic distance measurement systems based on narrow bandwidth ultrasonic bursts and amplitude detection are often used because of their low costs and easy implementation. However, the achievable results strongly depend on the actual environments where the system is implemented: in case of well defined objects that are always located near the measurement direction of the system, in general good results are obtained. If arbitrary objects are expected that are moreover located in arbitrary positions in front of the sensor, strongly object dependent areas where objects are detected with decreasing accuracy towards their borders must be taken into account. In previous works we developed an ultrasonic measurement system that provides accurate distance measurement values within a well defined detection area that is independent of the reflection properties of the objects. This measurement system is based on the One Bit Correlation method that is described in the following. To minimise its implementation efforts, it is necessary to examine the influence of the system parameters as e.g. the correlation length to the results that are expected in case of different signal to noise ratios of the received signal. In the following, these examinations are shown and the obtained results are discussed that allow getting a well conditioned system that makes best use of given system resources

  17. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    Directory of Open Access Journals (Sweden)

    Francisco J. Cañete

    2016-02-01

    Full Text Available Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression.

  18. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    Science.gov (United States)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  19. Light scattering by ultrasonically-controlled small particles: system design, calibration, and measurement results

    Science.gov (United States)

    Kassamakov, Ivan; Maconi, Göran; Penttilä, Antti; Helander, Petteri; Gritsevich, Maria; Puranen, Tuomas; Salmi, Ari; Hæggström, Edward; Muinonen, Karri

    2018-02-01

    We present the design of a novel scatterometer for precise measurement of the angular Mueller matrix profile of a mm- to µm-sized sample held in place by sound. The scatterometer comprises a tunable multimode Argon-krypton laser (with possibility to set 1 of the 12 wavelengths in visible range), linear polarizers, a reference photomultiplier tube (PMT) for monitoring the beam intensity, and a micro-PMT module mounted radially towards the sample at an adjustable radius. The measurement angle is controlled by a motor-driven rotation stage with an accuracy of 15'. The system is fully automated using LabVIEW, including the FPGA-based data acquisition and the instrument's user interface. The calibration protocol ensures accurate measurements by using a control sphere sample (diameter 3 mm, refractive index of 1.5) fixed first on a static holder followed by accurate multi-wavelength measurements of the same sample levitated ultrasonically. To demonstrate performance of the scatterometer, we conducted detailed measurements of light scattered by a particle derived from the Chelyabinsk meteorite, as well as planetary analogue materials. The measurements are the first of this kind, since they are obtained using controlled spectral angular scattering including linear polarization effects, for arbitrary shaped objects. Thus, our novel approach permits a non-destructive, disturbance-free measurement with control of the orientation and location of the scattering object.

  20. Ultrasonic fetal size measurements in Brisbane, Australia

    International Nuclear Information System (INIS)

    Schluter, P.J.; Pritchard, G.; Gill, M.A.

    2004-01-01

    The purpose of this paper was to construct population-specific charts of fetal biometry for 11-41 weeks gestation in relation to known gestational age from a large population of normal Australian pregnancies when examination is performed to a standard protocol by experienced operators. All consenting eligible women attending a large Brisbane clinic between January 1993 and April 2003 were recruited. Menstrual history was taken prior to examination. Measurements were performed to a standard protocol. Prospective assessment was made about the association between gestational age from the last menstrual period and biometry. Exclusion principles were applied. Statistical analyses were performed using polynomial regression models and thorough diagnostic checks were undertaken. Included within the study were separate scans for 20 555 pregnancies from 17 660 women. Equations, means and 95th reference intervals were derived and reported for the following sonographic measurements: biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC) and femur length (FL). Population-specific regression equations for BPD, HC, AC and FL have been proposed for Australian pregnancies. Once validated by others, we believe they will warrant consideration for adoption by the Australasian Society for Ultrasound in Medicine. Copyright (2004) Blackwell Publishing Asia Pty Ltd

  1. Hydrogen-isotope motion in scandium studied by ultrasonic measurements

    International Nuclear Information System (INIS)

    Leisure, R.G.; Schwarz, R.B.; Migliori, A.; Torgeson, D.R.; Svare, I.

    1993-01-01

    Resonant ultrasound spectroscopy has been used to investigate ultrasonic attenuation in single crystals of Sc, ScH 0.25 , and ScD 0.18 over the temperature range of 10--300 K for frequencies near 1 MHz. Ultrasonic-attenuation peaks were observed in the samples containing H or D with the maximum attenuation occurring near 25 K for ScH 0.25 and near 50 K for ScD 0.18 . The general features of the data suggest that the motion reflected in the ultrasonic attenuation is closely related to the low-temperature motion seen in nulcear-magnetic-resonance spin-lattice-relaxation measurements. The ultrasonic results were fit with a two-level-system (TLS) model involving tunneling between highly asymmetric sites. The relaxation of the TLS was found to consist of two parts: a weakly temperature-dependent part, probably due to coupling to electrons; and a much more strongly temperature-dependent part, attributed to multiple-phonon processes. The strongly temperature-dependent part was almost two orders of magnitude faster in ScH 0.25 than in ScD 0.18 , in accordance with the idea that tunneling is involved in the motion. Surprisingly, the weakly temperature-dependent part was found to be about the same for the two isotopes. The asymmetries primarily responsible for coupling the TLS to the ultrasound are attributed to interactions between hydrogen ions that lie on adjacent c axes. The results are consistent with an isotope-independent strength for the coupling of the TLS to the ultrasound

  2. Grain size measurements by ultrasonic Rayleigh surface waves

    International Nuclear Information System (INIS)

    Palanichamy, P.; Jayakumar, T.

    1996-01-01

    The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)

  3. Non-Destructive Inspection Lab (NDI)

    Data.gov (United States)

    Federal Laboratory Consortium — The NDI specializes in applied research, development and performance of nondestructive inspection procedures (flourescent penetrant, magnetic particle, ultrasonics,...

  4. Instrument maintenance of ultrasonic influences parameters measurement in technological processes

    Directory of Open Access Journals (Sweden)

    Tomal V. S.

    2008-04-01

    Full Text Available The contact and non-contact vibration meters for intermittent and continuous control of the vibration amplitude in the ultrasonic technological equipment have been developed. And in order to estimate the cavitation intensity in liquids the authors have developed cavitation activity indicators and cavitation sensitivity meters, allowing to measure the magnitude of the signal level in the range of maximum spectral density of cavitation noise. The developed instruments allow to improve the quality of products, reduce the defect rate and power consumption of equipment by maintaining optimum conditions of the process.

  5. Guidance on meeting DOE order requirements for traceable nondestructive assay measurements

    International Nuclear Information System (INIS)

    1994-05-01

    Purpose of this guide is to facilitate accuracy and precision of nondestructive assay measurements through improvement of the materials and process of traceability. This document provides DOE and its contractor facilities with guidance to establish traceability to the national measurement base for site-prepared NDA working reference materials

  6. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.

    Science.gov (United States)

    Waag, Grunde; Hoff, Lars; Norli, Petter

    2015-02-01

    Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Investigation of PVC physical ageing in field test specimens using ultrasonic and dielectric measurements

    NARCIS (Netherlands)

    Demcenko, A.; Ravanan, M.; Visser, Roy; Loendersloot, Richard; Akkerman, Remko

    2013-01-01

    Physical ageing in PVC is studied using two techniques: a) non-linear ultrasonic measurements based on the non-collinear wave interaction theory and b) dielectric measurements. The ultrasonic measurement results are compared with dielectric measurement results. The comparison shows that the used

  8. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  9. Sampling phased array a new technique for signal processing and ultrasonic imaging

    OpenAIRE

    Bulavinov, A.; Joneit, D.; Kröning, M.; Bernus, L.; Dalichow, M.H.; Reddy, K.M.

    2006-01-01

    Different signal processing and image reconstruction techniques are applied in ultrasonic non-destructive material evaluation. In recent years, rapid development in the fields of microelectronics and computer engineering lead to wide application of phased array systems. A new phased array technique, called "Sampling Phased Array" has been developed in Fraunhofer Institute for non-destructive testing. It realizes unique approach of measurement and processing of ultrasonic signals. The sampling...

  10. Sampling phased array - a new technique for ultrasonic signal processing and imaging

    OpenAIRE

    Verkooijen, J.; Boulavinov, A.

    2008-01-01

    Over the past 10 years, the improvement in the field of microelectronics and computer engineering has led to significant advances in ultrasonic signal processing and image construction techniques that are currently being applied to non-destructive material evaluation. A new phased array technique, called 'Sampling Phased Array', has been developed in the Fraunhofer Institute for Non-Destructive Testing([1]). It realises a unique approach of measurement and processing of ultrasonic signals. Th...

  11. Sampling phased array, a new technique for ultrasonic signal processing and imaging now available to industry

    OpenAIRE

    Verkooijen, J.; Bulavinov, A.

    2008-01-01

    Over the past 10 years the improvement in the field of microelectronics and computer engineering has led to significant advances in ultrasonic signal processing and image construction techniques that are currently being applied to non-destructive material evaluation. A new phased array technique, called "Sampling Phased Array" has been developed in the Fraunhofer Institute for non-destructive testing [1]. It realizes a unique approach of measurement and processing of ultrasonic signals. The s...

  12. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to

  13. EMATs for science and industry noncontacting ultrasonic measurements

    CERN Document Server

    Hirao, Masahiko

    2003-01-01

    EMATs for Science and Industry comprises the physical principles of electromagnetic acoustic transducers (EMATs) and the applications to scientific and industrial ultrasonic measurements on materials. The text is arranged in four parts: -PART I is intended to be a self-contained description of the basic elements of coupling mechanism along with practical designing of EMATs for various purposes. There are several implementations to compensate for the low transfer efficiency of the EMATs. Useful tips to make an EMAT are also presented. -PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of contactless nature of EMATs and is the most successful amplification mechanism for precise velocity and attenuation measurements. -PART III applies EMAR to studying the physical acoustics. New measurements emerged on three major subjects; in situ monitoring of dislocation behavior, determination of anisotropic elastic constants, and acoustic nonlinearity evolution. -PART IV deal...

  14. A comparison of conventional and prototype nondestructive measurements on molten salt extraction residues

    International Nuclear Information System (INIS)

    Longmire, V.L.; Hurd, J.R.; Sedlacek, W.E.; Scarborough, A.M.

    1987-01-01

    Fourteen molten salt extraction residues were assayed by conventional and prototype nondestructive assay (NDA) techniques to be compared with destructive chemical analysis in an effort to identify acceptable NDA measurement methods for this matrix. NDA results on seven samples and destructive results on four samples are presented

  15. An improved technique for non-destructive measurement of the stem ...

    African Journals Online (AJOL)

    It was concluded that the standard volume model based on the non-destructive measurement technique meets the requirements for precision in forest surveys. The precision of the standard volume model for L. gmelinii (a coniferous tree) was superior to that of the model for P. tomentosa (a broad-leaved tree). The electronic ...

  16. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method.

    Science.gov (United States)

    Hu, Yufei; Zhang, Zhujun; Yang, Chunyan

    2008-07-01

    Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.

  17. Ultrasonic measurements for in-service assessment of wrought Inconel 625 cracker tubes of heavy water plants

    International Nuclear Information System (INIS)

    Kumar, Anish; Rajkumar, K.V.; Jayakumar, T.; Raj, Baldev; Mishra, B.

    2006-01-01

    The degradation in mechanical properties of Inconel 625 ammonia cracker tubes occurs during the service for long duration in heavy water plants. The present study brings out the possibility of using Poisson's ratio (derived from measurement of time of flight of ultrasonic waves) in combination with hardness measurements, as an effective non-destructive tool for assessment of in-service degradation of Inconel 625 cracker tubes and qualification of re-solution annealing heat treatment for their rejuvenation. Further, the study also indicates the feasibility of extending the life of some of the tubes beyond the presently followed 120 000 h, before they are taken up for re-solution annealing, without affecting their serviceability. However, further studies are required to identify quantitative criterion for Poisson's ratio and hardness values, for deciding on the basis for removal of the tubes for rejuvenation

  18. Application of non-destructive liner thickness measurement technique for manufacturing and inspection process of zirconium lined cladding tube

    International Nuclear Information System (INIS)

    Nakazawa, Norio; Fukuda, Akihiro; Fujii, Noritsugu; Inoue, Koichi

    1986-01-01

    Recently, in order to meet the difference of electric power demand owing to electric power situation, large scale load following operation has become necessary. Therefore, the development of the cladding tubes which withstand power variation has been carried out, as the result, zirconium-lined zircaloy 2 cladding tubes have been developed. In order to reduce the sensitivity to stress corrosion cracking, these zirconium-lined cladding tubes require uniform liner thickness over the whole surface and whole length. Kobe Steel Ltd. developed the nondestructive liner thickness measuring technique based on ultrasonic flaw detection technique and eddy current flaw detection technique. These equipments were applied to the manufacturing and inspection processes of the zirconium-lined cladding tubes, and have demonstrated superiority in the control and assurance of the liner thickness of products. Zirconium-lined cladding tubes, the development of the measuring technique for guaranteeing the uniform liner thickness and the liner thickness control in the manufacturing and inspection processes are described. (Kako, I.)

  19. Mechanized scaling with ultrasonics: Perils and proactive measures

    Directory of Open Access Journals (Sweden)

    Rashmi Paramashivaiah

    2013-01-01

    Full Text Available Mechanized scaling for plaque removal is a routine procedure in the practice of periodontics. Though it appears innocuous by itself, there are retinues of hazards associated with it on various organ systems in the body. Some of these unwanted effects and measures to avoid or ameliorate the same are elaborated here. Exposure to ultrasonic scaling is inevitable before any other treatment procedure. Aerosol contamination, vibrational hazards, thermal effects on the dental pulp, altered vascular dynamics, disruption in electromagnetic device, diminished hearing and dental unit waterline contamination are some of the probable off-shoots a patient has to bear. Uses of barrier devices, proper attention to usage of equipment, protection for ear and water treatment are few of solutions for the same. Though documented evidence for the existence of all effects is lacking, it is never the less significant for the overall safety of the patient. A conscientious clinician should therefore inculcate the available steps to overcome the hazards of ultrasonic scaling.

  20. A Non-destructive and Continuous Measurement of Gelatinization of Rice in Rice Cooking Process

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    A non-destructive and continuous method to measure gelatinization of rice samples in a rice-water system during rice cooking process was examined. An aluminum pot and a lid of a rice cooker were used as two electrode plates, and changes in dielectric properties (capacitance : C, and dielectric dissipation factor : tan δ) of the samples in the rice cooking process were measured by a capacitance meter. Differential scanning calorimetry (DSC) was used to measure gelatinization enthalpy and to de...

  1. Nondestructive testing for bridge diagnosis

    International Nuclear Information System (INIS)

    Oshima, Toshiyuki; Mikami, Shuichi; Yamazaki, Tomoyuki

    1997-01-01

    There are many motivations for bridge diagnosis using Nondestructive testing (NDT) to monitor its integrity. The measured frequency and damping on real bridge are compared in one figure as a function of span length and general aspects are explained. These date were measured in every construction of bridges and applied to design new bridges. Ultrasonic testing is also well used for concrete and steel members mainly to detect internal damages or delaminations. Detail analysis on reflected waves gives us more accurate information about the defect. Experimental results are shown as examples in this paper.

  2. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    Science.gov (United States)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  3. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    NARCIS (Netherlands)

    Costa-Felix, R.P.B.; Alvarenga, A.V.; Hekkenberg, R.

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement)

  4. Non-destructive controls in the steel tube industry

    International Nuclear Information System (INIS)

    Mondot, J.

    1978-01-01

    The main non-destructive control methods in the tube industry are reviewed: eddy currents, particularly well adapted to small tubes; magnetoscopic testing for weldless tubes; ultrasonic waves widely used for thick weldless tubes and weldings; radiography, to examine tube ends and the known questionable zones; measure of diameters by laser [fr

  5. Ultrasonic measurements on residual stress in autofrettged thick walled petroleum pipes

    International Nuclear Information System (INIS)

    Woias, G.; Mizera, J.

    2008-01-01

    The residual stresses in a component or structure are caused by incompatible permanent deformation and related gradient of plastic/elastic strains. They may be generated or modified at every stage in the components life cycle, from original material production to final disposal. Residual stresses can be measured by non-destructive techniques, including X-ray and neutron diffraction, magnetic and ultrasonic methods. The selection of the optimum measurement technique should take account volumetric resolution, material, geometry and access to the component. For large metallic components neutron diffraction is of prime importance as it provides quantitative information on stresses in relatively large volume of methods disregarding its shape complexity. Residual stresses can play a significant role in explaining or preventing failure of components of industrial installations. One example of residual stresses preventing failure are the ones generated by shot peening, inducing surface compressive stresses that improve the fatigue life. Petroleum refinery piping is generally characterized by large-diameters, operated at elevated temperature and under high pressure. Pipelines of a polyethylene plant working in one of the Polish refineries are subjected to pressures exceeding 300 MPa at temperatures above 200 o C. The pipes considered here were pressurized with pressure of 600 MPa. The wall thickness of the pipes is 27 mm and pipe dimensions are 46 x 100 mm. The material is steel with Re=580 MPa. Due to pressurizing, the components retain compressive stresses at the internal surface. These stresses increase resistance to cracking of the pipes. Over the period of exploitation these stresses diminish due to temperature activated relaxation or creep. The purpose of the project is to verify kinetics of such a relaxation process and calibrate alternative methods of their measurements. To avoid stress relaxation, numerical analysis from Finite Element Modelling (FEM)gave an

  6. Nondestructive testing 89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings contain 24 contributions, out of which 14 have been inputted in INIS. These deal with materials for nondestructive testing and various nondestructive testing systems, with the evaluation of radiograms and with the application of radiographic, ultrasonic and eddy current methods to the detection of defects in materials, to the inspection of nuclear reactor components and in other fields of technology. (B.S.)

  7. A study on the ultrasonic measurement for damage evaluation of power plant bearing

    International Nuclear Information System (INIS)

    Lee, Sang Guk

    2004-01-01

    For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. Ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program

  8. Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system

    Science.gov (United States)

    Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin

    2010-09-01

    Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.

  9. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    Science.gov (United States)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  10. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    International Nuclear Information System (INIS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-01-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until –10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method. (paper)

  11. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.

    1990-02-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. Besides a zero measurement, additional measurements on a 1:5 model vessel at JRC Ispra could not be carried out, because the planned fatigue tests were not performed by JRC Ispra during the research period

  12. Nondestructive density measured in powder metallurgy and ceramics

    International Nuclear Information System (INIS)

    Schlieper, G.; Arnold, V.; Dirkes, H.

    1989-01-01

    Absorption measurements with gamma radiation have been utilized for the determination of porosities (densities) in materials compacted or sintered from metallic or ceramic powders. The mathematical background for the assessment of this method, and for evaluations of the accuracy of measurement is presented within the reported paper. The equipment for the practical application of density measurements in industry has been developed. Hardware and software of this computerized instrument are designed for a maximum of safety, ease of operation, reliability, flexibility, and efficiency. (orig./RHM) [de

  13. Image-based overlay measurement using subsurface ultrasonic resonance force microscopy

    Science.gov (United States)

    Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.

    2018-03-01

    Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.

  14. Non-destructive clearance measuring in closed joints

    International Nuclear Information System (INIS)

    Doucelance, C.; Manaranche, J.C.

    1976-01-01

    Two methods for clearance measuring in closed joints are described. The first one is based on the mechanical impedance concept, while the other one requires a shock test on shaker. Both are illustrated with an example of application [fr

  15. Integrated nondestructive assay solutions for plutonium measurement problems of the 21st century

    International Nuclear Information System (INIS)

    Sampson, T.E.; Cremers, T.L.

    1997-01-01

    The authors describe automated and integrated NDA systems configured to measure many of the materials that will be found in the DOE complex in the dismantlement, disposition, residue stabilization, immobilization, and MOX fuel programs. These systems are typified by the ARIES (Advanced Recovery and Integrated Extraction System) nondestructive assay system which is under construction at Los Alamos to measure the outputs of a weapon component dismantlement system

  16. New development in nondestructive measurement and verification of irradiated LWR fuels

    International Nuclear Information System (INIS)

    Lee, D.M.; Phillips, J.R.; Halbig, J.K.; Hsue, S.T.; Lindquist, L.O.; Ortega, E.M.; Caine, J.C.; Swansen, J.; Kaieda, K.; Dermendjiev, E.

    1979-01-01

    Nondestructive techniques for characterizing irradiated LWR fuel assemblies are discussed. This includes detection systems that measure the axial activity profile, neutron yield and gamma yield. A multi-element profile monitor has been developed that offers a significant improvement in speed and complexity over existing mechanical scanning systems. New portable detectors and electronics, applicable to safeguard inspection, are presented and results of gamma-ray and neutron measurements at commercial reactor facilities are given

  17. Integrated nondestructive assay solutions for plutonium measurement problems of the 21st century

    International Nuclear Information System (INIS)

    Sampson, T.E.; Cremers, T.L.

    1997-12-01

    The authors describe automated and integrated nondestructive assay (NDA) systems configured to measure many of the materials that will be found in the Department of Energy complex in the dismantlement, disposition, residue stabilization, immobilization, and mixed oxide fuel programs. These systems are typified by the Advanced Recovery and Integrated Extraction System NDA system which is under construction at Los Alamos National Laboratory to measure the outputs of a weapon component dismantlement system

  18. Development and improvement of synthetic imaging methods for non-destructive ultrasonic testing of complex industrial components

    International Nuclear Information System (INIS)

    Bannouf, S.

    2013-01-01

    The goal of this thesis was, initially, to evaluate phased array methods for ultrasonic Non Destructive Testing (NDT) in order to propose optimizations, or to develop new alternative methods. In particular, this works deals with the detection of defects in complex geometries and/or materials parts. The TFM (Total Focusing Method) algorithm provides high resolution images and several representations of a same defect thanks to different reconstruction modes. These properties have been exploited judiciously in order to propose an adaptive imaging method in immersion configuration. We showed that TFM imaging can be used to characterize more precisely the defects. However, this method presents two major drawbacks: the large amount of data to be processed and a low signal-to-noise ratio (SNR), especially in noisy materials. We developed solutions to these two problems. To overcome the limitation caused by the large number of signals to be processed, we propose an algorithm that defines the sparse array to activate. As for the low SNR, it can be now improved by use of virtual sources and a new filtering method based on the DORT method (Decomposition of the Time Reversal Operator). (author) [fr

  19. Ultrasonic testing of materials at level 2. Manual for the syllabi contained in IAEA-TECDOC-628, training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1999-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology for many years. The prime reason for this interest has been the need for stringent quality control standards for the safe operation of nuclear installations. The IAEA has successfully executed a number of regional projects of which NDT was an important part. These were the Regional Co-operative Arrangements for the Promotion of Nuclear Science and Technology in Latin America (ARCAL), the Regional Co-operative Agreement for Asia and the Pacific (RCA), the African Regional Co-operative Agreement (AFRA) and lately the NDT Regional Project in West Asia. Through these projects a large number of persons have been trained in Member States and a state of self-sufficiency in this area of technology has been achieved in many of them. There has long been a realization of the need to have well established training guidelines and related books in order, firstly, to guide IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of personnel. The syllabi for training courses have been published in the form of two publications, IAEA-TECDOC-407 and IAEA-TECDOC-628. IAEA-TECDOC-628, as well as most of the international standards on the subject of training and certification of NDT personnel includes ISO 9712. The next logical step is to compile the textbooks and training manuals. Work in this regard has been undertaken and a manual on radiographic testing was issued in 1992 in the Training Course Series. This publication is a continuation of that effort. Earlier training notes on this subject existed in the form of IAEA-TECDOC-462, which was compiled in accordance with the syllabus of IAEA-TECDOC-407. These fulfilled the training needs of the member countries of RCA for quite some time. The present book is in fact an expanded and

  20. Ultrasonic measurements of undamaged concrete layer thickness in a deteriorated concrete structure

    NARCIS (Netherlands)

    Demcenko, A.; Visser, Roy; Akkerman, Remko

    2016-01-01

    Ultrasonic wave propagation in deteriorated concrete structures was studied numerically and experimentally. Ultrasonic single-side access immersion pulse-echo and diffuse field measurements were performed in deteriorated concrete structures at 0.5 MHz center frequency. Numerically and experimentally

  1. Non-destructive measurement methods for large scale gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Mayer, R.L.; Hagenauer, R.C.; McGinnis, B.R.

    1994-01-01

    Two measurement methods have been developed to measure non-destructively uranium hold-up in gaseous diffusion plants. These methods include passive neutron and passive γ ray measurements. An additional method, high resolution γ ray spectroscopy, provides supplementary information about additional γ ray emitting isotopes, γ ray correction factors, 235 U/ 234 U ratios and 235 U enrichment. Many of these methods can be used as a general purpose measurement technique for large containers of uranium. Measurement applications for these methods include uranium hold-up, waste measurements, criticality safety and nuclear accountability

  2. A non-destructive, ultrasonic method for the determination of internal pressure and gas composition in an LWR fuel rod on-going and future programme

    International Nuclear Information System (INIS)

    Ferrandis, J.; Leveque, G.; Villard, J.

    2006-01-01

    Several possible non-destructive methods have been investigated in the past to measure the internal gas pressure e.g., measurement of 85 Kr directly, or after accumulation in the plenum by freezing with liquid nitrogen. However no satisfactory resolution to the problem has been found, so at present there is no rapid and accurate method of determining the fission gas pressure in a fuel rod without puncturing the cladding. This procedure is time-consuming and expensive and as a consequence a relatively small number of measurements are generally made compared with the number of fuel rods irradiated. In this paper it is proposed a new method for the measurement of pressure that is: Non-destructive; Non-invasive (i.e., allows re-irradiation of the measured rod); Easy to operate - directly in the reactor pool; Can be used on the critical path; Is inexpensive compared with the methods currently in use. This method is also being adapted to the on line measurement of fission gas release on fuel irradiation in research reactors. This method is based on the application of acoustic technology

  3. Technical regulation of nondestructive inspection

    International Nuclear Information System (INIS)

    1995-01-01

    It starts with the explanation of definition of nondestructive inspection and qualifications for a inspection. It lists the technical regulations of nondestructive inspections which are radiographic testing, ultrasonic flaw detecting test, liquid penetrant test, magnetic particle inspection, eddy current test visual inspection and leakage test.

  4. A Unilateral Nuclear Magnetic Resonance Sensor for Nondestructive Wood Moisture Measurements

    Directory of Open Access Journals (Sweden)

    YU Deng-jie

    2017-12-01

    Full Text Available An unilateral nuclear magnetic resonance (UMR sensor was designed to measure wood moisture nondestructively. The sensor consisted of a unilateral magnet, an anti-eddy current module, a radiofrequency (RF coil and an impedance matching and tuning circuit. The sensor produced a static magnetic field of 71.1 mT (resonant frequency:3.027 MHz in a 50 mm×50 mm plane locating 75 mm above the sensor's surface. Preliminary nondestructive measurement of wood moisture was carried out with the sensor. The moisture distribution in the radical direction of a cylindrical wood sample was scanned. Variations in transverse relaxation time (T2 from the bark to core were obtained. Evaporation of moisture during wood drying was also measured with the UMR sensor. Experimental results showed that:the peak of long T2 component in the T2 spectrum moved to left and the peak integral area decreased gradually during drying. The integral area was proportional to the moisture content of the sample. The work presents a portable UMR device for wood research which may potentially be used for nondestructive moisture measurement on living trees in situ.

  5. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  6. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.; Voss, B.; Falk, L.

    1989-01-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to high-cycle fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. (orig.) [de

  7. Hardware Developments of an Ultrasonic Tomography Measurement System

    Directory of Open Access Journals (Sweden)

    Hudabiyah ARSHAD AMARI

    2010-01-01

    Full Text Available This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ultrasonic transceiver. A prototype design of sensor’s jig that will hold 16 transceivers of 14.1mm has been design. Transmission-mode approach with fan beam technique has been used for sensing the flow of gas, liquid and solid. This paper also explains the circuitry designs for the Ultrasonic Tomography System.

  8. Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

    International Nuclear Information System (INIS)

    Ho, Duc Duy; Hong, Dong Soo; Kim, Jeong Tae

    2010-01-01

    This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified

  9. Hardware Developments of an Ultrasonic Tomography Measurement System

    OpenAIRE

    Hudabiyah ARSHAD AMARI; Ruzairi ABDUL RAHIM; Mohd Hafiz FAZALUL RAHIMAN; Herlina ABDUL RAHIM; Muhammad Jaysuman PUSPPANATHAN

    2010-01-01

    This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ul...

  10. Defects and Materials Characterization by Analysis of Ultrasonic Signals. Study of a Technique to Measure Ultrasonic Attenuation

    Science.gov (United States)

    1985-05-01

    de Ensayos No Destructivos de Control de la Calidad de los Materiales". Editado por Instituto Nacional de T6cnica AeroespaciaL...STUDY OF A TECH!4IUE TO MEASURE ULTRASONIC ATTENUATION. Carlos Valdecantos; Jos6 Miguel instituto Nacional de Tecnica Aeroespacial (INTA) Torrej6n de ...Ardoz, Madrid, SPAIN. Mayo 1985 DTIC ELECTE OCT2 I85 0SI. Final Report. 0 .. 3 Approved for public release; Distribution unlimited. " .Prepared for: AIR

  11. Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals.

    Science.gov (United States)

    Boutsioukis, C; Verhaagen, B; Walmsley, A D; Versluis, M; van der Sluis, L W M

    2013-11-01

    (i) To quantify in a simulated root canal model the file-to-wall contact during ultrasonic activation of an irrigant and to evaluate the effect of root canal size, file insertion depth, ultrasonic power, root canal level and previous training, (ii) To investigate the effect of file-to-wall contact on file oscillation. File-to-wall contact was measured during ultrasonic activation of the irrigant performed by 15 trained and 15 untrained participants in two metal root canal models. Results were analyzed by two 5-way mixed-design anovas. The level of significance was set at P root canal (P root canal (P irrigant activation. Therefore, the term 'Passive Ultrasonic Irrigation' should be amended to 'Ultrasonically Activated Irrigation'. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Experimental investigations of two-phase flow measurement using ultrasonic sensors

    OpenAIRE

    Abbagoni, Baba Musa

    2016-01-01

    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measur...

  13. Estimating adipose tissue in the chest wall using ultrasonic and alternate 40K and biometric measurements

    International Nuclear Information System (INIS)

    Anderson, A.L.; Campbell, G.W.

    1982-01-01

    The percentage of adipose (fat) tissue in the chest wall must be known to accurately measure Pu in the human lung. Correction factors of 100% or more in x-ray detection efficiency are common. Methods using simple 40 K and biometric measurement techniques were investigated to determine the adipose content in the human chest wall. These methods predict adipose content to within 15% of the absolute ultrasonic value. These new methods are discussed and compared with conventional ultrasonic measurement techniques

  14. Design and Functional Validation of a Complex Impedance Measurement Device for Characterization of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    De-Cock, Wouter; Cools, Jan; Leroux, Paul

    2013-06-01

    This paper presents the design and practical implementation of a complex impedance measurement device capable of characterization of ultrasonic transducers. The device works in the frequency range used by industrial ultrasonic transducers which is below the measurement range of modern high end network analyzers. The device uses the Goertzel algorithm instead of the more common FFT algorithm to calculate the magnitude and phase component of the impedance under test. A theoretical overview is given followed by a practical approach and measurement results. (authors)

  15. Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements

    NARCIS (Netherlands)

    Barshan, B; Baskent, D

    Two novel methods for surface profile extraction based on multiple ultrasonic range measurements are described and compared. One of the methods employs morphological processing techniques, whereas the other employs a spatial voting scheme followed by simple thresholding. Morphological processing

  16. Estimating adipose tissue in the chest wall using ultrasonic and alternate 40K and biometric measurements

    International Nuclear Information System (INIS)

    Anderson, A.L.; Campbell, G.W.; Singh, M.S.

    1982-01-01

    The percentage of adipose (fat) tissue in the chest wall must be known to accurately measure Pu in the human lung. Correction factors of 100% or more in X-ray detection efficiency are common in a normal population of individuals of differing body composition and have been determined in the past by means of elaborate and costly ultrasonic measurements of the subject's chest. Methods using simple 40 K and biometric measurement techniques have been investigated to determine the adipose content in the human chest wall. These methods compare favorably with ultrasonic measurements and allow laboratories not possessing ultrasonic equipment to make appropriate corrections for x-ray detection efficiency. These methods predict adipose content to within 15% of the absolute ultrasonic value. (author)

  17. A numerical model for ultrasonic measurements of swelling and mechanical properties of a swollen PVA hydrogel.

    Science.gov (United States)

    Lohakan, M; Jamnongkan, T; Pintavirooj, C; Kaewpirom, S; Boonsang, S

    2010-08-01

    This paper presents a numerical model for the evaluation of mechanical properties of a relatively thin hydrogel. The model utilizes a system identification method to evaluate the acoustical parameters from ultrasonic measurement data. The model involves the calculation of the forward model based on an ultrasonic wave propagation incorporating diffraction effect. Ultrasonic measurements of a hydrogel are also performed in a reflection mode. A Nonlinear Least Square (NLS) algorithm is employed to minimize difference between the results from the model and the experimental data. The acoustical parameters associated with the model are effectively modified to achieve the minimum error. As a result, the parameters of PVA hydrogels namely thickness, density, an ultrasonic attenuation coefficient and dispersion velocity are effectively determined. In order to validate the model, the conventional density measurements of hydrogels were also performed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-02-15

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

  19. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    International Nuclear Information System (INIS)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young

    2017-01-01

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process

  20. Field testing of prototype systems for the non-destructive measurement of the neutral temperature of railroad tracks

    Science.gov (United States)

    Phillips, Robert; Lanza di Scalea, Francesco; Nucera, Claudio; Fateh, Mahmood; Choros, John

    2014-03-01

    In both high speed and freight rail systems, the modern construction method is Continuous Welded Rail (CWR). The purpose of the CWR method is to eliminate joints in order to reduce the maintenance costs for both the rails and the rolling stock. However the elimination of the joints increases the risk of rail breakage in cold weather and buckling in hot weather. In order to predict the temperature at which the rail will break or buckle, it is critical to have knowledge of the temperature at which the rail is stress free, namely, the Rail Neutral Temperature (Rail-NT).The University of California at San Diego has developed an innovative technique based on non-linear ultrasonic guided waves, under FRA research and development grants for the non-destructive measurement of the neutral temperature of railroad tracks. Through the licensing of this technology from the UCSD and under the sponsorship of the FRA Office of Research and Development, a field deployable prototype system has been developed and recently field tested at cooperating railroad properties. Three prototype systems have been deployed to the Union Pacific (UP), Burlington Northern Santa Fe (BNSF), and AMTRAK railroads for field testing and related data acquisition for a comprehensive evaluation of the system, with respect to both performance and economy of operation. The results from these tests have been very encouraging. Based on the lessons learned from these field tests and the feedback from the railroads, it is planned develop a compact 2nd generation Rail-NT system to foster deployment and furtherance of FRA R&D grant purpose of potential contribution to the agency mission of US railroad safety. In this paper, the results of the field tests with the railroads in summer of 2013 are reported.

  1. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  2. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  3. Characterization of Aging Behavior in M250 Grade Maraging Steel Using Ultrasonic Measurements

    Science.gov (United States)

    Rajkumar, K. V.; Kumar, Anish; Jayakumar, T.; Raj, Baldev; Ray, K. K.

    2007-02-01

    Ultrasonic measurements have been carried out in M250 grade maraging steel specimens subjected to solution annealing at 1093 K for 1 hour followed by aging at 755 K for various durations in the range of 0.25 to 100 hours. The influence of aging on microstructure, room temperature hardness, and ultrasonic parameters (longitudinal and shear wave velocities and Poisson’s ratio) has been studied in order to derive correlations among these parameters in aged M250 maraging steel. Both hardness and ultrasonic velocities exhibit almost similar behaviors with aging time. They increase with the precipitation of intermetallic phases, Ni3Ti and Fe2Mo, and decrease with the reversion of martensite to austenite. Ultrasonic shear wave velocity is found to be more influenced by the precipitation of intermetallic phases, whereas longitudinal wave velocity is influenced more by the reversion of martensite to austenite. Unlike hardness and ultrasonic velocities, the Poisson’s ratio exhibits a monotonous decrease with aging time and, hence, can be used for unambiguous monitoring of the aging process in M250 maraging steel. Further, none of the parameters, i.e., hardness, ultrasonic velocity, or Poisson’s ratio, alone could identify the initiation of the reversion of austenite at early stage; however, the same could be identified from the correlation between ultrasonic velocity and Poisson’s ratio, indicating the advantage of using the multiparametric approach for comprehensive characterization of complex aging behavior in M250 grade maraging steel.

  4. Contact and non-contact ultrasonic measurement in the food industry: a review

    International Nuclear Information System (INIS)

    Mohd Khairi, Mohd Taufiq; Ibrahim, Sallehuddin; Md Yunus, Mohd Amri; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated. (topical review)

  5. Contact and non-contact ultrasonic measurement in the food industry: a review

    Science.gov (United States)

    Taufiq Mohd Khairi, Mohd; Ibrahim, Sallehuddin; Yunus, Mohd Amri Md; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated.

  6. Non-destructive isotopic uranium assay by multiple delayed neutron measurements

    International Nuclear Information System (INIS)

    Papadopoulos, N.N.; Tsagas, N.F.

    1991-01-01

    The high accuracy and precision required in nuclear safeguards measurements can be achieved by an improved neutron activation technique based on multiple delayed fission neutron counting under various experimental conditions. For the necessary ultrahigh counting statistics required, cyclic activation of multiple subsamples has been applied. The home-made automated flexible analytical system with neutron flux and spectrum differentiation by irradiation position adjustment and cadmium screening, permits the non-destructive determination of the U235 abundance and the total U element concentration needed in nuclear safeguards sample analysis, with a high throughout and a low operational cost. Careful experimental optimization led to considerable improvement of the results

  7. Simple, reliable, and nondestructive method for the measurement of vacuum pressure without specialized equipment.

    Science.gov (United States)

    Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang

    2013-09-01

    We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.

  8. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target.

    Science.gov (United States)

    Dubey, P K; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  9. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    Science.gov (United States)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  10. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    International Nuclear Information System (INIS)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-01-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique

  11. Studies in nondestructive testing with potential for in-service inspection of LMFBRs

    International Nuclear Information System (INIS)

    McClung, R.W.

    1976-01-01

    A variety of nondestructive examination techniques have been and are being developed at ORNL with potential for ISI in LMFBRs. Among these are radiographic techniques for radiation environment and image enhancement, advanced eddy-current techniques and equipment for flaw detection and thickness measurement and ISI of steam generator tubing, and ultrasonic methods for quantitative flaw evaluation using frequency-analysis and bore-side ultrasonic techniques for steam generator tubing. Further developments should result in positive application to ISI

  12. Measurement of flaw size in a weld sample by ultrasonic frequency analysis

    International Nuclear Information System (INIS)

    Whaley, H.L. Jr.; Adler, L.; Cook, K.V.; McClung, R.W.

    1975-05-01

    An ultrasonic frequency analysis technique has been developed and applied to the measurement of flaws in an 8-in.-thick heavy-section steel specimen belonging to the Pressure Vessel Research Committee program. Using the technique the flaws occurring in the weld area were characterized in quantitative terms of both dimension and orientation. Several modifications of the technique were made during the study to include the application of several transducers and to consider ultrasonic mode conversion. (U.S.)

  13. Study on Method of Ultrasonic Gas Temperature Measure Based on FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S H; Xu, F R [Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 (China)

    2006-10-15

    It is always a problem to measure instantaneous temperature of high-temperature and high-pressure gas. There is difficulty for the conventional method of measuring temperature to measure quickly and exactly, and the measuring precision is low, the ability of anti-jamming is bad, etc. So the article introduces a method of measuring burning gas temperature using ultrasonic based on Field-Programmable Gate Array (FPGA). The mathematic model of measuring temperature is built with the relation of velocity of ultrasonic transmitting and gas Kelvin in the ideal gas. The temperature can be figured out by measuring the difference of ultrasonic frequency {delta}f. FPGA is introduced and a high-precision data acquisition system based on digital phase-shift technology is designed. The feasibility of proposed above is confirmed more by measuring pressure of burning gas timely. Experimental result demonstrates that the error is less than 12.. and the precision is heightened to 0.8%.

  14. An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.

    2004-01-01

    In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds

  15. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  16. An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid

    International Nuclear Information System (INIS)

    Kimoto, A; Kitajima, T

    2010-01-01

    In this paper, an optical, electrical and ultrasonic layered single sensor is proposed as a new, non-invasive sensing method for the measurement of ingredients in liquid, particularly in the food industry. In the proposed sensor, the photo sensors and the PVDF films with the transparent conductive electrode are layered and the optical properties of the liquid are measured by a light emitting diode (LED) and a phototransistor (PT). In addition, the electrical properties are measured by indium tin oxide (ITO) film electrodes as the transparent conductive electrodes of PVDF films arranged on the surfaces of the LED and PT. Moreover, the ultrasonic properties are measured by PVDF films. Thus, the optical, electrical and ultrasonic properties in the same space of the liquid can be simultaneously measured at a single sensor. To test the sensor experimentally, three parameters of the liquid—such as concentrations of yellow color, sodium chloride (NaCl) and ethanol in distilled water—were estimated using the measurement values of the optical, electrical and ultrasonic properties obtained with the proposed sensor. The results suggested that it is possible to estimate the three ingredient concentrations in the same space of the liquid from the optical, electrical and ultrasonic properties measured by the proposed single sensor, although there are still some problems such as measurement accuracy that must be solved

  17. Comparison of central corneal thickness measured by Lenstar LS900, OrbscanⅡ and ultrasonic pachmetry

    Directory of Open Access Journals (Sweden)

    Hong-Tao Zhang

    2013-09-01

    Full Text Available AIM: To investigate the difference of central corneal thickness(CCTmeasured by Lenstar LS900, OrbscahⅡ system and ultrasonic pachmetry, and to evaluate the correlation and consistency of the results for providing a theoretical basis for clinical application.METHODS: The mean value of CCT in 70 eyes of 35 patients measured three times by Lenstar LS900, OrbscahⅡ system and ultrasonic pachmetry underwent statistical analysis. The difference of CCT was compared, and the correlation and consistency of three measurements were analyzed to provide theoretical basis for clinical application. CCT values measured by different methods were analyzed with randomized block variance analysis. LSD-t test was used for pairwise comparison between groups. The correlation of three measurement methods were analyzed by linear correlation analysis, and Bland-Altman was used to analyze the consistency.RESULTS: The mean CCT values measured by Lenstar LS900, OrbscanⅡ and ultrasonic pachmetry were 542.75±40.06, 528.74±39.59, 538.54±40.93μm, respectively. The mean difference of CCT measurement was 4.21±8.78μm between Lenstar LS900 and ultrasonic pachmetry, 14.01±13.39μm between Lenstar LS900 and Orbscan Ⅱ, 9.8±10.57μm between ultrasonic pachmetry and Orbscan Ⅱ. The difference was statistically significant(PP>0.05: There was positive correlation between CCT with Lenstar LS900 and ultrasonic pachmetry(r=0.977, 0.944; PCONCLUSION: There are excellent correlation among Lenstar LS900, Orbscan Ⅱ and ultrasonic pachmetry. Lenstar LS900 can be used as CCT non-contact measurement tool.

  18. Studies on analytical method and nondestructive measuring method on the sensitization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Onimura, Kichiro; Arioka, Koji; Horai, Manabu; Noguchi, Shigeru.

    1982-03-01

    Austenitic stainless steels are widely used as structural materials for the machine and equipment of various kinds of plants, such as thermal power, nuclear power, and chemical plants. The machines and equipment using this kind of material, however, have the possibility of suffering corrosion damage while in service, and these damages are considered to be largely due to the sensitization of the material in sometimes. So, it is necessary to develop an analytical method for grasping the sensitization of the material more in detail and a quantitative nondestructive measuring method which is applicable to various kinds of structures in order to prevent the corrosion damage. From the above viewpoint, studies have been made on the analytical method based on the theory of diffusion of chromium in austenitic stainless steels and on Electro-Potentiokinetics Reactivation Method (EPR Method) as a nondestructive measuring method, using 304 and 316 austenitic stainless steels having different carbon contents in base metals. This paper introduces the results of EPR test on the sensitization of austenitic stainless steels and the correlation between analytical and experimental results. (author)

  19. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    International Nuclear Information System (INIS)

    Costa-Felix, Rodrigo P B; Alvarenga, Andre V; Hekkenberg, Rob

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement) shall be collected as function of time to perform all necessary calculations and corrections. Uncertainty determination demands calculation effort of raw and processed data. Although it is possible to be undertaken in an old-fashion way, using spread sheets and manual data collection, automation software are often used in metrology to provide a virtually error free environment concerning data acquisition and repetitive calculations and corrections. Considering that, a fully automate ultrasonic power measurement system was developed and comprehensively tested. A 0,1 mg of precision balance model CP224S (Sartorius, Germany) was used as measuring device and a calibrated continuous wave ultrasound check source (Precision Acoustics, UK) was the device under test. A 150 ml container filled with degassed water and containing an absorbing target at the bottom was placed on the balance pan. Besides the feature of automation software, a routine of power measurement simulation was implemented. It was idealized as a teaching tool of how ultrasonic power emission behaviour is with a radiation force balance equipped with an absorbing target. Automation software was considered as an effective tool for speeding up ultrasonic power measurement, while allowing accurate calculation and attractive graphical partial and final results.

  20. Non-destructive measurements of nuclear wastes. Validation and industrial operating experience

    International Nuclear Information System (INIS)

    Saas, A.; Tchemitciieff, E.

    1993-01-01

    After a short survey of the means employed for the non-destructive measurement of specific activities (γ and X-ray) in waste packages and raw waste, the performances of the device and the ANDRA requirements are presented. The validation of the γ and X-ray measurements on packages is obtained through determining, by destructive means, the same activity on coring samples. The same procedure is used for validating the homogeneity measurements on packages (either homogeneous or heterogeneous). Different operating experiences are then exposed for several kinds of packages and waste. Up to now, about twenty different types of packages have been examined and more than 200 packages have allowed the calibration, validation, and control

  1. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    Science.gov (United States)

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dry, portable calorimeter for nondestructive measurement of the activity of nuclear fuel

    Science.gov (United States)

    Beyer, Norman S.; Lewis, Robert N.; Perry, Ronald B.

    1976-01-01

    The activity of a quantity of heat-producing nuclear fuel is measured rapidly, accurately and nondestructively by a portable dry calorimeter comprising a preheater, an array of temperature-controlled structures comprising a thermally guarded temperature-controlled oven, and a calculation and control unit. The difference between the amounts of electric power required to maintain the oven temperature with and without nuclear fuel in the oven is measured to determine the power produced by radioactive disintegration and hence the activity of the fuel. A portion of the electronic control system is designed to terminate a continuing sequence of measurements when the standard deviation of the variations of the amount of electric power required to maintain oven temperature is within a predetermined value.

  3. Measurements of the gap/displacement and development of the ultrasonic temperature measuring system applied to severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Cho, Young Ro; Park, Rae Jun; Kim, Sang Baik; Sim, Chul Moo

    2001-02-01

    This report, in order to measure quantitative LAVA experimental results, focuses on measuring the gap formed on the lower head vessel using a ultrasonic pulse echo method and neutron radiography, measuring displacement of the lower head vessel using capacitance method, building a measuring system and developing high temperature measurement system using ultrasonic method. The scope of gap measurement and system development using the ultrasonic method is 2-dimensional image processing using tomographical B scan method and 2- and 3-dimensional image processing using C scan methods based on the one dimensional time domain A scan signal. For some test specimen, the gap size is quantitative represented apply C scan methods. The important ultrasonic image processing technique is on the development of accurate position control system. The requirements of the position control system are a contact technique on the test specimen and a fine moving technique. Since the specimen is hemispherical, the contact technique is very difficult. Therefore, the gap measurement using the ultrasonic pulse echo method was applied developing the position controlling scanner system. Along with the ultrasonic method, neutron radiography method using KAERI's neutron source was attempted 4 times and the results are compared. The fine displacement of the hemispherical specimen was measured using a capacitive displacement sensor. The requirements for this measuring technique are fixing of the capacitance sensor to the experimental facilities and a remote control position varying system. This remote control position varying system was manufactured with a electrical motor. The development of a high temperature measuring system using a ultrasonic method the second year plan, is performed with developing a sensor which can measure up to 2300 deg C

  4. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    Science.gov (United States)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  5. A study of the effect of measurement error in predictor variables in nondestructive assay

    International Nuclear Information System (INIS)

    Burr, Tom L.; Knepper, Paula L.

    2000-01-01

    It is not widely known that ordinary least squares estimates exhibit bias if there are errors in the predictor variables. For example, enrichment measurements are often fit to two predictors: Poisson-distributed count rates in the region of interest and in the background. Both count rates have at least random variation due to counting statistics. Therefore, the parameter estimates will be biased. In this case, the effect of bias is a minor issue because there is almost no interest in the parameters themselves. Instead, the parameters will be used to convert count rates into estimated enrichment. In other cases, this bias source is potentially more important. For example, in tomographic gamma scanning, there is an emission stage which depends on predictors (the 'system matrix') that are estimated with error during the transmission stage. In this paper, we provide background information for the impact and treatment of errors in predictors, present results of candidate methods of compensating for the effect, review some of the nondestructive assay situations where errors in predictors occurs, and provide guidance for when errors in predictors should be considered in nondestructive assay

  6. Dynamic measurement of liquid film thickness in stratified flow by using ultrasonic echo technique

    International Nuclear Information System (INIS)

    Serizawa, A.; Nagane, K.; Kamei, T.; Kawara, Z.; Ebisu, T.; Torikoshi, K.

    2004-01-01

    We developed a technique to measure time-dependent local film thickness in stratified air-water flow over a horizontal plate by using a time of flight of ultrasonic transmission. The ultrasonic echoes reflected at the liquid/air interfaces are detected by a conventional ultrasonic instrumentation, and the signals are analyzed by a personal computer after being digitalized by an A/D converter to give the time of flight for the ultrasonic waves to run over a distance of twice of the film thickness. A 3.8 mm diameter probe type ultrasonic transducer was used in the present work which transmits and receives 10 MHz frequency ultrasonic waves. The estimated spatial resolution with this arrangement is 0.075 mm in film thickness for water. The time resolution, which depends on both the A/D converter and the memory capacity was up to several tens Hz. We also discussed the sensitivity of the method to the inclination angle of the interfaces. (author)

  7. Application of focus-variation Technique in Measurements of Ultrasonic Vibrations of Grinding pins

    Directory of Open Access Journals (Sweden)

    Wdowik Roman

    2015-01-01

    Full Text Available The paper presents the application of focus-variation technique in measurements of ultrasonic vibrations of grinding pins. Ultrasonic vibrations of tools are applied in ultrasonic assisted grinding. Their measurements are significant for development of this hybrid machining process. Alumina and zirconia ceramic materials in the final fired state were machined in experiments which are known as scratch tests. Diamond grinding pin was used as a tool to machine scratches. Marks of diamond grains, left on the surface of workpieces after machining process, were investigated using The Infinite Focus Real 3D optical microscope. Focus-variation is the principle of operation of this microscope. Investigations concerned possibilities of measurements of an amplitude of axial and radial vibrations in the case of two ceramic materials. Results of performed measurements are presented and discussed for selected machining parameters.

  8. A digital instrument for nondestructive measurements of coating thicknesses by beta backscattering

    Science.gov (United States)

    Farcasiu, D. M.; Apostolescu, T.; Bozdog, H.; Badescu, E.; Bohm, V.; Stanescu, S. P.; Jianu, A.; Bordeanu, C.; Cracium, M. V.

    1992-02-01

    The elements of nondestructive gauging of coatings applied on various metal bases are presented. The intensity of the backscattered beta radiations is related to the thickness of the coating. With a fixed measuring geometry and radioactive sources (147Pm, 204Tl, 90Sr+90Y) the intensity of the backscattered beta particles is dependent on the following parameters: coating thickness, atomic number of the coating material and of the base, the beta particle energy and the surface finish. It can be used for the measurement of a wide range of coating thicknesses provided that the difference between the coating and the support atomic numbers is at least 20%. Fields of application include electronics, electrotechnique and so on.

  9. A digital instrument for nondestructive measurements of coating thicknesses by beta backscattering

    International Nuclear Information System (INIS)

    Farcasiu, D.M.; Apostolescu, T.; Bozdog, H.; Badescu, E.; Bohm, V.; Stanescu, S.P.; Jianu, A.; Bordeanu, C.; Craciun, M.V.

    1992-01-01

    The elements of nondestructive gauging of coatings applied on various metal bases are presented. The intensity of the backscattered beta radiations is related to the thickness of the coating. With a fixed measuring geometry and radioactive sources ( 147 Pm, 204 Tl, 90 Sr+ 90 Y) the intensity of the backscattered beta particles is dependent on the following parameters: Coating thickness, atomic number of the coating material and of the base, the beta particle energy and the surface finish. It can be used for the measurement of a wide range of coating thicknesses provided that the difference between the coating and the support atomic numbers is at least 20%. Fields of application include electronics, electrotechnique and so on. (orig.)

  10. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  11. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  12. Ultrasonic preliminary measurements of oenological malolactic fermentation parameters in red wine

    Science.gov (United States)

    Novoa-Díaz, D. F.; Puig-Pujol, A.; García-Álvarez, J.; Chávez, J. A.; Turó, A.; Mínguez, S.; García-Hernández, M. J.; Bertran, E.; Salazar, J.

    2012-12-01

    In the winemaking process, the malolactic fermentation is an essential process in the production of high quality red wines which concerns the conversion of malate into lactate. In this work, the ultrasonic velocity through wine samples with different concentrations of malate and lactate was measured using the pulse echo technique with 1 MHz tone burst signals. The evolution of these concentrations during malolactic fermentation was taken into account in order to determine the ratio between concentrations of malate and lactate of the different samples. These preliminary results have revealed that the ultrasonic velocity increases during the conversion of malate to lactate. In addition, measurements have been conducted to quantify the influence of variations in turbidity and temperature on test samples. Therefore, these results show the possibility of using ultrasonic velocity measurements for on-line monitoring the malolactic fermentation of red wine and may help to improve and contribute to the development of the winemaking process.

  13. Spinodal decomposition mechanism study on the duplex stainless steel UNS S31803 using ultrasonic speed measurements

    International Nuclear Information System (INIS)

    Albuquerque, Victor Hugo C. de; Macedo Silva, Edgard de; Pereira Leite, Josinaldo; Pindo de Moura, Elineudo; Araujo Freitas, Vera Lucia de; Tavares, Joao Manuel R.S.

    2010-01-01

    This work, focuses on the spinodal decomposition mechanism study on the duplex stainless steel duplex UNS S31803, composed by austenite (γ) and ferrite (α) phases, at 425 o C and 475 o C temperatures by ultrasonic speed measurements. This temperature range is responsible for the transformation mechanism of α initial phase to α phases (poor in chromium) and α' (rich in chromium) by spinodal decomposition. The techniques to accomplish this analysis are based mainly on X-ray diffraction measures and ultrasonic speed. The obtained results show that it is possible to conclude that the use of ultrasonic speed measurements indicates a promising technique for following-up the phase transformation and spinodal decomposition on the steel studied.

  14. Ultrasonic preliminary measurements of oenological malolactic fermentation parameters in red wine

    International Nuclear Information System (INIS)

    Novoa-Díaz, D F; García-Álvarez, J; Chávez, J A; Turó, A; García-Hernández, M J; Salazar, J; Puig-Pujol, A; Mínguez, S; Bertran, E

    2012-01-01

    In the winemaking process, the malolactic fermentation is an essential process in the production of high quality red wines which concerns the conversion of malate into lactate. In this work, the ultrasonic velocity through wine samples with different concentrations of malate and lactate was measured using the pulse echo technique with 1 MHz tone burst signals. The evolution of these concentrations during malolactic fermentation was taken into account in order to determine the ratio between concentrations of malate and lactate of the different samples. These preliminary results have revealed that the ultrasonic velocity increases during the conversion of malate to lactate. In addition, measurements have been conducted to quantify the influence of variations in turbidity and temperature on test samples. Therefore, these results show the possibility of using ultrasonic velocity measurements for on-line monitoring the malolactic fermentation of red wine and may help to improve and contribute to the development of the winemaking process.

  15. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Larimer, Curtis [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Suter, Jonathan D. [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Bonheyo, George [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Addleman, Raymond Shane [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA

    2016-03-15

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolution as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.

  16. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF$_{3}$ crystals

    CERN Document Server

    Pietroni, P; Lebeau, M; Majni, G; Rinaldi, D

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser- generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix.

  17. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF3 crystals

    International Nuclear Information System (INIS)

    Pietroni, P.; Paone, N.; Lebeau, M.; Majni, G.; Rinaldi, D.

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser-generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix

  18. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  19. System for nondestructive assay of spent fuel subassemblies: comparison of calculations and measurements

    International Nuclear Information System (INIS)

    Ragan, G.L; Ricker, C.W.; Chiles, M.M.; Ingersoll, D.T.; Slaughter, G.G.; Williams, L.R.

    1979-01-01

    A nondestructive assay system was developed for determining the total fissile content of spent fuel subassemblies at the head end of a reprocessing plant. The system can perform an assay in 20 min with an uncertainty of <5%. Antimony-beryllium neutrons interrogate the subassemblies, and proton recoil counters detect the resulting fission neutrons. Pulse-height discrimination differentiates between the low-energy interrogation neutrons and the higher-energy fission neutrons. Calculated and measured results were compared for (1) interrogation-neutron penetrability, (2) fission-neutron detectability, (3) radial variation of assay sensitivity, (4) axial variation of assay sensitivity, and (5) the variation of detector count rate as a function of the number of fuel rods in a special 61-rod, LMFBR-type subassembly

  20. Ultrasonic measurements and other allied parameters of yttrium soaps in mixed organic solvents

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Tandon, K.

    1990-01-01

    The ultrasonic measurements of yttrium soaps were made in a mixture of 70 % benzene and 30 % dimethylsulfoxide (ν/ν) to determine the critical micelle concentration, soap-solvent interaction and various acoustic and thermodynamic parameters. The values of the CMC decrease with increasing chainlength of fatty acid constituent of the soap molecule and are in agreement with the values obtained from other micellar properties. The various acoustic parameters (intermolecular freelength, adiabatic compressibility, apparent molar compressibility, specific acoustic impedance, apparent molar volume, molar sound velocity, solvation number, available volume and relative association) for yttrium soaps (myristate, palmitate, stearate and oleate) have been evaluated by ultrasonic velocity measurements. (Authors)

  1. Interrelation of material microstructure, ultrasonic factors, and fracture toughness of two phase titanium alloy

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1982-01-01

    The pivotal role of an alpha-beta phase microstructure in governing fracture toughness in a titanium alloy, Ti-662, is demonstrated. The interrelation of microstructure and fracture toughness is demonstrated using ultrasonic measurement techniques originally developed for nondestructive evaluation and material property characterization. It is shown that the findings determined from ultrasonic measurements agree with conclusions based on metallurgical, metallographic, and fractographic observations concerning the importance of alpha-beta morphology in controlling fracture toughness in two phase titanium alloys.

  2. Assessment of precipitates of isothermal aged austenitic stainless steel using measurement techniques of ultrasonic attenuation

    International Nuclear Information System (INIS)

    Kim, Hun Hee; Kim, Hak Joon; Song, Sung Jin; Lim, Byeong Soo; Kim, Kyung Cho

    2014-01-01

    AISI 316L stainless steel is widely used as a structural material of high temperature thermoelectric power plants, since austenitic stainless steel has excellent mechanical properties. However, creep damage is generated in these components, which are operated under a high temperature and high pressure environment. Several researches have been done on how microstructural changes of precipitates affect to the macroscopic mechanical properties. And they investigate the relation between ultrasonic parameters and metallurgical results. But, these studies are limited by experiment results only. In this paper, attenuations of ultrasonic with isothermal damaged AISI 316L stainless steel were measured. Also, simulation of ultrasonic attenuation with variation of area fraction and size of precipitates were performed. And, from the measured attenuations, metallographic data and simulation results, we investigate the relations between the ultrasonic attenuations and the material properties which is area fraction of precipitates for the isothermal damaged austenitic stainless steel specimens. And, we studied parametric study for investigation of the relation between ultrasonic parameters and metallurgical results of the isothermal damaged AISI 316L stainless steel specimens using numerical methods.

  3. Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement

    International Nuclear Information System (INIS)

    Park, Y. H.; Choi, W. C.; Koo, J. H.; Song, M. G.; Ju, E. S.

    2000-01-01

    Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement were carried out according to the angle of the ultrasonic oscillator, materials of the reflector and each section when ultrasonic is reflected several times. Angles of the ultrasonic oscillator such as 30 deg., 45 .deg., 60 .deg., 90 .deg., 120 .deg., 135 .deg. and 150 .deg. were selected, and turbulent intensities were compared at Reynolds No. 2,000 and 4,000. Materials of the reflector such as wood, acryl, iron and glass were selected, and time mean velocity vector and turbulent intensity were compared at Reynolds No. 4,000. The zone which was observed was selected from first section to fourth section when ultrasonic was reflected several times. Every data such as time mean velocity vector and time mean turbulent intensity which was obtained by PIV measurement was examined, compared and discussed at Reynolds No. 2,000 and 4,000 to know the degree of turbulence enhancement in each case

  4. Measurement of liquid level in a natural circulation circuit using an ultrasonic technique

    International Nuclear Information System (INIS)

    Barbosa, Amanda Cardozo; Su, Jian

    2017-01-01

    The measurement by an ultrasonic technique of the water level in the expansion tank of the Natural Circulation Circuit (NCC) of the Experimental Thermo-Hydraulic Laboratory of the Institute of Nuclear Engineering is presented. In the single-phase NCC operation the water level in the expansion tank is stable. However, during the two-phase operation, oscillations occur in the water level due to temperature and vacuum fraction variations. Thus, the development of a technique that allows the measurement of these oscillations, will allow an estimation of the variation of the vacuum fraction of the circuit over time. The experimental set - up was performed on a test bench, using an ultrasonic transducer. The ultrasonic technique used is pulse-echo, in which the same transducer is the transmitter and receiver of the signal. The transducer-shoe assembly is part of an ultrasonic system consisting of an ultrasonic signal generating plate, transducers and a computer (PC) with a program in LabView to control the system. The program is able to calculate the transit time that the ultrasonic signals take to cross the tank base wall, the layer (level) of liquid and return to the transducer. Knowing the speed of the ultrasound in the wall and in the liquid it is possible to calculate the thickness of the wall and the height of the liquid. Measurements were made by filling the tank with a known volume of water and under varying temperature conditions, from room temperature to 90 deg C. The liquid heights are determined and the volume of water calculated by measuring the temperature with a digital thermometer. The volumes measured were highly accurate when compared to the known volumes

  5. Ultrasonic thermometry system for measuring very high temperatures in reactor safety experiments

    International Nuclear Information System (INIS)

    Carlson, G.A.; Sullivan, W.H.; Plein, H.G.; Kerley, T.M.

    1979-06-01

    Ultrasonic thermometry has many potential applications in reactor safety experiments, where extremely high temperatures and lack of visual access may preclude the use of conventional diagnostics. This report details ultrasonic thermometry requirements for one such experiment, the molten fuel pool experiment. Sensors, transducers, and signal processing electronics are described in detail. Axial heat transfer in the sensors is modelled and found acceptably small. Measurement errors, calculations of their effect, and ways to minimize them are given. A rotating sensor concept is discussed which holds promise of alleviating sticking problems at high temperature. Applications of ultrasonic thermometry to three in-core experiments are described. In them, five 10-mm-length sensor elements were used to measure axial temperatures in a UO 2 or UO 2 -steel system fission-heated to about 2860 0 C

  6. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring

    International Nuclear Information System (INIS)

    Chen, H Y; Lv, J T; Zhang, S Q; Zhang, L G; Li, J

    2005-01-01

    At the present time, the ultrasonic Doppler measuring means has been extensively used in the human body's bloodstream speed measuring. The ultrasonic Doppler measuring means can achieve the measuring of liquid flux by detecting Doppler frequency shift of ultrasonic in the process of liquid spread. However, the detected sound wave is a weak signal that is flooded in the strong noise signal. The traditional measuring method depends on signal-to-noise ratio. Under the very low signal-to-noise ratio or the strong noise signal background, the signal frequency is not measured. This article studied on chaotic movement of Duffing oscillator and intermittent chaotic characteristic on chaotic oscillator of Duffing equation. In the light of the range of the bloodstream speed of human body and the principle of Doppler shift, the paper determines the frequency shift range. An oscillator array including many oscillators is designed according to it. The reflected ultrasonic frequency information can be ascertained accurately by the intermittent chaos quality of the oscillator. The signal-to-noise ratio of -26.5 dB is obtained by the result of the experiment. Compared with the tradition the frequency method compare, the dependence to signal-to-noise ratio is lowered consumedly. The measuring precision of the bloodstream speed is heightened

  7. Using the analysis of stress waves to build research for experimentation on ultrasonic film measurement

    Science.gov (United States)

    Chang, Shi-Shing; Wu, John H.

    1993-09-01

    After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.

  8. Thermal history sensors for non-destructive temperature measurements in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Pilgrim, C. C. [Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK and Sensor Coating Systems, Imperial Incubator, Bessemer Building, Level 1 and 2, Imperial College London, London SW7 2AZ (United Kingdom); Heyes, A. L. [Energy Technology and Innovation Initiative, University of Leeds, Leeds, LS2 9JT (United Kingdom); Feist, J. P. [Sensor Coating Systems, Imperial Incubator, Bessemer Building, Level 1 and 2, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-02-18

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

  9. Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Tomohiro [Honda R& D; Bunn, Jeffrey R. [ORNL; Fancher, Christopher M. [ORNL; Seid, Alan [Honda R& D; Motani, Ryuta [Honda R& D; Matsuda, Hideki [Honda R& D; Okayama, Tatsuya [Honda R& D

    2018-04-01

    Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material. The research discussed within this paper consists of non-destructive residual strain measurements in the interior of connecting rods using the 2nd Generation Neutron Residual Stress Mapping Facility (NRSF2) at Oak Ridge National Laboratory, measuring the Fe (211) diffraction peak position of the ferrite phase. The interior strain distribution of connecting rod, which prepared under different manufacturing processes, was revealed. By the visualization of interior strains, clear understandings of differences in various processing conditions were obtained. In addition, it is known that the peak width, which is also obtained during measurement, is suggestive of the size of crystallites in the structure; however the peak width can additionally be caused by microstresses and material dislocations.

  10. Methods for nondestructive assay holdup measurements in shutdown uranium enrichment facilities

    International Nuclear Information System (INIS)

    Hagenauer, R.C.; Mayer, R.L. II.

    1991-09-01

    Measurement surveys of uranium holdup using nondestructive assay (NDA) techniques are being conducted for shutdown gaseous diffusion facilities at the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant). When in operation, these facilities processed UF 6 with enrichments ranging from 0.2 to 93 wt % 235 U. Following final shutdown of all process facilities, NDA surveys were initiated to provide process holdup data for the planning and implementation of decontamination and decommissioning activities. A three-step process is used to locate and quantify deposits: (1) high-resolution gamma-ray measurements are performed to generally define the relative abundances of radioisotopes present, (2) sizable deposits are identified using gamma-ray scanning methods, and (3) the deposits are quantified using neutron measurement methods. Following initial quantitative measurements, deposit sizes are calculated; high-resolution gamma-ray measurements are then performed on the items containing large deposits. The quantitative estimates for the large deposits are refined on the basis of these measurements. Facility management is using the results of the survey to support a variety of activities including isolation and removal of large deposits; performing health, safety, and environmental analyses; and improving facility nuclear material control and accountability records. 3 refs., 1 tab

  11. Application of ultrasonic sensor for measuring distances in robotics

    Science.gov (United States)

    Zhmud, V. A.; Kondratiev, N. O.; Kuznetsov, K. A.; Trubin, V. G.; Dimitrov, L. V.

    2018-05-01

    Ultrasonic sensors allow us to equip robots with a means of perceiving surrounding objects, an alternative to technical vision. Humanoid robots, like robots of other types, are, first, equipped with sensory systems similar to the senses of a human. However, this approach is not enough. All possible types and kinds of sensors should be used, including those that are similar to those of other animals and creations (in particular, echolocation in dolphins and bats), as well as sensors that have no analogues in the wild. This paper discusses the main issues that arise when working with the HC-SR04 ultrasound rangefinder based on the STM32VLDISCOVERY evaluation board. The characteristics of similar modules for comparison are given. A subroutine for working with the sensor is given.

  12. Technical plan for nondestructive examination technology development

    International Nuclear Information System (INIS)

    Anderson, B.C.

    1982-12-01

    This report provides a description of the development of the nondestructive examination (NDE) equipment to be used in the Stored Waste Examination Pilot Plant (SWEPP) for certifying transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). NDE equipment is being developed for waste identification and container integrity. Real-time x-ray radiography is the basic method being used for waste identification. Acoustic (ultrasonic) testing is being used to obtain measurements to verify container integrity. This report describes the decisions made to date, the decisions to be made, and the activities planned for FY 1983 through FY 1985

  13. The non-destructive control, a major constituent of quality

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The number of continuous research and development works about non-destructive control in all sectors of activity is justified by the increasing need for high quality materials without anomalies. This paper gives a overview of the state of the art and of the recent trends in non-destructive testing researches in different sectors: aeronautics, nuclear industry, automotive industry. New studies and techniques are presented: ultrasonic testing of welds on large diameter pipes, automated applications of ultrasonic testing, ultrasound/computer-aided design coupling, pressure vessels inspection using acoustic emission testing (leaks detection, application to composite materials), numerical radiography (image visualisation and processing), magnetic testing (steel damage detection using Barkhausen noise testing), 'shearography' (detection of the loss of thickness in pipes due to corrosion), X-ray tomography (density measurement of sintered steels, fluid flow calculations in automobile parts). (J.S.)

  14. Ultrasonic density detector for vessel and reactor core two-phase flow measurements

    International Nuclear Information System (INIS)

    Arave, A.E.

    1979-01-01

    A local ultrasonic density (LUD) detector has been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory for the Loss-of-Fluid Test (LOFT) reactor vessel and core two-phase flow density measurements. The principle of operating the sensor is the change in propagation time of a torsional ultrasonic wave in a metal transmission line as a function of the density of the surrounding media. A theoretical physics model is presented which represents the total propagation time as a function of the sensor modulus of elasticity and polar moment of inertia

  15. Ultrasonic delay measurements for the determination of the size of quasi-natural defects

    International Nuclear Information System (INIS)

    Proegler, H.

    1978-01-01

    Criteria in the form of delay measurements and phase assessments on ultrasonic pulses were worked out for a series of the most different reflection positions of the artificial, quasi-natural and natural kind which in many cases enable an differentiation of defects and the determination of the defect size. Even though it was not possible to completely clarify all effects occuring, such as reflection positions with undefined pulse orientations, the results sofar are still a contribution to the improvement of the stating ability of ultrasonic testing. (orig./RW) [de

  16. Determination of gas pressure in voids in epoxy casting using an ultrasonic measuring technique

    DEFF Research Database (Denmark)

    Larsen, Esben; Petersen, C. Bak; Henriksen, Mogens

    1990-01-01

    Results of measurements performed on a large open void, where pressure can be controlled from the outside, are compared to the theory of ultrasound transmission. The results verify the theory that the attenuation of transmitted ultrasonic signals through a void depends on the gas pressure inside ...

  17. Ultrasonic instrument for continuous measurement of liquid levels in sodium systems

    International Nuclear Information System (INIS)

    Boehmer, L.S.

    1975-01-01

    An ultrasonic level measurement system which provides a continuous digital readout over a range of 3-180 inches, was tested in 500 0 F liquid sodium. The system proved to be accurate and reliable, required no initial warm-up period and experienced no long term drift. Modifications can extend the present operating temperatures to greater than 1200 0 F

  18. Novel approach of wavelet analysis for nonlinear ultrasonic measurements and fatigue assessment of jet engine components

    Science.gov (United States)

    Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2018-04-01

    Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.

  19. Temperature dependence of electron mean free path in molybdenum from ultrasonic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Almond, D P; Detwiler, D A; Rayne, J A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-09-08

    The temperature dependence of the electronic mean free path in molybdenum has been obtained from ultrasonic attenuation measurements.For temperature up to 30 K a T/sup -2/ law is followed suggesting the importance of electron-electron scattering in the attenuation mechanism.

  20. Ultrasonic motion analysis system - measurement of temporal and spatial gait parameters

    NARCIS (Netherlands)

    Huitema, RB; Hof, AL; Postema, K

    The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the

  1. Review of progress in quantitative nondestructive evaluation

    International Nuclear Information System (INIS)

    Thompson, D.O.; Chimenti, D.E.

    1983-01-01

    A comprehensive review of the current state of quantitative nondestructive evaluation (NDE), this volume brings together papers by researchers working in government, private industry, and university laboratories. Their papers cover a wide range of interests and concerns for researchers involved in theoretical and applied aspects of quantitative NDE. Specific topics examined include reliability probability of detection--ultrasonics and eddy currents weldments closure effects in fatigue cracks technology transfer ultrasonic scattering theory acoustic emission ultrasonic scattering, reliability and penetrating radiation metal matrix composites ultrasonic scattering from near-surface flaws ultrasonic multiple scattering

  2. Evaluation of physical dimension changes as nondestructive measurements for monitoring rigor mortis development in broiler muscles.

    Science.gov (United States)

    Cavitt, L C; Sams, A R

    2003-07-01

    Studies were conducted to develop a non-destructive method for monitoring the rate of rigor mortis development in poultry and to evaluate the effectiveness of electrical stimulation (ES). In the first study, 36 male broilers in each of two trials were processed at 7 wk of age. After being bled, half of the birds received electrical stimulation (400 to 450 V, 400 to 450 mA, for seven pulses of 2 s on and 1 s off), and the other half were designated as controls. At 0.25 and 1.5 h postmortem (PM), carcasses were evaluated for the angles of the shoulder, elbow, and wing tip and the distance between the elbows. Breast fillets were harvested at 1.5 h PM (after chilling) from all carcasses. Fillet samples were excised and frozen for later measurement of pH and R-value, and the remainder of each fillet was held on ice until 24 h postmortem. Shear value and pH means were significantly lower, but R-value means were higher (P rigor mortis by ES. The physical dimensions of the shoulder and elbow changed (P rigor mortis development and with ES. These results indicate that physical measurements of the wings maybe useful as a nondestructive indicator of rigor development and for monitoring the effectiveness of ES. In the second study, 60 male broilers in each of two trials were processed at 7 wk of age. At 0.25, 1.5, 3.0, and 6.0 h PM, carcasses were evaluated for the distance between the elbows. At each time point, breast fillets were harvested from each carcass. Fillet samples were excised and frozen for later measurement of pH and sacromere length, whereas the remainder of each fillet was held on ice until 24 h PM. Shear value and pH means (P rigor mortis development. Elbow distance decreased (P rigor development and was correlated (P rigor mortis development in broiler carcasses.

  3. Method and system of measuring ultrasonic signals in the plane of a moving web

    Science.gov (United States)

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  4. Nondestructive Testing

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Harold [Argonne National Laboratory

    1969-01-01

    A nondestructive test is an examination of an object in any manner which will not impair the future usefulness of the object. This booklet discusses a few basic methods of nondestructive testing, and some of their characteristics. In addition, it discusses possible future methods for nondestructive testing by taking a quick look at some of the methods now under study.

  5. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    Science.gov (United States)

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  6. Measurement and analysis. Ultrasonic testing. Study of the attenuation of ultrasonic beams through steels

    International Nuclear Information System (INIS)

    Canella, G.

    1977-01-01

    Anisotropy, inclusions, segregations and grain size are factors affecting the mechanical properties of steel and determining, at the same time, attenuation of an untrasonic beam crossing it. A system was developed, which offers guarantees of good reproducibility (within 5%) obtained with a device applying a constant and uniform pressure on the probe and using oil with very low viscosity and surface tension as couplant liquid. This oil, generally used as penetrant, is excellent by the rapidity of its constant response and by the thin layer formed which is free from air bubbles between probe and piece. Measurements of reflection loss were also carried out and investigated about the influence on such loss of: couplant liquid; type of transducer; type of piezoelectric protection. For transducers whose surface is protected by an hard coat loss by reflection (about 1 dB) varies within the measuring error, for the different couplant liquids. For transducers with unprotected sensitive surface, loss depends on the type of crystal and is significantly reduced (from 3 dB to 0,5 dB approximately) with an appropriate rubber layer. In both cases; loss proved to be independent of frequency. The samples were subjected to different heat treatments and, for each measurement of amplitude and frequency attenuation and structure micrographies were carried out. These methods of inspections can be applied in industry without any great difficulty

  7. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  8. 46 CFR 151.03-38 - Nondestructive testing.

    Science.gov (United States)

    2010-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle... 46 Shipping 5 2010-10-01 2010-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38...

  9. Recent improvements concerning nondestructive testing

    International Nuclear Information System (INIS)

    Asty, M.

    1984-12-01

    Rare are the techniques of which development is not already touched by microelectronics and micro-data processing. Nondestructive testing and more particularly ultrasonic and Foucault current testing follow this general rule. With some examples, this paper focuses on the potential of numerical signal processing [fr

  10. Nondestructive testing at the CEA

    International Nuclear Information System (INIS)

    Colomer, J.; Lucas, G.

    1976-01-01

    The different nondestructive testing methods used at the CEA are presented: X-ray or gamma radiography, X-ray stress analysis, neutron radiography, ultrasonic testing, eddy currents, electrical testing, microwaves, thermal testing, acoustic emission, optical holography, tracer techniques. (102 references are cited) [fr

  11. Reliability of measuring pelvic floor elevation with a diagnostic ultrasonic imaging device

    OpenAIRE

    Ubukata, Hitomi; Maruyama, Hitoshi; Huo, Ming

    2015-01-01

    [Purpose] The purpose of this study was to investigate the reliability of measuring the amount of pelvic floor elevation during pelvic and abdominal muscle contraction with a diagnostic ultrasonic imaging device. [Subjects] The study group comprised 11 healthy women without urinary incontinence or previous birth experience. [Methods] We measured the displacement elevation of the bladder base during contraction of the abdominal and pelvic floor muscles was measured using a diagnostic ultrasoni...

  12. A comparison of conventional and prototype nondestructive measurements on molten salt extraction residues

    International Nuclear Information System (INIS)

    Longmire, V.L.; Scarborough, A.M.

    1987-01-01

    Impure plutonium metal is routinely processed by molten salt extraction (MSE) to reduce the amount of americium in the metal product. Individuals form four technical groups at the Los Alamos National Laboratory (LANL) participated in a study designed to evaluate the accuracy of various nondestructive assay (NDA) techniques for measuring the plutonium content in MSE residues. This study was performed to improve in-house accountability of these items and to identify assay methods that would be acceptable for determining receiver's values for MSE salts from off-site sources. Recent upgrades have been made in a segmented gamma scan system, in a thermal neutron coincidence counter, and in the software of a gamma isotopic system that supports the calorimeters at LAPF. The authors evaluated the newer systems against the older systems versus destructive qualitative analyses. Fourteen containers of MSE residues were selected to be studied. Seven of these salts originated at LAPF and seven originated at Rockwell International Rocky Flats plant. Measurements have been performed on these items in their original containers, and the items have been repackaged into a different geometry and assayed again

  13. In-Situ Characterization of Isotropic and Transversely Isotropic Elastic Properties Using Ultrasonic Wave Velocities

    NARCIS (Netherlands)

    Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.

    2016-01-01

    In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of

  14. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  15. Research of the ultrasonic testing parts reconditioned by welding

    Directory of Open Access Journals (Sweden)

    C. Petriceanu

    2016-07-01

    Full Text Available The paper presents the results obtained following the nondestructive ultrasonic testing of crankpin shaft of a crankshaft that were reconditioned by welding. After the ultrasonic testing, the reconditioned samples were cut and subjected to visual testing and microstructure examination. When the results obtained following the nondestructive tests were analyzed, it was observed that the ultrasonic nondestructive testing method is an efficient way to determine the conformity of the areas that were reconditioned by welding.

  16. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  17. Basic study of water-cement ratio evaluation for fresh mortar using an ultrasonic measurement technique

    International Nuclear Information System (INIS)

    Hamza Haffies Ismail; Murata, Yorinobu

    2009-01-01

    The objective of this research is for the basic study of ultrasonic evaluation method for the determination of the water-cement-ratio (W/C) in fresh concrete at the early age of hardening. Water-cement ratio is a important parameter to evaluate the strength of concrete for concrete construction. Using an ultrasonic pulse measurement technique, wave velocity and frequency variations depend on the age of concrete during hardening process could be evaluated. As a sample test, fresh mortar of water-cement ratio of 40 %, 50% and 60 % was poured into cylindrical plastic mould form (φ100 mm x 50 mm). For an ultrasonic pulse wave transmission technique, two wide band ultrasonic transducers were set on the top and bottom surface of mortar, and start measuring from 10 minutes after pouring water until 60 minutes of 5 minutes of intervals. As a result, it was confirmed that wave velocity and center frequency were changed with the age of mortar depends on the water-cement ratio. (author)

  18. Nondestructive characterization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kumar, Anish

    2010-01-01

    The paper presents an overview of the non-destructive methodologies developed at the authors' laboratory for characterization of various microstructural features, residual stresses and corrosion in austenitic stainless steels. Various non-destructive evaluation (NDE) parameters such as ultrasonic velocity, ultrasonic attenuation, spectral analysis of the ultrasonic signals, magnetic hysteresis parameters and eddy current amplitude have been used for characterization of grain size, precipitation behaviour, texture, recrystallization, thermomechanical processing, degree of sensitization, formation of martensite from metastable austenite, assessment of residual stresses, degree of sensitization and propensity for intergranular corrosion in different austenitic steels. (author)

  19. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Yan

    2018-02-01

    Full Text Available Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  20. Nondestructive measurement systems for the characterization of ancient masonry: an SLDV/GPR integrated approach

    Science.gov (United States)

    Agnani, Alexia; del Conte, Antonio; Esposito, Enrico; Naticchia, Berardo

    2006-06-01

    The determination of the state of conservation of historical masonries by non-destructive and non-invasive techniques must still gain its due widespread use, and this is clearly reflected in national norms that often refuse them as not being reliable enough to be used without the support of destructive ones (see for example the Italian OPCM 3274/2003 and subsequent modifications). Anyhow, the clear advantages of such techniques, and especially laser based ones like the Scanning Laser Doppler Vibrometry - SLDV here employed, drive the research towards this direction. In this work we will illustrate a case study done in the south of the Marche region, namely the investigations conducted inside and outside the Lanciano castle, near Castelraimondo (MC). A series of SLDV measurements have been made that have lead to the discovery of many hidden structural defects, such as delaminations of superficial layers, minor and also important cracks. To validate our findings a well reputed and consolidated technique has been employed, a Ground Penetrating Radar - GPR, along with manual beating of suspected areas. Also a brief session using an infrared camera has been conducted to check the results relative to superficial delaminations, where the GPR could fail due to insufficient spatial resolution.

  1. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum

    International Nuclear Information System (INIS)

    Santos, Allan Xavier dos

    2010-01-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  2. Educational ultrasound nondestructive testing laboratory.

    Science.gov (United States)

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).

  3. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  4. Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Lee, Sang Soon [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2003-12-15

    This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process

  5. Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

    International Nuclear Information System (INIS)

    Kim, No Hyu; Lee, Sang Soon

    2003-01-01

    This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process

  6. Development of gap measurement technique in-vessel corium retention using ultrasonic pulse echo method

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Jong Hwan; Kang, Kyung Ho; Kim, Sang Baik; Sim, Cheul Muu

    1999-03-01

    A gap between a molten material and a lower vessel is formed in the LAVA experiment, a phase 1 study of Sonata-IV program. In this technical report, quantitative results of the gap measurement using an off-line ultrasonic pulse echo method are presented. This report aims at development of an appropriate ultrasonics test method, by analyzing the problems from the external environmental reason and the internal characteristic reason. The signal analyzing methods to improve the S/N ratio in these problems are divided into the time variant synthesized signal analyzing method and the time invariant synthesized signal analyzing method. In this report, the possibility of the application of these two methods to the gap signal and the noise is considered. In this test, the signal of the propagational direction and reflectional direction through solid-liquid-solid specimen was analyzed to understand the behavior of the reflectional signal in a multi-layered structure by filling the gap with water between the melt and the lower head vessel. The quantitative gap measurement using the off-line ultrasonic pulse echo method was available for a little of the scanned region. But furtherly using DSP technique and imaging technique, the better results will be obtained. Some of the measured signals are presented as 2-dimensional spherical mapping method using distance and amplitude. Other signals difficult in quantitative measurement are saved for a new signal processing method. (author). 11 refs., 4 tabs., 54 figs

  7. A Study on the Thickness Measurement of Thin Film by Ultrasonic Wave

    International Nuclear Information System (INIS)

    Han, Eung Kyo; Lee, Jae Joon; Kim, Jae Yeol

    1988-01-01

    Recently, it is gradually raised necessity that thickness of thin film is measured accurately and managed in industrial circles and medical world. In this study, regarding to the thickness of film which is in opaque object and is beyond distance resolution capacity, thickness measurement was done by MEM-cepstrum analysis of received ultrasonic wave. In measurement results, film thickness which is beyond distance resolution capacity was measured accurately. And within thickness range that don't exist interference, thickness measurement by MEM-ceptrum analysis was impossible

  8. Operational measurements of stack flow rates in a nuclear power plant with ultrasonic anemometer

    International Nuclear Information System (INIS)

    Voelz, E.; Kirtzel, H.-J.; Ebenhoech, E.

    2003-01-01

    The calculation of the impact of radio nuclides within the surroundings of nuclear power stations requires quantitative measurements of the stack emission. As a standard method, propeller anemometers have been installed inside the stack, but due to the wear and tear of the moving parts in such conventional sensors the servicing and maintenance are costly and may cause restrictions in the operation of the stack. As an alternative to propeller anemometers ultrasonic sensors have been applied which employ no moving parts and are almost free of maintenance. Furthermore, any shifts in internal calibration parameters can be identified by the sensor electronics with on-line plausibility checks. The tests have proven that ultrasonic systems are able to measure adequately and reliably the flow inside the stack. (orig.)

  9. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li

    2015-06-01

    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  10. Instrument for thickness measuring of a workpiece with the help of ultrasonic waves

    International Nuclear Information System (INIS)

    Wells, F.H.; Martin, R.

    1978-01-01

    The proposed ultrasonic measuring instrument has a generator for pulsed ultrasonic signals, a detector as well as a contact arrangement that connects both with the work piece. The transportation lag of the signals through the contact arrangements amounts to at least five times the transportation lag of the signals due to the thickness of a work piece. Furthermore there is an arrangement for the measurement of the delay between two successive echos from the back of the work piece with the help of a zero passage detector for the generation of a time-reference value on each echo signal. This permits an exact time control of the pulses which range in the field around nano seconds. The instrument is explained with 8 drawings and a detailed description. (RW) [de

  11. Prediction of strength of wood composite materials using ultrasonic

    International Nuclear Information System (INIS)

    Mahmoud, M.K.; Emam, A.

    2005-01-01

    Wood is a biological material integrating a very large variability of its mechanical properties (tensile and compressive), on the two directional longitudinal and transverse Ultrasonic method has been utilized to measure both wood physical and / or wood mechanical properties. The aim of this article is to show the development of ultrasonic technique for quality evaluation of trees, wood material and wood based composites. For quality assessment of these products we discuss the nondestructive evaluation of different factors such as: moisture content, temperature, biological degradation induced by bacterial attack and fungal attack. These techniques were adapted for trees, timber and wood based composites. The present study discusses the prediction of tensile and compressive strength of wood composite materials using ultrasonic testing. Empirical relationships between the tensile properties, compression strength and ultrasonic were proposed. The experimental results indicate the possibility of establishing a relationship between tensile strength and compression values. Moreover, the fractures in tensile and compressive are discussed by photographic

  12. Improvement of the reliability on nondestructive inspection

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young H.; Lee, Hyang Beom; Shin, Young Kil; Jung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2002-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time

  13. Improvement of the reliability on nondestructive inspection

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young H. [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Jung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul Nationl Univ., Seoul (Korea, Republic of)

    2002-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time.

  14. Detection Of Cracks In Composite Materials Using Hybrid Non-Destructive Testing Method Based On Vibro-Thermography And Time-Frequency Analysis Of Ultrasonic Excitation Signal

    Directory of Open Access Journals (Sweden)

    Prokopowicz Wojciech

    2015-09-01

    Full Text Available The theme of the publication is to determine the possibility of diagnosing damage in composite materials using vibrio-thermography and frequency analysis and time-frequency of excitation signal. In order to verify the proposed method experiments were performed on a sample of the composite made in the technology of pressing prepregs. Analysis of the recorded signals and the thermograms were performed in MatLab environment. Hybrid non-destructive testing method based on thermogram and appropriate signal processing algorithm clearly showed damage in the sample composite material.

  15. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  16. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  17. Nondestructive measurement of spent fuel assemblies at the Tokai Reprocessing and Storage Facility

    International Nuclear Information System (INIS)

    Phillips, J.R.; Bosler, G.E.; Halbig, J.K.; Lee, D.M.

    1979-12-01

    Nondestructive verification of irradiated fuel assemblies is an integral part of any safeguards system for a reprocessing facility. Available techniques are discussed with respect to the level of verification provided by each. A combination of high-resolution gamma spectrometry, neutron detectors, and gross gamma activity profile monitors provide a maximum amount of information in a minimum amount of time

  18. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Matthew Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility study described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.

  19. Measurement of mango firmness by non-destructive limited compression technique

    NARCIS (Netherlands)

    Penchaiya, P.; Uthairatanakij, A.; Srilaong, V.; Kanlayanarat, S.; Tijskens, L.M.M.; Tansakul, A.

    2015-01-01

    Thai mango 'Nam Dok Mai Si-Thong' has an attractive golden yellow skin colour even in immature fruit, not ready for consumption. Firmness becomes an important quality attribute to assess the ripening stage of the fruit during storage. In this study, the possibility of a non-destructive method

  20. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    International Nuclear Information System (INIS)

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  1. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  2. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-16

    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components. This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.

  3. Development of nondestructive measurement system for quantifying radioactivity from crud, liquids and gases in a contaminated pipe

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, Masaki; Ito, Hirokuni; Wakayama, Naoaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1992-11-01

    A nondestructive measuring method was developed to quantify separately radioisotope concentrations of crud, liquids and gases in a contaminated pipe. For applying this method to practical in-situ measurement, a nondestructive measurement system was developed. The measurement system consists of an in-situ equipment for gamma-ray scanning measurements and a data-processing equipment for analysis of radioactivity. The communication between both equipments is performed by a wireless telemeter device. To construct the measurement system, a gas-cooled Ge detector of practical use, small-sized electronics circuits, a fast and reliable telemeter device and automatic measurement technics using a computer were developed. Through performance tests, it is confirmed that the measurement system is effective for in-situ measurements of radioactivity in a contaminated pipe. The measurement accuracy with this measurement system is 10 - 20 %, which was determined by comparison with solid and liquid radioisotope concentrations in a mock-up contaminated pipe that had been quantified in advance. (author).

  4. Ultrasonic texture characterization of aluminum, zirconium and titanium alloys

    International Nuclear Information System (INIS)

    Anderson, A.J.

    1997-01-01

    This work attempts to show the feasibility of nondestructive characterization of non-ferrous alloys. Aluminum alloys have a small single crystal anisotropy which requires very precise ultrasonic velocity measurements for derivation of orientation distribution coefficients (ODCs); the precision in the ultrasonic velocity measurement required for aluminum alloys is much greater than is necessary for iron alloys or other alloys with a large single crystal anisotropy. To provide greater precision, some signal processing corrections need to be applied to account for the inherent, half-bandwidth offset in triggered pulses when using a zero-crossing technique for determining ultrasonic velocity. In addition, alloys with small single crystal anisotropy show a larger dependence on the single crystal elastic constants (SCECs) when predicting ODCs which require absolute velocity measurements. Attempts were made to independently determine these elastics constants in an effort to improve correlation between ultrasonically derived ODCs and diffraction derived ODCs. The greater precision required to accurately derive ODCs in aluminum alloys using ultrasonic nondestructive techniques is easily attainable. Ultrasonically derived ODCs show good correlation with derivations made by Bragg diffraction techniques, both neutron and X-ray. The best correlation was shown when relative velocity measurements could be used in the derivations of the ODCs. Calculation of ODCs in materials with hexagonal crystallites can also be done. Because of the crystallite symmetries, more information can be extracted using ultrasonic techniques, but at a cost of requiring more physical measurements. Some industries which use materials with hexagonal crystallites, e.g. zirconium alloys and titanium, have traditionally used texture parameters which provide some specialized measure of the texture. These texture parameters, called Kearns factors, can be directly related to ODCs

  5. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests

    International Nuclear Information System (INIS)

    Kemnitz, P.; Richter, U.; Klueber, H.

    1997-01-01

    In nuclear power plants many of the welds in austenitic tubes have to be inspected by means of ultrasonic techniques. If component-identical test pieces are available, they are used to qualify the ultrasonic test technology. Acoustic field measurements on such test blocks give information whether the beam of the ultrasonic transducer reaches all critical parts of the weld region and which transducer type is best suited. Acoustic fields have been measured at a bimetallic, a V-shaped and a narrow gap weld in test pieces of wall thickness 33, 25 and 17 mm, respectively. Compression wave transducers 45, 60 and 70 and 45 shear wave transducers have been included in the investigation. The results are presented: (1) as acoustic C-scans for one definite probe position, (2) as series of C-scans for the probe moving on a track perpendicular to the weld, (3) as scan along the weld and (4) as effective beam profile. The influence of the scanning electrodynamic probe is also discussed. (orig.)

  6. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    Science.gov (United States)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  7. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    International Nuclear Information System (INIS)

    Hoffmeister, Brent K; Holt, Andrew P; Kaste, Sue C

    2011-01-01

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  8. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Brent K; Holt, Andrew P [Department of Physics, Rhodes College, Memphis, TN (United States); Kaste, Sue C, E-mail: hoffmeister@rhodes.edu [Department of Diagnostic Imaging, St Jude Children' s Research Hospital, Memphis, TN (United States)

    2011-10-07

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  9. Ultrasonic Doppler measurement of renal artery blood flow

    Science.gov (United States)

    Freund, W. R.; Meindl, J. D.

    1975-01-01

    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported.

  10. Construction of Models for Nondestructive Prediction of Ingredient Contents in Blueberries by Near-infrared Spectroscopy Based on HPLC Measurements.

    Science.gov (United States)

    Bai, Wenming; Yoshimura, Norio; Takayanagi, Masao; Che, Jingai; Horiuchi, Naomi; Ogiwara, Isao

    2016-06-28

    Nondestructive prediction of ingredient contents of farm products is useful to ship and sell the products with guaranteed qualities. Here, near-infrared spectroscopy is used to predict nondestructively total sugar, total organic acid, and total anthocyanin content in each blueberry. The technique is expected to enable the selection of only delicious blueberries from all harvested ones. The near-infrared absorption spectra of blueberries are measured with the diffuse reflectance mode at the positions not on the calyx. The ingredient contents of a blueberry determined by high-performance liquid chromatography are used to construct models to predict the ingredient contents from observed spectra. Partial least squares regression is used for the construction of the models. It is necessary to properly select the pretreatments for the observed spectra and the wavelength regions of the spectra used for analyses. Validations are necessary for the constructed models to confirm that the ingredient contents are predicted with practical accuracies. Here we present a protocol to construct and validate the models for nondestructive prediction of ingredient contents in blueberries by near-infrared spectroscopy.

  11. Development of nondestructive hybrid measuring method for three-dimensional residual stress distribution of thick welded joint. Hybrid measuring method of inherent strain method and neutron diffraction method

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Kasahara, Norifumi; Tamura, Ryota

    2012-01-01

    The measuring methods of the residual stress are classified into destructive one and nondestructive one. The inherent strain method (ISM) is destructive one. The neutron diffraction method (NDM) is nondestructive one. But the measurable depth is limited within about 20 mm and the method cannot measure the weld zone, without destruction of the object. So, in this study, the hybrid measuring method has been developed, by combining the ISM and the NDM. The theory of the hybrid method is the same as the ISM. In the analysis, the strains measured by the NDM without destruction are used. This hybrid measuring method is a true nondestructive measuring method for a thick welded joint. The applicability of the hybrid method has been verified by simulation, using a butt welded joint of thick pipes. In the simulation, the reliable order of the strains measured by the present NDM is very important, and was considered as 10 micro. The measurable regions by the present NDM were assumed. Under the above conditions, the data (the residual elastic strains assumed to be measured by the NDM) were made, and used in the ISM. As a result of such simulation, it has been cleared that the estimated residual stress has very high accuracy, if enough data are used. The required number of data is less than the ISM. (author)

  12. Getting the most out of your new plant with a chordal ultrasonic feedwater flow measurement system

    International Nuclear Information System (INIS)

    Estrada, Herb; Hauser, Ernie

    2007-01-01

    The economic advantages of a chordal ultrasonic feedwater flow measurement system over conventional (flow nozzle-based) feedwater instrumentation are analyzed for new plants having ratings ranging from 1100 MWe to 1600 MWe. Specifically, each of the following topics is considered: The value of a 1.7% increase in the rating of the new plant, made possible by the reduced uncertainty in the determination of thermal power. The value of reduced startup time owing to enhanced steam supply water level control. The value of the reduced feedwater pumping power brought about by the elimination of flow nozzles. The value of the reduced calibration burden owing to the elimination of the feedwater flow differential pressure transmitters and resistance thermometers. The net difference in the acquisition costs of the ultrasonic system versus conventional feedwater flow instrumentation. The net savings in installation costs of the ultrasonic system vis-a-vis conventional feedwater flow instrumentation. The potential savings in outage time due to the reduced frequency of low steam supply water level trips (scrams) of the reactor. (author)

  13. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  14. Quality parameters of mango and potential of non-destructive techniques for their measurement- a review

    International Nuclear Information System (INIS)

    Jha, S.N.; Narsaiah, K.; Sharma, A.D.; Singh, M.; Bansal, S.; Kumar, R.

    2010-01-01

    The king of fruits 'Mango' (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars. (author)

  15. Determination of corrective factors for an ultrasonic flow measuring method in pipes accounting for perturbations

    International Nuclear Information System (INIS)

    Etter, S.

    1982-01-01

    By current ultrasonic flow measuring equipment (UFME) the mean velocity is measured for one or two measuring paths. This mean velocity is not equal to the velocity averaged over the flow cross-section, by means of which the flow rate is calculated. This difference will be found already for axially symmetrical, fully developed velocity profiles and, to a larger extent, for disturbed profiles varying in flow direction and for nonsteady flow. Corrective factors are defined for steady and nonsteady flows. These factors can be derived from the flow profiles within the UFME. By mathematical simulation of the entrainment effect the influence of cross and swirl flows on various ultrasonic measuring methods is studied. The applied UFME with crossed measuring paths is shown to be largely independent of cross and swirl flows. For evaluation in a computer of velocity network measurements in circular cross-sections the equations for interpolation and integration are derived. Results of the mathematical method are the isotach profile, the flow rate and, for fully developed flow, directly the corrective factor. In the experimental part corrective factors are determined in nonsteady flow in a measuring plane before and in form measuring planes behind a perturbation. (orig./RW) [de

  16. Radiometric measurements on the fabrication of non-destructive assay standards for WIPP-Performance Demonstration Program

    International Nuclear Information System (INIS)

    Wong, A.S.; Marshall, R.S.

    1997-04-01

    The Inorganic Elemental Analysis Group of LANL has prepared several different sets of working reference materials (WRMs). These WRMs are prepared by blending quantities of nuclear materials (plutonium, americium, and enriched uranium) with diatomaceous earth. The blends are encapsulated in stainless steel cylinders. These WRMs are being measured as blind controls in neutron and gamma based non-destructive assay (NDA) instruments. Radiometric measurements on the blending homogeneity and verification on a set of sixty three plutonium based WRMs are discussed in this paper

  17. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  18. Central corneal thickness measurements in unoperated eyes and eyes after PRK for myopia using Pentacam, Orbscan II, and ultrasonic pachymetry.

    Science.gov (United States)

    Kim, Sun Woong; Byun, Yeo Jue; Kim, Eung Kweon; Kim, Tae-im

    2007-11-01

    To compare central corneal thickness measurements obtained in unoperated eyes and eyes after myopic photorefractive keratectomy (PRK) using a rotating Scheimpflug camera (Pentacam), a scanning slit corneal topography system (Orbscan II), and ultrasonic pachymetry. Corneal thickness was measured using Pentacam, Orbscan II, and ultrasonic pachymetry in 25 unoperated eyes (unoperated group), 24 eyes 1 to 3 months after myopic PRK (early postoperative PRK group), and 21 eyes 4 months or more after myopic PRK (late postoperative PRK group). In the unoperated group, corneal thickness measurements were similar for all three methods (P=.125). In the early postoperative PRK group, Orbscan measurements were thinner than Pentacam and ultrasonic measurements by a mean of 69.4 microm and 63.4 microm (PPRK group, Orbscan measurements were thinner than Pentacam measurements by a mean of 36.0 microm (P=.017). Pentacam and ultrasonic pachymetry measurements were similar for all three groups with a mean difference of approximately 10 microm. Following myopic PRK, Pentacam was comparable to ultrasonic pachymetry in measuring corneal thickness, whereas Orbscan measurements were thinner.

  19. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of an ultrasonic flow and temperature measurement system for pressurized water reactors

    International Nuclear Information System (INIS)

    James, R.W.; Lubnow, T.; Baumgart, G.; Ravetti, D.

    1996-01-01

    In U.S. nuclear plants, primary coolant flow and reactor thermal power are calculated from a measurement of feedwater flow to the steam generator combined with knowledge of steam generator heat transfer characteristics nd measurement of hot leg temperature by resistance temperature detectors (RTDs). The calculation of plant thermal output is complicated by an indirect measurement of primary coolant mass flow rate and thermal streaming in the region where hot leg temperature is typically measured. Uncertainty in the thermal output calculation results from uncertainties in steam generator characteristics, in the hot leg temperature due to thermal streaming, and in fouling of venturi nozzles used for feedwater flow measurement. This in turn leads to operation of power plants ar lower levels of efficiency. The Electric Power Research Institute (EPRI) has on ongoing project to develop a prototype system to directly measure primary coolant flow rate and bulk average temperature using ultrasonic transducers externally mounted on the pipe. The topic of this paper is a summary of the project experience in developing this system. The technology being developed in this project is based in part upon previously existing ultrasonic feedwater flow measurement technology developed by MPR Associates and Caldon, Inc EPRI is a non-profit company performing research for U.S. and international electric power utilities. (authors)

  1. Ultrasonic measurement on RPV stud-bolt loading under hot transient of Qinshan NPP

    International Nuclear Information System (INIS)

    Qu Jiadi; Dou Yikang; Zhu Shiming; Lu Jie; Wang Yingguan

    1994-01-01

    It is a continuation of research work for sealing analysis and tests on the PRV of PWR. It expounds that the key of solving thermal transient sealing problem lies in giving the thermal increment of stud-bolt fatigue life and transient loading spectrum for vessel analysis. The authors recounted the fundamental works and main results of ultrasonic measurement on RPV stud-bolt loading on the reactor of Qinshan Nuclear Power Plant. The measuring capability exceeds 1 m length and 300 degree C temperature. Therefore, it is possible to be used in the field of NPP

  2. Ultrasonic techniques for measuring physical properties of fluids in harsh environments

    Science.gov (United States)

    Pantea, Cristian

    Ultrasonic-based measurement techniques, either in the time domain or in the frequency domain, include a wide range of experimental methods for investigating physical properties of materials. This discussion is specifically focused on ultrasonic methods and instrumentation development for the determination of liquid properties at conditions typically found in subsurface environments (in the U.S., more than 80% of total energy needs are provided by subsurface energy sources). Such sensors require materials that can withstand harsh conditions of high pressure, high temperature and corrosiveness. These include the piezoelectric material, electrically conductive adhesives, sensor housings/enclosures, and the signal carrying cables, to name a few. A complete sensor package was developed for operation at high temperatures and pressures characteristic to geothermal/oil-industry reservoirs. This package is designed to provide real-time, simultaneous measurements of multiple physical parameters, such as temperature, pressure, salinity and sound speed. The basic principle for this sensor's operation is an ultrasonic frequency domain technique, combined with transducer resonance tracking. This multipurpose acoustic sensor can be used at depths of several thousand meters, temperatures up to 250 °C, and in a very corrosive environment. In the context of high precision measurement of sound speed, the determination of acoustic nonlinearity of liquids will also be discussed, using two different approaches: (i) the thermodynamic method, in which precise and accurate frequency domain sound speed measurements are performed at high pressure and high temperature, and (ii) a modified finite amplitude method, requiring time domain measurements of the second harmonic at room temperature. Efforts toward the development of an acoustic source of collimated low-frequency (10-150 kHz) beam, with applications in imaging, will also be presented.

  3. Nondestructive characterization of embrittlement in reactor pressure vessel steels -- A feasibility study

    International Nuclear Information System (INIS)

    McHenry, H.I.; Alers, G.A.

    1998-01-01

    The Nuclear Regulatory Commission recently initiated a study by NIST to assess the feasibility of using physical-property measurements for evaluating radiation embrittlement in reactor pressure vessel (RPV) steels. Ultrasonic and magnetic measurements provide the most promising approaches for nondestructive characterization of RPV steels because elastic waves and magnetic fields can sense the microstructural changes that embrittle materials. The microstructural changes of particular interest are copper precipitation hardening, which is the likely cause of radiation embrittlement in RPV steels, and the loss of dislocation mobility that is an attribute of the ductile-to-brittle transition. Measurements were made on a 1% copper steel, ASTM grade A710, in the annealed, peak-aged and overaged conditions, and on an RPV steel, ASTM grade A533B. Nonlinear ultrasonic and micromagnetic techniques were the most promising measures of precipitation hardening. Ultrasonic velocity measurements and the magnetic properties associated with hysteresis-loop measurements were not particularly sensitive to either precipitation hardening or the ductile-to-brittle transition. Measurements of internal friction using trapped ultrasonic resonance modes detected energy losses due to the motion of pinned dislocations; however, the ultrasonic attenuation associated with these measurements was small compared to the attenuation caused by beam spreading that would occur in conventional ultrasonic testing of RPVs

  4. Nondestructive characterization of hydrogen concentration in zircaloy cladding tubes with laser ultrasound technique

    International Nuclear Information System (INIS)

    Yang, Che Hua; Lai, Yu An

    2006-01-01

    This paper describes a laser ultrasound technique (LUT) for nondestructive characterization of hydrogen concentration (HC) in Zircaloy cladding tubes. With the LUT, guided ultrasonic waves are generated remotely and then propagate in the axial direction of Zircaloy tubes, and finally detected remotely by an optical probe. By measuring the dispersion spectra with the LUT, relations between the dispersion spectra and the HC of the Zircaloy tubes can be established. The LUT is non-contact, capable of remote inspection, and therefore suitable for nondestructive inspection of HC in Zircaloy cladding tubes used in nuclear power plant.

  5. Ultrasonic measurement of gap between calandria tube and liquid injection shutdown system tube in PHWR

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Sohn, Seok Man; Lee, Jun Shin; Lee, Sun Ki; Lee, Jong Po

    2001-01-01

    Sag of CT or liquid injection shutdown system tubes in pressurized heavy water reactor is known to occur due to irradiation creep and growth during plant operation. When the sag of CT is big enough, the CT tube possibly comes in contact with liquid injection shutdown system tube (LIN) crossing beneath the CT, which subsequently may prevent the safe operation. It is therefore necessary to check the gap between the two tubes in order to confirm no contacts when using a proper measure periodically during the plant life. An ultrasonic gap measuring probe assembly which can be fed through viewing port installed on the calandria was developed and utilized to measure the sags of both tubes in a pressurized heavy water reactor in Korea. It was found that the centerlines of CT and LIN can be precisely detected by ultrasonic wave. The gaps between two tubes were easily obtained from the relative distance of the measured centerline elevations of the tubes. But the measured gap data observed at the viewing port were actually not the data at the crossing point of CT and LIN. To get the actual gap between two tubes, mathematical modeling for the deflection curves of two tubes was used. The sags of CT and LIN tubes were also obtained by comparison of the present centerlines with the initial elevations at the beginning of plant operation. The gaps between two tubes in the unmeasurable regions were calculated based on the measurement data and the channel power distribution

  6. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  7. Measure of pore size in micro filtration polymeric membrane using ultrasonic technique and artificial neural networks

    International Nuclear Information System (INIS)

    Lucas, Carla de Souza

    2009-01-01

    This work presents a study of the pore size in micro filtration polymeric membranes, used in the nuclear area for the filtration of radioactive liquid effluent, in the residual water treatment of the petrochemical industry, in the electronic industry for the ultrapure water production for the manufacture of conductors and laundering of microcircuits and in many other processes of separation. Diverse processes for measures of pores sizes in membranes exist, amongst these, electronic microscopy, of bubble point and mercury intrusion porosimetry, however the majority of these uses destructive techniques, of high cost or great time of analysis. The proposal of this work is to measure so great of pore being used ultrasonic technique in the time domain of the frequency and artificial neural networks. A receiving/generator of ultrasonic pulses, a immersion transducer of 25 MHz was used, a tank of immersion and microporous membranes of pores sizes of 0,2 μm, 0,4 μm, 0,6 μm, 8 μm, 10 μm and 12 μm. The ultrasonic signals after to cover the membrane, come back to the transducer (emitting/receiving) bringing information of the interaction of the signal with the membranes. These signals had been used for the training of neural networks, and these had supplied the necessary precision the distinction of the same ones. Soon after, technique with the one of electronic microscopy of sweepings was made the comparison of this. The experiment showed very resulted next to the results gotten with the MEV, what it indicated that the studied technique is ideal for measure of pore size in membranes for being not destructive and of this form to be able to be used also on-line of production. (author)

  8. Non-destructive measurement of Xe filling pressure in mercury-free metal halide lamp

    International Nuclear Information System (INIS)

    Motomura, Hideki; Enoki, Kyosuke; Jinno, Masafumi

    2010-01-01

    Mercury-free metal halide lamps (MHLs) for automotive purposes have been developing in the market. When mercury is not used, the electric and emission characteristics of the lamp strongly depend on the xenon filling pressure. Therefore a non-destructive gas pressure estimation technique is required to obtain stable performance of the lamps as commercial products. The authors have developed an estimation method by which the gas pressure is estimated from the current peak value at the initial stage of ignition under pulsed operation. It is shown that accuracy of the order of ±(0.1-0.3) atm is obtained using an empirical formula.

  9. Ultrasonic attenuation measurements in neutron-irradiated quartz: a microscopic model for the tunneling states

    International Nuclear Information System (INIS)

    Keppens, V.; Laermans, C.; Coeck, M.

    1996-01-01

    Ultrasonic attenuation measurements are carried out in neutron-irradiated z-cut quartz for three different doses, in a frequency range from 70 to 320 MHz. The data are analyzed using the tunneling model, and the typical TS-parameters are derived. A comparison with the results obtained from similar x-cut samples shows that the coupling of the tunneling states with the longitudinal phonons is direction-dependent. This confirms the anisotropic behaviour of the tunneling states and gives support to the microscopic picture of the TS as a rotation of coupled SiO 4 tetrahedra. (orig.)

  10. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    Science.gov (United States)

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-06-02

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  11. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  12. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  13. Ultrasonic monitoring of Iberian fat crystallization during cold storage

    International Nuclear Information System (INIS)

    Corona, E; García-Pérez, J V; Santacatalina, J V; Peña, R; Benedito, J

    2012-01-01

    The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.

  14. Nondestructive Testing of Advanced Concrete Structure during Lifetime

    Directory of Open Access Journals (Sweden)

    Lubos Pazdera

    2015-01-01

    Full Text Available The paper reports on measurements and analysis of the measurements during hardening and drying of specimens using selected acoustic nondestructive testing techniques. An integrated approach was created for better understanding of the relations between the lifetime cycle and the development of the mechanical properties of concrete. Acoustic emission, impact echo, and ultrasonic techniques were applied simultaneously to the same mixtures. These techniques and results are presented on alkali-activated slag mortars. The acoustic emission method detects transient elastic waves within the material, caused by the release of cumulated stress energy, which can be mechanical, thermal, or chemical. Hence, the cause is a phenomenon which releases elastic energy into the material, which then spreads in the form of an elastic wave. The impact echo method is based on physical laws of elastic stress wave propagation in solids generated by mechanical impulse. Ultrasonic testing is commonly used to find flaws in materials or to assess wave velocity spreading.

  15. Accurate Fluid Level Measurement in Dynamic Environment Using Ultrasonic Sensor and ν-SVM

    Directory of Open Access Journals (Sweden)

    Jenny TERZIC

    2009-10-01

    Full Text Available A fluid level measurement system based on a single Ultrasonic Sensor and Support Vector Machines (SVM based signal processing and classification system has been developed to determine the fluid level in automotive fuel tanks. The novel approach based on the ν-SVM classification method uses the Radial Basis Function (RBF to compensate for the measurement error induced by the sloshing effects in the tank caused by vehicle motion. A broad investigation on selected pre-processing filters, namely, Moving Mean, Moving Median, and Wavelet filter, has also been presented. Field drive trials were performed under normal driving conditions at various fuel volumes ranging from 5 L to 50 L to acquire sample data from the ultrasonic sensor for the training of SVM model. Further drive trials were conducted to obtain data to verify the SVM results. A comparison of the accuracy of the predicted fluid level obtained using SVM and the pre-processing filters is provided. It is demonstrated that the ν-SVM model using the RBF kernel function and the Moving Median filter has produced the most accurate outcome compared with the other signal filtration methods in terms of fluid level measurement.

  16. The measurement of layer thickness by the deconvolution of ultrasonic signals

    International Nuclear Information System (INIS)

    McIntyre, P.J.

    1977-07-01

    An ultrasonic technique for measuring layer thickness, such as oxide on corroded steel, is described. A time domain response function is extracted from an ultrasonic signal reflected from the layered system. This signal is the convolution of the input signal with the response function of the layer. By using a signal reflected from a non-layered surface to represent the input, the response function may be obtained by deconvolution. The advantage of this technique over that described by Haines and Bel (1975) is that the quality of the results obtained using their method depends on the ability of a skilled operator in lining up an arbitrary common feature of the signals received. Using deconvolution no operator manipulations are necessary and so less highly trained personnel may successfully make the measurements. Results are presented for layers of araldite on aluminium and magnetite of steel. The results agreed satisfactorily with predictions but in the case of magnetite, its high velocity of sound meant that thicknesses of less than 250 microns were difficult to measure accurately. (author)

  17. Torsional mode ultrasonic helical waveguide sensor for re-configurable temperature measurement

    Directory of Open Access Journals (Sweden)

    Suresh Periyannan

    2016-06-01

    Full Text Available This paper introduces an ultrasonic torsional mode based technique, configured in the form of a helical “spring-like” waveguide, for multi-level temperature measurement. The multiple sensing levels can be repositioned by stretching or collapsing the spring to provide simultaneous measurements at different desired spacing in a given area/volume. The transduction is performed using piezo-electric crystals that generate and receive T(0,1 mode in a pulse echo mode. The gage lengths and positions of measurements are based on machining multiple reflector notches in the waveguide at required positions. The time of fight (TOF measurements between the reflected signals from the notches provide local temperatures that compare well with co-located thermocouples.

  18. Quality assurance of brazed copper plates through advanced ultrasonic NDE

    OpenAIRE

    Segreto, T.; Caggiano, A.; Teti, R.

    2016-01-01

    Ultrasonic non-destructive methods have demonstrated great potential for the detection of flaws in a material under examination. In particular, discontinuities produced by welding, brazing, and soldering are regularly inspected through ultrasonic techniques. In this paper, an advanced ultrasonic non-destructive evaluation technique is applied for the quality control of brazed copper cells in order to realize an accelerometer prototype for cancer proton therapy. The cells are composed of two h...

  19. Manufacturing technologies for ultrasonic transducers in a broad frequency range

    OpenAIRE

    Gebhardt, Sylvia; Hohlfeld, Kai; Günther, Paul; Neubert, Holger

    2018-01-01

    According to the application field, working frequency of ultrasonic transducers needs to be tailored to a certain value. Low frequency ultrasonic transducers with working frequencies of 1 kHz to 1 MHz are especially interesting for sonar applications, whereas high frequency ultrasonic transducers with working frequencies higher than 15 MHz are favorable for high-resolution imaging in biomedical and non-destructive evaluation. Conventional non-destructive testing devices and clinical ultrasoun...

  20. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  1. Application of nondestructive ion beam analysis to measure variations in the elemental composition of armor materials

    Energy Technology Data Exchange (ETDEWEB)

    Pallone, Arthur. E-mail: art.pallone@murraystate.edu; Demaree, John; Adams, Jane. E-mail: jadams@arl.army.mil

    2004-06-01

    Lightweight, state-of-the-art armors rely on ceramics for their enhanced performance. One goal of the United States Army is to expand the industrial base of companies that provide the armors. A systematic study of armor performance as a function of ceramic stoichiometry will result in a better understanding of the fundamental relations between composition and mechanical performance. One ceramic of interest is aluminum oxynitride (AlON). The stoichiometries of representative samples of AlON were investigated with the nondestructive techniques of Rutherford backscattering spectrometry and resonant nuclear reaction analysis. Future tests of the performance of the AlON samples are to be correlated with the stoichiometries, and hence will lead to optimum, standardized processes for the manufacture of the AlON.

  2. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  3. Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe

    Science.gov (United States)

    Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.

    2014-03-01

    Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.

  4. Ultrasonic Technique for Predicting Grittiness of Salted Duck Egg

    Science.gov (United States)

    Erawan, S.; Budiastra, I. W.; Subrata, I. D. M.

    2018-05-01

    Grittiness of egg yolk is a major factor in consumer acceptance of salted duck egg product. Commonly, the grittiness level is determined by the destructive method. Salted egg industries need a grading system that can judge the grittiness accurately and nondestructively. The purpose of this study was to develop a method for determining grittiness of salted duck eggs nondestructively based on ultrasonic method. This study used 100 samples of salted duck eggs with 7,10,14 and 21 days of salting age. Velocity and attenuation were measured by an ultrasonic system at frequency 50 kHz, followed by physicochemical properties measurement (hardness of egg yolks and salt content), and organoleptic test. Ultrasonic wave velocity in salted duck eggs ranged from 620.6 m/s to 1334.6 m/s, while the coefficient of attenuation value ranged from – 0.76 dB/m to -0.51 dB/m. Yolk hardness was 2.68 N at 7 days to 5.54 N at 21 days of salting age. Salt content was 1.81 % at 7 days to 5.71 % at 21 days of salting age. Highest scores of organoleptic tests on salted duck eggs were 4.23 and 4.18 for 10 and 14 days of salting age, respectively. Discriminant function using ultrasonic velocity variables in minor and major diameter could predict grittiness with 95 % accuracy.

  5. Aging management of major LWR components with nondestructive evaluation

    International Nuclear Information System (INIS)

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-01-01

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments

  6. Standard-free Pressure Measurement by Ultrasonic Interferometry in a Multi-Anvil Device

    Science.gov (United States)

    Mueller, H. J.; Lathe, C.; Schilling, F. R.; Lauterjung, J.

    2002-12-01

    A key question to all high pressure research arises from the reliability of pressure standards. There is some indication and discussion of an uncertainty of 10-20% for higher pressures in all standards. Simultaneous and independent investigation of the dynamical (ultrasonic interferometry of elastic wave velocities) and static (XRD-measurement of the pressure-induced volume decline) compressibility on a sample reveal the possibility of a standard-free pressure calibration (see Getting, 1998) and, consequently an absolute pressure measurement. Ultrasonic interferometry is used to measure velocities of elastic compressional and shear waves in the multi-anvil high pressure device MAX80 at HASYLAB Hamburg enabling simultaneous XRD and ultrasonic experiments. Two of the six anvils were equipped with overtone polished lithium niobate transducers of 33.3 MHz natural frequency, for generation and detection of ultrasonic waves with a frequency sweep between 5 and 55 MHz. Different buffer - reflector combinations were tested to optimize the critical interference between both sample echoes. NaCl powder of 99.5 % purity (analytical grade by Merck) was used as starting material for manufacturing the samples used as pressure calibrant after Decker (1971). The medium grain size was 50 μm. The powder was pressed to a crude sample cylinder of 10 mm diameter and a length of 20 mm using a load of 6 tons resulting in an effective pressure of 0.25 to 0.3 GPa. The millimeter sized samples (diameter 2.4 mm and 1.6 mm length for 6 mm anvil truncation and diameter 3.1 mm and 1.1 mm length for 3.5 mm anvil truncation) for the high pressure experiments were shaped with a high-precision (+/- 0.5 μm) cylindrical grinding machine and polished at the front faces. From the ultrasonic wave velocity data we calculated the compressibility of NaCl. This requires in situ density data. Therefore the sample deformation during the high pressure experiments was analyzed in detail and the results were

  7. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    Science.gov (United States)

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  8. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    Science.gov (United States)

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  9. Standard practice for measuring the ultrasonic velocity in polyethylene tank walls using lateral longitudinal (LCR) waves

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...

  10. Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic doppler method

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)

  11. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    Science.gov (United States)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  12. Ultrasonic analysis of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Bittencourt, Marcelo de S.Q.; Baroni, Douglas B.; Martorelli, Daniel S., E-mail: bittenc@ien.gov.br, E-mail: douglasbaroni@ien.gov.br, E-mail: daniel@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Ultrassom; Dias, Fabio C.; Silva, Jose W.S. da, E-mail: fabio@ird.gov.br, E-mail: wanderley@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Salvaguardas

    2013-07-01

    Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. In the nuclear area, ceramics are of great importance due to the process of fabrication of fuel pellets for nuclear reactors. Generally, high accuracy destructive techniques are used to characterize nuclear materials for fuel fabrication. These techniques usually require costly equipment and facilities, as well as experienced personnel. This paper aims at presenting an analysis methodology for UO2 pellets using a non-destructive ultrasonic technique for porosity measurement. This technique differs from traditional ultrasonic techniques in the sense it uses ultrasonic pulses in frequency domain instead of time domain. Therefore, specific characteristics of the analyzed material are associated with the obtained frequency spectrum. In the present work, four fuel grade UO2 pellets were analyzed and the corresponding results evaluated. (author)

  13. Supporting the potential of quantitative ultrasonic techniques for the evaluation of platelet concentration

    Science.gov (United States)

    Villamarín, J. A.; Jiménez, Y. M.; Molano, L. Tatiana; Gutierrez, W. Edgar; Londoño, L. Fernando; Gutierrez, D. A.

    2017-11-01

    This article describes the results obtained by making use of a non-destructive, non-invasive ultrasonic system for the acoustic characterization of bovine plasma rich in platelets using digital signal processing techniques. This study includes computational methods based on acoustic spectrometry estimation and experimental measurements of the speed of sound in blood plasma from different samples analyzed, using an ultrasonic field with resonance frequency of 5 MHz. The results showed that the measurements on ultrasonic signals can contribute to the hematological predictions based on the linear regression model applied to the relationship between experimental ultrasonic parameters calculated and platelet concentration, indicating a growth rate of 1 m/s for each 0.90 x103 platelet per mm3. On the other hand, the attenuation coefficient presented changes of 20% in the platelet concentration using a resolution of 0.057 dB/cm MHz.

  14. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  15. Site ultrasonic measurement on RPV stud-bolt loading under hot transient of Qinshan NPP

    International Nuclear Information System (INIS)

    Qu Jiadi; Dou Yikang; Zhu Shiming

    1994-08-01

    It expounds that the key of solving thermal transient sealing problem is to obtain the thermal increment of stud-bolt loading. This loading, as a primary stress loading, is directly related to the bolt fatigue life and transient loading spectrum for vessel analysis. The fundamental works and main results of ultrasonic measurement on RPV stud-bolt loading on Qinshan site are also presented. The measuring capability has exceeded 1 m in length and temperature of 280 degree C, therefore, it is possible to be used in the field of NPP. The paper is the continuation of research work for sealing analysis and tests on the RPV (see SMiRT-9, 10)

  16. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  17. Power dissipated measurement of an ultrasonic generator in a viscous medium by flowmetric method.

    Science.gov (United States)

    Mancier, Valérie; Leclercq, Didier

    2008-09-01

    A new flowmetric method of the power dissipated by an ultrasound generator in an aqueous medium has been developed in previous works and described in a preceding paper [V. Mancier, D. Leclercq, Ultrasonics Sonochemistry 14 (2007) 99-106]. The works presented here are an enlargement of this method to a high viscosity liquid (glycerol) for which the classical calorimetric measurements are rather difficult. As expected, it is shown that the dissipated power increases with the medium viscosity. It was also found that this flowmetric method gives good results for various quantities of liquid and positioning of the sonotrode in the tank. Moreover, the important variation of viscosity due to the heating of the liquid during experiments does not disturb flow measurements.

  18. Static modulus of elasticity of concrete measured by the ultrasonic method

    Directory of Open Access Journals (Sweden)

    Sena Rodrigues, S.

    2003-12-01

    Full Text Available Lately, a huge number of accidents caused by problems found in the durability of concrete structures due to inappropriate project design, lack of control of quality during the project s execution, inadequate maintenance practices and an aggressive environment has been reported. This finding has required from the professionals constant inspections and evaluations of the real conditions of all concrete structures. In order to perform those inspections, one should know not only the elastic modulus to analyze the concrete structural behaviour but also to investigate its performance, since the strains may yield cracks able to compromise the durability- of structures. Non-destructive testing techniques, particularly the ultrasonic testing, are performed to evaluate and determine the quality of a concrete structure or element. Currently, such essays have been widely researched and analyzed all over the world because they enable the examination of structures without damaging them. The purpose of the present study was to correlate the ultrasonic pulse velocity and the elastic modulus of several concrete specimens molded with a range of water-cement ratios, different kinds of aggregates and curing methods. All the concrete specimens were tested in different ages to determine the pulse velocity and the static modulus of elasticity standardized according to KBR 8522, through mechanical extensometers, electrical strain gauge and LVTD inductive transducer.

    Recientemente se ha registrado un gran número de accidentes causados por problemas relacionados con la durabilidad de las estructuras de hormigón y debidos a un inadecuado proyecto de diseño, ausencia de control de calidad durante la ejecución del proyecto, prácticas inadecuadas de construcción y un ambiente agresivo. Este hallazgo ha dado lugar a que los ingenieros realicen constantes inspecciones y evaluaciones de la condición real de todas las estructuras de hormigón. Para llevar a cabo

  19. High-pressure behavior of amorphous selenium from ultrasonic measurements and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.; Liu, X. R.; Hong, S. M., E-mail: hpswjtu@gmail.com, E-mail: smhong@home.swjtu.edu.cn [Laboratory of High Pressure Physics, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Wang, Z. G. [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Zhu, H. Y. [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Peng, J. P. [School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-07-07

    The high-pressure behavior of melt-quenched amorphous selenium (a-Se) has been investigated via ultrasonic measurements and Raman scattering at room temperature. The ultrasonic measurements were conducted on a-Se in a multi-anvil apparatus with two different sample assemblies at pressures of up to 4.5 and 4.8 GPa. We discovered that similar kinks occur in the slopes of the pressure dependence characteristics of the travel time and the sound velocity in both shear and longitudinal waves in the 2.0–2.5 GPa range. These kinks are independent of the sample assemblies, indicating an intrinsic transformation of the a-Se. Additionally, we deduced the pressure-volume relationship of a-Se from the sound velocity characteristics using the Birch–Murnaghan equation of state, and the results agreed well with those of previous reports. In situ high-pressure Raman scattering measurements of a-Se were conducted in a diamond anvil cell with an 830 nm excitation line up to a pressure of 4.3 GPa. We found that the characteristic band of a-Se at ∼250 cm{sup −1} experienced a smooth shift to a lower frequency with pressure, but a sharp slope change in the band intensity versus pressure occurred near 2.5 GPa. The results of X-ray diffraction and differential scanning calorimetry measurements indicate that the samples remain in their amorphous states after decompression. Thus, we proposed that the abnormal compression behavior of a-Se in the 2.0–2.5 GPa range can be attributed to pressure-induced local atomic reconfiguration, implying an amorphous-amorphous transition of the elementary selenium.

  20. An Ultrasonic Wireless Sensor Network for Data Communication and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Typical Structural Health Monitoring (SHM) uses embedded ultrasonic transducers exclusively for non-destructive evaluation (NDE) purposes, whereas data transfer is...

  1. Preliminary study of flow velocity measurement by means of ultrasonic waves; Estudo preliminar de medicao de vazao atraves de ondas ultra-sonicas

    Energy Technology Data Exchange (ETDEWEB)

    Pio, Ronald Ribeiro; Faccini, Jose Luiz Horacio; Lamy, Carlos Alfredo; Bittencourt, Marcelo S.Q.

    1995-10-01

    Different flow velocities of a water loop were associated with different ultrasonic wave velocities that traveled in the water. It was also observed that water temperature influenced the ultrasonic wave velocity but in an inverse manner to that of the water flow velocity. This experiment showed the possibility of using the ultrasonic system to measure a liquid flow velocity with precision. (author). 6 refs., 8 figs.

  2. On-line measurement of residual monomer during polymerisation of acrylamide using ultrasonics

    International Nuclear Information System (INIS)

    Ponraju, D.; Sebastian, Letha; Viswanathan, S.; Natarajan, A.; Palanichamy, P.; Jayakumar, T.; Baldev Raj

    1996-01-01

    An ultrasonic technique for the estimation of residual acrylamide monomer during the polymerization of aqueous acrylamide solution has been investigated. Polyacrylamide gel medium serves as a sensitive medium for detection and dosimetry of fast and thermal neutrons. This technique is based on the fact that the velocity of ultrasonic wave increases with the increase in elasticity due to polymerization. The percentage of residual acrylamide monomer is estimated using ultraviolet spectrophotometric analysis. The ultrasonic velocity is correlated with the residual monomer concentration

  3. The real defect and its nondestructive characterization

    International Nuclear Information System (INIS)

    Licht, H.

    1982-01-01

    Nondestructive test techniques to evaluate defect severity and component degradation are typically based on transmission of energy into the material to be inspected. The capabilities of such techniques are controlled by physical phenomena which generally do not coincide with inspection requirements. This paper reviews several recent developments (mainly in ultrasonic and eddy current testing) which highlight the state of the art

  4. Internal properties assessment in agar wood trees using ultrasonic velocity measurement

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Mohamad Pauzi Ismail; Mat Rasol Awang; Mohd Fajri Osman; Fakhruzi, M.; Hashim, M.M.

    2010-01-01

    This paper presents the application of ultrasonic velocity in agar wood trees (Aquilaria crassna) with the purpose of evaluating the relationship of the ultrasonic velocity to the variations of internal properties of trees. In this study, three circular cross-sectional discs from the freshly cut tree were selected as samples. First sample with a big hole (decay) in the middle, second sample with internal resinous and the last one is the sample with no defects. The through transmission ultrasonic testing method was carried out using Tico ultrasonic pulse velocity tester which is from Switzerland. Two-dimensional image of internal properties evaluation by an ultrasonic investigation was obtained using Matlab. The results showed that the ultrasonic wave cannot pass through the internal decay or resinous so that the wave went round it and thus ultrasonic wave velocity significantly decreased by increasing the hole or resinous. The difference in color of the image generated by Matlab software based on variation of ultrasonic velocity between the internal decay area and its surrounding area was obvious. Therefore, the properties of internal properties of the three could be detected by ultrasonic line imaging technique. (author)

  5. Non-destructive measurements for characterisation of materials and datation of Corona Ferrea of Monza

    International Nuclear Information System (INIS)

    Milazzo, M.; Cicardi, C.; Mannoni, T.; Tuniz, C.

    1997-01-01

    Non-destructive analyses of Corona Ferrea of Monza, a late Roman or Longobard origin, were performed using energy dispersive-XRF portable instrumentation. To irradiate the internal surfaces of the six gold plates which make up the Crown we employed the radioactive isotope americium-241 as the x-radiation source, while to probe the other parts (approximately 200 separate points were studied) we used various types of x-ray tubes equipped with glass capillary to focus the x-rays on single small spots were used. It was not possible to use monochromatic exciting radiation when analysing the Monza Crown; furthermore, none of its surfaces proved to be flat. This meant that the secondary, concentration-dependent x-ray emission from copper could not be calculated, neither was it possible to calculate the influence of surface irregularities on x- ray intensity. We overcame these difficulties by a method that involved calculating the ratios: copper line intensity to gold line intensity (I Cu /I Au ) and silver line intensity to gold line intensity (I Ag / Au ). We then compared these ratios to the same ratios determined in standard samples of gold alloy whose compositions were accurately known and similar to that of the Crown. In this way the secondary excitation effect of copper was allowed for. The method depends upon the ratio of the intensities of two x-ray emission lines from a metal alloy being relatively insensitive to the geometry of irradiation

  6. Automated nondestructive assay system for the measurement of irradiated Rover fuel

    International Nuclear Information System (INIS)

    Augustson, R.H.; Menlove, H.O.; Smith, D.B.; Bond, A.L.; Durrill, D.C.; Hollowell, W.P.; Bromley, C.P.

    1975-01-01

    With the termination of the Nuclear Rocket Propulsion (Rover) Program, and associated reactor testing at the Nuclear Rocket Development Station (NRDS), Nevada, plans are progressing to recover the 93 percent enriched uranium contained in irradiated fuel from twenty various test reactors. This fuel is being packaged into 7-cm-dia by 137-cm-long cardboard tubes, using the remote handling facilities (E-MAD Bldg) of NRDS. After packaging, the fuel is shipped to Allied Chemical Corporation, Idaho Falls, Idaho, for uranium recovery. About 4000 tubes will be needed to package and ship the inventory of fuel elements presently at NRDS. This represents a total of approximately 2500 kg of enriched uranium. To complete the accounting records each tube is being nondestructively assayed and records kept on a reactor-by-reactor basis where possible. The assayed values for a reactor are then compared with original input inventory values and discrepancies resolved. The tubes are being assayed by an active neutron interrogation system designed and fabricated by Los Alamos Scientific Laboratory (LASL) and operated by Westinghouse Astronuclear Laboratory (WANL)-Nevada Operations personnel. WANL is the operating contractor in charge of loading and shipping this fuel. (U.S.)

  7. Simulation of non-destructive inspections and acoustic emission measurements involving guided waves

    International Nuclear Information System (INIS)

    Baronian, V; Lhemery, A; Bonnet-BenDhia, A-S

    2009-01-01

    In a structure that guides elastic waves, a discontinuity (defect, shape variation) causes scattering (reflection, partial extinction or mode conversion). Two modal formulations have been developed to link separate models dealing with the calculation of the modal decomposition, with the generation and reception of guided waves (GW), with their scattering. The first concerns pulse-echo configurations (involving a single transducer), the other concerns pitch-catch configurations (two transducers involved). A new finite element (FE) method has been developed to compute the scattering by an arbitrary discontinuity, based on the modal decomposition of the field. Perfectly transparent boundary conditions (Dirichlet-to-Neuman boundaries) are developed, allowing the FE computation zone to be reduced to a minimum. A specific variational problem including these boundary conditions was obtained and solved using FE tools. By combining the modal formulations, the new FE scheme and tools for GW radiation, propagation and reception based on the Semi-Analytical Finite Element (SAFE) method, a new simulation tool has been developed. It can address almost arbitrary configurations of GW nondestructive testing. Moreover, a source inside the FE computation zone can be defined so that configurations of testing by acoustic emission can also be simulated. Examples of use of this tool are shown, some dealing with junctions of complex geometry between two guides, other with surface or bulk sources of acoustic emission.

  8. ORACL program file for acquisition, storage and analysis of data in radiation measurement and nondestructive measurement of nuclear material, vol. 2

    International Nuclear Information System (INIS)

    Yagi, Hideyuki; Takeuchi, Norio; Gotoh, Hiroshi

    1976-09-01

    The file contains 79 programs for radiation measurement and nondestructive measurement of nuclear material written in conversational language ORACL associated with the GAMMA-III system of ORTEC Incorporated. It deals with data transfers between disk/core/MCA/magnetic tape, edition of data in disks, calculation of the peak area, calculation of mean and standard deviation, reference to gamma-ray data files, accounting, calendar, etc. It also has a support system for micro-computer development. Usages of the built-in functions of ORACL are presented. (auth.)

  9. High temperature ultrasonic immersion measurements using a BS-PT based piezoelectric transducer without a delay line

    Science.gov (United States)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    2018-04-01

    Ultrasonic imaging is a key enabling technology required for in-service inspection of advanced sodium fast reactors at the hot stand-by operating mode (˜250C). Current work presents development of a single element, 2.4MHz, planar, ultrasonic immersion transducer for a potential application in ranging, inspection and imaging of the reactor components. The prototype immersion transducer is first tested in water for three thermal cycles up to 92C. The transducer is further evaluated for four thermal cycles in silicone oil, with total seven thermal cycles that exceeded operation period of 21 hours. Moreover, the preliminary data acquired for speed of sound in silicone oil indicates 24% reduction from 22C to 142C. Sensitivity of the ultrasonic transducer is also measured as a function of temperature and demonstrates the effect of multiple thermal cycles on the transducer components.

  10. An ultrasonic methodology for muscle cross section measurement of support space flight

    Science.gov (United States)

    Hatfield, Thomas R.; Klaus, David M.; Simske, Steven J.

    2004-09-01

    The number one priority for any manned space mission is the health and safety of its crew. The study of the short and long term physiological effects on humans is paramount to ensuring crew health and mission success. One of the challenges associated in studying the physiological effects of space flight on humans, such as loss of bone and muscle mass, has been that of readily attaining the data needed to characterize the changes. The small sampling size of astronauts, together with the fact that most physiological data collection tends to be rather tedious, continues to hinder elucidation of the underlying mechanisms responsible for the observed changes that occur in space. Better characterization of the muscle loss experienced by astronauts requires that new technologies be implemented. To this end, we have begun to validate a 360° ultrasonic scanning methodology for muscle measurements and have performed empirical sampling of a limb surrogate for comparison. Ultrasonic wave propagation was simulated using 144 stations of rotated arm and calf MRI images. These simulations were intended to provide a preliminary check of the scanning methodology and data analysis before its implementation with hardware. Pulse-echo waveforms were processed for each rotation station to characterize fat, muscle, bone, and limb boundary interfaces. The percentage error between MRI reference values and calculated muscle areas, as determined from reflection points for calf and arm cross sections, was -2.179% and +2.129%, respectively. These successful simulations suggest that ultrasound pulse scanning can be used to effectively determine limb cross-sectional areas. Cross-sectional images of a limb surrogate were then used to simulate signal measurements at several rotation angles, with ultrasonic pulse-echo sampling performed experimentally at the same stations on the actual limb surrogate to corroborate the results. The objective of the surrogate sampling was to compare the signal

  11. Development of measurement technique for crack depth in weld zone of thick stainless steel pipe with ultrasonic phased array TOFD

    International Nuclear Information System (INIS)

    Ishida, Hitoshi

    2006-01-01

    Phased array TOFD (time of flight diffraction) method which makes possible to detect tip diffraction echoes and measure crack depth in an austenitic stainless steel weld zone with a thickness of more than 25 mm to which region it was difficult to apply ultrasonic test due to scattering of ultrasonic waves has been developed. The developed method uses a single array transducer to have a short distance between incident points of transmitter and receiver in order to propagate waves in shorter pass in the weld region. Transmitting and receiving ultrasonic beams from a single array probe can be set a crossing point and a focal point at desired depth. This method makes possible to scan with 16 kinds of combination of crossing points and focal pints of ultrasonic beam at a time. We have examined fundamental characteristics of depth measurement with electric discharge machining slits on base metal of a stainless steel with a thickness of 35 mm. As the results: (1) We could measure the slit depth with 0.2mm error from the slit depth with a estimating method of a lateral wave propagation time with back wall echo. (2) The largest error of the depth measurement from the slit depth with the ultrasonic beam crossing point set at the 4mm different point from the tip of the slit was 0.3 mm. (3) The largest error of the depth measurements due to the difference of focal point depth of ultrasonic beam was 0.2 mm. (4) The highest tip diffraction echo could be observed with the ultrasonic beam cross point set at the tip of the slit. The difference of 4 mm between the cross point and the tip of the slit caused attenuation of tip diffraction echo height in -6.8 dB. Furthermore we have measured a depth of electric discharge machining slits, fatigue cracks and stress corrosion cracking (SCC) on stainless steel welded pipe specimens with a thickness of 35 mm. As the results: (1) We could detect the tip diffraction echoes which have a signal noise ratio with more than 2.4 from the fatigue

  12. Instrument for ultrasonic measurement of physical quantities of flowing media, especially the flow velocity

    International Nuclear Information System (INIS)

    Thun, N.; Brown, A.E.

    1977-01-01

    The invention is based on the task to present an instrument for ultrasonic measurement of flow velocities with high accuracy which may be produced substantially cheaper because of the use of a simple circuit design and normal components. The task is solved according to the invention by connecting the output of the first signal level transmitter as main signal and the output of the second signal level transmitter as auxiliary signal with a summing circuit forming a control signal by adding and/or subtracting the auxiliary signal to/from the main signal and providing for a switch, controlled by the transmitting direction, causing alternatingly two different delay times for the reference signal to become effective. (orig./RW) [de

  13. Anisotropy analysis of low cement concrete by ultrasonic measurements and image analysis

    Directory of Open Access Journals (Sweden)

    Martinović Sanja P.

    2016-01-01

    Full Text Available The analized material was high alumina low cement castable sintered at three different temperatures. Influence of initial material anisotropy on the thermal shock resistance as well as changes of anisotropy level during the thermal shock were studied. Water quench test was used as an experimental method for the thermal stability testing. Surface anisotropy was analysed by image analysis and structural anisotropy using ultrasonic measurements. The results pointed out that the highest homogeinity and the lowest surface and structural anisotropy was for the samples sintered at 1600ºC. Surface anistoropy had prevailing infuence on behavior of material during the thermal shock, but the structural anisotropy should not be neglected. [Projekat Ministarstva nauke Republike Srbije, br. TR 33007

  14. Two Inexpensive and Non-destructive Techniques to Correct for Smaller-Than-Gasket Leaf Area in Gas Exchange Measurements

    Directory of Open Access Journals (Sweden)

    Andreas M. Savvides

    2018-04-01

    Full Text Available The development of technology, like the widely-used off-the-shelf portable photosynthesis systems, for the quantification of leaf gas exchange rates and chlorophyll fluorescence offered photosynthesis research a massive boost. Gas exchange parameters in such photosynthesis systems are calculated as gas exchange rates per unit leaf area. In small chambers (<10 cm2, the leaf area used by the system for these calculations is actually the internal gasket area (AG, provided that the leaf covers the entire AG. In this study, we present two inexpensive and non-destructive techniques that can be used to easily quantify the enclosed leaf area (AL of plant species with leaves of surface area much smaller than the AG, such as that of cereal crops. The AL of the cereal crop species studied has been measured using a standard image-based approach (iAL and estimated using a leaf width-based approach (wAL. iAL and wAL did not show any significant differences between them in maize, barley, hard and soft wheat. Similar results were obtained when the wAL was tested in comparison with iAL in different positions along the leaf in all species studied. The quantification of AL and the subsequent correction of leaf gas exchange parameters for AL provided a precise quantification of net photosynthesis and stomatal conductance especially with decreasing AL. This study provides two practical, inexpensive and non-destructive solutions to researchers dealing with photosynthesis measurements on small-leaf plant species. The image-based technique can be widely used for quantifying AL in many plant species despite their leaf shape. The leaf width-based technique can be securely used for quantifying AL in cereal crop species such as maize, wheat and barley along the leaf. Both techniques can be used for a wide range of gasket shapes and sizes with minor technique-specific adjustments.

  15. Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow.

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki

    2013-07-01

    Ultrasonic-measurement-integrated (UMI) simulation of blood flow is used to analyze the velocity and pressure fields by applying feedback signals of artificial body forces based on differences of Doppler velocities between ultrasonic measurement and numerical simulation. Previous studies have revealed that UMI simulation accurately reproduces the velocity field of a target blood flow, but that the reproducibility of the pressure field is not necessarily satisfactory. In the present study, the reproduction of the pressure field by UMI simulation was investigated. The effect of feedback on the pressure field was first examined by theoretical analysis, and a pressure compensation method was devised. When the divergence of the feedback force vector was not zero, it influenced the pressure field in the UMI simulation while improving the computational accuracy of the velocity field. Hence, the correct pressure was estimated by adding pressure compensation to remove the deteriorating effect of the feedback. A numerical experiment was conducted dealing with the reproduction of a synthetic three-dimensional steady flow in a thoracic aneurysm to validate results of the theoretical analysis and the proposed pressure compensation method. The ability of the UMI simulation to reproduce the pressure field deteriorated with a large feedback gain. However, by properly compensating the effects of the feedback signals on the pressure, the error in the pressure field was reduced, exhibiting improvement of the computational accuracy. It is thus concluded that the UMI simulation with pressure compensation allows for the reproduction of both velocity and pressure fields of blood flow. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Non-destructive Determination of Disintegration Time and Dissolution in Immediate Release Tablets by Terahertz Transmission Measurements.

    Science.gov (United States)

    Markl, Daniel; Sauerwein, Johanna; Goodwin, Daniel J; van den Ban, Sander; Zeitler, J Axel

    2017-05-01

    The aim of this study was to establish the suitability of terahertz (THz) transmission measurements to accurately measure and predict the critical quality attributes of disintegration time and the amount of active pharmaceutical ingredient (API) dissolved after 15, 20 and 25 min for commercial tablets processed at production scale. Samples of 18 batches of biconvex tablets from a production-scale design of experiments study into exploring the design space of a commercial tablet manufacturing process were used. The tablet production involved the process steps of high-shear wet granulation, fluid-bed drying and subsequent compaction. The 18 batches were produced using a 4 factor split plot design to study the effects of process changes on the disintegration time. Non-destructive and contactless terahertz transmission measurements of the whole tablets without prior sample preparation were performed to measure the effective refractive index and absorption coefficient of 6 tablets per batch. The disintegration time (R 2  = 0.86) and API dissolved after 15 min (R 2  = 0.96) linearly correlates with the effective refractive index, n eff , measured at terahertz frequencies. In contrast, no such correlation could be established from conventional hardness measurements. The magnitude of n eff represents the optical density of the sample and thus it reflects both changes in tablet porosity as well as granule density. For the absorption coefficient, α eff , we observed a better correlation with dissolution after 20 min (R 2  = 0.96) and a weaker correlation with disintegration (R 2  = 0.83) compared to n eff . The measurements of n eff and α eff provide promising predictors for the disintegration and dissolution time of tablets. The high penetration power of terahertz radiation makes it possible to sample a significant volume proportion of a tablet without any prior sample preparation. Together with the short measurement time (seconds), the potential to

  17. Ultrasonic detection technology based on joint robot on composite component with complex surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Juan; Xu, Chunguang; Zhang, Lan [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China)

    2014-02-18

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order to express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.

  18. Ultrasonic evaluation of the physical and mechanical properties of granites.

    Science.gov (United States)

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  19. Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals

    NARCIS (Netherlands)

    Boutsioukis, C.; Verhaagen, B.; Walmsley, A.D.; Versluis, Michel; van der Sluis, L.W.M.

    2013-01-01

    Aim (i) To quantify in a simulated root canal model the file-to-wall contact during ultrasonic activation of an irrigant and to evaluate the effect of root canal size, file insertion depth, ultrasonic power, root canal level and previous training, (ii) To investigate the effect of file-to-wall

  20. Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals

    NARCIS (Netherlands)

    Boutsioukis, C.; Verhaagen, B.; Walmsley, A. D.; Versluis, M.; van der Sluis, L. W. M.

    2013-01-01

    Aim(i) To quantify in a simulated root canal model the file-to-wall contact during ultrasonic activation of an irrigant and to evaluate the effect of root canal size, file insertion depth, ultrasonic power, root canal level and previous training, (ii) To investigate the effect of file-to-wall

  1. Contribution to the improved ultrasonic testing of glass fiber-reinforced polymers based on analytic modeling; Beitrag zur Verbesserung der Ultraschallpruefung glasfaserverstaerkter Polymere auf der Grundlage analytischer Modellierung

    Energy Technology Data Exchange (ETDEWEB)

    Gripp, S.

    2001-04-01

    The non-destructive testing of acoustic anisotropic materials like fiber composites has been evaluated. Modelling enabled predictions about wave deflection, direction of wave propagation, and refractive angle of ultrasonic waves in these media. Thus, measurements could be carried out using unidirectional glass-fiber composites.

  2. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    Science.gov (United States)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making

  3. Improvement of a measurement method of purified flows in a reflector of HANARO by an ultra-sonic flowmeter

    International Nuclear Information System (INIS)

    Choi, Young-San; Bae, Sang-Hoon; Kang, In-Hyuk; Lee, Yong-Sub; Jung, Hoan-Sung

    2007-01-01

    Heavy water is used in the reflector system in HANARO and the flow in the system is measured by a flowmeter and indicated in a control room. The Turbine Flowmeter to measure the purified flow, which had been used from the start up of reactor was broken down in the end of 2001. In order to avoid the exposure of tritium generated from heavy water leaked during a replacement, instead of fixing the flowmeter, an ultrasonic flowmeter was selected and installed and has been used to measure the flow. This paper describes the measurement principles, issues and calibration errors of the turbine flowmeter that was broken down. Also, it explains in detail the measurement principles of the ultrasonic flowmeter, the results of its field test and the results of its periodic tests for five years after the installation

  4. Field and Laboratory Investigation of USS3 Ultrasonic Sensors Capability for Non-contact Measurement of Pistachio Canopy Structure

    Directory of Open Access Journals (Sweden)

    H Maghsoudi

    2015-03-01

    Full Text Available Electronic canopy characterization to determine structural properties is an important issue in tree crop management. Ultrasonic and optical sensors are the most used sensors for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To achieve this purpose, a methodology has been designed to analyze sensor performance in relation to foliage distance and to the effects of interference with adjacent sensors when working simultaneously. Results showed that the average error in distance measurement using the ultrasonic sensor in laboratory conditions was 0.64 cm. However, the increase of variability in field conditions reduced the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations was 3.19 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error was ±14.65 cm. When adjacent sensors were placed apart by 60 cm, the average error became 6.73 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in pistachio garden conditions when sensors are 60 cm apart or more and can, therefore, be used in a system to estimate structural canopy parameters in precision horticulture.

  5. Velocity Measurement of ultrasonic for evaluation of aging epoxy coating in containment structure of nuclear power plant

    International Nuclear Information System (INIS)

    Eun, Gil Soo; Kim, Noh Yu; Nah, Hwan Seon; Song, Young Chol

    2001-01-01

    Relative variation of ultrasonic velocity in aging epoxy coating in nuclear plant is measured for evaluation of the degradation of the epoxy coating. Time delay for ultrasound to travel through the epoxy film due to change of ultrasonic velocity is measured indirectly using ultrasonic interferometry which compares two reflection waves from the same point of coating surface at two different distances. Magnitude of the difference of two waves increases or decreases depending on change of the time of flight of ultrasound in the epoxy film caused by heat damage in the epoxy coating. Based on the transfer functions of the wedge and the epoxy coating in frequency domain, the reflection wave is analyzed and related to the velocity of ultrasound in the epoxy coating. A specially designed conical wedge is adopted to minimize the waviness effect of the surface of the epoxy coating. Epoxy films are fabricated, degraded under the accelerated aging conditions and tested to evaluate the change of ultrasonic velocity in the films. The experimental results show that the method can be applied to evaluate quantitatively the sealing quality of the epoxy coating.

  6. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements

    International Nuclear Information System (INIS)

    Roth, D.J.

    1991-01-01

    This dissertation is presented in two major chapters. In the first chapter, the use of ultrasonic velocity for estimating pore fraction in YBCO and other polycrystalline materials is reviewed, modeled, and statistically analyzed. This chapter provides the basis for using ultrasonic velocity to interrogate microstructure. In the second chapter, (1) the effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples is characterized, (2) spatial (within-sample) variations in microstructure and superconductor properties are investigated and (3) the effect of oxygen content on elastic behavior is examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic-velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristic. Superconductor properties including within-sample uniformity were generally poorest for samples containing the lowest (0.10) pore fraction. Ultrasonic velocity was linearly related to pore fraction thereby allowing sample classification. Changes in superconducting behavior were observed consistent with changes in oxygen content

  7. Nondestructive method to coat thickness measurements through X-ray fluorescence

    International Nuclear Information System (INIS)

    Sanchez, F.

    1986-01-01

    It's described a system that permits thickness measurement and composition of Sn-Pb alloys to simultaneous measurement of Au over Ni over any base, beyond convestionals measurements, including flash coats or touch. (C.M.) [pt

  8. Neutron Based Non-Destructive Assay (NDA) Measurement Systems for Safeguard

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-21

    The objectives of this project are to introduce the assay methods for plutonium measurements using the HLNC; introduce the assay method for bulk uranium measurements using the AWCC; and introduce the assay method for fuel assembly measurements using the UNCL.

  9. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    Energy Technology Data Exchange (ETDEWEB)

    Hodnett, M; Zeqiri, B [National Physical Laboratory, Queens Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies ({<=} 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media.

  10. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    International Nuclear Information System (INIS)

    Hodnett, M; Zeqiri, B

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies (≤ 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media

  11. Eddy current and ultrasonic fuel channel inspection at Karachi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mayo, W.R.; Alam, M.M.

    1997-01-01

    In November of 1993 and in-service inspection was performed on eight fuel channels in the Karachi Nuclear Power Plant (KANUPP) reactor. The workscope included ultrasonic and eddy current volumetric examinations, and eddy current measurement of pressure-to calandria tube gap. This paper briefly discusses the planning strategy of the ultrasonic and eddy current examinations, and describes the equipment developed to meet the requirements, followed by details of the actual channel inspection campaign. The presented nondestructive examinations assisted in determining fitness for service of KANUPP reactor channels in general, and confirmed that the problems associated with channel G12 were not generic in nature. (author)

  12. Pulsed TV holography measurement and digital reconstruction of compression acoustic wave fields: application to nondestructive testing of thick metallic samples

    International Nuclear Information System (INIS)

    Trillo, C; Doval, A F; Deán-Ben, X L; López-Vázquez, J C; Fernández, J L; Hernández-Montes, S

    2011-01-01

    This paper describes a technique that numerically reconstructs the complex acoustic amplitude (i.e. the acoustic amplitude and phase) of a compression acoustic wave in the interior volume of a specimen from a set of full-field optical measurements of the instantaneous displacement of the surface. The volume of a thick specimen is probed in transmission mode by short bursts of narrowband compression acoustic waves generated at one of its faces. The temporal evolution of the displacement field induced by the bursts emerging at the opposite surface is measured by pulsed digital holographic interferometry (pulsed TV holography). A spatio-temporal 3D Fourier transform processing of the measured data yields the complex acoustic amplitude at the plane of the surface as a sequence of 2D complex-valued maps. Finally, a numerical implementation of the Rayleigh–Sommerfeld diffraction formula is employed to reconstruct the complex acoustic amplitude at other planes in the interior volume of the specimen. The whole procedure can be regarded as a combination of optical digital holography and acoustical holography methods. The technique was successfully tested on aluminium specimens with and without an internal artificial defect and sample results are presented. In particular, information about the shape and position of the defect was retrieved in the experiment performed on the flawed specimen, which indicates the potential applicability of the technique for the nondestructive testing of materials

  13. Nondestructive measurement of refractive index profile of optical fiber preforms using moire technique and phase shift method

    Science.gov (United States)

    Ranjbar, Samaneh; Khalesifard, Hamid R.; Rasouli, Saifollah

    2006-01-01

    The refractive index profile of optical fiber preform is measured by a nondestructive technique based on Talbot interferometry. In this technique the preform is placed between two ronchi ruling gratings of 10 lines/mm and the system is illuminated by an expanded and collimated beam of He-Ne laser. In this arrangement the 2nd grating is positioned in the Talbot image of the 1st grating and the preform axis is parallel to the gratings planes. To eliminate the effect of clad on the light beam deflection during the measurements, the preform is immersed in an index matching liquid. The phase front of the laser light over the 2nd grating can be monitored by analysis of the moire pattern which is formed over there. The analysis is done by means of 4-step phase shift technique. In this technique the second grating is moved in four steps of 1/4 of the grating vector and in each step the intensity profile of the moire pattern is recorded. The phasefront can be specified by using the recorded intensities. The refractive index profile of the preform can be calculated from the changes on phasefront while the preform is placed between the gratings respect to the case when it is absent. The whole procedure is automated and computer controlled by using a CCD camera to record the moire fringes, a stepper motor for linear translation of the 2nd grating and a code in MATLAB to control the system and measurements.

  14. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  15. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  16. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    Science.gov (United States)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  17. Inferring bread doneness with air-pulse/ultrasonic ranging measurements of the loaf elastic response

    Science.gov (United States)

    Faeth, Loren Elbert

    This research marks the discovery of a method by which bread doneness may be determined based on the elastic properties of the loaf as it bakes. The purpose of the study was to determine if changes in bread characteristics could be determined by non-contact methods during baking, as the basis for improved control of the baking process. Current control of the baking process is based on temperature and dwell time, which are determined by experience to produce a produce which is approximately ``done.'' There is no direct measurement of the property of interest, doneness. An ultrasonic measurement system was developed to measure the response of the loaf to an external stimulus. ``Doneness,'' as reflected in the internal elastic consistency of the bakery product, is assessed in less than 1/2 second, and requires no closer approach to the moving bakery product than about 2 inches. The system is designed to be compatible with strapped bread pans in a standard traveling-tray commercial oven.

  18. Characterization of Nuclear Materials Using Complex of Non-Destructive and Mass-Spectroscopy Methods of Measurements

    International Nuclear Information System (INIS)

    Gorbunova, A.; Kramchaninov, A.

    2015-01-01

    Information and Analytical Centre for nuclear materials investigations was established in Russian Federation in the February 2 of 2009 by ROSATOM State Atomic Energy Corporation (the order #80). Its purpose is in preventing unauthorized access to nuclear materials and excluding their illicit traffic. Information and Analytical Centre includes analytical laboratory to provide composition and properties of nuclear materials of unknown origin for their identification. According to Regulation the Centre deals with: · identification of nuclear materials of unknown origin to provide information about their composition and properties; · arbitration analyzes of nuclear materials; · comprehensive research of nuclear and radioactive materials for developing techniques characterization of materials; · interlaboratory measurements; · measurements for control and accounting; · confirmatory measurements. Complex of non-destructive and mass-spectroscopy techniques was developed for the measurements. The complex consists of: · gamma-ray techniques on the base of MGAU, MGA and FRAM codes for uranium and plutonium isotopic composition; · gravimetrical technique with gamma-spectroscopy in addition for uranium content; · calorimetric technique for plutonium mass; · neutron multiplicity technique for plutonium mass; · measurement technique on the base of mass-spectroscopy for uranium isotopic composition; · measurement technique on the base of mass-spectroscopy for metallic impurities. Complex satisfies the state regulation requirements of ensuring the uniformity of measurements including the Russian Federation Federal Law on Ensuring the Uniformity of Measurements #102-FZ, Interstate Standard GOST R ISO/IEC 17025-2006, National Standards of Russian Federation GOST R 8.563-2009, GOST R 8.703-2010, Federal Regulations NRB-99/2009, OSPORB 99/2010. Created complex is provided in reference materials, equipment end certificated techniques. The complex is included in accredited

  19. Local defect resonance for sensitive non-destructive testing

    Science.gov (United States)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  20. Nondestructive testing of concrete structures

    International Nuclear Information System (INIS)

    Rufino, Randy R.; Relunia, Estrella

    1999-01-01

    Nondestructive testing of concrete is highly inhomogeneous which makes it cumbersome to setup experimental procedures and analyze experimental data. However, recent research and development activities have discovered the different methods of NDT, like the electromagnetic method, ultrasonic pulse velocity test, pulse echo/impact echo test, infrared thermography, radar or short pulse radar techniques, neutron and gamma radiometry, radiography, carbonation test and half-cell potential method available for NDT of concrete structures. NDT of concrete is emerging as a useful tool for quality control and assurance. This papers also describes the more common NDT methods discussed during the two-week course on 'Nondestructive Testing of Concrete Structures', held at the Malaysian Institute for Nuclear Technology Research (MINT) in Malaysia, which was jointly organized by MINT and the International Atomic Energy Agency (IAEA)

  1. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  2. Nondestructive continuous physical property measurements of core samples recovered from hole B, Taiwan Chelungpu-Fault Drilling Project

    Science.gov (United States)

    Hirono, Tetsuro; Yeh, En-Chao; Lin, Weiren; Sone, Hiroki; Mishima, Toshiaki; Soh, Wonn; Hashimoto, Yoshitaka; Matsubayashi, Osamu; Aoike, Kan; Ito, Hisao; Kinoshita, Masataka; Murayama, Masafumi; Song, Sheng-Rong; Ma, Kuo-Fong; Hung, Jih-Hao; Wang, Chien-Ying; Tsai, Yi-Ben; Kondo, Tomomi; Nishimura, Masahiro; Moriya, Soichi; Tanaka, Tomoyuki; Fujiki, Toru; Maeda, Lena; Muraki, Hiroaki; Kuramoto, Toshikatsu; Sugiyama, Kazuhiro; Sugawara, Toshikatsu

    2007-07-01

    The Taiwan Chelungpu-Fault Drilling Project was undertaken in 2002 to investigate the faulting mechanism of the 1999 Mw 7.6 Taiwan Chi-Chi earthquake. Hole B penetrated the Chelungpu fault, and core samples were recovered from between 948.42- and 1352.60-m depth. Three major zones, designated FZB1136 (fault zone at 1136-m depth in hole B), FZB1194, and FZB1243, were recognized in the core samples as active fault zones within the Chelungpu fault. Nondestructive continuous physical property measurements, conducted on all core samples, revealed that the three major fault zones were characterized by low gamma ray attenuation (GRA) densities and high magnetic susceptibilities. Extensive fracturing and cracks within the fault zones and/or loss of atoms with high atomic number, but not a measurement artifact, might have caused the low GRA densities, whereas the high magnetic susceptibility values might have resulted from the formation of magnetic minerals from paramagnetic minerals by frictional heating. Minor fault zones were characterized by low GRA densities and no change in magnetic susceptibility, and the latter may indicate that these minor zones experienced relatively low frictional heating. Magnetic susceptibility in a fault zone may be key to the determination that frictional heating occurred during an earthquake on the fault.

  3. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    Science.gov (United States)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  4. Development of ultrasonic technique for measure of porosity of UO2 pellets

    International Nuclear Information System (INIS)

    Baroni, Douglas Brandao

    2008-01-01

    The characterization of nuclear fuel is of great importance to guarantee the efficiency and even the safety in the power stations. At present, the techniques used implicate elevated costs with equipment, materials and installations of radiological protection. Besides, because of being destructive techniques, they impose that the checking of the characteristics of this material is done by sampling. In this work a not destructive technique was developed for measures of porosity in ceramic materials with efficiency and precision. The objective of this work is to this technique will be able to be used in laboratory practice for measures in UO 2 pellets, so it would become viable the inspection of up to 100% of the nuclear fuel, guaranteeing bigger control of the characteristics of the used material, turning in increasing safety, efficiency and economy. The innovation of the technique is due to the fact of analysing the specter of frequency of the ultrasonic wrist, and not his time of course in the material, frequently used. In this work 40 ceramic pellets of alumina were used with values of porosity between 5,09% and 37,30%. A system of recognition of signs using artificial neural networks made possible to distinguish pellets with differences of porosity of 0,04%. It was observed that this technique can be used for several others aims, for example, in the determination of the void fraction in regimen of two-phase flow, what is very important to guarantee the efficiency and safety of nuclear reactors. (author)

  5. An ultrasonic instrument for measuring density and viscosity of tank waste

    International Nuclear Information System (INIS)

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.

    1997-01-01

    An estimated 381,000 m 3 /1.1 x 10 9 Ci of radioactive waste are stored in high-level waste tanks at the Hanford Savannah River, Idaho Nuclear Engineering and Environmental Laboratory, and West Valley facilities. This nuclear waste has created one of the most complex waste management and cleanup problems that face the United States. Release of radioactive materials into the environment from underground waste tanks requires immediate cleanup and waste retrieval. Hydraulic mobilization with mixer pumps will be used to retrieve waste slurries and salt cakes from storage tanks. To ensure that transport lines in the hydraulic system will not become plugged, the physical properties of the slurries must be monitored. Characterization of a slurry flow requires reliable measurement of slurry density, mass flow, viscosity, and volume percent of solids. Such measurements are preferably made with on-line nonintrusive sensors that can provide continuous real-time monitoring. With the support of the U.S. Department of Energy (DOE) Office of Environmental Management (EM-50), Argonne National Laboratory (ANL) is developing an ultrasonic instrument for in-line monitoring of physical properties of radioactive tank waste

  6. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves� propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves� propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves� propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves� propagation test for detection of collapse that occurs in wood during drying process was not useful.

  7. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves propagation test for detection of collapse that occurs in wood during drying process was not useful.

  8. Nondestructive measurement of the mobility in semiconductors by means of the microwave Faraday effect

    International Nuclear Information System (INIS)

    Musil, F.; Zacek, F.; Buerger, A.; Karlovsky, J.

    1976-01-01

    The measurement is described of electron mobility in semiconducting plates placed between two cylindrical antennas with diameter d approximately equal to 0.75lambda 0 by means of the microwave Faraday effect. This system makes it possible (i) to measure the Faraday rotation in semiconductina plates of arbitrary transverse dimensions, greater or at least equal to the diameter of dielectric antennas, (ii) to evaluate the unknown value of the charge carrier mobility from the measured rotation in an unbounded solid state plasma slab approximation. The measurement of Faraday rotation in n-type Ge plates is reported. The comparison of the experimental data with the theory shows good agreement. (author)

  9. Non-destructive measurements of uranium and thorium concentrations and quantities

    International Nuclear Information System (INIS)

    Dragnev, T.N.; Damjanov, B.P.; Karamanova, J.S.

    1979-01-01

    The passive X-ray fluorescent-gamma spectrometry method and technique for uranium concentration measurements was developed and tested. It is based on the measurement of the intensity ratios of self-excited Ksub(α) X-rays of uranium to the intensity of the combined peak with 92.8 keV average energy. The last peak has 92.367 and 92.792 keV gamma rays of 234 Th, representing the activities of 238 U and its daughter isotopes, and 93.35 keV Th Ksub(α) X-rays representing the activities of 235 U and its daughters. The results of the measurements do not depend on the size and the shape of the measurements. The procedure is developed to take automatically into account the presence of any absorber or cladding between the measured sample and the detector. The attainable precision of the measurements (at 95% confidence level) is 0.2 - 0.3%. If combined with enrichment measurements, and after suitable empirical calibration, the method can be used without standards. Gamma-spectrometric measurements of 238 U and 232 Th are based on the daughter isotopes' gamma activities. However, this is correct only when there is a corresponding equilibrium between 238 U and 232 Th and the daughter isotopes' activities. Where such equilibrium is not reached the status of the daughter products' activities regarding equilibrium, has to be taken into account. Two methods of quantitative corrections are proposed: (i) The use of an absolute determination of the 228 Ac/ 224 Ra activity ratio through self-calibrated measurements and individual activities and their correlation with the equilibrium activities. (ii) Use of two of the same sample measurements at two different moments during the unrestored equilibrium and the correlation of the measurement results with the 232 Th activity. This method can be generally applied. (author)

  10. Ultrasonic imaging of material flaws exploiting multipath information

    Science.gov (United States)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  11. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    International Nuclear Information System (INIS)

    WILLS, C.E.

    1999-01-01

    This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary

  12. Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation

    International Nuclear Information System (INIS)

    Tas, G.; Loomis, J.J.; Maris, H.J.; Bailes, A.A. III; Seiberling, L.E.

    1998-01-01

    We report on experiments in which picosecond ultrasonic techniques are used to investigate the modification of interfacial bonding that results from ion implantation. The bonding is studied through measurements of the acoustic reflection coefficient at the interface. This method is nondestructive and can be used to create a map of the variation of the bonding over the area of the interface. copyright 1998 American Institute of Physics

  13. Moisture assessment by fast and non-destructive in situ measurements

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Møller, Eva B.; Hansen, Ernst Jan de Place

    2014-01-01

    moisture content, which is not revealed by this inspection. The moisture content may become a problem for the buyers. This problem might have been avoided if the moisture content of the Building materials was measured on inspection. This is easily done in wood-based materials but for example in concrete...... to use, easily applicable and suitable for most porous building materials. Furthermore, the measurements must be reliable at the high end of the hygroscopic area and describe absolute moisture content or corresponding relative humidity. The existing methods for moisture measuring cannot meet...... on measurements of the relative humidity of the air in a small hood placed tightly and sealed to the surface of the construction. Results with aerated concrete covered with acrylic paint are presented....

  14. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys

    2017-01-01

    Full Text Available Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  15. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  16. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Hong, Jun Hee

    2015-01-01

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  17. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kyung Mun [Korea Hydro and Nuclear Power Company Ltd., Central Research Institute, Daejeon (Korea, Republic of); Hong, Jun Hee [Dept. of mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  18. Ultrasonic attenuation measurements at very high SNR: Correlation, information theory and performance

    International Nuclear Information System (INIS)

    Challis, Richard; Ivchenko, Vladimir; Al-Lashi, Raied

    2013-01-01

    This paper describes a system for ultrasonic wave attenuation measurements which is based on pseudo-random binary codes as transmission signals combined with on-the-fly correlation for received signal detection. The apparatus can receive signals in the nanovolt range against a noise background in the order of hundreds of microvolts and an analogue to digital convertor (ADC) bit-step also in the order of hundreds of microvolts. Very high signal to noise ratios (SNRs) are achieved without recourse to coherent averaging with its associated requirement for high sampling times. The system works by a process of dithering – in which very low amplitude received signals enter the dynamic range of the ADC by 'riding' on electronic noise at the system input. The amplitude of this 'useful noise' has to be chosen with care for an optimised design. The process of optimisation is explained on the basis of classical information theory and is achieved through a simple noise model. The performance of the system is examined for different transmitted code lengths and gain settings in the receiver chain. Experimental results are shown to verify the expected operation when the system is applied to a very highly attenuating material – an aerated slurry

  19. Measuring time-of-flight in an ultrasonic LPS system using generalized cross-correlation.

    Science.gov (United States)

    Villladangos, José Manuel; Ureña, Jesús; García, Juan Jesús; Mazo, Manuel; Hernández, Alvaro; Jiménez, Ana; Ruíz, Daniel; De Marziani, Carlos

    2011-01-01

    In this article, a time-of-flight detection technique in the frequency domain is described for an ultrasonic local positioning system (LPS) based on encoded beacons. Beacon transmissions have been synchronized and become simultaneous by means of the DS-CDMA (direct-sequence code Division multiple access) technique. Every beacon has been associated to a 255-bit Kasami code. The detection of signal arrival instant at the receiver, from which the distance to each beacon can be obtained, is based on the application of the generalized cross-correlation (GCC), by using the cross-spectral density between the received signal and the sequence to be detected. Prior filtering to enhance the frequency components around the carrier frequency (40 kHz) has improved estimations when obtaining the correlation function maximum, which implies an improvement in distance measurement precision. Positioning has been achieved by using hyperbolic trilateration, based on the time differences of arrival (TDOA) between a reference beacon and the others.

  20. Non-destructive in situ measurement of radiological distributions in Hanford Site waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1996-01-01

    Measurement of radiological materials in defense nuclear waste stored in underground tanks at the Hanford Site is being used to indicate material distributions. Both safety assessment and future processing challenges are dependent on knowledge of the distribution kinds, and quantities of various key components. Data from CdTe and neutron detector measurements are shown and correlated with physical sampling and laboratory results. The multiple assay approach is shown to increase the confidence about the material distributions. As a result, costs of physical sampling and destructive analyses can be controlled while not severely limiting the uncertainty of results

  1. IVA Ultrasonic and Eddy Current NDE for ISS

    Data.gov (United States)

    National Aeronautics and Space Administration — The project intends to develop a combined Ultrasonic and Eddy Current nondestructive evaluation (NDE) instrument for IVA use on ISS. A suite of IVA and EVA NDE...

  2. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    Science.gov (United States)

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  3. Nondestructive measurement of tomato postharvest quality using a multichannel hyperspectral imaging probe

    Science.gov (United States)

    A multichannel hyperspectral imaging probe with 30 optic fibers covering the wavelength range of 550-1,650 nm and the light source-detector distances of 1.5-36 mm was recently developed for optical property measurement and quality evaluation of food products with flat or curved surface. This paper r...

  4. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  5. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines

    Directory of Open Access Journals (Sweden)

    Steven Busschots

    2015-01-01

    • The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3 was 0.99 ± 0.008 for OVCAR8 (p = 0.01 and 0.99 ± 0.01 for UPN251 (p = 0.01 cell lines.

  6. Non-destructive radio-frequency and microwave measurement of moisture content in agricultural commodities

    International Nuclear Information System (INIS)

    Nelson, S.O.

    1994-01-01

    The importance of moisture content in agricultural commodities, the usefulness of the dielectric properties of such products for sensing moisture content by radiofrequency and microwave measurements, and factors affecting these properties are briefly discussed. Recent developments in the understanding of principles for online moisture sensing and the sensing of individual kernel, seed, nut and fruit moisture contents by radiofrequency and microwave techniques are reviewed. A brief discussion is included on aspects of practical application

  7. Development of nondestructive test

    International Nuclear Information System (INIS)

    Lee, Y.P.; You, K.G.; Kwak, K.J.; Jeong, Y.M.

    1980-01-01

    Defect sizing experiment was carried out by using the satellite pulse technique with ultrasonic method. The mode-changed pulses which come from both ends of the artificial flaws in the fabricated sample have been measured on the screen of cathod ray tube with both video mode and radio-frequency mode. The measured values of the flows deviate from the real values less than 10%. (author)

  8. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  9. Ultrasonic assessment of additive manufactured Ti-6Al-4V

    Science.gov (United States)

    Schehl, Norman; Kramb, Vicki; Dierken, Josiah; Aldrin, John; Schwalbach, Edwin; John, Reji

    2018-04-01

    Additive Manufacturing (AM) processes offer the potential for manufacturing cost savings and rapid insertion into service through production of near net shape components for complicated structures. Use of these parts in high reliability applications such as those in the aerospace industry will require nondestructive characterization methods to ensure post-process material quality in as-built condition. Ultrasonic methods can be used for this quality verification. Depending on the application, the service life of AM components can be sensitive to the part surface condition. The surface roughness and layered structure inherent to the electron-beam powder-bed fusion process necessitates new approaches to evaluate subsurface material integrity in its presence. Experimental methods and data analytics may improve the evaluation of as-built additively manufactured materials. This paper discusses the assessment of additively manufactured EBM Ti-6Al-4V panels using ultrasonic methods and the data analytics applied to evaluate material integrity. The assessment was done as an exploratory study as the discontinuities of interest in these test samples were not known when the measurements were performed. Water immersion ultrasonic techniques, including pulse-echo and through transmission with 10 MHz focused transducers, were used to explore the material integrity of as-built plates. Subsequent destructive mechanical tests of specimens extracted from the plates provided fracture locations indicating critical flaws. To further understand the effect of surface-roughness, an evaluation of ultrasonic response in the presence of as-built surfaces and with the surface removed was performed. The assessment of additive manufactured EBM Ti-6Al-4V panels with ultrasonic techniques indicated that ultrasonic energy was attenuated by the as-built surface roughness. In addition, feature detection was shown to be sensitive to experimental ultrasonic parameters and flaw morphology.

  10. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  11. Positron lifetime measurements as a non-destructive technique to monitor fatigue damage

    International Nuclear Information System (INIS)

    Byrne, J.G.

    1975-09-01

    In the fatigue cycling of initially hard copper, self consistent positron lifetime and x-ray particle size measurements followed the softening process and revealed a new feature which may be the final development of microvoids before fracture. In the cyclic fatigue of initially soft 4340 steel closely spaced concurrent measurements of these parameters are now in progress. For initially hard 4340 steel fatigue softening was revealed with a large positron lifetime decrease. In hydrogen embrittlement studies positron lifetime was found to be sensitive to hydrogen in an interesting way, i.e., if a specimen is already at its maximum defect density, hydrogen is trapped at some of the defects, reduce their attraction for positrons and hence cause a decrease in positron lifetime; conversely in a soft specimen, hydrogen generates more dislocation length than it can trap at (thus cancelling) hence a positron lifetime increase occurs. In electron irradiated and annealed single crystal copper 4 annealing peaks were seen at 125, 270, 400, and 650 0 K. A clear correlation between decreasing positron lifetime and increasing percent porosity in α alumina was established. This behavior is quite []he opposite to that in metals. (auth)

  12. An estimation methode for measurement of ultraviolet radiation during nondestructive testing

    Science.gov (United States)

    Hosseinipanah, M.; Movafeghi, A.; Farvadin, D.

    2018-04-01

    Dye penetrant testing and magnetic particle testing are among conventional NDT methods. For increased sensitivity, fluorescence dyes and particles can be used with ultraviolet (black) lights. UV flaw detection lights have different spectra. With the help of photo-filters, the output lights are transferred to UV-A and visible zones. UV-A light can be harmful to human eyes in some conditions. In this research, UV intensity and spectrum were obtained by a Radio-spectrometer for two different UV flaw detector lighting systems. According to the standards such as ASTM E709, UV intensity must be at least 10 W/m2 at a distance of 30 cm. Based on our measurements; these features not achieved in some lamps. On the other hand, intensity and effective intensity of UV lights must be below the some limits for prevention of unprotected eye damage. NDT centers are usually using some type of UV measuring devices. A method for the estimation of effective intensity of UV light has been proposed in this research.

  13. Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Martin; Effner, Ute Antonie; Milmann, Boris; Voelker, Christoph; Wiggenhauser, Herbert [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany); Mauke, Ralf [The Federal Office for Radiation Protection, Salzgitter (Germany)

    2015-07-01

    For the closure of radioactive waste disposal facilities engineered barriers- so called ''drift seals'' are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced.

  14. Measurement of tidal volume using respiratory ultrasonic plethysmography in anaesthetized, mechanically ventilated horses.

    Science.gov (United States)

    Russold, Elena; Ambrisko, Tamas D; Schramel, Johannes P; Auer, Ulrike; Van Den Hoven, Rene; Moens, Yves P

    2013-01-01

    To compare tidal volume estimations obtained from Respiratory Ultrasonic Plethysmography (RUP) with simultaneous spirometric measurements in anaesthetized, mechanically ventilated horses. Prospective randomized experimental study. Five experimental horses. Five horses were anaesthetized twice (1 week apart) in random order in lateral and in dorsal recumbency. Nine ventilation modes (treatments) were scheduled in random order (each lasting 4 minutes) applying combinations of different tidal volumes (8, 10, 12 mL kg(-1)) and positive end-expiratory pressures (PEEP) (0, 10, 20 cm H(2)O). Baseline ventilation mode (tidal volume=15 mL kg(-1), PEEP=0 cm H(2)O) was applied for 4 minutes between all treatments. Spirometry and RUP data were downloaded to personal computers. Linear regression analyses (RUP versus spirometric tidal volume) were performed using different subsets of data. Additonally RUP was calibrated against spirometry using a regression equation for all RUP signal values (thoracic, abdominal and combined) with all data collectively and also by an individually determined best regression equation (highest R(2)) for each experiment (horse versus recumbency) separately. Agreement between methods was assessed with Bland-Altman analyses. The highest correlation of RUP and spirometric tidal volume (R(2)=0.81) was found with the combined RUP signal in horses in lateral recumbency and ventilated without PEEP. The bias ±2 SD was 0±2.66 L when RUP was calibrated for collective data, but decreased to 0±0.87 L when RUP was calibrated with individual data. A possible use of RUP for tidal volume measurement during IPPV needs individual calibration to obtain limits of agreement within ±20%. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  15. Application possibility of the direct current conduction method for nondestructive crack measurement

    International Nuclear Information System (INIS)

    Riedl, R.

    1982-01-01

    An important value to determine the danger of cracks is the determination of crack depths. The crack depth can be determined quite accurate by means of the direct current conduction method, if one holds onto certain rules. Often complicated experimental set-ups are applied. However, portable commercial devices can be obtained that can be used for partial fluxation, that yield good results. By means of two examples: crack conduction samples in which the built-up of a constant-cracking is persued up to a certain depth, as well as the persuasion of an continuing crack in a bearing cylinder, shall be demonstrated that is very well possible to record accurate profiles with commercial devices and to avoid expensive measurement devices. (orig.) [de

  16. PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro

    Directory of Open Access Journals (Sweden)

    Dóra Faragó

    2018-02-01

    Full Text Available Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9 mutant. While the technology was developed with Arabidopsis plants

  17. Destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials for purposes of national safeguards in the German Democratic Republic

    International Nuclear Information System (INIS)

    Villun, K.; Gruner, V.; Siebert, Kh.U.; Hoffmann, D.

    1979-01-01

    The authors give a brief description of the destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials used in the nuclear materials accounting and control system of the German Democratic Republic. They cite examples of the use of gamma-spectrometry, X-ray fluorescence analysis, neutron activation, radiochemical techniques, mass-spectrometry and alpha-spectrometry. (author)

  18. Residual stress determination of rail tread using a laser ultrasonic technique

    International Nuclear Information System (INIS)

    Wang, Jing; Feng, Qibo

    2015-01-01

    A non-destructive method for measuring the residual stress on rail tread that uses a laser-generated ultrasonic technique is proposed. The residual stress distribution of different parts on both the new rail and used rail were examined. The surface acoustic waves (SAWs) are excited by a scanning line laser and detected by a laser ultrasonic detection system. A digital correlation method was used for calculating the changes in velocity of SAWs, which reflects the stress distribution. A wavelet de-noising technique and a least square fit were used for signal processing to improve the measurement accuracy. The effects of ultrasonic propagation distance and surface roughness on the determination of residual stress were analyzed and simulated. Results from the study demonstrate that the stress distribution results are accordant with the practical situation, and the laser-generated SAWs technique is a promising tool for the determination of residual stress in the railway inspection and other industrial testing fields. (paper)

  19. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    Science.gov (United States)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  20. Non-destructive profile measurement of intensive heavy ion beams; Zerstoerungsfreie Profilmessung intensiver Schwerionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Frank

    2010-02-08

    Within the framework of the FAIR-project (Facility for Antiproton and Ion Research) at GSI (Helmholtz Center for Heavy Ion Research), high intensity beams from protons to uranium ions with kinetic energies up to 30 AGeV are foreseen. Present GSI-accelerators like the UNILAC and the Heavy Ion Synchrotron (SIS-18) with a magnetic rigidity of 18 Tm will be used as injectors for the future synchrotron (SIS-100). Their beam current will be increased by up to two orders of magnitude. An accurate beam position and beam profile measurement is mandatory for a safe operation of transport sections, in particular in front of production targets (Fragment Separator (FRS)-target, anti p-production-target and Warm Dense Matter (WDM)-targets). Conventional intercepting profile monitors will not withstand the thermal stress of intensive ion beams, particularly for low energy applications or focused beams. For transverse profile determination a non-intercepting Beam Induced Fluorescence (BIF)-monitor was developed, working with residual gas. The BIF-monitor exploits fluorescence light emitted by residual gas molecules after atomic collisions with beam ions. Fluorescence-images were recorded with an image-intensified camera system, and beam profiles were obtained by projecting these images. Within the scope of this dissertation the following topics have been investigated: The photon yield, profile shape and background contribution were determined for different ion species (H{sup +}, S{sup 6+}, Ar{sup 18+}, K{sup +}, Ni{sup 9+}, Xe{sup 48+}, Ta{sup 24+}, Au{sup 65+}, U{sup 73+}), beam energies (7.7 AkeV-750 AMeV), gas pressures (10{sup -6}-3 mbar) and gas species (N{sub 2}, He, Ne, Ar, Kr, Xe). Applying an imaging spectrograph and narrowband 10 nm interference filters, the spectral response was mapped and associated with the corresponding gas transitions. Spectrally resolved beam profiles were also obtained form the spectrographic images. Major results are the light yield showing a

  1. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  2. Review of the status of nondestructive measurement techniques to quantify material property degradation due to aging and planning for further evaluation

    International Nuclear Information System (INIS)

    Doctor, S.R.; Boyd, D.M.; Bruemmer, S.M.; Green, E.R.; Schuster, G.J.; Simonen, E.P.

    1989-01-01

    The materials used in nuclear reactors are inspected periodically during the service life of the power plant to detect degradation that might occur. These inspections follow the rules specified in Section XI of the ASME Boiler and Pressure Vessel Code. These inspections are designed to detect service-induced failure mechanisms. This program is designed not to look at the detection of defects but the making of nondestructive measurements to quantify the material properties that a defect may reside in or the incipient condition(s) that may initiate a defect. This program is intended to provide an assessment of the technologies that are available to quantify with nondestructive measurements material properties or material property changes related to degradation due to aging of structural components in light water reactors. In addition, a program plan will be developed that describes the work necessary to create adequate engineering data bases for demonstrating and validating prototypic systems for making these measurements. The main thrust this year has been an extensive review of literature and an assessment of the technology. The second major activity was the planning of a workshop to bring together 30 leading experts in materials and nondestructive evaluation to discuss the state-of-the-art and to address where future work should go

  3. Advanced non-destructive methods for an efficient service performance

    International Nuclear Information System (INIS)

    Rauschenbach, H.; Clossen-von Lanken Schulz, M.; Oberlin, R.

    2015-01-01

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  4. Annual meeting 1996 'Nondestructive materials testing'. German, Austrian and Swiss nondestructive materials testing standards as mirrored by international standardization. Vol. 1. Lectures

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains 45 lectures which were given at the annual meeting of the German Society for Nondestructive Testing on May 13-15, 1996 at Lindau. The main subjects were: Standardization of nondestructive testing, irradiation testing, ultrasonic testing and electromagnetic processes. 13 individual articles were included in the ENERGY database. (MM) [de

  5. Annual meeting 1996 'Nondestructive material testing'. German, Austrian and Swiss nondestructive materials testing standards as mirrored by international standardization. Vol. 2. Posters

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains 49 poster articles which were presented at the Annual Meeting of the German Society for Nondestructive Testing at Lindau on May 13-15, 1996. The main subjects were: Standardization of nondestructive testing, irradiation testing, ultrasonic testing and electromagnetic processes. 16 individual articles were included in the ENERGY databank. (MM) [de

  6. Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements

    International Nuclear Information System (INIS)

    Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Lepilliez, Mathieu; Cid, Emmanuel

    2014-01-01

    Internal solitary waves (ISWs) are large amplitude stable waves propagating in regions of high density gradients such as the ocean pycnocline. Their dynamics has often been investigated in two-dimensional approaches, however, their three-dimensional evolution is still poorly known. Experiments have been conducted in the large stratified water tank of CNRM-GAME to study the generation of ISWs in two academic configurations inspired by oceanic regimes. First, ultrasonic probes are used to measure the interfacial displacement in the two configurations. In the primary generation case for which the two layers are of constant density, the generation of ISWs is investigated in two series of experiments with varying amplitude and forcing frequency. In the secondary generation case for which the lower layer is stratified, the generation of ISWs from the impact of an internal wave beam on the pycnocline and their subsequent dynamics is studied. The dynamics of ISWs in these two regimes accords well with analytical approaches and numerical simulations performed in analogous configurations. Then, recent developments of a stereo correlation technique are used to describe the three-dimensional structure of propagating ISWs. In the primary generation configuration, small transverse effects are observed in the course of the ISW propagation. In the secondary generation configuration, larger transverse structures are observed in the interfacial waves dynamics. The interaction between interfacial troughs and internal waves propagating in the lower stratified layer are a possible cause for the generation of these structures. The magnitude of these transverse structures is quantified with a nondimensional parameter in the two configurations. They are twice as large in the secondary generation case as in the primary generation case

  7. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  8. Non-destructive failure analysis and measurement for molded devices and complex assemblies with X-ray CT and 3D image processing techniques

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Liew, Seaw Jia; Jiang, Ting Ying; Xu, Jian; Kakarala, Ramakrishna

    2013-01-01

    In both automotive and healthcare sectors, reliable failure analysis and accurate measurement of molded devices and complex assemblies are important. Current methods of failure analysis and measurement require these molded parts to be cross-sectioned so that internal features or dimensions can be accessible. As a result, the parts are deemed unusable and additional failure introduced by sectioning may cause misinterpretation of the results. X-ray CT and 3D image processing techniques provide a new nondestructive solution for failure analysis and measurement of molded devices and complex assemblies. These techniques simplify failure analysis and measurement of molded devices and assemblies, and improve the productivity of molding manufacturing significantly.

  9. Ultrasonic hydrometer

    Science.gov (United States)

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  10. Positron lifetime measurements as a non-destructive technique to monitor fatigue damage. Final report, January 1, 1971--June 30, 1978

    International Nuclear Information System (INIS)

    Byrne, J.G.

    1978-06-01

    Positron studies were applied successfully to cyclic fatigue in steel and copper and have shown a capability to nondestructively detect fatigue softening and fatigue hardening. In the case of elastic high cycle fatigue in initially soft steel the fatigue hardening is identified with point defects. For cyclic plastic range, high cycle fatigue cyclic hardening and softening are correlated with changes in dislocation substructure. Positron measurements during the pulse annealing of copper single crystals following electron irradiation at 77 0 K have revealed the formation of multi-vacancy complexes which constitute the precursors of radiation induced voids. Positron studies have been applied to hydrogen embrittlement in 4340 steel and more recently in nickel. The technique can non-destructively detect hydrogen embrittlement and gage its extent. U.S. Patent No. 4064438 was issued on this basis

  11. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  12. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Jin; Kwak, Hyo Gyoung [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sun Jong [Dept. of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

  13. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    International Nuclear Information System (INIS)

    Kim, Gyu Jin; Kwak, Hyo Gyoung; Park, Sun Jong

    2016-01-01

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members

  14. Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials

    Science.gov (United States)

    Ju, Taeho

    To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear

  15. A novel contra propagating ultrasonic flowmeter using glad buffer rods for high temperature measurement. Application to the oil and gas industries

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Demartonne R. [Brasilia Univ., DF (Brazil). Dept. de Engenharia Eletrica; Cheng-Kuei Jen; Yuu Ono [National Research Council (NRC), Quebec (Canada). Industrial Materials Institute

    2005-07-01

    Ultrasonic techniques are attractive for process monitoring and control because they are non-intrusive, robust and inexpensive. Two common concerns limiting the high temperature performance of conventional ultrasonic systems for flow measurement are related to transducers and couplants. A suitable approach to overcoming this drawback is to insert a thermal isolating buffer rod with good ultrasonic performance (e.g., high signal-to-noise ratio). This requirement is important because, a priori, the noises generated in the buffer rod may bury the desired signals, so that no meaningful information is extracted. Besides protecting the ultrasonic transducers from overheating in applications such as high temperature flow measurements, buffer rods are also a solution for the couplant between the probe and tested sample, since their probing end can be directly wetted by fluids. Here, we propose clad buffer rods driven by shear transducers as the main building block of contra propagating ultrasonic flowmeters for high temperature application. It is demonstrated that the superior signal-to-noise ratio exhibit by clad buffer rods compared to the reported non-clad counterparts improve precision in transit-time measurement, leading to more accurate flow speed determination. In addition, it is shown that clad buffer rods generate specific ultrasonic signals for temperature calibration of flowmeters, allowing temperature variation while still measuring accurately the flow speed. These results are of interest for the oil and gas industries. (author)

  16. Development of non-destructive testing. Turkey

    International Nuclear Information System (INIS)

    1991-01-01

    A National Scheme for the qualification and certification of Non-Destructive Testing (NDT) personnel in various methods has been established as the first stage of implementation. Systematic training in such methods as radiography (RT), ultrasonics (UT), magnetic particles (MT), liquid penetrant (PT) and eddy currents (ET) at levels I, II and some at III has been initiated and should be continued. Direct link with the industry and continuous effort to extend practical applications is strongly recommended

  17. Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

    OpenAIRE

    Al-lababidi , Salem

    2006-01-01

    Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfie...

  18. Pattern recognition approach to nondestructive evaluation of materials

    International Nuclear Information System (INIS)

    Chen, C.H.

    1987-01-01

    In this paper, a pattern recognition approach to the ultrasonic nondestructive evaluation of materials is examined. Emphasis is placed on identifying effective features from time and frequency domains, correlation functions and impulse responses to classify aluminum plate specimens into three major defect geometry categories: flat, angular cut and circular hole defects. A multi-stage classification procedure is developed which can further determine the angles and sizes for defect characterization and classification. The research clearly demonstrates that the pattern recognition approach can significantly improve the nondestructive material evaluation capability of the ultrasonic methods without resorting to the solution of highly complex mathematical inverse problems

  19. Acoustic sensors for fission gas characterization: R and D skills devoted to innovative instrumentation in MTR, non-destructive devices in hot lab facilities and specific transducers for measurements of LWR rods in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Ferrandis, J.Y.; Leveque, G.; Rosenkrantz, E.; Augereau, F.; Combette, P. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    irradiation. The instrumented fuel rod incorporating the ultrasonic gas composition sensor was finally irradiated during 2 weeks in nominal conditions. Neutronics calculation will be performed in order to calculate the thermal and fast neutron fluence and the gamma dose absorbed by acoustic sensor. A first evaluation gives a thermal fluence about 4,5.10{sup 19} n/cm{sup 2}, a fast neutrons fluence about 4,5.1018 n/cm{sup 2} and a total gamma dose up to 0,25 MGy The maximal temperature during the irradiation test was about 150 C. Although the ultrasonic sensor appears to be damaged, the optimization of the electrical attack parameters and the development of a new signal processing maintain the measurement feasibility up the end of the irradiation campaign. It was the first time that the composition of fission gas has been monitored all along an irradiation experiment in a MTR, giving access to the gas release kinetics. New researches involve thick film transducers produced by screen-printing process in order to propose piezoelectric structures for harsh temperature and irradiation measurements. The second project consists in the development of a non-destructive device that can be directly applied on a LWR fuel rod. The problem to be solved relates to the measurement of the fission gas pressure and composition in a fuel rod using a non-destructive method. Fuel rod internal pressure is one of the safety criteria applied in nuclear power analyses. This criterion must be verified in order to avoid any fuel-cladding gap reopening risk and therefore any local clad ballooning. Apart from the safety implications, this parameter is also a fuel behaviour indicator and reflects the overall fuel performance in operation, but also during shipping and long-term storage. Rod internal pressure is one criterion amongst others, like cladding corrosion, against which the acceptable fuel burn-up limit is set. A sensor has been achieved in 2007. A full-scale hot cell test of the internal gas

  20. Summaries of the lectures of a conference on nondestructive testing

    International Nuclear Information System (INIS)

    1980-01-01

    The present brochure contains summaries of the lectures that were held at the DGZfP-conference on non-destructive testing' in May 1980 in Goettingen. The greater part of the lectures dealt with ultrasonic methods, electromagnetic methods and applications of X-, γ- and neutron-rays in non-destructive testing. Besides, questions of quality ensurance, economics and problems of the training of testing personnel were treated. (RW) [de