WorldWideScience

Sample records for ultrasonic inspection device

  1. Track type ultrasonic inspection device

    International Nuclear Information System (INIS)

    Kajiyama, Shigeru; Sasaki, Tsukasa; Takahisa, Kazuo.

    1993-01-01

    The present invention concerns an improvement of a scanning device disposed near an object to be inspected such as a nuclear pressure vessel and having an ultrasonic probe, mounted thereon that travel along a running track. Specifically, one of wheel supports on both sides is attached being secured to the scanning device. The other of the supports is capable of fixing and releasing, as well as providing and releasing pressure to and from wheels upon mounting and detachment. This enables to provide a structure capable of pressing the wheels of the running device to the plane of the track and release thereof. Accordingly, it is possible to improve the running performance, reduce the size and weight and shorten the time for mounting and detachment of the running inspection device. (I.S.)

  2. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  3. Development of automated ultrasonic device for in-service inspection of ABWR pressure vessel bottom head

    International Nuclear Information System (INIS)

    Kojima, Y.; Matsuyama, A.

    1995-01-01

    An automated device and its controller have been developed for the bottom head weld examination of pressure vessel of Advanced Boiling Water Reactor (ABWR). The internal pump casings and the housings of control rod prevent a conventional ultrasonic device from scanning the required inspection zone. With this reason, it is required to develop a new device to examine the bottom head area of ABWR. The developed device is characterized by the following features. (1) Composed of a mother vehicle and a compact inspection vehicle. They are connected only by an electric wire without using the conventional arm mechanism. (2) The mother vehicle travels on a track and lift up the inspection vehicle to the vessel. (3) The mother vehicle can automatically attach the inspection vehicle to the bottom head, and detach the inspection vehicle from it. (4) Collision avoidance control function with a touch sensor is installed at the front of the inspection vehicle. The device was successfully demonstrated using a mock-up of reactor pressure vessel

  4. Inspection device for external examination of pressure vessels, preferably for ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Figlhuber, D.; Gallwas, J.; Weber, R.; Weber, J.

    1978-01-01

    The inspection device is placed in the annular gap between pressure vessel and biological shield of the BWR. In the annulus there is arranged at least one longitudinal rail which has got vertical guideways. Along it there can be moved on testing paths a manipulator with the ultrasonic search unit. The manipulator drive is outside of the inspection annulus. It is coupled to the manipulator by means of a tension member being guided over a reversing unit mounted at the upper end of the longitudinal rail. As a tension member there may be used a drag chain; the drive and the reversing unit are provided with corresponding chain wheels. (DG) [de

  5. Ultrasonic inspection of inpile tubes

    International Nuclear Information System (INIS)

    Boyd, D.M.; Bossi, H.

    1985-01-01

    The in-service inspection (ISI) of inpile tubes can be performed accurately and safely with a semiautomatic ultrasonic inspection system. The ultrasonic technique uses a set of multiple transducers to detect and size cracks, voids, and laminations radially and circumferentially. Welds are also inspected for defects. The system is designed to inspect stainless steel and Inconel tubes ranging from 53.8 mm (2.12 in.) to 101.6 mm (4 in.) inner diameter with wall thickness on the order of 5 mm. The inspection head contains seven transducers mounted in a surface-following device. Six angle-beam transducers generate shear waves in the tubes. Two of the six are oriented to detect circumferential cracks, and two detect axial cracks. Although each of these four transducers is used in the pulse-echo mode, they are oriented in aligned sets so pitch-catch operation is possible if desired. The remaining angle-beam transducers are angulated to detect flaws that are off axial or circumferential orientation. The seventh transducer is used for longitudinal inspection and detects and sizes laminar-type defects

  6. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  7. Advanced ultrasonic inspections

    International Nuclear Information System (INIS)

    Ghia, S.

    1990-08-01

    Acoustic Emission (AE) continuous monitoring and periodical inspections by advanced ultrasonic have been applied to evaluate defect evolution within a PWR reduced scale (1:5) pressure vessel subjected to cyclic mechanical fatigue test. This experimental activity has been carried out in the frame of the Primary Circuit Component Life Prediction programme. In the time period covered by this report actions were performed as following: (1) Ultrasonic examination by multifrequency acoustic holography to evaluate defect evolution subsequently repair and heat treatment of the R2 vessel carried out in March 1988. For the purpose, measurements were performed both at 0 and 200 bar of internal pressure. As uniformity of the procedures adopted, for calibration and testing, made the results comparable with the previous ones no evidence for significant growing of the examined defects has been found. (2) Acoustic emission monitoring has then been carried out during fatigue test from 416000 to 565000 fatigue cycles. Analysis of a large amount of data has been performed paying particular attention to the distinction between friction phenomena and crack growth in order to obtain a correct diagnosis of flaw evolution. The signal duration distribution and the correlation of AE appearance time versus load cycle phase were considered to characterise stick-slip processes. A general intensification of AE activity has been recorded during this last period of monitoring and previous known AE sources were confirmed together with the appearance of new AE sources some of them correlable with real defects

  8. Detailed simulation of ultrasonic inspections

    International Nuclear Information System (INIS)

    Chaplin, K.R.; Douglas, S.R.; Dunford, D.

    1997-01-01

    Simulation of ultrasonic inspection of engineering components have been performed at the Chalk River Laboratories of AECL for over 10 years. The computer model, called EWE for Elastic Wave Equations, solves the Elastic Wave Equations using a novel finite difference scheme. It simulates the propagation of an ultrasonic wave from the transducer to a flaw, the scatter of waves from the flaw, and measurement of signals at a receive transducer. Regions of different materials, water and steel for example, can be simulated. In addition, regions with slightly different material properties from the parent material can be investigated. The two major types of output are displays of the ultrasonic waves inside the component and the corresponding A-scans. EPRI and other organizations have used ultrasonic models for: defining acceptable ultrasonic inspection procedures, designing and evaluating inspection techniques, and for quantifying inspection reliability. The EWE model has been applied to the inspection of large pipes in a nuclear plant, gas pipeline welds and steam generator tubes. Most recent work has dealt with the ultrasonic inspection of pressure tubes in CANDU reactors. Pressure tube inspections can reliably detect and size defects; however, there are improvements that can be made. For example, knowing the sharpness of a flaw-tip is crucial for fitness for service assessments. Computer modelling of the ultrasonic inspection of flaws with different root radius has suggested inspection techniques that provide flaw tip radius information. A preliminary investigation of these methods has been made in the laboratory. The basis for the model will be reviewed at the presentation. Then the results of computer simulations will be displayed on a PC using an interactive program that analyzes simulated A-scans. This software tool gives inspection staff direct access to the results of computer simulations. (author)

  9. Ultrasonic inspection development at HEDL

    International Nuclear Information System (INIS)

    Day, C.K.; Mech, S.J.; Michaels, T.E.; Dixon, N.E.

    1978-01-01

    Ultrasonic testing methods and equipment are being developed to support preservice and in-service inspection of selected FFTF welds. A digital computer system is employed in the analysis of both simulated FFTF pipe sections and plate specimens containing fatigue cracks. It is anticipated that test evaluation standards containing fatigue cracks will partially eliminate questions formerly associated with weld test calibration producers by providing natural cracks which follow grain boundaries and stress patterns resembling piping situ conditions. Studies have revealed that commercial transducers may satisfy LMFBR ultrasonic pipe inspection applications: The test system evaluation included transducers and wedge coupling and fluid coupling materials which exhibited acceptable performance at temperatures to 2300C. Results are presented that demonstrate the feasibility of ultrasonic inspection of components immersed in sodium at temperatures to 2600C. (UK)

  10. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  11. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  12. Automated ultrasonic inspection using PULSDAT

    International Nuclear Information System (INIS)

    Naybour, P.J.

    1992-01-01

    PULSDAT (Portable Ultrasonic Data Acquisition Tool) is a system for recording the data from single probe automated ultrasonic inspections. It is one of a range of instruments and software developed by Nuclear Electric to carry out a wide variety of high quality ultrasonic inspections. These vary from simple semi-automated inspections through to multi-probe, highly automated ones. PULSDAT runs under the control of MIPS software, and collects data which is compatible with the GUIDE data display system. PULSDAT is therefore fully compatible with Nuclear Electric's multi-probe inspection systems and utilises all the reliability and quality assurance of the software. It is a rugged, portable system that can be used in areas of difficult access. The paper discusses the benefits of automated inspection and gives an outline of the main features of PULSDAT. Since April 1990 PULSDAT has been used in several applications within Nuclear Electric and this paper presents two examples: the first is a ferritic set-through nozzle and the second is an austenitic fillet weld. (Author)

  13. Ultrasonic variables affecting inspection

    International Nuclear Information System (INIS)

    Lautzenheiser, C.E.; Whiting, A.R.; McElroy, J.T.

    1977-01-01

    There are many variables which affect the detection of the effects and reproducibility of results when utilizing ultrasonic techniques. The most important variable is the procedure, as this document specifies, to a great extent, the controls that are exercised over the other variables. The most important variable is personnel with regards to training, qualification, integrity, data recording, and data analysis. Although the data is very limited, these data indicate that, if the procedure is carefully controlled, reliability of defect detection and reproducibility of results are both approximately 90 percent for reliability of detection, this applies to relatively small defects as reliability increases substantially as defect size increases above the recording limit. (author)

  14. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  15. An ultrasonic inspection tool for production tubulars

    Energy Technology Data Exchange (ETDEWEB)

    Newton, K; Martin, R; Ravenscroft, F [AEA Technology, Harwell (United Kingdom)

    1994-06-01

    Advances in ultrasonic technology, high temperature techniques and remote processing power are enabling a new generation of inspection tools to be developed. This paper describes a particular new ultrasonic caliper system, developed by AEA Technology, with the aim of providing improved information about the condition of production tubulars of oil and gas wells. The system is designed to provide enhanced surface area coverage compared to the current devices, which are typically mechanical 'finger' calipers. It also provides a non-contacting measure of corrosion and wear together with direct on-line output and automated data analysis. The new tool is designed to operate in oil and gas, vertical or deviated wells and has the potential for modification to inspect small diameter pipes in topside or other plant. (author)

  16. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  17. Heat exchanger tube inspection using ultrasonic arrays

    International Nuclear Information System (INIS)

    Meyer, P.A.; Carodiskey, T.J.

    1986-01-01

    Tubing used in industrial heat exchangers is often subject to failure caused by corrosion and cracking. Technical conferences are used as a forum in the steam generator industry to ensure that the failure mechanisms are well understood and that the quality of the heat exchanger is maintained. The quality of a heat exchanger can be thought of as its ability to operate to design specifications over its intended life. This is the motivation to inspect and evaluate these devices periodically. Inspection, however, normally requires shutdown of the heat exchanger which is costly but is much more acceptable than an unscheduled shutdown due to failure of a tube. Therefore, the degree of inspection is established by balancing the cost of inspection with the risk of a tube failure. Any method of reducing the cost of inspection will permit a higher degree of inspection and, therefore, improve heat exchanger quality. This paper reviews the design and performance of an improved method of ultrasonic inspection of heat exchanger tubing with emphasis on applications in the nuclear industry

  18. Automated ultrasonic inspection of nuclear plant components

    International Nuclear Information System (INIS)

    Baron, J.A.; Dolbey, M.P.

    1982-01-01

    For reasons of safety and efficiency, automated systems are used in performing ultrasonic inspection of nuclear components. An automated system designed specifically for the inspection of headers in a nuclear plant is described. In-service inspection results obtained with this system are shown to correlate with pre-service inspection results obtained by manual methods

  19. Inspection device for buried equipment

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1994-01-01

    In an inspection device for a buried equipment, a rail is suspended at the upper portion of a vessel of a pit-vessel type pump buried in a plant building floor, and a truck movable vertical in the vessel along the rail, and an ultrasonic wave probe contained in the truck and urged to the vessel by an electromagnet are disposed. In addition, an elevator moving vertically along a shaft is disposed, and an arm having the ultrasonic probe disposed at the end portion and driven by a piston are disposed to the elevator. The ultrasonic wave probe moves vertically together with the truck along the rail in the vessel while being urged to the vessel by the electromagnet to inspect and measure the state at the inner and outer surfaces of the vessel. Further, the length of the arm is controlled so as to set a predetermined distance between the ultrasonic wave probe and the vessel. Subsequently, the elevator is moved vertically along a shaft passing through a shaft hole of a mount, and the shaft is rotated thereby enabling to inspect and measure the state of the inner and outer surfaces of the vessel. (N.H.)

  20. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  1. Inspection device in liquid

    International Nuclear Information System (INIS)

    Nagaoka, Etsuo.

    1996-01-01

    The present invention provides an inspection device in PWR reactor core in which inspection operations are made efficient by stabilizing a posture of the device in front-to-back, vertical and left-to-right directions by a simple structure. When the device conducts inspection while running in liquid, the front and the back directions of the device main body are inspected using a visual device while changing the posture by operating a front-to-back direction propulsion device and a right-to-left direction propulsion device, and a vertical direction propulsion device against to rolling, pitching and yawing of the device main body. In this case, a spherical magnet moves freely in the gravitational direction in a vibration-damping fluid in a non-magnetic spherical shell following the change of the posture of the device main body, in which the vibrations due to the movement of the spherical magnet is settled by the vibration-damping fluid thereby stabilizing the posture of the device main body. At a typical inspection posture, the settling effect is enhanced by the attraction force between the spherical magnets in the spherical shell and each of magnetic force-attracted magnetic members disposed to the outer circumference of the shell, and the posture of the device main body can be confirmed in front-to-back, right-to-left and vertical directions by each of the posture confirming magnetic sensors. (N.H.)

  2. Design and manufacture of an ultrasonic inspection device for the friction welds in reactor vessel control rod drive mechanism housings

    International Nuclear Information System (INIS)

    Cieslav, C.; Peteuil, M.

    1985-01-01

    The control rod drive mechanism housings of a PWR reactor vessel consist of a stainless steel flange and a Ni-Cr-Fe alloy tube, assembled by friction welding. The properties of the interface and the nature of the adjacent materials require the development of a specific ultrasonic inspection technique which could be easily automated, considering the number of parts involved (77 parts per 1300 MWe reactor vessel). The part has the general shape of a tube (inside diameter: 70 mm, outside diameter: 103 mm). The transition between both forged parent materials (stainless steel/Ni-Cr-Fe alloy) is obtained by a very thin interface, whose general orientation is normal to the tube centerline. The heat affected zone has generally a coarser and more irregular structure than that observed in the parent materials. The design and development were carried out using a prototype machine on test-pieces representative of a control rod drive mechanism housing, and containing the following artificial reflectors: notches obtained by electro-discharge machining on the inside and outside surfaces, on each side of the interface; planar artificial defects, parallel to the interface. These defects, obtained from 2 flat bottomed holes, drilled into the mock-up constituent parts, were conveyed to the interface during friction welding

  3. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  4. Fuel inspection device

    International Nuclear Information System (INIS)

    Tsuji, Tadashi.

    1990-01-01

    The fuel inspection device of the present invention has a feature of obtaining an optimum illumination upon fuel rod interval inspection operation in a fuel pool. That is, an illumination main body used underwater is connected to a cable which is led out on a floor. A light control device is attached to the other end of the cable and an electric power cable is connected to the light control device. A light source (for example, incandescent lamp) is incorporated in the casing of the illumination main body, and a diffusion plate is disposed at the front to provide a plane light source. The light control device has a light control knob capable of remote-controlling the brightness of the light of the illumination main body. In the fuel inspection device thus constituted, halation is scarcely caused on the image screen upon inspection of fuels by a submerged type television camera to facilitate control upon inspection. Accordingly, efficiency of the fuel inspection can be improved to shorten the operation time. (I.S.)

  5. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  6. Plant abnormality inspection device

    International Nuclear Information System (INIS)

    Takenaka, Toshio.

    1990-01-01

    The present invention concerns a plant abnormality inspection device for conducting remote or automatic patrolling inspection in a plant and, more particularly, relates to such a device as capable of detecting abnormal odors. That is, the device comprises a moving device for moving to a predetermined position in the plant, a plurality of gas sensors for different kind of gases to be inspected mounted thereon, a comparator for comparing the concentration of a gas detected by the gas sensor with the normal gas concentration at the predetermined position and a judging means for judging the absence or presence of abnormality depending on the combination of the result of the comparison and deliverying a signal if the state is abnormal. As a result, a slight amount of gas responsible to odors released upon abnormality of the plant can be detected by a plurality of gas sensors for different kinds gases to rapidly and easily find abnormal portions in the plant. (I.S.)

  7. Automated ultrasonic pipe weld inspection. Part 1

    International Nuclear Information System (INIS)

    Karl Deutsch, W.A.; Schulte, P.; Joswig, M.; Kattwinkel, R.

    2006-01-01

    This article contains a brief overview on automated ultrasonic welded inspection for various pipe types. Some inspection steps might by carried out with portable test equipment (e.g. pipe and test), but the weld inspection in all internationally relevant specification must be automated. The pipe geometry, the production process, and the pipe usage determine the number of required probes. Recent updates for some test specifications enforce a large number of ultrasonic probes, e.g. the Shell standard. Since seamless pipes are sometimes replaced by ERW pipes and LSAW pipes (in both cases to save production cost), the inspection methods change gradually between the various pipe types. Each testing system is unique and shows its specialties which have to be discussed by supplier, testing system user and final customer of the pipe. (author)

  8. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  9. Incore inspection device

    International Nuclear Information System (INIS)

    Ogisu, Tatsuki; Taguchi, Kosei.

    1995-01-01

    The device of the present invention can inspect surfaces of equipments in reactor water in a nuclear reactor in a state of atmospheric air. Namely, an inspection device is movable forwardly and backwardly in a water-proof vessel. An annular sucker with pleats is disposed to the outer side of a lid of the water-proof vessel. A television camera for an under water monitoring is disposed to the inner side of the lid of the water-proof vessel by way of a partitioning wall with lid. Transferring screws are disposed at the back and on the side of the water-proof vessel. In the device having such a constitution, (1) the inside of the water-proof vessel is at first made water-tight by closing the partitioning wall with lid, (2) the back and the side screws are operated by the guide of the underwater monitoring television camera, to transfer the water-proof vessel to the surface of the reactor core to be inspected, (3) the annular sucker with pleats is urged on the surface to be inspected by the back screw, to fix the water-proof vessel, (4) reactor water in a space of the annular sucker with pleats is discharged and replaced with air, and (5) the lid of the partition wall with lid is opened and the inspection device is disposed at a position of the underwater monitoring television camera, to inspect the surface to be inspected in a state of atmospheric air. (I.S.)

  10. Ultrasonic testing device having an adjustable water column

    Science.gov (United States)

    Roach, Dennis P.; Neidigk, Stephen O.; Rackow, Kirk A.; Duvall, Randy L.

    2015-09-01

    An ultrasonic testing device having a variable fluid column height is disclosed. An operator is able to adjust the fluid column height in real time during an inspection to to produce optimum ultrasonic focus and separate extraneous, unwanted UT signals from those stemming from the area of interest.

  11. Fuel assembly inspection device

    International Nuclear Information System (INIS)

    Yaginuma, Yoshitaka

    1998-01-01

    The present invention provides a device suitable to inspect appearance of fuel assemblies by photographing the appearance of fuel assemblies. Namely, the inspection device of the present invention measures bowing of fuel assembly or each of fuel rods or both of them based on the partially photographed images of fuel assembly. In this case, there is disposed a means which flashily projects images in the form of horizontal line from a direction intersecting obliquely relative to a horizontal cross section of the fuel assembly. A first image processing means separates the projected image pictures including projected images and calculates bowing. A second image processing means replaces the projected image pictures of the projected images based on projected images just before and after the photographing. Then, images for the measurement of bowing and images for inspection can be obtained simultaneously. As a result, the time required for the photographing can be shortened, the time for inspection can be shortened and an effect of preventing deterioration of photographing means by radiation rays can be provided. (I.S.)

  12. Longitudinal wave ultrasonic inspection of austenitic weldments

    International Nuclear Information System (INIS)

    Gray, B.S.; Hudgell, R.J.; Seed, H.

    1980-01-01

    Successful volumetric inspection of LMFBR primary circuits, and also much of the secondary circuit, is dependent on the availability of satisfactory examination procedures for austenitic welds. Application of conventional ultrasonic techniques is hampered by the anisotropic, textured structure of the weld metal and this paper describes development work on the use of longitudinal wave techniques. In addition to confirming the dominant effects of the weld structure on ultrasound propagation some results are given of studies utilising deliberately induced defects in Manual Metal Arc Welds in 50 mm plate together with preliminary work on the inspection of narrow austenitic welds fabricated by automatic processes. (author)

  13. Development of a Multi-Channel Ultrasonic Testing System for Automated Ultrasonic Pipe Inspection of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Cho, Hyun Joon

    2009-01-01

    Currently almost all in-service-inspection techniques, applied in domestic nuclear power plants, are partial to field inspection technique. These kinds of techniques are related to managing nuclear power plants by the operation of foreign-produced inspection devices. There have been so many needs for development of native in-service-inspection device because there is no native diagnosis device for nuclear power plant inspection yet in Korea. In this research, we developed several core techniques to make an automated ultrasonic pipe inspection system for nuclear power plants. A high performance multi-channel ultrasonic pulser/receiver module, an A/D converter module and a digital main CPU module were developed and the performance of the developed modules was verified. The S/N ratio, noise level and signal acquisition performance of the developed modules showed proper level as we designed in the beginning.

  14. Detecting accuracy of flaws by manual and automatic ultrasonic inspections

    International Nuclear Information System (INIS)

    Iida, K.

    1988-01-01

    As the final stage work in the nine year project on proving tests of the ultrasonic inspection technique applied to the ISI of LWR plants, automatic ultrasonic inspection tests were carried out on EDM notches, surface fatigue cracks, weld defects and stress corrosion cracks, which were deliberately introduced in full size structural components simulating a 1,100 MWe BWR. Investigated items are the performance of a newly assembled automatic inspection apparatus, detection limit of flaws, detection resolution of adjacent collinear or parallel EDM notches, detection reproducibility and detection accuracy. The manual ultrasonic inspection of the same flaws as inspected by the automatic ultrasonic inspection was also carried out in order to have comparative data. This paper reports how it was confirmed that the automatic ultrasonic inspection is much superior to the manual inspection in the flaw detection rate and in the detection reproducibility

  15. Ultrasonic boiler inspection and economic analysis guidelines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Boiler tube failures cause approximately 6% availability loss of large fossil-fired power generating plants. This loss can be reduced by systematic approaches using ultrasonic examination and root cause failure analysis methods. Two projects sponsored by EPRI have provided utility engineers with guidelines for performing ultrasonic examinations and with details on 22 types of tube failure mechanisms. A manual has been published that provides descriptions of typical locations, superficial appearances, damage mechanisms, metallurgy, microstructural changes, likely root causes, and potential corrective actions. Application of the principles in the manual is being demonstrated in an EPRI-funded project at 10 electric utilities over the next two years. Guidelines have been published that prescribe the activities necessary for ultrasonic examinations of boiler tubes. Eight essential elements of a boiler examination should be performed to assure that possible economic benefits are obtained. Work was supported by EPRI under RP 1890 and RP 1865. A software package has been developed for effectively planning inspections for wall thinning in fossil-fired boiler tubing. The software assists in minimizing costs associated with maintenance, such as inspection and repair, while the life of the boiler is maximized

  16. A Simulation Tool for Ultrasonic Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Adarsh; Mohan, K. V.; Karthikeyan, Soumya; Krishnamurthy, C. V.; Balasubramaniam, Krishnan [Indian Institute of Technology, Tamil Nadu (India)

    2006-06-15

    A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment for immersion and contact modes of inspection. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, a description of the various features of SIMULTSONIC is given followed by examples illustrating the capability of SIMULTSONIC to deal with inspection of canonical objects such as pipes. In particular, the use of SIMULTSONIC in the inspection of very thin-walled pipes (with 450 urn wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes

  17. Ultrasonic inspection of nodular cast iron

    International Nuclear Information System (INIS)

    Hersh, S.; Zhang, Yingda

    1990-01-01

    On the basis of experimental results collected from several nodular cast iron (NCI) specimens, Amdata, Inc., has developed a tentative procedure for performing ultrasonic testing (UT) preservice inspection of NCI casks and qualifying personnel and equipment. The authors anticipate that this procedure will be a component in a comprehensive program to certify that casks are free from critical flaws prior to their introduction into service, with testing being performed on a production line basis by UT inspection personnel. The tentative procedure was applied to inspection of NCI block SGR-483-001 manufactured by Siempelkamp Giesserei GmbH and Co. of West Germany. This block is 59 by 39.5 by 13.8 inches and weighs 5.2 tons. Several indications were detected with the I/98, in accordance with the tentative procedure, and they were analyzed using two-dimensional synthetic aperture technique (Line-SAFT). When compared with conventional sizing methods that may confound the effects of beam spread with flaw size, Line-SAFT significantly improved sizing accuracy. SAFT is an electronic simulation of a lens and has the property of reducing the effect of beam spread on the resultant indication sizes. Although a higher-precision 3-D SAFT option was also available, it would necessitate data transfer to a separate VAX computer and lengthy calculations. As an alternative, Line-SAFT, a faster but less precise 2-D simplification, was implemented on the I/98 data acquisition system

  18. Integrated Ultrasonic-Photonic Devices

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva

    in channel waveguides and Mach-Zehnder interferometers. Numerical models are developed based on the finite element method, and applied to several scenarios, such as optimization of the geometrical parameters of waveguides, use of slow light in photonic crystal waveguides and use of Lamb waves in membranized......This thesis deals with the modeling, design, fabrication and characterization of integrated ultrasonic-photonic devices, with particular focus on the use of standard semiconductor materials such as GaAs and silicon. The devices are based on the use of guided acoustic waves to modulate the light...... investigated. Comparisons are made with the numerical and experimental results, and they validate the obtained response of the acoustic and photonic components of the device. Finally, a new design for an optical frequency shifter is proposed, posing several advantages over existing devices in terms of size...

  19. Comparing weld inspection codes: radiography vs. ultrasonics

    International Nuclear Information System (INIS)

    Moles, M.; Ginzel, E.

    2007-01-01

    Requirements for weld quality are continually increasing. This is due to a combination of factors: increased public awareness; bigger legal penalties; improved and thinner steels; better analysis techniques such as Engineering Critical Assessment (ECA); higher material costs. Weld quality is primarily dictated by construction codes, which should reflect the needs of society and industry: safety, the environment, society, and cost-effectiveness. As R and D produces new products, techniques and procedures, ideally these developments should be reflected in the codes. While pressure vessel and structural welding are certainly included here, it is really pipeline weld inspections that are setting the pace on new developments. For pipelines, a major shift was made from radiography to ultrasonics in Alberta some decades ago. This was driven by the 'need for speed', plus the requirement to size defects in the vertical plane for ECA (also called Fracture Mechanics or Fitness-For-Purpose). One of the main objectives of ECA was to benefit from the calculated fracture toughness of materials, and not to rely on the overly conservative workmanship criteria in radiography. In practice, performing repairs on higher quality material often does more harm than good; changing the microstructure can seriously compromise the material properties. Rising steel costs are another major driving force, so higher strength, thinner materials are being used. Under these conditions, ECA and defect sizing are critical. This paper compares where the various North American codes for pipelines, pressure vessels and structural welds stand on using advanced inspection techniques: ultrasonics, phased arrays, ECA, sizing techniques. For those codes which are not using the latest technologies, there are typical routes for incorporating them. (author)

  20. The ultrasonic shop map and its use in preservice inspection

    International Nuclear Information System (INIS)

    Caplan, J.S.

    1975-01-01

    Prior to the introduction of Section X1 of the ASME Code on Inservice Inspection, a plan was introduced by Westinghouse to perform ultrasonic examinations of areas of high stress and high fluence of reactor pressure vessels in the manufacturer's shop and subsequent to the shop hydrostatic test. The tests provided a shop reference map of ultrasonic responses to use in subsequent preservice and inservice inspections, and attempted to locate any ultrasonic reflections beyond the acceptance standards of ASME Section III and, later, of Section X1. The history of the program is reviewed. Thirty-six vessels were examined during 1970 to 1973. As a result of indications discovered during ultrasonic examination repairs were carried out on five of these. Details are given of inspections and repairs. A summary is also given of the indications detected and of the correlations between the ultrasonic evaluation and actual flow characteristics. (U.K.)

  1. Inspection of austenitic welds with ultrasonic phased array technology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F. [Tecnatom (Spain); Dutruc, R.; Ferriere, R. [Metalscan (France)

    2011-07-01

    This series of slides presents the use of ultrasonic phased array technology in the inspection of austenitic welds. The inspection from outside surface (the inspection is performed in contact using wedges to couple the probe to the outer surface of the component) shows that longitudinal wave is the most adequate for perpendicular scans and transversal ultrasonic wave is the most adequate for parallel scans. Detection and length sizing are performed optimally in perpendicular scans. The inspection from inside surface shows: -) Good results in the detection of defects (Sizing has met the requirements imposed by the Authority of the Russian Federation); -) The new design of the mechanical equipment and of the numerous ultrasonic beams refracted by the array probes has increased the volume inspected. The design of the mechanical equipment has also allowed new areas to be inspected (example a piping weld that was not accessible from the outer surface; -) The ultrasonic procedure and Inspection System developed have been validated by the Authority of the Russian Federation. Phase array technique supplies solutions to solve accessibility concerns and improve the ultrasonic inspections of nuclear components

  2. Incore inspection and repairing device

    International Nuclear Information System (INIS)

    Ito, Arata; Kimura, Motohiko

    1998-01-01

    The present invention provides a device for inspecting and repairing the inside of a reactor container even if it is narrow, with no trouble by using a swimming-type operation robot. Namely, the device of the present invention conducts inspection and repairing operations for the inside of the reactor by introducing a swimming type operation robot into the reactor container. The swimming-type operation robot comprises a robot main body having a propeller, a balancer operably disposed to the robot main body and an inspection and repairing unit attached detachable to the balancer. In the device of the present invention, since the inspection and preparing unit is attached detachably to the swimming robot, a robot which transports tools is formed as a standard product. As a result, the production cost can be reduced, and the reliability of products can be improved. Appropriate operations can be conducted by using best tools. (I.S.)

  3. Nuclear fuel shipping inspection device

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Hada, Koji.

    1988-01-01

    Purpose: To provide an nuclear fuel shipping inspection device having a high detection sensitivity and capable of obtaining highly reliable inspection results. Constitution: The present invention concerns a device for distinguishing a fuel assembly having failed fuel rods in LMFBR type reactors. Coolants in a fuel assembly to be inspected are collected by a sampling pipeway and transferred to a filter device. In the filter device, granular radioactive corrosion products (CP) in the coolants are captured, to reduce the background. The coolants, after being passed through the filter device, are transferred to an FP catching device and gamma-rays of iodine and cesium nuclides are measured in FP radiation measuring device. Subsequently, the coolants transferred to a degasing device to separate rare gas FP in the coolants from the liquid phase. In a case if rare gas fission products are detected by the radiation detector, it means that there is a failed fuel rod in the fuel assembly to be inspected. Since the CP and the soluble FP are separated and extracted for the radioactivity measurement, the reliability can be improved. (Kamimura, M.)

  4. Acoustic inspection device

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Burghard, Brion J.; Skorpik, James R.; Pappas, Richard A.; Mullen, O. Dennis; Samuel, Todd J.; Reid, Larry D.; Harris, Joe C.; Valencia, Juan D.; Smalley, Jonathan T.; Shepard, Chester L.; Taylor, Theodore T.

    2005-09-06

    An ultrasound inspection apparatus particularly adapted to examine containers (sealed or unsealed) containing a liquid or solid bulk material. The apparatus has an overall configuration of a hand held pistol with a front transducer contact surface that is positioned against a front wall of the container. An ultrasound pulse is transmitted from the apparatus to be reflected from a back wall of a container being investigated. The received echo pulse is converted to a digital waveform. The waveform is analyzed relative to temperature, travel distance of the pulse(s), and time of travel to ascertain characteristics of the liquid or other materials and to provide identification of the same.

  5. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    International Nuclear Information System (INIS)

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  6. Automated ultrasonic shop inspection of reactor pressure vessel forgings

    International Nuclear Information System (INIS)

    Farley, J.M.; Dikstra, B.J.; Hanstock, D.J.; Pople, C.H.

    1986-01-01

    Automated ultrasonic shop inspection utilizing a computer-controlled system is being applied to each of the forgings for the reactor pressure vessel of the proposed Sizewell B PWR power station. Procedures which utilize a combination of high sensitivity shear wave pulse echo, 0 degrees and 70 degrees angled longitudinal waves, tandem and through-thickness arrays have been developed to provide comprehensive coverage and an overall reliability of inspection comparable to the best achieved in UKAEA defect detection trials and in PISC II. This paper describes the ultrasonic techniques, the automated system (its design, commissioning and testing), validation and the progress of the inspections

  7. Potential for ultrasonic inspection of heat exchanger tubes

    International Nuclear Information System (INIS)

    Ward, M.J.

    1980-01-01

    Preliminary results of a program to develop an ultrasonic inspection method for heat-exchanger tubes, to be used as alternative or complementary to eddy-curent testing were sufficiently promising to warrant further study. Problems were encountered in adapting a standard commercial transducer and a custom-made transducer to provide full 360 degree coverage of an area for in-service inspection, but it might be possible to overcome these problems. The results showed it might prove impossible to design a transducer to handle the tight U-bends in some heat exchangers. The most promising area of application for ultrasonic inspection was found to be around the tubesheet. (DN)

  8. Manipulator arm for a nuclear reactor vessel inspection device

    International Nuclear Information System (INIS)

    1980-01-01

    A manipulator arm for a reactor vessel in-service inspection apparatus is adapted to transport a transducer array for ultrasonic examination of welds at any point in the vessel. The removal of the inspection device from the reactor vessel in an emergency presents a problem where a relatively long manipulator arm is used. This invention provides an improved arm with means for changing the normal orientation of the arm to a shorter one to permit safe removal of the inspection device from the reactor vessel. (author)

  9. Internal inspection devices

    International Nuclear Information System (INIS)

    1982-01-01

    In order to evaluate the possibilities and limits of using specific endoscopes, the design and performance of rigid and flexible endoscopes are studied. The results show on the one hand the physical conditions setting a limit to the applicability of a certain device, and on the other indicate possible ways of improving and modifying given devices so as to adapt them to the special requirements of current testing standards. Based on theoretical and practical experience, proposals for improvements are made. For rigid endoscopes, e.g., additional equipment has been developed and is described in detail, allowing hitherto existing problems to be solved, thus enlarging the range of employment and enhancing and improving the information to be gained by testing using endoscopes. (orig./RW) [de

  10. Fuel element box inspection device

    International Nuclear Information System (INIS)

    Ortmayer, R.M.; Pick, W.

    1985-01-01

    The invention concerns a device for inspecting the outer geometry of a long fuel element box by measuring the surface contours over its longitudinal crossection and along its length by sensors. These are kept in a sledge which can be moved along the fuel element guide in a slot guide. The measurement signals reach an evaluation device outside the longitudinal box. (orig./HP) [de

  11. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H.; Weber, M.; Weiss, M. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  12. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Weber, M; Weiss, M [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  13. Monitor inspection device

    International Nuclear Information System (INIS)

    Ueshima, Yoshinobu.

    1995-01-01

    The device of the present invention reliably conducts monitoring by radiation monitors in a nuclear power plant thereby contributing to save the number of radiation operators and reduction of radiation exposure. Namely, radiation monitors continuously measure a plurality of γ-ray levels. A branched simultaneously counting circuit receives these signals. The output of the branched simultaneously counting circuit is inputted to a differentiation means. The differentiation means calculates a variation coefficient for each of the radiation monitoring values, namely, equivalent dose rates, and records and monitors change with time of the equivalent dose rates. With such procedures, the results of the monitoring of γ-ray levels can be judged objectively corresponding to the increase of the equivalent dose rates. As a result, the number of radiation operators can be saves and radiation exposure of the radiation operators can be reduced. (I.S.)

  14. Ultrasonic inspection of AA6013 laser welded joints

    Directory of Open Access Journals (Sweden)

    Adriano Passini

    2011-09-01

    Full Text Available Interest in laser beam welding for aerospace applications is continuously growing, mainly for aluminum alloys. The joints quality is usually assessed by non-destructive inspection (NDI. In this work, bead on plate laser welds on 1.6 mm thick AA6013 alloy sheets, using a 2 kW Yb-fiber laser were obtained and inspected by pulse/echo ultrasonic phased-array technique. Good and poor quality welds were inspected in order to verify the limits of inspection, comparing also to X-ray radiography and metallographic inspections. The results showed that ultrasonic phased array technique was able to identify the presence of grouped porosity, through the attenuation of the amplitude of the echo signal. This attenuation is attributed to the scattering of the waves caused by micro pores, with individual size below the resolution limit of the equipment, but when grouped, can cause a perceptive effect on the reflection spectra.

  15. Validation of Sizewell ''B'' ultrasonic inspections -- Messages for performance demonstration

    International Nuclear Information System (INIS)

    Conroy, P.J.; Leyland, K.S.; Waites, C.

    1994-01-01

    At the time that the decisions leading to the construction of the Sizewell ''B'' plant were being made, public concern over the potential hazards of nuclear power was increasing. This concern was heightened by the accident at USA's Three Mile Island plant. The result of this and public pressure was that an extensive public inquiry was held in addition to the UK's normal licensing process. Part of the evidence to the inquiry supporting the safety case relied upon the ability of ultrasonic inspections to demonstrate that the Reactor Pressure Vessel (RPV) and other key components were free from defects that could threaten structural integrity. Evidence from a variety of trials designed to investigate the performance capability of ultrasonic inspection revealed that although ultrasonic inspection had the potential to satisfy this requirement its performance in practice was heavily dependent upon the details of application. It was therefore generally recognized that some form of inspection validation was required to provide assurance that the equipment, procedures and operators to be employed were adequate for purpose. The concept of inspection validation was therefore included in the safety case for the licensing of Sizewell ''B''. The UK validation trials covering the ultrasonic inspections of the Sizewell ''B'' PWR Reactor Pressure Vessel are now nearing completion. This paper summarizes the results of the RPV validations and considers some of the implications for ASME 11 Appendix 8 the US code covering performance demonstration

  16. Sampling inspection device

    International Nuclear Information System (INIS)

    Chiba, Keiichi.

    1996-01-01

    A holder is inserted to a holder guide, and is stopped at a position where one end of a hook disposed to the holder is not in contact with the holder guide (a position where hooks do not work). A cap incorporated with wiping paper is pushed up into a holder by a device rod with the wiping paper situated downwardly. The hooks of the holder are engaged to the grooves of the cap to secure the cap. The holder is moved to a predetermined place to wipe off the deposited materials on the surface of a vessel which contains radioactive wastes. Then, the holder is inserted to the holder guide, and is stopped at a position where the one end of the holder is raised. The securement of the gap is released, the cap is forced into a recovering cover by a discharging rod. The hooks of the recovering cover are caught by the grooves of the cap to secure the cap. Then, the cap is transported to a radioactivity measuring chamber. (I.N.)

  17. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  18. Phased Array Ultrasonic Inspection of Titanium Forgings

    International Nuclear Information System (INIS)

    Howard, P.; Klaassen, R.; Kurkcu, N.; Barshinger, J.; Chalek, C.; Nieters, E.; Sun, Zongqi; Fromont, F. de

    2007-01-01

    Aerospace forging inspections typically use multiple, subsurface-focused sound beams in combination with digital C-scan image acquisition and display. Traditionally, forging inspections have been implemented using multiple single element, fixed focused transducers. Recent advances in phased array technology have made it possible to perform an equivalent inspection using a single phased array transducer. General Electric has developed a system to perform titanium forging inspection based on medical phased array technology and advanced image processing techniques. The components of that system and system performance for titanium inspection will be discussed

  19. Finite element modeling of ultrasonic inspection of weldments

    International Nuclear Information System (INIS)

    Dewey, B.R.; Adler, L.; Oliver, B.F.; Pickard, C.A.

    1983-01-01

    High performance weldments for critical service applications require 100% inspection. Balanced against the adaptability of the ultrasonic method for automated inspection are the difficulties encountered with nonhomogeneous and anisotropic materials. This research utilizes crystals and bicrystals of nickel to model austenitic weld metal, where the anisotropy produces scattering and mode conversion, making detection and measurement of actual defects difficult. Well characterized samples of Ni are produced in a levitation zone melting facility. Crystals in excess of 25 mm diameter and length are large enough to permit ultrasonic measurements of attenuation, wave speed, and spectral content. At the same time, the experiments are duplicated as finite element models for comparison purposes

  20. Automated ultrasonic inspection system for nuclear power stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The automated system of ultrasonic inspection which was used to conduct weld inspections of the complex primary system of the Borselle PWR station is described. It relies upon mechanically traversing purpose designed multi-crystal ultrasonic probes along the welds. A number of probes are switched sequentially to provide a continuous scan. A typical scan rate of 120 scan/sec is achieved by a multiplexer capable of switching transmitter and receiver individually. The system has wide applications in other industries. (U.K.)

  1. P-scan, a new system for ultrasonic weld inspection

    International Nuclear Information System (INIS)

    Lund, S.A.; Iversen, S.E.; Holst, H.

    1978-01-01

    The P-scan method is explained. It is described how the new P-scan system improves the ultrasonic method by adding means for visualization, data storage and documentation. Three different scanners are described: One designed for manual operation, another for automatic operation and a third for semiautomatic operation. The p'scan image of an ultrasonically examined test plate is presented and discussed. The variable Display Level (i.e. the inspection sensitivity) facility is described. The main advantage of this facility is the fact that the level can be varied at any time after the inspection. (orig.) [de

  2. Ultrasonic inspections of fuel alignment pins

    International Nuclear Information System (INIS)

    Rathgeb, W.; Schmid, R.

    1994-01-01

    As a remedy to the practical problem of defects in fuel alignment pins made of Inconel X750, an inspection technique has been developed which fully meets the requirements of detecting defects. The newly used fuel alignment pins made of austenite are easy to test and therefore satisfy the necessity of further inspections.For the fuel alignment pins of the upper core structure a safe and fast inspection technique was made available. The inspection sensitivity is high and it is possible to give quantitative directions concerning defect orientation and depth. After the required inspections had been concluded in 1989, a total of 18 inspections were carried out in various national and international nuclear power plants in the following years. During this time more than 6000 fuel alignment pines were examined.For the fuel alignment pins the inspection technique provided could increase the understanding of the defect process. This technique contributed to the development of an adaptive and economical repair strategy. ((orig.))

  3. Development of ultrasonic immersion inspection technique for spent fuel canisters

    International Nuclear Information System (INIS)

    Schankula, J.J.

    1982-07-01

    This report summarizes ultrasonic nondestructive testing development for metal matrix supported spent fuel disposal canisters. The work has concentated in two areas: inspection for lack of bond at the shell/matrix interface and inspection for voids in the matrix. The capabilities and limitations of these techniques have been fully established. Unbonded areas as small as 4 mm in diameter and voids 6 mm in diameter, 25 mm deep in the matrix, can readily be detected

  4. In service inspection for Superphenix vessels development of ultrasonic techniques available at high temperature

    International Nuclear Information System (INIS)

    Gondard, C.

    1983-12-01

    The main and safety vessels of SUPERPHENIX 1 were designed to allow in-service inspections. The remote controlled inspection device MIR was developped for this purpose. The ultrasonic examination has required the development of all new transducers fitted with severe operating conditions prevailing in intervessels interval. A list of problems to be resolved and technological solutions which were found is given. Measurements of acoustical properties on actual probes are compared with theoretical values. It appears that concordance is good and that an in-service inspection using high temperature transducers is possible with a good spatial resolution and signal to noise ratio

  5. Recent advances in automated ultrasonic inspection of Magnox power stations

    International Nuclear Information System (INIS)

    Wooldridge, A.B.

    2006-01-01

    Magnox Electric operates a number of Magnox nuclear power stations, some of which have presented difficult inspection challenges. This paper will describe recent advances in automated ultrasonic techniques which have enabled additional, fully effective and qualified inspections to be introduced. The examples chosen involve phased array inspection of fillet welds and the introduction of 3D data display and analysis using NDT Workbench. Ultrasonic phased arrays have been optimised for inspection of fillet welded structures where physical access for the operator is very awkward and the surfaces available for probe scanning are very restricted. In addition to controlling the beam direction and focus depth, the systems have also optimised the depth of field by varying the number of phased array elements fired at a given time. These phased array inspections are substantially superior in quality, reliability and speed compared with that achievable by conventional manual inspection. Analysis of automated ultrasonic data can be very time-consuming if defects are complex. NDT Workbench significantly improves data analysis for complex geometries and defects primarily because of the 3D data displays of multiple beams and automated logging of measurements. This system has been used in 2005 for data analysis of complex defects where sizing accuracy was particularly important. Both these inspection procedures have been formally qualified using the ENIQ (European Network for Inspection Qualification) Methodology. Such qualification was achieved more easily because of the rigorous in house training programmes established in each case and because the Technical Justifications referred to evidence from previous related qualifications whenever appropriate. The timely achievement of inspection qualification demonstrates that the new systems have reached sufficient maturity to be used with confidence for high quality inspections. (orig.)

  6. Long-Range Piping Inspection by Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Joo, Young Sang; Lim, Sa Hoe; Eom, Heung Seop; Kim, Jae Hee

    2005-01-01

    The ultrasonic guided waves are very promising for the long-range inspection of large structures because they can propagate a long distance along the structures such as plates, shells and pipes. The guided wave inspection could be utilized for an on-line monitoring technique when the transmitting and receiving transducers are positioned at a remote point on the structure. The received signal has the information about the integrity of the monitoring area between the transmitting and receiving transducers. On-line monitoring of a pipe line using an ultrasonic guided wave can detect flaws such as corrosion, erosion and fatigue cracking at an early stage and collect useful information on the flaws. However the guided wave inspection is complicated by the dispersive characteristics for guided waves. The phase and group velocities are a function of the frequency-thickness product. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. In this study, we analyze the propagation characteristics of guided wave modes in a small diameter pipe of nuclear power plant and select the suitable mode for a long-range inspection. And experiments will be carried out for the practical application of a long-range inspection in a 26m long pipe by using a high-power ultrasonic inspection system

  7. A portable solution to enable guided ultrasonic inspection

    International Nuclear Information System (INIS)

    Enenkel, Laurent; Buechler, Johannes; Poirier, Jerome; Jervis David

    2012-01-01

    This paper describes the development and application of an innovative ultrasonic (UT) inspection system, which is 100% guided and menu-driven to reduce human error and ensure both inspection accuracy and productivity in the reliable and accurate non-destructive testing (NDT) of shafts, tubes, pipes, and other components and structures. Set-up is menu-directed with the minimum of instrument-specific training, allowing the integral operating software to calculate all the ultrasonic parameters for each task according to the inspection procedure and create an easy-to-follow inspection plan, using either phased array or conventional UT. The operator then scans the work piece, with an encoded scanner, which ensures that the inspection plan is strictly followed. Inspection data is transmitted to a review station in the industry-accepted, non-proprietary DICONDE protocol, allowing advanced analysis tools, such as real time, volume corrected imaging, to allow easier and more reliable image interpretation. By using GEs Rhythm software platform, inspection data can be reviewed and shared, reports generated and inspection results archived for traceability, tracking or further analysis.

  8. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I.

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (author)

  9. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (autho0008.

  10. Ewe: a computer model for ultrasonic inspection

    International Nuclear Information System (INIS)

    Douglas, S.R.; Chaplin, K.R.

    1991-11-01

    The computer program EWE simulates the propagation of elastic waves in solids and liquids. It has been applied to ultrasonic testing to study the echoes generated by cracks and other types of defects. A discussion of the elastic wave equations is given, including the first-order formulation, shear and compression waves, surface waves and boundaries, numerical method of solution, models for cracks and slot defects, input wave generation, returning echo construction, and general computer issues

  11. Ultrasonic inspection of tube to tube plate welds

    International Nuclear Information System (INIS)

    Telford, D.W.; Peat, T.S.

    1985-01-01

    To monitor the deterioration of a weld between a tube and tube plate which has been repaired by a repair sleeve inside the tube and brazed at one end to the tube, ultrasound from a crystal at the end of a rod is launched, in the form of Lamb-type waves, into the tube through the braze and allowed to travel along the tube to the weld and be reflected back along the tube. The technique may also be used for the type of heat exchanger in which, during construction, the tubes are welded to the tube plate via external sleeves in which case the ultrasound is used in a similar manner to inspect the sleeve/tube plate weld. an electromagnetic transducer may be used to generate the ultrasound. The ultrasonic head comprising the crystal and an acoustic baffle is mounted on a Perspex (RTM) rod which may be rotated by a stepping motor. Echo signals from the region of deterioration may be isolated by use of a time gate in the receiver. The device primarily detects circumferentially orientated cracks, and may be used in heat exchangers in nuclear power plants. (author)

  12. Comparison radiographic and automated ultrasonic inspection of pipeline tie-in welds

    International Nuclear Information System (INIS)

    Connelly, T.; Gross, B.

    2007-01-01

    In recent years the use of automated ultrasonic inspection (AUT) for pipeline girth welds has seen rapid growth and is now used almost exclusively for all gas metal arc welding (GMAW) girth weld inspection. The following paper reviews some of the major features of ultrasonic inspection by comparison to conventional Film Radiography (RT) and reviews the use of ultrasonic inspection for pipeline and tie-in welds. (author)

  13. Recent Ultrasonic Guided Wave Inspection Development Efforts

    International Nuclear Information System (INIS)

    Rose, Joseph L.; Tittmann, Bernhard R.

    2001-01-01

    The recognition of such natural wave guides as plates, rods, hollow cylinders, multi-layer structures or simply an interface between two materials combined with an increased understanding of the physics and wave mechanics of guided wave propagation has led to a significant increase in the number of guided wave inspection applications being developed each year. Of primary attention Is the ability to inspect partially hidden structures, hard to access areas, and treated or insulated structures. An introduction to some physical consideration of guided waves followed by some sample problem descriptions in pipe, ice detection, fouling detection in the foods industry, aircraft, tar coated structures and acoustic microscopy is presented in this paper. A sample problem in Boundary Element Modeling is also presented to illustrate the move in guided wave analysis beyond detection and location analysis to quantification

  14. Evaluation of computer-based ultrasonic inservice inspection systems

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T.

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems

  15. Pre and post garter spring repositioning ultrasonic inspection of pressure tubes

    International Nuclear Information System (INIS)

    Desimone, C.; Katchadjian, P.; Tacchia, Mauricio

    1997-01-01

    This paper present a description of the ultrasonic cracked hydride blister detections system used for pre and post inspection of pressure tubes during garter spring repositioning in CNE (Embalse Nuclear Power Station). Ultrasonic system setup configuration, transducers characteristics, blister detection head, calibration of parameters, operating procedure, records of ultrasonic inspections and evaluation. (author) [es

  16. The reliability of ultrasonic inspection and the critical defect size

    International Nuclear Information System (INIS)

    Vasilchenko, G.S.; Bely, V.E.; Ovchinnikov, A.V.; Rivkin, E.Yu.

    1991-01-01

    The ability to detect fabrication and service-induced defects in the welded joints of components and pipelines in nuclear power stations by ultrasonic inspection when this is conducted by using standard instruments and procedures appears to be insufficient. This fact was confirmed by the research carried out in PISC program and other studies. In order to increase the accuracy of measurement and to obtain the additional information on the character of any defect in ultrasonic testing as well as the validity of applying nondestructive testing data to strength calculation, scientific researches have been promoted and carried out in the USSR in a program under the guidance of NPO CNIITMASH. The reliability of the ultrasonic control of welded joints and the ways and means for its improvement are discussed. The presentation of the parameters realized by the ultrasonic inspection of defects in the form of schema for the use in strength calculation is explained. The calculation of stress intensity factor, the estimation of critical defect size, and the estimation of acceptable defect size are reported. (K.I.)

  17. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to

  18. Assessment of the reliability of ultrasonic inspection methods

    International Nuclear Information System (INIS)

    Haines, N.F.; Langston, D.B.; Green, A.J.; Wilson, R.

    1982-01-01

    The reliability of NDT techniques has remained an open question for many years. A reliable technique may be defined as one that, when rigorously applied by a number of inspection teams, consistently finds then correctly sizes all defects of concern. In this paper we report an assessment of the reliability of defect detection by manual ultrasonic methods applied to the inspection of thick section pressure vessel weldments. Initially we consider the available data relating to the inherent physical capabilities of ultrasonic techniques to detect cracks in weldment and then, independently, we assess the likely variability in team to team performance when several teams are asked to follow the same specified test procedure. The two aspects of 'capability' and 'variability' are brought together to provide quantitative estimates of the overall reliability of ultrasonic inspection of thick section pressure vessel weldments based on currently existing data. The final section of the paper considers current research programmes on reliability and presents a view on how these will help to further improve NDT reliability. (author)

  19. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    Science.gov (United States)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  20. A probe for Eddy current inspection devices

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to a surface probe for Eddy current inspection devices. According to the invention, said probe comprises two magnetic core windings, with their axes in parallel relationship and at right angles to the surface of the part to be inspected. This can be applied to the nondestructive inspection of reactor components [fr

  1. Double-shell tank ultrasonic inspection plan. Revision 1

    International Nuclear Information System (INIS)

    Pfluger, D.C.

    1994-01-01

    The waste tank systems managed by the Tank Waste Remediation System Division of Westinghouse Hanford Company includes 28 large underground double-shell tanks (DST) used for storing hazardous radioactive waste. The ultrasonic (UT) inspection of these tanks is part of their required integrity assessment (WAC 1993) as described in the tank systems integrity assessment program plan (IAPP) (Pfluger 1994a) submitted to the Ecology Department of the State of Washington. Because these tanks hold radioactive waste and are located underground examinations and inspections must be done remotely from the tank annuli with specially designed equipment. This document describes the UT inspection system (DSTI system), the qualification of the equipment and procedures, field inspection readiness, DST inspections, and post-inspection activities. Although some of the equipment required development, the UT inspection technology itself is the commercially proven and available projection image scanning technique (P-scan). The final design verification of the DSTI system will be a performance test in the Hanford DST annulus mockup that includes the demonstration of detecting and sizing corrosion-induced flaws

  2. Defect sizing using automated ultrasonic inspection techniques at RNL

    International Nuclear Information System (INIS)

    Rogerson, A.; Highmore, P.J.; Poulter, L.N.J.

    1983-10-01

    RNL has developed and applied automated wide-beam pulse-echo and time-of-flight techniques with synthetic aperture processing for sizing defects in clad thick-section weldments and nozzle corner regions. These techniques were amongst those used in the four test plate inspections making up the UKAEA Defect Detection Trials. In this report a critical appraisal is given of the sizing procedures adopted by RNL in these inspections. Several factors influencing sizing accuracy are discussed and results from particular defects highlighted. The time-of-flight technique with colour graphics data display is shown to be highly effective in imaging near-vertical buried defects and underclad defects of height greater than 5 mm. Early characterisation of any identified defect from its ultrasonic response under pulse-echo inspection is seen as a desirable aid to the selection of an appropriate advanced sizing technique for buried defects. (author)

  3. Ultrasonic inspection experience of steam generator tubes at Ontario Hydro and the TRUSTIE inspection system

    International Nuclear Information System (INIS)

    Choi, E.I.; Jansen, D.

    1998-01-01

    Ontario Hydro have been using ultrasonic test (UT) technique to inspect steam generator (SG) tubes since 1993. The UT technique has higher sensitivity in detecting flaws in SG tubes and can characterize the flaws with higher accuracy. Although an outside contractor was used initially, Ontario Hydro has been using a self-developed system since 1995. The TRUSTIE system (Tiny Rotating UltraSonic Tube Inspection Equipment) was developed by Ontario Hydro Technologies specifically for 12.7 mm outside diameter (OD) tubes, and later expanded to larger tubes. To date TRUSTIE has been used in all of Ontario Hydro's nuclear generating stations inspecting for flaws such as pitting, denting, and cracks at top-of-tubesheet to the U-bend region. (author)

  4. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    International Nuclear Information System (INIS)

    1980-01-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  5. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  6. Merging of gamma radiographic and ultrasonic inspection data: bibliographical survey

    International Nuclear Information System (INIS)

    Gautier, S.

    1995-01-01

    This paper presents a number of experimental data processing notions with the aim of developing an NDT method based on merging ultrasonic and gamma radiographic data. We first review the industrial context concerned and, before moving on to specific data merging problems, we discuss the difficulties of reconstruction using only one type of data (radiographic or ultrasonic). The main part of the report begins with a brief reminder of gamma radiation and ultrasonic wave propagation principles. Certain imaging and reconstruction methods conventionally used for each type of measurement are also presented. Reconstruction problems are then directly approached in algebraic form. For the type of problem studied, the inspection data alone cannot lead to satisfactory reconstructions and we evidence the need to regulate the problem by introducing deductive information on the object to be reconstructed. The Bayes' approach provides a self-consistent means of integrating both the data information and the deductive information. It is based on probabilistic models of the variables involved, notably those of the object sought. We discuss at some length certain models of images used in gamma radiography (independent variable fields, variables having a Markov-type structure) and the Bernoulli-Gauss-type models used for ultrasonic trace deconvolution. Finally, we outline data merging paths. A formal Bayes' framework is used to present two merging approaches, after which we briefly describe our projects for the processing of already available experimental data. (author)

  7. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  8. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Challender, R.S.

    1975-01-01

    Apparatus is described for use in carrying out ultrasonic inspection of coolant nozzles of nuclear reactor pressure vessels. It comprises a manipulator for supporting an ultrasonic scanning transducer within the coolant nozzle. The manipulator is carried by a support located within the pressure vessel and comprises a pair of legs pivotable in caliper manner to span the base of the nozzle. Means are provided for pivoting the legs together to enable free entry of the manipulator and scanning transducer into the nozzle, and for pivoting the legs apart to bring the transducer into an operating position adjacent to the wall of the nozzle. The manipulator is rotatable within the nozzle to enable scanning of its interior surface. (U.K.)

  9. Ultrasonic phased arrays for nondestructive inspection of forgings

    International Nuclear Information System (INIS)

    Wuestenberg, H.; Rotter, B.; Klanke, H.P.; Harbecke, D.

    1993-01-01

    Ultrasonic examinations on large forgings like rotor shafts for turbines or components for nuclear reactors are carried out at various manufacturing stages and during in-service inspections. During the manufacture, most of the inspections are carried out manually. Special in-service conditions, such as those at nuclear pressure vessels, have resulted in the development of mechanized scanning equipment. Ultrasonic probes have improved, and well-adapted sound fields and pulse shapes and based on special imaging procedures for the representation of the reportable reflectors have been applied. Since the geometry of many forgings requires the use of a multitude of angles for the inspections in-service and during manufacture, phased-array probes can be used successfully. The main advantages of the phased-array concept, e.g. the generation of a multitude of angles with the typical increase of redundancy in detection and quantitative evaluation and the possibility to produce pictures of defect situations, will be described in this contribution

  10. Innovative phased array ultrasonic inspection solution for large rotor shafts

    Energy Technology Data Exchange (ETDEWEB)

    Maes, G.; Devos, D.; Tremblay, P., E-mail: gmaes@zetec.com [Zetec, Ville de Quebec, Quebec (Canada)

    2016-05-15

    The increasing needs of energy production led to new rotor shaft designs with larger dimensions. A new generation of nuclear power plants is already being deployed worldwide with such heavy components. Their implementation requires new inspection tools in order to guarantee the public safety and to ensure the quality of these critical parts. Due to the long sound path, conventional ultrasonic (UT) techniques cannot provide adequate detectability of the reference reflectors required by the existing codes. Also, some standards require multiple angle beams to be applied in addition to the straight beam inspection, and this leads to long inspection times. This paper will address the implementation and validation of phased array (PA) UT techniques, using a semi-flexible 2D array probe, for the inspection of large mono-block rotor shaft forgings. It will show how the beam focusing and steering capabilities of phased array UT probes can be used to overcome the issues occurring with conventional UT probes. Results of acoustic beam simulation, as well as detectability measurements and data acquisitions on representative test specimens will be presented and compared with conventional UT performance. Various aspects of the hardware and software specification will be addressed, as well as the potential reduction of the total inspection time. (author)

  11. Ultrasonic wave damage detecting device

    International Nuclear Information System (INIS)

    Miura, Yuichi; Nagao, Tetsuya; Nishi, Yuji; Kubota, Keisuke; Maruyama, Takayuki.

    1994-01-01

    Upon detecting a damage for a joint between a connecting nozzle at the outer circumference of a reactor pressure vessel and pipelines, the present invention greatly shortens the operation time. That is, it is noted that the connecting nozzle has a tapered portion and a small-diameter portion in view of strength. A main magnetic wheel supported on a base of a running vehicle is attracted to the small-diameter portion and an auxiliary magnet wheel is attracted to the tapered portion respectively and they are rolled. This regulate the deviation of the position of the base of the running vehicle in axial direction of the nozzle by the small-diameter portion and the tapered portion. Accordingly, the running vehicle can be circulated along a predetermined course on the outer circumference of the connecting nozzle without using tracks such as an existent ring track. The test can be performed conveniently only by placing the damage detecting device on the connecting nozzle. As a result, preparation time required before the test can remarkably be shortened. (I.S.)

  12. Computer control in nondestructive testing illustrated by an automatic ultrasonic tube inspection system

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, N.

    1976-06-01

    In Risoe's automatic tube inspection system, data (more than half a million per tube) from ultrasonic dimension measurements and defect inspections are fed into a computer that simultaneously calculates and evaluates the results. (author)

  13. Automated phased array ultrasonic inspection system for rail wheel sets

    International Nuclear Information System (INIS)

    Grosser, Paul; Weiland, M.G.

    2013-01-01

    This paper covers the design, system automation, calibration and validation of an automated ultrasonic system for the inspection of new and in service wheel set assemblies from diesel-electric locomotives and gondola cars. This system uses Phased Array (PA) transducers for flaw detection and Electro-Magnetic Acoustic Transducers (EMAT) for the measurement of residual stress. The system collects, analyses, evaluates and categorizes the wheel sets automatically. This data is archived for future comparison and trending. It is also available for export to a portal lathe for increased efficiency and accuracy of machining, therefore allowing prolonged wheel life.

  14. Ultrasonic inspection of composite hydrogen reservoirs using frequency diversity techniques

    International Nuclear Information System (INIS)

    Zellouf, D.; Goyette, J.; Massicotte, D.; Bose, T.K.

    2000-01-01

    During their service, cryogenic tanks are subjected to both hydrostatic and hygrothermic stresses. This can have as a consequence the initiation of the propagation of cracks within the structure of the material. Nevertheless, the analysis of ultrasonic signals collected during the inspection of composite materials must be dealt with carefully because of the presence of a strong background noise due to the reinforcement. This background noise results mostly from the interferences between the waves diffracted on the reinforcement. The target echo and the noise in which it is embedded both have the same frequency bandwidth. Thus we cannot use conventional linear filters to improve the signal-to-noise ratio

  15. In-service ultrasonic inspection of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Prepechal, J.; Sulc, J.

    1982-01-01

    Ultrasonic tests of pressure vessels for WWER 440 reactors, type 213 V, are carried out partly manually and partly by test equipment. The inner surface of the pressure vessel is tested using device REACTORTEST TRC which is fully mobile. The outer surface of the cylindrical parts and bottoms of the body is tested using handling equipment permanently in-built under the pressure vessel and dismountable testing heads. A set of these heads may be used for two reactor units. The testing equipment REACTORTEST TRC is equipped with a TRC 800 ultrasound device. The equipment for testing the outer surface of the vessel operates with the UDAR 16 ultrasound apparatus to which may be simultaneously connected 10 ultrasound probes and six probes for acoustic feedback. The whole system of ultrasonic tests makes possible a first-rate and reliable volume control of the whole pressure vessel and all points where cracks may originate and grow. (Z.M.)

  16. An application of ultrasonic inspection system (INER-SCAN) inspecting generator retaining rings

    International Nuclear Information System (INIS)

    Chen, L.C.; Hwang, S.C.

    1994-01-01

    The performances of the automatic ultrasonic inspecting and imaging system (INER-SCAN) developed by the NDT laboratory of the Institute of Nuclear Energy Research have been enhanced and much more improved to commercial level. With appropriate rearrangements of software libraries, it is used to inspect generator retaining rings which are critical structural rotor components that support the end-turn regions of the rotor wingings against centrifugal forces. The use of the INER-SCAN provides distinct advantages over other systems in terms of the reliability of inspection and the flexibility of system performance modifications. The INER-SCAN system assists users to select and modify ultrasonic parameters under computer-aided environment. In addition, the INER-SCAN system contains the necessary software functions to image the ultrasonic data (A-SCAN, B-SCAN, B'-SCAN, C-SCAN). The use of the imaging system makes it quite easy to evaluate various test parameters and their effects on the discrimination between geometric and IGSCC reflectors. Through experimental test, it is recognized that the system has powerful detectable capability which can find 0.2mm-depth slight scratch on the inner surface of retaining rings. This system can also be used on different generator retaining rings (different in terms of hidden design features) without the need for access to the dimension of retaining ring

  17. A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jung, Seung Ho; Jung, Hyun Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly

  18. Validated automated ultrasonic inspections of the Sizewell 'B' reactor pressure vessel

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.

    1992-01-01

    Automated ultrasonic inspection was applied extensively during manufacture of the RPV for Sizewell 'B'. This was an important element of the safety case presented at the Sizewell 'B' public enquiry. This requirement reflected concern in the United Kingdom as to the effectiveness and reliability of ultrasonic inspections. By applying automated inspections in addition to the manual ultrasonic inspection carried out by the vessel manufacturer, the overall reliability of the inspection of the vessel would be considerably enhanced. The automated inspections carried out in the manufacturer's workshops were termed 'automated shop inspections' (ASIs). The ASIs were carried out in two contracts: the first to inspect the component forgings of the RPV, the second to inspect the pressure retaining welds. (author)

  19. Travelling type monitoring and inspection device

    International Nuclear Information System (INIS)

    Ito, Takao; Maruki, Hideaki.

    1994-01-01

    The present invention sufficiently ensures video output images even if lenses of a television camera of a monitoring means are degraded to reduce the quantity of transmission light. That is, a light amount control mechanism capable of controlling the quantity of illumination light irradiated from an illumination device at an output level of a sensor of an inspection device main body. A test chart for measuring a luminance which is an output level of the sensor is disposed. During plant operation, the lenses of the television camera undergo influences of radioactivity and are degraded to reduce the quantity of transmission light on every periodical monitoring and inspection using a travelling type monitoring inspection device. In this case, the test chart disposed near the equipment to be monitored and inspected is caught by the television camera to measure a sensor output luminance. Then, the light amount control mechanism of the illumination device is controlled so as to provide a luminance which has been set at an initial stage of the plant inspection. With such procedures, video data of the objective equipment to be monitored and inspected can be obtained at a constant luminance during inspection. (I.S.)

  20. Application of ultrasonic phased array technique for inspection of stud bolts in nuclear reactor vessel

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Ho; Park, Min Su; Cho, Youn Ho; Park, Moon Ho

    2004-01-01

    The stud bolt is one of crucial parts for safety of reactor vessels in nuclear power plants. Cracks initiation and propagation were reported in stud bolts using closure of reactor vessel and head. Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure and radioactive leakage from nuclear reactor. In conventional ultrasonic testing for inspection of stud bolts, crack was detected by using shadow effect. It take too much time to inspect stud bolt by using conventional ultrasonic technique. In addition, there were numerous spurious signal reflected from every thread. In this study, the advanced ultrasonic phased array technique was introduced for inspect stud bolts. The phased array technique provide fast inspection and high detectability of defects. There are sector scanning and linear scanning method in phased array technique, and these scanning methods were applied to inspect stud bolt and detectability was investigated.

  1. An evaluation of human factors research for ultrasonic inservice inspection

    International Nuclear Information System (INIS)

    Pond, D.J.; Donohoo, D.T.; Harris, R.V. Jr.

    1998-03-01

    This work was undertaken to determine if human factors research has yielded information applicable to upgrading requirements in ASME Boiler and Pressure Vessel Code Section XI, improving methods and techniques in Section V, and/or suggesting relevant research. A preference was established for information and recommendations which have become accepted and standard practice. Manual Ultrasonic Testing/Inservice Inspection (UT/ISI) is a complex task subject to influence by dozens of variables. This review frequently revealed equivocal findings regarding effects of environmental variables as well as repeated indications that inspection performance may be more, and more reliably, influenced by the workers' social environment, including managerial practices, than by other situational variables. Also of significance are each inspector's relevant knowledge, skills, and abilities, and determination of these is seen as a necessary first step in upgrading requirements, methods, and techniques as well as in focusing research in support of such programs, While understanding the effects and mediating mechanisms of the variables impacting inspection performance is a worthwhile pursuit for researchers, initial improvements in industrial UTASI performance may be achieved by implementing practices already known to mitigate the effects of potentially adverse conditions. 52 refs., 2 tabs

  2. An evaluation of human factors research for ultrasonic inservice inspection

    Energy Technology Data Exchange (ETDEWEB)

    Pond, D.J.; Donohoo, D.T.; Harris, R.V. Jr.

    1998-03-01

    This work was undertaken to determine if human factors research has yielded information applicable to upgrading requirements in ASME Boiler and Pressure Vessel Code Section XI, improving methods and techniques in Section V, and/or suggesting relevant research. A preference was established for information and recommendations which have become accepted and standard practice. Manual Ultrasonic Testing/Inservice Inspection (UT/ISI) is a complex task subject to influence by dozens of variables. This review frequently revealed equivocal findings regarding effects of environmental variables as well as repeated indications that inspection performance may be more, and more reliably, influenced by the workers` social environment, including managerial practices, than by other situational variables. Also of significance are each inspector`s relevant knowledge, skills, and abilities, and determination of these is seen as a necessary first step in upgrading requirements, methods, and techniques as well as in focusing research in support of such programs, While understanding the effects and mediating mechanisms of the variables impacting inspection performance is a worthwhile pursuit for researchers, initial improvements in industrial UTASI performance may be achieved by implementing practices already known to mitigate the effects of potentially adverse conditions. 52 refs., 2 tabs.

  3. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves� propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves� propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves� propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves� propagation test for detection of collapse that occurs in wood during drying process was not useful.

  4. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves propagation test for detection of collapse that occurs in wood during drying process was not useful.

  5. ALS insertion device block measurement and inspection

    International Nuclear Information System (INIS)

    Marks, S.; Carrieri, J.; Cook, C.; Hassenzahl, W.V.; Hoyer, E.; Plate, D.

    1991-05-01

    The performance specifications for ALS insertion devices require detailed knowledge and strict control of the Nd-Fe-B permanent magnet blocks incorporated in these devices. This paper describes the measurement and inspection apparatus and the procedures designed to qualify and characterize these blocks. A detailed description of a new, automated Helmholtz coil facility for measurement of the three components of magnetic moment is included. Physical block inspection and magnetic moment measurement procedures are described. Together they provide a basis for qualifying blocks and for specifying placement of blocks within an insertion devices' magnetic structures. 1 ref., 4 figs

  6. Inspection of additive manufactured parts using laser ultrasonics

    Science.gov (United States)

    Lévesque, D.; Bescond, C.; Lord, M.; Cao, X.; Wanjara, P.; Monchalin, J.-P.

    2016-02-01

    Additive manufacturing is a novel technology of high importance for global sustainability of resources. As additive manufacturing involves typically layer-by-layer fusion of the feedstock (wire or powder), an important characteristic of the fabricated metallic structural parts, such as those used in aero-engines, is the performance, which is highly related to the presence of defects, such as cracks, lack of fusion or bonding between layers, and porosity. For this purpose, laser ultrasonics is very attractive due to its non-contact nature and is especially suited for the analysis of parts of complex geometries. In addition, the technique is well adapted to online implementation and real-time measurement during the manufacturing process. The inspection can be performed from either the top deposited layer or the underside of the substrate and the defects can be visualized using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). In this work, a variety of results obtained off-line on INCONEL® 718 and Ti-6Al-4V coupons that were manufactured using laser powder, laser wire, or electron beam wire deposition are reported and most defects detected were further confirmed by X-ray micro-computed tomography.

  7. Enhancement of the reliability of automated ultrasonic inspections using tools of quantitative NDT

    International Nuclear Information System (INIS)

    Kappes, W.; Baehr, W.; Kroening, M.; Schmitz, V.

    1994-01-01

    To achieve reliable test results from automated ultrasonic inspection of safety related components, optimization and integral consideration of the various inspection stages - inspection planning, inspection performance and evaluation of results - are indispensable. For this purpose, a large potential of methods is available: advanced measurement techniques, mathematical-numerical modelling processes, artificial intelligence tools, data bases and CAD systems. The potential inherent in these methods to enhance inspection reliability is outlined by way of different applications. (orig.) [de

  8. Semi-automatic ultrasonic inspection of PWR upper internal immersed components

    International Nuclear Information System (INIS)

    Dombret, P.; Coquette, A.; Cermak, J.; Verspeelt, D.

    1985-01-01

    The present paper describes the characteristics of a semi-automatic ultrasonic inspection system. Components inspected are the so-called flexures, small pins located at the upper part of control rod tube-guide, some of which happened to broke in a few Westinghouse type PWR's. Inspection results and other system capabilities are also mentioned

  9. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    DEFF Research Database (Denmark)

    Kistrup, Kasper

    for ultrasonic welding, suitable for microfluidic systems. A methodology has been established where energy directors can be quickly added to existing mould inserts, using laser micromachining. The produced device was performance tested by isolating methicillin-resistant Staphylococcus aureus from bovine whole....... The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...

  10. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to shipowners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  11. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to ship owners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  12. Ultrasonic inspection of the Calder Hall and Chaplecross reactor pressure vessels

    International Nuclear Information System (INIS)

    Pennick, A.M.

    1993-01-01

    This paper describes the ultrasonic inspection surveys that have recently been carried out on the Calder Hall and Chapelcross Magnox steel reactor pressure vessels. The development of the inspection system, which is based on the Rediman manipulator and uses the Sonomatic Zipscan equipment and Time-of-Flight diffraction techniques is discussed. The inspection results are presented and compared with the original inspection findings and limiting crack sizes. (author)

  13. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking

  14. Final results of double-shell tank 241-AY-102 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AY-102. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AY-102 primary tank wall and welds. The inspection found some indication of insignificant general and local wall thinning with no cracks detected

  15. Final results of double-shell tank 241-AN-105 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AN-105. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AN-105 primary tank wall primary knuckle, and secondary tank bottom. The inspection found some indication of general and local wall thinning with no cracks detected

  16. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  17. Proceedings of a specialist meeting on the ultrasonic inspection of reactor components

    International Nuclear Information System (INIS)

    1976-01-01

    Beside synthesis of two conferences on nondestructive testing and on inspection, the contributions of this conference are reporting experimental observations and research works on ultrasonic techniques, methods, procedures (pre-service or in-service) and equipment for the inspection of nuclear reactor components (pressure vessels, tubing and piping), generally in stainless steel (often austenitic or ferritic) material or in zirconium alloy. Some contributions are also dealing with the relationship between material microstructure and ultrasonic inspection method and equipment, or with the detection and sizing precision of flaws (cracks)

  18. Remote controlled ultrasonic pre-service and in-service inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Mueller, G.

    1990-01-01

    The first mechanised in-service inspection of the reactor pressure vessel on unit one of Eskom's Koeberg nuclear power station has been carried out. Since 1968 a whole range of manipulators to carry out remote controlled ultrasonic inspections of nuclear power station equipment has been developed. The inspection of a reactor pressure vessel using a central mast manipulator is described. 3 figs., 1 ill

  19. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  20. The PISC exercise: a discussion of its relevance to ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Whittle, M.J.; Coffey, J.M.

    1981-01-01

    The value of the European Plate Inspection Steering Committee (PISC) exercise for determining the reliability of ultrasonic inspection of pressure vessels is discussed. It is argued that the particular ultrasonic procedure assessed in the exercise was a poor one whose failure was predictable. In addition the test blocks were sufficiently unrealistic that the value of the results would have been diminished even if all the defects had been found. Consequently the report maintains that the outcome of the exercise is largely irrelevant to the wider question of the reliability of more thorough ultrasonic procedures. A more general discussion is given of the role of test block studies in ultrasonics. Statistical arguments are used to show that it is impracticable to produce a sufficient number of defects to demonstrate a high reliability and have a high confidence in such a result. Some important points for planning future programmes are emphasised. (author)

  1. A study on ultrasonic inspection of long steel pipes using lamb waves

    International Nuclear Information System (INIS)

    Park, Moon Ho

    1996-02-01

    An ultrasonic inspection technique with use of Lamb waves was evaluated to detect and determine the exact location of flaws present in long steel pipes. Since multiple modes of Lamb waves are generated in the inspected pipes due to their dispersive characteristics, selection of a specific Lamb wave mode is very important for inspection of flaws. Experimental studies of flaw detectability with use of each Lamb wave mode, namely, A 0 , S 0 , A 1 , and S 1 mode and their ultrasonic attenuation characteristics were conducted. Experimental results showed that A 0 mode is the most effective for detection and exact determination of the location of flaws. A lucite wedge containing water column that generates the A 0 Lamb wave mode was developed and used in the present inspection study. It was found that the ultrasonic beam divergence after its wrapping around once the inspected pipe interferes with exact determination of the location of flaws and that maximum reflection signals are obtained when the transducer is located axially offset from the straight line with the position of the flaw. The present study showed feasibility of ultrasonic inspection with use of Lamb waves for detection of flaws in several meters long insulated or inaccessible steel pipes

  2. Enhancement of submarine pressure hull steel ultrasonic inspection using imaging and artificial intelligence

    Science.gov (United States)

    Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard

    1995-06-01

    The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.

  3. Ultrasonic guided wave interpretation for structural health inspections

    Science.gov (United States)

    Bingham, Jill Paisley

    Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further

  4. Ultrasonic inspection for testing the PWR fuel rod endplug welds

    International Nuclear Information System (INIS)

    Pillet, C.; Destribats, M.T.; Papezyk, F.

    1976-01-01

    A method of ultrasonic testing with local immersion and transversal waves was developed. It is possible to detect defects as the lacks of fusion and penetration and porosity in the PWR fuel rod endplug welds [fr

  5. Ultrasonic inspection technology development and search units design examples of practical applications

    CERN Document Server

    Brook, Mark V

    2012-01-01

    "Ultrasonic testing is a relatively new branch of science and industry. The development of ultrasonic testing started in the late 1920s. At the beginning, the fundamentals of this method were borrowed from basic physics, geometrical and wave optics, acoustics and seismology. Later it became clear that some of these theories and calculation methods could not always explain the phenomena observed in many specific cases of ultrasonic testing. Without knowing the nuances of the ultrasonic wave propagation in the test object it is impossible to design effective inspection technique and search units for it realization. This book clarifies the theoretical differences of ultrasonics from the other wave propagation theories presenting both basics of physics in the wave propagation, elementary mathematic and advanced practical applications. Almost every specific technique presented in this book is proofed by actual experimental data and examples of calculations"--

  6. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Greenhalgh, F.G.

    1975-01-01

    An apparatus is described for moving an ultrasonic scanning mechanism over the interior surface of a pressure vessel and comprising a mast for supporting the scanning mechanism inside the vessel and a carriage for traversing the mast within the vessel, the mast being pivotably secured to the carriage so that when the ultrasonic scanning mechanism contacts the interior surface of the pressure vessel the mast is caused to pivot. (auth)

  7. Automatic ultrasonic testing and the LOFT in-service inspection program

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1980-01-01

    An automatic ultrasonic testing system has been developed which significantly improves the flaw indication detection and characterization capability over the capability of conventional volumetric examination techniques. The system utilizes an accurately located ultrasonic sensor to generate the examination data. A small computer performs and integrates control and data input/output functions. Computer software has been developed to provide a rigorous method for data analysis and ultrasonic image interpretation. The system has been used as part of an in-service inspection program to examine welds in thich austenitic stainless steel pipes in a small experimental nuclear reactor

  8. Application of the ultrasonic phased array technique to alloy 182 weld inspection in PWR

    International Nuclear Information System (INIS)

    Hsiao, Chu Chung; Shie, Namg Chian; Chu, Shyr Liang; Lee, Sou See; Toung, Jean Chung; Su, Liang Chun; Yang, Hai Ming

    2006-01-01

    Cracks were found in nickel-based welds frequently in some nuclear power plants. The development of inspection technique capability of finding these cracks is thus in great demand. The difficulties of inspection and evaluation for nickel-based welds include ultrasonic reflection of interface of dissimilar materials, ultrasonic distortion of anisotropic microstructure, and signal-to-noise ratio reduction of coarse grain. In this study, an Alloy 182 mock-up with the same size and material properties as in the field is designed and fabricated. The Alloy 182 mock-up specimen contains various cracks and notches for calibration. Phased array UT and other ultrasonic inspection techniques are used in this study. Based on the experiment results, the phased array probe with 2D dual crystals and low frequency (1.5MHz) longitudinal wave is found to perform well. Finally, phased array ultrasonic testing technique has been approved to be an effectively nondestructive test method for DMW with real size testing block involved. Typically, phased array probe can generate sharp tip diffraction signal and thus reliable and accurate result can be obtained for sizing the defect. Furthermore, phased array probe can also generate various angles and focal lengths and thus combinatorial effect can be achieved for several traditional probes. With a full understanding of the beam behavior and an optimized delay laws, the phased away ultrasonic technique integrated with an automatic scanner will achieve not only to save scanning time but also to reduce the amount of radiation exposure on field inspection.

  9. Device for ultrasonic and eddy current testing of bolts

    International Nuclear Information System (INIS)

    Hromek, J.; Kaspar, P.

    1989-01-01

    The device provides pivoting fitting of the bolt of a WWER reactor steam generator while ultrasonic and eddy current probes are brought near. The bolt under study is clamped between a drive funnel and a securing cone. The eddy current probes are adjusted using guide arms to the point requested and are fitted over the bolt such as for their thread segments to engage the bolt thread. The ultrasonic transducers are then adjusted to the required point. The device can be used for testing bolts of a thread size from M54x5 and a maximum length of 600 mm. (J.B.). 1 fig

  10. Eddy current and ultrasonic fuel channel inspection at Karachi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mayo, W.R.; Alam, M.M.

    1997-01-01

    In November of 1993 and in-service inspection was performed on eight fuel channels in the Karachi Nuclear Power Plant (KANUPP) reactor. The workscope included ultrasonic and eddy current volumetric examinations, and eddy current measurement of pressure-to calandria tube gap. This paper briefly discusses the planning strategy of the ultrasonic and eddy current examinations, and describes the equipment developed to meet the requirements, followed by details of the actual channel inspection campaign. The presented nondestructive examinations assisted in determining fitness for service of KANUPP reactor channels in general, and confirmed that the problems associated with channel G12 were not generic in nature. (author)

  11. Evolution of the Ultrasonic Inspection of Heavy Rotor Forgings Over the Last Decades

    Science.gov (United States)

    Zimmer, A.; Vrana, J.; Meiser, J.; Maximini, W.; Blaes, N.

    2010-02-01

    All types of heavy forgings that are used in energy machine industry, rotor shafts as well as discs, retaining rings or tie bolts are subject to extensive nondestructive inspections before they are delivered to the customer. Due to the availability of the parts in simple shapes, these forgings are very well suited for full volmetric inspections using ultrasound. In the beginning, these inspections were carried out manually, using straight beam probes and analogue equipment. Higher requirements in reliability, efficiency, safety and power output in the machines have lead to higher requirements for the ultrasonic inspection in the form of more scanning directions, higher sensitivity demands and improved documentation means. This and the increasing use of high alloy materials for ever growing parts, increase the need for more and more sophisticated methods for testing the forgings. Angle scans and sizing technologies like DGS have been implemented, and for more than 15 years now, mechanized and automated inspections have gained importance since they allow better documentation as well as easier evaluation of the recorded data using different views (B- C- or D-Scans), projections or tomography views. The latest major development has been the availability of phased array probes to increase the flexibility of the inspection systems. Many results of the ongoing research in ultrasonic's have not been implemented yet. Today's availability of fast computers, large and fast data storages allows saving RF inspection data and applying sophisticated signal processing methods. For example linear diffraction tomography methods like SAFT offer tools for 3D reconstruction of inspection data, simplifying sizing and locating of defects as well as for improving signal to noise ratios. While such methods are already applied in medical ultrasonic's, they are still to be implemented in the steel industry. This paper describes the development of the ultrasonic inspection of heavy forgings

  12. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    International Nuclear Information System (INIS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified

  13. Ultrasonic inspection of the strength member weld of transit and pioneer heat sources

    International Nuclear Information System (INIS)

    Dudley, W.A.

    1975-01-01

    A nondestructive technique was developed which allows ultrasonic inspection of the closure weld for the strength member component in plutonium-238 radioisotopic heat sources. The advantage of the ultrasonic approach, over that of the more commonly used radiographic one, is the recognized superiority of ultrasonic testing for identifying lack-of-weld penetration (LOP) when accompanied by incomplete diffusion bonding. The ultrasonic technique, a transverse mode scan of the weld for detection of LOP, is primarily accomplished by use of a holding fixture which permits the vented heat source to be immersed into an inspection tank. The mechanical portion of the scanning system is a lathe modified with an inspection tank and a manipulator. This scanning system has been used in the past to inspect SNAP-27 heat sources. The analyzer-transducer combination used in the inspection is capable of detecting a channel type flaw with a side wall depth of 0.076 mm (0.003 in.) in a weld standard. (U.S.)

  14. Nonlinear Characterization of Half and Full Wavelength Power Ultrasonic Devices

    Science.gov (United States)

    Mathieson, Andrew; Cerisola, Niccolò; Cardoni, Andrea

    It is well known that power ultrasonic devices whilst driven under elevated excitation levels exhibit nonlinear behaviors. If no attempt is made to understand and subsequently control these behaviors, these devices can exhibit poor performance or even suffer premature failure. This paper presents an experimental method for the dynamic characterization of a commercial ultrasonic transducer for bone cutting applications (Piezosurgery® Device) operated together with a variety of rod horns that are tuned to operate in a longitudinal mode of vibration. Near resonance responses, excited via a burst sine sweep method were used to identify nonlinear responses exhibited by the devices, while experimental modal analysis was performed to identify the modal parameters of the longitudinal modes of vibration of the assemblies between 0-80 kHz. This study tries to provide an understanding of the effects that geometry and material choices may have on the nonlinear behavior of a tuned device.

  15. MIR: an in-service inspection device for Superphenix 1 vessels

    International Nuclear Information System (INIS)

    Asty, M.; Ceccato, S.; Lerat, B.; Viard, J.

    1986-06-01

    The main and safety vessels of SUPERPHENIX 1 were designed to allow in-service inspections. The remote controlled inspection device MIR was developed for this purpose. It allows both visual and ultrasonic examinations to be performed. Basically, MIR consists of a tetrahedral structure provided with four steering and traction wheels, two for each vessel. A computer assisted control system enables it to be driven to any position on either the main or safety vessels. Operating conditions are briefly reviewed and the main features of MIR presented

  16. Analysis of a Non-resonant Ultrasonic Levitation Device

    Science.gov (United States)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    In this study, a non-resonant configuration of ultrasonic levitation device is presented, which is formed by a small diameter ultrasonic transducer and a concave reflector. The influence of different levitator parameters on the levitation performance is investigated by using a numerical model that combines the Gor'kov theory with a matrix method based on the Rayleigh integral. In contrast with traditional acoustic levitators, the non-resonant ultrasonic levitation device allows the separation distance between the transducer and the reflector to be adjusted continually, without requiring the separation distance to be set to a multiple of half-wavelength. It is also demonstrated, both numerically and experimentally, that the levitating particle can be manipulated by maintaining the transducer in a fixed position in space and moving the reflector in respect to the transducer.

  17. Ultrasonic inspection method and system for detection of steeple cracking in turbine disk rims

    International Nuclear Information System (INIS)

    Birring, A.S.; Lamping, G.A.; Van der Veer, W.R.; Hanley, J.J.

    1990-01-01

    Steam turbine disks which operate under high cyclic stress in a moist environment can develop cracks in the disk-rim steeples. Detection of these cracks using nondestructive testing methods is necessary to assure safe operation and avoid unnecessary disk replacement. Both magnetic particle (MT) and ultrasonic testing (UT) can be used to inspect the steeples; however, UT can be used without removing the blades. A system for inspecting bladed steeples has been developed that can be applied on a range of disks including those in Westinghouse, General Electric, and Allis Chalmers turbines. The system performs an inspection as the turbine is rotated at slow speeds over turning rolls. This procedure greatly reduces inspection time because the inspection can be done without deblading the disk or resetting the inspection equipment for different rim segments

  18. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Challender, R.S.

    1975-01-01

    A carriage-supported manipulator for taking an ultrasonic scanner mechanism into a coolant nozzle of a nuclear reactor pressure vessel is described. The manupulator is rotatable about the axis of the nozzle and is radially expansible to urge the scanner mechanism into a scanning position within the nozzle

  19. Transferring manual ultrasonic inspection procedures - results of a pilot study

    International Nuclear Information System (INIS)

    Anderson, M.; Taylor, T.; Kadenko, I.

    2002-01-01

    Results of a manual ultrasonic pilot study for NDE specialists at RBMK nuclear reactor sites are presented. Probabilities of detection and false calls, using two different grading criteria, are estimated. Analyses of performance parameters lead to conclusions regarding attributes for improved test discrimination capabilities. (orig.)

  20. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    2000-01-01

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered

  1. Compact and air-transportable ultrasonic turbine disc bore inspection system

    International Nuclear Information System (INIS)

    Larsen, R.E.; Leon-Salamanca, T.

    1990-01-01

    A compact, lightweight, air-transportable ultrasonic inspection system for bore and keyway regions of shrunk-on turbine discs has been developed. The system utilizes a proprietary ultrasound liquid coupling technique in conjunction with a single pair of gimballed search units to achieve rapid and thorough coverage of bores and keyways in both heavy nuclear and standard fossil discs of nearly any size and having any conceivable web surface contour. Search unit positioning and angulation parameter settings are established in near real-time through a computation algorithm based on a compact vector ray tracing protocol. Modular construction and the use of lightweight, stiff materials throughout facilitates air shipment of the system and its rapid deployment at continental and overseas field sites. Mechanical and ultrasonic features of the system are described. Development and application of the computation algorithm to the ultrasonic inspection of heavy discs at an overseas power station is discussed

  2. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  3. Design and development of Pc-based TOFD ultrasonic scanning system for welds inspection

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismai; Muhammad Faiz Mohd Shukri; Amry Amin Abas

    2010-01-01

    This paper describes the design and development of a portable PC-based ultrasonic scanning system for industrial applications. The system which is called TOFD Ultrasonic Scanning System (TOFUSS) is used to create a gray scale imaging techniques are applied to the RF (AC) signal phase and enables weld integrity to be observed in real time. TOFD consists of a separate ultrasonic transmitter and receiver. The Probes are aimed at the same point in the weld volume. The entire weld is flooded with ultrasound allowing inspection of the weld. With a time of flight path, the ultrasonic velocity and the spatial relationship of the two probes, location and height of the defects can be very accurately calculated. The algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0. (author)

  4. Automated ultrasonic inspection of IGSCC in DOE production reactor process water piping

    International Nuclear Information System (INIS)

    Harrison, J.M.; Sprayberry, R.; Ehrhart, W.

    1987-01-01

    Inspection of nuclear power components has always presented difficulties to the nondestructive testing (NDT) industry from a time consumption and radiation exposure standpoint. Recent advances in computerized NDT equipment have improved the situation to some extent; however, the need for high reliability, precision, reproducibility, and clear permanent documentation are indispensable requirements that can only be met by automatic inspection and recording systems. The Savannah River Plant's inspection program of over 1000 IGSCC-susceptible welds is one of the most complete in the country and offers educational insight into ultrasonic examination technology of thin-wall stainless steel pipe welds

  5. Remote Inspection Techniques for Reactor Internals of Liquid Metal Reactor by using Ultrasonic Waveguide Sensor

    International Nuclear Information System (INIS)

    Joo, Young Sang; Kim, Seok Hun; Lee, Jae Han

    2006-02-01

    The primary components such as a reactor core, heat exchangers, pumps and internal structures of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection and continuous monitoring as major in-service inspection (ISI) methods of reactor internal structures. Reactor core and internal structures of LMR can not be visually examined due to an opaque liquid sodium. The under-sodium viewing and remote inspection techniques by using an ultrasonic wave should be applied for the in-service inspection of reactor internals. The remote inspection techniques using ultrasonic wave have been developed and applied for the visualization and ISI of reactor internals. The under sodium viewing technique has a limitation for the application of LMR due to the high temperature and irradiation environment. In this study, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium viewing and remote inspection. The Lamb wave propagation of a waveguide sensor has been analyzed and the zero-order antisymmetric A 0 plate wave was selected as the application mode of the sensor. The A 0 plate wave can be propagated in the dispersive low frequency range by using a liquid wedge clamped to the waveguide. A new technique is presented which is capable of steering the radiation beam angle of a waveguide sensor without a mechanical movement of the sensor assembly. The steering function of the ultrasonic radiation beam can be achieved by a frequency tuning method of the excitation pulse in the dispersive range of the A 0 mode. The technique provides an opportunity to overcome the scanning limitation of a waveguide sensor. The beam steering function has been evaluated by an experimental verification. The ultrasonic C-scanning experiments are performed in water and the feasibility of the ultrasonic waveguide sensor has been verified. The various remote inspection

  6. Developments in mechanical ultrasonic inspection and qualification of NDE

    International Nuclear Information System (INIS)

    Kauppinen, P.; Pitkaenen, J.; Kuusinen, P.

    2001-01-01

    Reliability of non-destructive testing results has a direct influence on structural integrity assessment and safety of the inspected structures e.g. NPP primary circuit pressure boundaries. Advanced technology together with highly skilled and experienced personnel is required. One of the current trends is automation. Mechanised equipment can replace tedious manual work in positioning and moving of the transducers. Large areas can be scanned, analysed and numerically documented for direct comparison of eventual later repeated inspections. Another major trend is qualification, which aims to ensure that the inspection results are correct and fit the purpose. The suitability and proper operation of equipment, methods and personnel i.e. the whole chain shall be proven. This presentation summarises the advances in automation and qualification of non-destructive inspection during the second project year, Monitoring of material degradation was included in the studied topics and will also be shortly described. (author)

  7. Under-Sodium Inspection Techniques for Reactor Internals of KALIMER-600 using Ultrasonic Waveguide Sensor

    International Nuclear Information System (INIS)

    Joo, Young Sang; Kim, Seok Hoon; Lee, Jae Han

    2005-01-01

    KALIMER-600 is a pool type liquid metal reactor (LMR) which is operated with a sodium coolant. The reactor internals of KALIMER-600 are submerged in a liquid sodium pool. As the liquid sodium is opaque to the light, a conventional visual inspection can not be used for observing the internal structures under a sodium condition. An under-sodium viewing (USV) technique using an ultrasonic wave should be applied for the observation of the refueling maneuver and the in-service inspection of the reactor internals. Under-sodium inspection technology utilizing ultrasonic waves has been widely developed for a visualization of the reactor core and internal components of LMR. Immersion sensors and waveguide sensors have been applied to the USV inspection. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor has the advantages of simplicity and reliability, but limited in its movement. The new plate-type waveguide sensor has been developed as a useful alternative to immersion sensors for USV applications. In the viewing and monitoring applications, a beam steering function of a waveguide sensor might be required. A new waveguide sensor and technique are being developed to overcome the limitations of a waveguide ultrasonic sensor. In this study, the under-sodium inspection techniques using the newly developed waveguide sensor for the reactor internal structures of KALIMER-600 is proposed

  8. Applying ultrasonic in-line inspection technology in a deep water environment: exploring the challenges

    Energy Technology Data Exchange (ETDEWEB)

    Thielager, N.; Nadler, M.; Pieske, M.; Beller, M. [NDT Systems and Services AG, Stutensee (Germany)

    2009-12-19

    The demand for higher inspection accuracies of in-line inspection tools (ILI tools) is permanently growing. As integrity assessment procedures are being refined, detection performances, sizing accuracies and confidence levels regarding detection and sizing play an ever increasing role. ILI tools utilizing conventional ultrasound technology are at the forefront of technology and fulfill the market requirements regarding sizing accuracies and the ability to provide quantitative measurements of wall thickness as well as crack inspection capabilities. Data from ultrasonic tools is ideally suited for advanced integrity assessment applications and run comparisons. Making this technology available for a deep-water environment of heavy wall, high pressures and temperatures comes with a wide range of challenges which have to be addressed. This paper will introduce developments recently made in order to adapt and modify ultrasonic in-line inspection tools for the application in a heavy wall, high pressure and high temperature environment as encountered in deep offshore pipelines. The paper will describe necessary design modifications and new conceptual approaches especially regarding tool electronics, cables, connectors and the sensor carrier. A tool capable of deep-water inspection with a pressure bearing capability of 275 bar will be introduced and data from inspection runs will be presented. As an outlook, the paper will also discuss future inspection requirements for offshore pipelines with maximum pressure values of up to 500 bar. (author)

  9. Ultrasonic inspection reliability for intergranular stress corrosion cracks

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P G; Taylor, T T; Spanner, J C; Doctor, S R; Deffenbaugh, J D [Pacific Northwest Lab., Richland, WA (USA)

    1990-07-01

    A pipe inspection round robin entitled Mini-Round Robin'' was conducted at Pacific Northwest Laboratory from May 1985 through October 1985. The research was sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research under a program entitled Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors.'' The Mini-Round Robin (MRR) measured the intergranular stress corrosion (GSC) crack detection and sizing capabilities of inservice inspection (ISI) inspectors that had passed the requirements of IEB 83-02 and the Electric Power Research Institute (EPRI) sizing training course. The MRR data base was compared with an earlier Pipe Inspection Round Robin (PIRR) that had measured the performance of inservice inspection prior to 1982. Comparison of the MRR and PIRR data bases indicates no significant change in the inspection capability for detecting IGSCC. Also, when comparing detection of long and short cracks, no difference in detection capability was measured. An improvement in the ability to differentiate between shallow and deeper IGSCC was found when the MRR sizing capability was compared with an earlier sizing round robin conducted by the EPRI. In addition to the pipe inspection round robin, a human factors study was conducted in conjunction with the Mini-Round Robin. The most important result of the human factors study is that the Relative Operating Characteristics (ROC) curves provide a better methodology for describing inspector performance than only probability of detection (POD) or single-point crack/no crack data. 6 refs., 55 figs., 18 tabs.

  10. Verification of split spectrum technique for ultrasonic inspection of welded structures in nuclear reactors

    International Nuclear Information System (INIS)

    Ericsson, L.; Stepinski, T.

    1992-01-01

    Ultrasonic nondestructive inspection of materials is often limited by the presence of backscattered echoes from the material structure. A digital signal processing technique for removal of this material noise, referred to as split spectrum processing (SSP), has been developed and verified using simple laboratory experiments during the last decade. However, application of the split spectrum processing algorithm to industrial conditions has been rarely reported. In the paper the results of the practical evaluation of the SSP technique are presented. A number of different ultrasonic transducers were used for acquiring echoes from artificial flaws as well as natural cracks. The flaws were located in test blocks employed by the Swedish Nuclear Power Companies as reference during ultrasonic inspection of nuclear reactor vessels. The acquired ultrasonic A-scan signals were processed off-line using specially developed algorithms on a personal computer (PC). The experiments show evidence that properly tuned SSP algorithms result in a considerable improvement of the signal to material noise ratio. The enhancements were similar irrespective of the features of the transducer used or the nature of the inspected flaw. The problems related to the development of self-tuning SSP algorithms for on-line processing of B-scans are discussed. (author)

  11. High Temperature Ultrasonic Transducer for Real-time Inspection

    Science.gov (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  12. Review of P-scan computer-based ultrasonic inservice inspection system. Supplement 1

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.

    1995-12-01

    This Supplement reviews the P-scan system, a computer-based ultrasonic system used for inservice inspection of piping and other components in nuclear power plants. The Supplement was prepared using the methodology described in detail in Appendix A of NUREG/CR-5985, and is based on one month of using the system in a laboratory. This Supplement describes and characterizes: computer system, ultrasonic components, and mechanical components; scanning, detection, digitizing, imaging, data interpretation, operator interaction, data handling, and record-keeping. It includes a general description, a review checklist, and detailed results of all tests performed

  13. Pulse-echo phased array ultrasonic inspection of pultruded rod stitched efficient unitized structure (PRSEUS)

    International Nuclear Information System (INIS)

    Johnston, P. H.

    2011-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading.

  14. Ultrasonic inspection for wastage in the LMFBR steam generator due to sodium--water reactions

    International Nuclear Information System (INIS)

    Neely, H.H.; Renger, L.

    1977-01-01

    As part of a program to study the results of large sodium-water reactions in the LMFBR Steam Generator, a boreside ultrasonic inspection device was developed to measure the wall thickness and diameter of the 2- 1 / 4 Cr-1 Mo, 0.397 in. I.D. steam tubes. The reaction was created in a near prototype steam generator by guillotine-type rupture of a steam tube, while the generator was at operating conditions. Wastage occurred on the surrounding tubes due to the high temperature reaction. The UT test instrument was designed to operate with a 15 MHz transducer in the pulse-echo shear-wave mode, with a sampling rate of 10 4 /sec. System outputs are diameter, wall thickness, attitude and axial position of the transducer. All are displayed digitally and may be recorded. Measurements are fed into a computer for later retrieval, and/or cascaded outputs into an x-y recorded displaying either out-of-limit or thickness data. The UT data taken in this experiment were consistent with physical measurements on a tube which was removed from the generator after the test. A machined flat 1 / 8 -inch long and 0.002-inch deep could readily be detected

  15. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  16. Avoiding failures of steam turbine discs by automated ultrasonic inspections

    International Nuclear Information System (INIS)

    Morton, J.; Bird, C.R.

    1994-01-01

    Under certain conditions, stress corrosion cracking can cause catastrophic failure of steam turbine discs. Nuclear Electric has developed a range of inspection techniques for disc keyways, bores, buttons and blade attachments and has accumulated substantial experience on their use on plant. This paper gives examples of the techniques used and discusses the strengths and weaknesses of the techniques applied

  17. Avoiding failures of steam turbine discs by automated ultrasonic inspections

    International Nuclear Information System (INIS)

    Bird, C.R.; Morton, J.

    1994-01-01

    Under certain conditions, stress corrosion cracking can cause catastrophic failure of steam turbine discs. Nuclear Electric has developed a range of inspection techniques for disc keyways, bores, buttons and blade attachments and has accumulated substantial experience on their use on plant. This paper gives examples of the techniques used and discusses the strengths and weaknesses of the techniques applied. (Author)

  18. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.

    Science.gov (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N; Coyle, Thomas W

    2016-03-01

    A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.

  19. Development of an innovative device for ultrasonic elliptical vibration cutting.

    Science.gov (United States)

    Zhou, Ming; Hu, Linhua

    2015-07-01

    An innovative ultrasonic elliptical vibration cutting (UEVC) device with 1st resonant mode of longitudinal vibration and 3rd resonant mode of bending vibration was proposed in this paper, which can deliver higher output power compared to previous UEVC devices. Using finite element method (FEM), resonance frequencies of the longitudinal and bending vibrations were tuned to be as close as possible in order to excite these two vibrations using two-phase driving voltages at a single frequency, while wave nodes of the longitudinal and bending vibrations were also adjusted to be as coincident as possible for mounting the device at a single fixed point. Based on the simulation analysis results a prototype device was fabricated, then its vibration characteristics were evaluated by an impedance analyzer and a laser displacement sensor. With two-phase sinusoidal driving voltages both of 480 V(p-p) at an ultrasonic frequency of 20.1 kHz, the developed prototype device achieved an elliptical vibration with a longitudinal amplitude of 8.9 μm and a bending amplitude of 11.3 μm. The performance of the developed UEVC device is assessed by the cutting tests of hardened steel using single crystal diamond tools. Experimental results indicate that compared to ordinary cutting process, the tool wear is reduced significantly by using the proposed device. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Development of ultrasonic inspection technique for crack detection in retaining rings

    International Nuclear Information System (INIS)

    Brook, M.V.

    1990-01-01

    The majority of retaining rings which are currently in service, are composed of a material which is susceptible to stress corrosion when exposed to moisture. Due to the inherent stress levels in the shrunk-on areas, they are particularly susceptible to stress corrosion attack. Therefore, retaining rings require non-destructive examination to avert catastrophic failure. Guidelines for retaining ring inspection issued by EPRI recommend ultrasonic manual and automated methods of inspection for rings in place. Application of the conventional manual method, using S-waves is difficult, and yields unreliable results. Due to the unreliability factor, utilities have been forced to depend upon surface examination methods, such as visual and penetrant techniques. In most instances, a surface exam will necessitate the costly and potentially damaging removal of the rings from the rotor to provide full access to areas of interest. Due to the various complexities of conventional ultrasonic retaining ring inspections, it is essential that the front end ultrasonics (i.e., transducers and techniques) be optimized to produce the best possible examination. For this reason, AMDATA has developed custom transducers and techniques to enhance automated detection capability of flaws in the various suspect areas of retaining rings. When the optimized techniques are applied to generate the best possible raw data, the Intraspect /98 trademark is then used to reliably apply technique, acquire the data and perform post processing evaluations. One of the most promising ultrasonic techniques for retaining ring inspection is creeping waves. This paper investigates the use of creeping waves for retaining ring inspection

  1. Development of ultrasonic inspection equipment using phased array method

    International Nuclear Information System (INIS)

    Kikuchi, Osamu; Yamatoya, Naofumi; Umino, Tomohiro; Baba, Atsushi

    2008-01-01

    This study presents new phased array UT equipments, one is developed as portable type for field inspection and the other is developed for 2D-matrix array (3D Focus-UT). The pulser of square burst wave was adopted for these new equipments to enhance flaw echo amplitude. At over 3 cycles of square burst cycle, the authors confirmed over 10 dB enhancement of bottom echo amplitude. Moreover, a new flaw imaging method using S-SAFT was also adopted for equipments to improve SN ratio and flaw echo resolution in inspection image. The authors verified effects of S-SAFT using side drilled hole specimen, about 2 times of improvement of SN ratio and flaw echo resolution. (author)

  2. Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J. [Iowa State Univ., Ames, IA (United States); Bowler, John R. [Iowa State Univ., Ames, IA (United States)

    2017-08-30

    The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-service inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO3-xPbTiO3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.

  3. Ultrasonic recording and display techniques for the inspection of nuclear power plant

    International Nuclear Information System (INIS)

    Ely, R.W.; Hall, G.D.; Johnson, A.; Pascoe, P.T.

    1985-01-01

    This paper describes four systems: MDU, PURDIE, LAURA and DRUID, under development as ultrasonic recording and display techniques for the inspection of nuclear power plant. The MDU system plots either plan or sectional views of the component under test onto a bistable storage screen. PURDIE is a system based around a video cassette recorder which has been modified to record ultrasonic A-scan waveforms and probe positional information. MDU and PURDIE are portable systems, for use under difficult site conditions. They may be manufactured in quantity to satisfy the demanding inspection programmes of nuclear power stations. LAURA is a desk top replay system for the video cassette tapes produced on site by PURDIE. DRUID is a digital desk top replay/display system incorporating a high resolution colour graphics terminal and therefore offering more flexibility and improved display formats. The systems are compatible with each other and some component units are directly interchangeable between the various systems

  4. Modification of the grain structure of austenitic welds for improved ultrasonic inspectability

    International Nuclear Information System (INIS)

    Wagner, S.; Dugan, S.; Stubenrauch, S.; Jacobs, O.

    2012-01-01

    Austenitic stainless steel welds, which are widely used for example in nuclear power plants and chemical installations, present major challenges for ultrasonic inspection due to the grain structure of the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. The aim of this project is to influence grain growth in the weld during the welding process to produce smaller grains, in order to improve sound propagation through the weld, thus improving inspectability. Metallographic sections of the first test welds have shown that a modification of the grain structure can be achieved by influencing the grain growth with magnetic fields. For further optimization, test blocks for ultrasonic testing were manufactured to study sound propagation through the weld and detectability of test flaws.

  5. RNL automated ultrasonic inspection of the PISC II PWR inlet nozzle (Plate 3)

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.G.

    1987-01-01

    In June 1984, Risley Nuclear Laboratories (RNL) performed an automated ultrasonic inspection of the Pressurized Water Reactor (PWR) inlet nozzle (plate 3) from the international Programme of Inspection of Steel Components (PISC II) round-robin inspection programme. High-sensitivity pulse-echo detection and predominantly time-of-flight diffraction sizing techniques were employed from the clad inner surface of the nozzle using digital data collection, analysis, and display facilities developed at RNL. RNL detected 30 out of 31 intended weld flaws, achieved one hundred per cent correct acceptance of all acceptable flaws and had a correct rejection frequency on all rejectable flaws of 0.86. The results confirm that well-conceived automated inspection procedures, similar to those used by RNL in this nozzle inspection, could form the basis of a PSI/ISI procedure for reactor pressure vessel nozzle regions. Analysis of the RNL results with regard to the influence of flaw characteristics on inspection performance lends strong support to the general conclusions drawn by the PISC Data Analysis Group. In particular, the most difficult flaws to accurately size were circular smooth and rough flaws. Examination of the RNL results on individual flaws reveals valuable information on the strengths and weaknesses of the adopted procedures and points towards procedural changes that would improve inspection performance. This report describes the procedures adopted by RNL, in the inspection, and reviews the results in the light of definitive flaw information. (author)

  6. Development of Ultrasonic Visual Inspection Program for In-Vessel Structures of SFR

    International Nuclear Information System (INIS)

    Joo, Y. S.; Park, C. G.; Lee, J. H.

    2009-02-01

    As the liquid sodium of a sodium-cooled fast reactor (SFR) is opaque to light, a conventional visual inspection is unavailable for the evaluation of the in-vessel structures under a sodium level. ASME Section XI Division 3 provides rules and guidelines for an in-service inspection (ISI) and testing of the components of SFR. For the ISI of in-vessel structures, the ASME code specifies visual examinations. An ultrasonic wave should be applied for an under-sodium visual inspection of the in-vessel structures. The plate-type waveguide sensor has been developed and the feasibility of the waveguide sensor technique has been successfully demonstrated for an ultrasonic visual inspection of the in-vessel structures of SFR. In this study, the C-scan image mapping program (Under-Sodium MultiView) is developed to apply this waveguide sensor technology to an under-sodium visual inspection of in-vessel structures in SFR by using a LabVIEW graphical programming language. The Under-Sodium MultiVIEW program has the functions of a double rotating scanner motion control, a high power pulser receiver control, a image mapping and a signal processing. The performance of Under-Sodium MultiVIEW program was verified by a C-scanning test

  7. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors

    International Nuclear Information System (INIS)

    Dancre, M.

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  8. Remote inspection of a buried pipeline using a mobile ultrasonic testing system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Rajendran, S; Ramakumar, M S [Bhabha Atomic Research Centre, Mumbai (India). Division of Remote Handling and Robotics

    1994-12-31

    The nuclear reactor, Cirus, has now been in operation for three decades. As part of a programme to ascertain the integrity and safety of the various reactor parts in-service inspection of the embedded portion of the main coolant pipeline will be carried out. A mobile ultrasonic testing system has been developed and tested in the laboratory to measure the wall thickness of an underground pipe from the inner corroded surface using a water-bubbler technique. 3 figs.

  9. Experiments of Long-range Inspection Method in Straight Pipes using Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Eom, H. S.; Lim, S. H.; Kim, J. H.; Joo, Y.S.

    2006-02-01

    This report describes experimental results of a long-range inspection method of pipes using ultrasonic guided waves. In chapter 2, theory of guided wave was reviewed. In chapter 3, equipment and procedures which were used in the experiments were described. Detailed specifications of the specimens described in chapter 4. In chapter 5, we analyzed characteristics of guided wave signals according to shapes and sizes of defects and presents results of various signal processing methods

  10. Preliminary investigation of ultrasonic shear wave holography with a view to the inspection of pressure vessels

    International Nuclear Information System (INIS)

    Aldridge, E.E.; Clare, A.B.; Shepherd, D.A.

    1975-01-01

    The manner in which holography would fit into the general scheme of pressure vessel inspection is discussed. Compared to conventional A, B and C presentations holography requires a different processing of the ultrasonic signal and a mechanical scan which may be more demanding than that normally provided for a C display. Preliminary results are presented of the examination of artificial defects in steel plate using shear wave holography. (author)

  11. Inspection and repairing method and device for inside of nuclear reactor

    International Nuclear Information System (INIS)

    Ito, Shin; Yuguchi, Yasuhiro; Sato, Katsuhiko

    1996-01-01

    A swimming robot handling device is disposed on a floor of a reactor pit floor or a reactor floor. A swimming robot is connected to a winding device of a composite cable incorporating optical fibers. The swimming robot comprises a robot propulsion device for propelling the robot itself, a laser beam irradiating optical device for irradiating pulsative laser beams introduced by an optical fiber and an antenna mechanism having ultrasonic probe in an antenna-like shape. The swimming robot is lowered in a reactor filled with water and caused to swim to a portion to be welded, and pulsative laser beams are irradiated to the portion to be welded in a state where the antenna mechanism is brought into contact with the portion to be welded to improve the state of stresses on the surface. Further, the ultrasonic oscillations generated upon irradiation of the laser beams are measured using the ultrasonic probe to perform physical inspection. The surface of the portion to be welded can be modified or repaired stably and efficiently by remote control. (N.H.)

  12. Synthetic Aperture Focusing Technique in Ultrasonic Inspection of Coarse Grained Materials

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (Uppsala Univ., Signals and Systems, Box 528, SE-751 20 Uppsala (Sweden))

    2007-12-15

    Experience from the ultrasonic inspection of nuclear power plants has shown that large focused transducers are relatively effective in suppressing grain (structure) noise. Operation of a large focused transducer can be thought of as an integration (coherent summation) of individual beams reflected from the target and received by individual points at the transducer surface. Synthetic aperture focusing technique (SAFT), in its simplest version mimics an acoustic lens used for focusing beams at a desired point in the region of interest. Thus, SAFT should be able to suppress the grain noise in the similar way as the focused transducer does. This report presents the results of investigation of SAFT algorithms applied for post-processing of ultrasonic data acquired in inspection of coarse grained metals. The performance of SAFT in terms of its spatial (cross-range) resolution and grain noise suppression is studied. The evaluation is made based on the experimental data obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). SAFT algorithms for both contact and immersion mode are introduced and experimentally verified

  13. A Laser-based Ultrasonic Inspection System to Detect Micro Fatigue Cracks

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Park, Moon Cheol; Lim, Chang Hwan; Cha, Hyung Ki

    2005-01-01

    Laser-based ultrasonic techniques have been established as a viable non-contact alternative to piezoelectric transducers for generating and receiving ultrasound. Laser-based ultrasonic inspection system provides a number of advantages over the conventional generation by piezoelectric transducers, especially a non-contact generation and detection of ultrasonic waves, high spatial scanning resolution, controllable narrow-band and wide-band spectrum, absolute measurements of the moving distance, use of fiber optics, and an ability to operate on curved and rough surfaces and at hard-to-access locations like a nuclear power plant. Ochiai and Miura used the laser-based ultrasound to detect micro fatigue cracks for the inspection of a material degradation in nuclear power plants. This widely applicable laser-based ultrasonic inspection system is comparatively expensive and provides low signal-to-noise ratio to measure ultrasound by using the laser interferometer. Many studies have been carried out to improve the measuring efficiency of the laser interferometer. One of the widely used laser interferometer types to measure the ultrasound is the Confocal Fabry-Perot Interferometer(CFPI). The measurement gain of the CFPI is slightly and continually varied according to the small change of the cavity length and the fluctuations of the measuring laser beam frequency with time. If we continually adjust the voltage of a PZT which is fixed to one of the interferometer mirrors, the optimum working point of the CFPI can be fixed. Though a static stabilizer can fix the gain of the CFPI where the CW laser beam is targeted at one position, it can not be used when the CW laser beam is scanned like a scanning laser source(SLS) technique. A dynamic stabilizer can be used for the scanning ultrasonic inspection system. A robust dynamic stabilizer is needed for an application to the industrial inspection fields. Kromine showed that the SLS technique is effective to detect small fatigue cracks

  14. Challenges associated with the current processes for ultrasonic inspection of CANDU reactor feeder piping

    Energy Technology Data Exchange (ETDEWEB)

    Machowski, C. [Babcock & Wilcox Canada Ltd., Cambridge, Ontario (Canada)

    2012-07-01

    CANDU® PHT Feeder Piping is generally constructed from SA106 Grade B carbon steel, which is known to be susceptible to flow accelerated corrosion when exposed to certain environmental conditions. The configuration of the CANDU reactor promotes thinning of the inside surface of the pipe walls, predominantly at the outlet feeders. Inspection of this piping is currently conducted using ultrasonic techniques and is governed by the requirements established by the CANDU Owners Group (COG). There are many challenges associated with these inspections as a result of the complexity of the reactor piping configuration. Geometrical anomalies on the surface of the pipe and non-circular geometries at the tight radius bends hinder the performance of conventional ultrasonic techniques. This can cause lost signals in areas of interest, which in turn often results in rework in order to satisfy the inspection requirements and justify fitness for service of these components. There are also many inspection sites which have limited access due to physical restrictions on the reactor face; therefore in order to maximize the performance of an inspection campaign, it is paramount that the inspection personnel and the inspection technology be well integrated through training simulations prior to execution. These inspection challenges increase the complexity of the analysis process as ultrasonic signals get distorted and lost as a result of non-circular pipe geometries. In order to ensure a high level of integrity in the analysis results, a conservative process is utilized in which two analysts independently examine the data, and a third analyst reviews their results and submits the final call. A Data Management Software application (DMS) is used to input and store the three analysis results. Another important function of the DMS is to provide a communication link between the different work-groups associated with the inspection activities. The focus of this presentation discusses:

  15. Automatic ultrasonic inspection of pipeline girth weldswith a corrosive resistant alloy (Cra) layer

    International Nuclear Information System (INIS)

    Ent, Jan Van Der; Portzgen, Niels; Findlay, Niele; Nupen, Oddbjorn; Endal, Geir; Forli, Olav

    2007-01-01

    There is very limited experience in the Offshore Pipeline industry regarding the Automated Ultrasonic Inspection of Austenitic Girth Welds with CRA layers. The AUT inspection technique to be used for Austenitic welds having CRA layers deviates from the standard approach, which is described within internationally available AUT inspection standards. Due to the coarse grain and anisotropic structure of the weld material, special designed ultrasonic probes and adapted AUT system inspection software were required for examination of the Nome Satellite CRA welds. The 'new' inspection approach was subject for qualification and validation in order to demonstrate that the proposed technique could fulfill stringent inspection requirements which are applicable for the reeling process. Experiences from former projects are difficult to find, since this was the first clad pipeline to be reeled. To determine the overall qualification program to be performed for the Nome Satellite project, reference has been made to the existing development experiences on CRA weld inspection from the Shell Bonga project. The available defect population was obtained out of real CRA pipeline production welds and were therefore of a naturally coarse. Representatives from Technip, Statoil and DNV performed an audit at RTD premises with the objective to draw up an inventory of the performed CRA qualification work and to judge whether this work could be used for the benefit of the Nome Satellite project. It has been concluded that the existing CRA qualification work could be used to complement the Nome Satellite scope of CRA qualification work. As a result the statistical uncertainties were reduced merging the both qualification program results (referenced qualification data and additional Nome Satellite Field qualification work)

  16. Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment

    International Nuclear Information System (INIS)

    Lee, Jeong Ki; Park, Moon Ho; Park, Ki Sung; Lee, Jae Ho; Lim, Sung Jin

    2004-01-01

    Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants

  17. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    Science.gov (United States)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  18. Recent developments in ultrasonic probes working up to 180 deg C for the inspection of the Superphenix fast breeder reactor

    International Nuclear Information System (INIS)

    Gondard, C.

    1987-01-01

    The main and safety vessels of SUPERPHENIX were designed to allow In-Service-Inspections. The remote controlled device MIR was developed for this purpose. The ultrasonic examination has required the development of all new focused transducers fitted with severe operating conditions prevailing in the intervessels interval: nitrogen gas at 180 0 C. We give a list of problems to be resolved and technological solutions which were found. Measurements of acoustical properties on actual probes are compared with theoretical values. We produce some examples obtained in actual conditions which show the detection of reference reflectors located in welds at various depth, with various disalignements against focus beam. Inspite of the severe environment and the perturbations caused by the austenitic welds, the I.S.I of SPX1 using high temperatures transducers is possible with a good spatial resolution and signal to noise ratio

  19. Noncontact ultrasonic nondestructive evaluation/inspection using laser generation and air coupled transducer

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Kim, Hong Joon; Cemiglia, Donatella; Djordjevic, Boro

    2001-01-01

    Ultrasonic MDE/I methods have been demonstrated as very effective tool in characterization of cracks and structural defects such as bond-line failures. Most of the ultrasonic testing is performed using conventional contact ultrasonic transducers that cannot be readily adapted to automation and field application. However, for large area inspection contact type is time consuming and as a result, it is important to develop a rapid and more efficient ultrasonic technique. In this paper, laser generation and air-coupled detection of ultrasound is proposed as a solution of non-contact method with no requirement of a coupling medium, and the bond quality of adhesively bonded and riveted aluminum lap splice joints is investigated as an application. A Q-switched Nd:YAG laser and a periodic transmission mask are used to generate a selected Lamb mode. The experimental show that multi-line laser source produces significant directed ultrasound and that the presence of defects can be detected reliably from the attenuation of signal amplitude. These results demonstrate that the proposed technique is well suitable and flexible for non-contact NDE/I applications.

  20. Ultrasonic inspection of primary pump casing by means of focussing probes

    International Nuclear Information System (INIS)

    Dombret, Ph.; Cermak, J.

    1985-01-01

    This paper describes a study conducted in laboratory on ultrasonic defect detection capabilities in primary pump casings and welds, in the framework of the joint research programme appointed by Framatome, EdF, CEA and Westinghouse, and devoted to improving the ultrasonic inspection of austenitic stainless steel components. Several transducers, including focussing probes and transmitter-receivers, were designed and compared on two 180 mm thick blocks strictly representative of the statically cast casing and of the electroslag welding, and containing various artificial and simulated reflectors. Detection trial results show that focussing probes can achieve fair sensitivity levels even through the full thickness, and appear promising as for on-site applications of this technique. 5 refs

  1. Hybrid ray-FDTD model for the simulation of the ultrasonic inspection of CFRP parts

    Science.gov (United States)

    Jezzine, Karim; Ségur, Damien; Ecault, Romain; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    Carbon Fiber Reinforced Polymers (CFRP) are commonly used in structural parts in the aeronautic industry, to reduce the weight of aircraft while maintaining high mechanical performances. Simulation of the ultrasonic inspections of these parts has to face the highly heterogeneous and anisotropic characteristics of these materials. To model the propagation of ultrasound in these composite structures, we propose two complementary approaches. The first one is based on a ray model predicting the propagation of the ultrasound in an anisotropic effective medium obtained from a homogenization of the material. The ray model is designed to deal with possibly curved parts and subsequent continuously varying anisotropic orientations. The second approach is based on the coupling of the ray model, and a finite difference scheme in time domain (FDTD). The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Inspections of flat or curved composite panels, as well as stiffeners can be performed. The models have been implemented in the CIVA software platform and compared to experiments. We also present an application of the simulation to the performance demonstration of the adaptive inspection technique SAUL (Surface Adaptive Ultrasound).

  2. Development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, H.; Kurozumi, Y. [Inst. of Nuclear Safety System, Incorporated, Mihama, Fukui (Japan); Kaneshima, Y. [The Kansai Electric Power Company, Inc., Mihama, Fukui (Japan)

    2004-07-01

    The purpose of this study is development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants. Integrity of containment liners on nuclear power plants can be secured by suitable present operation and maintenance. Furthermore, non-destructive testing technique to inspect embedded liners will ensure the integrity of the containment further. In order to develop the non-destructive testing technique, ultrasonic transducers were made newly and ultrasonic testing data acquisition and evaluation were carried out by using a mock-up. We adopted the surface shear horizontal (SH) wave, low frequency (0.3-0.5MHz), to be able to detect an echo from a defect against attenuation of ultrasonic waves due to long propagation in the liners and dispersion into concrete. We made transducers with three large active elements (40mm x 40mm) in a line which were equivalent to a 120mm width active element. Artificial hollows, {phi}200mm - 19mm depth (1/2thickness) and {phi}200mm - 9.5mm depth (1/4thickness), were made on a surface of a mock-up: carbon steel plate, 38mm thickness, 2,000mm length, 1000mm width. The surfaces of the plate were covered with concrete in order to simulate liners embedded in concrete. As a result of the examinations, the surface SH transducers could detect clearly the echo from the hollows at a distance of 1500mm. We evaluate that the newly made surface SH transducers with three elements have ability of detection of defects such as corrosion on the liners embedded in concrete. (author)

  3. Ultrasonic Inspection of Cracks in Stud Bolts of Reactor Vessels in Nuclear Power Plants by Signal Processing of Differential Operation

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun; Oh, Won Deok

    2005-01-01

    The stud bolt is one of crucial parts for safe operation of reactor vessels in nuclear power plants, Crack initiation and propagation were reported in stud bolts that arc used for closure of reactor vessel and head, Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure which could induce radioactive leakage from nuclear reactor, In conventional ultrasonic testing for inspection of stud bolts, cracks are detected by using shadow effect It takes too much time to inspect stud bolts by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread, In this study, the signal processing technique for enhancing conventional ultrasonic technique was introduced for inspecting stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. Detectability for small crack was enhanced by using this signal processing in ultrasonic inspection of stud bolts in Nuclear Power Plants

  4. Modification of the grain structure of austenitic welds for improved ultrasonic inspectability

    International Nuclear Information System (INIS)

    Wagner, Sabine; Dugan, Sandra; Stubenrauch, Steffen; Jacobs, Oliver

    2013-01-01

    Welding is an essential part of the fabrication of austenitic stainless steel components used in industrial plants, such as those designed for nuclear power generation, chemical processing, conventional power generation and, increasingly, for production of renewable energy. The welded austenitic material presents major challenges for ultrasonic inspection due to the grain structure of the weld metal. The typically coarse grain structure, in combination with the elastic anisotropy of the material, leads to increased scattering and affects sound wave propagation in the weld. These effects result in a reduced signal-to-noise ratio, and complicate the interpretation of signals and the localisation of defects by ultrasonic inspection. This paper presents the results of a research project dealing with efforts to influence grain growth in the weld during the welding process, in particular during the solidification process, in order to produce smaller grains. The objective was to achieve improved sound propagation through the weld, so that inspectability can be improved. The welding process was modified by the application of alternating magnetic fields at different frequencies, as well as different temperature cycles and pulsed arc technology. Metallographic sections of the test welds show that modification of the grain structure can be achieved by the use of these techniques. For further optimisation, test blocks for ultrasonic testing were manufactured with testflaws to study sound propagation through the modified weld and to assess the detectability of test flaws. The results of this investigation are of importance in assessing the integrity of highly stressed components in industrial installations, particularly for those components with stringent requirements on safety and quality.

  5. Ultrasonic inspectability of austenitic stainless steel and dissimilar metal weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Pudovikov, S.; Bulavinov, A.; Kroening, M. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren IZFP, Saarbruecken (Germany)

    2008-07-01

    Since their invention in 1912, austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, austenitic stainless steel material is qualified to meet the design criteria of high quality, safety related applications, for example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The ''Sampling Phased Array'' technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with image reconstruction techniques using ''SynFoc'' algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priory, we implement a new phase adjustment called ''Reverse Phase Matching'' technique. This algorithm permits the acquisition of phase-corrected A-scans that represent the actual sound propagation in the anisotropic structure; this technique can be utilized for image reconstruction. (orig.)

  6. A study on non-contact ultrasonic technique for on-line inspection of CFRP

    International Nuclear Information System (INIS)

    Lee, Seung-Joon; Park, Won-Su; Lee, Joon-Hyun; Byun, Joon-Hyung

    2007-01-01

    The advantages of carbon fiber reinforced plastic materials (CFRP) are: they are light structure materials, they have corrosion resistance, and higher specific strength and elasticity. The recently developed 3-dimentional fiber placement system is able to produce a more complex and various shaped structures due to less limitations of a product shape according to the problem in conventional fabrication process. This fiber placement system stacks the narrow prepreg tape on the mold according to the designed sequence and thickness. Non-destructive evaluation was rquired for these composites to evaluate changes in strength caused by defects such as delamination and porosity. Additionally, the expectent quality should be satisfied for the high cost fabrication process using the fiber placement system. Therefore, an on line non-destructive evaluation system is required and real-time complement is needed when the defects are detected [1]. Defect imaging by the ultrasonic C-scan method is a useful technique for defect detection in CFRP. However, the conventional ultrasonic C-scan technique cannot be applied during the fabrication process because the test piece should be immersed into the water. Therefore, non-contact ultrasonic techniques should be applied during the fabricating process. For the development of non-contact ultrasonic techniques available in non-destructive evaluation of CFRP, a recent laser-generated ultrasonic technique and an air-coupled transducer that transmit and receive ultrasounds in the air are studied [2-3]. In this study, generating and receiving techniques of laser-generated ultrasound and the characteristics of received signals upon the internal defects of CFRO were studied for non-contact inspection

  7. New developments in ultrasonic inspection of retaining rings on generators in operation

    International Nuclear Information System (INIS)

    Koch-Mathian, A.

    1990-01-01

    The ultrasonic inspection of retaining rings of operating generators has been operational since 1986. The aim of this presentation is to outline the experience acquired on many retaining rings on different types of generators. In-situ inspections have made it possible to detect more exactly the different shape echoes for the various elements located beneath the retaining ring such as rotor teeth, damping and epoxy insulation. Various methods of identifying these parts are currently being developed. Investigation on corroded retaining rings has made it possible to demonstrate the close correlation between the transverse beam detection and the presence of actual cracks identified by micrograph. The specific facies of these cracks precludes the use of classic dimensioning techniques, but a method based on longitudinal wave detection has already given encouraging results

  8. Operational aspects of the Calder Hall and Chapelcross pressure vessel ultrasonic inspections

    International Nuclear Information System (INIS)

    Bithell, S.J.; Howard, S.R.

    1993-01-01

    As a consequence of the NII's assessment of the Calder Hall and Chapelcross Long Term Safety Review, BNFplc were required to demonstrate the integrity of the Reactor Pressure Vessels through a programme of volumetric seam weld inspection. Existing equipment proved to be inadequate and necessitated the design and manufacture of a remote power manipulator and ultrasonic scanning package. Calder Hall Operations Department and Sellafield Technical Department, working closely with contract staff, completed the first stage of this technically demanding task within 14 months of the project's initiation, resulting in the first deployment of ''REDIMAN'' in March 1991. The design of the new equipment, and the technical and operational difficulties which were overcome by the Inspection Team are outlined. (author)

  9. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Directory of Open Access Journals (Sweden)

    Niederleithinger E.

    2013-07-01

    Full Text Available Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  10. The Mechatronic System Design Of Ultrasonic Scanner For Inservice Inspection Of Research Reactor

    Science.gov (United States)

    Handono, Khairul; Kristedjo, K.; Awwaluddin, M.; Shobary, Ihsan

    2018-02-01

    The mechatronic system design of ultrasonic scanner for inservices inspection of Research Reactor has been conducted. The requirement designed must be reliable operated, safety to personnel and equipments, ease of maintenance and operation, protection of equipment mechanically, interchangeability of equipments and addition of the several model of probe immersion ultrasonic tranducer. In order to achieve the above goals and obtain the desired results, a mechatronic design based on mechanical and electronic practical experiences will be needed. In this paper consist of the mechanical design and the system mechanical movement using stepper motor control. The criteria and the methods of designs of mechanical and electronic equipments of the system have been discussed and investigated. A mechanical and instrumentation control system drawing and requirement of design will be presented as the outcome of the design. The designed of mechanical system is consequently simulated by solidwork software. The intention of the above research is to create solutions in different ways of inservice inspection of integrity of Reactor.

  11. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung Sun; Lee, Jong Po; Ju, Young Sang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-11-01

    Acoustic resonance scattering from a nuclear fuel rod in water is analyzed. A new model for the background which is attributed to the interference of reflected wave and diffracted wave is found and here named {sup t}he inherent background{sup .} The resonance spectrum of a fuel rod is obtained by subtracting the inherent background from the scattered pressure. And also analyzed are the effect of material damping of cladding tube and pellet on the resonance spectrum of a fuel rod. The propagation characteristics of circumferential waves which cause the resonances of cladding tube is produced and the appropriate resonance modes for the application to the inspection of assembled fuel rods are selected. The resonance modes are experimentally measured for pre- and post-irradiated fuel rods and the validation of the fuel rod inspection using ultrasonic resonance phenomenon is examined. And thin ultrasonic sensors accessible into the narrow interval (about 2-3mm) between assembled fuel rods are designed and manufactured. 14 refs. (Author).

  12. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    Science.gov (United States)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  13. Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method

    International Nuclear Information System (INIS)

    Park, Seok Kyun; Baek, Un Chan; Lee, Han Bum; Kim, Myoung Mo

    2000-01-01

    The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of a various column in SRC structure in this study. The advantages and limitations of this method for non-destructive inspection in top down construction joints are investigated. As a result, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints using ultrasonic method

  14. Device for positioning ultrasonic probes and/or television cameras on the outer surface of reactor pressure vessels

    International Nuclear Information System (INIS)

    Zipser, R.; Dose, G.F.

    1977-01-01

    The device makes possible periodical in-service inspections of welding seams and material of a reactor pressure vessel without local human presence. A 'support ring' encloses the pressure vessel in a horizontal plane with free space. It is vertically moved up and down in the space between pressure vessel and thermal shield by means of tackles. At a control desk placed in a protected area its movement is controlled and its vertical position is indicated. A 'rotating track' with its own drive is rotating remote-controlled on the 'support ring'. By a combination of the vertical with the rotating movement, an ultrasonic probe placed removably on the 'rotating hack', or a television camera will be brought to any position on the cylindrical circumference of the pressure vessel. Special devices extend the radius of action, in upward direction for inspecting the welding seams of the coolant nozzles, and in downward direction for the inspection of welds on the hemispherical bottom of the pressure vessel or on the outlet pipe nozzle placed there. The device remains installed during reactor operation, but is moved down to the lower horizontal surface of the thermal shield. Parts which are sensible to radiation like probes or television cameras and special devices will then be removed respectively mounted before beginning an inspection compaign. This position may be reached by the lower access in the biological shield and through an opening in the horizontal surface of the thermal shield. (HP) [de

  15. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    Science.gov (United States)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be

  16. Apparatus for locating inspection device in a nuclear reactor vessel

    International Nuclear Information System (INIS)

    1980-01-01

    A method for accurately locating an inspection device with a PWR or BWR pressure vessel uses a plurity of guide members and an internal location element, the exact position of which is known. Used for defining the size, orientation and position of a flow. (U.K.)

  17. Ultrasonic wall thickness gauging for ferritic steam generator tubing as an in-service inspection tool

    International Nuclear Information System (INIS)

    Haesen, W.M.J.; Tromp, Th.J.

    1980-01-01

    In-service inspection of LWR steam generators is more or less a standard routine operation. The situation can be very different for LMFBRs. For the SNR 300 (Kalkar Power Station) the situation is different because the steam generators have ferritic tubing. The tube walls are comparatively thick, 2 to 4.5 mm. During inservice examinations the steam generators will be drained on both sides, however on the sodium side a sodium film will be present. Furthermore the SNR 300 will have two types of steam generator. A straight tube design and a helical coil design will be used. Both types consist of a evaporator and superheater. The steam generators are of course not radioactive. It is obvious that in this case the eddy current (EC) technique is not an enviable inservice inspection tool. Basically EC is a surface flaw detection technique. Only the saturation magnetisation method will improve the EC technique sufficiently for ferritic material. However the 'in bore examination' with the saturation technique was, in case of the SNR 300 steam generator tubing, considered impossible since the inner diameters are fairly small. Furthermore sodium traces may influence the EC method. Although multifrequency methods can solve this problem, EC is not considered as a useful tool for examining ferritic tubing. Another method is to employ the 'stray flux' method which is under development with the TNO organization in Holland. The EC and stray flux method do have one drawback, these methods do not detect gradual changes in wall thickness. Ultrasonic examinations will be used in the SNR 300 as the main inspection tool for the steam generators. In this paper the reasons why ultrasonic examination was selected are explained. The results of the development work on this subject are discussed

  18. Design and Functional Validation of a Complex Impedance Measurement Device for Characterization of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    De-Cock, Wouter; Cools, Jan; Leroux, Paul

    2013-06-01

    This paper presents the design and practical implementation of a complex impedance measurement device capable of characterization of ultrasonic transducers. The device works in the frequency range used by industrial ultrasonic transducers which is below the measurement range of modern high end network analyzers. The device uses the Goertzel algorithm instead of the more common FFT algorithm to calculate the magnitude and phase component of the impedance under test. A theoretical overview is given followed by a practical approach and measurement results. (authors)

  19. Evaluation of ultrasonic array imaging algorithms for inspection of a coarse grained material

    Science.gov (United States)

    Van Pamel, A.; Lowe, M. J. S.; Brett, C. R.

    2014-02-01

    Improving the ultrasound inspection capability for coarse grain metals remains of longstanding interest to industry and the NDE research community and is expected to become increasingly important for next generation power plants. A test sample of coarse grained Inconel 625 which is representative of future power plant components has been manufactured to test the detectability of different inspection techniques. Conventional ultrasonic A, B, and C-scans showed the sample to be extraordinarily difficult to inspect due to its scattering behaviour. However, in recent years, array probes and Full Matrix Capture (FMC) imaging algorithms, which extract the maximum amount of information possible, have unlocked exciting possibilities for improvements. This article proposes a robust methodology to evaluate the detection performance of imaging algorithms, applying this to three FMC imaging algorithms; Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the statistics of detection, presenting the detection performance as Probability of Detection (POD) and probability of False Alarm (PFA). The data is captured in pulse-echo mode using 64 element array probes at centre frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very similarly when comparing their flaw detection capabilities on this particular case.

  20. Device for inspecting the inside of a nuclear reactor

    International Nuclear Information System (INIS)

    Kurata, Masuo.

    1985-01-01

    Purpose: To apply illumination concentrically to a particular place and enable rapid and accurate inspection for the detailed portions by making such that the viewing direction of a television camera disposed in water and the direction of illumination of a submerged illumination tool can be varied optionally by remote control. Constitution: In the conventional inspection equipments for the inside of the reactor, a submerged illumination tool has merely been suspended by a cable and it has been difficult to effectively control the relative position with the television camera disposed in water. In this invention, the television camera disposed in water and a submerged illumination tool are rotatably disposed by way of a clamp to an inspection device main body. Then, the clamp can be rotated by the remote control and, further, the inspection device is suspended by way of a rope from a winding device disposed above the pressure vessel. In such a constitution, the submerged illumination tool can be adjusted to an optimal position to the television camera disposed in water. (Kamimura, M.)

  1. Investigation of energy dissipation in meat with an experimental ultrasonic device

    International Nuclear Information System (INIS)

    Stasiak, D.M.; Dolatowski, Z.

    2000-01-01

    The phenomena concomitant with acoustic energy dissipation in meat were studied. An experimental ultrasonic device (25-37 kHz, 2 W/square cm) was applied. Measurements of meat temperature in ultrasonic field showed the temperature rise significant for technological reasons. In this respect the changes in water absorption ability and acidity of meat were also examined

  2. A laboratory device for evaluation and study in the filed of ultrasonic transducers

    International Nuclear Information System (INIS)

    Vasiliu, S.

    1978-12-01

    A laboratory device for evaluation of the ultrasonic transducers, in view of adequate selection according to the testing requirements is presented. Recordings of ultrasonic beam of some transducers delivered as being of the same type are presented, showing important departures from specifications of the characteristics. Some of transducers evaluated have not been found acceptable for NDT in the nuclear field. (author)

  3. GRI testing facility available for pipeline inspection devices

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    As part of a program to help improve detection and characterization of defects that may occur in pipelines, the Gas Research Institute has announced the completion of the first phase of a testing facility for the evaluation of new and existing pipeline inspection technologies. GRI is a private, not-for-profit membership organization based in Chicago. The first phase of the facility consists of a pull rig which includes four 300-foot lengths of pipe with diameters of 12, 24, 30, and 36 inches. NDE inspection devices can be pulled through these pipe segments by a winch at speeds up to 25 miles per hour

  4. Inspection Correlation Study of Ultrasonic-Based In Situ Structural Health Monitoring Monthly Report for December 2014-January 2015

    Science.gov (United States)

    2015-05-01

    fatigue an induced ultrasonic elastic vibration (via piezoelectric transducers [ PZTs ]) propagates through the dogbone specimen. A receiver PZT picks up...inspection of fatigue crack growth in aluminum 7075-T6 dogbone specimens. Acellent Technologies, Inc., is supporting this project through providing...January 2015. 15. SUBJECT TERMS structural health monitoring, probabilistics, fatigue damage, guided waves, Lamb waves 16. SECURITY CLASSIFICATION OF

  5. Investigation with automatic ultrasonic equipment to trace flaws in a large test piece, and experience gained in carrying out inspections

    International Nuclear Information System (INIS)

    Lindner, J.P.

    1975-01-01

    Based on the FRG codes providing guide lines for the Reactor Safety Commission regarding the size and location of flaws to be detected during in-service inspections, investigations were carried out into the possibility of detecting defects in thick-walled reactor pressure vessel components with the aid of ultrasonic inspection systems. A large test rig was used and, in a similar manner to the in-service inspections on a reactor, the tests were carried out with remote-controlled, automatically guided inspection equipment. For this purpose, a test specimen weighing about 10 tons was produced and provided with two weld seams having a large number of artificial defects. Essential parameters for the various reflectors in the test specimen were the size, location, angle and roughness or structure of the reflecting surfaces. As it is known that austenitic cladding has a considerable influence on flaw detection, the tests were undertaken first without cladding and then with cladding. A manipulator was designed for automatic remote-controlled inspection with which the inspection system travels on a meandering route over the area to be inspected. The inspection system employed was of the same type as the one used for baseline tests during external inspections of reactor vessel walls with parallel surfaces. Digital data collection was by a magnetic tape recorder designed to store both the data of the ultrasonic inspection system as well as the allied position data. The data stored on the tape are evaluated with electronic data processing programmes especially developed for this purpose. These programmes allow locally coherent indication patterns to be prepared, thus simplifying the interpretation of the data obtained. The author initially describes the equipment with the aid of which the studies were undertaken. A detailed discussion is then presented on the design of the test specimen and the inspection systems employed. Following this, the results obtained are explained and

  6. SIIA: a knowledge-based assistant for the SAFT ultrasonic inspection system(a)

    International Nuclear Information System (INIS)

    Melton, R.B.; Doctor, S.R.; Taylor, T.T.; Badalamente, R.V.

    1987-01-01

    SIIA(b) is a knowledge-based system designed to assist in making the operation of the Synthetic Aperture Focussing Technique (SAFT) Ultrasonic Inspection System more reliable and efficient. This paper reports on their effort to develop a prototype version of SIIA to demonstrate the feasibility of using knowledge-based systems in nondestructive evaluation (NDE). The first section of the paper describes the structure of the problem and their conceptual design of the knowledge-based system. The next section describes the current state of the prototype SIIA system and relates some of their experiences in developing the system. The final section discusses their plans for future development of SIIA and the implications of this type of system for other NDE techniques and applications

  7. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Maria V., E-mail: maria.felice@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol, U.K. and NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom); Velichko, Alexander, E-mail: p.wilcox@bristol.ac.uk; Wilcox, Paul D., E-mail: p.wilcox@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol (United Kingdom); Barden, Tim; Dunhill, Tony [NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom)

    2015-03-31

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  8. Device for remote inspection and testing of a structure

    International Nuclear Information System (INIS)

    Blanc, B.; Boudou, J.; Castaing, A.; Clasquin, J.; Gallet, B.; Saglio, R.; Samoel, A.

    1976-01-01

    A self-propelled carriage for inspecting the primary vessel of a fast reactor is capable of displacement within the interspace between the primary vessel and the containment vessel in order to inspect and test any predetermined zone of the primary vessel, the carriage being associated with a drive mechanism and applied against the oppositely facing wall of the containment vessel. The carriage is suspended from a composite cable actuated by a handling apparatus for introducing the carriage into the interspace and withdrawing it therefrom. The composite cable supplies electric power as well as the different fluids required for positioning and operation of the inspection devices which are mounted on the carriage. 9 claims, 6 drawing figures

  9. Method of inspecting the function of reactor noise monitoring device

    International Nuclear Information System (INIS)

    Yamanaka, Hirohito.

    1985-01-01

    Purpose: To enable to inspect the function of a reactor noise monitoring device used for monitoring the operation abnormality in coolant circuits during reactor operation. Constitution: A cylinder incorporating a steel ball moved laterally by a pneumatic pressure is disposed to the main body of a reactor coolant circuit. A three-way solenoid valve disposed to a central control room outside to a radiation controlled area is connected with the cylinder by way of pneumatic pipeways. The three-way solenoid valve is operated for a certain period of time by a timer in the central control room to thereby impinge the steel ball in the cylinder against the main body of the coolant circuit and it is inspected as to whether the reactor noise monitoring system can detect the impinging energy or not. Accordingly, the remote control is possible from out of the radiation controlled area and the inspection work can be simplified. (Seki, T.)

  10. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Algorithms for ultrasonic imaging

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz

    2011-07-01

    This report contains research results concerning the use of advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala Univ. in 2009 and 2010. The first part of the report deals with ultrasonic imaging of damage in planar structures using Lamb waves. We present results of the first successful attempt to apply an adaptive beamformer for Lamb waves. Our algorithm is an extension of the adaptive beamformer based on minimum variance distortion less response (MVDR) approach to dispersive, multimodal Lamb waves. We present simulation and experimental results illustrating the performance of the MVDR applied to imaging artificial damage in an aluminum plate. In the second part of the report we present two extensions of the previously proposed 2D phase shift migration algorithms for enhancing resolution in ultrasonic imaging of solid objects. The first extension enables processing 3D data in order to fully utilize the resolution enhancement potential of the technique. The second extension, consists in generalizing the technique to allow for the processing of data acquired using an array instead of a previously concerned single transducer. Robustness issue related to objects having front surfaces that are slightly tilted relative to the scanning axis is also considered

  11. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Algorithms for ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences (Sweden))

    2011-07-15

    This report contains research results concerning the use of advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala Univ. in 2009 and 2010. The first part of the report deals with ultrasonic imaging of damage in planar structures using Lamb waves. We present results of the first successful attempt to apply an adaptive beamformer for Lamb waves. Our algorithm is an extension of the adaptive beamformer based on minimum variance distortion less response (MVDR) approach to dispersive, multimodal Lamb waves. We present simulation and experimental results illustrating the performance of the MVDR applied to imaging artificial damage in an aluminum plate. In the second part of the report we present two extensions of the previously proposed 2D phase shift migration algorithms for enhancing resolution in ultrasonic imaging of solid objects. The first extension enables processing 3D data in order to fully utilize the resolution enhancement potential of the technique. The second extension, consists in generalizing the technique to allow for the processing of data acquired using an array instead of a previously concerned single transducer. Robustness issue related to objects having front surfaces that are slightly tilted relative to the scanning axis is also considered

  12. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Burningham, J.S. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  13. Non fuel bearing component(NFBC) inspection device

    International Nuclear Information System (INIS)

    Kurokawa, Hideyuki; Kosaka, Tatsuya.

    1994-01-01

    The device of the present invention continuously inspects the length and abrasion/corrosion states for a plurality of non-fuel bearing components (NFBC) under water in a pit. That is, the device comprises the following components. Two sets of frames are planted vertically on a pit wall. A support stand capable of opening and closing is disposed at the upper portion of the frame to sustain each control rods of the NFBC. An abrasion/corrosion measuring tool is disposed vertically movably on the frame at the lower portion of the support stand for detecting abrasion/corrosion states on the surface of each of the fuel rods. A lifting device is disposed outside of the pit for lifting the abrasion/corrosion measuring tools. The measuring tool is disposed vertically movably at a lower portion of the frame for measuring the length of each of the control rods. Then NFBCs are inserted and positioned reliably underwater in the pit, the length of the NFBCs and the abrasion/corrosion states on the surface of the control rod can be observed, the inspecting tools can be exchanged easily since the support stand is capable of opening and closing, and the inspection can be made continuously because of the dual structure according to the present invention. (I.S.)

  14. Ultrasonic inspection of steam generator tubing for cracks, wall thinning and cross-sectional deformation

    International Nuclear Information System (INIS)

    Meyer, P.A.; Carodiskey, T.J.

    1988-01-01

    Periodic inspection of steam generator tubing is an important consideration in the efficient operation of a power generating facility. Since the operating life of these generators is finite, failures will occur. Due to the chemistry of the environment, thermal cycling, and other factors, flaws may develop that can cause rapid deterioration of the tubing while the overall performance of the unit may appear normal. In earlier presentation, the authors presented an ultrasonic bore-side array transducer which can be used with a conventional flaw detector instrument for the location of circumferential crack type defects on the outside tube surface. since that time, much additional experience has been gained on the performance of these probes. Probe performance has been characterized using fatigue crack samples and these results are reviewed. Probes have also been developed having 16 elements for use in larger diameter (25 mm) tubes. The bore-side array concept has been expanded to normal incidence tube well inspection allowing simultaneous wall thickness and eccentricity measurement which is very useful in the assessment of tube wastage and deformation. Preliminary data obtained in this area is presented

  15. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  16. In service inspection of superphenix 1 vessels: MIR

    International Nuclear Information System (INIS)

    Asty, M.; Viard, J.; Lerat, B.; Saglio, R.

    1985-02-01

    Presentation of the in-service inspection device, MIR, which has been specially developed for the visual and ultrasonic examination of Super Phenix 1 vessels (surface and internal defects). The inspections take place during fuel handling operations. The inspection device is a robot with a four-wheel drive vehicle which guidance along the welds is achieved by eddy-current devices; visual examination is performed by a television camera and ultrasonic probes are specially resistent to high temperatures

  17. Advances in model-based software for simulating ultrasonic immersion inspections of metal components

    Science.gov (United States)

    Chiou, Chien-Ping; Margetan, Frank J.; Taylor, Jared L.; Engle, Brady J.; Roberts, Ronald A.

    2018-04-01

    Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at ISU, an effort was initiated in 2015 to repackage existing research-grade software into user-friendly tools for the rapid estimation of signal-to-noise ratio (SNR) for ultrasonic inspections of metals. The software combines: (1) a Python-based graphical user interface for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signals and backscattered grain noise characteristics. The later makes use the Thompson-Gray measurement model for the response from an internal defect, and the Thompson-Margetan independent scatterer model for backscattered grain noise. This paper, the third in the series [1-2], provides an overview of the ongoing modeling effort with emphasis on recent developments. These include the ability to: (1) treat microstructures where grain size, shape and tilt relative to the incident sound direction can all vary with depth; and (2) simulate C-scans of defect signals in the presence of backscattered grain noise. The simulation software can now treat both normal and oblique-incidence immersion inspections of curved metal components. Both longitudinal and shear-wave inspections are treated. The model transducer can either be planar, spherically-focused, or bi-cylindrically-focused. A calibration (or reference) signal is required and is used to deduce the measurement system efficiency function. This can be "invented" by the software using center frequency and bandwidth information specified by the user, or, alternatively, a measured calibration signal can be used. Defect types include flat-bottomed-hole reference reflectors, and spherical pores and inclusions. Simulation outputs include estimated defect signal amplitudes, root-mean-square values of grain noise amplitudes, and SNR as functions of the depth of the defect within the metal component. At any particular depth, the user can view

  18. Data merging of infrared and ultrasonic images for plasma facing components inspection

    Energy Technology Data Exchange (ETDEWEB)

    Richou, M. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)], E-mail: marianne.richou@cea.fr; Durocher, A. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Medrano, M. [Association EURATOM - CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Martinez-Ona, R. [Tecnatom, 28703 S. Sebastian de los Reyes, Madrid (Spain); Moysan, J. [LCND, Universite de la Mediterranee, F-13625 Aix-en-Provence (France); Riccardi, B. [Fusion For Energy, 08019 Barcelona (Spain)

    2009-06-15

    For steady-state magnetic thermonuclear fusion devices which need large power exhaust capability, actively cooled plasma facing components have been developed. In order to guarantee the integrity of these components during the required lifetime, their thermal and mechanical behaviour must be assessed. Before the procurement of the ITER Divertor, the examination of the heat sink to armour joints with non-destructive techniques is an essential topic to be addressed. Defects may be localised at different bonding interfaces. In order to improve the defect detection capability of the SATIR technique, the possibility of merging the infrared thermography test data coming from SATIR results with the ultrasonic test data has been identified. The data merging of SATIR and ultrasonic results has been performed on Carbon Fiber Composite (CFC) monoblocks with calibrated defects, identified by their position and extension. These calibrated defects were realised with machining, with 'stop-off' or by a lack of CFC activation techniques, these last two representing more accurately a real defect. A batch of 56 samples was produced to simulate each possibility of combination with regards to interface location, position and extension and way of realising the defect. The use of a data merging method based on Dempster-Shafer theory improves significantly the detection sensibility and reliability of defect location and size.

  19. Data merging of infrared and ultrasonic images for plasma facing components inspection

    International Nuclear Information System (INIS)

    Richou, M.; Durocher, A.; Medrano, M.; Martinez-Ona, R.; Moysan, J.; Riccardi, B.

    2009-01-01

    For steady-state magnetic thermonuclear fusion devices which need large power exhaust capability, actively cooled plasma facing components have been developed. In order to guarantee the integrity of these components during the required lifetime, their thermal and mechanical behaviour must be assessed. Before the procurement of the ITER Divertor, the examination of the heat sink to armour joints with non-destructive techniques is an essential topic to be addressed. Defects may be localised at different bonding interfaces. In order to improve the defect detection capability of the SATIR technique, the possibility of merging the infrared thermography test data coming from SATIR results with the ultrasonic test data has been identified. The data merging of SATIR and ultrasonic results has been performed on Carbon Fiber Composite (CFC) monoblocks with calibrated defects, identified by their position and extension. These calibrated defects were realised with machining, with 'stop-off' or by a lack of CFC activation techniques, these last two representing more accurately a real defect. A batch of 56 samples was produced to simulate each possibility of combination with regards to interface location, position and extension and way of realising the defect. The use of a data merging method based on Dempster-Shafer theory improves significantly the detection sensibility and reliability of defect location and size.

  20. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  1. Study on the ultrasonic inspection method using the full matrix capture for the in service railway wheel

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jianping; Wang, Li; Zhang, Yu; Gao, Xiaorong; Wang, Zeyong; Peng, Chaoyong [NDT Research Center, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-02-18

    The quality of wheel is especially important for the safety of high speed railway. In this paper, a new ultrasonic array inspection method, the Full Matrix Capture (FMC) has been studied and applied to the high speed railway wheel inspection, especially in the wheel web from the tread. Firstly, the principle of FMC and TFM algorithm is discussed, and then the new optimization is applied to the standard FMC; Secondly the fundamentals of optimization is described in detail and the performance is analyzed. Finally, the experiment has been built with a standard phased array block and railway wheel, and then the testing results are discussed and analyzed. It is demonstrated that this change for the ultrasonic data acquisition and image reconstruction has higher efficiency and lower cost comparing to the FMC's procedure.

  2. Operation aid device upon periodical inspection of nuclear power plant

    International Nuclear Information System (INIS)

    Fukusaka, Ryoji.

    1997-01-01

    The present invention provides an operation aid device upon periodical inspection of a nuclear power plant, capable of controlling a plurality of control rods safely at good operation efficiency while maintaining subcritical state. Namely, a fuel exchange computer controls an operation for exchanging fuel assemblies upon periodical inspection. An operation aiding computer aids the exchanging operation of fuel assemblies. A control rod position monitoring device allows withdrawal of one control rod under the condition of establishment of entire control rod insertion signal upon operation of exchanging fuel assemblies. Whether all of the four fuel assemblies around one control rod have been entirely taken out or not is judged based on information on the fuel assembly exchanging operation. When conditions for the judgement for operation aiding computer are established, the all insertion signals for the entire control rods as the condition for the withdrawal of the control rods are bypassed, and operation enable signals for plurality control rods are outputted to a control rod manual operation device. (I.S.)

  3. Recent experiences with ultrasonic inservice inspection systems with phased array probes on spherical bottoms of boiling water reactors

    International Nuclear Information System (INIS)

    Wustenberg, H.; Brekow, G.; Erhard, A.; Hein, E.

    1988-01-01

    The special geometry of the spherical bottom of boiling water reactors with control rods and measuring nozzles requires a very special surveillance technique during the in-service inspection. Reside visual inspection an ultrasonic inspection has been established due to the requirements of German authorities. A first application of a new phased array system took place August 1987. The 100% inspection of a spherical bottom had been enabled by the application of phased array probes with electronically controlled skewing angles. The data acquisition had been based on the storage of whole A-scans, which had been pixellized into 256 points. This A-scan storage procedure makes possible the application of a simple and fast algorithm to present the data as TD-(time displacement)-scans. Defect reconstruction by echotomographique approaches are under development. This paper presents the ultrasonic technique applied including the phased array probes, the electronic system, as well as the software package used for the control of the inspection parameters depending on the probe position

  4. Innovative Ultrasonic Testing (UT) of nuclear components by sampling phased array with 3D visualization of inspection results

    OpenAIRE

    Pudovikov, Sergey; Bulavinov, Andrey; Pinchuk, Roman

    2011-01-01

    Unlike other industrial branches, nuclear industry - when performing UT- is not only asking for a reliable detection, but also for an exact sizing of material defects. Under these objectives ultrasonic imaging plays an important role in practical testing of nuclear components in the data evaluation process as well as for documentation of the inspection results. 2D and 3D sound-field steering by means of phased array technology offers great opportunities for spatially correct visualization of ...

  5. Design and Demonstration of Automated Data Analysis Algorithms for Ultrasonic Inspection of Complex Composite Panels with Bonds

    Science.gov (United States)

    2016-02-01

    all of the ADA called indications into three groups: true positives (TP), missed calls (MC) and false calls (FC). Note, an indication position error...data review burden and improve the reliability of the ultrasonic inspection of large composite structures, automated data analysis ( ADA ) algorithms...thickness and backwall C-scan images. 15. SUBJECT TERMS automated data analysis ( ADA ) algorithms; time-of-flight indications; backwall amplitude dropout

  6. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  7. A contribution to phased array ultrasonic inspection of welds: defect patterns and sizing capability

    Energy Technology Data Exchange (ETDEWEB)

    Ciorau, P., E-mail: peter.ciorau@opg.com [Ontario Power Generation Inc., Inspection, Maintenance and Commercial Services, Tiverton, Ontario (Canada)

    2008-07-01

    The paper presents defect patterns for weld inspection detected with phased array ultrasonic technology (PAUT). The sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 70% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and comparable to time of flight diffraction (TOFD) ideal tolerances. (author)

  8. A contribution to phased array ultrasonic inspection of welds: defect patterns and sizing capability

    International Nuclear Information System (INIS)

    Ciorau, P.

    2008-01-01

    The paper presents defect patterns for weld inspection detected with phased array ultrasonic technology (PAUT). The sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 70% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and comparable to time of flight diffraction (TOFD) ideal tolerances. (author)

  9. GTSP, automatic ultrasonic inspection of Guide Tube Support Pin in nuclear power plants

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: GTSP Visitor is a program for automatic detection of known object's position in video frames. It is especially designed for automatic ultrasonic inspection of guide tube support pin (GTSP) in nuclear power plant. 2 - Methods: A GTSP and its position are detected by two-step matched filter algorithm. In first step, a video frame including GTSPs are transformed by DFT. DFTed image is multiplied by matched filter, made from a guide tube image, in frequency domain for estimate Guide Tube center position. Guide Tube areas around estimated center position are erased (pixel values of image are filled with zeros). In next step, image whose guide tube areas were erased is processed as described above but using a different matched filter made from a support pin?s image. Then the positions of two GTSPs are estimated and their orientation is estimated too. Finally its position and orientations are used for control the robot toward the desired position. 3 - Restrictions on the complexity of the problem: Robot control is out of the scope of this program. OpenCV and compatible camera are necessary

  10. Design and analysis of ultrasonic monaural audio guiding device for the visually impaired.

    Science.gov (United States)

    Kim, Keonwook; Kim, Hyunjai; Yun, Gihun; Kim, Myungsoo

    2009-01-01

    The novel Audio Guiding Device (AGD) based on the ultrasonic, which is named as SonicID, has been developed in order to localize point of interest for the visually impaired. The SonicID requires the infrastructure of the transmitters for broadcasting the location information over the ultrasonic carrier. The user with ultrasonic headset receives the information with variable amplitude upon the location and direction of the user due to the ultrasonic characteristic and modulation method. This paper proposes the monaural headset form factor of the SonicID which improves the daily life of the beneficiary compare to the previous version which uses the both ears. Experimental results from SonicID, Bluetooth, and audible sound show that the SonicID demonstrates comparable localization performance to the audible sound with silence to others.

  11. Development of an ultrasonic nondestructive inspection method for impact damage detection in composite aircraft structures

    Science.gov (United States)

    Capriotti, M.; Kim, H. E.; Lanza di Scalea, F.; Kim, H.

    2017-04-01

    High Energy Wide Area Blunt Impact (HEWABI) due to ground service equipment can often occur in aircraft structures causing major damages. These Wide Area Impact Damages (WAID) can affect the internal components of the structure, hence are usually not visible nor detectable by typical one-sided NDE techniques and can easily compromise the structural safety of the aircraft. In this study, the development of an NDI method is presented together with its application to impacted aircraft frames. The HEWABI from a typical ground service scenario has been previously tested and the desired type of damages have been generated, so that the aircraft panels could become representative study cases. The need of the aircraft industry for a rapid, ramp-friendly system to detect such WAID is here approached with guided ultrasonic waves (GUW) and a scanning tool that accesses the whole structure from the exterior side only. The wide coverage of the specimen provided by GUW has been coupled to a differential detection approach and is aided by an outlier statistical analysis to be able to inspect and detect faults in the challenging composite material and complex structure. The results will be presented and discussed with respect to the detection capability of the system and its response to the different damage types. Receiving Operating Characteristics curves (ROC) are also produced to quantify and assess the performance of the proposed method. Ongoing work is currently aimed at the penetration of the inner components of the structure, such as shear ties and C-frames, exploiting different frequency ranges and signal processing techniques. From the hardware and tool development side, different transducers and coupling methods, such as air-coupled transducers, are under investigation together with the design of a more suitable scanning technique.

  12. State-of-practice review of ultrasonic in-service inspection of Class I system piping in commercial nuclear power plants

    International Nuclear Information System (INIS)

    Morris, C.J.; Becker, F.L.

    1982-08-01

    The Pacific Northwest Laboratory conducted a survey to determine the state of practice of ultrasonic in-service inspection of primary system piping in light water reactors. Personnel at four utilities, five inspection organizations, and three domestic reactor manufacturers were interviewed. The intention of the study was to provide a better understanding of the actual practices employed in in-service inspection of primary system piping and of the difficulties encountered

  13. Phased array concept for the ultrasonic inservice inspection of the spherical bottom of BWR-pressure vessels

    International Nuclear Information System (INIS)

    Brekow, G.; Wuestenberg, H.; Moehrle, W.; Schulz, E.

    1989-01-01

    The spherical bottom of BWR-pressure vessels contains holes for the nozzles of control rods and instrumentation. Up to now the detectable areas for the ultrasonic inspection are the accessible ligaments between the nozzles with an orientation parallel and transverse to the manipulator rails. Some licensing authorities demand an inspection technique capable of reliably detecting significant crack initiation in all critical areas near the cladding of the spherical inner surface. By order and in cooperation with the HEW we have developed a computer controlled equipment with two ultrasonic probes containing four linear arrays and a digitized A-scan storage for documentation and evaluation of inspection results. The manipulator guided probe movement in the paths between the nozzles of the spherical bottom is controlled by a computer program. This program determines for each array system and for each coupling position the beam angle as a function of the variable skewing angle to realize detection conditions suited to possible crack positions at the longitudinal, transverse and diagonal ligaments between the nozzles for control rods and instrumentation. (orig./HP)

  14. 9 CFR 312.3 - Official marks and devices to identify inspected and passed equine products.

    Science.gov (United States)

    2010-01-01

    ... inspected and passed equine products. 312.3 Section 312.3 Animals and Animal Products FOOD SAFETY AND... § 312.3 Official marks and devices to identify inspected and passed equine products. (a) The official... § 317.2 of this subchapter to identify inspected and passed mule and other (nonhorse) equine carcasses...

  15. Cordless ultrasonic dissector versus advanced bipolar vessel sealing device for laparoscopic ovariectomy in dogs

    NARCIS (Netherlands)

    Spillebeen, Anneleen L; Janssens, Sara S D S; Thomas, Rachel E; Kirpensteijn, Jolle; van Nimwegen, Sebastiaan A

    OBJECTIVE: To compare Sonicision cordless ultrasonic dissector (SCUD) to LigaSure vessel sealing device (LVSD) for laparoscopic ovariectomy (Lap OVE) in dogs. STUDY DESIGN: Randomized, paired prospective clinical trial. ANIMALS: Client-owned dogs (n = 22) presented for elective Lap OVE. METHODS:

  16. Characterization of the ultrasonic welding process in the production of women's health devices

    International Nuclear Information System (INIS)

    Morales Elizondo, Jenniffer

    2014-01-01

    The characterization of the ultrasonic welding process in the area of women's health is performed to determine appropriate levels for the critical variables of the process to guarantee the quality specifications of the devices. The handle of the product A is detached. The assembly was made under pressure. Available technologies have been studied to comply with the regulations of medical industry to propose a change in process to a product B. The ultrasonic technology is used to weld the handle of the device to prevent the release of the two parts of the handle of the medical device. A variable characterization process was performed to determine which variables are critical to the process and define the operation parameters of ultrasonic welding. A number of designs of experiments is carried out, first the parameters behavior of the equipment is evaluated to analyze which have greater influence on the quality of the weld. A full factorial design was developed with all process input variables and input variables that are significant was performed another series of designs of experiments to determine the parameters of the process.The conclusion for the ultrasonic welding process in the product B has been that the critical variables or that have had a greater influence on the quality and appearance in experienced designs are: pressure and soldier collapse. The process of ultrasonic welded cycle has started to arrive at the value of driving force that tells the computer. The input variable is recommended to be the lowest possible to weld components using the ordering of particles product of ultrasonic welded avoiding compression component. (author) [es

  17. Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2004-01-01

    Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented

  18. Development of high-sensitivity ultrasonic techniques for in-service inspection of nuclear reactors

    International Nuclear Information System (INIS)

    Linzer, M.

    1977-01-01

    The principal objective of the program is to develop techniques to enhance the sensitivity of ultrasonic signals which are below the random noise of the system. A secondary objective is to develop instrumentation for improved discrimination of flaw signals from background ''clutter'' and for characterization of failure-related material properties through measurements of ultrasonic parameters such as velocity and attenuation. The improved techniques will be applied to detect flaws in nuclear reactor materials and components

  19. The effectiveness of chemical denture cleansers and ultrasonic device in biofilm removal from complete dentures

    Directory of Open Access Journals (Sweden)

    Patrícia Costa Cruz

    2011-12-01

    Full Text Available Adequate denture hygiene can prevent and treat infection in edentulous patients. They are usually elderly and have difficulty for brushing their teeth. OBJECTIVE: This study evaluated the efficacy of complete denture biofilm removal using chemical (alkaline peroxide-effervescent tablets, mechanical (ultrasonic and combined (association of the effervescent and ultrasonic methods. MATERIAL AND METHODS: Eighty complete denture wearers participated in the experiment for 21 days. They were distributed into 4 groups (n=20: (1 Brushing with water (Control; (2 Effervescent tablets (Corega Tabs; (3 Ultrasonic device (Ultrasonic Cleaner, model 2840 D; (4 Association of effervescent tablets and ultrasonic device. All groups brushed their dentures with a specific brush (Bitufo and water, 3 times a day, before applying their treatments. Denture biofilm was collected at baseline and after 21 days. To quantify the biofilm, the internal surfaces of the maxillary complete dentures were stained and photographed at 45º. The photographs were processed and the areas (total internal surface stained with biofilm quantified (Image Tool 2.02. The percentage of the biofilm was calculated by the ratio between the biofilm area multiplied by 100 and the total area of the internal surface of the maxillary complete denture. RESULTS: The Kruskal-Wallis test was used for comparison among groups followed by the Dunn multiple-comparison test. All tests were performed respecting a significance level of 0.05. Significant difference was found among the treatments (KW=21.18; P<0.001, the mean ranks for the treatments and results for Dunn multiple comparison test were: Control (60.9; Chemical (37.2; Mechanical (35.2 and Combined (29.1. CONCLUSION: The experimental methods were equally effective regarding the ability to remove biofilm and were superior to the control method (brushing with water. Immersion in alkaline peroxide and ultrasonic vibration can be used as auxiliary agents

  20. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    Science.gov (United States)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  1. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems

    2004-09-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.

  2. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz; Olofsson, Tomas; Wennerstroem, Erik

    2006-12-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the ω-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization

  3. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Olofsson, Tomas; Wennerstroem, Erik [Uppsala Univ., Dept. of Technical Sciences (Sweden). Signals and Systems

    2006-12-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the {omega}-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization.

  4. Development of a multi-beam laser ultrasonic inspection system and its application on flaw sizing

    International Nuclear Information System (INIS)

    Chivavibul, Pornthep; Lin, Shan; Fukutomi, Hiroyuki; Higuchi, Sadao; Ogata, Takashi; Fukuchi, Tetsuo

    2006-01-01

    Laser ultrasonic technique is a powerful tool for non-contact, nondestructive testing of materials. It is expected to apply to where the conventional ultrasonic technique is not applicable. However, this technique suffers from low sensitivity. In order to overcome this shortcoming, a multi-beam laser ultrasonic system was developed to increase signal-to-noise ratio (SNR) and steer beam direction. The system consisted of eight pulsed Nd:YAG lasers used for ultrasonic generation, and a two-wave mixing interferometer with a long-pulsed Nd:YAG used for ultrasonic detection. Spatial and temporal control of the firing of the individual lasers permitted the generation of both phased array single pulse and narrow-band ultrasonic signals. The performance of developed system was verified using aluminum specimens with the wave generation in a slight ablation mode. A significant increase in sensitivity was obtained, with an increase in signal amplitude with no change in noise level. In the narrow band case, tone bursts were successfully generated in both surface and bulk waves. Beam steering of bulk waves was also performed, and the directivity was confirmed by visualization using a conventional transducer. The developed system was applied to flaw sizing using two techniques: shadow and short-path of diffraction (SPOD), using aluminum specimens with 2-mm, 5-mm, 8-mm slit depths. The shadow technique accurately measured the 5- and 8-mm slits, but not the 2-mm slit. The SPOD technique, carried out using a 5-MHz normal longitudinal transducer as a detector instead of TWN interferometer, accurately measured slits in all specimens with an error less than 0.5 mm. (author)

  5. Ultrasonic inspection of liquid-metal-filled austenitic stainless steel piping welds

    International Nuclear Information System (INIS)

    Mech, S.J.; Martin, J.D.

    1982-01-01

    The goal of this effort is to reliably detect a crack extending 25 to 50% through the wall of Schedule 40 sodium filled pipe at refueling temperatures (204 0 C [400 0 F]) using remote examination techniques. The task of demonstrating a prototype ultrasonic ISI system under simulated refueling conditions was laid out in two phases. The first phase was initiation of long-lead efforts which were key elements of a practical prototype system, including ultrasonic signal analysis efforts and laboratory prototype support systems. The second phase, dependent on successful completion of the first, consisted of development and demonstration of a prototype system in a simulated ISI environment

  6. Computer-controlled ultrasonic equipment for automatic inspection of nuclear reactor components after manufacturing

    International Nuclear Information System (INIS)

    Moeller, P.; Roehrich, H.

    1983-01-01

    After foundation of the working team ''Automated US-Manufacture Testing'' in 1976 the realization of an ultrasonic test facility for nuclear reactor components after manufacturing has been started. During a period of about 5 years, an automated prototype facility has been developed, fabricated and successfully tested. The function of this facility is to replace the manual ultrasonic tests, which are carried out autonomically at different stages of the manufacturing process and to fulfil the test specification under improved economic conditions. This prototype facility has been designed as to be transported to the components to be tested at low expenditure. Hereby the reproduceability of a test is entirely guaranteed. (orig.) [de

  7. Reliability of measuring pelvic floor elevation with a diagnostic ultrasonic imaging device

    OpenAIRE

    Ubukata, Hitomi; Maruyama, Hitoshi; Huo, Ming

    2015-01-01

    [Purpose] The purpose of this study was to investigate the reliability of measuring the amount of pelvic floor elevation during pelvic and abdominal muscle contraction with a diagnostic ultrasonic imaging device. [Subjects] The study group comprised 11 healthy women without urinary incontinence or previous birth experience. [Methods] We measured the displacement elevation of the bladder base during contraction of the abdominal and pelvic floor muscles was measured using a diagnostic ultrasoni...

  8. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double-Shell Tanks - FY 2001

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    2000-01-01

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities, plan for performance demonstration testing, and a plan for field activities. Also included are a Statement of Work for contractor performance and a protocol to be followed should tank flaws that exceed the acceptance criteria are found

  9. Ultrasonic inspection recess in heat exchanger and nuclear steam generator tubesheets

    International Nuclear Information System (INIS)

    Parkinson, J.K.; Ruhe, A.

    1975-01-01

    A vessel with a butted weld seam is provided with an access slot in its surface at a selected distance from the weld seam. An ultrasonic probe engages with a wall of the slot which is aligned with the weld and signals generated by the probe cross the axis of the weld frontally without substantial reflection from adjacent vessel surfaces

  10. Mechanized ultrasonic inspection of austenitic pipe systems; Mechanisierte Ultraschallpruefung von austenitischen Rohrleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, K.; Luecking, J.; Medenbach, S. [ABB ZAQ GmbH, Essen (Germany)

    1999-08-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [Deutsch] Das Ziel dieses Beitrages ist die Vorstellung der von der ABB ZAQ GmbH eingesetzten Standardprueftechniken fuer die Pruefung austenitischer Anlagenkomponenten. Im einzelnen wird die Grundwerkstoffpruefung (Rohre, Boegen, Formstuecke), die Schweissnahtpruefung und die Mischnahtpruefung angesprochen. Es werden dabei die Techniken fuer `Detection` und `Sizing` differenziert betrachtet und erlaeutert. (orig.)

  11. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    Directory of Open Access Journals (Sweden)

    Margherita Capriotti

    2017-06-01

    Full Text Available This paper discusses a non-destructive evaluation (NDE technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI from ground service equipment (GSE, such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  12. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Science.gov (United States)

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  13. Automated ultrasonic testing of nuclear reactor welds and overlays in pre-service and in-service inspections

    International Nuclear Information System (INIS)

    Sladky, J.

    1988-01-01

    Since 1982, automatic pre-service and in-service checks are being made of welded joints and overlays on pressure vessels of WWER-440 nuclear reactors in Czechoslovakia. This is being done using the SKODA REACTORTEST TRC facility which is used for checking peripheral welded joints on the pressure vessel, neck joints, overlays in other selected areas of the cylindrical section of the pressure vessel, on radius transitions of the pressure vessel and of necks, and on the cylindrical part of necks, and also for checking the base material in selected parts of the pressure vessel and the base material of the neck extension piece. The tests are of two types, namely tests of peripheral welds and overlays of the cylindrical parts of the pressure vessel, and tests of the necks. Different ultrasonic probe holders are used for the tests, with totally different design. Ultrasonic probes which were initially used were of foreign make while at present, those of Czechoslovak make are used. For each pressure vessel a set of ultrasonic probes is used which should suffice for the life of the vessel. Experience gained so far is being used in work on the project of a new device for testing nuclear reactor presure vessels from the inside. (Z.M.)

  14. Application of ICT in the non-destructive inspection of explosive device

    International Nuclear Information System (INIS)

    Wang Zhe; Li Tiantuo; Liu Zhiqiang; Pei Zhihua; Wang Zhiping

    2003-01-01

    The inspection of explosive device is an important task in the store of the weapons. The technique of non-destructive examination with radial, especially the ICT, is an effective method. The paper mainly introduces the design and the theories on the inspection system and software system of the application of industrial ICT in the non-destructive examination of explosive device, and gives a reference to the work in such fields

  15. Automatic ultrasonic pre-service, and in-service inspection of pressurized components of the primary circuit of nuclear power stations

    International Nuclear Information System (INIS)

    Muller, G.P.; Hallermeier, L.; Heinrich, D.; Grabendorfer, W.; Rebrmann, M.

    1985-01-01

    Ultrasonic pre-service and especially in-service inspection activities on the primary circuit of nuclear power stations form an essential part of the maintenance work that must be performed throughout the lifetime to ensure plant integrity. Consequently, the equipment required to carry out these inspections must be continuously improved in respect of reliability, safety, accuracy and ease of handling in order to minimize disturbances and repairs and reduce radiation exposure of the personnel. The authors' discussion of technique, equipment and performance of automated ultrasonic inspection is based on 15 years of experience in the testing of components of the primary circuit in nuclear power stations. To cover all inspection areas of the RPV of a PWR, four different manipulators are required, two for the closure head, one for the studs and one for the cylindrical shell and bottom closure. The use of the newly developed equipment, which naturally meets all the recommendations of the licensing authorities, allows for the automatic inspection of the components of primary circuit of nuclear power stations and the thus helps to substantially decrease the radiation exposure of the personnel. All the manipulators and their control consoles were designed and manufactured by M.A.N., Nuremberg while the ultrasonic electronic system was developed by Krautkramer, Cologne

  16. A novel ultrasonic phased array inspection system to NDT for offshore platform structures

    Science.gov (United States)

    Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping

    2007-01-01

    A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.

  17. The development of PC-based real time ultrasonic metal thickness inspection system

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohd Hanif Md Saad; Mohamad Pauzi Ismail; Ab Razak Hamzah; Abd Nassir Ibrahim; Amri Amin Abas

    2006-01-01

    This paper discusses the development of a PC-Based Real Time Ultrasonic Thickness Measurement system (UTMS) for metallic components such as pipes, pressure vessels and metal slabs. Metal thickness measurement for these components is crucial in industrial plants with dangerous environment, such as in oil and gas industry. From the measured metal thickness, a number of deductions could be made, for example the state and the rate of corrosion propagation inside a pipe or pressure vessel, etc. One of the most widely used methods in assessing metal thickness in industry is through the use of Ultrasonic technology. The benefits of using UTMS lies in the flexibility of data analysis, which includes signal processing, feature extraction, visualization capability and intelligent diagnosis. Data can be acquired in real-time and stored for future usage and application. The system was developed as a standalone computer software using Microsoft Visual-BASIC 6. (Author)

  18. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water

    Science.gov (United States)

    Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.

    2015-03-01

    In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).

  19. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.

    Science.gov (United States)

    Vihvelin, Hugo; Leadbetter, Jeff; Bance, Manohar; Brown, Jeremy A; Adamson, Robert B A

    2016-04-01

    Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between the transmitter and receiver. This sensitivity can cause large swings in efficiency and presents a serious limitation on battery life and overall performance. A practical ultrasonic transcutaneous energy transfer (UTET) system design must accommodate different implant depths and unpredictable acoustic changes caused by tissue growth, hydration, ambient temperature, and movement. This paper describes a method used to compensate for acoustic separation distance by varying the transmit (Tx) frequency in a UTET system. In a benchtop UTET system we experimentally show that without compensation, power transfer efficiency can range from 9% to 25% as a 5 mm porcine tissue sample is manipulated to simulate in situ implant conditions. Using an active frequency compensation method, we show that the power transfer efficiency can be kept uniformly high, ranging from 20% to 27%. The frequency compensation strategy we propose is low-power, non-invasive, and uses only transmit-side measurements, making it suitable for active implanted medical device applications.

  20. Ultrasonic inspection of steam generator tubes in Superphenix F.B.R. Power plant

    International Nuclear Information System (INIS)

    Gondard, C.

    1991-01-01

    An ultrasonic method has been developed to test of the S.G's tubes of SPX fast breeder reactor. A new type of rotating probes for cracks and wall thickness measurements have been built up and successfully tested. The data acquisition and processing system SPARTACUS was used; it allows high frequency digitalization and powerful signal processings using frequency representations. The actual performances were tested on natural defects under representative operating conditions

  1. Qualification of Manual Phased Array Ultrasonic Techniques for Pipe Weld Inspection in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, J.; Hayes, P.; Vicat, F. [GE Inspection Technologies (United States)

    2011-07-01

    Phasor XS can be used for piping weld inspection in any facilities that use EPRI procedures (example: nuclear power plant in Usa, Japan, ...). Whole pipe range is inspected with 5 probes and 6 wedges: 4 1-dimensional probe for sound wave scanning (different frequency, different apertures); 1 dual matrix probe for LW scanning; there are 3 types of wedges optimized for weld inspection. Weld is scanned in 'Raster Scan', maximum range from 35 up to 80 degrees. Probe selection is defined in the procedure according to pipe diameter, pipe thickness and type of access (single or dual side). We have to note that datasets for dual matrix probe are provided with the procedure because this kind of probe cannot be programmed inside Phasor XS

  2. Defect characterization by an adaptive learning classifier in ultrasonic inspection of ferritic materials

    International Nuclear Information System (INIS)

    Grozellier, M.; Bieth, M.; Romy, D.

    1985-01-01

    The purpose of the work presented here is to determine the efficiency and reliability of the discrimination method ''Adapatative Learning Network''. This process is used to identify the nature of defects detected during Ultrasonic Testing (UT), by analysing some of the echo parameters calculated in temporal and frequency domains. The survey which dealt with several hundreds of echoes, revealed that the machined artificial reflectors, well defined geometrically, were identified with a probability exceeding 95 %. The fatigue cracks, producing less characteristic echoes, are identified with a slightly lower probability (90 % - 95 %)

  3. An ultrasonic guided wave approach for the inspection of overhead transmission line cables

    DEFF Research Database (Denmark)

    Yücel, Mehmet K.; Legg, Mathew; Kappatos, Vasileios

    2017-01-01

    as a non-destructive testing technique is well established for simple geometries such as plates, pipes, and rods. However, its application for multi-wire cables is still in development. In this study, ultrasonic guided waves excited by a shear mode transducer collar are utilised as a defect detection...... technique for untensioned aluminium conductor steel reinforced cable specimens. The identification and analysis of wave propagation for a broad range of frequencies is performed using a laser scanning vibrometer, and the effect of defect size on wave propagation is studied. Signal processing algorithms...

  4. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    International Nuclear Information System (INIS)

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George; Reverdy, Frederic; Hopkins, Deborah

    2006-01-01

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size

  5. Application of ultrasonic inspection data in strength calculations for nuclear power plant equipment

    International Nuclear Information System (INIS)

    Ovchinnikov, A.V.; Rivkin, E.Yu.; Vasilchenko, G.S.; Zvezdin, Yu.I.

    1991-01-01

    Several kinds of test specimens were produced with three types of defects of defined sizes and positions in the particular localities of weld joints. Such specimens have been used for defect parameter characterization by ultrasonic testing. The principles for schematization of such defects and the formulae for the stress intensity factor calculations for elliptical and semielliptical cracks have been worked out. Methods for defining the sizes of defect which are acceptable have been designed for use for use on operational nuclear power plant equipment and take account of the mutual effects of the force, thermal and residual stresses. The method can be used in the brittle, transitional and tough material state. (author)

  6. Development of a Fibre-Phased Array Laser-EMAT Ultrasonic System for Defect Inspection

    International Nuclear Information System (INIS)

    Pei, C; Demachi, K; Koyama, K; Uesaka, M; Fukuchi, T; Chen, Z

    2014-01-01

    In this work, a phased array laser ultrasound system with using fibre optic delivery and a custom-designed focusing objective lens has been developed for enhancing the ultrasound generation. The fibre-phased array method is applied to improve the sensitivity and detecting ability of the laser-EMAT system for defect inspection

  7. A Combined Structural and Electromechanical FE Approach for Industrial Ultrasonic Devices Design

    Science.gov (United States)

    Schorderet, Alain; Prenleloup, Alain; Colla, Enrico

    2011-05-01

    Ultrasonic assistance is widely used in manufacturing, both for conventional (e.g. grinding, drilling) and non-conventional (e.g. EDM) processes. Ultrasonic machining is also used as a stand alone process for instance for micro-drilling. Industrial application of these processes requires increasingly efficient and accurate development tools to predict the performance of the ultrasonic device: the so-called sonotrode and the piezo-transducer. This electromechanical system consists of a structural part and of a piezo-electrical part (actuator). In this paper, we show how to combine two simulation softwares—for stuctures and electromechanical devices—to perform a complete design analysis and optimization of a sonotrode for ultrasonic drilling applications. The usual design criteria are the eigenfrequencies of the desired vibrational modes. In addition, during the optimization phase, one also needs to consider the maximum achievable displacement for a given applied voltage. Therefore, one must be able to predict the electromechanical behavior of the integrated piezo-structure system, in order to define, adapt and optimize the electric power supply as well as the control strategy (search, tracking of the eigenfrequency). In this procedure, numerical modelling follows a two-step approach, by means of a solid mechanics FE code (ABAQUS) and of an electromechanical simulation software (ATILA). The example presented illustrates the approach and describes the obtained results for the development of an industrial sonotrode system dedicated to ultrasonic micro-drilling of ceramics. The 3D model of the sonotrode serves as input for generating the FE mesh in ABAQUS and this mesh is then translated into an input file for ATILA. ABAQUS results are used to perform the first optimization step in order to obtain a sonotrode design leading to the requested modal behaviour—eigen-frequency and corresponding dynamic amplification. The second step aims at evaluating the dynamic

  8. On the possible ultrasonic inspection of micro-bubbles generated by the optical fiber tip

    Directory of Open Access Journals (Sweden)

    V. V. Kazakov

    2016-09-01

    Full Text Available We demonstrate the possibility of detection and monitoring of bubbles emerging near the tip of an optical fiber by means of ultrasonic method. The excitation of bubbles at their resonant frequencies is performed using short ultrasonic pulses having a wide frequency range simultaneously with their modulation by means of a long pulse of a monochromatic frequency. This method allows detection of bubbles of various sizes. Used signal processing method, which allows increased bubble detection accuracy, is proposed for research in environments of biological-like medium which show continuous variations in structure and properties when exposed to optical emission. The method has been demonstrated on model objects: in a liquid and in a biological tissue phantom using various methods of bubble generation (hydrolysis and optical emission. We studied bubble formation by the tip of a fiber of the surgical laser LSP-007/10 “IRE Polus” with a wavelength of 0.97μm coated with a highly absorbing graphite layer.

  9. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    Science.gov (United States)

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  10. An ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anish, E-mail: anish@igcar.gov.in; Rajkumar, K.V.; Sharma, Govind K.; Dhayalan, R.; Jayakumar, T.

    2015-02-15

    Highlights: • We demonstrate a novel ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast breeder reactor. • The methodology comprises of the inspection of shell weld immersed in sodium from the outside surface of the main vessel using ultrasonic guided wave. • The formation and propagation of guided wave modes are validated by finite element simulation of the inspection methodology. • A defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably using the developed methodology. - Abstract: The paper presents a novel ultrasonic methodology developed for in-service inspection (ISI) of shell weld of core support structure of main vessel of 500 MWe prototype fast breeder reactor (PFBR). The methodology comprises of the inspection of shell weld immersed in sodium from the outsider surface of the main vessel using a normal beam longitudinal wave ultrasonic transducer. Because of the presence of curvature in the knuckle region of the main vessel, the normal beam longitudinal wave enters the support shell plate at an angle and forms the guided waves by mode conversion and multiple reflections from the boundaries of the shell plate. Hence, this methodology can be used to detect defects in the shell weld of the core support structure. The successful demonstration of the methodology on a mock-up sector made of stainless steel indicated that an artificial defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably.

  11. Analysis of an ultrasonic level device for in-core Pressurized Water Reactor coolant detection

    International Nuclear Information System (INIS)

    Johnson, K.R.

    1981-01-01

    A rigorous semi-empirical approach was undertaken to model the response of an ultrasonic level device (ULD) for application to in-core coolant detection in Pressurized Water Reactors (PWRs). An equation is derived for the torsional wave velocity v/sub t phi/ in the ULD. Existing data reduction techniques were analyzed and compared to results from use of the derived equation. Both methods yield liquid level measurements with errors of approx. 5%. A sensitivity study on probe performance at reactor conditions predicts reduced level responsivity from data at lower temperatures

  12. Short Lingual Osteotomy Using a Piezosurgery Ultrasonic Bone-Cutting Device During Sagittal Split Ramus Osteotomy.

    Science.gov (United States)

    Kawase-Koga, Yoko; Mori, Yoshiyuki; Kanno, Yuki; Hoshi, Kazuto; Takato, Tsuyoshi

    2015-10-01

    Short lingual osteotomy is a useful method for the performance of sagittal split ramus osteotomy involving interference between the proximal and distal bone fragments when lateral differences exist in the setback distance. However, this procedure occasionally results in abnormal fracture and nerve injury; expert surgical skill is thus required. We herein describe a novel technique involving the use of an ultrasonic bone-cutting device (Piezosurgery; Mectron Medical Technology, Carasco, Italy) for vertical osteotomy posterior to the mandibular foramen. Successful short lingual osteotomy was performed using this technique with avoidance of abnormal fracture and neurovascular bundle damage.

  13. Development of an ultrasonic weld inspection system based on image processing and neural networks

    Science.gov (United States)

    Roca Barceló, Fernando; Jaén del Hierro, Pedro; Ribes Llario, Fran; Real Herráiz, Julia

    2018-04-01

    Several types of discontinuities and defects may be present on a weld, thus leading to a considerable reduction of its resistance. Therefore, ensuring a high welding quality and reliability has become a matter of key importance for many construction and industrial activities. Among the non-destructive weld testing and inspection techniques, the time-of-flight diffraction (TOFD) arises as a very safe (no ionising radiation), precise, reliable and versatile practice. However, this technique presents a relevant drawback, associated to the appearance of speckle noise that should be addressed. In this regard, this paper presents a new, intelligent and automatic method for weld inspection and analysis, based on TOFD, image processing and neural networks. The developed system is capable of detecting weld defects and imperfections with accuracy, and classify them into different categories.

  14. Results from ultrasonic wave inspections for the detection and dimensioning of fatigue crack propagation

    International Nuclear Information System (INIS)

    Gondard, C.

    1989-01-01

    The results from a study performed on the fatigue crack propagation in PWR vessels are discussed. The purpose of the investigation is to establish a relationship between the length, the place of a defect and the structure's residual life. The tests and the 6 inspections carried out during 5 years are reported. The results show that a defect traversing the structure is expected at the end 1989. The large amount of data allowed a statistical analysis showing the reproductibility of the method [fr

  15. Ultrasonic inspection of heavy section steel components: the PISC II final report

    International Nuclear Information System (INIS)

    Nichols, R.W.; Crutzen, S.

    1988-01-01

    This Symposium represented the end of the PISC (Programme for Inspection of Steel Components), II Round Robin Test Project, and the book is the final report. The contents are divided into three parts: part 1 contains contributions from the PISC Management Group, part II contains individual contributions, part III contains views of Licensing Authorities. All the twenty three papers presented in the three parts are selected for INIS and indexed separately. (author)

  16. New developments for the ultrasonic inspection of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Chassignole, Bertrand; Doudet, Loic; Dupond, Olivier; Fouquet, Thierry; Richard, Benoit

    2006-01-01

    EDF R and D undertakes studies in non destructive testing (NDT) for better understanding the influence of various parameters (material, type of defect, geometry) on the 'controllability' of the critical components for nuclear safety. In the field of ultrasonic testing, one of the principal research orientations is devoted to the study of the austenitic stainless steel welds of the primary cooling system. Indeed, the structure of these welds present characteristics making difficult their examination, for example: - a strong anisotropy of the properties of elasticity which, coupled with the heterogeneity of the grain orientations, can involve phenomena of skewing, division and distortion of the beam; - a significant scattering of the waves by the grains involving an high attenuation and sometimes backscattered signals. For several years, actions have been launched to improve comprehension of these disturbing phenomena and to evaluate the controllability of those welds. This work is based on the one hand on experimental analyses on representative mock-ups and on the other hand on the developments of modelling codes taking into account the characteristics of the materials. We present in this document a synthesis of this work by developing the following points in particular: - a description of the phenomena of propagation; - the works undertaken to characterize the structure of the welds; - an example of study coupling experimental and modelling analyses for a butt weld achieved by manual arc welding with coated electrodes. The paper has the following contents: 1. Context; 2. Presentation of the problem; 3. Characterization of austenitic welds; 4. From comprehension to industrial application; 5. Conclusion and perspectives; 5. Conclusion and perspectives. This synthesis shows that each austenitic stainless steel weld is a particular case for the ultrasonic testing. This work allowed to better apprehend the disturbances of the ultrasonic propagation in the welds and thus

  17. Development of ultrasonic testing DSP inspection technique for class 1 system piping in nuclear power plants

    International Nuclear Information System (INIS)

    Ku, Kil Mo; Lee, Ik Whan; Jeong, Hyun Kyu; Park, Moon Ho; Heo, Hyung; Kong, Un Sik

    1996-01-01

    The purpose of this study is to explore the utilization of new constant-Q SSP in ultrasonic NDE. Various engineering problems are reviewed, and suggestions for implementation of the technique are provided. The filters of new Constant-Q SSP centered on frequency points, and normalized type of the filtered signals was not nromalized. The new Constant-Q SSP uses the frequency-dependant response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal with gaussian bandpass filters. The principles of the SSP and the various optimization algorithms are recalled, and the conventional decomposition method for the SSP was presented

  18. Development of 6-axis portable manipulator which traces over 3-dimensional curved surface for ultrasonic inspection

    International Nuclear Information System (INIS)

    Hayashi, Tetsuji; Tsuzuki, Satoshi; Tsunewaki, Hiroshi.

    1993-01-01

    A 6-axis portable manipulator, weighing 120 N (12.3 kg) which traces over a 3-dimensional curved surface for ultrasonic testing has been developed. The manipulator body is made of carbon-fiber-reinforced plastic and magnesium alloy. A feature of the system is that deviation of the manipulator from its nominal path caused by arm bending due to its own weight can be corrected. The deviation is calculated by premeasuring spring coefficients and hysteresis characteristics of the arm structure. In a mock-up calibration performance test the accuracy was shown to be as high as that of a human inspector. The manipulator can be installed within 3 minutes by a single person. Joint angles are calculated with a direct memory access (DMA) handler using a poling method. Signals are transmitted to servo-controllers through an optical fiber of 2.5 Mbps. (author)

  19. Development of ultrasonic testing DSP inspection technique for class 1 system piping in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Kil Mo; Lee, Ik Whan; Jeong, Hyun Kyu; Park, Moon Ho; Heo, Hyung; Kong, Un Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    The purpose of this study is to explore the utilization of new constant-Q SSP in ultrasonic NDE. Various engineering problems are reviewed, and suggestions for implementation of the technique are provided. The filters of new Constant-Q SSP centered on frequency points, and normalized type of the filtered signals was not nromalized. The new Constant-Q SSP uses the frequency-dependant response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal with gaussian bandpass filters. The principles of the SSP and the various optimization algorithms are recalled, and the conventional decomposition method for the SSP was presented.

  20. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    Science.gov (United States)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin

    2015-03-01

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  1. Process and device for remote inspection of parts of a nuclear plant

    International Nuclear Information System (INIS)

    Schmalfuss, H.

    1987-01-01

    The process is suitable for remote position inspection of the parts of the plant in a large hot cell, for example of a reprocessing plant. A device with a TV camera was selected as the inspection system, where pictures obtained by photography are compared (photogrammetry). The possible resolution is considerably increased by using two spatially movable separate picture systems with the associated drawing media. (DG) [de

  2. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors; Analyse d'images tridimensionnelles ultrasonores pour l'inspection en service des reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Dancre, M

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  3. A 3-DOF SOI MEMS ultrasonic energy harvester for implanted devices

    International Nuclear Information System (INIS)

    Fowler, A G; Moheimani, S O R; Behrens, S

    2013-01-01

    This paper reports the design and testing of a microelectromechanical systems (MEMS) energy harvester that is designed to harvest electrical energy from an external source of ultrasonic waves. This mechanism is potentially suited to applications including the powering of implanted devices for biomedical applications. The harvester employs a novel 3-degree of freedom design, with electrical energy being generated from displacements of a proof mass via electrostatic transducers. A silicon-on-insulator MEMS process was used to fabricate the device, with experimental characterization showing that the harvester can generate 24.7 nW, 19.8 nW, and 14.5 nW of electrical power respectively through its x-, y-, and z-axis vibrational modes

  4. Instrumented ultrasonic PIG (Pipeline Inspection Gauge) using free swimming and online umbilical fiber glass cable technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Paulo [A. Hak Brasil Servicos Industriais Ltda, Belo Horizonte, MG (Brazil); Prins, Tom [A. Hak Industrial Services B.V., Geldermalsen (Netherlands)

    2009-07-01

    This technical document presents the world-patented Piglet{sup R} inspection system developed by A. Hak Industrial Services BV. A tool which combines the advantages of the 'free swimming' and the 'umbilical' data acquisition, eliminating the disadvantages of both. This system is suitable for passing small radius bends, mitred-bends, back-to back bends, and can travel on bi-directional way. Furthermore, in this technical document we present a recent development about Marker Detection System, which allows a highly accurate and real-time pig track system. (author)

  5. Conveying equipment for various inspection devices through remote control

    International Nuclear Information System (INIS)

    Kihara, Shizo; Ibe, Tomoyoshi.

    1976-01-01

    Purpose: To rapidly and accurately convey a flaw detector by means of remote control to a member to be inspected, which is not accessible by an operator, for example, such as a suitable desired wall surface within a reactor. Constitution: Guide tracks are fixedly mounted along the wall surface of the structure by support members. A TV camera mounted on a sliding truck catches an image reflected from a concave reflecting mirror within the flaw detector to obtain information by which a driving mechanism of the self-travelling truck and winch mechanisms of the self-travelling truck and sliding truck may be driven to move the flaw detector to the desired position. In this case, the automatic connecting mechanism is disconnected, and a cable is suitably expanded by a group of travelling trucks and an expansion adjusting mechanism. (Yoshino, Y.)

  6. Synchronized control of spiral CT scan for security inspection device

    International Nuclear Information System (INIS)

    Wang Jue; Jiang Zenghui; Wang Fuquan

    2008-01-01

    In security inspection system of spiral CT, the synchronization between removing and rotating, and the scan synchronization between rotating and sampling influence quality of image reconstruction, so it is difficulty and important that how to realize synchronized scan. According to the controlling demand of multi-slice Spiral CT, the method to realize synchronized scan is given. a synchronized control system is designed, in which we use a industrial PC as the control computer, use magnetic grids as position detectors, use alternating current servo motor and roller motor as drivers respectively drive moving axis and rotating axis. This method can solve the problem of synchronized scan, and has a feasibility and value of use. (authors)

  7. Rapid bonding enhancement by auxiliary ultrasonic actuation for the fabrication of cyclic olefin copolymer (COC) microfluidic devices

    International Nuclear Information System (INIS)

    Yu, H; Tor, S B; Loh, N H

    2014-01-01

    Thermal compression bonding is a straightforward, inexpensive and widely used method for enclosing open microchannels in thermoplastic microfluidic devices. It is advantageous over adhesive, solvent and grafting bonding methods in retaining material homogeneity. However, the trade-off between high bond strength and low microchannel deformation is always a crucial consideration in thermal compression bonding. In this study, an effective method for improving bond strength while retaining the microchannel integrity with negligible distortion is proposed and analyzed. Longitudinal ultrasonic actuation was applied to the preheated cyclic olefin copolymer (COC) substrates to achieve accelerated and enhanced bonding with an ultrasonic welding system. Intimate contact between the bonding surfaces before the ultrasonic actuation was found to be an important prior condition. With improper contact, several bonding defects would occur, such as voids, localized spot melting and edge melting. Under auxiliary ultrasonic vibration, within 10 s, the bond strength developed at the bonding interface could be dramatically improved compared with those achieved without ultrasonic actuation. The enhanced bond strength obtained at a preheating temperature of 20 °C lower than its T g could be comparable to the strength for pure thermal compression at 5 °C higher than its T g . It is believed that the ultrasonic energy introduced could elevate the interfacial temperature and facilitate the interdiffusion of molecular chain segments at the interface, consequently resulting in rapidly enhanced bonding. Also, the microchannel distortion after ultrasonic actuation was found to be satisfactory—another important requirement. From dynamic mechanical analysis, the glass transition temperature of COC was found to increase with increasing frequency, and the temperature of the bulk polymer under ultrasonic actuation was still well under T g ; therefore the deformation is minor under ultrasonic

  8. Ultrasonic testing and inspection of steel castings for use in elevated temperatures acc. to DIN 17245

    International Nuclear Information System (INIS)

    Christianus, D.; Fischer, K.H.

    1978-01-01

    Up to present, the non-destructive testing in german steel castings and delivery conditions has hardly been described. DIN 17245 was an exception for heat-resistant ferrite cast steel (July 1967 version) which for the first time contained data on maximum permissible defects in irradiation testing. The US (ultrasonic) method to find internal defects was named together with irradiation, the error limits however were also valid for this method according to the reference picture series of ASTM (American Society for Testing and Materials). It is clear to every practician that especially in the case of steel, due to the numerous possible defects and their unpredictable orientation, it is not always possible to determine the true type of defects based on reflection behaviour of an inhomogenity. In any case one cannot directly compare two physically different methods. If one considers foreign cast steel norms, then one finds somewhat more about non-destructive testing. The set standard measures mostly however take after the irradiation testing guidelines according to ASTM. A Westinghouse regulation, norm ASTM-A-609 and the ASME (Am. Soc. of Mech. Engineers) regulations for components of nuclear reactors are the exception. (orig.) [de

  9. Non-destructive Inspection of Multi-layered Composite Using Ultrasonic Signal Processing

    International Nuclear Information System (INIS)

    Ng, S C; Ismail, N; Ali, Aidy; Sahari, Barkawi; Yusof, J M; Chu, B W

    2011-01-01

    Composites exhibit higher strength and stiffness, better design practice and greater corrosion resistance compare to metal material. However, composites are susceptible to impact damage and the typical damage behaviour in the laminated composites is fibre-breakage and delamination. Detection of failure in laminated composites is complicated compared with ordinary non-destructive testing for metal materials as they are sensitive to echoes drown in noise due to the properties of the constituent materials and the multi-layered structure of the composites. In the current study, the detection of failure in multi-layered composite materials is investigated. To obtain a high probability of defect detection in composite materials, signal processing algorithms were used to resolve echoes associated with defects in glass fibre-reinforced plastics (GRP) detected by using ultrasonic testing. Pulse-echo method with single transducer was used to transmit and receive ultrasound. The obtained signals were processed to reduce noise and to extract suitable features. Results were validated on GRP with and without defects in order to demonstrate the feasibility of the method on defect detection in composites.

  10. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    International Nuclear Information System (INIS)

    Choi, Myoung Seon; Joo, Young Sang; Jung, Hyun Kyu; Cheong, Yong Moo.

    1997-02-01

    The scattering of plane acoustic waves normally incident on a multilayered cylindrical shell has been formulated using the global matrix approach. And a simple way to formulate the non-resonant background component in the field scattered by an empty elastic shell has been found. This is to replace the surface admittance for the shell with the zero-frequency limit of the surface admittance for the analogous fluid shell (i.e., the shear wave speed in the elastic shell is set to zero). It has been shown that the background thus obtained is exact and applicable to shells of arbitrary thickness and material makeup, and over all frequencies and mode numbers. This way has been also applied to obtain the expressions of the backgrounds for multilayered shells. The resonant ultrasound spectroscopy system has been constructed to measure the resonance spectrum of a single fuel rod. The leak-defective fuel rod detection system of a laboratory scale has been also constructed. Particularly, all techniques and processes necessary for manufacturing the ultrasonic probe of thin (1.2 mm) strip type have been developed. (author). 38 refs., 34 figs

  11. Simulation assisted pod of a phased array ultrasonic inspection in manufacturing

    Science.gov (United States)

    Dominguez, N.; Feuillard, V.; Jenson, F.; Willaume, P.

    2012-05-01

    The concept of Probability of Detection (POD) is generally used to quantitatively assess performances and reliability of NDT operations for in-service operations related to damage tolerant designs. Application of the POD approach as a metric for manufacturing NDT assessment would also be relevant but the very expensive cost of such campaigns generally prevents us from doing so. However the increase in NDT simulation capability and maturity opens the field for POD demonstrations for manufacturing NDT with the help of simulation. This paper presents the example of an automated phased array ultrasonic testing procedure of Electron Beam Welding on rotative parts, as part of the PICASSO European project. POD is calculated by using the uncertainty propagation approach in CIVA. The peculiarity of uncertainties in automated NDT compared to in-service manual operations is discussed and raises questions on appropriate statistics to be used for this kind of data. Alternative estimation techniques like Box-Cox transform or quantile regression are proposed and evaluated.

  12. RIMACS, Reactor Inspection Main Control System

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: RIMACS prepares for automatic inspection files on each inspection item for the reactor. These automatic inspection files provide the data to move RIROB (Reactor Inspection Robot) with laser by interpreting the coordinates of LASPO (Laser Positioner) and the laser detecting device of RIROB in three dimensional space. In addition, when RIROB arrives at the inspecting location, the files provide all values of the manipulator's motions to acquire the ultrasonic data. RIMACS provides various modules in order to perform these complex functions, and the functions are programmed on graphic user interface for the convenience of the user. RIMACS provides various functions, such as insertion of reactor production data, selection of the reactor for inspection, the creation of automatic inspection file, the selection of the inspection item, inspection simulation, and automatic inspection procedures. It also provides all other functions, which are necessary for the inspection, such as operating program download and manual control of LASPO and RIROB, the inspection simulation and the inspection status display by means of the graphic screen, and SODAS (ultra-Sonic Data Acquisition System) drive verification. 2 - Methods: Moving path and operation procedures for inspection robot are generated automatically with Kinematics algorithm. 3 - Restrictions on the complexity of the problem: A graphics display with MS-Window capability is required

  13. RNL studies on the application of ultrasonics to reactor pressure vessel inspection

    International Nuclear Information System (INIS)

    Murgatroyd, R.A.; Bell, I.P.; Rogerson, A.

    1982-07-01

    The status of the NDT development studies being carried out in RNL for the PWR Safety Research Programme is described and important aspects and results are summarised. The results of applying the RNL inspection system to a full-thickness, clad, test-plate are outlined, and the significance of search sensitivity on defect detection using pulse-echo is reported. The status of studies to develop advanced sizing techniques is given together with examples of their application. Detection and sizing techniques for near-surface defects have been developed for and tested in the Defect Detection Trials and the status of the development work is described. The effect of austenitic strip cladding on the propagation of ultrasound has been studied in the RNL programme and the importance of surface finish has been demonstrated. (author)

  14. Reliability of recordings of subgingival calculus detected using an ultrasonic device.

    Science.gov (United States)

    Corraini, Priscila; López, Rodrigo

    2015-04-01

    To assess the intra-examiner reliability of recordings of subgingival calculus detected using an ultrasonic device, and to investigate the influence of subject-, tooth- and site-level factors on the reliability of these subgingival calculus recordings. On two occasions, within a 1-week interval, 147 adult periodontitis patients received a full-mouth clinical periodontal examination by a single trained examiner. Duplicate subgingival calculus recordings, in six sites per tooth, were obtained using an ultrasonic device for calculus detection and removal. Agreement was observed in 65 % of the 22,584 duplicate subgingival calculus recordings, ranging 45 % to 83 % according to subject. Using hierarchical modeling, disagreements in the subgingival calculus duplicate recordings were more likely in all other sites than the mid-buccal, and in sites harboring supragingival calculus. Disagreements were less likely in sites with PD ≥  4 mm and with furcation involvement  ≥  degree 2. Bleeding on probing or suppuration did not influence the reliability of subgingival calculus. At the subject-level, disagreements were less likely in patients presenting with the highest and lowest extent categories of the covariate subgingival calculus. The reliability of subgingival calculus recordings using the ultrasound technology is reasonable. The results of the present study suggest that the reliability of subgingival calculus recordings is not influenced by the presence of inflammation. Moreover, subgingival calculus can be more reliably detected using the ultrasound device at sites with higher need for periodontal therapy, i.e., sites presenting with deep pockets and premolars and molars with furcation involvement.

  15. Guiding device for a manipulator mast for internal inspection of a reactor pressure vessel

    International Nuclear Information System (INIS)

    Seifert, W.; Schlueter, H.

    1977-01-01

    A remote-controlled supporting device centering a manipulator mast is described which is mounted and operated above a reactor pressure vessel under water in such a way that rotations and vertical movements necessary for the internal inspection of the pressure vessel remain possible. (RW) [de

  16. In-service inspection of pressurized water reactors

    International Nuclear Information System (INIS)

    Rapin, M.; Saglio, R.

    1983-01-01

    French legislation, which is more demanding than in other countries, had led Electricite de France, the State-owned utility, to acquire better performance in-service inspection facilities than those which existed previously. This fact has spurred the industrial development of the new technical facilities which are used worldwide today. This article presents the ''in-service inspection machine'' (MIS) for the inspection of the welds of a PWR vessel, and the inspection device of steam generator tubes; the MIS allow a remote-viewing, ultrasonic and gamma-graphic inspection; Foucault currents are the only one method adapted to the inspection steam generator tubes [fr

  17. Standard-free Pressure Measurement by Ultrasonic Interferometry in a Multi-Anvil Device

    Science.gov (United States)

    Mueller, H. J.; Lathe, C.; Schilling, F. R.; Lauterjung, J.

    2002-12-01

    A key question to all high pressure research arises from the reliability of pressure standards. There is some indication and discussion of an uncertainty of 10-20% for higher pressures in all standards. Simultaneous and independent investigation of the dynamical (ultrasonic interferometry of elastic wave velocities) and static (XRD-measurement of the pressure-induced volume decline) compressibility on a sample reveal the possibility of a standard-free pressure calibration (see Getting, 1998) and, consequently an absolute pressure measurement. Ultrasonic interferometry is used to measure velocities of elastic compressional and shear waves in the multi-anvil high pressure device MAX80 at HASYLAB Hamburg enabling simultaneous XRD and ultrasonic experiments. Two of the six anvils were equipped with overtone polished lithium niobate transducers of 33.3 MHz natural frequency, for generation and detection of ultrasonic waves with a frequency sweep between 5 and 55 MHz. Different buffer - reflector combinations were tested to optimize the critical interference between both sample echoes. NaCl powder of 99.5 % purity (analytical grade by Merck) was used as starting material for manufacturing the samples used as pressure calibrant after Decker (1971). The medium grain size was 50 μm. The powder was pressed to a crude sample cylinder of 10 mm diameter and a length of 20 mm using a load of 6 tons resulting in an effective pressure of 0.25 to 0.3 GPa. The millimeter sized samples (diameter 2.4 mm and 1.6 mm length for 6 mm anvil truncation and diameter 3.1 mm and 1.1 mm length for 3.5 mm anvil truncation) for the high pressure experiments were shaped with a high-precision (+/- 0.5 μm) cylindrical grinding machine and polished at the front faces. From the ultrasonic wave velocity data we calculated the compressibility of NaCl. This requires in situ density data. Therefore the sample deformation during the high pressure experiments was analyzed in detail and the results were

  18. Validation results of the pre-service ultrasonic inspections of the Sizewell B pressurizer and steam generators and reactor coolant pump flywheels

    International Nuclear Information System (INIS)

    Conroy, P.J.; Leyland, K.S.

    1995-01-01

    In the UK, concern over the safety issues associated with nuclear power generation resulted in a demand for a public inquiry into the construction and operation of Sizewell ''B'', Britain's first PWR. This public inquiry was additional to the UK's normal licensing process. The onus was placed upon the UK utility, CEGB (now Nuclear Electric plc) to provide evidence to the inquiry to support the case that the plant would be constructed and operated to a sufficiently high standard of safety. Part of the evidence to the inquiry (1) relied upon the ability of ultrasonic inspections to verify that the reactor pressure vessel and other safety critical components (collectively known as IoF components), were free from defects that could threaten structural integrity. At that time, the body of evidence showed that although ultrasonic inspection had the potential to satisfy this requirement, it would be necessary to validate the procedures and key operators used in order to provide assurance that they were adequate. Inspection validation therefore became an integral part of the UK PWR nuclear power program

  19. Development of ultrasonic testing technique with the large transducer to inspect the containment vessel plates of nuclear power plant embedded in concrete

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Kurozumi, Yasuo; Kaneshima, Yoshiari

    2004-01-01

    The containment vessel plates embedded in concrete on Pressurized Water Reactors are inaccessible to inspect directly. Therefore, it is advisable to prepare inspection technology to detect existence and a location of corrosion on the embedded plates indirectly. In order to establish ultrasonic testing technique to be able to inspect the containment vessel plates embedded in concrete widely at the accessible point, experiments to detect artificial hollows simulating corrosion on a surface of a carbon steel plate mock-up covered with concrete simulating the embedded containment vessel plates were carried out with newly made ultrasonic transducers. We made newly low frequency (0.3 MHz and 0.5 MHz) surface shear horizontal (SH) wave transducers combined with three large active elements, which were equivalent to a 120mm width element. As a result of the experiments, the surface SH transducers could detect clearly the echo from the hollows with a depth of 9.5 mm and 19 mm at a distance of 1500mm from the transducers on the surface of the mock-up covered with concrete. Therefore, we evaluate that it is possible to detect the defects such as corrosion on the plates embedded in concrete with the newly made low frequency surface SH transducers with large elements. (author)

  20. Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices

    Science.gov (United States)

    Uehara, Masato; Yashiro, Wataru; Momose, Atsushi

    2013-10-01

    It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.

  1. In line inspection of multi-diameter and high-pressure pipelines in Brazil using combined technologies: magnetic flux leakage and ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Ginten, Markus; Brockhaus, Stephan; Bouaoua, Nourreddine; Klein, Stefan [ROSEN Technology and Research Center, Lingen (Germany); Bruening, Franz [ROSEN Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The simultaneous use of the magnetic flux leakage (MFL) method and the ultrasonic testing (UT) method on a single in line inspection (ILI) tool has been identified as a versatile and accurate solution for liquid pipelines. The combination of the two methods is complementary to the restrictions of each other. Also, the overall scope of the inspection is enlarged. General wall thinning and largely corroded areas are accurately and reliably scanned with the UT unit, while very detailed information about pitting corrosion is obtained from the MFL measurement. Blind spots of echo loss, as occasionally observed for the UT channels is compensated by the more robust measurement from the MFL sensors. Consequently, this technology has been the method of choice in an in line inspection project of an onshore long distance pipeline in Brazil, facing a variety of corrosion threats. The pipeline consists of several multi-diameter sections of 18/20 inches and 20/22 inches. Furthermore, the high gravity of product in combination with a height profile, an altitude of 1152 m MSL (Mean Sea Level) had to be crossed, leads to a maximum pressure of 220 bar. These boundary conditions had to be considered during the design of the ILI-tool. The paper discusses the experience made so far with the combined technology MFL and UT. The effective use of the inspection tool for the above mentioned pipeline as well as field results from a previous inspection are described. (author)

  2. Developments for the ultrasonic in-service inspection of the inner near surface zone of circular welds in the vessel of the fast breeder-reactor SNR 300

    International Nuclear Information System (INIS)

    Salzburger, H.J.; Huebschen, G.; Neuschwander, R.; Kleffner, G.; Wessels, J.

    1990-01-01

    For in-service, ultrasonic inspection of the inner near-surface zone of the welds 1 and 6 of the vessel of the SNR-300, an automated system has been developed for scanning, manipulation and evaluation tasks. The scanning system which currently is tested and qualified as a prototype system uses heat-resistant EMUS probes which do not require coupling agents, and which have been optimized for three different testing tasks. The required electronic equipment has also been developed to prototype stage, and both have been incorporated into the automated manipulation, data acquisition and evaluation system. (orig.) [de

  3. The selection of ultrasonic transducers for inspection of pipeline girth welds. Vol. 3. Evaluation of the pitch-catch technique for examination of the body region

    Energy Technology Data Exchange (ETDEWEB)

    Glover, A G; Fingerhut, M P; Dorling, D V

    1988-10-01

    Research was conducted to develop an ultrasonic inspection design for the nondestructive evaluation of pipeline girth welds made by the mechanized gas metal arc (GMA) welding process for onshore and offshore pipeline construction. This report describes the work carried out to evaluate the performance to the pitch-catch technique with respect to its ability to examine the body region of mechanized GMA welds in 19.5 mm thick material. Evaluation of the pitch-catch technique was carried out on simulated and real weld defects. Results show that an inspection design method and criteria can be specified for the detection of lack of sidewall fusion defects in the body region of mechanized GMA welds. The criteria specified a pitch-catch technique using a 2.25 MHz 45{degrees} transmitter and a 2.25 MHz 55{degrees} receiver probe. A single pair of these transducers can inspect wall thickness from 9.7 mm to 23.0 mm. The pitch-catch technique evaluated on 19.5 mm wall thickness materials demonstrated that the detection goal of projected depth with a signal-to-noise ratio of greater than 12dB could be met, and that no problems occurred with false indications or missed defects. High sensitivities to small defects in the body region were obtained using a single pair of pitch-catch probes that inspected the body region as a single plane. 4 refs., 14 figs., 6 tabs.

  4. 40 CFR 63.7927 - What are my inspection and monitoring requirements for closed vent systems and control devices?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are my inspection and monitoring... Pollutants: Site Remediation Closed Vent Systems and Control Devices § 63.7927 What are my inspection and... temperature at the inlet of the catalyst bed, the hourly average temperature at the outlet of the catalyst bed...

  5. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz

    2009-08-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  6. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences, Uppsala (Sweden))

    2009-08-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  7. Development of a Versatile Ultrasonic Internal Pipe/Vessel Component Monitor for In-Service Inspection of Nuclear Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Searfass, Clifford T. [Structural Integrity Associates, Inc., State College, PA (United States); Malinowski, Owen M. [Structural Integrity Associates, Inc., State College, PA (United States); Van Velsor, Jason K. [Structural Integrity Associates, Inc., State College, PA (United States)

    2015-03-22

    The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and target vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.

  8. Inspection of copper canister for spent nuclear fuel by means of ultrasound. FSW monitoring with emission, copper characterization and ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences, Uppsala (Sweden))

    2008-09-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2007. In the first part of the report we further develop the concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique implemented using multiple sensors formed into a circular array. After a brief introduction into the field of arrays and beamforming we focus on the features of uniform circular arrays (UCA). Results obtained from the simulations of UCA beamformer based on phase mode concept are presented for the continuous wave as well as for the pulse, noise-free input signals. The influence of white noise corrupting the input pulse is also considered and a simple regularization technique proposed as a solution to this problem. The second part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We compare resonant ultrasound spectroscopy (RUS) with other methods used for characterization of the copper material. RUS is a non-destructive technique based on sensing mechanical resonances present in a tested sample in the ultrasonic frequency range. Resonance frequencies observed in a material sample (with given geometry) are directly related to the vibration modes occurring in the inspected volume defined by the material parameters (elastic constants). We solve the inverse problem that consists in using the information about resonance frequencies acquired in physical measurements for estimating material parameters. Our aim in this project is to investigate the feasibility of RUS for the grain size estimation in copper using copper specimens that were provided by SKB. In the final part we consider the design of input signals for ultrasonic arrays. The Bayesian linear minimum mean squared error (LMMSE) estimator discussed in our former reports is studied. We show that it

  9. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    International Nuclear Information System (INIS)

    Stepinski, T.; Lingvall, F.; Ping Wu

    2001-07-01

    presented. The calculated results show how the harmonics evolve as the plane wave propagates. It should be noted that the work presented here is at its preliminary stage, the goal of the present and future work is to build a simulating tool for material harmonic imaging technology. The theory of phase conjugation is presented and different methods of wave phase conjugation (WPC) are reviewed and characterized in the third chapter. The ability of WPC to self-adaptive focus ultrasonic waves in inhomogeneous media makes it interesting in the application to the inspection of as EB welds. The WPC can be performed either in time or frequency domain. Time domain method, known as time reversal mirrors is reviewed in some detail with focus on its applications to NDT. Frequency domain techniques use nonlinear piezoelectric or magnetic materials. The choice of magneto-acoustic phase conjugation, performed in nonlinear magnetic ceramics as a candidate for the feasibility demonstration is motivated. Details of the preliminary experiment with high frequency NDE application (10 MHz) are presented. NDE methods suitable for the characterization of cast iron are reviewed in the fourth chapter. Two groups of methods that could be used in an industrial environment, those based on ultrasound and on eddy current measurement are presented in some detail. The review is focused on sensing the interaction of elastic waves with the microstructure of cast iron. It is explained how three different features of ultrasound, the sound velocity, the attenuation and the backscattering, can be used for the characterization

  10. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, T.; Lingvall, F.; Ping Wu [Uppsala Univ. (Sweden). Dept. of Materials Science

    2001-07-01

    presented. The calculated results show how the harmonics evolve as the plane wave propagates. It should be noted that the work presented here is at its preliminary stage, the goal of the present and future work is to build a simulating tool for material harmonic imaging technology. The theory of phase conjugation is presented and different methods of wave phase conjugation (WPC) are reviewed and characterized in the third chapter. The ability of WPC to self-adaptive focus ultrasonic waves in inhomogeneous media makes it interesting in the application to the inspection of as EB welds. The WPC can be performed either in time or frequency domain. Time domain method, known as time reversal mirrors is reviewed in some detail with focus on its applications to NDT. Frequency domain techniques use nonlinear piezoelectric or magnetic materials. The choice of magneto-acoustic phase conjugation, performed in nonlinear magnetic ceramics as a candidate for the feasibility demonstration is motivated. Details of the preliminary experiment with high frequency NDE application (10 MHz) are presented. NDE methods suitable for the characterization of cast iron are reviewed in the fourth chapter. Two groups of methods that could be used in an industrial environment, those based on ultrasound and on eddy current measurement are presented in some detail. The review is focused on sensing the interaction of elastic waves with the microstructure of cast iron. It is explained how three different features of ultrasound, the sound velocity, the attenuation and the backscattering, can be used for the characterization.

  11. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  12. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. NDE of friction stir welds, nonlinear acoustics, ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu [Uppsala Univ., Dept. of Materials Science (Sweden). Signals and Systems

    2004-01-01

    This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated.

  13. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. NDE of friction stir welds, nonlinear acoustics, ultrasonic imaging

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz; Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu

    2004-01-01

    This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated

  14. Modelling of the ultrasonic inspection of steel tubes with longitudinal defects; Modelisation du controle ultrasonore de tubes d`acier presentant des defauts de type ``entaille longitudinale``

    Energy Technology Data Exchange (ETDEWEB)

    Mephane, M

    1998-12-31

    A model has been developed in order to simulate the ultrasonic inspection of steel tubes in the Vallourec control configuration. The model permits to simulate the control of steel tubes showing longitudinal defects located near the internal or external surface of tubes which appear during the rolling process. To detect this kind of defect, the probe is placed in an incident place perpendicular to the tube`s axis. The probe is in front of the external surface of the tube. The main characteristics of the model is to assume that the field radiated in the material does not depend on the probe`s position. This assumption permits to treat separately the field retracted in the material and the interaction between the defect and the ultrasonic beam. The focal plane is located in the material, so the plane waves approximation is applied where the waves front are assumed plane and parallel. The parallel refracted beam becomes divergent after reflection on the internal surface of tube. To treat the beam divergence, an amplitude weighting coefficient is then calculated by mean of the energy conservation of a tube of rays before and after reflection, following the Snell laws. This model can predict the edge diffraction echoes, the echoes issued from the corner effect, and also the mode conversion echoes. It has been validated on artificial notches, and on some natural defects. A comparison between experimental and modelling results shows a good agreement. (author) 39 refs.

  15. Detection of surface breaking cracks in centrifugally cast stainless steel with ultrasonic - Inspection from the cracked side

    International Nuclear Information System (INIS)

    Hoegberg, K.; Zetterwall, T.

    1986-01-01

    The ability of detecting surface breaking or near-surface cracks with ultrasonic techniques from the inside of centrifugally cast stainless steel pipes have been investigated by the Swedish Plant Inspectorate (SA) and AaF-Tekniska Roentgencentralen AB (AaF-TRC) on behalf of the Swedish Nuclear Power Inspectorate (SKI) and the Swedish State Power Board (SV). Fifteen specimens from the international Stainless Steel Round Robin Test (SSRRT) were used in this study. All specimens were examined from the cracked side with different ultrasonic probes. The data reported here indicate that a probe with dual elements, low frequency, longitudinal waves and short focus distance can detect almost all of the intended defects with a rather good signal-to-noise ratio. (author)

  16. Inspection of copper canisters for spent nuclear fuel by means of Ultrasonic Array System. Electron beam evaluation, modeling and materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ping Wu; Lingvall, F.; Stepinski, T. [Uppsala Univ. (Sweden). Dept. of Material Science

    1999-12-01

    Research conducted in the fifth phase of the SKB's study aimed at developing ultrasonic techniques for assessing EB welds copper canisters is reported here. This report covers three main tasks: evaluation of electron beam (EB) welds, modeling of ultrasonic fields and characterization of copper material. A systematic analysis of ultrasonic interaction and imaging of an EB weld has been performed. From the analysis of histograms of the weld ultrasonic image, it appeared that the porosity tended to be concentrated towards the upper side of a HV weld, and a guideline on how to select the gates for creating C-scans has been proposed. The spatial diversity method (SDM) has shown a limited ability to suppress grain noise both in the parent material (copper) and in the weld so that the ultrasonic image of the weld could be improved. The suppression was achieved at the price of reduced spatial resolution. The ability of wavelet filters to enhance flaw responses has been studied. An FIR (finite impulse response) filter, based on Sombrero mother wavelet, has yield encouraging results concerning clutter suppression. However, the physical explanation for the results is still missing and needs further research. For modeling of ultrasonic fields of the ALLIN array, an approach to computing the SIR (spatial impulse response) of a cylindrically curved, rectangular aperture has been developed. The aperture is split into very narrow strips in the cylindrically curved direction and SIR of the whole aperture by superposing the individual impulse responses of those strips. Using this approach, the SIR of the ALLIN array with a cylindrically curved surface has been calculated. The pulse excitation of normal velocity on the surface of the array, that is required for simulating actual ultrasonic fields, has been determined by measurement in combination with a deconvolution technique. Using the SIR and the pulse excitation obtained, the pulsed-echo fields from the array have been

  17. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Electron beam evaluation, harmonic imaging, materials characterization, and ultrasonic modelling

    International Nuclear Information System (INIS)

    Wu Ping; Lingvall, Fredrik; Stepinski, Tadeusz

    2000-12-01

    This report presents the research in the sixth phase that is concerned with ultrasonic techniques for assessing electron beam (EB) welds in copper canisters. The research has been carried out in three main aspects: (1) comparative inspections of EB welds, (2) EB weld evaluation, and (3) quantitative evaluation of attenuation in copper. Comparative inspections of EB welds in two copper canister blocks have been made by means of ultrasound and radiography. Comparison of the inspected results demonstrate that both techniques complement each other very well. The radiographic technique on the whole gives relatively better spatial resolution but low contrast in radiographs. It can reliably detect voids in EB, but cannot provide information about material structure in the EB weld. Ultrasonic technique provides information about flaw locations and shapes similar to the radiographs. Moreover, it can easily distinguish welded and non-welded zones and be used to study weld's macro- and microstructure. The defects in ultrasonic images often show higher contrast, and some flaw indications may be seen in ultrasonic inspection but not in radiographs. But small flaws are hard to distinguish from grain noise. For EB weld evaluation, first, scattering from EB weld has been investigated using three broadband transducers with different center frequencies. The investigation has shown that more information on scattering and attenuation can be exploited in this case so that the EB welds can be better characterized, and that the best frequency range for characterizing welds is 2 - 5 MHz. Secondly, harmonic imaging (HI) of EB welds have been studied using two different sources of harmonics: (i) transducer harmonics, originating from the high-order resonant modes of transmitters excited by a broadband pulse, and (ii) material harmonics, stemming from the nonlinear distortion of waves propagating in materials. The transducer HI exploits additional information due to transducer harmonics, and

  18. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Electron beam evaluation, harmonic imaging, materials characterization, and ultrasonic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ping; Lingvall, Fredrik; Stepinski, Tadeusz [Uppsala Univ. (Sweden). Dept. of Materials Science

    2000-12-01

    This report presents the research in the sixth phase that is concerned with ultrasonic techniques for assessing electron beam (EB) welds in copper canisters. The research has been carried out in three main aspects: (1) comparative inspections of EB welds, (2) EB weld evaluation, and (3) quantitative evaluation of attenuation in copper. Comparative inspections of EB welds in two copper canister blocks have been made by means of ultrasound and radiography. Comparison of the inspected results demonstrate that both techniques complement each other very well. The radiographic technique on the whole gives relatively better spatial resolution but low contrast in radiographs. It can reliably detect voids in EB, but cannot provide information about material structure in the EB weld. Ultrasonic technique provides information about flaw locations and shapes similar to the radiographs. Moreover, it can easily distinguish welded and non-welded zones and be used to study weld's macro- and microstructure. The defects in ultrasonic images often show higher contrast, and some flaw indications may be seen in ultrasonic inspection but not in radiographs. But small flaws are hard to distinguish from grain noise. For EB weld evaluation, first, scattering from EB weld has been investigated using three broadband transducers with different center frequencies. The investigation has shown that more information on scattering and attenuation can be exploited in this case so that the EB welds can be better characterized, and that the best frequency range for characterizing welds is 2 - 5 MHz. Secondly, harmonic imaging (HI) of EB welds have been studied using two different sources of harmonics: (i) transducer harmonics, originating from the high-order resonant modes of transmitters excited by a broadband pulse, and (ii) material harmonics, stemming from the nonlinear distortion of waves propagating in materials. The transducer HI exploits additional information due to transducer harmonics

  19. Advanced NDE (ANDE) and its application for pressure tube inspections in OPG reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jarron, D.; Trelinski, M.; Kretz, S. [Ontario Power Generation, Ajax, Ontario (Canada)]. E-mail: don.jarron@opg.com; mike.trelinski@opg.com; steve.kretz@opg.com

    2006-07-01

    Periodic and in-service inspections of CANDU fuel channels are essential for the proper assessment of the structural integrity of these vital components. The arrival of new delivery devices for fuel channel inspections (Universal Delivery Machine) has driven new methods for gathering and analyzing NDE data. The Advanced Non-Destructive Examination (ANDE) system has been designed and field implemented as a high speed data acquisition system to meet the requirements of the CSA N285.4 code. It was built from the solid foundation of CIGAR experience and uses cutting edge hardware and software to attain high speed data collection enabling relatively quick inspection of a large number of fuel channels. The capabilities of the ANDE inspection system include: Surface and volumetric inspection of pressure tube by ultrasonics; Flaw characterization by ultrasonics; Pressure tube diameter measurements; Pressure tube thickness measurements; Garter Spring location by Eddy Current; Garter Spring location by ultrasonics; Pressure tube sag measurement. In addition to the above, selected flaws/areas of a pressure tube can be replicated using a two plate ANDE replica tool. At the heart of the inspection system is a set of twelve ultrasonic probes positioned in such a way that the inspected areas are examined from various angles and directions and by various ultrasonic wave modes (shear and longitudinal). High frequency ultrasound used for the examinations allows for reliable detection of small flaws. Separate sensors have been installed on the inspection head for Garter Spring location and sag measurements. (author)

  20. Continuing data assessment of 16-inch williams pipeline inspected with the recently developed ultrasonic crack detection tool

    International Nuclear Information System (INIS)

    Katz, D.C.; Gao, M.; Elboujdaini, M.; Li, J.

    2003-01-01

    The in-line-Inspection of Williams' Gas West Pipeline in September 2001 was successfully completed using the newly developed 16-inch UltraScan CD tool of GE PII Pipeline Solutions. The particular pipeline section inspected was known to be affected by Stress Corrosion Cracking (SCC). The inspection was carried out using the liquid batching technique developed by PII Pipeline Solutions. A special launcher and receiver barrel was designed to enable the handling of a series of three batching pigs in front of and two behind the inspection tool. A manifold of 'kicker lines' was mounted to the barrel to launch the batching pigs and the inspection tool. The main benefits of this new design were minimizing operational downtime, ensuring complete air/natural gas displacement from the launcher, and providing for a smoother launch procedure. Due to the large elevation changes within the pipeline section, a key concern was maintaining pig velocity within 1m/s for adequate data resolution. Rather than rely on a general 'rule of thumb', a transient analysis was performed to define a range of possible batch sizes and better understand the expected pressure gradients while pumping the water slug. Based on actual data collected during this successful run, the transient model will be refined to better handle friction effects between the sealing cups and disks in future batch inspection runs. The pig data was successfully acquired, processed, verified, and excavations performed in 2002. Results from the twenty digs will be presented, as well as a discussion of the on-going fracture mechanics assessments which are being used to develop an overall integrity management plan for the continued, safe operation of the pipeline. To better understand the mechanism for SCC and enhance the integrity management plan, key metallurgical and environment elements are being investigated with advanced analytical tools, including high resolution SEM and EDS. In-situ crack growth monitoring system is

  1. Current status of automated ultrasonic pipe inspection systems - ISI of stainless steel piping systems in BWR power plants

    International Nuclear Information System (INIS)

    Jeong, P.

    1985-01-01

    The field of ultrasonics nondestructive testing is constantly expanding its ability of acquiring data and its speed by implementing a computer into the testing system. The computer made it possible to store massive test data into a compact magnetic hard disk for permanent records. The data outputs are displayed on the color CRT screen, and varieties of image display methods, such as A-scan, B-scan, C-scan, P-scan, or many other 3 dimensional isometric views and the modified display techniques are available to an operator. Various hardcopy machines are now a part of the testing system so that the displayed data outputs can be easily copied and filed for permanent documentation. The faster and more accurate mechanized scanners are gradually being substituted for the conventional manual scanning method which has been a major time consuming part of the testing operation. When all such improvements are combined into an integral unit, a reliable, fully automated ultrasonic testing system can by made. The fully automated ultrasonic testing system is needed not only for fast data acquisition, processing, and reliable data display, but also, even more importantly, for considerable reduction of human intervention, which could be a critical factor under the severely limited field environment. Obviously, in the past several years, tremendous accomplishments have been made in automating the test system, and many such systems are being used in the field. However, most of the existing automated systems are still bulky in size and the displayed data is often difficult to interpret to the field operators. Major effect should, therefore, be directed to size reduction of the system as well as improvement on the system reliability

  2. Rail for inspection/maintenance device in TOKAMAK type container of a thermonuclear reactor

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1996-01-01

    A circular rail divided into four arcuate parts for an inspection/maintenance device which runs in a TOKAMAK type container is disposed. Each of the divided rails is supported at the center of the outer surface rotatably by extendable rail supporting shafts. Each of the divided rail is constituted such that it can be contained between limiters disposed at the outer side of the TOKAMAK container when each of the rail support shafts is contracted. With such a constitution, each of the rail support shafts and arcuate rail is contracted and rotated from the outside of the TOKAMAK type container by an actuator. In order to form a circular rail, each of the rail support shafts is extended toward the center of the TOKAMAK type container, and then each of the arcuate rails is rotated into a horizontal state. Then, the joint portions of each of the arcuate rails are connected by using remote controllable locking rods. (I.S.)

  3. Requirements to be met by recurrent ultrasonic inspection of reactor components using collimator-free testing systems

    International Nuclear Information System (INIS)

    Csapo, G.; Just, T.

    1997-01-01

    The paper is intended as an initial contribution to establishing concrete definitions and requirements for digital, collimator-free US testing systems. The objective is to warrant the quality of information derived and reproducibility of test results of recurrent inspections of nuclear components, as well as to achieve a reduction of testing and evaluation time. (orig./CB) [de

  4. Technical regulation of nondestructive inspection

    International Nuclear Information System (INIS)

    1995-01-01

    It starts with the explanation of definition of nondestructive inspection and qualifications for a inspection. It lists the technical regulations of nondestructive inspections which are radiographic testing, ultrasonic flaw detecting test, liquid penetrant test, magnetic particle inspection, eddy current test visual inspection and leakage test.

  5. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  6. Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials

    Science.gov (United States)

    Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.

    2018-04-01

    Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.

  7. Characterization of type, position and dimension of flaws by transit time locus curves of ultrasonic inspections - ALOK. Pt. 2

    International Nuclear Information System (INIS)

    Grohs, B.; Barbian, O.A.; Kappes, W.; Paul, H.

    1981-01-01

    With automatic ultrasonic testing, flaws can be detected and described and thus characterized according to their type, position and dimensions. During scanning of a test object, the flaws are registered by many different pathways and many different acoustic irradiation directions. The transit time locus curve represents the distance between the relfecting points of a flaw and the source in dependence of the probe position; hence, information on flaw position and dimensions can be derived from this curve. If the sound velocity is known, the transit path can then be calculated from the transit time. This requires, above all, a constant sound velocity along the whole transit path. Various methods are presented for reconstructing the flaw border in the plane of incidence. (orig./RW) [de

  8. In-situ inspection of grooves in reactor tube sheet using a remotely operated cast impression taking device

    International Nuclear Information System (INIS)

    Rajendran, S.; Ramakumar, M.S.

    1996-01-01

    Utmost importance is given to the in-service inspection of critical components of a reactor to ensure its reliable performance during the reactor operation. This paper describes a cast taking device using cold setting resin to take impression of the grooves being made in the tube sheet for sparger tube installation in pressurised heavy water reactor. (author)

  9. Internal ultrasonic testing of steam generator tubes

    International Nuclear Information System (INIS)

    Furlan, J.; Soleille, G.; Chalaye, H.

    1983-01-01

    The ''in situ'' inspection of steam generator tubes uses generally Foucault currents before starting and along its life. This inspection aims at searching cracks and corrosion defects. The Foucault current method is quite badly adapted to ''closed crack'' detection, for it doesn't introduce neither resistivity or magnetic permeability variation, or lack of matter. More, it is sensible to the magnetic properties of the tube itself and to its environment (tubular or support plates). It is why, this first systematic inspection has to be completed by an ultrasonic one allowing to bring new elements in the uncertain cases. A device with an internal probe has been developed. It ''lights'' the tube wall with the aid of a transducer of which beam reflects on a mirror. Operating conditions are the same as for Foucault current testing, that is to say the probe moves inside the tube without rotation of the device (bent parts are excluded) [fr

  10. RESONANCE COMPATIBILITY BETWEEN ENDOSONIC TIPS AND ULTRASONIC DEVICES OF DIFFERENT BRANDS.

    Directory of Open Access Journals (Sweden)

    Kalin K. Shiyakov

    2014-11-01

    Full Text Available The aim of the study was to determine the compatibility of 6 piezoelectric scalers - Mini Piezon (EMS, Pyon 2 LED (W&H, Woodpecker HW-3H (GWMI, Varios 550 (NSK, P5 Newtron (Satelec-Acteon and DTE HD-7H (GWMI with 8 types of endosonic tips for separated instruments removal - K-files # 20 and 25 (EMS, ET25 (Satelec, Redo 2 (VDW, CPR-tips 6,7,8 (Obtura Spartan, Proultra Endo tips 6,7,8 (Dentsply-Maillefer, RT3 (EMS, Endo E3 (W&H, E7 (NSK. Methods: Examined and measured was the change in the tips’ displacement amplitude with the power increase of the scalers under total magnification 80x with an optical microscope (Leica MZ6 and an image-measuring software (Klonk Image Measurement. Results: Ultrasonic devices’ compatibility with the examined tips was as follows: Woodpecker – 76,9%, Mini Piezon – 61,5%, Pyon 2 LED - 30,7%, Varios 550 – 83,3%, P5 Newtron – 83,3%, DTE – 33,3%. Lack of compatibility was found in 40,35% of all cases. In 29,82% of the cases of lack of compatibility it was demonstrated as a non-effective vibration, and in the rest of the cases – 10,53% - uncontrolled over-powerful vibration, which was dangerous to use. Conclusion: Endosonic tips should be carefully chosen in accordance with the ultrasonic scaler used.

  11. Application of ultrasonic inspection technique for crack depth sizing on nickel based alloy weld. Part 3. Establishment of UT procedure for crack depth sizing by phased array UT

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki

    2012-01-01

    Recently, it is reported that the primary water stress corrosion cracking (PWSCC) was occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic testing (UT) is required. Phased array technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)

  12. In-service inspection of nuclear power plants

    International Nuclear Information System (INIS)

    Asty, M.; Saglio, R.

    1984-10-01

    The French Commissariat a l'Energie Atomique (Atomic Energy Commission) developed two new non destructive control techniques, focused ultrasonics and multi-frequency eddy currents, which have been shown to allow a better detection and characterization of defects. We present here some of the in-service inspection devices which have been designed for field application of these techniques on the PWR reactors built by EDF, inspection devices of the PWR steam generator tubing and the now developing specific device for main tank and helicoidal tubing steam generator of Super-Phenix 1 [fr

  13. Device for welding components using ultrasonics, particularly for solar cell contacts and solar cell connections. Vorrichtung zum Verschweissen von Bauteilen unter Verwendung von Ultraschall, insbesondere von Solarzellenkontakten und Solarzellenverbindern

    Energy Technology Data Exchange (ETDEWEB)

    Gochermann, H.

    1983-06-23

    This is a device for welding components, particularly solar cell contacts and solar cell connections, using an ultrasonic welding device. The ultrasonic welding device has a high frequency generator, an ultrasonic emitter, a transmitter, a sonotrode, a device for accommodating the components and controls. The sonotrode is provided with a circumferential beading acting as the welding disc, which, together with the sonotrode, is rolled over the components by a relative movement. The part of the beading which is tangential to the component introduces ultrasonic energy into the component. The relative movement is made possible by the system of the ultrasonic emitter, transmitter and sonotrode with the surrounding beading being mounted so that it can rotate in a vibration node of the transmitter. (orig.).

  14. Development of ultrasonic testing technique with a large transducer to inspect the containment vessel plates embedded in concrete for corrosion on nuclear power plant (2)

    International Nuclear Information System (INIS)

    Ishida, Hitoshi

    2005-01-01

    The containment vessel plates embedded in concrete on Pressurized Water Reactors are inaccessible to inspect directly. Therefore, it is advisable to prepare inspection technology to detect existence and a location of corrosion on the embedded plates indirectly. The purpose of this study is establishment of ultrasonic testing technique to be able to inspect the containment vessel plates embedded in concrete widely from the accessible point. Experiments to detect artificial hollows simulating corrosion and stud bolts which hold the mold of concrete on a surface of a carbon steel plate mock-up covered with concrete were carried out with newly made low frequency (0.3MHz and 0.5MHz) 90 degrees refraction angle shear horizontal (SH) wave transducers combined with three active elements, which were equivalent to a 120 mm width element. As the results: (1) The echoes from the artificial hollows with a depth of 19 mm and 9.5mm at a distance of 1.5 m and the stud bolts with a diameter of 8mm at a distance of 0.7 - 1.7m could be discriminated clearly. (2) The multiple echoes bouncing three times between the front side and the back side of the plate, which was equivalent to a distance of about 12m, could be discriminated. (3) A divergence angle and a -6dB divergence angle of the large element (combined three elements) transducer were about 7 degrees and about 3 degrees. (4) The echoes from the hollows with a depth of 9.5m could be detected at a distance of 3.6 m with a reflection at the side wall of the mock-up. (5) It was estimated that the maximum distance of detection of the echo from the stud bolt with a diameter of 8mm was about 2.9 ∼ 3.6 m. Therefore we evaluate that the large element transducer can propagate the SH wave to about a half of a distance to the bottom of the embedded containment vessel and it is possible to detect the defects such as corrosion to a distance of 3.6 m. (author)

  15. Using radio frequency and ultrasonic antennas for inspecting pin-type insulators on medium-voltage overhead distribution lines

    Directory of Open Access Journals (Sweden)

    Cícero Lefort Borges

    2013-05-01

    Full Text Available This paper summarises the activities undertaken when using antennas (ultrasound and radiofrequency for identifying insulators in pre-failure state by detecting the noise emitted by the distribution line and correlating this with these insulators (porcelain pin type dielectric breakdown. This has led to developing low-cost maintenance procedures and providing support and criteria for engineer-ing decisions regarding replacing these insulators. The technique used two detectors; a radio frequency detector was used in a first investigation of a particular distribution line, set to 40 MHz and installed on the roof of a moving vehicle. The ultrasound detector was used for inspecting (phases A, B, C each structure (pole selected. Atmospheric conditions had no influence on defining pre-failure insulators (pin type based on the noise detection technique. Pin type insulators emitting noise should be replaced since measurement was made from the ground and near the base of the post.

  16. Round robin test programmes in the reliability of thick section ultrasonic inspections: state of the art report

    International Nuclear Information System (INIS)

    Watkins, B.

    1987-03-01

    Inspection reliability is firstly defined and it is shown how difficult it is to be assessed as the influence of such factors as human performance, equipment malfunction and intrinsic technique capability are difficult to quantify. The manufacture of round robin test specimens is then considered: types of flaw, fabrication of test samples. The results of various round robin test programmes that have been carried out to determine both the capability and reliability of NDE to detect and size flaws in steel section for thick sections directly relevant to the requirements of the nuclear industry, are then reviewed and discussed: US Pressure Vessel research committee programme, PISC I Programme, the defect detection trials, and PISC II Programme

  17. Inspection of copper canisters for spent nuclear fuel by means of ultrasonic array system. Modelling, defect detection and grain noise estimation

    International Nuclear Information System (INIS)

    Wu Ping; Stepinski, T.

    1998-07-01

    The work presented in the report has been split into three overlapping tasks which have the following objectives: (1) development of beam-forming tools, and verification of modeling tools; (2) investigation of detection and resolution limits; (3) evaluation of attenuation, estimation and suppression of grain noise. For beam-forming tools, a method of designing steered and/or focused beams in immersed solids is presented based on geometrical acoustics. Presently, the beam designs are only related to delays but not to apodization. These focused, steered beams are intended to be used for sizing defects and inspecting the regions close to canisters outer walls. The modeling tool developed previously for simulating elastic fields radiated by planar arrays into immersed solids has been verified by comparing with the results obtained from PASS, a software developed by Dr. Didier Cassereau, France. The results from our modeling tool are in excellent agreement with those from PASS. Since the array coming with the ALLIN ultrasonic array system is not planar, but cylindrically curved in elevation, and it works not in transmission mode, but in pulse echo mode, the above modeling tool for the planar arrays cannot be applied directly. Therefore, the modeling tool has been upgraded for the ALLIN array. The theory underlying this modeling tool is the extended angular spectrum approach (ASA) which was developed based on the conventional ASA that only applies to planar sources. Experimental verification of the modeling tool has shown that the results from the tool agree very well with the measurements. To quantify the fields from the ALLIN array and to facilitate the comparison of simulated results with the measured ones, the ALLIN array system has been calibrated based on the existing functionality, and an analytical model has been proposed for simulating measured acoustic echo pulses. To investigate the detection and resolution limits, we have carried out a series of experiments

  18. 21 CFR 872.4850 - Ultrasonic scaler.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  19. Evaluation of pipeline defect's characteristic axial length via model-based parameter estimation in ultrasonic guided wave-based inspection

    International Nuclear Information System (INIS)

    Wang, Xiaojuan; Tse, Peter W; Dordjevich, Alexandar

    2011-01-01

    The reflection signal from a defect in the process of guided wave-based pipeline inspection usually includes sufficient information to detect and define the defect. In previous research, it has been found that the reflection of guided waves from even a complex defect primarily results from the interference between reflection components generated at the front and the back edges of the defect. The respective contribution of different parameters of a defect to the overall reflection can be affected by the features of the two primary reflection components. The identification of these components embedded in the reflection signal is therefore useful in characterizing the concerned defect. In this research, we propose a method of model-based parameter estimation with the aid of the Hilbert–Huang transform technique for the purpose of decomposition of a reflection signal to enable characterization of the pipeline defect. Once two primary edge reflection components are decomposed and identified, the distance between the reflection positions, which closely relates to the axial length of the defect, could be easily and accurately determined. Considering the irregular profiles of complex pipeline defects at their two edges, which is often the case in real situations, the average of varied axial lengths of such a defect along the circumference of the pipeline is used in this paper as the characteristic value of actual axial length for comparison purpose. The experimental results of artificial defects and real corrosion in sample pipes were considered in this paper to demonstrate the effectiveness of the proposed method

  20. Development of transfer standard devices for ensuring the accurate calibration of ultrasonic physical therapy machines in clinical use

    International Nuclear Information System (INIS)

    Hekkenberg, R T; Richards, A; Beissner, K; Zeqiri, B; Prout, G; Cantrall, Ch; Bezemer, R A; Koch, Ch; Hodnett, M

    2004-01-01

    Physical therapy ultrasound is widely applied to patients. However, many devices do not comply with the relevant standard stating that the actual power output shall be within ±20% of the device indication. Extreme cases have been reported: from delivering effectively no ultrasound or operating at maximum power at all powers indicated. This can potentially lead to patient injury as well as mistreatment. The present European (EC) project is an ongoing attempt to improve the quality of the treatment of patients being treated with ultrasonic physical-therapy. A Portable ultrasound Power Standard (PPS) is being developed and accurately calibrated. The PPS includes: Ultrasound transducers (including one exhibiting an unusual output) and a driver for the ultrasound transducers that has calibration and proficiency test functions. Also included with the PPS is a Cavitation Detector to determine the onset of cavitation occurring within the propagation medium. The PPS will be suitable for conducting in-the-field accreditation (proficiency testing and calibration). In order to be accredited it will be important to be able to show traceability of the calibration, the calibration process and qualification of testing staff. The clinical user will benefit from traceability because treatments will be performed more reliably

  1. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  2. Phased array concept for the ultrasonic inservice inspection at the spherical bottom of BWR-pressure vessels

    International Nuclear Information System (INIS)

    Brekow, G.; Wuestenberg, H.; Moehrle, W.; Schulz, E.

    1987-01-01

    The required enhancement of the integrity assessment of perforated reactor vessel base plates has been achieved by a phased-array concept. This technique improvement is based on the fact that the quantity of individual resonant components is reduced whilst increasing the amount of web regions which fall into the sonic range of the pivoted detector due to the larger apex angle scope which the phased array concept provides. A mathematical model concept was initially developed to determine the acoustic irradiation angle and squiat angle ranges to be detected by the phased-array scanner. A prototype of this device has been constructed and tested with a steel sample possessing different perforations and experimental reflectors in order to assess and optimize the new system. The results of these investigations are presented together with those of an application at the nuclear power station in Brunsbuettel. (orig./DG) [de

  3. Inspection system performance test procedure

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-01-01

    This procedure establishes requirements to administer a performance demonstration test. The test is to demonstrate that the double-shell tank inspection system (DSTIS) supplied by the contractor performs in accordance with the WHC-S-4108, Double-Shell Tank Ultrasonic Inspection Performance Specification, Rev. 2-A, January, 1995. The inspection system is intended to provide ultrasonic (UT) and visual data to determine integrity of the Westinghouse Hanford Company (WHC) site underground waste tanks. The robotic inspection system consists of the following major sub-systems (modules) and components: Mobile control center; Deployment module; Cable management assembly; Robot mechanism; Ultrasonic testing system; Visual testing system; Pneumatic system; Electrical system; and Control system

  4. In-service inspection of nuclear reactor vessels and steam generators. Results and evolution of the technics

    International Nuclear Information System (INIS)

    Rapin, Michel; Saglio, Robert.

    1978-01-01

    Methods and original technics have been developed by the CEA for inspection of the primary coolant circuit of PWR. Multifrequency Eddy currents for inspection of steam generators tubes gudgeons and bolts; focussed ultrasonics to test all the welds of the reactor vessel and its cover of mixed welds of tanks and steam generators, pressurizer welds and gudgeons from the inside; gamma radiography of vessel mixed welds, televisual examination of the stainless steel lining of the reactor vessel and its cover. Use of these technics is made with specific automatic machines designed either for inspection of steam generator tubes or for complete inspection of the vessel. Several reactors were inspected with these devices [fr

  5. Development of high-sensitivity ultrasonic techniques for in-service inspection of nuclear reactors. Annual report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Linzer, M.

    1977-02-01

    Substantial progress was made in the development of improved ultrasonic techniques based on real-time signal averaging, pulse compression, multifrequency transception, and compact electromagnetic transducers. A preliminary correlation was established between ultrasonic velocity and the degree of sensitization of stainless steel

  6. Development of Reactor Vessel Bottom Mount Instrumentation Nozzle Routine Inspection Device

    Energy Technology Data Exchange (ETDEWEB)

    Khaled, Atya Ahmed Abdallah; Ihn, Namgung [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    The primary coolant water of pressurized water reactors has created cracks in j-weld of penetrations with Alloy 600 through a process called primary water stress corrosion cracking. On October 6, 2013, BMI nozzle number 3 at Palo Verde Unit 3 (PVNGS-3) exhibited small white de-posits around the annulus. Nozzle attachment to the RV lower head is by J-groove weld to the inside penetration of the nozzle and the weld material is of Alloy 600 material. Above two cases clearly show the necessity of routine inspection of RV lower head penetration during refueling outage. Nondestructive inspection is generally performed to detect fine cracks or defects that may develop during operation. Defects usually occur at weld regions, hence most non-destructive inspection is to scan and check any defects or crack in the weld region. BMI nozzles at the bottom head of a nuclear reactor vessel (RV) are one of such area for inspection. But BMI nozzles have not been inspected during regular refuel outage due to the relative small size of BMI nozzle and limited impact of the consequences of BMI leak. However, there is growing concern since there have been leaks at nuclear power plants (NPPs) as well as recent operating experience. In this study, we propose a system that is conveniently used for nondestructive inspection of BMI nozzles during regular refueling outage without removing all the reactor internals. A 3D model of the inspection system was also developed along with the RV and internals which permits a virtual 3D simulation to check the design concept and usability of the system.

  7. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.

    Science.gov (United States)

    Lei, Junjun; Glynne-Jones, Peter; Hill, Martyn

    2013-06-07

    In acoustofluidic manipulation and sorting devices, Rayleigh streaming flows are typically found in addition to the acoustic radiation forces. However, experimental work from various groups has described acoustic streaming that occurs in planar devices in a plane parallel to the transducer face. This is typically a four-quadrant streaming pattern with the circulation parallel to the transducer. Understanding its origins is essential for creating designs that limit or control this phenomenon. The cause of this kind of streaming pattern has not been previously explained as it is different from the well-known classical streaming patterns such as Rayleigh streaming and Eckart streaming, whose circulation planes are generally perpendicular to the face of the acoustic transducer. In order to gain insight into these patterns we present a numerical method based on Nyborg's limiting velocity boundary condition that includes terms ignored in the Rayleigh analysis, and verify its predictions against experimental PIV results in a simple device. The results show that the modelled particle trajectories match those found experimentally. Analysis of the dominant terms in the driving equations shows that the origin of this kind of streaming pattern is related to the circulation of the acoustic intensity.

  8. 49 CFR 180.509 - Requirements for inspection and test of specification tank cars.

    Science.gov (United States)

    2010-10-01

    ...) Radiography test; (3) Magnetic particle test; (4) Ultrasonic test; or (5) Optically-aided visual inspection (e...) Testing the reclosing pressure relief device with air or another gas to ensure that it conforms to the... inoperative. The written procedures and test method for leak testing must ensure for the sensitivity and...

  9. Industrial Ultrasonic Inspection of Stainless-Steel Claddings for the EL4 Reactor; Controle Industriel par Ultrasons des Gaines en Acier Inoxydable du Reacteur EL4; Promyshlennyj kontrol' obolochechnykh trub iz nerzhaveyushchej stali reaktora dlya EL4 s pomoshch'yu ul'trazvukovogo metoda; Metodos Ultrasonicos para Control Industrial de las Vainas de Acero Inoxidable del Reactor EL4

    Energy Technology Data Exchange (ETDEWEB)

    Prot, A. C.; Foulquoer, H. E.; Peyrot, J. P. [Centre d' Etudes Nucleaires de Saclay (France)

    1965-09-15

    Improved reactor performance requires the use of accurately fabricated and carefully inspected components. One inspection relates to the quality of the cladding tubes, whose mechanical reliability is essential for economic reactor operation. The choice and development of a method is a difficult matter and the authors explain the main factors involved. Once the choice has been made and the method has been developed in the laboratory, two new problems arise: Adaptation to meet industrial requirements; and The need to reconcile the quality standards attainable with the manufacturing process at any given stage and the somewhat arbitrarily defined specifications for the finished product. In practice, this involves a statistical study of batches of tubes from various sources and their classification in relation to more or less strict thresholds. The number of tubes which have to be inspected is much larger than originally expected. This has led to the design of an automatic inspection device geared both to the output rates involved and to the requirements of the type of inspection adopted; the latter are generally mechanical and impose particularly careful product fabrication. These various characteristics are now embodied in a device whose capacity can already easily meet the requirements of a fuel-element production line. The potentialities of the device are closely dependent on the characteristics of the inspection equipment used, especially the performances of the electronic part of ultrasonic inspection instruments and of the transducers. This study shows that standard equipment is not very suitable and that immediate thought should be given to special instruments for this type of inspection. (author) [French] L'accroissement des performances des reacteurs necessite l'utilisation de materiaux finement elabores et soigneusement controles. L'un des aspects de ce controle est celui de la qualite des tubes de gainage utilises, dont la tenue mecanique est un facteur

  10. Nuclear fuel rod end plug weld inspection

    International Nuclear Information System (INIS)

    Parker, M. A.; Patrick, S. S.; Rice, G. F.

    1985-01-01

    Apparatus and method for testing TIG (tungsten inert gas) welds of end plugs on a sealed nuclear reactor fuel rod. An X-ray fluorescent spectrograph testing unit detects tungsten inclusion weld defects in the top end plug's seal weld. Separate ultrasonic weld inspection system testing units test the top end plug's seal and girth welds and test the bottom end plug's girth weld for penetration, porosity and wall thinning defects. The nuclear fuel rod is automatically moved into and out from each testing unit and is automatically transported between the testing units by rod handling devices. A controller supervises the operation of the testing units and the rod handling devices

  11. Non-Destructive Inspection Lab (NDI)

    Data.gov (United States)

    Federal Laboratory Consortium — The NDI specializes in applied research, development and performance of nondestructive inspection procedures (flourescent penetrant, magnetic particle, ultrasonics,...

  12. Analysis of the particle stability in a new designed ultrasonic levitation device.

    Science.gov (United States)

    Baer, Sebastian; Andrade, Marco A B; Esen, Cemal; Adamowski, Julio Cezar; Schweiger, Gustav; Ostendorf, Andreas

    2011-10-01

    The use of acoustic levitation in the fields of analytical chemistry and in the containerless processing of materials requires a good stability of the levitated particle. However, spontaneous oscillations and rotation of the levitated particle have been reported in literature, which can reduce the applicability of the acoustic levitation technique. Aiming to reduce the particle oscillations, this paper presents the analysis of the particle stability in a new acoustic levitator device. The new acoustic levitator consists of a piezoelectric transducer with a concave radiating surface and a concave reflector. The analysis is conducted by determining numerically the axial and lateral forces that act on the levitated object and by measuring the oscillations of a sphere particle by a laser Doppler vibrometer. It is shown that the new levitator design allows to increase the lateral forces and reduce significantly the lateral oscillations of the levitated object.

  13. 26 CFR 48.4082-3 - Diesel fuel and kerosene; visual inspection devices. [Reserved

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; visual inspection... THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Motor Vehicles, Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-3 Diesel fuel and kerosene...

  14. Inspection device for fuel rod restraint by support lattice of fuel assembly

    International Nuclear Information System (INIS)

    Hasegawa, Isao; Senga, Masatoshi; Kada, Mitoshi.

    1991-01-01

    An inspection operation section for disposing fuel assembly vertically at predetermined positions, a control section wired therewith, a moving operation section movable in the direction of X, Y and Z axes by a driving signal sent from the control section are disposed to an inspection section main body. A downward bore scope and a upward bore scope, each of such a size as can be inserted to the gaps between the fuel rods, are disposed while opposing to each other for observing the inside of each of cells from above and below in support lattices of fuel assemblies. High performance television cameras are disposed to each of bore scopes to supply images to monitoring televisions in the control section. Thus, a displacing operation section of the inspection operation section is automatically controlled three-dimensionally, the downward bore scope and the upward bore scope are integrally intruded to the inside of the gaps between the predetermined fuel rods from a required height and stopped at a predetermined position, mounted automatically to a required cell of the support lattice to efficiently observe and inspect the fuel rod restraint. (N.H.)

  15. 10 CFR 34.31 - Inspection and maintenance of radiographic exposure devices, transport and storage containers...

    Science.gov (United States)

    2010-01-01

    .... 34.31 Section 34.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.31 Inspection and... maintenance program must include procedures to assure that Type B packages are shipped and maintained in...

  16. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  17. Effect of the simulated periodontal ligament on cast post-and-core removal using an ultrasonic device

    Directory of Open Access Journals (Sweden)

    Manoel Brito-Junior

    2010-10-01

    Full Text Available ABSTRACT OBJECTIVE: The aim of this study was to evaluate the effect of simulated periodontal ligament (SPDL on custom cast dowel and core removal by ultrasonic vibration. MATERIAL AND METHODS: Thirty-two human maxillary canines were included in resin cylinders with or without SPDL made from polyether impression material. In order to allow tensile testing, the roots included in resin cylinders with SPDL were fixed to cylinders with two stainless steel wires. Post-holes were prepared by standardizing the length at 8 mm and root canal impressions were made with self-cured resin acrylic. Cast dowel and core sets were fabricated and luted with Panavia F resin cement. Half of the samples were submitted to ultrasonic vibration before the tensile test. Data were analyzed statistically by two-way ANOVA and Tukey's post-hoc tests (p<0.05. RESULTS: The ultrasonic vibration reduced the tensile strength of the samples directly included in resin cylinders. There was no difference between the values, whether or not ultrasonic vibration was used, when the PDL was simulated. However, the presence of SPDL affected the tensile strength values even when no ultrasonic vibration was applied. CONCLUSION: Simulation of PDL has an effect on both ultrasonic vibration and tensile testing.

  18. P-Scan provides accuracy and repeatability in ultrasonics

    International Nuclear Information System (INIS)

    Keys, R.L.

    1987-01-01

    The P-Scan (Projection image scanning technique) is an automated ultrasonic inspection technique, developed to overcome the problems with accuracy and repeatability experienced with manual ultrasonic systems. The equipment and its applications are described. (author)

  19. CAT -- computer aided testing for resonant inspection

    International Nuclear Information System (INIS)

    Foley, David K.

    1998-01-01

    Application of computer technology relates to inspection and quality control. The computer aided testing (CAT) can be used to analyze various NDT technologies, such as eddy current, ultrasonics, and resonant inspection

  20. A novel serrated columnar phased array ultrasonic transducer

    Science.gov (United States)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  1. Development and Testing of an Acoustoultrasonic Inspection Device for Condition Monitoring of Wind Turbine Blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm

    2011-01-01

    In recent years the wind energy industry has grown rapidly (23% per annum) to the stage where a modern turbine blade exceeds the wing span of an Airbus A380, where offshore wind farms of 300MW are a reality, and where an 800MW total level of European power production 15 years ago has become...... for this dynamic new industry. There is a need to understand the effect(s) of more advanced designs and manufacturing approaches, the prevalence and significance of production defects in material and structure, and the optimization of maintenance/inspection effort through monitoring. Described in this paper......-layered structure must meet the requirements of greater size and quality demanded by the industry, whilst matching the harsher environments of offshore placement, and providing improvements in reliability and an upgraded life-cycle maintenance approach. Non-destructive inspection technology is an important topic...

  2. Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types.

    Science.gov (United States)

    Meisberger, Eric W; Bakker, Sjoerd J G; Cune, Marco S

    2015-12-01

    Ultrasonic instrumentation under magnification may facilitate mobilization of screw remnants but may induce heat trauma to surrounding bone. An increase of 5°C is considered detrimental to osseointegration. The objective of this investigation was to examine the rise in temperature of the outer implant body after 30 s of ultrasonic instrumentation to the inner part, in relation to implant type, type of ultrasonic equipment, and the use of coolants in vitro. Two ultrasonic devices (Satelec Suprasson T Max and Electro Medical Systems (EMS) miniMaster) were used on five different implant types that were provided with a thermo couple (Astra 3.5 mm, bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm, and Straumann tissue level wide body regular neck 4.8 mm), either with or without cooling during 30 s. Temperature rise at this point in time is the primary outcome measure. In addition, the mean maximum rise in temperature (all implants combined) was assessed and statistically compared among devices, implant systems, and cooling mode (independent t-tests, ANOVA, and post hoc analysis). The Satelec device without cooling induces the highest temperature change of up to 13°C, particularly in both bone level implants (p < 0.05) but appears safe for approximately 10 s of continuous instrumentation, after which a cooling down period is rational. Cooling is effective for both devices. However, when the Satelec device is used with coolant for a longer period of time, a rise in temperature must be anticipated after cessation of instrumentation, and post-operational cooling is advised. The in vitro setup used in this experiment implies that care should be taken when translating the observations to clinical recommendations, but it is carefully suggested that the EMS device causes limited rise in temperature, even without coolant.

  3. Device for inspecting pieces of luggage by means of X-rays

    International Nuclear Information System (INIS)

    Kunze, C.; Dennhoven, M.

    1977-01-01

    Luggage inspection facility using X-rays, the piece of luggage appearing as a shadow image on a luminous screen. The shielded casing contains a control compartment holding the piece of luggage. During radioscopy the control compartment is closed by means of a shielding tunnel. As during mechanism for the shielding tunnel there is used a so-called linear motor with a moving magnetic field, operating a bar connected with the shielding tunnel through a flexible coupling. The motor is turned off in its terminal positions by means of a magnet and protective gas contacts. (HP) 891 HP [de

  4. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  5. Modernization of a programmable scanning device used to develop remote inspection procedures related to the nondestructive examination of nuclear components

    International Nuclear Information System (INIS)

    Alencar, Donizete A.; Silva Junior, Silverio F.; Viana, Sadraque S.; Alves, Michel R.C.; Horta, Thamyris C.R.

    2011-01-01

    At CDTN's nondestructive test laboratory there is an electromechanical probe scanning device. That equipment is an important tool used in the development of procedures to be applied in remote inspections of nuclear equipment and components. In order to adequate its functionality an update was planned and executed. Keeping its excellent existing mechanical parts and DC motors, the original electronic power supply and the control unit was replaced by a new one. Furthermore, trajectory control and data processing algorithms were implemented by means of National Instruments LabVIEW 8.6 programming tool. So, both trajectory control and data acquisition/plotting systems were integrated as PC executable software. This paper presents details of the whole process, including the updated hardware, some screen shots showing the trajectory control program and a typical data presentation window. (author)

  6. Modernization of a programmable scanning device used to develop remote inspection procedures related to the nondestructive examination of nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Donizete A.; Silva Junior, Silverio F., E-mail: daa@cdtn.b, E-mail: silvasf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Viana, Sadraque S.; Alves, Michel R.C.; Horta, Thamyris C.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Eletronica

    2011-07-01

    At CDTN's nondestructive test laboratory there is an electromechanical probe scanning device. That equipment is an important tool used in the development of procedures to be applied in remote inspections of nuclear equipment and components. In order to adequate its functionality an update was planned and executed. Keeping its excellent existing mechanical parts and DC motors, the original electronic power supply and the control unit was replaced by a new one. Furthermore, trajectory control and data processing algorithms were implemented by means of National Instruments LabVIEW 8.6 programming tool. So, both trajectory control and data acquisition/plotting systems were integrated as PC executable software. This paper presents details of the whole process, including the updated hardware, some screen shots showing the trajectory control program and a typical data presentation window. (author)

  7. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices

    NARCIS (Netherlands)

    Ely, Fernando; Matsumoto, Agatha; Zoetebier, Bram; Peressinotto, Valdirene S.; Hirata, Marcelo Kioshi; de Sousa, Douglas A.; Maciel, Rubens

    2014-01-01

    In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were

  8. In service inspection of SUPERPHENIX 1 vessels: MIR

    International Nuclear Information System (INIS)

    Asty, M.; Viard, J.; Lerat, B.; Saglio, R.

    1985-01-01

    Although no in-service inspection constraints were imposed on the Phenix vessels, the Safety Authorities asked that the design of SUPERPHENIX 1 makes it possible to monitor throughout the lifetime of the reactor, surface and internal defects on the main vessel. A pool design and the presence of heat baffles inside the main vessel make access from the inside of the vessel impossible. Thus, an inspection can only be performed from the outside of the main vessel: the distance between the walls of the main and safety vessels is such that an inspection device can be introduced into the corresponding space. As the design of the reactor precludes radiographic inspection, the method which was selected for monitoring internal defects in the main vessel is ultrasonics. However, the anisotropic structure of austenitic stainless steel welds limits the performance of this technique. The authors present the in-service inspection device, MIR, which has been specially developed for the visual and ultrasonic examination of SUPERPHENIX 1 vessels

  9. Development of a power-assisted lifting device for construction and periodic inspection

    International Nuclear Information System (INIS)

    Hayatsu, M.; Yamada, M.; Takasu, H.; Tagawa, Y.; Kajiwara, K.

    2001-01-01

    This study focuses on the control system design and control performance of a power-assisted lifting device. The device consists of several electric chain-blocks, each controlled by force sensors and a CPU. The mechanism is as follows: (1) Force sensors detect any chain tension changes (by human force), (2) The CPU calculates the required output, (3) Electric chain-blocks move the object in the intended direction. The feature of this device is that it does not require any information related to the suspension points of the electric chain-blocks. The controller was designed using the H method, which considers disturbances and aims to provide robust stability under the operation conditions of construction verified through experiments using a 700 kg steel dummy mass (control object) suspended by four electric chain-blocks. In the experiments, the controller, which was designed using the H method, was compared to the PI controller method, and the effectiveness of the H controller was proven. A control object could be moved, translated, and rotated by human force (of less than 10 kg). Positioning performance errors were suppressed to less than 0.5 mm, and operation time was reduced by about 50%. This device will improve working efficiency and rationalize lifting operations in nuclear power plants. (author)

  10. Development of a power-assisted lifting device for construction and periodic inspection

    Energy Technology Data Exchange (ETDEWEB)

    Hayatsu, M.; Yamada, M.; Takasu, H. [Hitachi Plant Engineering and Construction, Chiba-ken (Japan); Tagawa, Y. [Tokyo Univ. of Agriculture and Technology (Japan); Kajiwara, K. [National Research Institute for Earth Science and Disaster Prevention, Tokyo (Japan)

    2001-07-01

    This study focuses on the control system design and control performance of a power-assisted lifting device. The device consists of several electric chain-blocks, each controlled by force sensors and a CPU. The mechanism is as follows: (1) Force sensors detect any chain tension changes (by human force), (2) The CPU calculates the required output, (3) Electric chain-blocks move the object in the intended direction. The feature of this device is that it does not require any information related to the suspension points of the electric chain-blocks. The controller was designed using the H method, which considers disturbances and aims to provide robust stability under the operation conditions of construction verified through experiments using a 700 kg steel dummy mass (control object) suspended by four electric chain-blocks. In the experiments, the controller, which was designed using the H method, was compared to the PI controller method, and the effectiveness of the H controller was proven. A control object could be moved, translated, and rotated by human force (of less than 10 kg). Positioning performance errors were suppressed to less than 0.5 mm, and operation time was reduced by about 50%. This device will improve working efficiency and rationalize lifting operations in nuclear power plants. (author)

  11. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  12. Sipping test update device for fuel elements cladding inspections in IPR-r1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.R.; Mesquita, A.Z.; Andrade, E.P.D.; Gual, Maritza R., E-mail: rrr@cdtn.br, E-mail: amir@cdtn.br, E-mail: edson@cdtn.br, E-mail: maritzargual@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    It is in progress at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN (Nuclear Technology Development Center), a research project that aims to investigate possible leaks in the fuel elements of the TRIGA reactor, located in this research center. This paper presents the final form of sipping test device for TRIGA reactor, and results of the first experiments setup. Mechanical support strength tests were made by knotting device on the crane, charged with water from the conventional water supply, and tests outside the reactor pool with the use of new non-irradiated fuel elements encapsulated in stainless steel, and available safe stored in this unit. It is expected that tests with graphite elements from reactor pool are done soon after and also the test experiment with the first fuel elements in service positioned in the B ring (central ring) of the reactor core in the coming months. (author)

  13. Sipping test update device for fuel elements cladding inspections in IPR-r1 TRIGA reactor

    International Nuclear Information System (INIS)

    Rodrigues, R.R.; Mesquita, A.Z.; Andrade, E.P.D.; Gual, Maritza R.

    2015-01-01

    It is in progress at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN (Nuclear Technology Development Center), a research project that aims to investigate possible leaks in the fuel elements of the TRIGA reactor, located in this research center. This paper presents the final form of sipping test device for TRIGA reactor, and results of the first experiments setup. Mechanical support strength tests were made by knotting device on the crane, charged with water from the conventional water supply, and tests outside the reactor pool with the use of new non-irradiated fuel elements encapsulated in stainless steel, and available safe stored in this unit. It is expected that tests with graphite elements from reactor pool are done soon after and also the test experiment with the first fuel elements in service positioned in the B ring (central ring) of the reactor core in the coming months. (author)

  14. A dye penetration inspection device for a peripheral annular zone of of a body

    International Nuclear Information System (INIS)

    Gebel, A.; Gemma, A.

    1996-01-01

    The device is composed of: a transverse annular rail track that is attached to the peripheral surface of the body, a guided cart moving on the track, and various equipment mounted on the cart including nozzles for spraying the dye liquid, a dye cleaning liquid and a developer product, and drying means and remote viewing means. Remote control means are also used to control cart motion and spraying, cleaning and drying sequences

  15. Inspection of commercial optical devices for data storage using a three Gaussian beam microscope interferometer

    International Nuclear Information System (INIS)

    Flores, J. Mauricio; Cywiak, Moises; Servin, Manuel; Juarez P, Lorenzo

    2008-01-01

    Recently, an interferometric profilometer based on the heterodyning of three Gaussian beams has been reported. This microscope interferometer, called a three Gaussian beam interferometer, has been used to profile high quality optical surfaces that exhibit constant reflectivity with high vertical resolution and lateral resolution near λ. We report the use of this interferometer to measure the profiles of two commercially available optical surfaces for data storage, namely, the compact disk (CD-R) and the digital versatile disk (DVD-R). We include experimental results from a one-dimensional radial scan of these devices without data marks. The measurements are taken by placing the devices with the polycarbonate surface facing the probe beam of the interferometer. This microscope interferometer is unique when compared with other optical measuring instruments because it uses narrowband detection, filters out undesirable noisy signals, and because the amplitude of the output voltage signal is basically proportional to the local vertical height of the surface under test, thus detecting with high sensitivity. We show that the resulting profiles, measured with this interferometer across the polycarbonate layer, provide valuable information about the track profiles, making this interferometer a suitable tool for quality control of surface storage devices

  16. In-Line Acoustic Device Inspection of Leakage in Water Distribution Pipes Based on Wavelet and Neural Network

    Directory of Open Access Journals (Sweden)

    Dileep Kumar

    2017-01-01

    Full Text Available Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features.

  17. Development of data acquisition and processing system for In-service inspection of nuclear power plants

    International Nuclear Information System (INIS)

    Takama, Shinkichi; Kobayashi, Koji; Satoh, Yoshio; Koga, Yoshihiro; Shimizu, Takakazu

    1981-01-01

    In-service inspection (ISI) is required during the plant outage to assure the reliability of the components of a nuclear power plant. IHI has developed the advanced ISI system which consists of remote controlled and mechanized ultrasonic inspection devices for reactor pressure vessel examination, semi-automatic inspection instruments for piping examination with manual scan and automatic recording, data acquisition and processing system with microprocessor and mini-computer. By this system, ISI can be performed fully satisfying the requirement of ASME Code Sec. XI and minimizing operation in the high radioactive areas. All ultrasonic information is processed by the computer and the examination results such as size and location of ultrasonic indication are printed out in the form of sectional and plan view of the part examined, reproduced screen image and polar plot, etc. as well as the evaluation sheet. This system saves the elaborate work of inspection personnel and is expected to contribute to the improvement of inspection quality and to the reduction of radiation exposure of inspection personnel. (author)

  18. Ultrasonic calibration assembly

    International Nuclear Information System (INIS)

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  19. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  20. 9 CFR 381.204 - Marking of poultry products offered for entry; official import inspection marks and devices.

    Science.gov (United States)

    2010-01-01

    ... Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Marking of poultry products offered...

  1. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  2. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  3. On the development of the METAR family of inspection tools

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, E. [Inst. de recherche d' Hydro-Quebec, Varennes, Quebec (Canada)]. E-mail: lavoie.eric@ireq.ca; Rousseau, G. [Hydro-Quebec, Central Nucleaire Gentilly-2, Gentilly, Quebec (Canada); Reynaud, L. [Inst. de recherche d' Hydro-Quebec, Varennes, Quebec (Canada)

    2003-07-01

    Since 1998, Hydro Quebec Research Centre (IREQ), in collaboration with Gentilly-2, has been working on the development of inspection devices for the feeder tubes of CANDU power plants. The first tool to come out of this work was the Metar bracelet, now used throughout the CANDU utilities, consisting of 14 ultrasonic probes held in place in a rigid bracelet to measure the thickness of the pipes and moved around manually along the pipe. Following the success of the Metar, a motorized version, i.e. the Crawler, has been developed to inspect beyond the operator arm's reach to access hard to reach place or further down the pipes in the reactor. This new system has been tested at 3 different stations and will be commercially available soon. Finally, the same technology was used to develop a motorized 2-axis crack detection device to answer new concerns about the feeder. Other configurations, depending on the demands from the industry, could also be developed for specific inspection needs, for example; inspection of the graylock welds, 360{sup o} inspection of feeders, or multitasking inspection on a single frame, etc. Most of the designs shown in this article have been or will be patented and are, or will be, licensed to a partner company to make them commercially available to the industry. This paper gives a brief history of the project and a description of the technologies developed in the last 5 years concerning feeder inspection. (author)

  4. Capability evaluation of Eddy current and ultrasonic in-service inspections of steam generator tubes. A status report of PISC III Action 5

    International Nuclear Information System (INIS)

    Bieth, M.; Birac, C.; Comby, R.

    1998-01-01

    Document summarizes the PISC III (Programme for the Inspection of Steel Components) report No. 41, full description of the PISC III Action 5 on Steam Generator Tubes Inspection, containing all details and final conclusions which are still to be approved by the PISC III Management Board. The report was prepared by the reference laboratory of PISC under guidance and with continuous contribution of the members of the Data Analysis Group (DAG) of this PISC III. There were several procedures which demonstrated good detection capability of major flaws in typical locations of the steam generator. Conclusions of the exercise indicate that capability demonstration is necessary to qualify in service inspection procedures for steam generator tubes

  5. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    Science.gov (United States)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  6. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  7. Development of phased-array ultrasonic testing probe

    International Nuclear Information System (INIS)

    Kawanami, Seiichi; Kurokawa, Masaaki; Taniguchi, Masaru; Tada, Yoshihisa

    2001-01-01

    Phased-array ultrasonic testing was developed for nondestructive evaluation of power plants. Phased-array UT scans and focuses an ultrasonic beam to inspect areas difficult to inspect by conventional UT. We developed a highly sensitive piezoelectric composite, and designed optimized phased-array UT probes. We are applying our phased-array UT to different areas of power plants. (author)

  8. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  9. Array-type miniature interferometer as the core optical microsystem of an optical coherence tomography device for tissue inspection

    Science.gov (United States)

    Passilly, Nicolas; Perrin, Stéphane; Lullin, Justine; Albero, Jorge; Bargiel, Sylwester; Froehly, Luc; Gorecki, Christophe; Krauter, Johann; Osten, Wolfgang; Wang, Wei-Shan; Wiemer, Maik

    2016-04-01

    Some of the critical limitations for widespread use in medical applications of optical devices, such as confocal or optical coherence tomography (OCT) systems, are related to their cost and large size. Indeed, although quite efficient systems are available on the market, e.g. in dermatology, they equip only a few hospitals and hence, are far from being used as an early detection tool, for instance in screening of patients for early detection of cancers. In this framework, the VIAMOS project aims at proposing a concept of miniaturized, batch-fabricated and lower-cost, OCT system dedicated to non-invasive skin inspection. In order to image a large skin area, the system is based on a full-field approach. Moreover, since it relies on micro-fabricated devices whose fields of view are limited, 16 small interferometers are arranged in a dense array to perform multi-channel simultaneous imaging. Gaps between each channel are then filled by scanning of the system followed by stitching. This approach allows imaging a large area without the need of large optics. It also avoids the use of very fast and often expensive laser sources, since instead of a single point detector, almost 250 thousands pixels are used simultaneously. The architecture is then based on an array of Mirau interferometers which are interesting for their vertical arrangement compatible with vertical assembly at the wafer-level. Each array is consequently a local part of a stack of seven wafers. This stack includes a glass lens doublet, an out-of-plane actuated micro-mirror for phase shifting, a spacer and a planar beam-splitter. Consequently, different materials, such as silicon and glass, are bonded together and well-aligned thanks to lithographic-based fabrication processes.

  10. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  11. Ultrasonic Technology in Duress Alarms.

    Science.gov (United States)

    Lee, Martha A.

    2000-01-01

    Provides the pros and cons of the most commonly used technologies in personal duress alarm systems in the school environment. Discussed are radio frequency devices, infrared systems, and ultrasonic technology. (GR)

  12. Contribution to the development and the modelling of an ultrasonic conformable phased array transducer for the contact inspection of 3D complex geometry components

    International Nuclear Information System (INIS)

    Guedes, O.

    2005-04-01

    With the difficulties encountered for the exploration of complex shape surfaces, particularly in nuclear industry, the ultrasonic conformable phased array transducer allows a non destructive evaluation of parts with 3D complex parts. For this, one can use the Smart Contact Transducer principle to generate an ultrasonic field by adaptive dynamic focalisation, with a matrix array composed of independent elements moulded in a soft resin. This work deals with the electro-acoustic conception, with the realization of such a prototype and with the study of it's mechanical and acoustic behaviour. The array design is defined using a radiation model adapted to the simulation of contact sources on a free surface. Once one have defined the shape of the radiating elements, a vibratory analysis using finite elements method allows the determination of the emitting structure with 1-3 piezocomposite, witch leads to the realization of emitting-receiving elements. With the measurement of the field transmitted by such elements, we deduced new hypothesis to change the model of radiation. Thus one can take into account normal and tangential stresses calculated with finite element modelling at the interface between the element and the propagation medium, to use it with the semi-analytical model. Some vibratory phenomena dealing with fluid coupling of contact transducers have been studied, and the prediction of the transverse wave radiation profile have been improved. The last part of this work deals with the realization of the first prototype of the conformable phased array transducer. For this a deformation measuring system have been developed, to determine the position of each element on real time with the displacement of the transducer on complex shape surfaces. With those positions, one can perform the calculation of the a delay law intended for the adaptive dynamic focusing of the desired ultrasonic field. The conformable phased array transducer have been characterized in

  13. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  14. Weld defects analysis of 60 mm thick SS316L mock-ups of TIG and EB welds by ultrasonic inspection for fusion reactor vacuum vessel applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, P.M.; Sarkar, B.

    2015-01-01

    The present paper reports the weld quality inspections carried with 60 mm thick AISI welds of SS316L. The high thickness steel plates requirement is due to the specific applications in case of advanced fusion reactor structural components like vacuum vessel and others. Different kind welds are proposed for the thick plate joints like Tungsten Inert Gas (TIG) welding, Electron beam welding as per stringent conditions (like very low distortions and residual stresses) for the vacuum vessel fabrication. Mock-ups of laboratory scale welds are fabricated by TIG (multi-pass) and EB (double pass) process techniques and different weld quality inspections are carried by different NDT tests. The welds are examined with Liquid penetrant examination to check sub surface cracks/discontinuities towards the defects observation

  15. Automation and mechanization of in-service inspection of selected equipment in FRG's nuclear power plants

    International Nuclear Information System (INIS)

    Metke, E.

    1988-01-01

    The procedures and equipment are described for the automation and mechanization of in-service inspection in nuclear power plants in the FRG, used by the KWU company. Checks of the pressure vessel are done by visual means using a colour tv camera, the method of eddy currents and the ultrasonic method. An analysis is made of the time schedule of ultrasonic inspections, and the central column manipulator is described which allows to check all internal regions of the pressure vessel. Attention is also devoted to other devices, e.g., those for prestressing shanks, cleaning shanks, cleaning thread apertures, etc. A combined probe using the ultrasonic method and the eddy current method serves the inspection of heat exchange tubes in the steam generator. For inspecting the primary circuit the KWU company uses devices for checking and working the inner surface of pipes. Briefly described are examples of using KWU equipment in nuclear power plants in CMEA countries. (Z.M.). 11 figs., 6 refs

  16. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  17. Evolution in the design and development of the in-service inspection device for the Indian 500 MWe Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Singh, Ashutosh Pratap; Rajagopalan, C.; Rakesh, V.; Rajendran, S.; Venugopal, S.; Kasiviswanathan, K.V.; Jayakumar, T.

    2011-01-01

    Highlights: → Conceptual study on the configuration of an ISI device for FBR interspace environment has been carried out. → Prototyping of the concept has been experimentally validated in a mock up. → High temperature version of the ISI device has been made and tested in mock-up. Further experimentation is underway. → Simulation of different configurations of the device has been carried out with respect to reduced gap between main vessel and safety vessel for future FBRs. → Studies on wheel lining for the device have been carried out at 150 o C for better traction and payload capability. - Abstract: In-service inspection (ISI) plays a major role in monitoring the condition of nuclear power plant structures and components. Based on the information gathered during inspection and the studies carried out, it is possible to assess the extent of damage and take corrective measures to keep effects of ageing under control. In nuclear power plants comprehensive ISI is dictated by issues of increased safety to personnel and equipment, and efficiently enhances the plant life. A special emphasis has been laid on the development of robotic devices for the ISI of the indigenous Indian 500 MWe Prototype Fast Breeder Reactor (FBR) components. This paper traces the experiments and simulations in the key developments of a robotic device, for the ISI of main vessel and safety vessel of FBRs, carried out at Indira Gandhi Centre for Atomic Research, India.

  18. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  19. Automated evaluation of ultrasonic indications

    International Nuclear Information System (INIS)

    Hansch, M.K.T.; Stegemann, D.

    1994-01-01

    Future requirements of reliability and reproducibility in quality assurance demand computer evaluation of defect indications. The ultrasonic method with its large field of applications and a high potential for automation provides all preconditions for fully automated inspection. The survey proposes several desirable hardware improvements, data acquisition requirements and software configurations. (orig.) [de

  20. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  1. Inspection of steel poles; ultrasonic testing of anchor ground rods and cathodic reactions : Corrosion detection : an emerging problem in buried steel structures

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, A.K.; Randle, R.E.; Stewart, A.H. [EDM International Inc., Fort Collins, CO (United States)

    2002-07-01

    A typical inspection of steel utility poles routinely overlooks what is below ground, such as anchor rods, stub angles in lattice towers, and direct embedded steel poles. Stub angles are lap or butt spliced to the tower leg and extend several feet below ground line. A case study concerning stub angles (Oberst 1998) is discussed. An inspection of steel poles erected in 1929 revealed that 40 per cent of legs had complete loss of galvanizing, 10 per cent of legs had greater than 10 per cent loss of cross-section, and 2 per cent of legs had greater than 80 per cent loss of cross-section. All corrosion was found within one foot of ground line. A relatively new concept is direct embedded steel poles. An emerging problem concerns tree induced anchor rod corrosion. A corrosion technique for anchor rods was developed and has been commercially available for the past three years. Its effectiveness was verified at the Montana Power Company 500 kV Colstrip Project, where 3 anchor failures were detected in 1995 due to corrosion wastage. The rods are classified as being in good condition up to 10 per cent loss of cross-section, moderate corrosion for losses between 10 and 25 per cent, and excessive corrosion for losses greater than 25 per cent. The results obtained at the Montana Power Company indicated the technique was 98 per cent accurate. The authors discuss the capabilities and limitations of the technique. It was also applied for the Anchor Rod Inspection Project of the Georgia Power Company (GPC). The technique is evaluated in the laboratory, then optimized. Field prototypes are developed, followed by an evaluation at different test sites. figs.

  2. Advanced ultrasonic field system: a status report

    International Nuclear Information System (INIS)

    Mikesell, C.R.; Beller, L.S.

    1984-02-01

    An advanced ultrasonic system was developed to obtain highly reproducible inspection data and to overcome certain limitations encountered with the manual scanning method. Experience from field operations from 1976 through 1980 is discussed. The scope includes a description of the computer controlled system, personnel training, inservice inspections, data analysis, and current upgrading of the system

  3. Improvement of the reliability on nondestructive inspection

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young H.; Lee, Hyang Beom; Shin, Young Kil; Jung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2002-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time

  4. Improvement of the reliability on nondestructive inspection

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young H. [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Jung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul Nationl Univ., Seoul (Korea, Republic of)

    2002-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time.

  5. The selection of ultrasonic transducers for inspection of pipeline girth welds. Vol. 2. Evaluation of a unique creeping wave probe for examination of the cap region in pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Fingerhut, M P; Glover, A G; Dorling, D V

    1988-10-01

    This work is part of a program aimed at developing an ultrasonic inspection design for the nondestructive evaluation of pipeline girth welds made by the mechanized gas metal arc (GMA) welding process for onshore and offshore pipeline construction. The feasibility of using creeping waves for examination of the cap region was investigated and, as a result, a specification for an experimental creeping wave transducer developed and a probe was designed to provide a beam oriented nearly perpendicular to expected defects in the cap region of the weld. The performance of this experimental creeping wave transducer was evaluated with respect to its ability to detect simulated and real weld defects in the cap region of mechanized GMA welds in 9.5 mm material. The probe was successful in detecting planar lack of sidewall fusion welding defects with a signal-to-noise ratio of greater than 12 dB, at depths of up to 4.2 mm from the plate surface. This indicates maximum pipe wall thicknesses of 10.9 mm may be satisfactorily examined before additional probes are required, assuming complete coverage in the root region is provided by other probes. The creeping wave probe not only performed well in the detection of real weld defects in the cap region for which it was intended, but also showed potential for detecting and discriminating some planar defects in the root region. 9 refs., 23 figs., 3 tabs.

  6. Ultrasonic examination of JBK-75 strip material

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material [1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)], feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches [0.28 mm deep (0.011 in., about 17% of the strip thickness)] were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests

  7. Impact of cavitron ultrasonic surgical aspirator (CUSA) and bipolar radiofrequency device (Habib-4X) based hepatectomy for hepatocellular carcinoma on tumour recurrence and disease-free survival.

    Science.gov (United States)

    Huang, Kai-Wen; Lee, Po-Huang; Kusano, Tomokazu; Reccia, Isabella; Jayant, Kumar; Habib, Nagy

    2017-11-07

    The aim of this study was to evaluate the oncological outcomes of hepatocellular carcinoma patients undergoing liver resection using cavitron ultrasonic surgical aspirator (CUSA) or radiofrequency (RF) based device Habib-4X.
. We prospectively analyzed the data of 280 patients who underwent liver resection for hepatocellular carcinoma at our institution from 2010-2012 with follow up till August 2016. The CUSA was used in the 163 patients whilst Habib-4X in 117 patients. The end points of analysis were oncological outcomes as disease recurrence, disease-free survival (DFS) and overall survival (OS) were estimated by the Kaplan-Meier method, which has been compared with all other existing literature on the survival study. Compared with CUSA the reported incidence of recurrence was significantly lower, in Habib-4X group; p Habib-4X group than CUSA group (50.80 vs 45.87 months, p = 0.03). The median OS was better in Habib-4X group than CUSA group (60.57 vs 57.17 months, p = 0.12) though the lesser difference in OS between the groups might be explained by the use of palliative therapies as TACE, percutaneous RFA, etc. in case of recurrence. RF based device Habib-4X, is safe and effective device for resection of hepatocellular carcinoma, in comparison to CUSA with better oncological outcomes, i.e., significantly lesser tumour recurrence and better DFS. This could be explained on the basis of systemic and local immunomodulatory effect involving induction of kupffer cells and effector CD-8 T cells that help in minimizing postoperative complications and bring more advantageous oncological outcomes.

  8. PWR vessel inspection performance improvements

    International Nuclear Information System (INIS)

    Blair Fairbrother, D.; Bodson, Francis

    1998-01-01

    A compact robot for ultrasonic inspection of reactor vessels has been developed that reduces setup logistics and schedule time for mandatory code inspections. Rather than installing a large structure to access the entire weld inspection area from its flange attachment, the compact robot examines welds in overlapping patches from a suction cup anchor to the shell wall. The compact robot size allows two robots to be operated in the vessel simultaneously. This significantly reduces the time required to complete the inspection. Experience to date indicates that time for vessel examinations can be reduced to fewer than four days. (author)

  9. Reproducibility problems of in-service ultrasonic testing results

    International Nuclear Information System (INIS)

    Honcu, E.

    1974-01-01

    The reproducibility of the results of ultrasonic testing is the basic precondition for its successful application in in-service inspection of changes in the quality of components of nuclear power installations. The results of periodic ultrasonic inspections are not satisfactory from the point of view of reproducibility. Regardless, the ultrasonic pulse-type method is suitable for evaluating the quality of most components of nuclear installations and often the sole method which may be recommended for inspection with regard to its technical and economic aspects. (J.B.)

  10. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  11. Nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Blackstone, E.G.; Lofy, R.A.; Williams, L.P.

    1979-01-01

    Apparatus for the in situ inspection of a nuclear reactor vessel to detect the location and character of flaws in the walls of the vessel, in the welds joining the various sections of the vessel, in the welds joining attachments such as nozzles, elbows and the like to the reactor vessel and in such attachments wherein an inspection head carrying one or more ultrasonic transducers follows predetermined paths in scanning the various reactor sections, welds and attachments

  12. An advanced system for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Dressler, K.

    1989-01-01

    As the main component of the AUP system, an ALOK ultrasonic unit has been chosen as it allows for testing of large component areas both search for defects and description of defect geometries. All data required for fault analysis can be obtained by one measuring run. For inspection of primary circuit components in nuclear power stations, the manipulator control and the ultrasonic probe are installed behind the first sufficient shielding. (orig./HP) [de

  13. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  14. Ultrasonic imaging in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Lubeigt, E. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France); Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Mensah, S.; Chaix, J.F.; Rakotonarivo, S. [Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Gobillot, G. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2015-07-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  15. Ultrasonic imaging in liquid sodium

    International Nuclear Information System (INIS)

    Lubeigt, E.; Mensah, S.; Chaix, J.F.; Rakotonarivo, S.; Gobillot, G.

    2015-01-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  16. Ultrasonic Inspection following Heat Treatment of Uranium Alloys; Controle des Traitements Thermiques d'Alliage d'Uranium par Ultrasons; Kontrol' termicheskoj obrabotki uranovykh splavov s pomoshch'yu ul'trazvuka; Control Ultrasonico de los Tratamientos Termicos de Aleaciones de Uranio

    Energy Technology Data Exchange (ETDEWEB)

    Destribats, Marie-Therese; Cherpentier, C.; Papezik, F.; Pigeon, M. [Centre d' Etudes Nucleaires Desaclay (France)

    1965-10-15

    To improve the behaviour of low uranium alloys in reactors it is often necessary to reduce grain size by heat treatment. It has proved essential to provide for inspection of the whole element and the entire output in order to discover the exact quality of the fuel used. This inspection cannot be made by micrography because of the time required and the fact that the data obtained are incomplete. The inspection system adopted is based on the principle of absorption of ultrasonic waves by materials. This absorption depends on the structure of the medium. If {lambda} is small in relation to grain size G, absorption is low; whereas if G is of the order of {lambda}/2, absorption is very high. The tests were made first in air, using the multiple-echo system, then by measuring the height of the first echo, and finally by transmission in water, the height of the transmitted echo being compared with that of the initial signal. In industrial use, the amplitude of the echo transmitted by the material is compared with the echo obtained from a standard of the same characteristics and shape. Inspection takes place in a special machine in which the materials are rotated by rollers and adjustable transducers move over the element. The helicoidal scanning is carried out with a pitch of less than 5 mm. The ultrasonic generator includes a control system ensuring a constant reference echo. The paper quotes a series of records showing the results obtained with various alloys and in particular the faults observed in elements treated by induction upon linear displacement. The arrangement can detect faulty treatment zones of less than 1 cm{sup 2}. The system is at present used to inspect all low alloy uranium fuels of the G2, EL3, EDF1, EDF2 and INCA reactors, i.e. rods and tubes with diameters between 20 and 95 mm. (author) [French] Afin d'obtenir une meilleure tenue des alliages d'uranium faiblement allies dans les reacteurs, un affinage du grain par traitements thermiques est souvent

  17. Ultrasound periodic inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Haniger, L.

    1980-01-01

    Two versions are described of ultrasonic equipment for periodic inspections of reactor pressure vessels. One uses the principle of exchangeable programmators with solid-state logic while the other uses programmable logic with semiconductor memories. The equipment is to be used for inspections of welded joints on the upper part of the V-1 reactor pressure vessel. (L.O.)

  18. Inspection of disposal canisters components

    International Nuclear Information System (INIS)

    Pitkaenen, J.

    2013-12-01

    This report presents the inspection techniques of disposal canister components. Manufacturing methods and a description of the defects related to different manufacturing methods are described briefly. The defect types form a basis for the design of non-destructive testing because the defect types, which occur in the inspected components, affect to choice of inspection methods. The canister components are to nodular cast iron insert, steel lid, lid screw, metal gasket, copper tube with integrated or separate bottom, and copper lid. The inspection of copper material is challenging due to the anisotropic properties of the material and local changes in the grain size of the copper material. The cast iron insert has some acoustical material property variation (attenuation, velocity changes, scattering properties), which make the ultrasonic inspection demanding from calibration point of view. Mainly three different methods are used for inspection. Ultrasonic testing technique is used for inspection of volume, eddy current technique, for copper components only, and visual testing technique are used for inspection of the surface and near surface area

  19. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  20. Quality assurance of brazed copper plates through advanced ultrasonic NDE

    OpenAIRE

    Segreto, T.; Caggiano, A.; Teti, R.

    2016-01-01

    Ultrasonic non-destructive methods have demonstrated great potential for the detection of flaws in a material under examination. In particular, discontinuities produced by welding, brazing, and soldering are regularly inspected through ultrasonic techniques. In this paper, an advanced ultrasonic non-destructive evaluation technique is applied for the quality control of brazed copper cells in order to realize an accelerometer prototype for cancer proton therapy. The cells are composed of two h...

  1. 49 CFR 213.235 - Inspection of switches, track crossings, and lift rail assemblies or other transition devices on...

    Science.gov (United States)

    2010-10-01

    ... rail assemblies or other transition devices on moveable bridges. 213.235 Section 213.235 Transportation... assemblies or other transition devices on moveable bridges. (a) Except as provided in paragraph (c) of this section, each switch, turnout, track crossing, and moveable bridge lift rail assembly or other transition...

  2. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  3. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    turbines. Additionally, a unique 3D bat flight path visualization system was utilized to monitor for and identify any changes in bat activity caused by the operation of the deterrent system. Both the carcass search and flight path visualization data indicated that the pulsed deterrent system was effective, but not more effective, than the steady system tested in prior years. The pulsed deterrent system was effective at reducing bat fatalities by 38% for all species and 54% effective at reducing fatalities if Eastern Red bats were excluded from the data. However, an unanticipated byproduct of the pulsing system was the emission of intermittent water vapor from the deterrent devices due to the air compression process that powered the devices. This water vapor may have altered the ultrasonic signal and obscured the results in an unknown way. While a qualitative analysis of the effect of the water vapor on the deterrent signal had indicated there was not dramatic change in the expected ultrasonic signal, it was not possible to conclusively determine if the pulse signal would have been more effective in the absence of the water vapor.

  4. Automated ultrasonic testing--capabilities, limitations and methods

    International Nuclear Information System (INIS)

    Beller, L.S.; Mikesell, C.R.

    1977-01-01

    The requirements for precision and reproducibility of ultrasonic testing during inservice inspection of nuclear reactors are both quantitatively and qualitatively more severe than most current practice in the field can provide. An automated ultrasonic testing (AUT) system, which provides a significant advancement in field examination capabilities, is described. Properties of the system, its application, and typical results are discussed

  5. System of acquisition and analysis of ultrasonic data

    International Nuclear Information System (INIS)

    Vaubert, Y.; Birac, A.M.; Saglio, R.

    1982-08-01

    An original system of acquisition and analysis of ultrasonic data collected during examinations named STADUS-PRODUS has been developed by C.E.A. in Saclay. First developed for the needs of in-service inspection of PWR vessels, it is now used for the different automatic ultrasonic controls with various tools

  6. A case study of the crack sizing performance of the Ultrasonic Phased Array combined crack and wall loss inspection tool on the Centennial pipeline, the defect evaluation, including the defect evaluation, field feature verification and tool performance validation (performed by Marathon Oil, DNV and GE Oil and Gas)

    Energy Technology Data Exchange (ETDEWEB)

    Hrncir, T.; Turner, S. [Marathon Pipe Line LLC, Findley, OH (United States); Polasik, SJ [DNV Columbus, Inc, Dublin, OH 43017 (United States); Vieth, P. [BP EandP, Houston, TX (United States); Allen, D.; Lachtchouk, I.; Senf, P.; Foreman, G. [GE Oil and Gas PII Pipeline Solutions, Stutensee (Germany)], email: geoff.foreman@ge.com

    2010-07-01

    The Centennial Pipeline System is operated by Marathon Pipe Line LLC. It is 754 miles long and carries liquid products from eastern Texas to southern Illinois. Most of it was constructed in 1951 for natural gas, but it was converted in 2001 for liquid product service. GE Oil and Gas conducted an ultrasonic phased array in-line inspection (ILI) survey of this pipeline, whose primary purpose was to detect and characterize stress corrosion cracking. A dig verification was performed in 2008 to increase the level of confidence in the detection and depth-sizing capabilities of this inspection method. This paper outlines of the USCD technology and experience and describes how the ILI survey results were validated, how the ILI data analysis was improved, and the impact on managing the integrity of the line section. Results indicate that the phased array technology approached a 90% certainty predicted depth with a tolerance of 1 mm at a 95% confidence level.

  7. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  8. Devices for the contamination containment employees in the steam generator inspection; Dispositivo para confinamiento de la contaminacion empleados en la inspeccion de generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Bueno, A.; Largo Izquierdo, P.; Calleja Rubio, J. A.

    2010-07-01

    The process of induced current inspection of the tubes of the steam generator is a typical programmed inspections at each refueling outages of pressurized water in nuclear power plants. components inspection being quite active, interested in the program of continuous improvement, further optimize the inspection system.

  9. Rapid Ultrasonic Inspection of Artillery Projectiles.

    Science.gov (United States)

    1978-05-01

    output is then intergrated and the output of the integrator is sampled by a sample-and-hold circuit. The output of the sample-and-hold circuit can be...distances it is advantageous to set the range-gate as soon as possible after the main bang, although some trade -offs are inevitable because of the

  10. Evaluation of Suitability of Non-Standardized Test Block for Ultrasonic Testing

    International Nuclear Information System (INIS)

    Kwon, Ho Young; Lim, Jong Ho; Kang, Sei Sun

    2000-01-01

    Standard Test Block(STB) for UT(Ultrasonic Testing) is a block approved by authoritative for material, shape and quality. STB is used for characteristic tests, sensitivity calibration and control of the time base range of UT inspection devices. The material, size and chemical components of STB should be strictly controlled to meet the related standards such as ASTM and JIS because it has an effect upon sensitivity, resolution and reproductivity of UT. The STBs which are not approved are sometimes used because the qualified STBs are very expensive. So, the purpose of this study is to survey the characteristics, quality and usability of Non-Standardized Test Blocks. Non-Standardized Test Blocks did not meet the standard requirements in size or chemical components, and ultrasonic characteristics. Therefore if the Non-Standardized Test Blocks are used without being tested, it's likely to cause errors in detecting the location and measuring the size of the defects

  11. 9 CFR 312.2 - Official marks and devices to identify inspected and passed products of cattle, sheep, swine, or...

    Science.gov (United States)

    2010-01-01

    ..., and the smaller varieties of sausage and meat food products in animal casings. EC11SE91.001 For application to calf and goat carcasses and on the larger varieties of sausage and meat food products in animal... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Official marks and devices to identify...

  12. Cracks assessment using ultrasonic technology

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Maria Pia; Tomasella, Marcelo [OLDELVAL S.A. Oleoductos del Valle, Rio Negro (Argentina). Pipeline Integrity Dept.

    2005-07-01

    The goal of Oldelval Integrity Program is to prevent ruptures and leaks, developing strategies for a better handling of the integrity of our pipelines. In order to achieve it we have studied and modeled each process that involved in the integrity pipeline. Those processes are mainly based on defects reported by an internal inspection tool and supplied with field inspection and monitoring data. Years of evaluation, study and the continuous effort overturned towards a phenomenon that worries to the industry, as it is the SCC. Since 1998 up to 2004 SCC was included in the integrity program with some preventive maintenance programs. The accomplishment of the inspection based on ultrasound tools, is the culmination of years of evaluation and investigations supported by field digs and materials susceptibility. This paper describes Oldelval's results with ultrasonic crack detection tool, and how it can be reliably to detect SCC. (author)

  13. Plant equipment integrity monitoring and diagnosing method and device therefor, plant equipment maintenance and inspection time determining method and device therefor, as well as nuclear power plant

    International Nuclear Information System (INIS)

    Kato, Takahiko; Ando, Masashi; Osumi, Katsumi; Horiuchi, Tetsuo; Asakura, Yamato; Akamine, Kazuhiko.

    1995-01-01

    The present invention can accurately forecast a time for occurrence of troubles of plant equipments in contact with recycling water, to conduct its maintenance and inspection before occurrence of the troubles. Namely, change of water quality in plant equipments caused by corrosion of recycling water occurred in constitutional parts of the plant equipments is measured. The time upon occurrence of the troubles of the plant equipments to corrosion of the recycling water is forecast based on the measured value. A time till the occurrence of the change of water quality after starting the use of the plant equipments is calculated based on the measured value. The calculated time is compared with a correlation between the time of occurrence of the troubles after starting the use of the plant equipments and the time of occurrence of change of the water quality, to forecast the time of occurrence of the troubles. Preferably, electroconductivity and pH of recycling water in the inside or at the exit of the plant equipments are measured as an object for the measurement of change of water quality. (I.S.)

  14. An intelligent software approach to ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress on this methodology, it has not been widely used in practical ultrasonic inspection of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments using various tools in artificial intelligence such as neural networks. This software shows excellent performances in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks.

  15. Evaluation of Effect by Internal Flow on Ultrasonic Testing Flaw Sizing in Piping

    International Nuclear Information System (INIS)

    Lee, Jeong Seok; Yoon, Byung Sik; Kim, Yong Sik

    2013-01-01

    In this study, the ultrasonic amplitude difference between air filled and water filled piping in nuclear power plant is compared by modeling approach. In this study, ultrasonic amplitude differences between air and water filled pipe are evaluated by modeling approach. Consequently, we propose the following results. The ultrasonic amplitude difference between air and water filled condition is measured by lower than 1 dB in modeling calculation. The flaw length sizing error between air and water filled condition shows same results based on 12 dB drop method even thought the amplitude difference is 1 dB. Most of the piping welds in nuclear power plants are inspected periodically using ultrasonic techniques to detect service-induced flaws such as IGSCC cracking. The inspection results provide information such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these information. Specially, the amplitude of flaw response is very important to estimate the flaw size. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing methodology. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error

  16. Process and device for the ultrasonic testing of slotted screws screwed into a head of a nuclear reactor fuel element for cracks

    International Nuclear Information System (INIS)

    Scharpenberg, R.

    1986-01-01

    To achieve correct echo signals, a test head is set separately on each area limited by a slot of the top of the slotted screw and the screw head is ultrasonically sounded in the direction of the suspected cracks. (orig./HP) [de

  17. Piping inspection round robin

    International Nuclear Information System (INIS)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths

  18. Device for inspection and/or repair of a pipe of a steam raising unit of a nuclear power station

    International Nuclear Information System (INIS)

    Vermaat, H.P.

    1986-01-01

    Eddy current sensors are introduced into the pipe from the steam raising unit chamber. The two-part device on the supporting pillar is used to support the sensors and to position them, and so is an arm connected to it via a clutch. It is accommodated inside the steam raising chamber, but can be operated remotely from outside the steam raising chamber. This reduces the radiation loading of the operating staff. (DG) [de

  19. Ultrasonic imaging in concrete

    International Nuclear Information System (INIS)

    Ribay, G.; Paris, O.; Rambach, J.M.

    2009-01-01

    The third and final protection barrier confining nuclear reactors is usually a concrete containment structure. Monitoring the structural integrity of these barriers is critical in ensuring the safety of nuclear power plants. The Institute for Radiological Protection and Nuclear Safety (IRSN) in France in collaboration with the French Atomic commission (CEA/LIST) has developed an ultrasonic phased-array technique capable of inspecting thick concrete walls. The non-destructive method is dedicated to detect cracks and bulk defects. Given the thickness of the structure (1.2 m) undergoing inspection and the heterogeneity of the concrete, the optimal frequency lies in the 50-300 kHz range. At these frequencies, the ultrasonic beam profiles are widespread (non-directive) with poor signal-to-noise ratio. Previous studies have shown the potential of using phased-array techniques (i.e., beam focusing and beam steering) in order to improve detection resolution and sizing accuracy. In this paper we present experimental studies performed with array up to 16 transducers working at 200 kHz. Experiments are carried out on representative concrete blocks containing artificial defects. One is a reinforced mock-up representative of the first reinforcing mesh of wall containment. Experimental results show that in spite of the reinforcement, artificial defects deep as half a meter can be detected. Reconstructed images resulting from phased array acquisitions on an artificial crack embedded in a concrete block are also presented and discussed. The presented method allows detecting oriented defects in concrete with improved signal to noise ratio and sensibility. A simulation model of the interaction of ultrasound with a heterogeneous medium like concrete is briefly commented. (authors)

  20. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  1. Development and Applicability Demonstration of a Remote Inspection Module for Inspection of Reactor Internals in an SFR

    International Nuclear Information System (INIS)

    Kim, Hoewoong; Joo, Youngsang; Park, Changgyu; Kim, Jongbum; Bae, Jinho

    2014-01-01

    Since liquid sodium is optically opaque, the ultrasonic inspection technique has been mainly employed for inspection of reactor internals in a Sodium-cooled Fast Reactor (SFR). Until now, two types of ultrasonic sensors have been mainly developed; immersion and waveguide sensors. An immersion sensor can provide a high-resolution image, but it may have problems in terms of reliability and life time because the sensor is exposed to high temperature during inspection. On the other hand, a waveguide sensor can maintain its performance during long-term inspection in high temperature because it installs an ultrasonic transducer in a cold region even though such a high-frequency ultrasonic wave cannot be used owing to the long propagation distance [4-6]. In this work, a remote inspection module employing four 10 m long waveguide sensors was newly developed and several performance tests were carried out in water to demonstrate the applicability of the developed remote inspection module to inspection of reactor internals in an SFR. In this work, a remote inspection module for inspection of reactor internals in an SFR was newly developed. The developed remote inspection module employs four 10 m long waveguide sensors for multiple inspection applications: a horizontal beam waveguide sensor for ranging inspection, two vertical beam waveguide sensors for viewing inspection and a 45 .deg. angle beam waveguide sensor for identification inspection. Several performance tests such as ranging, viewing and identification inspections were carried out for simulated nuclear fuel assembly specimens in water, and the applicability of the developed remote inspection module to inspection of reactor internals in an SFR was demonstrated

  2. Development and Applicability Demonstration of a Remote Inspection Module for Inspection of Reactor Internals in an SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hoewoong; Joo, Youngsang; Park, Changgyu; Kim, Jongbum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Bae, Jinho [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Since liquid sodium is optically opaque, the ultrasonic inspection technique has been mainly employed for inspection of reactor internals in a Sodium-cooled Fast Reactor (SFR). Until now, two types of ultrasonic sensors have been mainly developed; immersion and waveguide sensors. An immersion sensor can provide a high-resolution image, but it may have problems in terms of reliability and life time because the sensor is exposed to high temperature during inspection. On the other hand, a waveguide sensor can maintain its performance during long-term inspection in high temperature because it installs an ultrasonic transducer in a cold region even though such a high-frequency ultrasonic wave cannot be used owing to the long propagation distance [4-6]. In this work, a remote inspection module employing four 10 m long waveguide sensors was newly developed and several performance tests were carried out in water to demonstrate the applicability of the developed remote inspection module to inspection of reactor internals in an SFR. In this work, a remote inspection module for inspection of reactor internals in an SFR was newly developed. The developed remote inspection module employs four 10 m long waveguide sensors for multiple inspection applications: a horizontal beam waveguide sensor for ranging inspection, two vertical beam waveguide sensors for viewing inspection and a 45 .deg. angle beam waveguide sensor for identification inspection. Several performance tests such as ranging, viewing and identification inspections were carried out for simulated nuclear fuel assembly specimens in water, and the applicability of the developed remote inspection module to inspection of reactor internals in an SFR was demonstrated.

  3. The state-of-the Art of the Established Conventional and Advanced NDE-Techniques and Procedures for Defect Detection and Sizing - Part D: application of ultrasonic techniques for the inspection of austenitic components

    International Nuclear Information System (INIS)

    Edelmann, X.

    1997-01-01

    Ultrasonic examination of austenitic welds is possible in many cases but special techniques have often to be applied. The 'Handbook on the Ultrasonic Examination of Austenitic Welds' of the International Institute of Welding gives advice how to devise procedures for the detection, location and evaluation of ultrasonic indications of weld defects. In most circumstances it is necessary to use angled longitudinal wave probes. Austenitic weld examination is more complex and more expensive than ferritic weld examination. Detection and characterization of intergranular stress corrosion cracking has been improved by special qualification programs of the EPRI NDE Center. Dissimilar Metal welds are difficult to examine. Techniques have been developed for detection of circumferential and axial defects. Cast stainless steel structures are in general still extremely difficult to examine as a recent round robin test of the PISC program has shown. Mechanized examination with adequate data acquisition processing and presentation techniques enables better interpretation of examination results. (author)

  4. In-pile inspections of the Calder and Chapelcross nuclear reactors

    International Nuclear Information System (INIS)

    Stewart, G.

    1984-01-01

    The subject is discussed under the headings: introduction (relevant data about the reactors); inspection policy; photographic inspection (equipment; inspection results (vessel seam welds and plates; top dome welds; top dome internals)); ultrasonic equipment; manipulator; television inspections; concluding remarks. (U.K.)

  5. Mechanisation of ultrasonic testing in nuclear power plants

    International Nuclear Information System (INIS)

    Seifert, W.

    1979-01-01

    Mechanical ultrasonic testing devices should meet the following requirements: Remote-controlled or automatic guidance of the US test systems at the test site according to given test parameters; exact positioning of the test system at the test site; high start-up accuracy and reproducibility; access to test regions that are hardly accessible or inaccessible for manual inspection; reduction of the radiation exposure of the operating personnel, and short assembling and testing time. The manipulators developed according to these requirements permit meandering test courses of the US test system on the pressure vessel surface or circular or semicircular courses around the nozzles or pipes in order to test welds and pipe joints. Every movement of the test system is taken up by a transmitting apparatus. (orig./HP) [de

  6. Development of the mobile manipulator for inspection and maintenance in nuclear power plants and application of the modul devices

    International Nuclear Information System (INIS)

    Ohmichi, Takeo; Hosaka, Shigetaka; Nishihara, Masatoshi; Nakayama, Junji; Sato, Masatoshi

    1986-01-01

    In nuclear power stations, remote operation devices have been positively developed and applied, thus largely contributed to the reduction of the radiation exposure of workers. However, when requirements are diversified, the number of devices increases, and their management becomes complicated. The largest obstacle to the adaption of versatile robots in nuclear power stations is the environmental condition, and the small size for narrow space and the capability to withstand severe temperature, humidity and radiation must be ensured with high reliability. Mitsubishi Heavy Industries, Ltd. carried out the development of the manipulator for light works, which takes early counter-measures to the abnormality during operation, for five years as the subsidized project by the Ministry of International Trade and Industry. This robot is composed of a slave robot working in vessels and the central control system. The slave robot comprises a modular manipulator arm, the slave controller, a running carriage and the three-dimensional visual system. The components of the central control system are connected with optical fibers. The features and function and applicability of this manipulator are described. (Kako, I.)

  7. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  8. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  9. Development of an intelligent ultrasonic welding defect classification software

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Jeong, Hee Don

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress in the research on this methodology, it has not been widely used in many practical ultrasonic inspections of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments based on their ultrasonic signals using various tools in artificial intelligence such as neural networks. This software shows the excellent performance in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks. This performance demonstrates the high possibility of this software as a practical tool for ultrasonic flaw classification in weldments.

  10. Device for inspection and/or repair of tubes of a steam raising unit for nuclear reactors

    International Nuclear Information System (INIS)

    Wollensack, W.

    1985-01-01

    The device is situated in a chamber bounded by a pipe floor, the hemispherical floor of the steam raising unit and a wall extending between the pipe floor and this hemi-spherical floor. By using lifting gear which can be anchored in the pipe floor, a supporting leg is introduced into the chamber. Pegs of this supporting leg turned towards the pipe floor act to stop the supporting leg in the pipe floor. To make positioning of the pegs in the pipe floor easier, the lifting gear is provided with a guide turned towards the supporting leg. The guide has a spacer, which is fixed to the supporting leg and guides this along a wall of the chamber. (orig./HP) [de

  11. Ultrasonic hydrometer

    Science.gov (United States)

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  12. Computerized automated remote inspection system

    International Nuclear Information System (INIS)

    The automated inspection system utilizes a computer to control the location of the ultrasonic transducer, the actual inspection process, the display of the data, and the storage of the data on IBM magnetic tape. This automated inspection equipment provides two major advantages. First, it provides a cost savings, because of the reduced inspection time, made possible by the automation of the data acquisition, processing, and storage equipment. This reduced inspection time is also made possible by a computerized data evaluation aid which speeds data interpretation. In addition, the computer control of the transducer location drive allows the exact duplication of a previously located position or flaw. The second major advantage is that the use of automated inspection equipment also allows a higher-quality inspection, because of the automated data acquisition, processing, and storage. This storage of data, in accurate digital form on IBM magnetic tape, for example, facilitates retrieval for comparison with previous inspection data. The equipment provides a multiplicity of scan data which will provide statistical information on any questionable volume or flaw. An automatic alarm for location of all reportable flaws reduces the probability of operator error. This system has the ability to present data on a cathode ray tube as numerical information, a three-dimensional picture, or ''hard-copy'' sheet. One important advantage of this system is the ability to store large amounts of data in compact magnetic tape reels

  13. Inspection Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — FDA is disclosing the final inspection classification for inspections related to currently marketed FDA-regulated products. The disclosure of this information is not...

  14. Allegheny County Weights and Measures Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Inspections conducted by the Allegheny County Bureau of Weights and Measures. The Bureau inspects weighing and timing devices such as gas pumps, laundromat timers,...

  15. Development of an automatic reactor inspection system

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Eom, Heung Seop; Lee, Jae Cheol; Choi, Yoo Raek; Moon, Soon Seung

    2002-02-01

    Using recent technologies on a mobile robot computer science, we developed an automatic inspection system for weld lines of the reactor vessel. The ultrasonic inspection of the reactor pressure vessel is currently performed by commercialized robot manipulators. Since, however, the conventional fixed type robot manipulator is very huge, heavy and expensive, it needs long inspection time and is hard to handle and maintain. In order to resolve these problems, we developed a new automatic inspection system using a small mobile robot crawling on the vertical wall of the reactor vessel. According to our conceptual design, we developed the reactor inspection system including an underwater inspection robot, a laser position control subsystem, an ultrasonic data acquisition/analysis subsystem and a main control subsystem. We successfully carried out underwater experiments on the reactor vessel mockup, and real reactor ready for Ulchine nuclear power plant unit 6 at Dusan Heavy Industry in Korea. After this project, we have a plan to commercialize our inspection system. Using this system, we can expect much reduction of the inspection time, performance enhancement, automatic management of inspection history, etc. In the economic point of view, we can also expect import substitution more than 4 million dollars. The established essential technologies for intelligent control and automation are expected to be synthetically applied to the automation of similar systems in nuclear power plants

  16. Inspection planning

    International Nuclear Information System (INIS)

    Korosec, D.; Levstek, M.F.

    2001-01-01

    Slovenian Nuclear Safety Administration (SNSA) division of nuclear and radiological safety inspection has developed systematic approach to their inspections. To be efficient in their efforts regarding regular and other types of inspections, in past years, the inspection plan has been developed. It is yearly based and organized on a such systematic way, that all areas of nuclear safety important activities of the licensee are covered. The inspection plan assures appropriate preparation for conducting the inspections, allows the overview of the progress regarding the areas to be covered during the year. Depending on the licensee activities and nature of facility (nuclear power plant, research reactor, radioactive waste storage, others), the plan has different levels of intensity of inspections and also their frequency. One of the basic approaches of the plan is to cover all nuclear and radiological important activities on such way, that all regulatory requests are fulfilled. In addition, the inspection plan is a good tool to improve inspection effectiveness based on previous experience and allows to have the oversight of the current status of fulfillment of planned inspections. Future improvement of the plan is necessary in the light of newest achievements on this field in the nuclear world, that means, new types of inspections are planned and will be incorporated into plan in next year.(author)

  17. Experimental development of an ultrasonic linear motor

    CSIR Research Space (South Africa)

    M'Boungui, G

    2010-01-01

    Full Text Available the stator structure. In contrast to traditional travelling wave ultrasonic motors, which require two modes to be driven 90° out of phase, only one amplifier is required to drive the proposed device. A prototype device was characterised experimentally...

  18. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  19. Development of automatic ultrasonic testing system and its application

    International Nuclear Information System (INIS)

    Oh, Sang Hong; Matsuura, Toshihiko; Iwata, Ryusuke; Nakagawa, Michio; Horikawa, Kohsuke; Kim, You Chul

    1997-01-01

    The radiographic testing (RT) has been usually applied to a nondestructive testing, which is carried out on purpose to detect internal defects at welded joints of a penstock. In the case that RT could not be applied to, the ultrasonic testing (UT) was performed. UT was generally carried out by manual scanning and the inspections data were recorded by the inspector in a site. So, as a weak point, there was no objective inspection records correspond to films of RT. It was expected that the automatic ultrasonic testing system by which automatic scanning and automatic recording are possible was developed. In this respect, the automatic ultrasonic testing system was developed. Using newly developed the automatic ultrasonic testing system, test results to the circumferential welded joints of the penstock at a site were shown in this paper.

  20. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  1. Ultrasonic waves scattering through dissimilar welds: application to characterisation of spurious echoes detected during inspection; Etude de la diffusion des ondes ultrasonores dans les soudures austeno-ferritiques: application a la caracterisation des echos de lignes observes lors du controle des soudures bimetalliques

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F

    1999-07-01

    Ultrasonic testing of bimetallic welds can show the presence of structural echoes. In pulse echo mode inspections at oblique incidence, these echoes are detected close to the back-wall (surface opposite to the control). These echoes have a specific shape: the amplitude is distributed along lines parallel to the weld sides. Such echoes can disturb the inspection: they can be misinterpreted as provided by a defect, or they can mask a possible defect. The aim of this thesis is to explain this phenomenon with an interpretation based on the anisotropic property of the weld. In such a structure, specific mode conversions in the lasts welding pass arise. Mode converted waves can reflect normally on the back-wall and therefore back propagate to the transducer along the same wave path as the forward propagation. Some generalities of ultrasonic testing of bimetallic welds are given in a preliminary chapter. In the first chapter, various experiments showed that these structural echoes do not result from beam deflection in the weld and that this phenomenon occurs in the last millimeters under the back-wall. According to these results, an interpretation for these echoes based on the anisotropic and the inhomogeneous structure of the weld is given in the last welding pass, oblique compression waves may be converted into normal shear waves. The second chapter presented a theoretical analysis of these mode conversions phenomenon between two metallurgical structures with different dendrite orientations. The analysis of the welding passes metallography and a bibliographic study summarizes on the relevancy to use a orthotropic symmetry to describe the metallurgical structure of the material under test. The third chapter deals with experimental studies to confirm this hypothesis. Detection of shear waves in the last welding passes near the back-wall mock-up using a specific sensor, able to discriminate the polarisation wave at the reception, validate the mode conversion hypothesis

  2. Manufacturing technologies for ultrasonic transducers in a broad frequency range

    OpenAIRE

    Gebhardt, Sylvia; Hohlfeld, Kai; Günther, Paul; Neubert, Holger

    2018-01-01

    According to the application field, working frequency of ultrasonic transducers needs to be tailored to a certain value. Low frequency ultrasonic transducers with working frequencies of 1 kHz to 1 MHz are especially interesting for sonar applications, whereas high frequency ultrasonic transducers with working frequencies higher than 15 MHz are favorable for high-resolution imaging in biomedical and non-destructive evaluation. Conventional non-destructive testing devices and clinical ultrasoun...

  3. Miniaturized and general purpose fiber optic ultrasonic sources

    International Nuclear Information System (INIS)

    Biagi, E.; Fontani, S.; Masotti, L.; Pieraccini, M.

    1997-01-01

    Innovative photoacoustic sources for ultrasonic NDE, smart structure, and clinical diagnosis are proposed. The working principle is based on thermal conversion of laser pulses into a metallic film evaporated directly onto the tip of a fiber optic. Unique features of the proposed transducers are very high miniaturization and potential easy embedding in smart structure. Additional advantages, high bedding in smart structure. Additional advantages, high ultrasonic frequency, large and flat bandwidth. All these characteristics make the proposed device an ideal ultrasonic source

  4. In-service inspection in the Superphenix 1 vessels interspace

    International Nuclear Information System (INIS)

    Asty, M.; Saglio, R.

    1983-03-01

    The design of Superphenix 1 reactor vessels allows their in-service inspection. A self-propelling engine, the MIR, has been concieved for this need: it can do a visual and ultrasonic inspection. The MIR can move in the whole vessels interspace. The operating conditions are specified and the principle characteristics of the MIR engine are presented [fr

  5. Inservice inspection of Halden BWR pressure vessel

    International Nuclear Information System (INIS)

    Foerli, O.; Hernes, T.

    1978-01-01

    A description is given of how the recertification inspection of the 20 years old Halden Reactor pressure vessel was carried out in accordance with the latest ASME-CODES, despite the fact that inspection accessibility was poor. As no volumetric inspection had been carried out since the preservice radiography in 1957, the ultrasonic inspection included the high flux region of all welds. In total 70% of longitudinal welds and 20% of bottom circumferential welds were inspected as well as the bottom nozzle connection. The vessel was not designed with provisions for inservice inspection, the welds are unaccessible from the outside and removal of the lid is virtually impossible. The ultrasonic probes could only be loaded through 77 mm diameter holes in the top lid and remotely positioned inside the vessel. The inspection was performed using 450C and 60OC 1 MHz angle probes and 2.25 MHz normal probes in immersion technique. In a zone around the welds, small regions with lack of bonding between the stainless steel cladding and the boiler steel were revealed. One root defect known and accepted from the preservice radiographs was examined. The defect was found to be 6x30mm as a maximum and well within acceptable limits according to the fracture mechanics analysis method recommended in ASME X1. The inspection required a period of three weeks' work in the reactor hall. (UK)

  6. Evaluation of the feasibility for detecting hidden corrosion damage in multi-layer gusset plates using multiple inspection techniques

    International Nuclear Information System (INIS)

    Cobb, Adam C.; Duffer, Charles E.; Light, Glenn M.

    2014-01-01

    Gusset plates are used to connect the members in truss bridges and they are usually inspected using calipers or conventional thickness measurement ultrasonic testing (UT) devices. The damage mechanism of particular concern in gusset plates is corrosion and the regions most susceptible to corrosion damage are on the gusset interior surface where it intersects the chord, diagonal, and vertical members from water collecting at the interfaces. For heavily loaded gusset plates, one or more shingle plates are used to reinforce the gusset plate, creating a multi-layer structure. While the areas with corrosion damage remain near the members on the gusset plate, the shingle plates cover the gusset plate and greatly limit the surface access to the gusset plate, making UT thickness measurement impractical. Because of the critical nature of the gussets, a viable inspection strategy for multi-layer gusset assemblies must be developed. The premise of this research and development effort was to develop viable, field-deployable inspection approaches for this problem area. This paper presents three separate inspection approaches: two ultrasonic-based techniques and one radiographic approach. Each of these techniques was evaluated on a mock-up specimen provided by the Federal Highway Administration (FHWA) that is representative of gusseted connection from a truss bridge

  7. Evaluation of the feasibility for detecting hidden corrosion damage in multi-layer gusset plates using multiple inspection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Adam C.; Duffer, Charles E.; Light, Glenn M. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166 (United States)

    2014-02-18

    Gusset plates are used to connect the members in truss bridges and they are usually inspected using calipers or conventional thickness measurement ultrasonic testing (UT) devices. The damage mechanism of particular concern in gusset plates is corrosion and the regions most susceptible to corrosion damage are on the gusset interior surface where it intersects the chord, diagonal, and vertical members from water collecting at the interfaces. For heavily loaded gusset plates, one or more shingle plates are used to reinforce the gusset plate, creating a multi-layer structure. While the areas with corrosion damage remain near the members on the gusset plate, the shingle plates cover the gusset plate and greatly limit the surface access to the gusset plate, making UT thickness measurement impractical. Because of the critical nature of the gussets, a viable inspection strategy for multi-layer gusset assemblies must be developed. The premise of this research and development effort was to develop viable, field-deployable inspection approaches for this problem area. This paper presents three separate inspection approaches: two ultrasonic-based techniques and one radiographic approach. Each of these techniques was evaluated on a mock-up specimen provided by the Federal Highway Administration (FHWA) that is representative of gusseted connection from a truss bridge.

  8. Inspection vehicle

    International Nuclear Information System (INIS)

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  9. Application of Ultrasonic Devices in Management of Periodontal Lesions - Bone Response in a Case of a Tooth with Poor Treatment Prognosis

    Directory of Open Access Journals (Sweden)

    Blagova Bistra Y.

    2015-12-01

    Full Text Available BACKGROUND: Surgical treatment of odontogenic jaw cysts may include one of the following four basic methods: enucleation, marsupialization, staged combination of marsupialization and enucleation, or enucleation with curettage. Enucleation/cystectomy, alone or combined with other procedures, is the preferred choice of treatment. OBJECTIVE: The aim of the case report was to present the outcome of an ultrasound-assistant periapical cystectomy in a frontal upper tooth with indications for extraction. RESULTS: Postoperative recovery was uneventful. The functional result was satisfactory. On the follow-up X-rays a reduction of the intraosseous defect by a new bone formation could be observed. CONCLUSION: We found ultrasonic surgery to be a promising approach for safe and effective odontogenic jaw cyst removal reducing the risk of its recurrence.

  10. A study on the development of a real-time intelligent system for ultrasonic flaw classification

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun; Lee, Seung Seok

    1998-01-01

    In spite of significant progress in research on ultrasonic pattern recognition it is not widely used in many practical field inspection in weldments. For the convenience of field application of this methodology, following four key issues have to be suitably addressed; 1) a software where the ultrasonic pattern recognition algorithm is efficiently implemented, 2) a real-time ultrasonic testing system which can capture the digitized ultrasonic flaw signal so the pattern recognition software can be applied in a real-time fashion, 3) database of ultrasonic flaw signals in weldments, which is served as a foundation of the ultrasonic pattern recognition algorithm, and finally, 4) ultrasonic features which should be invariant to operational variables of the ultrasonic test system. Presented here is the recent progress in the development of a real-time ultrasonic flaw classification by the novel combination of followings; an intelligent software for ultrasonic flaw classification in weldments, a computer-base real-time ultrasonic nondestructive evaluation system, database of ultrasonic flaw signals, and invariant ultrasonic features called 'normalized features.'

  11. Automated ultrasonic examination of light water reactor systems

    International Nuclear Information System (INIS)

    Walter, J.H.

    1975-01-01

    An automated ultrasonic examination system has been developed to meet the pre- and inservice inspection requirements of light water reactors. This system features remotely-controlled travelling instrument carriers, computerized collection and storage or inspection data in a manner providing real time comparison against code standards, and computer control over the positioning of the instrument carriers to provide precise location data. The system is currently being utilized in the field for a variety of reactor inspections. The principal features of the system and the recent inspection experience are discussed. (author)

  12. More recent developments for the ultrasonic testing of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Seiger, H.; Engl, G.

    1976-01-01

    The development of an ultrasonic testing method for the inspection from the outside of the areas close to the cladding of the spherical fields of holes of light water reactor pressure vessels is described

  13. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  14. Phased array ultrasonic testing of dissimilar metal pipe weld joints

    International Nuclear Information System (INIS)

    Rajeev, J.; Sankaranarayanan, R.; Sharma, Govind K; Joseph, A.; Purnachandra Rao, B.

    2015-01-01

    Dissimilar metal weld (DMW) joints made of stainless steel and ferritic steel is used in nuclear industries as well as oil and gas industries. These joints are prone to frequent failures which makes the non-destructive testing of dissimilar metal weld joints utmost important for reliable and safe operation of nuclear power plants and oil and gas industries. Ultrasonic inspection of dissimilar metal weld joints is still challenging due to the inherent anisotropic and highly scattering nature. Phased array ultrasonic testing (PAUT) is an advanced technique and its capability has not been fully explored for the inspection of dissimilar metal welds

  15. An inspection demonstration program/a quality system

    International Nuclear Information System (INIS)

    Cox, L.D.

    1995-01-01

    Mobil relies on tubular manufacturers to consistently supply OCTG which complies with all material requirements of API Specification 5CT. This paper details the Mobil Inspection Demonstration Program; Mobil's method for qualifying ultrasonic inspection systems for use during Mobil receiving inspections. Additionally, the basic fundamentals of the Mobil quality system and acceptance sampling are presented with an emphasis on tracking short-term and long-term supplier performance

  16. In-service inspection as an aid to steel pressure vessel reliability

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1975-01-01

    In-service inspection has played an important role in non-nuclear pressure vessel technology, being a legal requirement in many countries. Evidence from surveys of reliability of non-nuclear plant has suggested that such inspections can be effective in reducing the risk of subsequent failures. Recent requirements of the ASME XI code which will be summarised have important implications on the techniques to be used for in-service inspection, and so on design and fabrication aspects. Moreover, in-service inspection can only be an effective procedure if its possible weaknesses are recognised. The first problem is to ensure that an ultrasonic technique is used which is capable of detecting defects of an order of magnitude smaller than the critical size for each particular situation, in whatever defect orientation is important. The potential of different ultrasonic techniques will be compared. Next it is necessary to ensure coverage of all the relevant material. In this respect machine operation is superior to manual scanning, so that manipulation and scanning devices have to be developed. Problems of local geometry and of deviations in geometry have to be discussed with designer and fabricator; plate and clad quality have to be controlled (with respect to surface contour, metallurgical condition and freedom from interfering defects) to ensure inspectability in depth. The reliability of the mechanical and electronic equipment has to be assessed and designed to meet high requirements. Some presentational aids to detection and interpretation will be discussed. Having located a potential defect, the application of fracture mechanics treatments requires knowledge of size, shape and orientation. Some of the problems will be discussed together with possible solutions. (author)

  17. Case-based classification of ultrasonic b-scans: case-base organisation and case retrieval

    NARCIS (Netherlands)

    Jarmulak, J.

    1998-01-01

    Dutch Railways use a special train for the ultrasonic inspection of rails. The output of the ultrasonic scanning system installed on the train consists of echo images - so-called B-scans. The B-scans are classified according to the images of rail constructions, noise artefacts, and/or defects that

  18. STADUS - Ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Saglio, Robert; Birac, A.M.; Frappier, J.C.

    1982-05-01

    The CEA (Commissariat a l'Energie Atomique) has developed a system for the acquisition and analysis of data recorded during ultrasonic testing. Initially this system was designed and built for the needs of in-service inspection of PWR type power reactors. It is in far wider use today for miscellaneous automatic ultrasonic inspection procedures. This system records, in digital form, the ultrasonic data supplied by the transducers (maximum 16 simultaneous channels), and the geometric coordinates defining the position of the inspection tool. Based on these data, which are recorded on floppy disk, this system helps to display data in the form of A SCAN, B SCAN and C SCAN images. In addition, processing programs of data transfer from the STADUS floppy disks have been developed and inserted on computers more powerful than the one used in the STADUS system. These programs serve to obtain different fault charts on an adjustable scale, as well as listings concerning the defect positions and dimensions [fr

  19. Apparative developments for inservice inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Bohn, H.; Ruthrof, K.; Barbian, O.A.; Kappes, W.; Neumann, R.; Stanger, H.K.

    1987-01-01

    Emphasizing PWR pressure vessel (RPV) inspections, recent developments of new generations of automated and mechanized ultrasonic inspection equipment are presented. Starting from general equipment design and inservice implenentation criteria, specific examples are given. Main attention is directed to equipment realization of phased array and ALOK inspection techniques, especially in their combination. Refined aspects of subsequent computer processing and evaluation of defect detection data are described. Analytical features and potential for further developments become evident. Remote controlled RPV inspections are stressed by describing a new generation of central mast manipulators, forming an integral part of total inservice inspection system. (orig./HP)

  20. A computer-controlled electronic system for the ultrasonic NDT of components for nuclear power stations

    International Nuclear Information System (INIS)

    Rehrmann, M.; Harbecke, D.

    1987-01-01

    The paper describes an automatic ultrasonic testing system combined with a computer-controlled electronics system, called IMPULS I, for the non-destructive testing of components of nuclear reactors. The system can be used for both in-service inspection and for inspection during the manufacturing process. IMPUL I has more functions and less components than conventional ultrasonic systems, and the system gives good reproducible test results and is easy to operate. (U.K.)

  1. Studies on Section XI ultrasonic repeatability

    International Nuclear Information System (INIS)

    Jamison, T.D.; McDearman, W.R.

    1981-05-01

    A block representative of a nuclear component has been welded containing intentional defects. Acoustic emission data taken during the welding correlate well with ultrasonic data. Repetitive ultrasonic examinations have been performed by skilled operators using a procedure based on that desribed in ASME Section XI. These examinations were performed by different examination teams using different ultrasonic equipment in such a manner that the effects on the repeatability of the ultrasonic test method caused by the operator and by the use of different equipment could be estimated. It was tentatively concluded that when considering a large number of inspections: (1) there is no significant difference in indication sizing between operators, and (2) there is a significant difference in amplitude and defect sizing when instruments having different, Code acceptable operating characteristics are used. It was determined that the Section XI sizing parameters follow a bivariate normal distribution. Data derived from ultrasonically and physically sizing indications in nuclear components during farication show that the Section XI technique tends to overestimate the size of the reflectors

  2. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  3. Ultrasonic propagation velocity in magnetic and magnetorheological fluids due to an external magnetic field

    International Nuclear Information System (INIS)

    Bramantya, M A; Sawada, T; Motozawa, M

    2010-01-01

    Ultrasonic propagation velocity in a magnetic fluid (MF) and magnetorheological fluid (MRF) changes with the application of an external magnetic field. The formation of clustering structures inside the MF and MRF clearly has an influence on the ultrasonic propagation velocity. Therefore, we propose a qualitative analysis of these structures by measuring properties of ultrasonic propagation. Since MF and MRF are opaque, non-contact inspection using the ultrasonic technique can be very useful for analyzing the inner structures of MF and MRF. In this study, we measured ultrasonic propagation velocity in a hydrocarbon-based MF and MRF precisely. Based on these results, the clustering structures of these fluids are analyzed experimentally in terms of elapsed time dependence and the effect of external magnetic field strength. The results reveal hysteresis and anisotropy in the ultrasonic propagation velocity. We also discuss differences of ultrasonic propagation velocity between MF and MRF.

  4. Remotely controlled inspection and handling systems for decommissioning tasks in nuclear facilities

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, W.; Haferkamp, H.

    1993-01-01

    The Institut fur Werkstoffkunde at the University of Hanover has recently developed three remotely controlled systems for different underwater inspection and dismantling tasks. ODIN I is a tool guiding device, particularly being designed for the dismantling of the steam dryer housing of the KRB A power plant at Gundremmingen, Germany. After being approved by the licencing organization TUEV Bayern, hot operation started in November 1992. The seven axes remotely controlled handling system ZEUS, consisting of a three translatory axes guiding machine and a tool handling device with four rotatory axes, has been developed for the demonstration of underwater plasma arc cutting of spherical metallic components with great wall thicknesses. A specially designed twin sensor system and a modular torch, exchanged by means of a remote controlled tool changing device, will be used for different complex cutting tasks. FAUST, an autonomous, freediving underwater vehicle, was designed for complex inspection, maintenance and dismantling tasks. It is equipped with two video cameras, an ultrasonic and a radiologic sensor and a small plasma torch. A gripper and a subsidiary vehicle for inspection may be attached. (author)

  5. Inspection of Candu Nuclear Reactor Fuel Channels

    International Nuclear Information System (INIS)

    Baron, J.; Jarvis, G.N.; Dolbey, M.P.; Hayter, D.M.

    1986-01-01

    The Channel Inspection and Gauging Apparatus of Reactors (CIGAR) is a fully atomated, remotely operated inspection system designed to perform multi-channel, multi-task inspection of CANDU reactor fuel channels. Ultrasonic techniques are used for flaw detection, (with a sensitivity capable of detecting a 0.075 mm deep notch with a signal to noise ratio of 10 dB) and pressure tube wall thickness and diameter measurements. Eddy currrent systems are used to detect the presence of spacers between the coaxial pressure tube and calandria tube, as well as to measure their relative spacing. A servo-accelerometer is used to estimate the sag of the fuel channels. This advanced inspection system was commissioned and declared in service in September 1985. The paper describes the inspection systems themselves and discussed the results achieved to-date. (author) [pt

  6. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  7. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection

    Science.gov (United States)

    Feng, Qingshan; Li, Rui; Nie, Baohua; Liu, Shucong; Zhao, Lianyu; Zhang, Hong

    2016-01-01

    Girth weld cracking is one of the main failure modes in oil and gas pipelines; girth weld cracking inspection has great economic and social significance for the intrinsic safety of pipelines. This paper introduces the typical girth weld defects of oil and gas pipelines and the common nondestructive testing methods, and systematically generalizes the progress in the studies on technical principles, signal analysis, defect sizing method and inspection reliability, etc., of magnetic flux leakage (MFL) inspection, liquid ultrasonic inspection, electromagnetic acoustic transducer (EMAT) inspection and remote field eddy current (RFDC) inspection for oil and gas pipeline girth weld defects. Additionally, it introduces the new technologies for composite ultrasonic, laser ultrasonic, and magnetostriction inspection, and provides reference for development and application of oil and gas pipeline girth weld defect in-line inspection technology. PMID:28036016

  8. Hospital Inspections

    Data.gov (United States)

    U.S. Department of Health & Human Services — Welcome to hospitalinspections.org, a website run by the Association of Health Care Journalists (AHCJ) that aims to make federal hospital inspection reports easier...

  9. Ultrasonic-testing method

    International Nuclear Information System (INIS)

    Thome, Paul.

    1973-01-01

    Description is given of a device adapted to the detection, by means of ultrasonic waves, of all the flaws and defects included in workpieces when only one face of the latter is accessible. A beam is directed towards the rear-face of the workpiece (e.g. a plate) on which it is reflected. The image thus reflected is fed into a receiver. The latter is under the control of the displacement of that image; simultaneously a transducer checks the condition of the mirror at the places where the beam is reflected. Whenever a flow or defect comes between, a silent zone is formed. By recording the silent zones with respect to the positions of several emitters, it is possible to locates a flaw and to define the outline thereof. The apparatus comprises several ''emitter-receiver'' groups intersecting over the emitter used in order to check the good conditions of the mirror. The invention can be used for searching and identifying flaws and defects in buildings which have to be of top quality (e.g., cofferdams, nuclear devices, shipbuilding yards, aeronautics) [fr

  10. Real-time ultrasonic weld evaluation system

    Science.gov (United States)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  11. Verification of Remote Inspection Techniques for Reactor Internal Structures of Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Joo, Young Sang; Lee, Jae Han

    2007-02-01

    The reactor internal structures and components of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection as major in-service inspection (ISI) methods of reactor internal structures and components. Reactor internals of LMR can not be visually examined due to opaque liquid sodium. The under-sodium viewing techniques using an ultrasonic wave should be applied for the visual inspection of reactor internals. Recently, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium inspection. In this study, visualization technique, ranging technique and monitoring technique have been suggested for the remote inspection of reactor internals by using the waveguide sensor. The feasibility of these remote inspection techniques using ultrasonic waveguide sensor has been evaluated by an experimental verification

  12. Verification of Remote Inspection Techniques for Reactor Internal Structures of Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Lee, Jae Han

    2007-02-15

    The reactor internal structures and components of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection as major in-service inspection (ISI) methods of reactor internal structures and components. Reactor internals of LMR can not be visually examined due to opaque liquid sodium. The under-sodium viewing techniques using an ultrasonic wave should be applied for the visual inspection of reactor internals. Recently, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium inspection. In this study, visualization technique, ranging technique and monitoring technique have been suggested for the remote inspection of reactor internals by using the waveguide sensor. The feasibility of these remote inspection techniques using ultrasonic waveguide sensor has been evaluated by an experimental verification.

  13. Ultrasonic horn design for ultrasonic machining technologies

    Directory of Open Access Journals (Sweden)

    Naď M.

    2010-07-01

    Full Text Available Many of industrial applications and production technologies are based on the application of ultrasound. In many cases, the phenomenon of ultrasound is also applied in technological processes of the machining of materials. The main element of equipments that use the effects of ultrasound for machining technology is the ultrasonic horn – so called sonotrode. The performance of ultrasonic equipment, respectively ultrasonic machining technologies depends on properly designed of sonotrode shape. The dynamical properties of different geometrical shapes of ultrasonic horns are presented in this paper. Dependence of fundamental modal properties (natural frequencies, mode shapes of various sonotrode shapes for various geometrical parameters is analyzed. Modal analyses of the models are determined by the numerical simulation using finite element method (FEM design procedures. The mutual comparisons of the comparable parameters of the various sonotrode shapes are presented.

  14. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  15. Ultrasonic guided waves in eccentric annular pipes

    International Nuclear Information System (INIS)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-01-01

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection

  16. Relationship between ultrasonic pulse velocity test result and ...

    African Journals Online (AJOL)

    Ultrasonic Pulse Velocity test result showed an inverse relationship (of -0.935) with the crushed concrete compressive strength. Correlation test, multiple regression analysis, graphs and visual inspection were used to analyze the results. The conclusion drawn is that there exists a relationship between UPV test results and ...

  17. Proposed new ultrasonic test bed

    International Nuclear Information System (INIS)

    Maxfield, B.W.

    1978-01-01

    Within the last four or five years, a great deal of progress has been made both here and in a number of other laboratories in developing techniques that will enable considerably more information to be obtained from the ultrasonic examination of an object. Some of these recent developments relate to information contained within the diffracted beam which does not return along the incident path. An ultrasonic examination based upon an evaluation of diffracted energy must use at least two transducers, one for transmission and the other for reception. Current indications are that even more reliable test results will be achieved using a receiving transducer that can scan a significant portion of the diffracted field including that portion which is back-reflected. In general, this scan can be interpreted most accurately if it follows a path related to the surface shape. If more than one region within the object is to be interrogated, then the transmitting transducer must also be scanned, again along a path related to the surface shape. The large quantity of information obtained as the result of such an examination must be subjected to sophisticated computer analysis in order to be displayed in a meaningful and intelligible manner. Although one motivation for building such an instrument is to explore new ultrasonic test procedures that are evolving from current laboratory research, this is neither the sole motivation nor the only use for this instrument. Such a mechanical and electronic device would permit conventional ultrasonic tests to be performed on parts of complex geometry without the expensive and time-consuming special fixturing that is currently required. May possible test geometries could be explored in practice prior to the construction of a specialized test apparatus. Hence, it would be necessary to design much, if any, flexibility into the special test apparatus

  18. NDE reliability gains from combining eddy-current and ultrasonic testing

    International Nuclear Information System (INIS)

    Horn, D.; Mayo, W.R.

    1999-01-01

    We investigate statistical methods for combining the results of two complementary inspection techniques, eddy-current and ultrasonic testing. The reliability of rejection/acceptance decisions based on combined information is compared with that based on each inspection technique individually. The measured reliability increases with the amount of information incorporated in the decision. (author)

  19. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  20. Operational inspections

    International Nuclear Information System (INIS)

    Bystersky, M.

    1997-01-01

    Special equipment is described, designed for inspection of reactor pressure vessels performed from the inside. Central shaft manipulator ZMM-5 is available for crack detection control using ultrasound and eddy currents, for visual check of surfaces, repair works at the reactor pressure vessel, and hardness measurements. The manipulator consists of the manipulator bridge, a cable container, shaft segments, a control mechanism and auxiliary parts. Eight inspections were performed at the Bohunice nuclear power plant and two at the Paks nuclear power plant. (M.D.)