WorldWideScience

Sample records for ultrasonic implant site

  1. Ultrasonic implant site preparation using piezosurgery: a multicenter case series study analyzing 3,579 implants with a 1- to 3-year follow-up.

    Science.gov (United States)

    Vercellotti, Tomaso; Stacchi, Claudio; Russo, Crescenzo; Rebaudi, Alberto; Vincenzi, Giampaolo; Pratella, Umberto; Baldi, Domenico; Mozzati, Marco; Monagheddu, Chiara; Sentineri, Rosario; Cuneo, Tommaso; Di Alberti, Luca; Carossa, Stefano; Schierano, Gianmario

    2014-01-01

    This multicenter case series introduces an innovative ultrasonic implant site preparation (UISP) technique as an alternative to the use of traditional rotary instruments. A total of 3,579 implants were inserted in 1,885 subjects, and the sites were prepared using a specific ultrasonic device with a 1- to 3-year follow-up. No surgical complications related to the UISP protocol were reported for any of the implant sites. Seventy-eight implants (59 maxillary, 19 mandibular) failed within 5 months of insertion, for an overall osseointegration percentage of 97.82% (97.14% maxilla, 98.75% mandible). Three maxillary implants failed after 3 years of loading, with an overall implant survival rate of 97.74% (96.99% maxilla, 98.75% mandible).

  2. Three-Dimensional Implant Positioning with a Piezosurgery Implant Site Preparation Technique and an Intraoral Surgical Navigation System: Case Report.

    Science.gov (United States)

    Pellegrino, Gerardo; Taraschi, Valerio; Vercellotti, Tomaso; Ben-Nissan, Besim; Marchetti, Claudio

    This case report describes new implant site preparation techniques joining the benefits of using an intraoral navigation system to optimize three-dimensional implant site positioning in combination with an ultrasonic osteotomy. A report of five patients is presented, and the implant positions as planned in the navigation software with the postoperative scan image were compared. The preliminary results are useful, although further clinical studies with larger populations are needed to confirm these findings.

  3. Rehabilitation with 4 zygomatic implants with a new surgical protocol using ultrasonic technique.

    Science.gov (United States)

    Mozzati, Marco; Mortellaro, Carmen; Arata, Valentina; Gallesio, Giorgia; Previgliano, Valter

    2015-05-01

    When the residual bone crest cannot allow the placement of standard implants, the treatment for complete arch rehabilitation of severely atrophic maxillae can be performed with 4 zygomatic implants (ZIs) and immediate function with predictable results in terms of aesthetics, function, and comfort for the patient. However, even if ZIs' rehabilitations showed a good success rate, this surgery is difficult and need a skillful operator. Complications in this kind of rehabilitation are not uncommon; the main difficulties can be related to the reduced surgical visibility and instrument control in a critical anatomic area. All the surgical protocols described in the literature used drilling techniques. Furthermore, the use of ultrasonic instruments in implant surgery compared with drilling instruments have shown advantages in many aspects of surgical procedures, tissues management, enhancement of control, surgical visualization, and healing. The aim of this study was to report on the preliminary experience using ultrasound technique for ZIs surgery in terms of safety and technical improvement. Ten consecutive patients with severely atrophic maxilla have been treated with 4 ZIs and immediate complete arch acrylic resin provisional prostheses. The patients were followed up from 30 to 32 months evaluating implant success, prosthetic success, and patient satisfaction with a questionnaire. No implants were lost during the study period, with a 100% implant and prosthetic success rate. Within the limitations of this preliminary study, these data indicate that ultrasonic implant site preparation for ZIs can be a good alternative to the drilling technique and an improvement for the surgeon.

  4. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.

    Science.gov (United States)

    Vihvelin, Hugo; Leadbetter, Jeff; Bance, Manohar; Brown, Jeremy A; Adamson, Robert B A

    2016-04-01

    Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between the transmitter and receiver. This sensitivity can cause large swings in efficiency and presents a serious limitation on battery life and overall performance. A practical ultrasonic transcutaneous energy transfer (UTET) system design must accommodate different implant depths and unpredictable acoustic changes caused by tissue growth, hydration, ambient temperature, and movement. This paper describes a method used to compensate for acoustic separation distance by varying the transmit (Tx) frequency in a UTET system. In a benchtop UTET system we experimentally show that without compensation, power transfer efficiency can range from 9% to 25% as a 5 mm porcine tissue sample is manipulated to simulate in situ implant conditions. Using an active frequency compensation method, we show that the power transfer efficiency can be kept uniformly high, ranging from 20% to 27%. The frequency compensation strategy we propose is low-power, non-invasive, and uses only transmit-side measurements, making it suitable for active implanted medical device applications.

  5. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  6. Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types.

    Science.gov (United States)

    Meisberger, Eric W; Bakker, Sjoerd J G; Cune, Marco S

    2015-12-01

    Ultrasonic instrumentation under magnification may facilitate mobilization of screw remnants but may induce heat trauma to surrounding bone. An increase of 5°C is considered detrimental to osseointegration. The objective of this investigation was to examine the rise in temperature of the outer implant body after 30 s of ultrasonic instrumentation to the inner part, in relation to implant type, type of ultrasonic equipment, and the use of coolants in vitro. Two ultrasonic devices (Satelec Suprasson T Max and Electro Medical Systems (EMS) miniMaster) were used on five different implant types that were provided with a thermo couple (Astra 3.5 mm, bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm, and Straumann tissue level wide body regular neck 4.8 mm), either with or without cooling during 30 s. Temperature rise at this point in time is the primary outcome measure. In addition, the mean maximum rise in temperature (all implants combined) was assessed and statistically compared among devices, implant systems, and cooling mode (independent t-tests, ANOVA, and post hoc analysis). The Satelec device without cooling induces the highest temperature change of up to 13°C, particularly in both bone level implants (p < 0.05) but appears safe for approximately 10 s of continuous instrumentation, after which a cooling down period is rational. Cooling is effective for both devices. However, when the Satelec device is used with coolant for a longer period of time, a rise in temperature must be anticipated after cessation of instrumentation, and post-operational cooling is advised. The in vitro setup used in this experiment implies that care should be taken when translating the observations to clinical recommendations, but it is carefully suggested that the EMS device causes limited rise in temperature, even without coolant.

  7. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant.

    Science.gov (United States)

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Fujishiro, Takaaki; Procop, Gary W

    2007-04-01

    Biofilms are complex microenvironments produced by microorganisms on surfaces. Ultrasonication disrupts biofilms and may make the microorganism or its DNA available for detection. We determined whether ultrasonication could affect our ability to detect bacteria adherent to a metal substrate. A biofilm-formative Staphylococcus aureus strain was used for an in vitro implant infection model (biofilm-formative condition). We used quantitative culture and real time-polymerase chain reaction to determine the influence of different durations of ultrasound on bacterial adherence and viability. Sonication for 1 minute increased the yield of bacteria. Sonication longer than 5 minutes led to fewer bacterial colonies by conventional culture but not by polymerase chain reaction. This suggests short periods of sonication help release bacteria from the metal substrate by disrupting the biofilm, but longer periods of sonication lyse bacteria prohibiting their detection in microbiologic cultures. A relatively short duration of sonication may be desirable for maximizing detection of biofilm-formative bacteria around implants by culture or polymerase chain reaction.

  8. Survival of dental implants placed in sites of previously failed implants.

    Science.gov (United States)

    Chrcanovic, Bruno R; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-11-01

    To assess the survival of dental implants placed in sites of previously failed implants and to explore the possible factors that might affect the outcome of this reimplantation procedure. Patients that had failed dental implants, which were replaced with the same implant type at the same site, were included. Descriptive statistics were used to describe the patients and implants; survival analysis was also performed. The effect of systemic, environmental, and local factors on the survival of the reoperated implants was evaluated. 175 of 10,096 implants in 98 patients were replaced by another implant at the same location (159, 14, and 2 implants at second, third, and fourth surgeries, respectively). Newly replaced implants were generally of similar diameter but of shorter length compared to the previously placed fixtures. A statistically significant greater percentage of lost implants were placed in sites with low bone quantity. There was a statistically significant difference (P = 0.032) in the survival rates between implants that were inserted for the first time (94%) and implants that replaced the ones lost (73%). There was a statistically higher failure rate of the reoperated implants for patients taking antidepressants and antithrombotic agents. Dental implants replacing failed implants had lower survival rates than the rates reported for the previous attempts of implant placement. It is suggested that a site-specific negative effect may possibly be associated with this phenomenon, as well as the intake of antidepressants and antithrombotic agents. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation

    International Nuclear Information System (INIS)

    Tas, G.; Loomis, J.J.; Maris, H.J.; Bailes, A.A. III; Seiberling, L.E.

    1998-01-01

    We report on experiments in which picosecond ultrasonic techniques are used to investigate the modification of interfacial bonding that results from ion implantation. The bonding is studied through measurements of the acoustic reflection coefficient at the interface. This method is nondestructive and can be used to create a map of the variation of the bonding over the area of the interface. copyright 1998 American Institute of Physics

  10. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.

    Science.gov (United States)

    Meng, Miao; Kiani, Mehdi

    2017-02-01

    Ultrasound has been recently proposed as an alternative modality for efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. This paper presents the theory and design methodology of ultrasonic WPT links that involve mm-sized receivers (Rx). For given load (R L ) and powering distance (d), the optimal geometries of transmitter (Tx) and Rx ultrasonic transducers, including their diameter and thickness, as well as the optimal operation frequency (f c ) are found through a recursive design procedure to maximize the power transmission efficiency (PTE). First, a range of realistic f c s is found based on the Rx thickness constrain. For a chosen f c within the range, the diameter and thickness of the Rx transducer are then swept together to maximize PTE. Then, the diameter and thickness of the Tx transducer are optimized to maximize PTE. Finally, this procedure is repeated for different f c s to find the optimal f c and its corresponding transducer geometries that maximize PTE. A design example of ultrasonic link has been presented and optimized for WPT to a 1 mm 3 implant, including a disk-shaped piezoelectric transducer on a silicon die. In simulations, a PTE of 2.11% at f c of 1.8 MHz was achieved for R L of 2.5 [Formula: see text] at [Formula: see text]. In order to validate our simulations, an ultrasonic link was optimized for a 1 mm 3 piezoelectric transducer mounted on a printed circuit board (PCB), which led to simulated and measured PTEs of 0.65% and 0.66% at f c of 1.1 MHz for R L of 2.5 [Formula: see text] at [Formula: see text], respectively.

  11. Changes in implant stability using different site preparation techniques: twist drills versus piezosurgery. A single-blinded, randomized, controlled clinical trial.

    Science.gov (United States)

    Stacchi, Claudio; Vercellotti, Tomaso; Torelli, Lucio; Furlan, Fabio; Di Lenarda, Roberto

    2013-04-01

    The objective of the present investigation was to longitudinally monitor stability changes of implants inserted using traditional rotary instruments or piezoelectric inserts, and to follow their variations during the first 90 days of healing. A randomized, controlled trial was conducted on 20 patients. Each patient received two identical, adjacent implants in the upper premolar area: the test site was prepared with piezosurgery, and the control site was prepared using twist drills. Resonance frequency analysis measurements were taken by a blinded operator on the day of surgery and after 7, 14, 21, 28, 42, 56, and 90 days. At 90 days, 39 out of 40 implants were osseointegrated (one failure in the control group). Both groups showed an initial decrease in mean implant stability quotient (ISQ) values: a shift in implant stability to increasing ISQ values occurred after 14 days in the test group and after 21 days in the control group. The lowest mean ISQ value was recorded at 14 days for test implants (97.3% of the primary stability) and at 21 days for the control implants (90.8% of the primary stability). ISQ variations with respect to primary stability differed significantly between the two groups during the entire period of observation: from day 14 to day 42, in particular, the differences were extremely significant (p < .0001). All 39 implants were in function successfully at the visit scheduled 1 year after insertion. The findings from this study suggest that ultrasonic implant site preparation results in a limited decrease of ISQ values and in an earlier shifting from a decreasing to an increasing stability pattern, when compared with the traditional drilling technique. From a clinical point of view, implants inserted with the piezoelectric technique demonstrated a short-term clinical success similar to those inserted using twist drills. © 2011 Wiley Periodicals, Inc.

  12. Optimal resonance configuration for ultrasonic wireless power transmission to millimeter-sized biomedical implants.

    Science.gov (United States)

    Miao Meng; Kiani, Mehdi

    2016-08-01

    In order to achieve efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions, ultrasonic WPT links have recently been proposed. Operating both transmitter (Tx) and receiver (Rx) ultrasonic transducers at their resonance frequency (fr) is key in improving power transmission efficiency (PTE). In this paper, different resonance configurations for Tx and Rx transducers, including series and parallel resonance, have been studied to help the designers of ultrasonic WPT links to choose the optimal resonance configuration for Tx and Rx that maximizes PTE. The geometries for disk-shaped transducers of four different sets of links, operating at series-series, series-parallel, parallel-series, and parallel-parallel resonance configurations in Tx and Rx, have been found through finite-element method (FEM) simulation tools for operation at fr of 1.4 MHz. Our simulation results suggest that operating the Tx transducer with parallel resonance increases PTE, while the resonance configuration of the mm-sized Rx transducer highly depends on the load resistance, Rl. For applications that involve large Rl in the order of tens of kΩ, a parallel resonance for a mm-sized Rx leads to higher PTE, while series resonance is preferred for Rl in the order of several kΩ and below.

  13. A 3-DOF SOI MEMS ultrasonic energy harvester for implanted devices

    International Nuclear Information System (INIS)

    Fowler, A G; Moheimani, S O R; Behrens, S

    2013-01-01

    This paper reports the design and testing of a microelectromechanical systems (MEMS) energy harvester that is designed to harvest electrical energy from an external source of ultrasonic waves. This mechanism is potentially suited to applications including the powering of implanted devices for biomedical applications. The harvester employs a novel 3-degree of freedom design, with electrical energy being generated from displacements of a proof mass via electrostatic transducers. A silicon-on-insulator MEMS process was used to fabricate the device, with experimental characterization showing that the harvester can generate 24.7 nW, 19.8 nW, and 14.5 nW of electrical power respectively through its x-, y-, and z-axis vibrational modes

  14. Double site-bond percolation model for biomaterial implants

    OpenAIRE

    Mely, H.; Mathiot, J. -F.

    2011-01-01

    9 figures - 10 pages; We present a double site-bond percolation model to account, on the one hand, for the vascularization and/or resorption of biomaterial implant in bones, and on the other hand, for its mechanical continuity. The transformation of the implant into osseous material, and the dynamical formation/destruction of this osseous material is accounted for by creation and destruction of links and sites in two, entangled, networks. We identify the relevant parameters to describe the im...

  15. Immediate Loading of Tapered Implants Placed in Postextraction Sockets and Healed Sites.

    Science.gov (United States)

    Han, Chang-Hun; Mangano, Francesco; Mortellaro, Carmen; Park, Kwang-Bum

    2016-07-01

    The aim of the present study was to compare the survival, stability, and complications of immediately loaded implants placed in postextraction sockets and healed sites. Over a 2-year period, all patients presenting with partial or complete edentulism of the maxilla and/or mandible (healed site group, at least 4 months of healing after tooth extraction) or in need of replacement of nonrecoverable failing teeth (postextraction group) were considered for inclusion in this study. Tapered implants featuring a nanostructured calcium-incorporated surface were placed and loaded immediately. The prosthetic restorations comprised single crowns, fixed partial dentures, and fixed full arches. Primary outcomes were implant survival, stability, and complications. Implant stability was assessed at placement and at each follow-up evaluation (1 week, 3 months, and 1 year after placement): implants with an insertion torque (IT) sockets of 17 patients, and 32 implants were placed in healed sites of 22 patients. There were no statistically significant differences in ISQ values between the 2 groups, at each assessment. In total, 60 implants (96.8%) had an IT ≥45 and an ISQ ≥70 at placement and at each follow-up control: all these implants were successfully loaded. Only 2 implants (1 in a postextraction socket and 1 in a healed site, 3.2%) could not achieve an IT ≥45 N·cm and/or an ISQ ≥70 at placement or over time: accordingly, these were considered failed for stability, as they could not be subjected to immediate loading. One of these 2 implants, in a healed site of a posterior maxilla, had to be removed, yielding an overall 1-year implant survival rate of 98.4%. No complications were reported. No significant differences were reported between the 2 groups with respect to implant failures and complications. Immediately loaded implants placed in postextraction sockets and healed sites had similar high survival and stability, with no reported complications. Further long

  16. Novel implant design improves implant survival in multirooted extraction sites: a preclinical pilot study.

    Science.gov (United States)

    Sivan-Gildor, Adi; Machtei, Eli E; Gabay, Eran; Frankenthal, Shai; Levin, Liran; Suzuki, Marcelo; Coelho, Paulo G; Zigdon-Giladi, Hadar

    2014-10-01

    The primary aim is to evaluate clinical, radiographic, and histologic parameters of novel implants with "three roots" design that were inserted into fresh multirooted extraction sockets. A secondary aim is to compare this new implant to standard root-form dental implants. Immediate implantation of novel or standard design 6 × 6-mm implants was performed bilaterally into multirooted sockets in mandibles of mini-pigs. Twelve weeks later, clinical, radiographic, stability, histomorphometric, and microcomputed tomography (micro-CT) analyses were performed. Survival rates were significantly higher in the test implants compared with control (92.8% versus 33.3%, respectively; P micro-CT analyses demonstrated bone fill in the inner part of the test implants. Moreover, bone-to-implant contact was higher in the test implants (55.50% ± 3.68% versus 42.47% ± 9.89%). Contrary to the clinical, radiographic, and histomorphometric results, resonance frequency analysis measurements were greater in the control group (77.74 ± 3.21 implant stability quotient [ISQ]) compared with the test group (31.09 ± 0.28 ISQ), P = 0.008. The novel design implants resulted in significantly greater survival rate in multirooted extraction sites. Further studies will be required to validate these findings.

  17. Immediate loading of subcrestally placed dental implants in anterior and premolar sites.

    Science.gov (United States)

    Henningsen, Anders; Smeets, Ralf; Köppen, Kai; Sehner, Susanne; Kornmann, Frank; Gröbe, Alexander; Heiland, Max; Gerlach, Till

    2017-11-01

    Immediate loading of dental implants has been evolving into an appropriate procedure for the treatment of partially edentulous jaws. The purpose of this study was to evaluate the clinical success and radiological outcome of immediately and delayed loaded dental implants in anterior and premolar sites. In this retrospective study, data of 163 individuals requiring tooth removal with subsequent implant placement in anterior and premolar sites were analyzed. Implants were immediately loaded by provisional acrylic resin bridges or loaded with delay. Implants were followed up annually for up to 9 years including intraoral radiographs. A total of 285 implants in 163 patients were placed. 218 implants were immediately loaded and 67 implants with delay. Fifteen implants failed during the follow-up period resulting in survival rates of 94.5% for immediate loading and 95.5% for delayed loading. After an initial decrease of 0.3 mm in the first 12 months the marginal bone level remained stable. No statistically significant differences were found in marginal bone loss between immediately and delayed loaded implants (P = 0.518, 95% CI). Within the limits of this study, immediate loading of immediately subcrestally placed dental implants in anterior and premolar sites is a reliable treatment option for dental rehabilitation. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Reliability of a CAD/CAM Surgical Guide for Implant Placement: An In Vitro Comparison of Surgeons' Experience Levels and Implant Sites.

    Science.gov (United States)

    Park, Su-Jung; Leesungbok, Richard; Cui, Taixing; Lee, Suk Won; Ahn, Su-Jin

    This in vitro study evaluated the reliability of a surgical guide with regard to different levels of operator surgical experience and implant site. A stereolithographic surgical guide for epoxy resin mandibles with three edentulous molar sites was produced using a computer-aided design/computer-assisted manufacture (CAD/CAM) system. Two surgeons with and two surgeons without implant surgery experience placed implants in a model either using or not using the CAD/CAM surgical guide. Four groups were created: inexperienced surgeon without the guide (group 1); experienced surgeon without the guide (group 2); inexperienced surgeon with the guide (group 3); and experienced surgeon with the guide (group 4). Planned implants and placed implants were superimposed using digital software, and deviation parameters were calculated. There were no significant differences in any of the deviation parameters between the groups when using the surgical guide. With respect to the implant sites, there were no significant differences among the groups in any parameter. Use of the CAD/CAM surgical guide reduced discrepancies among operators performing implant surgery regardless of their level of experience. Whether or not the guide was used, differences in the anterior-posterior implant site in the molar area did not affect the accuracy of implant placement.

  19. Immediate placement of implants into infected sites: a systematic review.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Martins, Maximiliano Delany; Wennerberg, Ann

    2015-01-01

    Traditionally, before placing dental implants, the compromised teeth are removed and the extraction sockets are left to heal for several months. To preserve the alveolar bone level from the collapse caused by healing and to reduce treatment time in situations in which tooth extraction precedes implant placement, some clinicians began to install the implant immediately into the postextraction socket without waiting for the site to heal. The purpose of this study was to review the literature regarding treatment outcomes of immediate implant placement into sites exhibiting pathology after clinical procedures to perform the decontamination of the implant's site. The following questions were raised: Does the presence of periodontal or endodontic infection affect immediate implant placement success? What is suggested to address the infection in the socket prior to immediate placement? An electronic search in PubMed (U.S. National Library of Medicine, Bethesda, MD, USA) was undertaken in March 2013. The titles and abstracts from these results were read to identify studies within the selection criteria. Eligibility criteria included both animal and human studies, and excluded any review and case reports articles. The publication's intervention had to have been implant placement into a site classified as having an infection (periapical, endodontic, perioendodontic, and periodontal). The search strategy initially yielded 706 references. Thirty-two studies were identified within the selection criteria, from which nine were case reports and review articles and were excluded. Additional hand-searching of the reference lists of selected studies yielded five additional papers. The high survival rate obtained in several studies supports the hypothesis that implants may be successfully osseointegrated when placed immediately after extraction of teeth presenting endodontic and periodontal lesions, provided that appropriate clinical procedures are performed before the implant

  20. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black

    Science.gov (United States)

    Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.

    2010-01-01

    Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478

  1. Stability of implants placed in fresh sockets versus healed alveolar sites: Early findings.

    Science.gov (United States)

    Gehrke, Sergio Alexandre; da Silva Neto, Ulisses Tavares; Rossetti, Paulo Henrique Orlato; Watinaga, Sidney Eiji; Giro, Gabriela; Shibli, Jamil Awad

    2016-05-01

    The present study measured implant stability quotient (ISQ) values at three different time points after surgical procedures to compare whether the stability values differed between implants placed in fresh extraction sockets versus healed alveolar sites. To measure implant stability, resonance frequency analysis (RFA) was performed in 77 patients (53 women, 24 men) with a total of 120 dental implants. These implants were divided into two groups: Group 1 included 60 implants in healed alveolar sites (22 in the maxilla, 38 in the mandible), and Group 2 included 60 implants in fresh sockets (41 in the maxilla, 19 in the mandible). Implant stability was measured immediately at implant placement (baseline), 90, and 150 days later. Statistical analysis was made using a multivariate regression linear model at implant level (α = 0.05). Overall, the means and standard deviations of the ISQ values were 62.7 ± 7.14 (95% confidence interval [CI], 39-88) at baseline, 70.0 ± 6.22 (95% CI, 46-88) at 90 days, and 73.4 ± 5.84 (95% CI, 58-88) at 150 days. In Group 1, the ISQs ranged between 64.3 ± 6.20 and 75.0 ± 5.69, while in Group 2, presented lower values that ranged between 61.2 ± 8.09 and 71.9 ± 5.99 (P = 0.002). Anatomic location and times periods were the only identified variables with an influence on ISQ values at implant level (P sockets and in healed sites exhibited similar evolutions in ISQ values and thus osseointegration; however, the implants in the healed alveolar sites exhibited superior values at all time points. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Dopant site location in dual-implanted GaP using (111) planar channeling

    International Nuclear Information System (INIS)

    Parikh, N.R.; Kao, C.T.; Lee, D.R.; Muse, J.; Swanson, M.L.; Venkatasubramanian, R.; Timmons, M.

    1990-01-01

    Previous studies have indicated that dual implantation can efficiently introduce group IV dopant onto selected sub-lattice sites in III--V compound semiconductors, thus enhancing electrical activation. The authors have studied this phenomenon in GaP using Rutherford Backscattering Spectroscopy (RBS) to determine the lattice location of Sn atoms. The authors used single crystals of GaP (100) which had been implanted at 400 degrees C with 120 Sn + following previously implanted 69 Ga + or 31 P + . Energies were selected for equivalent projected ranges, and all species were implanted with doses of 1 x 10 15 atoms/cm 2 . Asymmetry in the angular scan of the {111} planar channel was then used to determine the sub-lattice location of the implanted Sn. RBS results indicated that for all implants Sn atoms were substituting Ga and P sites equally. However, Hall effect measurements gave p type conduction for GaP implanted with Sn alone, while those with prior implants of Ga or P resulted in n-type conduction. RBS and Hall effect results are explained by a vacancy complex model

  3. Reasons for mini-implants failure: choosing installation site should be valued!

    Directory of Open Access Journals (Sweden)

    Alberto Consolaro

    2014-04-01

    Full Text Available Mini-implant loss is often associated with physical and mechanical aspects that result from choosing an inappropriate placement site. It is worth highlighting that: a Interdental alveolar bone crests are flexible and deformable. For this reason, they may not offer the ideal absolute anchorage. The more cervical the structures, the more delicate they are, thus offering less physical support for mini-implant placement; b Alveolar bone crests of triangular shape are more deformable, whereas those of rectangular shape are more flexible; c The bases of the alveolar processes of the maxilla and the mandible are not flexible, for this reason, they are more likely to receive mini-implants; d The more cervical a mini-implant is placed, the higher the risk of loss; the more apical a mini-implant is placed, the better its prognosis will be; e 3D evaluations play a major role in planning the use of mini-implants. Based on the aforementioned considerations, the hypotheses about mini-implant loss are as follows: 1 Deflection of maxillary and mandibular alveolar processes when mini-implants are more cervically placed; 2 Mini-implants placed too near the periodontal ligament, with normal intra-alveolar tooth movement; 3 Low bone density, low thickness and low alveolar bone volume; 4 Low alveolar cortical bone thickness; 5 Excessive pressure inducing trabecular bone microfracture; 6 Sites of higher anatomical weakness in the mandible and the maxilla; 7 Thicker gingival tissue not considered when choosing the mini-implant.

  4. Site location and optical properties of Eu implanted sapphire

    International Nuclear Information System (INIS)

    Marques, C.; Wemans, A.; Maneira, M.J.P.; Kozanecki, A.; Silva, R.C. da; Alves, E.

    2005-01-01

    Synthetic colourless transparent (0 0 0 1) sapphire crystals were implanted at room temperature with 100 keV europium ions to fluences up to 1 x 10 16 cm -2 . Surface damage is observed at low fluences, as seen by Rutherford backscattering spectrometry under channelling conditions. Optical absorption measurements revealed a variety of structures, most probably related to F-type defects characteristic of implantation damage. Thermal treatments in air or in vacuum up to 1000 deg. C do not produce noticeable changes both in the matrix or the europium profiles. However, the complete recovery of the implantation damage and some redistribution of the europium ions is achieved after annealing at 1300 deg. C in air. Detailed lattice site location studies performed for various axial directions allowed to assess the damage recovery and the incorporation of the Eu ions into well defined crystallographic sites, possibly in an oxide phase also inferred from optical absorption measurements

  5. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    Science.gov (United States)

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P drilling protocol proposed herein may represent a safe approach for implant site preparation.

  6. Lattice site of helium implanted in Si and diamond

    International Nuclear Information System (INIS)

    Allen, W.R.

    1993-01-01

    Single crystals of silicon and diamond were implanted at 300K with 70 keV 3 He. Ion channeling analyses were executed by application of Rutherford backscattering spectrometry and nuclear reaction analysis. Helium exhibits a non-random lattice site in the channeling angular distributions for silicon and diamond. A major fraction of the implanted He was qualitatively identified to be near to the tetrahedral interstice in both materials

  7. The visibility of mandibular canal on orthoradial and oblique CBCT slices at molar implant sites

    International Nuclear Information System (INIS)

    Alkhader, Mustafa; Jarab, Fadi; Shaweesh, Ashraf; Hudieb, Malik

    2016-01-01

    The aim of the present study was to compare visibility of the mandibular canal on cone beam computed tomography (CBCT)-based orthoradial and oblique slices at molar implant sites. CBCT images for 132 mandibular molar implant sites were selected for the study. After generating orthoradial and oblique slices, two observers evaluated the visibility of the mandibular canal using three-point scoring scale (1-3, good to excellent). Wilcoxon signed-rank test compared the visibility scores of the two slices. Both orthoradial and oblique slices obtained from CBCT had only very good to excellent mandibular canal visibility scores. At 114 mandibular molar implant sites, the visibility score was equal on both orthoradial and oblique slices. Although the visibility score was higher on orthoradial slices for 12 implant sites, the visibility score was higher for six implant sites on oblique slices and the difference was not significant. Therefore, the visibility of the mandibular canal was excellent and comparable on most of orthoradial and oblique slices obtained from CBCT images

  8. Long term results of ultrasonically guided implantation of 125-I seeds combined with external irradiation in localized prostatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, P; Rasmussen, F; Holm, H H [Depts. of Urology and Ultrasound, Herlev Hospital, Univ. of Copenhagen (Denmark)

    1991-01-01

    Transperineal 125-iodine seed implantation guided by transrectal ultrasonography and subsequent external beam irradiation was employed in the treatment of 32 patients with localized prostatic carcinoma (16 poorly differentiated). Follow-up is currently 35-98 months with a median of 65 months. Distant metastases have developed in 18 patients, of whom 11 have died from prostatic cancer. Median change in prostatic volume was a reduction of 35%. Re-biopsy or transurethral resection of the prostate was performed in 25 patients after 1-4 years, revealing still malignant histology in 10 (40%), of whom 8 have developed distant metastases or died from prostatic cancer. Fourteen patients suffered from late complications of which surgical intervention was indicated in five cases. Nine patients are presently free of progression and prostate specific antigen is bigger than 0.5 ng/ml in 8 of these. The future role of ultrasonically guided implantation in the management of prostatic cancer is discussed. (au).

  9. Correlation Between Resonance Frequency Analysis and Bone Quality Assessments at Dental Implant Recipient Sites.

    Science.gov (United States)

    Fu, Min-Wen; Fu, Earl; Lin, Fu-Gong; Chang, Wei-Jeng; Hsieh, Yao-Dung; Shen, E-Chin

    To evaluate whether primary implant stability could be used to predict bone quality, the association between the implant stability quotient (ISQ) value and the bone type at the implant site was evaluated. Ninety-five implant sites in 50 patients were included. Bone type (categorized by Lekholm and Zarb) at the implant site was initially assessed using presurgical dental radiography. During the preparation of the implant site, a bone core specimen was carefully obtained. The bone type was assessed by tactile sensation during the drilling operation, according to the Misch criteria. The primary stability of the inserted implant was evaluated by resonance frequency analysis (RFA). The ISQ value was recorded. The bone core specimen was then examined by stereomicroscopy or microcomputed tomography (micro-CT), and the bone type was determined by the surface characteristics of the specimen, based on Lekholm and Zarb classification. Agreement between the bone quality assessed by the four methods (ie, presurgical radiography, tactile sensation, stereomicroscopy, and micro-CT) was tested by Cohen's kappa statistics, whereas the association between the ISQ value and the bone type was evaluated by the generalized linear regression model. The mean ISQ score was 72.6, and the score was significantly influenced by the maxillary or mandibular arch (P = .001). The bone type at the implant sites varied according to the assessment method. However, a significant influence of the arch was repeatedly noted when using radiography or tactile sensation. Among the four bone-quality assessment methods, a weak agreement existed only between stereomicroscopy and micro-CT, especially in the maxilla (κ = 0.469). A negative association between the ISQ value and the bone type assessed by stereomicroscopy or by micro-CT was significant in the maxilla, but not in the mandible, after adjustments for sex, age, and right/left side (P = .013 and P = .027 for stereomicroscopy and micro-CT, respectively

  10. Electric field gradient calculation at atomic site of In implanted ZnO samples

    International Nuclear Information System (INIS)

    Abreu, Y.; Cruz, C. M.; Leyva, A.; Pinnera; Van Espen, P.; Perez, C.

    2011-01-01

    The electric field gradient (EFG) calculated for 111 In→ 111 Cd implanted ZnO samples is reported. The study was made for ideal hexagonal ZnO structures and super-cells considering the In implantation environment at the cation site using the 'WIEN2k' code within the GGA(+U) approximation. The obtained EFG values are in good agreement with the experimental reports for ideal ZnO and 111 In→ 111 Cd implanted structures; measured by perturbed angular correlation (PAC) and Moessbauer spectroscopy. The attribution of substitutional incorporation of 111 In at the ZnO cation site after annealing was confirmed. (Author)

  11. Prosthetic considerations for orthodontic implant site development in the adult patient.

    Science.gov (United States)

    Holst, Alexandra I; Nkenke, Emeka; Blatz, Markus B; Geiselhöringer, Hans; Holst, Stefan

    2009-11-01

    Proper site development is a key factor for long-term clinical success of dental implants. Whereas surgical and restorative techniques have been refined to ensure predictable functional and esthetic outcome, individual clinical prerequisites do not always allow proper placement of implants when prosthetic and material properties are considered. Orthodontic tooth movement may be a viable and nonsurgical site development treatment option. With the introduction and advancements of minimal invasive and less visible orthodontic appliances, a growing number of adult patients are willing to obtain orthodontic treatment. The spectrum of modern appliances is broad and ranges from clear aligners to lingual brackets. Skeletal anchorage devices such as orthodontic mini-implants often eliminate unpopular external anchorage devices (ie, headgear) in adult patients, This article discusses the selection of an appropriate pretreatment approach by taking patient-specific criteria into account.

  12. Piezosurgery applied to implant dentistry: clinical and biological aspects.

    Science.gov (United States)

    Pereira, Cassiano Costa Silva; Gealh, Walter Cristiano; Meorin-Nogueira, Lamis; Garcia-Júnior, Idelmo Rangel; Okamoto, Roberta

    2014-07-01

    Piezosurgery is a new and modern technique of bone surgery in implantology. Selective cutting is possible for different ultrasonic frequencies acting only in hard tissues (mineralized), saving vital anatomical structures. With the piezoelectric osteotomy technique, receptor site preparation for implants, autogenous bone graft acquistition (particles and blocks), osteotomy for alveolar bone crest expansion, maxillary sinus lifting, and dental implant removal can be performed accurately and safely, providing excellent clinical and biological results, especially for osteocyte viability. The aim of this review was, through literature review, to present clinical applications of piezosurgery in implant dentistry and outline their advantages and disadvantages over conventional surgical systems. Moreover, this study addressed the biological aspects related to piezosurgery that differentiate it from those of bone tissue approaches. Overall, piezosurgery enables critical operations in simple and fully executable procedures; and effectively, areas that are difficult to access have less risk of soft tissue and neurovascular tissue damage via piezosurgery.

  13. Lattice sites and stability of implanted Er in FZ and CZ Si

    CERN Document Server

    Wahl, U; Langouche, G; Vantomme, A

    1998-01-01

    We report on the lattice location of $^{167}$Er in Si measured by conversion electron emission channeling. In both FZ and CZ Si, a high fraction of Er (>65%) occupies near-tetrahedral interstitial (T) sites directly following 60 keV room temperature implantation at doses of 6 $\\times 10^{12}$ cm$^{-2}$. For higher doses, the as-implanted near-T fractions of Er visible by emission channeling are smaller, due to the beginning of amorphization. Following the recovery of implantation damage at 600°C, more than 70% of Er is found on near-T sites in both FZ and CZ Si. In FZ Si, Er exhibits a remarkable thermal stability and only prolonged annealing for several hours reduces the near-T fraction. On the other hand, annealing of CZ Si at 900°C for more than 10 minutes results in the majority of Er probes in sites of very low symmetry or disordered surroundings.

  14. Diagnostic efficacy of a modified low-dose acquisition protocol for the preoperative evaluation of mini-implant sites

    Energy Technology Data Exchange (ETDEWEB)

    Tadinada, Aditya; Marczak, Alana; Yadav, Sumit [University of Connecticut School of Dental Medicine, Farmington (United States)

    2017-09-15

    The objective of this study was to compare the outcomes of surgical mini-implant placement when potential mini-implant sites were scanned using a lower-dose 180° acquisition protocol versus a conventional 360° acquisition protocol. Ten dentate human skulls were used to provide sites for potential mini-implant placement. The sites were randomly divided into 2 groups: 360° and 180° cone-beam computed tomography (CBCT) acquisition protocols. A small-volume 180° CBCT scan and a 360° CBCT scan of each site were acquired using a Morita Accuitomo-170 CBCT machine and then a mini-implant was placed. A follow-up 360° CBCT scan was done as a gold standard to evaluate the location of the mini-implant and root perforation. Two raters evaluated the scans. Ninety-eight percent of the mini-implants placed did not perforate any root structure. Two percent of the sites had an appearance suggestive of perforation. On a Likert scale, both raters agreed that their subjective evaluation of the diagnostic quality of the protocols, ability to make and read measurements of the sites, and preferences for the specified diagnostic task were comparable. The Cohen kappa showed high inter-rater and intra-rater agreement. In this ex vivo study, we found that the 180° rotational acquisition was as effective as the conventional 360° rotational acquisition for the preoperative evaluation of potential mini-implant sites.

  15. Application of ultra-sons to on-site spent fuel assemblies metrology

    International Nuclear Information System (INIS)

    Gondard, C.; Saglio, R.; Vouillot, M.; Delaroche, P.; Vaubert, Y.; Van Craeynest, J.C.

    1983-12-01

    Fuel assemblies inspection on the site of a power reactor, between two irradiation campaigns, allows to estimate the behaviour of prototype fuel assemblies and to permit their refueling for the continuation of the irradiation; the utilization of non-destructive, reliable and high-performance techniques, is of a great interest in the application. For, this reason, the C.E.A. has been led to carry out new techniques allowing the visual examination and the dimensional inspection of spent fuel assemblies of 900 MWe French pressurized water reactors, with a transportable Fuel Examination Module (MEC) on every reactor site. This module includes a television camera, and uses for the first time as ''position sensor'' the properties offered by a set of ultrasonic transducers. The main principle of the design, of the operation way of the module, of the measuring methods, and, of the data acquisition and processing, are presented [fr

  16. Etonogestrel implant migration to the vasculature, chest wall, and distant body sites: cases from a pharmacovigilance database.

    Science.gov (United States)

    Kang, Sarah; Niak, Ali; Gada, Neha; Brinker, Allen; Jones, S Christopher

    2017-12-01

    To describe clinical outcomes of etonogestrel implant patients with migration to the vasculature, chest wall and other distant body sites spontaneously reported to the US Food and Drug Administration Adverse Event Reporting System (FAERS) database. We performed a standardized Medical Dictionary for Regulatory Activities (MedDRA) query in the FAERS database (through November 15, 2015), with reports coded with one or more MedDRA preferred terms that indicate complications with device placement or migration of the device from the original site of insertion to the vasculature, chest wall and other distant body sites. We excluded any cases previously described in the medical literature. We identified 38 cases of pronounced etonogestrel implant migration. Migration locations included the lung/pulmonary artery (n=9), chest wall (n=1), vasculature at locations other than the lung/pulmonary artery (n=14) and extravascular migrations (n=14) to other body sites (e.g., the axilla and clavicle/neck line/shoulder). The majority of cases were asymptomatic and detected when the patient desired implant removal; however, seven cases reported symptoms such as pain, discomfort and dyspnea in association with implant migration. Three cases also describe pulmonary fibrosis and skin reactions as a result of implant migration to the vasculature, chest wall and other distant body sites. Sixteen cases reported surgical removal in an operating room setting. Our FAERS case series demonstrates etonogestrel implant migration to the vasculature, chest wall and other body sites distant from the site of original insertion. As noted by the sponsor in current prescribing information, a key determinant in the risk for etonogestrel contraceptive implant migration appears to be improper insertion technique. Although migration of etonogestrel implants to the vasculature is rare, awareness of migration and education on proper insertion technique may reduce the risk. Published by Elsevier Inc.

  17. Effect of fluence on the lattice site of implanted Er and implantation induced strain in GaN

    CERN Document Server

    Wahl, U; Decoster, S; Vantomme, A; Correi, J G

    2009-01-01

    A GaN thin film was implanted with 5 × 1014 cm−2 of 60 keV stable 166Er, followed by the implantation of 2 × 1013 cm−2 radioactive 167Tm (t1/2 = 9.3 d) and an annealing sequence up to 900 °C. The emission channeling (EC) technique was applied to assess the lattice location of Er following the Tm decay from the conversion electrons emitted by 167mEr, which showed that more than 50% of 167mEr occupies substitutional Ga sites. The results are briefly compared to a 167mEr lattice location experiment in a GaN sample not pre-implanted with 166Er. In addition, high-resolution X-ray diffraction (HRXRD) was used to characterize the perpendicular strain in the high-fluence implanted film. The HRXRD experiments showed that the Er implantation resulted in an increase of the c-axis lattice constant of the GaN film around 0.5–0.7%. The presence of significant disorder within the implanted region was corroborated by the fact that the EC patterns for off-normal directions exhibit a pronounced angular broadening of t...

  18. Histologic Assessment of Drug-Eluting Grafts Related to Implantation Site

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Tille

    2016-02-01

    Full Text Available Drug-eluting vascular prostheses represent a new direction in vascular surgery to reduce early thrombosis and late intimal hyperplasia for small calibre grafts. Subcutaneous implantation in rats is a rapid and cost-effective screening model to assess the drug-elution effect and could, to some extent, be useful to forecast results for vascular prostheses. We compared biological and histological responses to scaffolds in different implantation sites. Polycaprolactone (PCL, paclitaxel-loaded PCL (PCL-PTX and dexamethasone-loaded PCL (PCL-DXM electrospun scaffolds were implanted subcutaneously and in an infrarenal abdominal aortic model in rats for up to 12 weeks. At the conclusion of the study, a histological analysis was performed. Cellular graft invasion revealed differences in the progression of cellular infiltration between PCL-PTX and PCL/PCL-DXM groups in both models. Cell infiltration increased over time in the aortic model compared to the subcutaneous model for all groups. Cell counting revealed major differences in fibroblast, macrophage and giant cell graft colonisation in all groups and models over time. Macrophages and giant cells increased in the PCL aortic model; whereas in the subcutaneous model these cell types increased only after three weeks or even decreased in the drug-eluting PCL groups. Other major findings were observed only in the aortic replacement such as extracellular matrix deposition and neo-angiogenesis. The subcutaneous implant model can be used for screening, especially when drug-eluting effects are studied. However, major histological differences were observed in cell type reaction and depth of cell penetration compared to the aortic model. Our results demonstrate that the implantation site is a critical determinant of the biological response.

  19. Hair Barrette Induced Cochlear Implant Receiver Stimulator Site Infection with Extrusion

    Directory of Open Access Journals (Sweden)

    Trung N. Le

    2015-01-01

    Full Text Available Background. Cochlear implant infections and extrusion are uncommon but potentially devastating complications. Recent literature suggests conservative management can be employed. Local measures inclusive of aggressive surgical debridement with vascularized flaps and parenteral antibiotics represent a viable option and often permit device salvage. However, explantation should be considered if there is evidence of systemic, intracranial, or intractable infection. Method. A Case report and literature review. Case Report. This case illustrates a complicated local wound infection associated with cochlear implantation due to transcutaneous adherence of a ferrous hair barrette to a cochlear implant magnet. Reconstruction of computed tomography (CT data with 3D volume rendering significantly improved the value of the images and facilitated patient counseling as well as operative planning. Conclusion. Cochlear implant infections can be associated with foreign bodies. CT images are beneficial in the evaluation of cochlear implant complications. 3D CT images provide a comprehensive view of the site of interest, displaying the relationship of the hardware to the skull and soft tissues, while minimizing associated artifacts. Cochlear implant patients should consider use of nonmetallic hair devices.

  20. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    Science.gov (United States)

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  1. A radiographic study on the prevalence of knife-edge residual alveolar ridge at proposed dental implant sites

    International Nuclear Information System (INIS)

    AlFaleh, Wafaa

    2009-01-01

    Dental implants are widely used in restoration of completely or partially edentulous dental arches. Before placement of endosseous implants in the jaws, both the quantity and quality of the residual ridge must be assessed radiographically. Remodeling activity after tooth extraction is localized primarily at the crestal area of the residual ridges, resulting in reduction of the height of bone and creation of various three-dimensional shapes of the residual ridges. When bone resorption at the lingual and buccal aspects is greater than that at the crestal area, a knife-edge type of residual ridge develops. The aim of this study was to evaluate the prevalence of the knife-edge morphology of the residual alveolar bone at proposed implant sites in partially or completely edentulous patients. Computed tomography (CT) cross-sectional images of the upper and lower jaws were assessed at the proposed sites before implant placement. Images of 258 proposed implant sites belonging to 30 patients were assessed radiographically. In 120 proposed implant sites out of 258 (46.5%), the residual alveolar ridge had a knife-edge configuration, the majority belonging to completely edentulous patients who lost their teeth more than ten years previously. High prevalence of knife-edge ridge was found, therefore, replacement of missing teeth by immediate implant is recommended to prevent atrophy or knife-edge morphology of the residual ridge. (author)

  2. Lattice site location and annealing behaviour of Ca and Sr implanted GaN

    CERN Document Server

    De Vries, Bart; Wahl, Ulrich; Correia, J G; Araújo, João Pedro; Lojkowski, W; Kolesnikov, D

    2006-01-01

    We report on the lattice location of ion-implanted Ca and Sr in thin films of single-crystalline wurtzite GaN. Using the emission channeling technique the angular distributions of $\\beta\\!^{-}$−particles emitted by the radioactive isotopes $^{45}$Ca(t$_{ 1/2}$=163.8 d) and $^{89}$Sr(t$_{ 1/2}$=50.53 d) were monitored with a position-sensitive detector following 60 keV room-temperature implantation. Our experiments give direct evidence that $\\sim$90% of Ca and > 60% of Sr atoms were occupying substitutional Ga sites with root mean square displacements of the order of 0.15–0.30 Å, i.e., larger than the expected thermal vibration amplitude of 0.074 Å. Annealing the Ca implanted samples at 1100–1350 °C in high-pressure N$_{2}$ atmosphere resulted in a better incorporation into the substitutional Ga site. The Sr implanted sample showed a small decrease in rms displacements for vacuum annealing up to 900 °C, while the substitutional fraction remained nearly constant. The annealing behavior of the rms disp...

  3. Direct observation of the lattice sites of implanted manganese in silicon

    CERN Document Server

    Silva, Daniel; Wahl, Ulrich; Martins Correia, Joao; Amorim, Lígia; Decoster, Stefan; Castro Ribeiro Da Silva, Manuel; Da Costa Pereira, Lino Miguel; Esteves De Araujo, Araujo Joao Pedro

    2016-01-01

    Mn-doped Si has attracted significant interest in the context of dilute magnetic semiconductors. We investigated the lattice location of implanted Mn in silicon of different doping types (n, n+ and p+) in the highly dilute regime. Three different lattice sites were identified by means of emission channeling experiments: ideal substitutional sites; sites displaced from bond-centered towards substitutional sites and sites displaced from anti-bonding towards tetrahedral interstitial sites. For all doping types investigated, the substitutional fraction remained below ∼ 30%. We discuss the origin of the observed lattice sites as well as the implications of such structures on the understanding of Mn-doped Si systems.

  4. Fe and Cu in Si: Lattice sites and trapping at implantation-related defects

    International Nuclear Information System (INIS)

    Wahl, U.; Correia, J.G.; Rita, E.; Araujo, J.P.; Soares, J.C.

    2006-01-01

    We have used the emission channeling technique in order to study the lattice sites of radioactive 59 Fe and 67 Cu following 60 keV ion implantation into Si single crystals at fluences around 10 12 -10 14 cm -2 . We find that in the room temperature as-implanted state in high-resistivity Si both Fe and Cu occupy mainly lattice sites displaced around 0.05 nm (0.5 A) from substitutional positions. Both are released from these positions during annealing at temperatures between 300 deg. C and 600 deg. C. Fe is then found mainly on near-tetrahedral interstitial sites and further annealing causes it to be increasingly incorporated on ideal substitutional sites, on which it is stable to around 800 deg. C. We have strong indications that during annealing around 600 deg. C, along with the dominance of interstitial Fe, a redistribution towards the surface takes place, suggesting that the subsequent formation of ideal substitutional Fe may be related to the trapping of Fe at R p /2, half of its implanted depth. Possible R p /2 trapping might also have taken place in our Cu experiments but appears to be less efficient since Cu tended to escape to the bulk of the samples

  5. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Multimedia

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  6. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  7. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values.

    Science.gov (United States)

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were generated. Based on the consensus of the two observers, 15.6% of sites were of low bone density, 47.9% were of intermediate density, and 36.5% were of high density. Receiver-operating characteristic analysis showed that CBCT intensity values had a high predictive power for predicting high density sites (area under the curve [AUC] =0.94, P < 0.005) and intermediate density sites (AUC = 0.81, P < 0.005). The best cut-off value for intensity to predict intermediate density sites was 218 (sensitivity = 0.77 and specificity = 0.76) and the best cut-off value for intensity to predict high density sites was 403 (sensitivity = 0.93 and specificity = 0.77). CBCT intensity values are considered useful for predicting bone density at posterior mandibular implant sites.

  8. The immediate placement of dental implants into extraction sites with periapical lesions: a retrospective chart review.

    Science.gov (United States)

    Bell, Christopher Lincoln; Diehl, David; Bell, Brian Michael; Bell, Robert E

    2011-06-01

    The purpose of this study was to evaluate the success of dental implants placed immediately into extraction sites in the presence of chronic periapical pathology. The charts of 655 patients who had implants immediately placed into fresh extraction sites were reviewed for the presence or absence of periapical radiolucencies. A total of 922 implants were included. Of the 922 implants, 285 were immediately placed into sockets that had chronic periapical infections. The remaining 637 implants, without signs of periapical pathology, were used as the control group. Success of the implants was defined as successful osseointegration, successful restoration, and absence of evidence of bone loss or peri-implantitis. Other variables such as age, gender, smoking, diabetes, bisphosphonate use, lucencies of adjacent teeth, and implant stability at the time of placement were also evaluated. Of the 922 implants, 285 were placed into sockets with periapical radiolucencies. The success rate of implants placed in the study group was 97.5%, whereas the success rate of the control group was 98.7%. The difference was not found to be statistically significant. The mean follow-up was 19.75 months, with a maximum of 93 months and a minimum of 3 months. A statistically higher failure rate was found for implants placed adjacent to retained teeth with periapical pathology. The placement of implants in sockets affected by chronic periapical pathology can be considered a safe and viable treatment option. There is a risk of implant failure when placing implants adjacent to teeth with periapical radiolucencies. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Conventional drilling versus piezosurgery for implant site preparation: a meta-analysis.

    Science.gov (United States)

    Sendyk, Daniel Isaac; Oliveira, Natacha Kalline; Pannuti, Claudio Mendes; Naclério-Homem, Maria da Graça; Wennerberg, Ann; Zindel Deboni, Maria Cristina

    2018-03-27

    The aim of this study was to evaluate the evidence of a correlation between the stability of dental implants placed by piezosurgery, compared with implants placed by conventional drilling. An electronic search in MEDLINE, SCOPUS and the Cochrane Library was undertaken until August 2016 and was supplemented by manual searches and by unpublished studies at OpenGray. Only randomized controlled clinical trials that reported implant site preparation with piezosurgery and with conventional drilling were considered eligible for inclusion in this review. Meta-analyses were performed to evaluate the impact of piezosurgery on implant stability. Of 456 references electronically retrieved, 3 were included in the qualitative analysis and quantitative synthesis. The pooled estimates suggest that there is no significant difference between piezosurgery and conventional drilling at baseline (WMD: 2.20; 95% CI: -5.09, 9,49; p = 0.55). At 90 days, the pooled estimates revealed a statistically significant difference (WMD: 3.63; 95% CI: 0.58, 6.67, p = 0.02) favouring piezosurgery. Implant stability is slightly improved when osteotomy was performed by a piezoelectric device. More randomized controlled clinical trials are needed to verify these findings.

  10. Origin of the lattice sites occupied by implanted Co in Si

    CERN Document Server

    Silva, Daniel; Wahl, Ulrich; Martins Correia, Joao; Da Costa Pereira, Lino Miguel; Amorim, Lígia; Castro Ribeiro Da Silva, Manuel; Esteves De Araujo, Araujo Joao Pedro

    2014-01-01

    We have investigated the lattice location of implanted 61Co in silicon. By means of emission channeling, three different lattice sites have been identified: ideal substitutional sites, displaced bond-centered sites and displaced tetrahedral interstitial sites. To assess the origin of the observed lattice sites we have compared our results to emission channeling studies on 59Fe and 65Ni and to Mössbauer spectroscopy experiments on 57Co, present in literature. The possible interpretation of several 57Co Mössbauer lines is discussed in the light of our new results on the 61Co lattice location. The conclusions are relevant for the microscopic understanding of some gettering techniques.

  11. Analysis of hemodynamic characteristics in anastomotic sites of femoral artery implantation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, H.W. [Graduate School, Soongsil University, Seoul (Korea); Suh, S.H. [SoongsSil University, Seoul (Korea); Yoo, S.S. [Hankuk Aviation University, Kyonggi-do (Korea); Kim, D.I.; Lee, B.B. [Samsung Medical Center (Korea)

    1998-11-01

    The objective of the present study is to obtain information on the hemodynamic characteristics in the anastomotic sites of femoral artery through the vascular implantation. Three dimensional steady and physiological blood flows in the femoral artery are simulated using the finite volume method. The geometrical shape of the anastomotic sites is made based on the vascular anatomy of a white rabbit. Wall shear stress distributions in the anastomotic sites for the physiological flow are compared with those for steady flow. Blood flow phenomena in the anastomotic sites of the femoral artery are discussed extensively. (author). 9 refs., 11 figs., 1 tab.

  12. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  13. A capacitive ultrasonic transducer based on parametric resonance.

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  14. Striated Muscle as Implantation Site for Transplanted Pancreatic Islets

    Directory of Open Access Journals (Sweden)

    Daniel Espes

    2011-01-01

    Full Text Available Islet transplantation is an attractive treatment for selected patients with brittle type 1 diabetes. In the clinical setting, intraportal transplantation predominates. However, due to extensive early islet cell death, the quantity of islets needed to restore glucose homeostasis requires in general a minimum of two donors. Moreover, the deterioration of islet function over time results in few insulin-independent patients after five-year followup. Specific obstacles to the success of islet transplantation include site-specific concerns for the liver such as the instant blood mediated inflammatory reaction, islet lipotoxicity, low oxygen tension, and poor revascularization, impediments that have led to the developing interest for alternative implantation sites over recent years. Within preclinical settings, several alternative sites have now been investigated and proven favorable in various aspects. Muscle is considered a very promising site and has physiologically properties and technical advantages that could make it optimal for islet transplantation.

  15. Why are mini-implants lost: the value of the implantation technique!

    Science.gov (United States)

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  16. Why are mini-implants lost: The value of the implantation technique!

    Directory of Open Access Journals (Sweden)

    Fabio Lourenço Romano

    2015-02-01

    Full Text Available The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1 Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2 Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3 Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4 The more precise the lancing procedures, the better the implant placement technique; 5 Self-drilling does not mean higher pressures; 6 Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  17. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values

    OpenAIRE

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    Objective: The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. Materials and Methods: CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were g...

  18. Effectiveness of methods for detaching orthodontic implants likely to fracture upon rotational torque – an animal study

    Science.gov (United States)

    Nakagaki, Susumu; Yasuda, Yoshitaka; Handa, Keisuke; Koike, Toshiyuki; Saito, Takashi; Mizoguchi, Itaru

    2016-01-01

    Abstract Orthodontic implants may fracture at the cortical bone level upon rotational torque. The impacted fragment can be detached by a range of methods, which are all more or less time‐consuming and injurious to the cortical bone. The aim of this study was to compare three different methods for detaching an orthodontic implant impacted in cortical bone. Health Sciences University of Hokkaido animal ethics committee approved the study protocol. Orthodontic titanium‐alloy (Ti‐6Al‐4 V) implants were placed bilaterally on the buccal side of the mandible of beagle dogs. Subsequently, the implants were detached using either a low‐speed handpiece with a round bur, alternatively by use of a low‐power or a high‐power ultrasonic instrument. In the first experiment, 56 orthodontic implants were placed into the dissected mandible from 7 animals. The methods for detachment were compared with respect to time interval, as well as associated undesirable bone loss as appraised by use of cone‐beam computed tomography. In experiment two, 2x2 implants were placed bilaterally in the mandible of 8 animals and subsequently detached by manual rotational torque, and the described three methods for detachment. The implant socket was investigated histologically as a function of removal method immediately after removal, and after 1, 3 and 8 weeks and contrasted with the healing of the socket of the implant that was detached by manual rotational torque. Statistical significance was appraised by the use of non‐parametric Kruskal‐Wallis one‐way analysis of variance. The method using the low‐power ultrasonic required significantly longer removal time versus the two other methods, i.e. high‐power ultrasonic and low‐speed handpiece with a round bur (p Orthodontic implants likely to fracture upon rotational torque or impacted fractured fragments should be detached preferably with an ultrasonic instrument, because of less associated bone loss and more rapid bone

  19. Development of automatic ultrasonic testing system and its application

    International Nuclear Information System (INIS)

    Oh, Sang Hong; Matsuura, Toshihiko; Iwata, Ryusuke; Nakagawa, Michio; Horikawa, Kohsuke; Kim, You Chul

    1997-01-01

    The radiographic testing (RT) has been usually applied to a nondestructive testing, which is carried out on purpose to detect internal defects at welded joints of a penstock. In the case that RT could not be applied to, the ultrasonic testing (UT) was performed. UT was generally carried out by manual scanning and the inspections data were recorded by the inspector in a site. So, as a weak point, there was no objective inspection records correspond to films of RT. It was expected that the automatic ultrasonic testing system by which automatic scanning and automatic recording are possible was developed. In this respect, the automatic ultrasonic testing system was developed. Using newly developed the automatic ultrasonic testing system, test results to the circumferential welded joints of the penstock at a site were shown in this paper.

  20. Three-Dimensional High-Frequency Ultrasonography for Early Detection and Characterization of Embryo Implantation Site Development in the Mouse.

    Directory of Open Access Journals (Sweden)

    Mary C Peavey

    Full Text Available Ultrasonography is a powerful tool to non-invasively monitor in real time the development of the human fetus in utero. Although genetically engineered mice have served as valuable in vivo models to study both embryo implantation and pregnancy progression, such studies usually require sacrifice of parous mice for subsequent phenotypic analysis. To address this issue, we used three-dimensional (3-D reconstruction in silico of high-frequency ultrasound (HFUS imaging data for early detection and characterization of murine embryo implantation sites and their development in utero. With HFUS imaging followed by 3-D reconstruction, we were able to precisely quantify embryo implantation site number and embryonic developmental progression in pregnant C57BL6J/129S mice from as early as 5.5 days post coitus (d.p.c. through to 9.5 d.p.c. using a VisualSonics Vevo 2100 (MS550S transducer. In addition to measurements of implantation site number, location, volume and spacing, embryo viability via cardiac activity monitoring was also achieved. A total of 12 dams were imaged with HFUS with approximately 100 embryos examined per embryonic day. For the post-implantation period (5.5 to 8.5 d.p.c., 3-D reconstruction of the gravid uterus in mesh or solid overlay format enabled visual representation in silico of implantation site location, number, spacing distances, and site volume within each uterine horn. Therefore, this short technical report describes the feasibility of using 3-D HFUS imaging for early detection and analysis of post-implantation events in the pregnant mouse with the ability to longitudinally monitor the development of these early pregnancy events in a non-invasive manner. As genetically engineered mice continue to be used to characterize female reproductive phenotypes, we believe this reliable and non-invasive method to detect, quantify, and characterize early implantation events will prove to be an invaluable investigative tool for the study of

  1. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    Science.gov (United States)

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  2. The site of action of intrahypothalamic estrogen implants in feminine sexual behavior: an autoradiographic analysis

    International Nuclear Information System (INIS)

    Davis, P.G.; Krieger, M.S.; Barfield, R.J.; McEwen, B.S.; Pfaff, D.W.

    1982-01-01

    Estrogenic stimulation of the ventromedial hypothalamus is sufficient to prime progesterone-facilitated estrous behavior in ovariectomized rats. To determine precisely the site(s) of estrogenic stimulation and the locus of its priming action on estrous behavior, we used steroid autoradiographic methods to assess the diffusion of [ 3 H]estradiol ([ 3 H]E 2 ) from behaviorally effective implants diluted 1:300 with cholesterol. Ovariectomized rats received [ 3 H]E 2 -cholesterol implants aimed at the ventromedial hypothalamic nucleus (VMN). Females were tested twice for feminine sexual behavior after stereotaxic surgery. They received progesterone on the day of behavioral testing. Animals were killed on the day after the second behavior test, cannulae were removed, and the brains were frozen rapidly and processed for autoradiography. Five of eight females with bilateral implants aimed at the VMN exhibited female sexual behavior in at least one of the two tests. Of these, four also showed proceptive behavior. Histological examination of brain sections indicated that behaviorally effective implants were located in, or adjacent to, the central portions of VMN. Implants from nonreceptive animals were located at the extreme anterior or posterior aspects of the VMN. The data collected are consistent with the view that estrogen acts within a sharply defined region of the VMN to prime estrons behavior

  3. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  4. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  5. Utilization of 3D/Dental software for precise implant site selection: clinical reports.

    Science.gov (United States)

    Kraut, R A

    1992-01-01

    Preoperative planning is an essential aspect of endosteal implant placement. Three-dimensional imaging allows the surgeon and restorative dentist to accurately visualize potential implant receptor sites relative to adjacent vital structures. This information is correlated with the planned occlusion, and transferred to the patient by means of a surgical prosthetic guide, which is developed on the diagnostic cast. The steps involved in planning and placing implants in an atrophic mandible in the first case illustrates the value of three-dimensional scanning in treating patients with limited bone volume. The second case presented with a mandibular bilateral distal extension partial denture, which was ultimately replaced with two implant-supported fixed prostheses. The use of three-dimensional imaging showed the location of the inferior alveolar neurovascular bundle which allowed utilization of all of the bone above it without encroaching on the nerve. The third case illustrates an edentulous maxilla where visualization of the osseous contour allowed for implant placement at an optimal angulation to provide support for the planned prosthesis.

  6. Site ultrasonic measurement on RPV stud-bolt loading under hot transient of Qinshan NPP

    International Nuclear Information System (INIS)

    Qu Jiadi; Dou Yikang; Zhu Shiming

    1994-08-01

    It expounds that the key of solving thermal transient sealing problem is to obtain the thermal increment of stud-bolt loading. This loading, as a primary stress loading, is directly related to the bolt fatigue life and transient loading spectrum for vessel analysis. The fundamental works and main results of ultrasonic measurement on RPV stud-bolt loading on Qinshan site are also presented. The measuring capability has exceeded 1 m in length and temperature of 280 degree C, therefore, it is possible to be used in the field of NPP. The paper is the continuation of research work for sealing analysis and tests on the RPV (see SMiRT-9, 10)

  7. Surgical site infection in orthopedic implants and its common bacteria with their sensitivities to antibiotics, in open reduction internal fixation

    International Nuclear Information System (INIS)

    Shah, M.Q.; Zardad, M.S.; Khan, A.; Ahmed, S.; Awan, A. S.; Mohammad, T.

    2017-01-01

    Surgical site infection in orthopaedic implants is a major problem, causing long hospital stay, cost to the patient and is a burden on health care facilities. It increases rate of non-union, osteomyelitis, implant failure, sepsis, multiorgan dysfunction and even death. Surgical site infection is defined as pain, erythema, swelling and discharge from wound site. Surgical site infection in orthopaedic implants is more challenging to the treating orthopaedic surgeon as the causative organism is protected by a biofilm over the implant's surface. Antibiotics cannot cross this film to reach the bacteria's, causing infection. Method: This descriptive case series study includes 132 patients of both genders with ages between 13 years to 60 years conducted at Orthopaedic Unit, Ayub Medical College, Abbottabad from 1st October 2015 to 31st March 2016. Patients with close fractures of long bones were included in the study to determine the frequency of surgical site infection in orthopaedic implants and the type of bacteria involved and their sensitivity to various antibiotics. All implants were of stainless steel. The implants used were Dynamic hip screws, Dynamic compression screws, plates, k-wires, Interlocking nails, SIGN nails, Austin Moore prosthesis and tension band wires. Pre-op and post-op antibiotics used were combination of Sulbactum and Cefoperazone which was given 1 hour before surgery and continued for 72 hours after surgery. Patients were followed up to 4 weeks. Pus was taken on culture stick, from those who developed infection. Results were entered in the pro forma. Results: A total of 132 patients of long bone fractures, who were treated with open reduction and internal fixation, were studied. Only 7 patients developed infection. Staphylococcus Aureus was isolated from all 7 patients. Staphylococcus aureus was sensitive to Linezolid, Fusidic Acid, and vancomycin. Cotrimoxazole, tetracycline, Gentamycin and Clindamycin were partially effective. Conclusion

  8. Dental implants inserted in fresh extraction sockets versus healed sites: a systematic review and meta-analysis.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Albrektsson, Tomas; Wennerberg, Ann

    2015-01-01

    To test the null hypothesis of no difference in the implant failure rates, postoperative infection and marginal bone loss for the insertion of dental implants in fresh extraction sockets compared to the insertion in healed sites, against the alternative hypothesis of a difference. Main search terms used in combination: dental implant, oral implant, resh extraction socket, immediate placement, immediate insertion, immediate implant. An electronic search was undertaken in July/2014, in PubMed, Web of Science, Cochrane Oral Health Group Trials Register plus hand-searching. Eligibility criteria included clinical human studies, either randomized or not. The search strategy resulted in 73 publications, with 8,241 implants inserted in sockets (330 failures, 4.00%), and 19,410 in healed sites (599 failures, 3.09%). It is suggested that the insertion of implants in fresh extraction sockets affects the failure rates (RR 1.58, 95% CI 1.27-1.95, P<0.0001). The difference was not statistically significant when studies evaluating implants inserted in maxillae or in mandibles were pooled, or when the studies using implants to rehabilitate patients with full-arch prostheses were pooled; however, it was significant for the studies that rehabilitated patients with implant-supported single crowns and for the controlled studies. There was no apparent significant effect on the occurrence of postoperative infection or on the magnitude of marginal bone loss. The results should be interpreted with caution due to the potential for biases and to the presence of uncontrolled confounding factors in the included studies, most of them not randomized. The question whether immediate implants are more at risk for failure than implants placed in mature bone has received increasing attention in the last years. As the philosophies of treatment alter over time, a periodic review of the different concepts is necessary to refine techniques and eliminate unnecessary procedures. This would form a basis

  9. Cross-species transcriptomic approach reveals genes in hamster implantation sites.

    Science.gov (United States)

    Lei, Wei; Herington, Jennifer; Galindo, Cristi L; Ding, Tianbing; Brown, Naoko; Reese, Jeff; Paria, Bibhash C

    2014-12-01

    The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS. © 2014 Society for Reproduction and Fertility.

  10. Lattice site occupation of insoluble impurity atoms in aluminium after implantation and irradiation

    International Nuclear Information System (INIS)

    Kloska, M.K.

    1987-03-01

    Several elements, whose atoms are oversized and insoluble in aluminium, were implanted in aluminium single crystals at different temperatures. The substitutional fraction and the lattice site location were determined using the ion-channeling technique. The substitutional fractions obtained by in situ analyses are strongly dependent on the implantation temperature. At implantation and analysis temperatures below the temperature of stage III the substitutional fraction is significant larger than at temperatures above. With increasing heat of solution the substitutional fraction decreases for all implantation temperatures. The nonsubstitutional component consists of impurity atom-vacancy complexes. These complexes are formed in the cooling phase of the cascade. At temperatures above the temperature of stage III additional free mobile vacancies were captured by the impurity atoms. The capture radius is correlated with the heat of solution and the size mismatch energy. The results constitute for the first time an experimental confirmation of molecular dynamics calculations of cascade evolution. (orig./BHO)

  11. The site of action of intrahypothalamic estrogen implants in feminine sexual behavior: an autoradiographic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P.G.; Krieger, M.S.; Barfield, R.J.; McEwen, B.S.; Pfaff, D.W.

    1982-11-01

    Estrogenic stimulation of the ventromedial hypothalamus is sufficient to prime progesterone-facilitated estrous behavior in ovariectomized rats. To determine precisely the site(s) of estrogenic stimulation and the locus of its priming action on estrous behavior, we used steroid autoradiographic methods to assess the diffusion of (/sup 3/H)estradiol ((/sup 3/H)E/sub 2/) from behaviorally effective implants diluted 1:300 with cholesterol. Ovariectomized rats received (/sup 3/H)E/sub 2/-cholesterol implants aimed at the ventromedial hypothalamic nucleus (VMN). Females were tested twice for feminine sexual behavior after stereotaxic surgery. They received progesterone on the day of behavioral testing. Animals were killed on the day after the second behavior test, cannulae were removed, and the brains were frozen rapidly and processed for autoradiography. Five of eight females with bilateral implants aimed at the VMN exhibited female sexual behavior in at least one of the two tests. Of these, four also showed proceptive behavior. Histological examination of brain sections indicated that behaviorally effective implants were located in, or adjacent to, the central portions of VMN. Implants from nonreceptive animals were located at the extreme anterior or posterior aspects of the VMN. The data collected are consistent with the view that estrogen acts within a sharply defined region of the VMN to prime estrons behavior.

  12. Implantation sites of Ce and Gd in diamond

    CERN Document Server

    Bharuth-Ram, K; Hofsäss, H C; Ronning, C; Dietrich, M

    2002-01-01

    The implantation sites of rare earth (RE) probes /sup 141/Ce (t/sub 1 /2/=32 d) and /sup 149/Gd (t/sub 1/2/=9.28 d) in diamond have been investigated using the emission channeling (EC) technique. Parent isotopes /sup 141/Cs and /sup 149/Dy were implanted into type IIa, diamond samples at an energy of 60 keV at the online isotope separator ISOLDE at CERN. /sup 141/Cs decays through the chain /sup 141/Cs-/sup 141/Ba-/sup 141/La-/sup 141/Ce-/sup 141/ Pr. EC measurements were made on the 102 keV conversion electrons emitted in the decay of /sup 141/Pr to its ground state. The decay of /sup 149 /Dy follows the chain /sup 149/Dy-/sup 149/Tb-/sup 149/Gd-/sup 149 /Eu-/sup 149/Sm. EC measurements were made on the 101 keV electrons emitted in the decay of /sup 149/Eu. Two-dimensional channeling patterns of the conversion electrons were obtained along and axial directions by raster scans with a Si surface barrier detector. Comparison of the observed patterns with simulated spectra show that in diamond 45-50% of the RE...

  13. Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: Comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness.

    Science.gov (United States)

    Ezeh, Collins I; Tomatis, Marco; Yang, Xiaogang; He, Jun; Sun, Chenggong

    2018-01-01

    Amine functionalized layered double hydroxide (LDHs) adsorbents prepared using three different routes: co-precipitation, sono-chemical and ultrasonic-assisted high pressure hydrothermal. The prepared adsorbent samples were characterized using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The performance of the prepared adsorbents was tested in a controlled thermal-swing adsorption process to measure its adsorption capacity, regeneration and cyclic efficiencies subsequently. The characterisation results were compared with those obtained using the conventional preparation routes but taking into account of the impact of sonochemical and hydrothermal pre-treatment on textural properties, adsorption capacity, regeneration and cyclic efficiencies. Textural results depicts a surge in surface area of the adsorbent synthesised by hydrothermal route (311m 2 /g) from 25 to 171m 2 /g for conventional and ultrasonic routes respectively. Additionally, it has been revealed from the present study that adsorbents prepared using ultrasonic-assisted hydrothermal route exhibit a better CO 2 uptake capacity than that prepared using sonochemical and conventional routes. Thus, the ultrasonic-assisted hydrothermal treatment can effectively promote the adsorption capacity of the adsorbent. This is probably due to the decrease of moderate (M-O) and weak (OH - groups) basic sites with subsequent surge in the number of strong basic sites (O 2- ) resulting from the hydrothermal process. Moreover, the cyclic adsorption efficiency of the ultrasonic mediated process was found to be 76% compared with 60% for conventional and 53% for hydrothermal routes, respectively. According to the kinetic model analysis, adsorption mechanism is mostly dominated by physisorption before amine

  14. Method of localization and implantation of the lumpectomy site for high dose rate brachytherapy after conservative surgery for T1 and T2 breast cancer

    International Nuclear Information System (INIS)

    Perera, F.; Chisela, F.; Engel, J.; Venkatesan, V.

    1995-01-01

    Purpose: This article describes our technique of localization and implantation of the lumpectomy site of patients with T1 and T2 breast cancer. Our method was developed as part of our Phase I/II pilot study of high dose rate (HDR) brachytherapy alone after conservative surgery for early breast cancer. Methods and Materials: In March 1992, we started a pilot study of HDR brachytherapy to the lumpectomy site as the sole radiotherapy after conservative surgery for clinical T1 or T2 invasive breast cancer. Initially, the protocol required intraoperative placement of the interstitial needles at the time of definitive surgery to the breast. The protocol was then generalized to allow the implantation of the lumpectomy site after definitive surgery to the breast, either at the time of subsequent axillary nodal dissection or postoperatively. To date, five patients have been implanted intraoperatively at the time of definitive breast surgery. Twelve patients were implanted after definitive breast surgery, with 7 patients being done at the time of axillary nodal dissection and 5 patients postoperatively. We devised a method of accurately localizing and implanting the lumpectomy site after definitive breast surgery. The method relies on the previous placement of surgical clips by the referring surgeon to mark the lumpectomy site. For each patient, a breast mold is made with radio-opaque angiocatheters taped onto the mold in the supero-inferior direction. A planning CT scan is then obtained through the lumpectomy site. The volume of the lumpectomy site, the number of implant planes necessary, and the orientation of the implants are then determined from the CT scan. The angiocatheters provide a reference grid on the CT films to locate the entry and exit points of the interstitial needles on the plastic mold. The entry and exit points for reference needles are then transferred onto the patient's skin enabling implantation of the lumpectomy site. Needle positions with respect to

  15. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT.

    Science.gov (United States)

    González-García, Raúl; Monje, Florencio

    2013-08-01

    The aim of this study was to objectively assess the reliability of the cone-beam computed tomography (CBCT) as a tool to pre-operatively determine radiographic bone density (RBD) by the density values provided by the system, analyzing its relationship with histomorphometric bone density expressed as bone volumetric fraction (BV/TV) assessed by micro-CT of bone biopsies at the site of insertion of dental implants in the maxillary bones. Thirty-nine bone biopsies of the maxillary bones at the sites of 39 dental implants from 31 edentulous healthy patients were analyzed. The NobelGuide™ software was used for implant planning, which also allowed fabrication of individual stereolithographic surgical guides. The analysis of CBCT images allowed pre-operative determination of mean density values of implant recipient sites along the major axis of the planned implants (axial RBD). Stereolithographic surgical guides were used to guide implant insertion and also to extract cylindrical bone biopsies from the core of the exact implant site. Further analysis of several osseous micro-structural variables including BV/TV was performed by micro-CT of the extracted bone biopsies. Mean axial RBD was 478 ± 212 (range: 144-953). A statistically significant difference (P = 0.02) was observed among density values of the cortical bone of the upper maxilla and mandible. A high positive Pearson's correlation coefficient (r = 0.858, P micro-CT at the site of dental implants in the maxillary bones. Pre-operative estimation of density values by CBCT is a reliable tool to objectively determine bone density. © 2012 John Wiley & Sons A/S.

  16. Mn fraction substitutional site and defects induced magnetism in Mn-implanted 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K., E-mail: Khalid.bouziane@uir.ac.ma [Pôle Energies Renouvelables et Etudes Pétrolières, Université Internationale de Rabat, 11000 – Salé el Jadida, Technopolis (Morocco); Al Azri, M.; Elzain, M. [Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khodh 123 (Oman); Chérif, S.M. [LSPM (CNRS-UPR 3407), Université Paris, 13-Nord, 99, Avenue Jean Baptiste Clément, 93430 Villetaneuse (France); Mamor, M. [Equipe MSISM, Faculté Poly-Disciplinaire, B.P. 4162 Safi, Université Cadi Ayyad, Marrakech (Morocco); Declémy, A. [Institut P’, CNRS – Université de Poitiers – ENSMA, UPR 3346, SP2MI – Téléport 2, 11 boulevard Marie et Pierre Curie, BP 30179, F-86962 Futuroscope Chasseneuil Cedex (France); Thomé, L. [CSNSM-Orsay, Bât. 108, Université d’Orsay, F-91405 Orsay (France)

    2015-05-25

    Highlights: • Shallow Mn-implanted 6H-SiC crystal. • Correlation between Mn-substitutional site concentration and magnetism. • Correlation between defects nature surrounding Mn site and magnetism. • Correlation of magnetism in Mn-doped SiC to Mn at Si sites and vacancy-related defect. - Abstract: n-type 6H-SiC (0 0 0 1) single crystal substrates were implanted with three fluences of manganese (Mn{sup +}) ions: 5 × 10{sup 15}, 1 × 10{sup 16} and 5 × 10{sup 16} cm{sup −2} with implantation energy of 80 keV at 365 °C to stimulate dynamic annealing. The samples were characterized using Rutherford backscattering channeling spectroscopy (RBS/C), high-resolution X-ray diffraction technique (HRXRD), and Superconducting Quantum Interference Device (SQUID) techniques. Two main defect regions have been identified using RBS/C spectra fitted with the McChasy code combined to SRIM simulations. Intermediate defects depth region is associated with vacancies (D{sub V}) and deeper defect (D{sub N}) essentially related to the Si and C interstitial defects. The defect concentration and the maximum perpendicular strain exhibit similar increasing trend with the Mn{sup +} fluence. Furthermore, the amount of Mn atoms at Si substitutional sites and the corresponding magnetic moment per Mn atom were found to increase with increasing Mn fluence from 0.7 μ{sub B} to 1.7 μ{sub B} and then collapsing to 0.2 μ{sub B}. Moreover, a strong correlation has been found between the magnetic moment and the combination of both large D{sub V}/D{sub N} ratio and high Mn at Si sites. These results are corroborated by our ab initio calculations considering the most stable configurations showing that besides the amount of Mn substituting Si sites, local vacancy-rich environment is playing a crucial role in enhancing the magnetism.

  17. Trp53 deficient mice predisposed to preterm birth display region-specific lipid alterations at the embryo implantation site

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela; Cha, Jeeyeon; Kyle, Jennifer E.; Dey, Sudhansu K.; Laskin, Julia; Burnum-Johnson, Kristin E.

    2016-09-13

    Here we demonstrate that conditional deletion of mouse uterine Trp53 (p53d/d), molecularly linked to mTORC1 activation and causally linked to premature uterine senescence and preterm birth, results in aberrant lipid signatures within the heterogeneous cell types of embryo implantation sites on day 8 of pregnancy. In situ nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) was used to characterize the molecular speciation of free fatty acids, monoacylglycerols, unmodified and oxidized phosphatidylcholine (PC/Ox-PC), and diacylglycerol (DG) species within implantation sites of p53d/d mice and floxed littermates. Implantation sites from p53d/d mice exhibited distinct spatially resolved changes demonstrating accumulation of DG species, depletion of Ox-PC species, and increase in species with more unsaturated acyl chains, including arachidonic and docosahexaenoic acid. Understanding abnormal changes in the abundance and localization of individual lipid species early in the progression to premature birth is important for discovering novel targets for treatments and diagnosis.

  18. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  19. Recruitment of host's progenitor cells to sites of human amniotic fluid stem cells implantation.

    Science.gov (United States)

    Mirabella, Teodelinda; Poggi, Alessandro; Scaranari, Monica; Mogni, Massimo; Lituania, Mario; Baldo, Chiara; Cancedda, Ranieri; Gentili, Chiara

    2011-06-01

    The amniotic fluid is a new source of multipotent stem cells with a therapeutic potential for human diseases. Cultured at low cell density, human amniotic fluid stem cells (hAFSCs) were still able to generate colony-forming unit-fibroblast (CFU-F) after 60 doublings, thus confirming their staminal nature. Moreover, after extensive in vitro cell expansion hAFSCs maintained a stable karyotype. The expression of genes, such as SSEA-4, SOX2 and OCT3/4 was confirmed at early and later culture stage. Also, hAFSCs showed bright expression of mesenchymal lineage markers and immunoregulatory properties. hAFSCs, seeded onto hydroxyapatite scaffolds and subcutaneously implanted in nude mice, played a pivotal role in mounting a response resulting in the recruitment of host's progenitor cells forming tissues of mesodermal origin such as fat, muscle, fibrous tissue and immature bone. Implanted hAFSCs migrated from the scaffold to the skin overlying implant site but not to other organs. Given their in vivo: (i) recruitment of host progenitor cells, (ii) homing towards injured sites and (iii) multipotentiality in tissue repair, hAFSCs are a very appealing reserve of stem cells potentially useful for clinical application in regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Exploiting spatial degrees of freedom for high data rate ultrasound communication with implantable devices

    Science.gov (United States)

    Wang, Max L.; Arbabian, Amin

    2017-09-01

    We propose and demonstrate an ultrasonic communication link using spatial degrees of freedom to increase data rates for deeply implantable medical devices. Low attenuation and millimeter wavelengths make ultrasound an ideal communication medium for miniaturized low-power implants. While a small spectral bandwidth has drastically limited achievable data rates in conventional ultrasonic implants, a large spatial bandwidth can be exploited by using multiple transducers in a multiple-input/multiple-output system to provide spatial multiplexing gain without additional power, larger bandwidth, or complicated packaging. We experimentally verify the communication link in mineral oil with a transmitter and a receiver 5 cm apart, each housing two custom-designed mm-sized piezoelectric transducers operating at the same frequency. Two streams of data modulated with quadrature phase-shift keying at 125 kbps are simultaneously transmitted and received on both channels, effectively doubling the data rate to 250 kbps with a measured bit error rate below 10-4. We also evaluate the performance and robustness of the channel separation network by testing the communication link after introducing position offsets. These results demonstrate the potential of spatial multiplexing to enable more complex implant applications requiring higher data rates.

  1. Effect of implant position, angulation, and attachment height on peri-implant bone stress associated with mandibular two-implant overdentures: a finite element analysis.

    Science.gov (United States)

    Hong, Hae Ryong; Pae, Ahran; Kim, Yooseok; Paek, Janghyun; Kim, Hyeong-Seob; Kwon, Kung-Rock

    2012-01-01

    The aim of this study was to analyze and compare the level and distribution of peri-implant bone stresses associated with mandibular two-implant overdentures with different implant positions. Mathematical models of mandibles and overdentures were designed using finite element analysis software. Two intraosseous implants and ball attachment systems were placed in the interforaminal region. The overdenture, which was supported by the two implants, was designed to withstand bilateral and unilateral vertical masticatory loads (total 100 N). In all, eight types of models, which differed according to assigned implant positions, height of attachments, and angulation, were tested: MI (model with implants positioned in the lateral incisor sites), MC (implants in canine sites), MP (implants in premolar sites), MI-Hi (greater height of attachments), MC-M (canine implants placed with mesial inclination), MC-D (canine implants placed with distal inclination), MC-B (canine implants placed with buccal inclination), and MC-L (canine implants placed with lingual inclination). Peri-implant bone stress levels associated with overdentures retained by lateral incisor implants resulted in the lowest stress levels and the highest efficiency in distributing peri-implant stress. MI-Hi showed increased stress levels and decreased efficiency in stress distribution. As the implants were inclined, stress levels increased and the efficiency of stress distribution decreased. Among the inclined models, MC-B showed the lowest stress level and best efficiency in stress distribution. The lowest stress and the best stability of implants in mandibular two-implant overdentures were obtained when implants were inserted in lateral incisor areas with shorter attachments and were placed parallel to the long axes of the teeth.

  2. An ultrasonic waveguide for nuclear power plants

    International Nuclear Information System (INIS)

    Watkins, R.D.; Gillespie, A.B.; Deighton, M.O.; Pike, R.B.

    1983-01-01

    The value of ultrasonic techniques in nuclear plants is well established. However, in most cases nuclear power plants present an extremely hostile environment for an ultrasonic transducer. The paper presents a novel technique for introducing an ultrasound into hostile liquid environments using a new form of ultrasonic waveguide. Using this approach, a standard transducer arrangement is sited in a hospitable area and conveys the ultrasound along the guide to the required beam-emission collection position. The design of a single-mode ultrasonic waveguide is described. The ultrasound is conveyed along a stainless steel strip of rectangular cross-section. The transference of energy between the strip and the liquid is achieved through a highly efficient mode-conversion process. This process overcomes the usual problems of mis-match of acoustic impedances of stainless steel and liquids, and also produces a highly collimated beam of ultrasound. Tests of a 10-m-long waveguide using these techniques are described, achieving signal-to-noise ratios in the region of 40 dB. (author)

  3. An update on implant placement and provisionalization in extraction, edentulous, and sinus-grafted sites. A clinical report on 3200 sites over 8 years.

    Science.gov (United States)

    Petrungaro, Paul S

    2008-06-01

    Provisionalization of dental implants at placement has become more prominent in the field of implantology over the past several years, especially in the esthetic zone. The benefits of this treatment option include immediate tooth replacement, formation and maintenance of esthetic soft-tissue contours, containment for bone-grafting and tissue-regenerative procedures, and an improved sense of the patient's perception of the implant process. The blending together of the surgical and prosthetic/esthetic phase has never been more important as implant systems, abutment options, and surgical techniques have helped optimize procedures that can be accomplished at the surgical visit. This article reviews the guidelines for surgical success first described by the author in 2003 and expands upon those results. This article highlights the results of more than 3200 immediately restored implants placed in edentulous, fresh extraction sockets, and sinus-grafted sites, over an 8-year period, and presents a case for each area of placement.

  4. Noninvasive method for retrieval of broken dental implant abutment screw

    Directory of Open Access Journals (Sweden)

    Jagadish Reddy Gooty

    2014-01-01

    Full Text Available Dental implants made of titanium for replacement of missing teeth are widely used because of ease of technical procedure and high success rate, but are not free of complications and may fail. Fracturing of the prosthetic screw continues to be a problem in restorative practice and great challenge to remove the fractured screw conservatively. This case report describes and demonstrates the technique of using an ultrasonic scaler in the removal of the fracture screw fragment as a noninvasive method without damaging the hex of implants.

  5. Estimation of soft- and hard-tissue thickness at implant sites

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2014-01-01

    Full Text Available Introduction: Anchorage control is a critical consideration when planning treatment for patients with dental and skeletal malocclusions. To obtain sufficient stability of implants, the thickness of the soft tissue and the cortical-bone in the placement site must be considered; so as to provide an anatomical map in order to assist the clinician in the placement of the implants. Objective: The aim of this study is to evaluate the thickness of soft- and hard-tissue. Materials and Methods: To measure soft tissue and cortical-bone thicknesses, 12 maxillary cross-sectional specimens were obtained from the cadavers, which were made at three maxillary mid-palatal suture areas: The interdental area between the first and second premolars (Group 1, the second premolar and the first molar (Group 2, and the first and second molars (Group 3. Sectioned samples along with reference rulers were digitally scanned. Scanned images were calibrated and measurements were made with image-analysis software. We measured the thickness of soft and hard-tissues at five sectional areas parallel to the buccopalatal cementoenamel junction (CEJ line at 2-mm intervals and also thickness of soft tissue at the six landmarks including the incisive papilla (IP on the palate. The line perpendicular to the occlusal plane was made and measurement was taken at 4-mm intervals from the closest five points to IP. Results: (1 Group 1:6 mm from CEJ in buccal side and 2 mm from CEJ in palatal side. (2 Group 2:8 mm from CEJ in buccal side and 4 mm from CEJ in palatal side. (3 Group 3:8 mm from CEJ in buccal side and 8 mm from CEJ in palatal side. Conclusions: The best site for placement of implant is with thinnest soft tissue and thickest hard tissue, which is in the middle from CEJ in buccal side and closest from CEJ in palatal side in Group 1 and faraway from CEJ in buccal side and closest from CEJ in palatal side in Group 2 and faraway from CEJ in buccal side and faraway from CEJ in palatal

  6. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  7. Interdisciplinary treatment for a compensated Class II partially edentulous malocclusion: Orthodontic creation of a posterior implant site.

    Science.gov (United States)

    Chiu, Grace; Chang, Chris; Roberts, W Eugene

    2018-03-01

    A 36-year-old woman with good periodontal health sought treatment for a compensated Class II partially edentulous malocclusion associated with a steep mandibular plane (SN-MP, 45°), 9 missing teeth, a 3-mm midline discrepancy, and compromised posterior occlusal function. She had multiple carious lesions, a failing fixed prostheses in the mandibular right quadrant replacing the right first molar, and a severely atrophic edentulous ridge in the area around the mandibular left first and second molars. After restoration of the caries, the mandibular left third molar served as anchorage to correct the mandibular arch crowding. The mandibular left second premolar was retracted with a light force of 2 oz (about 28.3 cN) on the buccal and lingual surfaces to create an implant site between the premolars. Modest lateral root resorption was noted on the distal surface of the mandibular left second premolar after about 7 mm of distal translation in 7 months. Six months later, implants were placed in the mandibular left and right quadrants; the spaces were retained with the fixed appliance for 5 months and a removable retainer for 1 month. Poor cooperation resulted in relapse of the mandibular left second premolar back into the implant site, and it was necessary to reopen the space. When the mandibular left fixture was uncovered, a 3-mm deep osseous defect on the distobuccal surface was found; it was an area of relatively immature bundle bone, because the distal aspect of the space was reopened after the relapse. Subsequent bone grafting resulted in good osseous support of the implant-supported prosthesis. The relatively thin band of attached gingiva on the implant at the mandibular right first molar healed with a recessed contour that was susceptible to food impaction. A free gingival graft restored soft tissue form and function. This severe malocclusion with a discrepancy index value of 28 was treated to an excellent outcome in 38 months of interdisciplinary treatment

  8. Design and measurement of a piezoresistive ultrasonic sensor based on MEMS

    International Nuclear Information System (INIS)

    Yu Jiaqi; He Changde; Yuan Kejing; Xue Chenyang; Zhang Wendong; Lian Deqin

    2013-01-01

    A kind of piezoresistive ultrasonic sensor based on MEMS is proposed, which is composed of a membrane and two side beams. A simplified mathematical model has been established to analyze the mechanical properties of the sensor. On the basis of the theoretical analysis, the structural size and layout location of the piezoresistors are determined by simulation analysis. The boron-implanted piezoresistors located on membrane and side beams form a Wheatstone bridge to detect acoustic signal. The membrane-beam microstructure is fabricated integrally by MEMS manufacturing technology. Finally, this paper presents the experimental characterization of the ultrasonic sensor, validating the theoretical model used and the simulated model. The sensitivity reaches −116.2 dB (0 dB reference = 1 V/μbar, 31 kHz), resonant frequency is 39.6 kHz, direction angle is 55°. (semiconductor devices)

  9. Ultrasonic horn design for ultrasonic machining technologies

    Directory of Open Access Journals (Sweden)

    Naď M.

    2010-07-01

    Full Text Available Many of industrial applications and production technologies are based on the application of ultrasound. In many cases, the phenomenon of ultrasound is also applied in technological processes of the machining of materials. The main element of equipments that use the effects of ultrasound for machining technology is the ultrasonic horn – so called sonotrode. The performance of ultrasonic equipment, respectively ultrasonic machining technologies depends on properly designed of sonotrode shape. The dynamical properties of different geometrical shapes of ultrasonic horns are presented in this paper. Dependence of fundamental modal properties (natural frequencies, mode shapes of various sonotrode shapes for various geometrical parameters is analyzed. Modal analyses of the models are determined by the numerical simulation using finite element method (FEM design procedures. The mutual comparisons of the comparable parameters of the various sonotrode shapes are presented.

  10. Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration.

    Science.gov (United States)

    Koenig, Geraldine; Ozcelik, Hayriye; Haesler, Lisa; Cihova, Martina; Ciftci, Sait; Dupret-Bories, Agnes; Debry, Christian; Stelzle, Martin; Lavalle, Philippe; Vrana, Nihal Engin

    2016-03-01

    Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards

  11. Evaluation of the safety and efficiency of novel metallic ultrasonic scaler tip on titanium surfaces.

    Science.gov (United States)

    Baek, Seung-Ho; Shon, Won-Jun; Bae, Kwang-Shik; Kum, Kee-Yeon; Lee, Woo-Cheol; Park, Young-Seok

    2012-11-01

    To evaluate the safety and efficiency of novel ultrasonic scaler tips, conventional stainless-steel tips, and plastic tips on titanium surfaces. Mechanical instrumentation was carried out using conventional ultrasonic scalers (EMS, Nyon, Switzerland) with novel metallic implant tip (BS), a plastic-headed tip (ES), a plastic tip (PS) and a conventional stainless-steel tip (CS) on 10 polished commercially pure titanium disks (Grade II) per group. Arithmetic mean roughness (R(a) ) and maximum height roughness (R(y) ) of titanium samples were measured and dissipated power of the scaler tip in the tip-surface junction was estimated to investigate the scaling efficiency. The instrumented surface morphology of samples was viewed with a scanning electron microscope (SEM) and surface profile of the each sample was investigated using contact mode with a commercial atomic force microscope (AFM). There were no significant differences in surface roughness (R(a) and R(y) ) among BS, ES, and PS group. However, CS group showed significant higher surface roughness (R(a) and R(y) ). The efficiency of CS tip is twice as much higher than that of BS tip, the efficiency of BS tip is 20 times higher than that of PS tip, and the efficiency of BS tip is 90 times higher than that of ES tip. Novel metallic copper alloy ultrasonic scaler tips may minimally influence the titanium surface, similar to plastic tip. Therefore, they can be a suitable instrument for implant maintenance therapy. © 2011 John Wiley & Sons A/S.

  12. Benefits of mineralized bone cortical allograft for immediate implant placement in extraction sites: an in vivo study in dogs.

    Science.gov (United States)

    Orti, Valérie; Bousquet, Philippe; Tramini, Paul; Gaitan, Cesar; Mertens, Brenda; Cuisinier, Frédéric

    2016-10-01

    The aim of the present study was to evaluate the effectiveness of using a mineralized bone cortical allograft (MBCA), with or without a resorbable collagenous membrane derived from bovine pericardium, on alveolar bone remodeling after immediate implant placement in a dog model. Six mongrel dogs were included. The test and control sites were randomly selected. Four biradicular premolars were extracted from the mandible. In control sites, implants without an allograft or membrane were placed immediately in the fresh extraction sockets. In the test sites, an MBCA was placed to fill the gap between the bone socket wall and implant, with or without a resorbable collagenous membrane. Specimens were collected after 1 and 3 months. The amount of residual particles and new bone quality were evaluated by histomorphometry. Few residual graft particles were observed to be closely embedded in the new bone without any contact with the implant surface. The allograft combined with a resorbable collagen membrane limited the resorption of the buccal wall in height and width. The histological quality of the new bone was equivalent to that of the original bone. The MBCA improved the quality of new bone formation, with few residual particles observed at 3 months. The preliminary results of this animal study indicate a real benefit in obtaining new bone as well as in enhancing osseointegration due to the high resorbability of cortical allograft particles, in comparison to the results of xenografts or other biomaterials (mineralized or demineralized cancellous allografts) that have been presented in the literature. Furthermore, the use of an MBCA combined with a collagen membrane in extraction and immediate implant placement limited the extent of post-extraction resorption.

  13. Wireless Power Transfer Strategies for Implantable Bioelectronics.

    Science.gov (United States)

    Agarwal, Kush; Jegadeesan, Rangarajan; Guo, Yong-Xin; Thakor, Nitish V

    2017-01-01

    Neural implants have emerged over the last decade as highly effective solutions for the treatment of dysfunctions and disorders of the nervous system. These implants establish a direct, often bidirectional, interface to the nervous system, both sensing neural signals and providing therapeutic treatments. As a result of the technological progress and successful clinical demonstrations, completely implantable solutions have become a reality and are now commercially available for the treatment of various functional disorders. Central to this development is the wireless power transfer (WPT) that has enabled implantable medical devices (IMDs) to function for extended durations in mobile subjects. In this review, we present the theory, link design, and challenges, along with their probable solutions for the traditional near-field resonant inductively coupled WPT, capacitively coupled short-ranged WPT, and more recently developed ultrasonic, mid-field, and far-field coupled WPT technologies for implantable applications. A comparison of various power transfer methods based on their power budgets and WPT range follows. Power requirements of specific implants like cochlear, retinal, cortical, and peripheral are also considered and currently available IMD solutions are discussed. Patient's safety concerns with respect to electrical, biological, physical, electromagnetic interference, and cyber security from an implanted neurotech device are also explored in this review. Finally, we discuss and anticipate future developments that will enhance the capabilities of current-day wirelessly powered implants and make them more efficient and integrable with other electronic components in IMDs.

  14. Primary implant stability in augmented sinuslift-sites after completed bone regeneration: a randomized controlled clinical study comparing four subantrally inserted biomaterials

    OpenAIRE

    Angelo Troedhan; Izabela Schlichting; Andreas Kurrek; Marcel Wainwright

    2014-01-01

    Implant-Insertion-Torque-Value (ITV) proved to be a significant clinical parameter to predict long term implant success-rates and to decide upon immediate loading. The study evaluated ITVs, when four different and commonly used biomaterials were used in sinuslift-procedures compared to natural subantral bone in two-stage-implant-procedures. The tHUCSL-INTRALIFT-method was chosen for sinuslifting in 155 sinuslift-sites for its minimal invasive transcrestal approach and scalable augmentation vo...

  15. Study of hydrogen implanted in aluminium

    International Nuclear Information System (INIS)

    Bugeat, J.P.; Chami, A.C.; Danielou, R.; Ligeon, E.

    1976-01-01

    An aluminium sample was implanted with deuterium and hydrogen at 5keV and 10keV respectively. The 1 H( 11 B,α) 8 Be* and D( 3 He,p) 4 He reactions were used for the analysis of H and D respectively. The implanted deuterium was shown to be as a whole in a tetrahedral site as far as the implantation temperature is lower than 175K, beyond that temperature the deuterium is randomly located. When the implantation temperature increases from 33K up to 275K the tetrahedral siting remains during annealing. The migration temperatures of hydrogen (or temperature of transition from the tetrahedral siting to a random distribution) experimentally observed during annealing (300K) and for increased implantation temperatures, show that the tetrahedral site is associated with a monovacancy migrating at 300K, the diffusion temperature of hydrogen being lower than 180K [fr

  16. Readability of Patient Education Materials From the Web Sites of Orthopedic Implant Manufacturers.

    Science.gov (United States)

    Yi, Meghan M; Yi, Paul H; Hussein, Khalil I; Cross, Michael B; Della Valle, Craig J

    2017-12-01

    Prior studies indicate that orthopedic patient education materials are written at a level that is too high for the average patient. The purpose of this study was to assess the readability of online patient education materials provided by orthopedic implant manufacturers. All patient education articles available in 2013 from the web sites of the 5 largest orthopedic implant manufacturers were identified. Each article was evaluated with the Flesch-Kincaid (FK) readability test. The number of articles with readability ≤ the eighth-grade level (average reading ability of US adults) and the sixth-grade level (recommended level for patient education materials) was determined. Mean readability levels of each company's articles were compared using analysis of variance (significance set at P articles were reviewed from the 5 largest implant manufacturers. The mean overall FK grade level was 10.9 (range, 3.8-16.1). Only 58 articles (10%) were written ≤ the eighth-grade level, and only 13 (2.2%) were ≤ the sixth-grade level. The mean FK grade level was significantly different among groups (Smith & Nephew = 12.0, Stryker = 11.6, Biomet = 11.3, DePuy = 10.6, Zimmer = 10.1; P education materials from implant manufacturers are written at a level too high to be comprehended by the average patient. Future efforts should be made to improve the readability of orthopedic patient education materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Location of unaccessible implant surface areas during debridement in simulated peri-implantitis therapy.

    Science.gov (United States)

    Steiger-Ronay, Valerie; Merlini, Andrea; Wiedemeier, Daniel B; Schmidlin, Patrick R; Attin, Thomas; Sahrmann, Philipp

    2017-11-28

    An in vitro model for peri-implantitis treatment was used to identify areas that are clinically difficult to clean by analyzing the pattern of residual stain after debridement with commonly employed instruments. Original data from two previous publications, which simulated surgical (SA) and non-surgical (NSA) implant debridement on two different implant systems respectively, were reanalyzed regarding the localization pattern of residual stains after instrumentation. Two blinded examiners evaluated standardized photographs of 360 initially ink-stained dental implants, which were cleaned at variable defect angulations (30, 60, or 90°), using different instrument types (Gracey curette, ultrasonic scaler or air powder abrasive device) and treatment approaches (SA or NSA). Predefined implant surface areas were graded for residual stain using scores ranging from one (stain-covered) to six (clean). Score differences between respective implant areas were tested for significance by pairwise comparisons using Wilcoxon-rank-sum-tests with a significance level α = 5%. Best scores were found at the machined surface areas (SA: 5.58 ± 0.43, NSA: 4.76 ± 1.09), followed by the tips of the threads (SA: 4.29 ± 0.44, NSA: 4.43 ± 0.61), and areas between threads (SA: 3.79 ± 0.89, NSA: 2.42 ± 1.11). Apically facing threads were most difficult to clean (SA: 1.70 ± 0.92, NSA: 2.42 ± 1.11). Here, air powder abrasives provided the best results. Machined surfaces at the implant shoulder were well accessible and showed least amounts of residual stain. Apically facing thread surfaces constituted the area with most residual stain regardless of treatment approach.

  18. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  19. Piezoelectric surgery in implant dentistry: clinical applications

    Directory of Open Access Journals (Sweden)

    Lydia Masako Ferreira

    2009-01-01

    Full Text Available Pizosurgery has therapeutic characteristics in osteotomies, such as extremely precise, selective and millimetric cuts and a clear operating field. Piezoelectricity uses ultrasonic frequencies, which cause the points specially designed for osteotomy to vibrate. The points of the instrument oscillate, allowing effective osteotomy with minimal or no injury to the adjacent soft tissues, membranes and nerve tissues. This article presents the various applications of piezoelectricity in oral implant surgery such as: removal of autogenous bone; bone window during elevation of the sinus membrane and removal of fractured implants. The cavitational effect caused by the vibration of the point and the spray of physiological solution, provided a field free of bleeding and easy to visualize. The study showed that the piezoelectric surgery is a new surgical procedurethat presents advantages for bone cutting in many situations in implant dentistry, with great advantages in comparison with conventional instrumentation. Operating time is longer when compared with that of conventional cutters.

  20. Basics of clinical diagnosis in implant dentistry

    Directory of Open Access Journals (Sweden)

    Manu Rathee

    2015-01-01

    Full Text Available Implant-based prosthetic rehabilitation requires an understanding of associated anatomical structures. The ultimate predictability of an implant site is determined by the existing anatomy as related to dentition and the associated hard and soft tissues. Meticulous clinical assessment helps in determining the suitability of the potential site for implant placement. The purpose of this article is to present the clinical assessment for dental implants' placement to modulate peri-implant tissue characteristics in individual clinical need.

  1. Bone reactions at implants subjected to experimental peri-implantitis and static load. A study in the dog

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2002-01-01

    during a 12-week interval, the screws were reactivated. Thus, the model included 3 different experimental sites of each surface group: group M+L (mucositis+load); group P (peri-implantitis); group P+L (peri-implantitis+load). Fluorochrome labels were injected and standardized radiographs obtained....... The animals were sacrificed and block biopsies of all implant sites dissected and prepared for histological analysis. RESULTS: It was demonstrated that the lateral static load failed to induce peri-implant bone loss at implants with mucositis and failed to enhance the bone loss at implants with experimental...... peri-implantitis. The proportion of bone labels and the bone density in the interface zone were significantly higher in group P+L than in group P. CONCLUSION: It is suggested that a lateral static load with controlled forces may not be detrimental to implants exhibiting mucositis or peri-implantitis....

  2. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs.

    Science.gov (United States)

    Marković, Aleksa; Lazić, Zoran; Mišić, Tijana; Šćepanović, Miodrag; Todorović, Aleksandar; Thakare, Kaustubh; Janjić, Bojan; Vlahović, Zoran; Glišić, Mirko

    2016-08-01

    During drilling implant sites, mechanical energy is converted into thermal one resulting in transient rise in temperature of surrounding bone. The temperature of 47°C exeeding one minute impairs osseointegration, compromises mechanical properties of the local bone and could cause early implant failure. This in vitro study aimed to assess the effect of surgical drill guide and temperature of irrigans on thermal changes of the local bone during drilling implant sites, and to test the influence of irrigans temperature on the temperature of surgical drill guide. A total of 48 specimens obtained from bovine ribs were randomly allocated to four experimental conditions according to the 2 x 2 factorial design: drill guide (with or without) and saline (at 25°C or 5°C). Real-time infrared thermography was used as a method for temperature measurement. The primary outcome was bone temperature change during drilling implant sites measured at 3 osteotomy depths, whereas the second one was change in the temperature of the drill guide. Data were analyzed by Brunner and Langer nonparametric analysis and Wilcoxon test. The effect of drill guide on the changes of bone temperature was significant at the entrance of osteotomy, whereas the effect of saline temperature was significant at all osteotomy levels (p 0.05). Guided surgery and irrigation with saline at 25°C were associated with the highest bone temperature increase. Increase in drill guide temperature was significantly higher when saline at 25°C was used (p < 0.001). Guided implant site preparation generates higher temperature of the local bone than conventional drilling, not exceeding the threshold for thermal bone necrosis. Although saline at room temperature provides sufficient heat control during drilling, cooled saline is more effective regardless the use of surgical drill guide.

  3. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs

    Directory of Open Access Journals (Sweden)

    Marković Aleksa

    2016-01-01

    Full Text Available Background/Aim. During drilling implant sites, mechanical energy is converted into thermal one resulting in transient rise in temperature of surrounding bone. The temperature of 47°C exeeding one minute impairs osseointegration, compromises mechanical properties of the local bone and could cause early implant failure. This in vitro study aimed to assess the effect of surgical drill guide and temperature of irrigans on thermal changes of the local bone during drilling implant sites, and to test the influence of irrigans temperature on the temperature of surgical drill guide. Methods. A total of 48 specimens obtained from bovine ribs were randomly allocated to four experimental conditions according to the 2 x 2 factorial design: drill guide (with or without and saline (at 25°C or 5°C. Real-time infrared thermography was used as a method for temperature measurement. The primary outcome was bone temperature change during drilling implant sites measured at 3 osteotomy depths, whereas the second one was change in the temperature of the drill guide. Data were analyzed by Brunner and Langer nonparametric analysis and Wilcoxon test. Results. The effect of drill guide on the changes of bone temperature was significant at the entrance of osteotomy, whereas the effect of saline temperature was significant at all osteotomy levels (p 0.05. Guided surgery and irrigation with saline at 25°C were associated with the highest bone temperature increase. Increase in drill guide temperature was significantly higher when saline at 25°C was used (p < 0.001. Conclusion. Guided implant site preparation generates higher temperature of the local bone than conventional drilling, not exceeding the threshold for thermal bone necrosis. Although saline at room temperature provides sufficient heat control during drilling, cooled saline is more effective regardless the use of surgical drill guide.

  4. Minimally invasive piezosurgery for a safe placement of blade dental implants in jaws with severe bone loss

    Directory of Open Access Journals (Sweden)

    F. Rossi

    2014-10-01

    Full Text Available Aim :Severe atrophies of edentulous jaws require major reconstructive bone surgery in order to allow the placement of root-form implants with standard diameter. These bone augmentation techniques represent the best option reported in the literature, but they are often rejected by patients because of their high economic and biological costs in addition to the possibility of failure in the short and/or long term. In the maxilla regenerative methods (onlay, inlay, and distraction have high success rates, whereas in the mandible, especially in the distal atrophic area, they are not so predictable. In such situations an alternative technique for fixed prosthethic rebilitation is the insertion of platform blade implants, which have their elective indication for atrophic bone ridges with reduced width, owing to their reduced thickness. The aim of this study is to assess the effectiveness of the use of piezoelectric ultrasonic handpieces, in order to simplify the placement of blade implants, making it safer and less traumatic than with conventional surgical procedures. Materials and methods: Platform blade implants are extension implant functionally and aesthetically reliable, even if they require a more difficult surgical technique compared with the one currently in use for screw implants. A minimally invasive procedure by means of piezosurgery that was performed on 142 subjects is presented and a case is reported which highlights the successful results. Results: and conclusion The use of piezoelectric ultrasonic handpieces simplifies the surgical procedure for the placement of blade implant, making it safer and less traumatic.

  5. The temporal course of mucoperiosteal flap revascularization at guided bone regeneration treated implant sites: a pilot study

    NARCIS (Netherlands)

    Milstein, D.M.J.; Mathura, K.R.; Lindeboom, J.A.H.; Ramsoekh, D.; Lindeboom, R.; Ince, C.

    2009-01-01

    Aims: To investigate post-operative capillary density regeneration in healing mucoperiosteal flaps at guided bone regeneration-treated implant sites. Material and Methods: A non-invasive post-operative investigation was performed in 10 patients using orthogonal polarization spectral (OPS) imaging

  6. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  7. The temporal course of mucoperiosteal flap revascularization at guided bone regeneration-treated implant sites: a pilot study

    NARCIS (Netherlands)

    Milstein, Dan M. J.; Mathura, Keshen R.; Lindeboom, Jerôme A. H.; Ramsoekh, Dewkoemar; Lindeboom, Robert; Ince, Can

    2009-01-01

    P>Aims To investigate post-operative capillary density regeneration in healing mucoperiosteal flaps at guided bone regeneration-treated implant sites. Material and Methods A non-invasive post-operative investigation was performed in 10 patients using orthogonal polarization spectral (OPS) imaging

  8. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  9. Microcomputer-controlled ultrasonic data acquisition system

    International Nuclear Information System (INIS)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software

  10. The function profile of compressed-air and ultrasonic nebulizers.

    Science.gov (United States)

    Wu, Hsin-Lin; Lin, Yung-Zen; Wu, Wei-Fong; Huang, Fu-Yuan

    2003-01-01

    In order to study the detailed function of two kinds of nebulizers commonly used in clinical asthma treatment, compressed-air and ultrasonic, this study was conducted. At the beginning, various flow rates were adjusted, paired with different volumes of solutions in the container. The changes of temperature, pH, and osmolality during the course of nebulization were examined. Normal saline, terbutaline, and fenoterol solutions were used as the nebulized solutions. The study was performed in an environment in ambient temperature around 20 degrees C and relative humidity around 70%. The results showed a minimal 6 L/min flow rate was required to nebulize the solution when using the compressed-air nebulizer. The dead volume was about 0.8 ml for compressed-air and 8.5 ml for the ultrasonic nebulizer. When using the compressed-air nebulizer, the temperature, both in the solution and at the mouthpiece site, dropped gradually. On the contrary, the temperatures at both sites increased a little bit when using the ultrasonic nebulizer. The pH values of pure terbutaline and fenoterol nebulized solutions were acidic (3.58 and 3.00 respectively). The osmolality of terbutaline and fenoterol nebulized solutions were isotonic. The osmolality increased gradually during the course of nebulization, to a greater extent in the compressed-air nebulizer. In conclusion, both types of nebulizers have their special features. The ultrasonic nebulizer displays less extent in change of temperature and osmolality during nebulization and is expected to be a better device in treating asthmatic patients in terms of lesser effect on cooling and changing the osmolality of airway mucosa.

  11. Peri-implant and Paracrestal Inflammatory Biomarkers at Failing Versus Surviving Implant Sites in a Beagle Dog Study.

    Science.gov (United States)

    Montero, Javier; Aragón, Fernando; Blanco, Leticia A; Guadilla, Yasmina; García-Cenador, Begona; López-Valverde, Antonio

    This study sought to quantify three biochemical mediators of inflammation (tumor necrosis factor alpha [TNF-α], superoxide anion [SOA], and myeloperoxidase [MPO]) by analyzing crestal (peri-implants) and paracrestal gingival biopsy samples obtained from an experimental study on beagle dogs treated with implants inserted immediately into fresh sockets with circumferential defects. In 10 beagle dogs, 4 roughened titanium implants (3.8 mm wide × 8 mm high) were placed in the distal sockets of the third and fourth premolars, where a circumferential defect (5 mm wide and 5 mm deep) had been previously created by trephination. After varying follow-up periods, ranging from 80 to 190 days, the dogs were explored clinically to assess implant survival, peri-implant pocket depth, and implant stability. The levels of three biochemical mediators of inflammation (MPO, TNF-α, and SOA) were investigated using the crestal and paracrestal gingival biopsy samples with ELISA tests. It was found that 37.5% of the implants were either absent or mobile. Higher levels of the inflammatory mediators were found in the crestal samples than in the paracrestal samples. The final implant stability values were significantly correlated with the final probing depth (r = -0.83, P < .01), but neither of the clinical measures were significantly correlated with any biochemical marker. The risk of implant failure was significantly proportional to the level of MPO (odds ratio: 1.1) and TNF-α (odds ratio: 1.1) in both the crestal and paracrestal regions. All the inflammatory mediators studied were higher in the crestal areas than in the paracrestal regions, but only the values of MPO and TNF-α were significant predictors of implant failure.

  12. Percutaneously injectable fetal pacemaker: electrodes, mechanical design and implantation.

    Science.gov (United States)

    Zhou, Li; Chmait, Ramen; Bar-Cohen, Yaniv; Peck, Raymond A; Loeb, Gerald E

    2012-01-01

    We are developing a self-contained cardiac pacemaker with a small, cylindrical shape (~3 × 20 mm) that permits it to be implanted percutaneously into a fetus to treat complete heart block and consequent hydrops fetalis, which is otherwise fatal. The device uses off-the-shelf components including a rechargeable lithium cell and a highly efficient relaxation oscillator encapsulated in epoxy and glass. A corkscrew electrode made from activated iridium can be screwed into the myocardium, followed by release of the pacemaker and a short, flexible lead entirely within the chest of the fetus to avoid dislodgement from fetal movement. The feasibility of implanting the device percutaneously under ultrasonic imaging guidance was demonstrated in acute adult rabbit experiments.

  13. IMPLANTABLE RESONATORS – A TECHNIQUE FOR REPEATED MEASUREMENT OF OXYGEN AT MULTIPLE DEEP SITES WITH IN VIVO EPR

    Science.gov (United States)

    Li, Hongbin; Hou, Huagang; Sucheta, Artur; Williams, Benjamin B.; Lariviere, Jean P.; Khan, Nadeem; Lesniewski, Piotr N.; Swartz, Harold M.

    2013-01-01

    EPR oximetry using implantable resonators allow measurements at much deeper sites than are possible with surface resonators (> 80 mm vs. 10 mm) and have greater sensitivity at any depth. We report here the development of an improvement of the technique that now enables us to obtain the information from multiple sites and at a variety of depths. The measurements from the various sites are resolved using a simple magnetic field gradient. In the rat brain multi-probe implanted resonators measured pO2 at several sites simultaneously for over 6 months to record under normoxic, hypoxic and hyperoxic conditions. This technique also facilitates measurements in moving parts of the animal such as the heart, because the orientation of the paramagnetic material relative to the sensitive small loop is not altered by the motion. The measured response is very fast, enabling measurements in real time of physiological and pathological changes such as experimental cardiac ischemia in the mouse heart. The technique also is quite useful for following changes in tumor pO2, including applications with simultaneous measurements in tumors and adjacent normal tissues. PMID:20204802

  14. Wireless cardiac action potential transmission with ultrasonically inserted silicon microprobes

    International Nuclear Information System (INIS)

    Shen, C J; Ramkumar, A; Lal, A; Gilmour, R F Jr

    2011-01-01

    This paper reports on the integration of ultrasonically inserted horn-shaped cardiac probes with wireless transmission of 3D cardiac action potential measurement for applications in ex vivo preparations such as monitoring the onset of ventricular fibrillation. Ultrasonically inserted silicon horn probes permit reduced penetration force during insertion, allowing silicon, a brittle material, to penetrate cardiac tissue. The probes also allow recording from multiple sites that are lithographically defined. An application-specific integrated circuit has been designed with a 40 dB amplifying stage and a frequency modulating oscillator at 95 MHz to wirelessly transmit the recorded action potentials. This ultrasonically inserted microprobe wireless system demonstrates the initial results in wireless monitoring of 3D action potential propagation, and the extraction of parameters of interest including the action potential duration and diastolic interval

  15. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  16. Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting

    Science.gov (United States)

    Shi, Qiongfeng; Wang, Tao; Kobayashi, Takeshi; Lee, Chengkuo

    2016-05-01

    Acoustic energy transfer (AET) has been widely used for contactless energy delivery to implantable devices. However, most of the energy harvesters (ultrasonic receivers) for AET are macro-scale transducers with large volume and limited operation bandwidth. Here, we propose and investigate two microelectromechanical systems diaphragm based piezoelectric ultrasonic energy harvesters (PUEHs) as an alternative for AET. The proposed PUEHs consist of micro-scale diaphragm array with different geometric parameter design. Diaphragms in PUEH-1 have large length to width ratio to achieve broadband property, while its energy harvesting performance is compromised. Diaphragms in PUEH-2 have smaller length to width ratio and thinner thickness to achieve both broadband property and good energy harvesting performance. Both PUEHs have miniaturized size and wide operation bandwidth that are ideally suitable to be integrated as power source for implantable biomedical devices. PUEH-1 has a merged -6 dB bandwidth of 74.5% with a central frequency of 350 kHz. PUEH-2 has two separate -6 dB bandwidth of 73.7%/30.8% with central frequencies of 285 kHz/650 kHz. They can adapt to various ultrasonic sources with different working frequency spectrum. Maximum output power is 34.3 nW and 84.3 nW for PUEH-1 and PUEH-2 at 1 mW/cm2 ultrasound intensity input, respectively. The associated power density is 0.734 μW/cm2 and 4.1 μW/cm2, respectively. Better energy harvesting performance is achieved for PUEH-2 because of the optimized length to width ratio and thickness design. Both PUEHs offer more alignment flexibility with more than 40% power when they are in the range of the ultrasound transmitter.

  17. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  18. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  19. Biologic Agents for Periodontal Regeneration and Implant Site Development

    Directory of Open Access Journals (Sweden)

    Fernando Suárez-López del Amo

    2015-01-01

    Full Text Available The advancement of molecular mediators or biologic agents has increased tremendously during the last decade in periodontology and dental implantology. Implant site development and reconstruction of the lost periodontium represent main fields in which these molecular mediators have been employed and investigated. Different growth factors trigger different reactions in the tissues of the periodontium at various cellular levels. Proliferation, migration, and differentiation constitute the main target areas of these molecular mediators. It was the purpose of this comprehensive review to describe the origin and rationale, evidence, and the most current understanding of the following biologic agents: Recombinant Human Platelet-Derived Growth Factor-BB (rhPDGF-BB, Enamel Matrix Derivate (EMD, Platelet-Rich Plasma (PRP and Platelet-Rich Fibrin (PRF, Recombinant Human Fibroblast Growth Factor-2 (rhFGF-2, Bone Morphogenic Proteins (BMPs, BMP-2 and BMP-7, Teriparatide PTH, and Growth Differential Factor-5 (GDF-5.

  20. Metastatic spread from squamous cell carcinoma of the hypopharynx to the totally implantable venous access port insertion site: Case report and review of literature.

    Science.gov (United States)

    Mangla, Ankit; Agarwal, Nikki; Mullane, Michael Russell

    2017-12-01

    The totally implantable venous access port plays a crucial role in delivering chemotherapy in the outpatient setting. Here, we report the first case of a patient with hypopharyngeal tumor who developed chest wall metastasis over the totally implantable venous access port inserted in the internal jugular vein. Our patient, a 58-year-old man with a hypopharyngeal tumor presented with a lump over the totally implantable venous access port site. The port was removed and the lump was biopsied. The CT studies showed that the tumor had spread along the catheter from the hypopharynx to the chest wall. The pathology from the biopsy showed squamous cell carcinoma (SCC). The patient had poor performance status and opted for hospice care. We present a novel case of metastasis over the totally implantable venous access port implanted in a patient with a hypopharyngeal tumor. We also reviewed relevant literature comparing the data from percutaneous endoscopic gastrostomy (PEG) tube site metastasis with our patient and other similar case reports. © 2017 Wiley Periodicals, Inc.

  1. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Ultrasonic decontamination robot

    International Nuclear Information System (INIS)

    Patenaude, R.S.

    1984-01-01

    An ultrasonic decontamination robot removes radioactive contamination from the internal surface of the inlet and outlet headers, divider plate, tube sheet, and lower portions of tubes of a nuclear power plant steam generator. A programmable microprocessor controller guides the movement of a robotic arm mounted in the header manway. An ultrasonic transducer having a solvent delivery subsystem through which ultrasonic action is achieved is moved by the arm over the surfaces. A solvent recovery suction tube is positioned within the header to remove solvent therefrom while avoiding interference with the main robotic arm. The solvent composition, temperature, pressure, viscosity, and purity are controlled to optimize the ultrasonic scrubbing action. The ultrasonic transducer is controlled at a power density, frequency, and on-off mode cycle such as to optimize scrubbing action within the range of transducer-to-surface distance and solvent layer thickness selected for the particular conditions encountered. Both solvent and transducer control actions are optimized by the programmable microprocessor. (author)

  3. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  4. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  5. Microcomputer-controlled ultrasonic data acquisition system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software.

  6. Ultrasonic unit for line-by-line ultrasonic scanning of bodies

    International Nuclear Information System (INIS)

    Soldner, R.

    1978-01-01

    The ultrasonic unit for medical diagnostics operates by the sectorial scanning principle, which avoids direct coupling of the transducer head to the surface of the body. For this purpose, several transmitter/receiver units (approx. 100) are arranged on a partial ring of a circular arc and the ultrasonic beams, which can be triggered sequentially in time, are directed at a common intersection behind the ultrasonic window of the unit, i.e., outside the unit. A mechanical system is employed to set and adjust the partial ring carrying the transmitter/receiver units. (DG) [de

  7. Influence of n$^{+}$ and p$^{+}$ doping on the lattice sites of implanted Fe in Si

    CERN Document Server

    Silva, Daniel José; Correia, João Guilherme; Araújo, João Pedro

    2013-01-01

    We report on the lattice location of implanted $^{59}$Fe in n$^{+}$ and p$^{+}$ type Si by means of emission channeling. We found clear evidence that the preferred lattice location of Fe changes with the doping of the material. While in n$^{+}$ type Si Fe prefers displaced bond-centered (BC) sites for annealing temperatures up to 600°C, changing to ideal substitutional sites above 700°C, in p$^{+}$ type Si, Fe prefers to be in displaced tetrahedral interstitial positions after all annealing steps. The dominant lattice sites of Fe in n$^{+}$ type Si therefore seem to be well characterized for all annealing temperatures by the incorporation of Fe into vacancy-related complexes, either into single vacancies which leads to Fe on ideal substitutional sites, or multiple vacancies, which leads to its incorporation near BC sites. In contrast, in p$^{+}$ type Si, the major fraction of Fe is clearly interstitial (near-T or ideal T) for all annealing temperatures. The formation and possible lattice sites of Fe in FeB...

  8. Primary implant stability in augmented sinuslift-sites after completed bone regeneration: a randomized controlled clinical study comparing four subantrally inserted biomaterials.

    Science.gov (United States)

    Troedhan, Angelo; Schlichting, Izabela; Kurrek, Andreas; Wainwright, Marcel

    2014-07-30

    Implant-Insertion-Torque-Value (ITV) proved to be a significant clinical parameter to predict long term implant success-rates and to decide upon immediate loading. The study evaluated ITVs, when four different and commonly used biomaterials were used in sinuslift-procedures compared to natural subantral bone in two-stage-implant-procedures. The tHUCSL-INTRALIFT-method was chosen for sinuslifting in 155 sinuslift-sites for its minimal invasive transcrestal approach and scalable augmentation volume. Four different biomaterials were inserted randomly (easy-graft CRYSTAL n = 38, easy-graft CLASSIC n = 41, NanoBone n = 42, BioOss n = 34), 2 ccm in each case. After a mean healing period of 8,92 months uniform tapered screw Q2-implants were inserted and Drill-Torque-Values (DTV) and ITV were recorded and compared to a group of 36 subantral sites without need of sinuslifting. DTV/ITV were processed for statistics by ANOVA-tests. Mean DTV/ITV obtained in Ncm were: Control Group 10,2/22,2, Bio-Oss 12,7/26,2, NanoBone 17,5/33,3, easy-graft CLASSIC 20,3/45,9, easy-graft CRYSTAL 23,8/56,6 Ncm, significance-level of differences throughout p < 0,05. Within the limits of this study the results suggest self-hardening solid-block-like bone-graft-materials to achieve significantly better DTV/ITV than loose granulate biomaterials for its suspected improvement of vascularization and mineralization of the subantral scaffold by full immobilization of the augmentation site towards pressure changes in the human sinus at normal breathing.

  9. Single-Tooth Morse Taper Connection Implant Placed in Grafted Site of the Anterior Maxilla: Clinical and Radiographic Evaluation

    Directory of Open Access Journals (Sweden)

    Francesco Guido Mangano

    2014-01-01

    Full Text Available The aim of this study was to achieve aesthetically pleasing soft tissue contours in a severely compromised tooth in the anterior region of the maxilla. For a right-maxillary central incisor with localized advanced chronic periodontitis a tooth extraction followed by reconstructive procedures and delayed implant placement was proposed and accepted by the patient. Guided bone regeneration (GBR technique was employed, with a biphasic calcium-phosphate (BCP block graft placed in the extraction socket in conjunction with granules of the same material and a resorbable barrier membrane. After 6 months of healing, an implant was installed. The acrylic provisional restoration remained in situ for 3 months and then was substituted with the definitive crown. This ridge reconstruction technique enabled preserving both hard and soft tissues and counteracting vertical and horizontal bone resorption after tooth extraction and allowed for an ideal three-dimensional implant placement. Localized severe alveolar bone resorption of the anterior maxilla associated with chronic periodontal disease can be successfully treated by means of ridge reconstruction with GBR and delayed implant insertion; the placement of an early-loaded, Morse taper connection implant in the grafted site was effective to create an excellent clinical aesthetic result and to maintain it along time.

  10. Compact and air-transportable ultrasonic turbine disc bore inspection system

    International Nuclear Information System (INIS)

    Larsen, R.E.; Leon-Salamanca, T.

    1990-01-01

    A compact, lightweight, air-transportable ultrasonic inspection system for bore and keyway regions of shrunk-on turbine discs has been developed. The system utilizes a proprietary ultrasound liquid coupling technique in conjunction with a single pair of gimballed search units to achieve rapid and thorough coverage of bores and keyways in both heavy nuclear and standard fossil discs of nearly any size and having any conceivable web surface contour. Search unit positioning and angulation parameter settings are established in near real-time through a computation algorithm based on a compact vector ray tracing protocol. Modular construction and the use of lightweight, stiff materials throughout facilitates air shipment of the system and its rapid deployment at continental and overseas field sites. Mechanical and ultrasonic features of the system are described. Development and application of the computation algorithm to the ultrasonic inspection of heavy discs at an overseas power station is discussed

  11. 3D simulation of an audible ultrasonic electrolarynx using difference waves.

    Science.gov (United States)

    Mills, Patrick; Zara, Jason

    2014-01-01

    A total laryngectomy removes the vocal folds which are fundamental in forming voiced sounds that make speech possible. Although implanted prosthetics are commonly used in developed countries, simple handheld vibrating electrolarynxes are still common worldwide. These devices are easy to use but suffer from many drawbacks including dedication of a hand, mechanical sounding voice, and sound leakage. To address some of these drawbacks, we introduce a novel electrolarynx that uses vibro-acoustic interference of dual ultrasonic waves to generate an audible fundamental frequency. A 3D simulation of the principles of the device is presented in this paper.

  12. Effect of variable scanning protocolson the pre-implant site evaluation of the mandible in reformatted computed tomography

    International Nuclear Information System (INIS)

    Kim, Kee Deog; Park, Chang Seo

    1999-01-01

    To evaluate the effect of variable scanning protocols of computed tomography for evaluation of pre-implant site of the mandible through the comparison of the reformatted cross-sectional images of helical CT scans obtained with various imaging parameters versus those of conventional CT scans. A dry mandible was imaged using conventional nonoverlapped CT scans with 1 mm slice thickness and helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5, 2.0, 2.5 and 3.0. All helical images were reconstructed at reconstruction interval of 1 mm. DentaScan reformatted images were obtained to allow standardized visualization of cross-sectional images of the mandible. The reformatted images were reviewed and measured separately by 4 dental radiologists. The image qualities of continuity of cortical outline, trabecular bone structure and visibility of the mandibular canal were evaluated and the distance between anatomic structures were measured by 4 dental radiologists. On image qualities of continuity of cortical outline, trabecular bone structure and visibility of the mandibular canal and in horizontal measurement, there was no statistically significant difference among conventional and helical scans with pitches of 1.0, 1.5 and 2.0. In vertical measurement, there was no statistically significant difference among the conventional and all imaging parameters of helical CT scans with pitches of 1.0, 1.5, 2.0, 2.5 and 3.0. The images of helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5 and 2.0 are as good as those of conventional CT scans with 1 mm slice thickness for evaluation of pre-dental implant site of the mandible. Considering the radiation dose and patient comfort, helical CT scans with 1 mm slice thickness and pitch of 2.0 is recommended for evaluation of pre-implant site of the mandible.

  13. Clinical analysis of the stability of dental implants after preparation of the site by conventional drilling or piezosurgery.

    Science.gov (United States)

    da Silva Neto, Ulisses Tavares; Joly, Julio Cesar; Gehrke, Sergio Alexandre

    2014-02-01

    We used resonance frequency analysis to evaluate the implant stability quotient (ISQ) of dental implants that were installed in sites prepared by either conventional drilling or piezoelectric tips. We studied 30 patients with bilateral edentulous areas in the maxillary premolar region who were randomised to have the implant inserted with conventional drilling, or with piezoelectric surgery. The stability of each implant was measured by resonance frequency analysis immediately after placement to assess the immediate stability (time 1) and again at 90 days (time 2) and 150 days (time 3). In the conventional group the mean (SD) ISQ for time 1 was 69.1 (6.1) (95% CI 52.4-77.3); for time 2, 70.7 (5.7) (95% CI 60.4-82.8); and for time 3, 71.7 (4.5) (95% CI 64.2-79.2). In the piezosurgery group the corresponding values were: 77.5 (4.6) (95% CI 71.1-84.3) for time 1, 77.0 (4.2) (95% CI, 69.7-85.2) for time 2, and 79.1 (3.1) (95% CI 74.5-87.3) for time 3. The results showed significant increases in the ISQ values for the piezosurgery group at each time point (p=0.04). The stability of implants placed using the piezoelectric method was greater than that of implants placed using the conventional technique. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. The relationship of silicone breast implants and cancer at other sites.

    Science.gov (United States)

    Brinton, Louise A

    2007-12-01

    Although most attention regarding the effects of silicone breast implants on cancer risk has focused on breast cancer, there have also been concerns regarding effects on other cancers. This includes malignancies that could occur as a result of foreign-body carcinogenesis (sarcomas) or immune alterations (hematopoietic malignancies), or cancers suggested as possibly elevated on the basis of previous epidemiologic studies (cancers of the cervix, vulva, lung, and brain). Searches of the English language literature on the topic of silicone breast implants and cancer risk were conducted and reviewed to determine relationships that might have etiologic relevance. Epidemiologic studies provide no support for an increased risk of either sarcoma or multiple myeloma among breast implant recipients, disputing clinical and laboratory findings suggesting such a link. Although a number of epidemiologic studies have demonstrated elevated risks of cervical, vulvar, and lung cancers among breast implant patients, it is likely that these excesses relate more to lifestyle characteristics (e.g., cigarette smoking, sexual behavior) than to the effects of the implants. Brain cancer excesses, suggested in one study, have not been confirmed in either an update of the mortality experience in this study or on the basis of other investigations. At present, there is no convincing evidence that breast implants alter the risk of nonbreast malignancies. Breast implant patients should continue to be monitored for longer term risks and to assess whether cancer risk is influenced by various patient and implant characteristics.

  15. Transferring manual ultrasonic inspection procedures - results of a pilot study

    International Nuclear Information System (INIS)

    Anderson, M.; Taylor, T.; Kadenko, I.

    2002-01-01

    Results of a manual ultrasonic pilot study for NDE specialists at RBMK nuclear reactor sites are presented. Probabilities of detection and false calls, using two different grading criteria, are estimated. Analyses of performance parameters lead to conclusions regarding attributes for improved test discrimination capabilities. (orig.)

  16. Management of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Jayachandran Prathapachandran

    2012-01-01

    Full Text Available Peri-implantitis is a site-specific infectious disease that causes an inflammatory process in soft tissues, and bone loss around an osseointegrated implant in function. The etiology of the implant infection is conditioned by the status of the tissue surrounding the implant, implant design, degree of roughness, external morphology, and excessive mechanical load. The microorganisms most commonly associated with implant failure are spirochetes and mobile forms of Gram-negative anaerobes, unless the origin is the result of simple mechanical overload. Diagnosis is based on changes of color in the gingiva, bleeding and probing depth of peri-implant pockets, suppuration, X-ray, and gradual loss of bone height around the tooth. Treatment will differ depending upon whether it is a case of peri-implant mucositis or peri-implantitis. The management of implant infection should be focused on the control of infection, the detoxification of the implant surface, and regeneration of the alveolar bone. This review article deals with the various treatment options in the management of peri-implantitis. The article also gives a brief description of the etiopathogenesis, clinical features, and diagnosis of peri-implantitis.

  17. Percutaneously Inject able Fetal Pacemaker: Electrodes, Mechanical Design and Implantation*

    Science.gov (United States)

    Zhou, Li; Chmait, Ramen; Bar-Cohen, Yaniv; Peck, Raymond A.; Loeb, Gerald E.

    2015-01-01

    We are developing a self-contained cardiac pacemaker with a small, cylindrical shape (~3×20mm) that permits it to be implanted percutaneously into a fetus to treat complete heart block and consequent hydrops fetalis, which is otherwise fatal. The device uses off-the-shelf components including a rechargeable lithium cell and a highly efficient relaxation oscillator encapsulated in epoxy and glass. A corkscrew electrode made from activated iridium can be screwed into the myocardium, followed by release of the pacemaker and a short, flexible lead entirely within the chest of the fetus to avoid dislodgement from fetal movement. The feasibility of implanting the device percutaneously under ultrasonic imaging guidance was demonstrated in acute adult rabbit experiments. PMID:23367442

  18. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  19. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  20. Surgical site infections following transcatheter apical aortic valve implantation: incidence and management.

    Science.gov (United States)

    Baillot, Richard; Fréchette, Éric; Cloutier, Daniel; Rodès-Cabau, Josep; Doyle, Daniel; Charbonneau, Éric; Mohammadi, Siamak; Dumont, Éric

    2012-11-13

    The present study was undertaken to examine the incidence and management of surgical site infection (SSI) in patients submitted to transapical transcatheter aortic valve implantation (TA-TAVI). From April 2007 to December 2011, 154 patients underwent TA-TAVI with an Edwards Sapien bioprosthesis (ES) at the Institut Universitaire de Cardiologie et Pneumologie de Québec (IUCPQ) as part of a multidisciplinary program to prospectively evaluate percutaneous aortic valve implantation. Patient demographics, perioperative variables, and postoperative complications were recorded in a prospective registry. Five (3.2%) patients in the cohort presented with an SSI during the study period. The infections were all hospital-acquired (HAI) and were considered as organ/space SSI's based on Center for Disease Control criteria (CDC). Within the first few weeks of the initial procedure, these patients presented with an abscess or chronic draining sinus in the left thoracotomy incision and were re-operated. The infection spread to the apex of the left ventricle in all cases where pledgeted mattress sutures could be seen during debridement. Patients received multiple antibiotic regimens without success until the wound was surgically debrided and covered with viable tissue. The greater omentum was used in three patients and the pectoralis major muscle in the other two. None of the patients died or had a recurrent infection. Three of the patients were infected with Staphylococcus epidermidis, one with Staphylococcus aureus, and one with Enterobacter cloacae. Patients with surgical site infections were significantly more obese with higher BMI (31.4±3.1 vs 26.2±4.4 p=0.0099) than the other patients in the cohort. While TA-TAVI is a minimally invasive technique, SSIs, which are associated with obesity, remain a concern. Debridement and rib resection followed by wound coverage with the greater omentum and/or the pectoralis major muscle were used successfully in these patients.

  1. He bubble sites in implanted copper alloy

    International Nuclear Information System (INIS)

    Moreno, D.; Eliezer, D.

    1996-01-01

    Structural materials in fusion reactors will be exposed to helium implantation over a broad range of energies. The deformation and partial exfoliation of surface layers due to hydrogen isotopes and helium contribute to the total erosion of the first wall. For this reason, one of the most important criteria in the choice of materials for the first wall of fusion reactors is the material's damage resistance. Recent advances in developing nuclear fusion reactors reveal that efficient heat removal from plasma-facing components is very important. Copper and copper alloys are considered an attractive choice for transporting such a high heat flux without thermal damage as they have high thermal conductivity. In the present study the authors report on the structural changes in a copper alloy, due to the helium implantation on the very near surface area, observed by transmission electron microscopy

  2. Rutherford backscatter measurements on tellurium and cadmium implanted gallium arsenide

    International Nuclear Information System (INIS)

    Bell, E.C.

    1979-10-01

    The primary aim of the work described in this thesis was to examine implanted layers of the dopant impurities cadmium and tellurium in gallium arsenide and to experimentally assess their potential for producing electrically active layers. 1.5 MeV Rutherford backscattering measurements of lattice disorder and atom site location have been used to assess post implantation thermal annealing and elevated temperature implantations to site the dopant impurities on either gallium or arsenic lattice positions in an otherwise undisordered lattice. Pyrolitically deposited silicon dioxide was used as an encapsulant to prevent thermal dissociation of the gallium arsenide during annealing. It has been shown that high doses of cadmium and tellurium can be implanted without forming amorphous lattice disorder by heating the gallium arsenide during implantation to relatively low temperatures. Atom site location measurements have shown that a large fraction of a tellurium dose implanted at 180 0 C is located on or near lattice sites. Channeled backscatter measurements have shown that there is residual disorder or lattice strain in gallium arsenide implanted at elevated temperatures. The extent of this disorder has been shown to depend on the implanted dose and implantation temperature. The channeling effect has been used to measure annealing of the disorder. (author)

  3. Ultrasonic grinding method

    International Nuclear Information System (INIS)

    Miyahara, Shuji.

    1990-01-01

    An ultrasonic generator and a liquid supply nozzle are opposed to an object to be ground and a pump is started in this state to supply an organic solvent. Matters to be decontaminated which adheres to the surface of the object to be ground and are difficult to be removed by a mere mechanical removing method can be eliminated previously by the surface active effect of the organic solvent such as ethanol prior to the oscillation of the ultrasonic generator. Subsequently, when the ultrasonic generator is oscillated, scales in the floated state can be removed simply. Further, since the organic solvent can penetrate to provide the surface active effect even in such a narrow portion that the top end of the ultrasonic generator is difficult to the intruded at the surface of the object to be ground, the decontaminating treatment can be applied also to such a narrow portion. (T.M.)

  4. Tapered, Double-Lead Threads Single Implants Placed in Fresh Extraction Sockets and Healed Sites of the Posterior Jaws: A Multicenter Randomized Controlled Trial with 1 to 3 Years of Follow-Up.

    Science.gov (United States)

    Cucchi, Alessandro; Vignudelli, Elisabetta; Franco, Simonetta; Levrini, Luca; Castellani, Dario; Pagliani, Luca; Rea, Massimiliano; Modena, Claudio; Sandri, Giulio; Longhi, Carlo

    2017-01-01

    To evaluate the survival, success, and complication rates of tapered double-lead threads single implants, placed in fresh extraction sockets and healed sites of the posterior jaws. The enrolled patients were randomly divided into 2 groups: in the test group (TG), all implants were inserted at the time of tooth extraction; in the control group (CG), all implants were placed 3 months after extraction. The implants were followed for a period of 1 to 3 years after loading. The main outcomes were implant survival, complications, and implant-crown success. Ninety-two patients had 97 installed implants (49 in the TG, 48 in the CG). Only two implants failed, in the TG; the survival rates were therefore 95.9% (47/49) and 100% (48/48) for TG and CG, respectively. In the surviving implants, no complications were reported, for an implant-crown success of 100%. Although a significant difference was found in the levels of primary stability between TG and CG, single implants placed in fresh extraction sockets and healed sites of the posterior jaws had similar survival and complication rates. Crestal bone levels and peri-implant bone resorption showed similar values. A longer follow-up period is however required, to confirm these positive outcomes.

  5. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  6. Periotest values of implants placed in sockets augmented with calcium phosphosilicate putty graft: a comparative analysis against implants placed in naturally healed sockets.

    Science.gov (United States)

    Mahesh, Lanka; Narayan, Tv; Kostakis, Georgios; Shukla, Sagrika

    2014-03-01

    To measure implant stability using periotest values of implants placed in sockets augmented with calcium phospho-silicate putty (CPS Putty) as compared with implant stability in naturally healed sockets. Twenty two sockets were implanted with CPS Putty immediately after extraction. The sockets were re-entered after a healing period at 5 to 6 months (average 5.3 months) for implant placement. Periotest values were recorded during implant insertion to assess primary stability. These were compared with the Periotest values of 26 implants placed in 22 patients, with naturally healed sockets. Periotest values were significantly lower in the grafted group, indicating better implant stability in sites grafted with CPS putty. Implant stability seems to be significantly higher in sockets augmented using CPS putty when compared to nongrafted sites. This suggests that socket grafting with CPS putty may enhance the quality of available bone for implantation.

  7. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  8. Volumetric changes and peri-implant health at implant sites with or without soft tissue grafting in the esthetic zone, a retrospective case-control study with a 5-year follow-up.

    Science.gov (United States)

    Bienz, Stefan P; Jung, Ronald E; Sapata, Vitor M; Hämmerle, Christoph H F; Hüsler, Jürg; Thoma, Daniel S

    2017-11-01

    To evaluate the volumetric changes and peri-implant health at implant sites with and without previous soft tissue grafting over a 5-year observation period. In 18 partially edentulous patients, dental implants were placed in the esthetic zone (15-25) with simultaneous guided bone regeneration, followed by submerged healing. During the healing phase, eight patients (test) received a subepithelial connective tissue graft, whereas 10 patients (control) did not receive any soft tissue augmentation. Subsequently, abutment connection was performed and final reconstructions were inserted. Impressions were taken 1 week after crown insertion and at 5 years. Obtained casts were scanned and superimposed for volumetric and linear measurements. The mean distance (MD) in the mid-buccal area between the two surfaces and the differences in buccal marginal mucosal level (bMML change ) and in ridge width (RW change ) were evaluated. Peri-implant health was assessed using probing pocket depth (PPD) values, plaque index (PlI) and bleeding on probing (BOP). At a median follow-up time of 60.5 months a median MD of -0.38 mm (Min: -0.94; Max: -0.03) (test) and of -0.51 mm (Min: -0.76; Max: 0.05) (control) was calculated. The level of the margo mucosae (bMML change ) demonstrated a median loss of -0.42 mm (Min: -1.1; Max: -0.01) (test) and of -0.33 mm (Min: -1.02; Max: 0.00) (control). The median RW change ranged between -0.44 mm and -0.73 mm (test) and between -0.49 mm and -0.54 mm (control). Mean PPD values slightly increased, whereas PlI and BOP remained stable over time in both groups. None of the comparisons between the groups revealed statistically significant differences (P > 0.35). A small sample size must be considered, however. Limited by a retrospective case-control study design, implant sites with and without soft tissue grafting on the buccal side revealed only minimal volumetric and linear changes and stability of peri-implant parameters over 5 years. © 2017

  9. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Kalpataru, E-mail: panda@afm.eei.eng.osaka-u.ac.jp, E-mail: phy.kalpa@gmail.com; Inami, Eiichi; Sugimoto, Yoshiaki [Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Sankaran, Kamatchi J.; Tai, Nyan Hwa [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, I-Nan, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2014-10-20

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17 V/μm with high EFE current density of 5.08 mA/cm{sup 2} at an applied field of 7.0 V/μm. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current–voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  10. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    International Nuclear Information System (INIS)

    Panda, Kalpataru; Inami, Eiichi; Sugimoto, Yoshiaki; Sankaran, Kamatchi J.; Tai, Nyan Hwa; Lin, I-Nan

    2014-01-01

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17 V/μm with high EFE current density of 5.08 mA/cm 2 at an applied field of 7.0 V/μm. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current–voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  11. Influence of collar design on peri-implant tissue healing around immediate implants: A pilot study in Foxhound dogs.

    Science.gov (United States)

    Calvo-Guirado, José Luis; López-López, Patricia Jara; Maté Sánchez de Val, José Eduardo; Mareque-Bueno, Javier; Delgado-Ruiz, Rafael Arcesio; Romanos, Georgios E

    2015-07-01

    The study aims to assess the soft tissue level (STL) and crestal bone level (CBL), of titanium dental implants with different mixed collar abutments configurations. This study included 48 implants with the same dimensions. They were divided into two groups of 24 implants each one: implants with a polished collar of 2 mm plus a roughened area of 0.8 mm (CONTROL) and implants with a polished collar of 0.8 mm plus a micro-threated and roughened area of 2 mm (TEST). The implants were inserted randomly in the post-extraction sockets of P2, P3, P4, and M1 bilaterally in the lower jaw of six foxhound dogs. STL and CBL were evaluated after 8 and 12 weeks by histology and histometry. All implants were clinically and histologically osseointegrated. Healing patterns examined microscopically at 8 and 12 weeks for both groups yielded similar qualitative findings for the STL evaluation, without significant differences between groups (P > 0.05). CBL was significantly higher in the buccal side in comparison with the lingual side for both groups (P implant shoulder to the top of the bony crest) and IS-C (distance from the implant shoulder to the first bone-to-implant contact) values significantly higher for control group in comparison with test (P < 0.05). At 12 weeks, CBL showed increased values for both groups that were higher in controls group in comparison with test (P < 0.05). Bony crest resorption could not be avoided both at test and control sites. However, the neck conformation at the test sites reduced the buccal bone resorption. Soft tissue dimensions were similar both at the test and control sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Piezosurgery in Bone Augmentation Procedures Previous to Dental Implant Surgery: A Review of the Literature

    Science.gov (United States)

    Magrin, Gabriel Leonardo; Sigua-Rodriguez, Eder Alberto; Goulart, Douglas Rangel; Asprino, Luciana

    2015-01-01

    The piezosurgery has been used with increasing frequency and applicability by health professionals, especially those who deal with dental implants. The concept of piezoelectricity has emerged in the nineteenth century, but it was applied in oral surgery from 1988 by Tomaso Vercellotti. It consists of an ultrasonic device able to cut mineralized bone tissue, without injuring the adjacent soft tissue. It also has several advantages when compared to conventional techniques with drills and saws, such as the production of a precise, clean and low bleed bone cut that shows positive biological results. In dental implants surgery, it has been used for maxillary sinus lifting, removal of bone blocks, distraction osteogenesis, lateralization of the inferior alveolar nerve, split crest of alveolar ridge and even for dental implants placement. The purpose of this paper is to discuss the use of piezosurgery in bone augmentation procedures used previously to dental implants placement. PMID:26966469

  13. Field testing and applications of the Ultrasonic Ranging and Data (USRAD) System

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Pickering, D.A.; Blair, M.S.; Espegren, M.L.; Nyquist, J.E.

    1989-01-01

    The Ultrasonic Ranging and Data (USRAD) System is a patented, computerized data acquisition system developed to relate the radiological surveyor's precise physical location to instantaneous radiation data taken during walk-on surveys. The USRAD System incorporates three technologies: radio frequency communications, ultrasonics, and microcomputers. Initial field testing of the USRAD System has resulted in several improvements to walk-on radiological surveys including real-time position data, reproducible survey results, on-site verification of survey coverage, on-site data reduction and graphics, and permanent data storage on magnetic media. Although the USRAD System was developed specifically for use with a gamma-ray detector, it is adaptable to other instruments. Applications of the USRAD System may include verification of remediated and uncontaminated areas, emergency response in mapping pollutant locations after accidents, and characterization of hazardous waste areas. 2 refs., 8 figs

  14. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    Science.gov (United States)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  15. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  16. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  17. Analysis of incidence and related factors on effusion of anterior chamber after phacoemulsification combined with intraocular lens implantation

    Directory of Open Access Journals (Sweden)

    Bing-Bing Zhao

    2018-02-01

    Full Text Available AIM: To investigate the incidence and related factors on effusion of anterior chamber(ACafter phacoemulsification(PEcombined with intraocular lens(IOLimplantation. METHODS: Totally 359 cases of cataract(375 eyesunderwent PE combined with IOL implantation were collected in our hospital. The incidence of AC exudation after operation and related factors were analyzed by single factor and multiple logistic regression analysis. RESULTS: The group was included in 359 cases(375 eyes. The incidence of postoperative AC exudation in the study group was 5.9%(22/375. The preoperative intraocular pressure(IOP, visual acuity before and after surgery, nuclear grades, posterior capsular rupture(PCRrate and ultrasonic accumulated energy complex parameter(AECPof the study group showed statistically significant difference compared with the control group(all P21mmHg, intraoperative pupil diameter 7.25(%×min, the lens nucleus grade ≥ IV were risk factors of AC exudation after PE combined with IOL implantation in patients with cataract(all P21mmHg, ultrasound AECP >7.25 were independent risk factors of AC exudation after PE combined with IOL implantation in patients with cataract(all PCONCLUSION: High myopia, glaucoma, uveitis, the lens nucleus grade ≥ IV, the incidence of intraoperative PCR, preoperative IOP>21mmHg, ultrasonic AECP>7.25 are independent risk factors of AC exudation after PE combined with IOL implantation in patients with cataract, with such risk factors in patients with cataract should be paid closely attention and timely diagnosis and treatment in clinic.

  18. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  19. Clinical and Radiologic Outcomes of Submerged and Nonsubmerged Bone-Level Implants with Internal Hexagonal Connections in Immediate Implantation: A 5-Year Retrospective Study.

    Science.gov (United States)

    Wu, Shiyu; Wu, Xiayi; Shrestha, Rachana; Lin, Jinying; Feng, Zhicai; Liu, Yudong; Shi, Yunlin; Huang, Baoxin; Li, Zhipeng; Liu, Quan; Zhang, Xiaocong; Hu, Mingxuan; Chen, Zhuofan

    2018-02-01

    To evaluate the 5-year clinical and radiologic outcome of immediate implantation using submerged and nonsubmerged techniques with bone-level implants and internal hexagonal connections and the effects of potential influencing factors. A total of 114 bone-level implants (XiVE S plus) with internal hexagonal connections inserted into 72 patients were included. Patients were followed up for 5 years. A t-test was used to statistically evaluate the marginal bone loss between the submerged and nonsubmerged groups. The cumulative survival rate (CSR) was calculated according to the life table method and illustrated with Kaplan-Meier survival curves. Comparisons of the CSR between healing protocols, guided bone regeneration, implants with different sites, lengths, and diameters were performed using log-rank tests. The 5-year cumulative implant survival rates with submerged and nonsubmerged healing were 94% and 96%, respectively. No statistically significant differences in terms of marginal bone loss, healing protocol, application of guided bone regeneration, implant site, or length were observed. High CSRs and good marginal bone levels were achieved 5 years after immediate implantation of bone-level implants with internal hexagonal connections using both the submerged and nonsubmerged techniques. Factors such as implant length, site, and application of guided bone regeneration did not have an impact on the long-term success of the implants. © 2017 by the American College of Prosthodontists.

  20. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  1. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  2. Ultrasonic relaxations in borate glasses

    International Nuclear Information System (INIS)

    D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.

    2004-01-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices

  3. Reliability of implant surgical guides based on soft-tissue models.

    Science.gov (United States)

    Maney, Pooja; Simmons, David E; Palaiologou, Archontia; Kee, Edwin

    2012-12-01

    The purpose of this study was to determine the accuracy of implant surgical guides fabricated on diagnostic casts. Guides were fabricated with radiopaque rods representing implant positions. Cone beam computerized tomograms were taken with guides in place. Accuracy was evaluated using software to simulate implant placement. Twenty-two sites (47%) were considered accurate (13 of 24 maxillary and 9 of 23 mandibular sites). Soft-tissue models do not always provide sufficient accuracy for fabricating implant surgical guides.

  4. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  5. Innovative ultrasonics for power plant commissioning

    International Nuclear Information System (INIS)

    Murphy, R.V.; Alikhan, S.

    1983-05-01

    During the commissioning of a nuclear power plant, the usual role of ultrasonics is associated with nondestructive testing of welds. There is, however, a variety of undesirable conditions associated with the fluids carried through the various reactor systems which may be just as important to station operation. A variety of unusual ultrasonic techniques has been developed for testing fluid systems at the Point Lepreau Generating Station. This paper uses the experience gained at the Point Lepreau reactor to illustrate the valuable information which can be gained from these measurements, such as: fluid level in pipes and headers; fluid level in pressure vessels; detection, and sizing of debris in pipes; in situ measurement and verification of orifice condition; detection and location of cavitation, water hammer, valve leakage; quantitative measurement of gate movement within the body of an inservice valve; determination of valve position; detection and imaging of flow separation; detection and location of leaks in concrete containment structures; verification of design flows; balancing of loop flows; and detection of low flow. The application of these techniques at other reactor sites is also discussed

  6. The Antifouling of ACLW-CAR Based on Ultrasonic Cleaner

    Science.gov (United States)

    Zhang, Guohua; Liu, Shixuan; Qin, Qingliang

    2017-10-01

    Equipped with ACLW-CAR, the buoy provided effective technical platform for on-site rapid monitoring of the chlorophyll and turbidity. Performance index and usage in the ocean buoy of ACLW-CAR was introduced. Ultrasonic cleaning method in seawater was developed for preventing ACLW-CAR from biofouling. Marine chlorophyll and turbidity data can serve for oceanographic research and marine resource exploitation.

  7. Mechanism and kinetics of parathion degradation under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yao Juanjuan, E-mail: yao_juanjuan@yahoo.cn [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China); Gao Naiyun; Li Cong; Li Lei; Xu Bin [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China)

    2010-03-15

    The parathion degradation under ultrasonic irradiation in aqueous solution was investigated. The results indicate that at the conditions in question, degradation rate of parathion decreased with increasing initial concentration and decreasing power. The optimal frequency for parathion degradation was 600 kHz. The free radical reactions predominate in the sonochemical degradation of parathion and the reaction zones are predominately at the bubble interface and, to a much lesser extent, in bulk solution. The gas/liquid interfacial regions are the real effective reaction sites for sonochemical degradation of parathion. The reaction can be well described as a gas/liquid heterogeneous reaction which obeys a kinetic model based on Langmuir-Hinshelwood model. The main pathways of parathion degradation by ultrasonic irradiation were also proposed by qualitative and quantitative analysis of organic and inorganic byproducts. It is indicated that the N{sub 2} in air takes part in the parathion degradation through the formation of {center_dot}NO{sub 2} under ultrasonic irradiation. Parathion is decomposed into paraoxon and 4-nitrophenol in the first step via two different pathways, respectively, which is in agreement with the theoretical molecular orbital (MO) calculations.

  8. Surgical Templates for Dental Implant Positioning; Current ...

    African Journals Online (AJOL)

    prosthodontics; however, designing an implant‑supported prosthesis with function .... template where a provisional fixed restoration bridges the implant site. Pesun and ... in single implant therapy or short‑span implant‑supported prostheses.

  9. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  10. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap.

    Science.gov (United States)

    Schvartz-Leyzac, Kara C; Pfingst, Bryan E

    2016-11-01

    Electrically evoked compound action potential (ECAP) measures of peak amplitude, and amplitude-growth function (AGF) slope have been shown to reflect characteristics of cochlear health (primarily spiral ganglion density) in anesthetized cochlear-implanted guinea pigs. Likewise, the effect of increasing the interphase gap (IPG) in each of these measures also reflects SGN density in the implanted guinea pig. Based on these findings, we hypothesize that suprathreshold ECAP measures, and also how they change as the IPG is increased, have the potential to be clinically applicable in human subjects. However, further work is first needed in order to determine the characteristics of these measures in humans who use cochlear implants. The current study examined across-site patterns of suprathreshold ECAP measures in 10 bilaterally-implanted, adult cochlear implant users. Results showed that both peak amplitude and slope of the AGF varied significantly from electrode to electrode in ear-specific patterns across the subjects' electrode arrays. As expected, increasing the IPG on average increased the peak amplitude and slope. Across ears, there was a significant, negative correlation between the slope of the ECAP AGF and the duration of hearing loss. Across-site patterns of ECAP peak amplitude and AGF slopes were also compared with common ground impedance values and significant correlations were observed in some cases, depending on the subject and condition. The results of this study, coupled with previous studies in animals, suggest that it is feasible to measure the change in suprathreshold ECAP measures as the IPG increases on most electrodes. Further work is needed to investigate the relationship between these measures and cochlear implant outcomes, and determine how these measures might be used when programming a cochlear-implant processor. Published by Elsevier B.V.

  11. Distortion of digital panoramic radiographs used for implant site assessment

    Directory of Open Access Journals (Sweden)

    Rayyan Abdulhamid Kayal

    2016-01-01

    Full Text Available Aims: This study is conducted to determine the amount of distortion of digital panoramic radiographs. Materials and Methods: Panoramic radiographs of all patients who received dental implants in the years 2012 and 2013 were selected from the records at the faculty of dentistry, King Abdulaziz University. Radiographs were analyzed using the R4 Kodak Software for linear measurements of implants length and width. The measurements were compared to the actual size of the implant, and the amount of distortion was calculated. Results: A total of 169 implants were analyzed. Horizontally, there was a statistically significant increase of 0.4 mm in width in the radiographic measurement compared to the actual size in the incisor region. Vertically, the sample overall exhibited a decrease by 0.4 mm compared to the actual size. Incisors had the highest difference with a decrease of 1.7 mm in the radiographic measurements compared to actual size. The highest distortion was found in the incisor region for both diameter and length (1.1 and 0.86, respectively. Conclusion: Digital panoramic radiographs show minimal to no distortion. The highest distortion is found in the anterior area.

  12. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  13. Reliability of recordings of subgingival calculus detected using an ultrasonic device.

    Science.gov (United States)

    Corraini, Priscila; López, Rodrigo

    2015-04-01

    To assess the intra-examiner reliability of recordings of subgingival calculus detected using an ultrasonic device, and to investigate the influence of subject-, tooth- and site-level factors on the reliability of these subgingival calculus recordings. On two occasions, within a 1-week interval, 147 adult periodontitis patients received a full-mouth clinical periodontal examination by a single trained examiner. Duplicate subgingival calculus recordings, in six sites per tooth, were obtained using an ultrasonic device for calculus detection and removal. Agreement was observed in 65 % of the 22,584 duplicate subgingival calculus recordings, ranging 45 % to 83 % according to subject. Using hierarchical modeling, disagreements in the subgingival calculus duplicate recordings were more likely in all other sites than the mid-buccal, and in sites harboring supragingival calculus. Disagreements were less likely in sites with PD ≥  4 mm and with furcation involvement  ≥  degree 2. Bleeding on probing or suppuration did not influence the reliability of subgingival calculus. At the subject-level, disagreements were less likely in patients presenting with the highest and lowest extent categories of the covariate subgingival calculus. The reliability of subgingival calculus recordings using the ultrasound technology is reasonable. The results of the present study suggest that the reliability of subgingival calculus recordings is not influenced by the presence of inflammation. Moreover, subgingival calculus can be more reliably detected using the ultrasound device at sites with higher need for periodontal therapy, i.e., sites presenting with deep pockets and premolars and molars with furcation involvement.

  14. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  15. Surgical site infections following transcatheter apical aortic valve implantation: incidence and management

    Directory of Open Access Journals (Sweden)

    Baillot Richard

    2012-11-01

    Full Text Available Abstract Objective The present study was undertaken to examine the incidence and management of surgical site infection (SSI in patients submitted to transapical transcatheter aortic valve implantation (TA-TAVI. Methods From April 2007 to December 2011, 154 patients underwent TA-TAVI with an Edwards Sapien bioprosthesis (ES at the Institut Universitaire de Cardiologie et Pneumologie de Québec (IUCPQ as part of a multidisciplinary program to prospectively evaluate percutaneous aortic valve implantation. Patient demographics, perioperative variables, and postoperative complications were recorded in a prospective registry. Results Five (3.2% patients in the cohort presented with an SSI during the study period. The infections were all hospital-acquired (HAI and were considered as organ/space SSI’s based on Center for Disease Control criteria (CDC. Within the first few weeks of the initial procedure, these patients presented with an abscess or chronic draining sinus in the left thoracotomy incision and were re-operated. The infection spread to the apex of the left ventricle in all cases where pledgeted mattress sutures could be seen during debridement. Patients received multiple antibiotic regimens without success until the wound was surgically debrided and covered with viable tissue. The greater omentum was used in three patients and the pectoralis major muscle in the other two. None of the patients died or had a recurrent infection. Three of the patients were infected with Staphylococcus epidermidis, one with Staphylococcus aureus, and one with Enterobacter cloacae. Patients with surgical site infections were significantly more obese with higher BMI (31.4±3.1 vs 26.2±4.4 p=0.0099 than the other patients in the cohort. Conclusions While TA-TAVI is a minimally invasive technique, SSIs, which are associated with obesity, remain a concern. Debridement and rib resection followed by wound coverage with the greater omentum and/or the pectoralis major

  16. [Abscess at the implant site following apical parodontitis. Hardware-related complications of deep brain stimulation].

    Science.gov (United States)

    Sixel-Döring, F; Trenkwalder, C; Kappus, C; Hellwig, D

    2006-08-01

    Deep brain stimulation of the subthalamic nucleus is an important treatment option for advanced stages of idiopathic Parkinson's disease, leading to significant improvement of motor symptoms in suited patients. Hardware-related complications such as technical malfunction, skin erosion, and infections however cause patient discomfort and additional expense. The patient presented here suffered a putrid infection of the impulse generator site following only local dental treatment of apical parodontitis. Therefore, prophylactic systemic antibiotic treatment is recommended for patients with implanted deep brain stimulation devices in case of operations, dental procedures, or infectious disease.

  17. The effect of implant macro-thread design on implant stability in the early post-operative period: a randomized, controlled pilot study.

    Science.gov (United States)

    McCullough, Jeffrey J; Klokkevold, Perry R

    2017-10-01

    Available literature suggests there is a transient drop in implant stability from approximately week 0 to week 3-4 as a result of peri-implant bone remodeling as it transitions from a primary, mechanical stability to a secondary, biological stability. Research investigating the influence of macro-thread design on this process is scant. The specific aim of this study was to evaluate the role of macro-thread design on implant stability in the early post-operative healing period using resonance frequency analysis (RFA). Seven patients, each missing at least two posterior teeth in the same arch, were included in the study. Three patients qualified for four implants resulting in a total of 10 matched pairs. All sites were healed (>6 months), non-grafted sites with sufficient bone to place implants. Each site in a matched pair was randomly assigned to receive either a control (Megagen EZ Plus Internal; EZ) or test (Megagen AnyRidge; AR) implant. The test implant incorporates a novel thread design with a wide thread depth and increased thread pitch. RFA was used to determine implant stability quotient (ISQ) values for each implant at the time of placement and weekly for the first 8 weeks. Implants consistently achieved a relatively high insertion torque (30-45 N/cm) and high initial ISQ value (79.8 ± 1.49). Baseline ISQ values for test (AR; 79.55 ± 1.61) and control (EZ; 80.05 ± 1.37) implants were similar. A general pattern of stability from baseline through all eight follow-up evaluations was observed for the test implants. A pattern of decreasing ISQ values was observed for the control implants across the early follow-up evaluations up to week four, where the value plateaued. There was a statistically significant main effect due to implant type (P implant type and time (P implants performed differently at certain time points. Within the limitations of this study, macro-thread design appears to play a role in implant stability in the early post

  18. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  19. Pneumococcal meningitis post-cochlear implantation: preventative measures.

    Science.gov (United States)

    Wei, Benjamin P C; Shepherd, Robert K; Robins-Browne, Roy M; Clark, Graeme M; O'Leary, Stephen J

    2010-11-01

    Both clinical data and laboratory studies demonstrated the risk of pneumococcal meningitis post-cochlear implantation. This review examines strategies to prevent post-implant meningitis. Medline/PubMed database; English articles after 1980. Search terms: cochlear implants, pneumococcus meningitis, streptococcus pneumonia, immunization, prevention. Narrative review. All articles relating to post-implant meningitis without any restriction in study designs were assessed and information extracted. The presence of inner ear trauma as a result of surgical technique or cochlear implant electrode array design was associated with a higher risk of post-implant meningitis. Laboratory data demonstrated the effectiveness of pneumococcal vaccination in preventing meningitis induced via the hematogenous route of infection. Fibrous sealing around the electrode array at the cochleostomy site, and the use of antibiotic-coated electrode array reduced the risk of meningitis induced via an otogenic route. The recent scientific data support the U.S. Food and Drug Administration recommendation of pneumococcal vaccination for the prevention of meningitis in implant recipients. Nontraumatic cochlear implant design, surgical technique, and an adequate fibrous seal around the cochleostomy site further reduce the risk of meningitis. Copyright © 2010 American Academy of Otolaryngology–Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  20. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  1. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  2. Ultrasonic inspection of primary pump casing by means of focussing probes

    International Nuclear Information System (INIS)

    Dombret, Ph.; Cermak, J.

    1985-01-01

    This paper describes a study conducted in laboratory on ultrasonic defect detection capabilities in primary pump casings and welds, in the framework of the joint research programme appointed by Framatome, EdF, CEA and Westinghouse, and devoted to improving the ultrasonic inspection of austenitic stainless steel components. Several transducers, including focussing probes and transmitter-receivers, were designed and compared on two 180 mm thick blocks strictly representative of the statically cast casing and of the electroslag welding, and containing various artificial and simulated reflectors. Detection trial results show that focussing probes can achieve fair sensitivity levels even through the full thickness, and appear promising as for on-site applications of this technique. 5 refs

  3. Miniscrew implant applications in contemporary orthodontics

    Directory of Open Access Journals (Sweden)

    Hong-Po Chang

    2014-03-01

    Full Text Available The need for orthodontic treatment modalities that provide maximal anchorage control but with minimal patient compliance requirements has led to the development of implant-assisted orthodontics and dentofacial orthopedics. Skeletal anchorage with miniscrew implants has no patient compliance requirements and has been widely incorporated in orthodontic practice. Miniscrew implants are now routinely used as anchorage devices in orthodontic treatment. This review summarizes recent data regarding the interpretation of bone data (i.e., bone quantity and quality obtained by preoperative diagnostic computed tomography (CT or by cone-beam computed tomography (CBCT prior to miniscrew implant placement. Such data are essential when selecting appropriate sites for miniscrew implant placement. Bone characteristics that are indications and contraindications for treatment with miniscrew implants are discussed. Additionally, bicortical orthodontic skeletal anchorage, risks associated with miniscrew implant failure, and miniscrew implants for nonsurgical correction of occlusal cant or vertical excess are reviewed. Finally, implant stability is compared between titanium alloy and stainless steel miniscrew implants.

  4. Metallic artifact in MRI after removal of orthopedic implants

    International Nuclear Information System (INIS)

    Bagheri, Mohammad Hadi; Hosseini, Mehrdad Mohammad; Emami, Mohammad Jafar; Foroughi, Amin Aiboulhassani

    2012-01-01

    Objective: The aim of the present study was to evaluate the metallic artifacts in MRI of the orthopedic patients after removal of metallic implants. Subjects and methods: From March to August 2009, 40 orthopedic patients operated for removal of orthopedic metallic implants were studied by post-operative MRI from the site of removal of implants. A grading scale of 0–3 was assigned for artifact in MR images whereby 0 was considered no artifact; and I–III were considered mild, moderate, and severe metallic artifacts, respectively. These grading records were correlated with other variables including the type, size, number, and composition of metallic devices; and the site and duration of orthopedic devices stay in the body. Results: Metallic susceptibly artifacts were detected in MRI of 18 of 40 cases (45%). Screws and pins in removed hardware were the most important factors for causing artifacts in MRI. The artifacts were found more frequently in the patients who had more screws and pins in the removed implants. Gender, age, site of implantation of the device, length of the hardware, composition of the metallic implants (stainless steel versus titanium), and duration of implantation of the hardware exerted no effect in producing metallic artifacts after removal of implants. Short TE sequences of MRI (such as T1 weighted) showed fewer artifacts. Conclusion: Susceptibility of metallic artifacts is a frequent phenomenon in MRI of patients upon removal of metallic orthopedic implants.

  5. Metallic artifact in MRI after removal of orthopedic implants.

    Science.gov (United States)

    Bagheri, Mohammad Hadi; Hosseini, Mehrdad Mohammad; Emami, Mohammad Jafar; Foroughi, Amin Aiboulhassani

    2012-03-01

    The aim of the present study was to evaluate the metallic artifacts in MRI of the orthopedic patients after removal of metallic implants. From March to August 2009, 40 orthopedic patients operated for removal of orthopedic metallic implants were studied by post-operative MRI from the site of removal of implants. A grading scale of 0-3 was assigned for artifact in MR images whereby 0 was considered no artifact; and I-III were considered mild, moderate, and severe metallic artifacts, respectively. These grading records were correlated with other variables including the type, size, number, and composition of metallic devices; and the site and duration of orthopedic devices stay in the body. Metallic susceptibly artifacts were detected in MRI of 18 of 40 cases (45%). Screws and pins in removed hardware were the most important factors for causing artifacts in MRI. The artifacts were found more frequently in the patients who had more screws and pins in the removed implants. Gender, age, site of implantation of the device, length of the hardware, composition of the metallic implants (stainless steel versus titanium), and duration of implantation of the hardware exerted no effect in producing metallic artifacts after removal of implants. Short TE sequences of MRI (such as T1 weighted) showed fewer artifacts. Susceptibility of metallic artifacts is a frequent phenomenon in MRI of patients upon removal of metallic orthopedic implants. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Readability of websites containing information on dental implants.

    Science.gov (United States)

    Jayaratne, Yasas S N; Anderson, Nina K; Zwahlen, Roger A

    2014-12-01

    It is recommended that health-related materials for patients be written at sixth grade level or below. Many websites oriented toward patient education about dental implants are available, but the readability of these sites has not been evaluated. To assess readability of patient-oriented online information on dental implants. Websites containing patient-oriented information on dental implants were retrieved using the Google search engine. Individual and mean readability/grade levels were calculated using standardized formulas. Readability of each website was classified as easy (≤ 6th-grade level) or difficult (≥ 10th grade level). Thirty nine websites with patient-oriented information on dental implant were found. The average readability grade level of these websites was 11.65 ± 1.36. No website scored at/below the recommended 6th grade level. Thirty four of 39 websites (87.18%) were difficult to read. The number of characters, words, and sentences on these sites varied widely. All patient-oriented websites on dental implants scored above the recommended grade level, and majority of these sites were "difficult" in their readability. There is a dire need to create patient information websites on implants, which the majority can read. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  8. 21 CFR 872.4850 - Ultrasonic scaler.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  9. Comparison of Subgingival and Peri-implant Microbiome in Chronic Periodontitis.

    Science.gov (United States)

    Zhang, Qian; Qin, Xue Yan; Jiang, Wei Peng; Zheng, Hui; Xu, Xin Li; Chen, Feng

    2015-09-01

    To analyse the microbia composition of 10 healthy dental implants and 10 chronic periodontitis patients. Subgingival plaque and peri-implant biofilm were sampled at the first molar site before and after implant restoration. The analysis was conducted by 454-prosequencing of bacterial V1 to V3 regions of 16S rDNA. Chronic periodontitis subjects showed greater bacterial diversity compared with implant subjects. The relative abundance of sixteen genera and twelve species differed significantly between implant and chronic periodontitis subjects. The genera Catonella, Desulfovibrio, Mogibacterium, Peptostreptococcus and Propionibacterium were present in higher abundance in chronic periodontitis subjects, while implant subjects had higher proportions of Brevundimonas and Pseudomonas species. Our results demonstrate that implant restoration changes the oral microbiota. The analysis suggests that periodontal bacteria can remain for a prolonged period of time at non-dental sites, from where they can colonise the peri-implant.

  10. Metals for bone implants. Part 1. Powder metallurgy and implant rendering.

    Science.gov (United States)

    Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad

    2014-10-01

    New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Ultrasonic recording and display techniques for the inspection of nuclear power plant

    International Nuclear Information System (INIS)

    Ely, R.W.; Hall, G.D.; Johnson, A.; Pascoe, P.T.

    1985-01-01

    This paper describes four systems: MDU, PURDIE, LAURA and DRUID, under development as ultrasonic recording and display techniques for the inspection of nuclear power plant. The MDU system plots either plan or sectional views of the component under test onto a bistable storage screen. PURDIE is a system based around a video cassette recorder which has been modified to record ultrasonic A-scan waveforms and probe positional information. MDU and PURDIE are portable systems, for use under difficult site conditions. They may be manufactured in quantity to satisfy the demanding inspection programmes of nuclear power stations. LAURA is a desk top replay system for the video cassette tapes produced on site by PURDIE. DRUID is a digital desk top replay/display system incorporating a high resolution colour graphics terminal and therefore offering more flexibility and improved display formats. The systems are compatible with each other and some component units are directly interchangeable between the various systems

  12. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonic deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  13. Soft Tissue Surgical Procedures for Optimizing Anterior Implant Esthetics

    Science.gov (United States)

    Ioannou, Andreas L.; Kotsakis, Georgios A.; McHale, Michelle G.; Lareau, Donald E.; Hinrichs, James E.; Romanos, Georgios E.

    2015-01-01

    Implant dentistry has been established as a predictable treatment with excellent clinical success to replace missing or nonrestorable teeth. A successful esthetic implant reconstruction is predicated on two fundamental components: the reproduction of the natural tooth characteristics on the implant crown and the establishment of soft tissue housing that will simulate a healthy periodontium. In order for an implant to optimally rehabilitate esthetics, the peri-implant soft tissues must be preserved and/or augmented by means of periodontal surgical procedures. Clinicians who practice implant dentistry should strive to achieve an esthetically successful outcome beyond just osseointegration. Knowledge of a variety of available techniques and proper treatment planning enables the clinician to meet the ever-increasing esthetic demands as requested by patients. The purpose of this paper is to enhance the implant surgeon's rationale and techniques beyond that of simply placing a functional restoration in an edentulous site to a level whereby an implant-supported restoration is placed in reconstructed soft tissue, so the site is indiscernible from a natural tooth. PMID:26124837

  14. Maintenance of marginal bone support and soft tissue esthetics at immediately provisionalized OsseoSpeed implants placed into extraction sites: 2-year results.

    Science.gov (United States)

    Noelken, Robert; Neffe, Bettina Anna; Kunkel, Martin; Wagner, Wilfried

    2014-02-01

    proof of principle for the preservation of marginal bone height at immediately placed and provisionalized OsseoSpeed implants after a follow-up of at least 12 months. Even implant sites with facial bony deficiencies can be successfully treated with a favorable esthetic outcome using the immediate implant insertion, immediate reconstruction, and immediate provisionalization technique. © 2013 John Wiley & Sons A/S.

  15. Influence of Implant Positions and Occlusal Forces on Peri-Implant Bone Stress in Mandibular Two-Implant Overdentures: A 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba

    2017-12-01

    The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.

  16. Hydrogen-isotope motion in scandium studied by ultrasonic measurements

    International Nuclear Information System (INIS)

    Leisure, R.G.; Schwarz, R.B.; Migliori, A.; Torgeson, D.R.; Svare, I.

    1993-01-01

    Resonant ultrasound spectroscopy has been used to investigate ultrasonic attenuation in single crystals of Sc, ScH 0.25 , and ScD 0.18 over the temperature range of 10--300 K for frequencies near 1 MHz. Ultrasonic-attenuation peaks were observed in the samples containing H or D with the maximum attenuation occurring near 25 K for ScH 0.25 and near 50 K for ScD 0.18 . The general features of the data suggest that the motion reflected in the ultrasonic attenuation is closely related to the low-temperature motion seen in nulcear-magnetic-resonance spin-lattice-relaxation measurements. The ultrasonic results were fit with a two-level-system (TLS) model involving tunneling between highly asymmetric sites. The relaxation of the TLS was found to consist of two parts: a weakly temperature-dependent part, probably due to coupling to electrons; and a much more strongly temperature-dependent part, attributed to multiple-phonon processes. The strongly temperature-dependent part was almost two orders of magnitude faster in ScH 0.25 than in ScD 0.18 , in accordance with the idea that tunneling is involved in the motion. Surprisingly, the weakly temperature-dependent part was found to be about the same for the two isotopes. The asymmetries primarily responsible for coupling the TLS to the ultrasound are attributed to interactions between hydrogen ions that lie on adjacent c axes. The results are consistent with an isotope-independent strength for the coupling of the TLS to the ultrasound

  17. Current status of grafts and implants in rhinoplasty: Part II. Homologous grafts and allogenic implants.

    Science.gov (United States)

    Sajjadian, Ali; Naghshineh, Nima; Rubinstein, Roee

    2010-03-01

    After reading this article, the participant should be able to: 1. Understand the challenges in restoring volume and structural integrity in rhinoplasty. 2. Identify the appropriate uses of various homologous grafts and allogenic implants in reconstruction, including: (a) freeze-dried acellular allogenic cadaveric dermis grafts, (b) irradiated cartilage grafts, (c) hydroxyapatite mineral matrix, (d) silicone implants, (e) high-density polyethylene implants, (f) polytetrafluoroethylene implants, and (g) injectable filler materials. 3. Identify the advantages and disadvantages of each of these biomaterials. 4. Understand the specific techniques that may aid in the use these grafts or implants. This review specifically addresses the use of homologous grafts and allogenic implants in rhinoplasty. It is important to stress that autologous materials remain the preferred graft material for use in rhinoplasty, owing to their high biocompatibility and low risk of infection and extrusion. However, concerns of donor-site morbidity, graft availability, and graft resorption have motivated the development and use of homologous and allogenic implants.

  18. Quality control of disinfection in ultrasonic baths

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Technical University Dresden (Germany). Faculty of Mechanical Engineering; Jatzwauk, L. [University Hospital of the Technical University Dresden (Germany). Abt. Krankenhaushygiene

    2002-07-01

    Numerous investigations under laboratory conditions confirmed the microbicidal efficacy of ultrasonication. Morphological destruction was shown on bacteria and fungi as well as on different virus species. Ultrasonic treatment seems to increase the effect of different antibiotics and disinfectants. Reasons for this synergism are largely unknown and uninvestigated, but the active principle seems to bee the dispersing effect of ultrasonication in combination with the destruction of cell wall or cell membrane. Unfortunately no validation of test conditions exists for most of these investigations, regarding intensity and frequency of ultrasonic waves, temperature of liquid medium and measurement of cavitation which is an essential part of physical and chemical effects in ultrasonic baths. In contrast to most laboratory experiments sound density of ultrasound for treatment of medical instruments is below 1 W/cm{sup 2} because instruments will be destroyed under stronger ultrasonic conditions. The frequency is below 50 KHz. This paper describes bactericidal and fungicidal effects of low- intensity-ultrasonication and its synergistical support to chemical disinfection. (orig.)

  19. Novel Cranial Implants of Yttria-Stabilized Zirconia as Acoustic Windows for Ultrasonic Brain Therapy.

    Science.gov (United States)

    Gutierrez, Mario I; Penilla, Elias H; Leija, Lorenzo; Vera, Arturo; Garay, Javier E; Aguilar, Guillermo

    2017-11-01

    Therapeutic ultrasound can induce changes in tissues by means of thermal and nonthermal effects. It is proposed for treatment of some brain pathologies such as Alzheimer's, Parkinson's, Huntington's diseases, and cancer. However, cranium highly absorbs ultrasound reducing transmission efficiency. There are clinical applications of transcranial focused ultrasound and implantable ultrasound transducers proposed to address this problem. In this paper, biocompatible materials are proposed for replacing part of the cranium (cranial implants) based on low porosity polycrystalline 8 mol% yttria-stabilized-zirconia (8YSZ) ceramics as acoustic windows for brain therapy. In order to assess the viability of 8YSZ implants to effectively transmit ultrasound, various 8YSZ ceramics with different porosity are tested; their acoustic properties are measured; and the results are validated using finite element models simulating wave propagation to brain tissue through 8YSZ windows. The ultrasound attenuation is found to be linearly dependent on ceramics' porosity. Results for the nearly pore-free case indicate that 8YSZ is highly effective in transmitting ultrasound, with overall maximum transmission efficiency of ≈81%, compared to near total absorption of cranial bone. These results suggest that 8YSZ polycrystals could be suitable acoustic windows for ultrasound brain therapy at 1 MHz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  1. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  2. Feasibility of subcutaneously implanted magnetic microarrays for site specific drug and gene targeting

    Directory of Open Access Journals (Sweden)

    M. Babincová

    2010-01-01

    Full Text Available The magnetic nanoparticles play a crucial role as a drug carriers in the human body. The wedge like magnetic arrays creatinga strongly non-homogeneous magnetic field are considered as a useful way to focus magnetic nanoparticles functionalizedwith various drugs or genes to desired sites. The goal of this study is to develop a numerical model of drug targetingusing subcutaneously implanted magnetic microarrays. The Finite Element Method is applied to solve partial differentialequations describing electromagnetic field (Maxwell equations and motion of these particles in a given magnetic field isobtained solving set of ordinary differential equations expressed by Newton law of motion. The results are encouragingshowing the potential to target drug to the tumour cell locally, without unwanted side effects.

  3. Effects of elevated ambient temperature on embryo implantation in rats

    African Journals Online (AJOL)

    Yomi

    2012-03-22

    Mar 22, 2012 ... ambient temperature leads to a delayed implantation and reduced number of implantation sites in. Sprague ... rates decrease after exposure to stress. One of the ..... implantation initiation time, support the previous findings.

  4. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  5. Retrospective success and survival rates of dental implants placed after a ridge preservation procedure.

    Science.gov (United States)

    Apostolopoulos, Peter; Darby, Ivan

    2017-04-01

    Ridge preservation is any procedure that takes place at the time of, or shortly after an extraction, to minimise resorption of the ridge and maximise bone formation within the socket. The aim of this project is to investigate the outcome of implant treatment following ridge preservation and compare it to an ungrafted implant control group. Following ethics approval, an electronic and manual search of patient records was conducted, and appropriate cases of implant placement following a ridge preservation procedure were identified. Forty-two patients with 51 implants at ridge-preserved sites were examined by one author (PA) with the following parameters assessed at each implant: pocket probing depth, bleeding on probing, presence/absence of plaque and radiographic bone loss. Clinical and radiographic findings were compared to an ungrafted implant control group and analysed by years in function. There was a 100% survival rate of implants in ridge-preserved sites. In the majority of cases, ridge preservation was performed in the anterior maxilla with a flap raised and the use of deproteinised bovine bone mineral and collagen membrane materials. The mean time in function was 31 (±24) months with a range of 2-102 months. Differences in the mean PPD, BOP, plaque index and radiographic bone loss were not statistically significant between implants at ridge-preserved or ungrafted sites. The overall success rate was around 58% for ungrafted implants and around 51% for implants in ridge-preserved sites. However, this difference was not statistically significant. In this retrospective study, implant placement at ridge-preserved sites was a predictable procedure that led to very high survival rates and similar success rates to implant placement at ungrafted sites. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Configuration and mobility of hydrogen implanted in aluminium

    International Nuclear Information System (INIS)

    Bugeat, J.P.; Chami, A.C.; Ligeon, E.

    1976-01-01

    Localization methods through channeling and nuclear reaction analysis using low energy ion beam were applied to the study of deuterium and hydrogen implanted in aluminium single crystals. It was shown that implanted hydrogen occupies a tetrahedral site in the lattice as far as the implantation temperature is lower than 175K. This fact is interpreted by considering an interaction between hydrogen and monovacancies created during the implantation [fr

  7. Non-destructive evaluation of concrete using ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Lawson, I.

    2008-06-01

    Ultrasonic pulse velocity is one of the most popular non-destructive techniques used in the assessment of concrete properties. This thesis investigates the relationship between using ultrasonic pulse velocity (UPV) and the conventional compressive strength tests to determine concrete uniformity. The specimens used in the studies were made of concrete with a paste content of 18% and the constituents of the specimens varied in different water-cement ratios (w/c). The UPV measurement and compressive strength tests were carried out at the concrete age of 2, 7, 15 and 28 days. The UPV and the compressive strength of concrete increase with age, but the growth rate varies with mixture proportion. A relationship curve is drawn between UPV and compressive strength for concrete having different w/c from 0.35 to 0.7. Tests were also performed using Ultrasonic Pulse Velocity Method (UPVM) in detecting discontinuity and determining its depth during the early age of concrete. The test results indicate that the UPVM can be used to assess the in-situ properties of concrete or for quality control on site. The accuracy of the UPVM in detecting discontinuities ranges from 55.75 to 98.70% for ages 3 to 28 (full strength) respectively. (au)

  8. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  9. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  10. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Neutrophil Responses to Sterile Implant Materials.

    Directory of Open Access Journals (Sweden)

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  12. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  13. Ultrasonic Linear Motor with Two Independent Vibrations

    Science.gov (United States)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  14. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author).

  15. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author)

  16. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  17. Heat generation during implant placement in low-density bone: effect of surgical technique, insertion torque and implant macro design.

    Science.gov (United States)

    Marković, Aleksa; Mišić, Tijana; Miličić, Biljana; Calvo-Guirado, Jose Luis; Aleksić, Zoran; Ðinić, Ana

    2013-07-01

    The study aimed to investigate the effect of surgical technique, implant macrodesign and insertion torque on bone temperature changes during implant placement. In the in vitro study, 144 self-tapping (blueSKY(®) 4 × 10 mm; Bredent) and 144 non-self-tapping (Standard implant(®) 4.1 × 10 mm; Straumann) were placed in osteotomies prepared in pig ribs by lateral bone condensing or bone drilling techniques. The maximum insertion torque values of 30, 35 and 40 Ncm were used. Real-time bone temperature measurement during implant placement was performed by three thermocouples positioned vertically, in tripod configuration around every osteotomy, at a distance of 5 mm from it and at depths of 1, 5 and 10 mm. Data were analysed using Kruskal-Wallis, Mann-Whitney U-tests and Regression analysis. Significant predictor of bone temperature at the osteotomy depth of 1 mm was insertion torque (P = 0.003) and at the depth of 10-mm implant macrodesign (P = 0.029), while no significant predictor at depth of 5 mm was identified (P > 0.05). Higher insertion torque values as well as non-self-tapping implant macrodesign were related to higher temperatures. Implant placement in sites prepared by bone drilling induced significantly higher temperature increase (P = 0.021) compared with bone condensing sites at the depth of 5 mm, while no significant difference was recorded at other depths. Compared with 30 Ncm, insertion torque values of 35 and 40 Ncm produced significantly higher temperature increase (P = 0.005; P = 0.003, respectively) at the depth of 1 mm. There was no significant difference in temperature change induced by 35 and 40 Ncm, neither by implant macrodesign at all investigated depths (P > 0.05). Placement of self-tapping implants with low insertion torque into sites prepared by lateral bone condensing technique might be advantageous in terms of thermal effect on bone. © 2012 John Wiley & Sons A/S.

  18. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  19. Revisiting the stability of mini-implants used for orthodontic anchorage

    Directory of Open Access Journals (Sweden)

    Chung-Chen Jane Yao

    2015-11-01

    Conclusion: This study revealed that once the dental surgeon becomes familiar with the procedure, the stability of orthodontic mini-implants depends on the type of mini-implant, age of the patient, implantation site, and the healing time of the mini-implant. Miniplates are a more feasible anchorage system when miniscrews fail repeatedly.

  20. A study on the resistance at bone-implant interface during implant insertion in a cadaver goat jaw model

    Directory of Open Access Journals (Sweden)

    Goutam Das

    2016-01-01

    Full Text Available Background: The aim of the study is to determine the resistance at bone-implant interface during insertion of dental implant. Materials and Methods: Freshly procured cadaver goat mandibles were collected from slaughterhouses. Four dental implants of two different diameters were inserted into osteotomized sites of the goat mandibles. The gradual changes in resonance frequency (RF were recorded in RF analyzer for the five consecutive turns of implant insertion. Results and Observations: RF was found to be positively correlated with diameter of dental implants. Conclusion: RF analysis can be used to determine the type of resistance the implant faces during insertion and the kind of bone density through which it passes. It gives a forecast of expected initial stability.

  1. [Full dental rehabilitation of a patient with implantable cardioverter defibrillator].

    Science.gov (United States)

    Imre, Ildikó; Tóth, Zsuzsanna

    2012-06-01

    During dental rehabilitation of a patient with ICD, an upper telescope retained overdenture with acrylic baseplate and lower cantilever bridges were constructed. In the consultation following the anamnesis and the clinical examination, the cardiologist did not believe antibiotic profilaxis to be necessary, adding that it is advisable to avoid the use of ultrasonic depurator and electrocauter. Nowadays after saving the life the improving of patient's better quality of life is an important aspect. The risk of ICD-implantation is minimal however, not negligible, the patient can pursue a way of life free of limitation. According to the latest trends, the number of ICD-implantations will increase exponentially in the near future, due to the aging of the population, the simplification and safeness of implantation and the increase of patients who can be treated with the device. In case of arritmia or putative dysfunction, the latest ICD-s are able to send emergency alert to the arritmia centre with the help of an outer transmitter. Probably the system will completely change the follow-up of patients with ICD within the next few years, clinical researches of its efficiency are going on at present.

  2. Detailed simulation of ultrasonic inspections

    International Nuclear Information System (INIS)

    Chaplin, K.R.; Douglas, S.R.; Dunford, D.

    1997-01-01

    Simulation of ultrasonic inspection of engineering components have been performed at the Chalk River Laboratories of AECL for over 10 years. The computer model, called EWE for Elastic Wave Equations, solves the Elastic Wave Equations using a novel finite difference scheme. It simulates the propagation of an ultrasonic wave from the transducer to a flaw, the scatter of waves from the flaw, and measurement of signals at a receive transducer. Regions of different materials, water and steel for example, can be simulated. In addition, regions with slightly different material properties from the parent material can be investigated. The two major types of output are displays of the ultrasonic waves inside the component and the corresponding A-scans. EPRI and other organizations have used ultrasonic models for: defining acceptable ultrasonic inspection procedures, designing and evaluating inspection techniques, and for quantifying inspection reliability. The EWE model has been applied to the inspection of large pipes in a nuclear plant, gas pipeline welds and steam generator tubes. Most recent work has dealt with the ultrasonic inspection of pressure tubes in CANDU reactors. Pressure tube inspections can reliably detect and size defects; however, there are improvements that can be made. For example, knowing the sharpness of a flaw-tip is crucial for fitness for service assessments. Computer modelling of the ultrasonic inspection of flaws with different root radius has suggested inspection techniques that provide flaw tip radius information. A preliminary investigation of these methods has been made in the laboratory. The basis for the model will be reviewed at the presentation. Then the results of computer simulations will be displayed on a PC using an interactive program that analyzes simulated A-scans. This software tool gives inspection staff direct access to the results of computer simulations. (author)

  3. Pyrosequencing of supra- and subgingival biofilms from inflamed peri-implant and periodontal sites.

    Science.gov (United States)

    Schaumann, Simone; Staufenbiel, Ingmar; Scherer, Ralph; Schilhabel, Markus; Winkel, Andreas; Stumpp, Sascha Nico; Eberhard, Jörg; Stiesch, Meike

    2014-12-17

    To investigate the microbial composition of biofilms at inflamed peri-implant and periodontal tissues in the same subject, using 16S rRNA sequencing. Supra- and submucosal, and supra- and subgingival plaque samples were collected from 7 subjects suffering from diseased peri-implant and periodontal tissues. Bacterial DNA was isolated and 16S rRNA genes were amplified, sequenced and aligned for the identification of bacterial genera. 43734 chimera-depleted, denoised sequences were identified, corresponding to 1 phylum, 8 classes, 10 orders, 44 families and 150 genera. The most abundant families or genera found in supramucosal or supragingival plaque were Streptoccocaceae, Rothia and Porphyromonas. In submucosal plaque, the most abundant family or genera found were Rothia, Streptococcaceae and Porphyromonas on implants. The most abundant subgingival bacteria on teeth were Prevotella, Streptococcaceae, and TG5. The number of sequences found for the genera Tannerella and Aggregatibacter on implants differed significantly between supra- and submucosal locations before multiple testing. The analyses demonstrated no significant differences between microbiomes on implants and teeth in supra- or submucosal and supra- or subgingival biofilms. Diseased peri-implant and periodontal tissues in the same subject share similiar bacterial genera and based on the analysis of taxa on a genus level biofilm compositions may not account for the potentially distinct pathologies at implants or teeth.

  4. The Austrian breast implant register: recent trends in implant-based breast surgery.

    Science.gov (United States)

    Wurzer, Paul; Rappl, Thomas; Friedl, Herwig; Kamolz, Lars-Peter; Spendel, Stephan; Hoflehner, Helmut; Parvizi, Daryousch

    2014-12-01

    Due to the fact that the number of breast implant surgeries for cosmetic and medical purposes is rising yearly, a discussion about the quality of service for both patients and physicians is more important than ever. To this end, we reviewed the Austrian Breast Implant Register with one specific question in mind: What are the trends? In the statistical analysis of the Austrian Breast Implant Register, we were able to identify 13,112 registered breast implants between 2004 and 2012. The whole dataset was then divided into medical and cosmetic groups. We focused on device size, surface characteristics, filling material, device placement and incision site. All factors were considered for all examined years. In summary, the most used device had a textured surface (97 %) and silicone gel as the filling material (93 %). The mean size of implants for the cosmetic group was 240 cc, placement was submuscular (58 %) and the incision site was inframammary (67 %). In the medical group, the mean size was 250 cc. Yearly registrations had their peak in 2008 (1,898 registered devices); from this year on, registrations decreased annually. A slight trend away from subglandular placement in the cosmetic group was noted. Also, the usage of implants with polyurethane surface characteristics has increased since 2008. The smooth surface implants had a peak usage in 2006 and their usage decreased steadily from then on whereas the textured surface was steady over the years. Keeping the problems related to the quality of breast implants in mind, we could recommend an obligatory national register. Organisations of surgeons and governments should develop and establish these registers. Furthermore, an all-encompassing international register should be established by the European Union and the American FDA (Food and Drug Administration); this might be useful in comparing the individual country registers and also would help in delivering "evidence based" medicine in cosmetic and medical procedures

  5. Two-stage implant systems.

    Science.gov (United States)

    Fritz, M E

    1999-06-01

    Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of

  6. Survival of Implants in Immediate Extraction Sockets of Anterior Teeth: Early Clinical Results.

    Science.gov (United States)

    Sabir, Mohammad; Alam, Mohammad Nazish

    2015-06-01

    The aims and objectives of this study were placement of implants in freshly extracted sockets of anterior teeth and to evaluate the implant stability, peri-implant radiolucency and gingival inflammation around implant over a short period of 30 months. A total of 12 patients (8 male and 4 female), ranging in the age from 20 to 50 years, from March 2007 to June 2007, were evaluated for immediate implant placement into 22 fresh extraction sockets. Only maxillary and mandibular anterior teeth/roots (central incisors, lateral incisors and canines) were considered for replacement with implants. One piece implant with integrated abutment and integrated surface, non-submerged, threaded and tapered at apical 5 mm, sand-blasted and acid etched surfaced implants (HI-TEC TRX-OP Implants of Life Care Company) were used. The mobility was not present in any of the implants at all the follow up visits. There were 2 implants at 6 month, 1 implant at 12 month, 1 implant at 18 month visits, showing peri-implant radiolucency at some sites at bone to implant contact site. Severe gingival inflammation was not observed in any of the implant site. At every follow-up visit, every implant met the criteria of success and none was found to be failed over a 30 months duration i.e. 100% success rate was achieved by implants in immediate extraction socket. The success rate of implant survival in this study was found 100%. These implants have fulfilled all the criteria of implant success and based on the defined criteria, the success rate of implants placed in immediate extraction sockets of anterior teeth compared favorably with the conventional implants. The early results of the present study showed that high survival rates with the implants in immediate extraction sockets can be achieved.

  7. The effects of ultrasonic solidification on aluminum

    OpenAIRE

    Đorđević Slavko 1

    2003-01-01

    The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  8. The effects of ultrasonic solidification on aluminum

    Directory of Open Access Journals (Sweden)

    Đorđević Slavko 1

    2003-01-01

    Full Text Available The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  9. Ultrasonic characterization of three animal mammary tumors from three-dimensional acoustic tissue models

    Science.gov (United States)

    Mamou, Jonathan M.

    This dissertation investigated how three-dimensional (3D) tissue models can be used to improve ultrasonic tissue characterization (UTC) techniques. Anatomic sites in tissue responsible for ultrasonic scattering are unknown, which limits the potential applications of ultrasound for tumor diagnosis. Accurate 3D models of tumor tissues may help identify the scattering sites. Three mammary tumors were investigated: a rat fibroadenoma, a mouse carcinoma, and a mouse sarcoma. A 3D acoustic tissue model, termed 3D impedance map (3DZM), was carefully constructed from consecutive histologic sections for each tumor. Spectral estimates (scatterer size and acoustic concentration) were obtained from the 3DZMs and compared to the same estimates obtained with ultrasound. Scatterer size estimates for three tumors were found to be similar (within 10%). The 3DZMs were also used to extract tissue-specific scattering models. The scattering models were found to allow clear distinction between the three tumors. This distinction demonstrated that UTC techniques may be helpful for noninvasive clinical tumor diagnosis.

  10. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  11. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  12. Stresses in ultrasonically assisted bone cutting

    International Nuclear Information System (INIS)

    Alam, K; Mitrofanov, A V; Silberschmidt, V V; Baeker, M

    2009-01-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  13. Group D. Initiator paper. Implants--peri-implant (hard and soft tissue) interactions in health and disease: the impact of explosion of implant manufacturers.

    Science.gov (United States)

    Ivanovski, Saso

    2015-01-01

    1. The best-documented implants have a threaded solid screw-type design and are manufactured from commercially pure (grade IV) titanium. There is good evidence to support implants ≥ 6 mm in length, and ≥ 3 mm in diameter. 2. Integrity of the seal between the abutment and the implant is important for several reasons, including minimization of mechanical and biological complications and maintaining marginal bone levels. Although the ideal design features of the implant-abutment connection have not been determined, an internal connection, micro-grooves at the implant collar, and horizontal offset of the implant-abutment junction (platform switch) appear to impart favorable properties. 3. Implants with moderately rough implant surfaces provide advantages over machined surfaces in terms of the speed and extent of osseointegration. While the favorable performances of both minimally and moderately rough surfaces are supported by long-term data, moderately rough surfaces provide superior outcomes in compromised sites, such as the posterior maxilla. 4. Although plaque is critical in the progression of peri-implantitis, the disease has a multi-factorial aetiology, and may be influenced by poor integrity of the abutment/implant connection. Iatrogenic factors, such as the introduction of a foreign body. (e.g., cement) below the mucosal margin, can be important contributors. 5. Clinicians should exercise caution when using a particular implant system, ensuring that the implant design is appropriate and supported by scientific evidence. Central to this is access to and participation in quality education on the impact that implant characteristics can have on clinical outcomes. Caution should be exercised in utilizing non-genuine restorative componentry that may lead to a poor implant-abutment fit and subsequent technical and biological complications.

  14. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  15. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  16. The Efficacy of Supportive Peri-Implant Therapies in Preventing Peri-Implantitis and Implant Loss: a Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ausra Ramanauskaite

    2016-09-01

    Full Text Available Objectives: To study the efficacy of supportive peri-implant therapies in preventing clinical and radiological signs of peri-implantitis and implant loss. Material and Methods: Longitudinal human studies, published between January 1, 2006, and February 1, 2016, were included based on an electronic search using MEDLINE and EMBASE databases and complemented by a manual search. Articles were included only if 1 they comprised a group of patients involved in/adhering to regular supportive peri-implant therapies (SPTs and a control group without such therapies or with poor adherence to them, 2 the protocol of the SPTs was clearly described and 3 the outcome was indicated by means of clinical/radiological changes or implant loss. Results: After initially identifying a total of 710 titles and abstracts, 12 full text articles were selected for eligibility assessment. Seven studies, three prospective and four retrospective, fulfilled the inclusion criteria for this review. The frequency of recall visits varied between the studies from a minimum of one visit every three months to an individually tailored regimen. In all the studies a lack of SPTs or poor adherence to them resulted in significantly higher frequencies of sites with mucosal bleeding, deepened peri-implant pockets or alveolar bone loss. In line with the above, a lack of/poor adherence to SPTs was associated with higher implant loss. Conclusions: To prevent peri-implantitis, an individually tailored supportive programme based on patient motivation and re-instruction in oral hygiene measures combined with professional implant cleaning seem to be crucial.

  17. Laser annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    White, C.W.; Narayan, J.; Young, R.T.

    1978-11-01

    The physical and electrical properties of ion implanted silicon annealed with high powered ruby laser radiation are summarized. Results show that pulsed laser annealing can lead to a complete removal of extended defects in the implanted region accompanied by incorporation of dopants into lattice sites even when their concentration far exceeds the solid solubility limit

  18. Evaluation of linear measurements of implant sites based o head orientation during acquisition: An ex vivo study using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sabban, Hanadi; Mahdian, Mina; Dhingra, Ajay; Lurie, Alan G.; Tadinada, Aditya [University of Connecticut School of Dental Medicine, Farmington (United States)

    2015-06-15

    This study evaluated the effect of various head orientations during cone-beam computed tomography (CBCT) image acquisition on linear measurements of potential implant sites. Six dry human skulls with a total of 28 implant sites were evaluated for seven different head orientations. The scans were acquired using a Hitachi CB-MercuRay CBCT machine. The scanned volumes were reconstructed. Horizontal and vertical measurements were made and were compared to measurements made after simulating the head position to corrected head angulations. Data was analyzed using a two-way ANOVA test. Statistical analysis revealed a significant interaction between the mean errors in vertical measurements with a marked difference observed at the extension head position (P<0.05). Statistical analysis failed to yield any significant interaction between the mean errors in horizontal measurements at various head positions. Head orientation could significantly affect the vertical measurements in CBCT scans. The main head position influencing the measurements is extension.

  19. Method and apparatus to characterize ultrasonically reflective contrast agents

    Science.gov (United States)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  20. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  1. Ultrasonic characterization of microstructure in powder metal alloy

    Science.gov (United States)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  2. Integrate models of ultrasonics examination for NDT expertise

    International Nuclear Information System (INIS)

    Calmon, P.; Lhemery, A.; Lecoeur-Taibi, I.; Raillon, R.

    1996-01-01

    For several years, the French Atomic Energy Commission (CEA) has developed a system called CIVA for multiple-technique NDE data acquisition and processing. Modeling tools for ultrasonic non-destructive testing have been developed and implemented within this allowing direct comparison between measured and predicted results. These models are not only devoted to laboratory uses bus also must be usable by ultrasonic operators without special training in simulation techniques. Therefore, emphasis has been on finding the best compromise between as accurate as possible quantitative predictions and ease, simplicity and speed, crucial requirements in the industrial context. This approach has led us to develop approximate models for the different phenomena involved in ultrasonic inspections: radiation, transmission through interfaces, propagation, scattering by defects and boundaries, reception etc. Two main models have been implemented, covering the most commonly encountered NDT configurations. At first, these two models are shortly described. Then, two examples of their applications are shown. Based on the same underlying theories, specific modeling tools are proposed to industrial partners to answer special requirements. To illustrate this, an example is given of a software used a tool to help experts's interpretation during on-site french PWR vessel inspections. Other models can be implemented in CIVA when some assumptions made in the previous models Champ-Sons and Mephisto are not fulfilled, e. g., when less-conventional testing configurations are concerned. We briefly presents as an example a modeling study of echoes arising from cladded steel surfaces achieved in the laboratory. (authors)

  3. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  4. Periodontal ligament formation around different types of dental titanium implants. I. The self-tapping screw type implant system

    DEFF Research Database (Denmark)

    Warrer, K; Karring, T; Gotfredsen, K

    1993-01-01

    The aim of this study was to determine if a periodontal ligament can form around self-tapping, screw type titanium dental implants. Implants were inserted in contact with the periodontal ligament of root tips retained in the mandibular jaws of 7 monkeys. In each side of the mandible, 1 premolar......, a periodontal ligament can form on self-tapping, screw type titanium dental implants in areas where a void is present between the surrounding bone and the implant at the time of insertion....... and 2 molars were removed in such a manner that in approximately half the cases, the root tips were retained. Following healing, the experimental areas were examined on radiographs, and sites were selected for the insertion of the implants, so that every second implant would have a close contact...

  5. Certain strength test of concrete with ultrasonic waves by better evaluation

    International Nuclear Information System (INIS)

    Roethig, H.

    1978-01-01

    As a result of the increasing demands put to the quality control of buildings and concrete assembly units, ultrasonic testing has found an internationally ever wider application in building industries and facilities in recent years. The ultrasonic method is in its nature analogous to the application with metallic materials, particularly suitable for recognizing defects and poor quality concrete and an increased application in this direction is most promising. However, it is equally important for concrete plants and building sites to certify the specified concrete quality or a required degree of hardness which can be determined by the pressure resistance of a test cube according to the valid specifications. Therefore the non-destructive pressure resistance determination of concrete is of great practical interest and ultrasonic testing is at present, above all being used for this purpose. It is very suitable in many cases for calibration on cubes of the same concrete as the assembly units or buildings to be tested. The quality of the calibration gives a ruling determination of the accuracy and reliability of the non-destructively determined pressure resistance values. (orig./RW) [de

  6. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  7. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  8. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    open up new possibilities to modify the implant site and tailor it to a desirable bioactivity.

  9. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  10. Effect of ultra-low doses, ASIR and MBIR on density and noise levels of MDCT images of dental implant sites

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, Gerlig; Schullian, Peter [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Al-Shawaf, Reema; Al-Sadhan, Ra' ed; Al-Ekrish, Asma' a A. [King Saud University, Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, Riyadh (Saudi Arabia); Hoermann, Romed [Medical University of Innsbruck, Division of Clinical and Functional Anatomy, Innsbruck (Austria)

    2017-05-15

    Differences in noise and density values in MDCT images obtained using ultra-low doses with FBP, ASIR, and MBIR may possibly affect implant site density analysis. The aim of this study was to compare density and noise measurements recorded from dental implant sites using ultra-low doses combined with FBP, ASIR, and MBIR. Cadavers were scanned using a standard protocol and four low-dose protocols. Scans were reconstructed using FBP, ASIR-50, ASIR-100, and MBIR, and either a bone or standard reconstruction kernel. Density (mean Hounsfield units [HUs]) of alveolar bone and noise levels (mean standard deviation of HUs) was recorded from all datasets and measurements were compared by paired t tests and two-way ANOVA with repeated measures. Significant differences in density and noise were found between the reference dose/FBP protocol and almost all test combinations. Maximum mean differences in HU were 178.35 (bone kernel) and 273.74 (standard kernel), and in noise, were 243.73 (bone kernel) and 153.88 (standard kernel). Decreasing radiation dose increased density and noise regardless of reconstruction technique and kernel. The effect of reconstruction technique on density and noise depends on the reconstruction kernel used. (orig.)

  11. Effect of ultra-low doses, ASIR and MBIR on density and noise levels of MDCT images of dental implant sites

    International Nuclear Information System (INIS)

    Widmann, Gerlig; Schullian, Peter; Al-Shawaf, Reema; Al-Sadhan, Ra'ed; Al-Ekrish, Asma'a A.; Hoermann, Romed

    2017-01-01

    Differences in noise and density values in MDCT images obtained using ultra-low doses with FBP, ASIR, and MBIR may possibly affect implant site density analysis. The aim of this study was to compare density and noise measurements recorded from dental implant sites using ultra-low doses combined with FBP, ASIR, and MBIR. Cadavers were scanned using a standard protocol and four low-dose protocols. Scans were reconstructed using FBP, ASIR-50, ASIR-100, and MBIR, and either a bone or standard reconstruction kernel. Density (mean Hounsfield units [HUs]) of alveolar bone and noise levels (mean standard deviation of HUs) was recorded from all datasets and measurements were compared by paired t tests and two-way ANOVA with repeated measures. Significant differences in density and noise were found between the reference dose/FBP protocol and almost all test combinations. Maximum mean differences in HU were 178.35 (bone kernel) and 273.74 (standard kernel), and in noise, were 243.73 (bone kernel) and 153.88 (standard kernel). Decreasing radiation dose increased density and noise regardless of reconstruction technique and kernel. The effect of reconstruction technique on density and noise depends on the reconstruction kernel used. (orig.)

  12. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  13. Mechanisation of ultrasonic testing in nuclear power plants

    International Nuclear Information System (INIS)

    Seifert, W.

    1979-01-01

    Mechanical ultrasonic testing devices should meet the following requirements: Remote-controlled or automatic guidance of the US test systems at the test site according to given test parameters; exact positioning of the test system at the test site; high start-up accuracy and reproducibility; access to test regions that are hardly accessible or inaccessible for manual inspection; reduction of the radiation exposure of the operating personnel, and short assembling and testing time. The manipulators developed according to these requirements permit meandering test courses of the US test system on the pressure vessel surface or circular or semicircular courses around the nozzles or pipes in order to test welds and pipe joints. Every movement of the test system is taken up by a transmitting apparatus. (orig./HP) [de

  14. Ultrasonic characterization of yogurt fermentation process

    OpenAIRE

    IZBAIM , DRIS; FAIZ , BOUAZZA; MOUDDEN , ALI; MALAININE , MOHAMED; ABOUDAOUD , Idriss

    2012-01-01

    International audience; The objective of this work is to characterize the fermentation of yogurt based on an ultrasonic technique. Conventionally, the acidity of the yogurt is measured by a pH meter to determine the progress of fermentation. However, the pH meter should be cleaned and calibrated for each measurement and, therefore, this method is not practical. In this regard, ultrasonic techniques are fast, non-invasive and inexpensive. The measurement of ultrasonic parameters such as amplit...

  15. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    International Nuclear Information System (INIS)

    Yadawa, P K

    2012-01-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB 2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB 2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB 2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  16. On-Site Evaluation of Large Components Using Saft and Tofd Ultrasonic Imaging

    Science.gov (United States)

    Spies, M.; Rieder, H.; Dillhöfer, A.

    2011-06-01

    This contribution addresses ultrasonic inspection and evaluation of welds in large components. An approach has been developed in order to enhance the reliability of welded ship propellers. The Synthetic Aperture Focusing Technique (SAFT) has been modified with regard to the curved surfaces and the sound attenuation of cast Ni-Al bronzes. For weld inspection in steels the Time-of-Flight Diffraction technique (TOFD) can provide additional information for specific defect orientations. Both techniques have been combined in view of the determination of defect sizes and shapes in longitudinal welds of pipes with diameters of up to 48 inches. Details on the inspection and evaluation concepts as well as experimental results are presented.

  17. Studies on Section XI ultrasonic repeatability

    International Nuclear Information System (INIS)

    Jamison, T.D.; McDearman, W.R.

    1981-05-01

    A block representative of a nuclear component has been welded containing intentional defects. Acoustic emission data taken during the welding correlate well with ultrasonic data. Repetitive ultrasonic examinations have been performed by skilled operators using a procedure based on that desribed in ASME Section XI. These examinations were performed by different examination teams using different ultrasonic equipment in such a manner that the effects on the repeatability of the ultrasonic test method caused by the operator and by the use of different equipment could be estimated. It was tentatively concluded that when considering a large number of inspections: (1) there is no significant difference in indication sizing between operators, and (2) there is a significant difference in amplitude and defect sizing when instruments having different, Code acceptable operating characteristics are used. It was determined that the Section XI sizing parameters follow a bivariate normal distribution. Data derived from ultrasonically and physically sizing indications in nuclear components during farication show that the Section XI technique tends to overestimate the size of the reflectors

  18. Uncertainty estimation of ultrasonic thickness measurement

    International Nuclear Information System (INIS)

    Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain

    2009-01-01

    The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)

  19. Stability of dental implants in grafted bone in the anterior maxilla: longitudinal study.

    LENUS (Irish Health Repository)

    Al-Khaldi, Nasser

    2010-06-06

    We aimed to assess the stability over time of dental implants placed in grafted bone in the maxilla using resonance frequency analysis, and to compare the stability of implants placed in grafted and non-grafted bone. Data were collected from 23 patients (15 test and 8 controls) in whom 64 implants (Brånemark system, Nobel Biocare, Göteborg, Sweden) were placed in accordance with the two-stage surgical protocol. In the test group 36 fixtures were placed in grafted bone, and in the control group 28 fixtures were placed in non-grafted bone. Resonance frequency analysis was used to assess the test sites at implant placement and abutment connection. The mean (SD) implant stability quotient (ISQ) for test sites at the time of implant placement was 61.91 (6.68), indicating excellent primary stability, and was 63.53 (5.76) at abutment connection. ISQ values at abutment connection were similar for test and control sites. Implants placed in grafted bone compared favourably with those in non-grafted bone, and showed excellent stability.

  20. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic fluids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is ...

  1. A contribution to phased array ultrasonic inspection of welds: defect patterns and sizing capability

    Energy Technology Data Exchange (ETDEWEB)

    Ciorau, P., E-mail: peter.ciorau@opg.com [Ontario Power Generation Inc., Inspection, Maintenance and Commercial Services, Tiverton, Ontario (Canada)

    2008-07-01

    The paper presents defect patterns for weld inspection detected with phased array ultrasonic technology (PAUT). The sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 70% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and comparable to time of flight diffraction (TOFD) ideal tolerances. (author)

  2. A contribution to phased array ultrasonic inspection of welds: defect patterns and sizing capability

    International Nuclear Information System (INIS)

    Ciorau, P.

    2008-01-01

    The paper presents defect patterns for weld inspection detected with phased array ultrasonic technology (PAUT). The sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 70% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and comparable to time of flight diffraction (TOFD) ideal tolerances. (author)

  3. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  4. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  5. Ultrasonic attenuation in superconducting zinc

    International Nuclear Information System (INIS)

    Auluck, S.

    1978-01-01

    The differences in the Zn ultrasonic attenuation data of different workers are analyzed. The superconducting energy gaps deduced from our analysis of the ultrasonic-attenuation data of Cleavelin and Marshall are consistent with the gaps deduced from the knowledge of the Fermi surface and the electron-phonon mass enhancement factor

  6. Long time follow up of implant therapy and treatment of peri-implantitis.

    Science.gov (United States)

    Roos-Jansåker, Ann-Marie

    2007-01-01

    Dental implants have become an often used alternative to replace missing teeth, resulting in an increasing percentage of the adult population with implant supported prosthesis. Although favourable long-term results of implant therapy have been reported, infections occur. Until recently few reports included data on peri-implant infections, possibly underestimating this complication of implant treatment. It is possible that some infections around implants develop slowly and that with time peri-implantitis will be a common complication to implant therapy as an increasing number of patients have had their implants for a long time (>10 years). Data on treatment of peri-implant lesions are scarce leaving the clinician with limited guidance regarding choice of treatment. The aim of this thesis was to study the frequency of implant loss and presence of peri-implant lesions in a group of patients supplied with Brånemark implants 9-14 years ago, and to relate these events to patient and site specific characteristics. Moreover three surgical treatment modalities for peri-implantitis were evaluated. The thesis is based on six studies; Studies I-III included 218 patients and 1057 implants followed for 9-14 years evaluating prevalence of, and factors related to implant loss (Paper I) and prevalence of peri-implant infections and related factors (Paper I-III). Study IV is a review describing different treatment modalities of peri-implant infections. Study V is a prospective cohort study involving 36 patients and 65 implants, evaluating the use of a bone substitute with or without the use of a resorbable membrane. Study VI is a case series with 12 patients and 16 implants, evaluating a bone substitute in combination with a resorbable membrane and submerged healing. This thesis demonstrated that: After 9-14 years the survival rates of dental implants are high (95.7%). Implant loss seems to cluster within patients and are related to periodontitis evidenced as bone loss on

  7. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  8. Infectious complications of pediatric cochlear implants are highly influenced by otitis media.

    Science.gov (United States)

    Vila, Peter M; Ghogomu, Nsangou T; Odom-John, Audrey R; Hullar, Timothy E; Hirose, Keiko

    2017-06-01

    Determine the incidence of ear infections in cochlear implant patients, evaluate the contribution of otitis media to complications, describe the bacteriology of otitis media in the cochlear implant population, the treatment provided at our center, and the long term outcome. Data collected included age at implantation, history of otitis media or ear tubes, etiology of hearing loss, inner ear anatomy, postoperative infections, time to infection, route of antibiotic administration, and interventions for infections. Categories of infection were acute otitis media, otitis media with effusion, tube otorrhea, meningitis, scalp cellulitis, and infection at the implant site. Middle ear infections were diagnosed in 37% of implanted ears. Extension of middle ear infections into the implant site occurred in 2.8% of all implants (n = 16). Of the 16 infected devices, 10 were successfully treated with antibiotic therapy and did not require explantation. The retained implant group and explanted group both included some middle ear microbes such as Haemophilus influenzae and Streptococcus pneumoniae, as well as skin flora such as Staphylococcus aureus. Otitis media in pediatric cochlear implant patients is a common event and usually does not lead to complications of the cochlear implant. However, when the ear infection spreads to the scalp and the implant site, it is still possible to eliminate the infection using antibiotic therapy, particularly when treatment is directed to the specific organism that is recovered from the infected space and the duration and route of antibiotic treatment is carefully considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ultrasonic assisted hot metal powder compaction.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  11. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  12. Single-tooth implant restorations in the esthetic zone--contemporary concepts for optimization and maintenance of soft tissue esthetics in the replacement of failing teeth in compromised sites.

    Science.gov (United States)

    Mankoo, Tidu

    2007-01-01

    In recent years, implant dentistry has undergone a profound shift in emphasis. The focus evolved first from a surgically driven approach to a prosthetically driven approach and now to a more biologically driven approach with the goal of optimizing and maintaining esthetics. While traditional implant protocols are well established for management of implants placed in healed edentulous sites, the data available offer little clarity on the factors and procedures for long-term esthetic success, particularly in terms of maintained stable soft tissue outcomes around implant restorations in the esthetic zone. Unfortunately, the 90%+ success rates indicated in most studies of dental implant systems today do not represent the success of the esthetic outcome. This has created a demand--certainly among clinicians in private practice focused on the ongoing maintenance of esthetic outcomes--for clear treatment protocols to achieve esthetic results that are not only predictable and consistent but that can withstand the test of time.

  13. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2014-01-01

    Full Text Available Ultrasonic vibration assisted micro end grinding (UAMEG is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.

  14. Lumber defect detection by ultrasonics

    Science.gov (United States)

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  15. Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Eng-Poh, E-mail: epng@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Awala, Hussein [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ghoy, Jia-Pei [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Vicente, Aurélie [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ling, Tau Chuan [Institute of Biological Sciences, Faculty of Science, University of Malaya (Malaysia); Ng, Yun Hau [School of Chemical Engineering, The University of New South Wales, Sydney (Australia); Mintova, Svetlana [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Adam, Farook, E-mail: farook@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia)

    2015-06-01

    Synthesis of EMT zeolite nanocrystals from rice husk ash biomass (RHA) under continuous ultrasonic irradiation is reported. The aging, nucleation and crystallization stages of EMT zeolite in the system were monitored at ambient temperature, and compared with the conventional hydrothermal method. It was found that ultrasonic wave induced rapid crystal growth of the nanosized EMT zeolite. Complete crystallization of EMT nanocrystals was achieved within 24 h which was much faster than conventional hydrothermal synthesis (36 h). Furthermore, XRD and TEM analyses revealed that more nuclei were formed during the nucleation stage, allowing the preparation of smaller zeolite nanocrystals with high crystallinity. The results also showed that sonocrystallization produced EMT zeolite with high yield (ca. 80%). The ultrasound-prepared EMT nanocrystals were also found to have high porosity and high hydrophilicity, making the material promising for water sorption applications including vapor sensing, heat pump and adsorption technologies. - Highlights: • Nanosized EMT zeolites are formed from rice husk ash under ultrasonic irradiation. • The effects of ultrasonic waves in nanosized EMT zeolite synthesis are studied. • Ultrasound induces rapid crystal growth and produces high zeolite yield. • Smaller zeolite nanocrystals with high crystallinity and large defect sites are obtained. • Improved surface hydrophilicity of crystals is beneficial for water sorption applications.

  16. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  17. Fundamentals and applications of ultrasonic waves

    CERN Document Server

    Cheeke, J David N

    2002-01-01

    Ultrasonics. A subject with applications across all the basic sciences, engineering, medicine, and oceanography, yet even the broader topic of acoustics is now rarely offered at undergraduate levels. Ultrasonics is addressed primarily at the doctoral level, and texts appropriate for beginning graduate students or newcomers to the field are virtually nonexistent.Fundamentals and Applications of Ultrasonic Waves fills that void. Designed specifically for senior undergraduates, beginning graduate students, and those just entering the field, it begins with the fundamentals, but goes well beyond th

  18. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  19. Localized immunosuppressive environment in the foreign body response to implanted biomaterials.

    Science.gov (United States)

    Higgins, David M; Basaraba, Randall J; Hohnbaum, April C; Lee, Eric J; Grainger, David W; Gonzalez-Juarrero, Mercedes

    2009-07-01

    The implantation of synthetic biomaterials initiates the foreign body response (FBR), which is characterized by macrophage infiltration, foreign body giant cell formation, and fibrotic encapsulation of the implant. The FBR is orchestrated by a complex network of immune modulators, including diverse cell types, soluble mediators, and unique cell surface interactions. The specific tissue locations, expression patterns, and spatial distribution of these immune modulators around the site of implantation are not clear. This study describes a model for studying the FBR in vivo and specifically evaluates the spatial relationship of immune modulators. We modified a biomaterials implantation in vivo model that allowed for cross-sectional in situ analysis of the FBR. Immunohistochemical techniques were used to determine the localization of soluble mediators, ie, interleukin (IL)-4, IL-13, IL-10, IL-6, transforming growth factor-beta, tumor necrosis factor-alpha, interferon-gamma, and MCP-1; specific cell types, ie, macrophages, neutrophils, fibroblasts, and lymphocytes; and cell surface markers, ie, F4/80, CD11b, CD11c, and Ly-6C, at early, middle, and late stages of the FBR in subcutaneous implant sites. The cytokines IL-4, IL-13, IL-10, and transforming growth factor-beta were localized to implant-adherent cells that included macrophages and foreign body giant cells. A better understanding of the FBR in vivo will allow the development of novel strategies to enhance biomaterial implant design to achieve better performance and safety of biomedical devices at the site of implant.

  20. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    Science.gov (United States)

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  1. Rapid orthodontic treatment after the ridge-splitting technique--a combined surgical-orthodontic approach for implant site development: case report.

    Science.gov (United States)

    Amato, Francesco; Mirabella, A Davide; Borlizzi, Diego

    2012-08-01

    This article presents a clinical case of bilateral partial edentulism in the posterior mandible with severe horizontal and moderate vertical bone atrophy. A new technique using rapid orthodontics after ridge splitting is presented. The split-crest technique was carried out using piezosurgical instruments in the first molar and second premolar areas to widen the bone crest and open a channel for tooth movement. Immediately after, orthodontic appliances were used to move the first premolars distally and the second molars mesially into the surgical site. The rationale was to facilitate and accelerate orthodontic movement of the teeth, which is otherwise difficult in a cortical knife-edged ridge. The bone defect was filled with the alveolar bone of the adjacent teeth that were moved into the surgically opened path. Adequate bone volume for implant placement was generated in the first premolar area. Implants were then inserted, and the patient was rehabilitated.

  2. Ultrasonic microdialysis coupled with capillary electrophoresis electrochemiluminescence study the interaction between trimetazidine dihydrochloride and human serum albumin.

    Science.gov (United States)

    Sun, Shuangjiao; Long, Chanjuan; Tao, Chunyao; Meng, Sa; Deng, Biyang

    2014-12-03

    The paper describes a homemade ultrasonic microdialysis device coupled with capillary electrophoresis electrochemiluminescence (CE-ECL) for studying the interaction between human serum albumin (HSA) and trimetazidine dihydrochloride (TMZ). The time required for equilibrium by ultrasonic microdialysis was 45min, which was far less than that by traditional dialysis (240min). It took 80min to achieve the required combination equilibrium by normal incubation and only 20min by ultrasonic. Compared with traditional dialysis, the use of ultrasonic microdialysis simplified experimental procedures, shortened experimental time and saved consumption of sample. A simple, sensitive and selective determination of TMZ was developed using CE-ECL and the parameters that affected ECL intensity were optimized. Under the optimized conditions, the linear range of TMZ was from 0.075 to 80μmol/L (r(2)=0.9974). The detection limit was 26nmol/L with RSD of 2.8%. The number of binding sites and binding constant were 1.54 and 15.17L/mol, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  4. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  5. Recent progress in online ultrasonic process monitoring

    Science.gov (United States)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  6. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  7. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  8. Ultrasonic wave propagation in powders

    Science.gov (United States)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  9. Standard practice for leaks using ultrasonics

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 Practice A, Pressurization—This practice covers procedures for calibration of ultrasonic instruments, location, and estimated measurements of gas leakage to atmosphere by the airborne ultrasonic technique. 1.2 In general practice this should be limited to leaks detected by two classifications of instruments, Class I and Class II. Class I instruments should have a minimum detectable leak rate of 6.7 × 10−7 mol/s (1.5 × 10−2 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Class II instruments should have a minimal detectable leak rate of 6.7 × 10−6 mol/s (1.5 × 10−1 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Refer to Guide E432 for additional information. 1.3 Practice B, Ultrasonic Transmitter—For object under test not capable of being pressurized but capable of having ultrasonic tone placed/injected into the test area to act as an ultrasonic leak trace source. 1.3.1 This practice is limited to leaks producing leakage o...

  10. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    Science.gov (United States)

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Electromagnetic interference from welding and motors on implantable cardioverter-defibrillators as tested in the electrically hostile work site.

    Science.gov (United States)

    Fetter, J G; Benditt, D G; Stanton, M S

    1996-08-01

    This study was designed to determine the susceptibility of an implanted cardioverter-defibrillator to electromagnetic interference in an electrically hostile work site environment, with the ultimate goal of allowing the patient to return to work. Normal operation of an implanted cardioverter-defibrillator depends on reliable sensing of the heart's electrical activity. Consequently, there is concern that external electromagnetic interference from external sources in the work place, especially welding equipment or motor-generator systems, may be sensed and produce inappropriate shocks or abnormal reed switch operation, temporarily suspending detection of ventricular tachycardia or ventricular fibrillation. The effects of electromagnetic interference on the operation of one type of implantable cardioverter-defibrillator (Medtronic models 7217 and 7219) was measured by using internal event counter monitoring in 10 patients operating arc welders at up to 900 A or working near 200-hp motors and 1 patient close to a locomotive starter drawing up to 400 A. The electromagnetic interference produced two sources of potential interference on the sensing circuit or reed switch operation, respectively: 1) electrical fields with measured frequencies up to 50 MHz produced by the high currents during welding electrode activation, and 2) magnetic fields produced by the current in the welding electrode and cable. The defibrillator sensitivity was programmed to the highest (most sensitive) value: 0.15 mV (model 7219) or 0.3 mV (model 7217). The ventricular tachycardia and ventricular fibrillation therapies were temporarily turned off but the detection circuits left on. None of the implanted defibrillators tested were affected by oversensing of the electric field as verified by telemetry from the detection circuits. The magnetic field from 225-A welding current produced a flux density of 1.2 G; this density was not adequate to close the reed switch, which requires approximately 10 G

  12. Development of an ultrasonic process for soil remediation

    International Nuclear Information System (INIS)

    Wu, J.M.; Huang, H.S.; Livengood, C.D.

    1995-01-01

    An ultrasonic process for the detoxification of carbon tetrachloride- (CCl 4 - ) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl 4 concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl 4 concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl 4 concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed

  13. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  14. Ultrasonic characterization of vegetable oil product

    International Nuclear Information System (INIS)

    Sidek Hj Abd Aziz; Chow Sai Pew; Abdul Halim Shaari; Nor Azizah Shaari

    1992-01-01

    The ultrasonic wave velocity and attenuation of a number vegetable oil products were measured using an ultrasonic pulse echo overlap technique from room temperature up to 90 0 C. Among the liquid samples studied were refined bleach deodorized (RED) palm oil, palm olein, coconut oil, corn oil and soya bean oil. The velocity of sound in vegetable oil products varies from about 1200 to 200 ms-1 and decrease linearly as the temperature increases. The ultrasonic properties of the oil are much dependent on their viscosity, density, relaxation effect and vibrational anharmonicity

  15. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  16. Mini-implants in the palatal slope – a retrospective analysis of implant survival and tissue reaction

    Directory of Open Access Journals (Sweden)

    Ziebura Thomas

    2012-11-01

    Full Text Available Abstract Background To identify insertion procedure and force application related complications in Jet Screw (JS type mini-implants when inserted in the palatal slope. Methods Setting and Sample Population: The Department of Orthodontics, the University Hospital Münster. Forty-one consecutively started patients treated using mini-implants in the palatal slope. In this retrospective study, 66 JS were evaluated. Patient records were used to obtain data on the mode of utilization and complications. Standardized photographs overlayed with a virtual grid served to test the hypothesis that deviations from the recommended insertion site or the type of mechanics applied might be related to complications regarding bleeding, gingival overgrowth or implant failure. Results Two implants (3% were lost, and two implants (3%, both loaded with a laterally directed force, exhibited loosening while still serving for anchorage. Complications that required treatment did not occur, the most severe problem observed being gingival proliferation which was attributable neither to patients’ age nor to applied mechanics or deviations from the ideal implant position. Conclusions The JS mini-implant is reliable for sagittal and vertical movements or anchorage purposes. Laterally directed forces might be unfavorable. The selection of implant length as well as the insertion procedure should account for the possibility of gingival overgrowth.

  17. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  18. The effect of implant number and position on the stress behavior of mandibular implant retained overdentures: A three-dimensional finite element analysis.

    Science.gov (United States)

    Topkaya, Tolga; Solmaz, Murat Yavuz

    2015-07-16

    The present study evaluated the effects of ball anchor abutment attached to implants with a 4.30 mm diameter and 11 mm insert length on stress distribution in a patient without any remaining teeth in the lower jaw. In the study, the stress analysis was performed for five different configurations (2 with 4 implant-supported and 3 with 2 implant-supported) and three different loading types using ANSYS Workbench software. The stresses measured in the 4 implant-supported models were lower compared to the stresses measured in the 2 implant-supported models. The stresses on the implants intensified on the cervical region of the implants. When the effects of the loading sites on the stress were examined, the loading on the first molar tooth produced the highest stresses on the implants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  1. Ultrasonic Abrasive Removal Of EDM Recast

    Science.gov (United States)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  2. An Intraoperative Site-specific Bone Density Device: A Pilot Test Case.

    Science.gov (United States)

    Arosio, Paolo; Moschioni, Monica; Banfi, Luca Maria; Di Stefano, Anilo Alessio

    2015-08-01

    This paper reports a case of all-on-four rehabilitation where bone density at implant sites was assessed both through preoperative computed tomographic (CT) scans and using a micromotor working as an intraoperative bone density measurement device. Implant-supported rehabilitation is a predictable treatment option for tooth replacement whose success depends on the clinician's experience, the implant characteristics and location and patient-related factors. Among the latter, bone density is a determinant for the achievement of primary implant stability and, eventually, for implant success. The ability to measure bone density at the placement site before implant insertion could be important in the clinical setting. A patient complaining of masticatory impairment was presented with a plan calling for extraction of all her compromised teeth, followed by implant rehabilitation. A week before surgery, she underwent CT examination, and the bone density on the CT scans was measured. When the implant osteotomies were created, the bone density was again measured with a micromotor endowed with an instantaneous torque-measuring system. The implant placement protocols were adapted for each implant, according to the intraoperative measurements, and the patient was rehabilitated following an all-on-four immediate loading protocol. The bone density device provided valuable information beyond that obtained from CT scans, allowing for site-specific, intraoperative assessment of bone density immediately before implant placement and an estimation of primary stability just after implant insertion. Measuring jaw-bone density could help clinicians to select implant-placement protocols and loading strategies based on site-specific bone features.

  3. Fundamentals of Medical Ultrasonics

    CERN Document Server

    Postema, Michiel

    2011-01-01

    This book sets out the physical and engineering principles of acoustics and ultrasound as used for medical applications. It covers the basics of linear acoustics, wave propagation, non-linear acoustics, acoustic properties of tissue, transducer components, and ultrasonic imaging modes, as well as the most common diagnostic and therapeutic applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

  4. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  5. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  6. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    Science.gov (United States)

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  7. Development of an intelligent ultrasonic welding defect classification software

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Jeong, Hee Don

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress in the research on this methodology, it has not been widely used in many practical ultrasonic inspections of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments based on their ultrasonic signals using various tools in artificial intelligence such as neural networks. This software shows the excellent performance in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks. This performance demonstrates the high possibility of this software as a practical tool for ultrasonic flaw classification in weldments.

  8. Analysis of percussion response of dental implants: An in vitro study

    International Nuclear Information System (INIS)

    Dinh, Andrew; Sheets, Cherilyn G.; Earthman, James C.

    2013-01-01

    The Periometer® quantitative percussion system was used to interrogate the interfacial stability of implants in vitro for comparison with X-ray computer tomography (CT) data. Selected implants were placed as per standard practice in bone stimulant polyurethane blocks. The dimensions of the surgical sites surrounding the implants were analyzed using X-ray computer tomography (CT) to determine the quality of support at the implant–bone interface. In particular, the misfit between the size of the surgical site and the corresponding implant was determined for each sample. The resulting average surgical site error from the CT scans was found to exhibit good agreement with the presence of irregularities found in the percussion data. - Highlights: ► Percussion response versus time exhibited irregularities for some in vitro samples. ► X-Ray CT was used to assess the interface integrity for six implant–bone specimens. ► Irregularities in percussion data correlate well with the CT based assessments

  9. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  10. [Clinical efficacy and safety of uterine artery chemoembolization in abnormal placental implantation complicated with postpartum hemorrhage].

    Science.gov (United States)

    Chen, Yao-ting; Xu, Lin-feng; Sun, Hong-liang; Li, Hui-qing; Hu, Ren-mei; Tan, Qi-yin

    2010-04-01

    To investigate the safety and clinical efficacy of uterime artery chemoembolization in postpartum hemorrhage (PPH) caused by abnormal placental implantation. Between December 2006 and September 2009, there were 23 cases of abnormal placental implantation with PPH in our hospital, among which 9 presented with continuous small amount of vaginal bleeding and 14 with acute excessive bleeding. The average bleeding time was (8+/-6) d and the mean blood loss was (980+/-660) ml. Abnormal placental implantation was confirmed by color Doppler ultrasound (CD-US) in all cases, the internal iliac artery angiography was performed to identify the uterine artery and bilateral uterine artery chemoembolization (UACE) with methotrexate (MTX) and gelfoam particles to the distal end of uterine artery was conducted after. CD-US rechecked all patients within 48 h after UACE and those patients with blurred margins between placenta and uterus and abnormal blood flow (>1 cmx1 cm) received ultrasonic-guided per vagina MTX multipoint injections. All cases were followed up for 3-26 months (average 12 months) to observe vaginal bleeding, placenta tissue discharge, serum human chorionic gonadotropin (hCG), uterine involution, menses, and side-effects or complications. (1) Curative effect: These 23 cases underwent 24 procedures of UACE successfully and vaginal bleeding ceased at an average of (3.5+/-1.3) min after UACE. Reduced blood flow in the placental implantation area was detected under CD-US after UACE. Among the 23 patients, wterine curettage was required in 16 cases due to retained placenta tissues with the mean blood loss of (40+/-28) ml during the operation, 2 underwent subtotal hysterectomy and confirmed to be placenta percreta by pathology examination, and placenta tissues were spontaneously discharged completely in 5 cases. Totally, 91% of the patients (21/23) reserved their uterus. (2) FOLLOW-UP: the serum hCG reduced to normal within 1-13 d after the placenta tissue were evacuated

  11. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and

  12. Ultrasonic imaging of metastatic carcinoma in thyroid gland

    International Nuclear Information System (INIS)

    Bai Ling; Yang Tao; Tang Ying; Mao Jingning; Chen Wei; Wang Wei

    2008-01-01

    Objectives: To explore the ultrasonic findings of metastatic thyroid carcinoma and to evaluate the diagnostic value of the ultrasonic imaging for patients with metastatic thyroid neoplasm. Methods: The ultrasonic imaging characteristics of ten patients who were diagnosed with metastatic thyroid carcinoma were retrospectively analyzed. In all the cases, fine-needle aspiration cytology (FNAC) of the thyroid was performed during the clinical diagnosis. Results: The ultrasonic images of the ten patients fell into four types: multiple nodules in the thyroid, single nodule in the thyroid, diffuse calcification and heterogeneous echo. Seven cases showed speckled calcific foci. Abnormal blood flow signal was found in 9 cases. Conclusion: The ultrasonic findings of metastatic carcinoma in the thyroid gland are various and non-specific. Color Doppler ultrasound may provide ample evidence. The diagnosis depends on FNAC. (authors)

  13. Analysis of bacterial flora associated with peri-implantitis using obligate anaerobic culture technique and 16S rDNA gene sequence.

    Science.gov (United States)

    Tamura, Naoki; Ochi, Morio; Miyakawa, Hiroshi; Nakazawa, Futoshi

    2013-01-01

    To analyze and characterize the predominant bacterial flora associated with peri-implantitis by using culture techniques under obligate anaerobic conditions and 16S rDNA gene sequences. Subgingival bacterial specimens were taken from 30 patients: control (n = 15), consisting of patients with only healthy implants; and test (n = 15), consisting of patients with peri-implantitis. In both groups, subgingival bacterial specimens were taken from the deepest sites. An anaerobic glove box system was used to cultivate bacterial strains. The bacterial strains were identified by 16S rDNA genebased polymerase chain reaction and comparison of the gene sequences. Peri-implantitis sites had approximately 10-fold higher mean colony forming units (per milliliter) than healthy implant sites. A total of 69 different bacterial species were identified in the peri-implantitis sites and 53 in the healthy implant sites. The predominant bacterial species in the peri-implantitis sites were Eubacterium nodatum, E. brachy, E. saphenum, Filifactor alocis, Slackia exigua, Parascardovia denticolens, Prevotella intermedia, Fusobacterium nucleatum, Porphyromonas gingivalis, Centipeda periodontii, and Parvimonas micra. The predominant bacteria in healthy implant sites apart from Streptococcus were Pseudoramibacter alactolyticus, Veillonella species, Actinomyces israelii, Actinomyces species, Propionibacterium acnes, and Parvimonas micra. These results suggest that the environment in the depths of the sulcus showing peri-implantitis is well suited for growth of obligate anaerobic bacteria. The present study demonstrated that the sulcus around oral implants with peri-implantitis harbors high levels of asaccharolytic anaerobic gram-positive rods (AAGPRs) such as E. nodatum, E. brachy, E. saphenum, Filifactor alocis, Slackia exigua, and gram-negative anaerobic rods, suggesting that conventional periodontopathic bacteria are not the only periodontal pathogens active in peri-implantitis, and that AAGPRs

  14. A comparison of dental ultrasonic technologies on subgingival calculus removal: a pilot study.

    Science.gov (United States)

    Silva, Lidia Brión; Hodges, Kathleen O; Calley, Kristin Hamman; Seikel, John A

    2012-01-01

    This pilot study compared the clinical endpoints of the magnetostrictive and piezoelectric ultrasonic instruments on calculus removal. The null hypothesis stated that there is no statistically significant difference in calculus removal between the 2 instruments. A quasi-experimental pre- and post-test design was used. Eighteen participants were included. The magnetostrictive and piezoelectric ultrasonic instruments were used in 2 assigned contra-lateral quadrants on each participant. A data collector, blind to treatment assignment, assessed the calculus on 6 predetermined tooth sites before and after ultrasonic instrumentation. Calculus size was evaluated using ordinal measurements on a 4 point scale (0, 1, 2, 3). Subjects were required to have size 2 or 3 calculus deposit on the 6 predetermined sites. One clinician instrumented the pre-assigned quadrants. A maximum time of 20 minutes of instrumentation was allowed with each technology. Immediately after instrumentation, the data collector then conducted the post-test calculus evaluation. The repeated analysis of variance (ANOVA) was used to analyze the pre- and post-test calculus data (p≤0.05). The null hypothesis was accepted indicating that there is no statistically significant difference in calculus removal when comparing technologies (p≤0.05). Therefore, under similar conditions, both technologies removed the same amount of calculus. This research design could be used as a foundation for continued research in this field. Future studies include implementing this study design with a larger sample size and/or modifying the study design to include multiple clinicians who are data collectors. Also, deposit removal with periodontal maintenance patients could be explored.

  15. Overview of the ultrasonic instrumentation research in the MYRRHA project

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, M.; Leysen, W.; Van Dyck, D. [Belgian Nuclear Research Center SCK.CEN (Belgium)

    2015-07-01

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the required ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  16. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  17. Ion implantation of Cd and Ag into AlN and GaN

    CERN Document Server

    Miranda, Sérgio M C; Correia, João Guilherme; Vianden, Reiner; Johnston, Karl; Alves, Eduardo; Lorenz, Katharina

    2012-01-01

    GaN and AlN thin films were implanted with cadmium (Cd) or silver (Ag), to fluences ranging from 1×1013 to 1.7 × 1015 at/cm$^{2}$. The implanted samples were annealed at 950 ºC under flowing nitrogen. While implantation damage could be fully removed for the lowest fluences, for higher fluences the crystal quality was only partially recovered. For the high fluence samples the lattice site location of the ions was studied by Rutherford Backscattering/ channelling (RBS/C). Cd ions are found to be incorporated in substitutional cation sites (Al or Ga) while Ag is slightly displaced from this position. To further investigate the incorporation sites, Perturbed Angular Correlation (PAC) measurements were performed and the electric field gradients at the site of the probe nuclei were determined.

  18. Ultrasonic thermometry for nuclear power plants

    International Nuclear Information System (INIS)

    Saravana Kumar, S.; Arunraj, A.L.R.; Swaminathan, K.

    2013-01-01

    Ultrasonic transducer provides a method of measurement of temperature in industrial tanks and boilers containing different liquids with varied salt content. This method is used to measure the average temperature continuously where other traditional methods available do not offer. Traditional methods used for temperature measurement like infrared thermometers, thermocouples, measures temperature at a single location. Numerous thermocouples are to be fixed at various part of the boiler in order to measure the temperature of the entire boiler, which incurs high cost. Reliability of the system decreases, with increasing number of thermocouples. When they fail at a point, the time incurred in finding the faulty part or faulty thermocouple is high. Ultrasonic transducer provides continuous measurement for all different characteristic liquids with higher accuracy and lesser response time. Fault location and clearance time is also less in ultrasonic measurement method, since only a couple of transducers used for the entire boiler structure. Additionally ultrasonic thermometry along support measuring electronic system can be built of low cost. (author)

  19. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  20. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  1. Sequential provisional implant prosthodontics therapy.

    Science.gov (United States)

    Zinner, Ira D; Markovits, Stanley; Jansen, Curtis E; Reid, Patrick E; Schnader, Yale E; Shapiro, Herbert J

    2012-01-01

    The fabrication and long-term use of first- and second-stage provisional implant prostheses is critical to create a favorable prognosis for function and esthetics of a fixed-implant supported prosthesis. The fixed metal and acrylic resin cemented first-stage prosthesis, as reviewed in Part I, is needed for prevention of adjacent and opposing tooth movement, pressure on the implant site as well as protection to avoid micromovement of the freshly placed implant body. The second-stage prosthesis, reviewed in Part II, should be used following implant uncovering and abutment installation. The patient wears this provisional prosthesis until maturation of the bone and healing of soft tissues. The second-stage provisional prosthesis is also a fail-safe mechanism for possible early implant failures and also can be used with late failures and/or for the necessity to repair the definitive prosthesis. In addition, the screw-retained provisional prosthesis is used if and when an implant requires removal or other implants are to be placed as in a sequential approach. The creation and use of both first- and second-stage provisional prostheses involve a restorative dentist, dental technician, surgeon, and patient to work as a team. If the dentist alone cannot do diagnosis and treatment planning, surgery, and laboratory techniques, he or she needs help by employing the expertise of a surgeon and a laboratory technician. This team approach is essential for optimum results.

  2. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  3. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  4. Development of ultrasonic testing scanner for NPP steam generator tubes (I)

    International Nuclear Information System (INIS)

    Shin, J. I.; Huh, H.

    1998-12-01

    Testing tubes are designed and fabricated to investigate the optimum test conditions through the various experiments. The proto-type P/C-controlled automatic rotating scanner is fabricated to obtain the ultrasonic data automatically from test tubes. It was attempted to visualize the shape of defects presented inside the specimen using peak amplitude at each point. However, further research works will be needed to be applied at the plant site as a more reliable technology

  5. Ultrasonic inspection development at HEDL

    International Nuclear Information System (INIS)

    Day, C.K.; Mech, S.J.; Michaels, T.E.; Dixon, N.E.

    1978-01-01

    Ultrasonic testing methods and equipment are being developed to support preservice and in-service inspection of selected FFTF welds. A digital computer system is employed in the analysis of both simulated FFTF pipe sections and plate specimens containing fatigue cracks. It is anticipated that test evaluation standards containing fatigue cracks will partially eliminate questions formerly associated with weld test calibration producers by providing natural cracks which follow grain boundaries and stress patterns resembling piping situ conditions. Studies have revealed that commercial transducers may satisfy LMFBR ultrasonic pipe inspection applications: The test system evaluation included transducers and wedge coupling and fluid coupling materials which exhibited acceptable performance at temperatures to 2300C. Results are presented that demonstrate the feasibility of ultrasonic inspection of components immersed in sodium at temperatures to 2600C. (UK)

  6. Effect of decision making on ultrasonic examination performance

    International Nuclear Information System (INIS)

    Harris, D.H.

    1992-05-01

    A decision aid was developed to overcome examiner limitations in information processing and decision making during ultrasonic examinations. The aid provided a means of noting signal characteristics as they were observed during the examination, and of presenting them simultaneously for decision making. The aid also served as a way of providing detailed feedback on examination performance during training. The aid was incorporated into worksheets used for the conduct of practice examinations during ultrasonic examination training. To support the introduction and use of the decision aid, one hour of supplementary training was inserted in an existing 64-hour training course on ultrasonic detection of defects. This study represented a modest step in improving the performance of ultrasonic examinations in nuclear power plants. Findings indicated that aided decision making supported by limited training can significantly improve ultrasonic detection performance

  7. Effect of connective tissue grafting on peri-implant tissue in single immediate implant sites : A RCT

    NARCIS (Netherlands)

    Zuiderveld, Elise G; Meijer, Henny J A; den Hartog, Laurens; Vissink, Arjan; Raghoebar, Gerry M

    AimTo assess the effect of connective tissue grafting on the mid-buccal mucosal level (MBML) of immediately placed and provisionalized single implants in the maxillofacial aesthetic zone. Materials and methodsSixty patients with a failing tooth were provided with an immediately placed and

  8. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted “pH-adjusting” method: Importance of cobalt species in styrene oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baitao, E-mail: btli@scut.edu.cn; Zhu, Yanrun; Jin, Xiaojing

    2015-01-15

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted “pH-adjusting” technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co{sub 3}O{sub 4} particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was more beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H{sub 2}O{sub 2}) at 70 °C. - Graphical abstract: Cobalt-containing mesoporous silica catalysts were developed via ultrasonic-assisted “pH-adjusting” technique. Compared with Co{sub 3}O{sub 4} in Co-MCM-41, the single-site Co(II) state in Co-SBA-15 was more efficient for the styrene oxidation. - Highlights: • Fast and cost-effective ultrasonic technique for preparing mesoporous materials. • Incorporation of Co via ultrasonic irradiation and “pH-adjusting”. • Physicochemical comparison between Co-SBA-15 and Co-MCM-41. • Correlation of styrene oxidation activity and catalyst structural property.

  9. Studies of hyperfine magnetic fields in transition metals by radioactive ion implantation

    International Nuclear Information System (INIS)

    Kawase, Yoichi; Uehara, Shin-ichi; Nasu, Saburo; Ni Xinbo.

    1994-01-01

    In order to investigate hyperfine magnetic fields in transition metals by a time-differential perturbed angular correlation (TDPAC) technique, radioactive probes of 140 Cs obtained by KUR-ISOL have been implanted on transition metals of Fe, Ni and Co. Lamor precessions of 140 Ce used as a probe nucleus have been observed clearly and the hyperfine fields have been determined precisely corresponding to implanted sites in host metal. The irradiation effects caused by implantation have been examined by annealing the irradiated specimen at about 723 K. Some of the Lamor precessions have disappeared by the annealing. Discussions have been made on the occupied sites after implantation and the recovery process of induced damages by annealing. (author)

  10. Peri-implant evaluation of osseointegrated implants subjected to orthodontic forces: results after three years of functional loading

    Directory of Open Access Journals (Sweden)

    Bruna de Rezende Marins

    2016-04-01

    Full Text Available ABSTRACT Objective: The objective of this study was to clinically and radiographically assess the peri-implant conditions of implants used as orthodontic anchorage. Methods: Two groups were studied: 1 a test group in which osseointegrated implants were used as orthodontic anchorage, with the application of 200-cN force; and 2 a control group in which implants were not subjected to orthodontic force, but supported a screw-retained prosthesis. Clinical evaluations were performed three, six and nine months after prosthesis installation and 1- and 3-year follow-up examinations. Intraoral periapical radiographs were obtained 30 days after surgical implant placement, at the time of prosthesis installation, and one, two and three years thereafter. The results were compared by Kruskal-Wallis test. Results: There was no statistically significant difference in clinical probing depth (p = 0.1078 or mesial and distal crestal bone resorption (p = 0.1832 during the study period. After three years of follow-up, the mean probing depth was 2.21 mm for the control group and 2.39 mm for the test group. The implants of the control group showed a mean distance between the bone crest and implant shoulder of 2.39 mm, whereas the implants used as orthodontic anchorage showed a mean distance of 2.58 mm at the distal site. Conclusion: Results suggest that the use of stable intraoral orthodontic anchorage did not compromise the health of peri-implant tissues or the longevity of the implant.

  11. On-line ultrasonic gas entrainment monitor

    International Nuclear Information System (INIS)

    Day, C.K.; Pedersen, H.N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes is described. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose

  12. Structural and magnetic properties of Mn-implanted Si

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K.; Zhang Gufei; Muecklich, A.; Eichhorn, F.; Schell, N.; Groetzschel, R.; Schmidt, B.; Skorupa, W.; Helm, M.; Fassbender, J.; Geiger, D.

    2007-01-01

    Structural and magnetic properties in Mn-implanted, p-type Si were investigated. High resolution structural analysis techniques such as synchrotron x-ray diffraction revealed the formation of MnSi 1.7 nanoparticles already in the as-implanted samples. Depending on the Mn fluence, the size increases from 5 nm to 20 nm upon rapid thermal annealing. No significant evidence is found for Mn substituting Si sites either in the as-implanted or annealed samples. The observed ferromagnetism yields a saturation moment of 0.21μ B per implanted Mn at 10 K, which could be assigned to MnSi 1.7 nanoparticles as revealed by a temperature-dependent magnetization measurement

  13. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  14. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  15. Bulk viscosity and ultrasonic attenuation in liquid metals

    International Nuclear Information System (INIS)

    Awasthi, O.N.; Murthy, B.V.S.

    1984-11-01

    Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)

  16. Healing of extraction sockets filled with BoneCeramic® prior to implant placement: preliminary histological findings.

    Science.gov (United States)

    De Coster, Peter; Browaeys, Hilde; De Bruyn, Hugo

    2011-03-01

    Various grafting materials have been designed to minimize edentulous ridge volume loss following tooth extraction by encouraging new bone formation in healing sockets. BoneCeramic® is a composite of hydroxyapatite and bèta-tricalcium phosphate with pores of 100-500 microns. The aim of this study was to evaluate bone regeneration in healing sockets substituted with BoneCeramic® prior to implant procedures. Fifteen extraction sockets were substituted with BoneCeramic® and 14 sockets were left to heal naturally in 10 patients (mean age 59.6 years). Biopsies were collected only from the implant recipient sites during surgery after healing periods ranging from 6-74 weeks (mean 22). In total, 24 biopsies were available; 10 from substituted and 14 from naturally healed sites. In one site, the implant was not placed intentionally and, in four substituted sites, implant placement had to be postponed due to inappropriate healing, hence from five sites biopsies were not available. Histological sections were examined by transmitted light microscope. At the time of implant surgery, bone at substituted sites was softer than in controls, compromising initial implant stability. New bone formation at substituted sites was consistently poorer than in controls, presenting predominantly loose connective tissue and less woven bone. The use of BoneCeramic® as a grafting material in fresh extraction sockets appears to interfere with normal healing processes of the alveolar bone. On the basis of the present preliminary findings, its indication as a material for bone augmentation, when implant placement is considered within 6-38 weeks after extraction, should be revised. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.

  17. Ultrasonic techniques for fluids characterization

    CERN Document Server

    Povey, Malcolm J W

    1997-01-01

    This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Key Features * Appeals to anyone using ultrasound to study fluids * Provides the first detailed description of the ultrasound profiling technique for dispersions * Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat * Presents the l...

  18. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  19. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shahab, S.; Gray, M.; Erturk, A., E-mail: alper.erturk@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  20. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    International Nuclear Information System (INIS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-01-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver

  1. Lattice location of implanted As in ZnO

    CERN Document Server

    Wahl, U; Correia, J G; Marques, A C; Alves, E; Soares, J C

    2007-01-01

    Radioactive 73As ions were implanted into a ZnO single crystal at room temperature with 60 keV up to a fluence of 2×1013 cm−2. Subsequently, the angular emission channeling patterns of emitted conversion electrons were recorded by means of a position-sensitive detector in the as-implanted state and following annealing up to 900 C, and were compared to simulated emission yields for a variety of different lattice sites. We find that As does not occupy substitutional O sites, but mainly occupies the substitutional Zn sites. The fraction of As on O sites was at most a few per cent. Arsenic in ZnO is thus an interesting example of an impurity in a semiconductor where the major impurity lattice site is determined by atomic size and electronegativity rather than its position in the periodic system. Possible consequences with respect to the role of arsenic as a p-type dopant in ZnO are being discussed.

  2. Five-Year Safety Data for More than 55,000 Subjects following Breast Implantation: Comparison of Rare Adverse Event Rates with Silicone Implants versus National Norms and Saline Implants.

    Science.gov (United States)

    Singh, Navin; Picha, George J; Hardas, Bhushan; Schumacher, Andrew; Murphy, Diane K

    2017-10-01

    The U.S. Food and Drug Administration has required postapproval studies of silicone breast implants to evaluate the incidence of rare adverse events over 10 years after implantation. The Breast Implant Follow-Up Study is a large 10-year study (>1000 U.S. sites) evaluating long-term safety following primary augmentation, revision-augmentation, primary reconstruction, or revision-reconstruction with Natrelle round silicone breast implants compared with national norms and outcomes with saline implants. Targeted adverse events in subjects followed for 5 to 8 years included connective tissue diseases, neurologic diseases, cancer, and suicide. The safety population comprised 55,279 women (primary augmentation, n = 42,873; revision-augmentation, n = 6837; primary reconstruction, n = 4828; and revision-reconstruction, n = 741). No targeted adverse events occurred at significantly greater rates in silicone implant groups versus national norms across all indications. The standardized incidence rate (observed/national norm) for all indications combined was 1.4 for cervical/vulvar cancer, 0.8 for brain cancer, 0.3 for multiple sclerosis, and 0.1 for lupus/lupus-like syndrome. Silicone implants did not significantly increase the risk for any targeted adverse events compared with saline implants. The risk of death was similar with silicone versus saline implants across all indications. The suicide rate (10.6 events per 100,000 person-years) was not significantly higher than the national norm. No implant-related deaths occurred. Results from 5 to 8 years of follow-up for a large number of subjects confirmed the safety of Natrelle round silicone implants, with no increased risk of systemic disease or suicide versus national norms or saline implants. Therapeutic, II.

  3. Management of Retrograde Peri-Implantitis Using an Air-Abrasive Device, Er,Cr:YSGG Laser, and Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Nikolaos Soldatos

    2018-01-01

    Full Text Available Background. The placement of an implant in a previously infected site is an important etiologic factor contributing to implant failure. The aim of this case report is to present the management of retrograde peri-implantitis (RPI in a first maxillary molar site, 2 years after the implant placement. The RPI was treated using an air-abrasive device, Er,Cr:YSGG laser, and guided bone regeneration (GBR. Case Description. A 65-year-old Caucasian male presented with a draining fistula associated with an implant at tooth #3. Tooth #3 revealed periapical radiolucency two years before the implant placement. Tooth #3 was extracted, and a ridge preservation procedure was performed followed by implant rehabilitation. A periapical radiograph (PA showed lack of bone density around the implant apex. The site was decontaminated with an air-abrasive device and Er,Cr:YSGG laser, and GBR was performed. The patient was seen every two weeks until suture removal, followed by monthly visits for 12 months. The periapical X-rays, from 6 to 13 months postoperatively, showed increased bone density around the implant apex, with no signs of residual clinical or radiographic pathology and probing depths ≤4 mm. Conclusions. The etiology of RPI in this case was the placement of an implant in a previously infected site. The use of an air-abrasive device, Er,Cr:YSGG, and GBR was utilized to treat this case of RPI. The site was monitored for 13 months, and increased radiographic bone density was noted.

  4. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  5. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  6. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    Science.gov (United States)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  7. Damage formation and recovery in Fe implanted 6H–SiC

    CERN Document Server

    Miranda, Pedro; Catarino, Norberto; Lorenz, Katharina; Correia, João Guilherme; Alves, Eduardo

    2012-01-01

    Silicon carbide doped with magnetic ions such as Fe, Mn, Ni or Co could make this wide band gap semiconductor part of the diluted magnetic semiconductor family. In this study, we report the implantation of 6H-SiC single crystals with magnetic $^{56}$Fe$^{+}$ ions with an energy of 150 keV. The samples were implanted with 5E14 Fe$^+$/cm$^{2}$ and 1E16 Fe$^+$/cm$^{2}$ at different temperatures to study the damage formation and lattice site location. The samples were subsequently annealed up to 1500°C in vacuum in order to remove the implantation damage. The effect of the annealing was followed by Rutherford Backscattering/Channeling (RBS/C) measurements. The results show that samples implanted above the critical amorphization temperature reveal a high fraction of Fe incorporated into regular sites along the [0001] axis. After the annealing at 1000°C, a maximum fraction of 75%, corresponding to a total of 3.8E14 Fe$^{+}$/cm$^{2}$, was measured in regular sites along the [0001] axis. A comparison is made betwee...

  8. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  9. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  10. Determine bond strength by ultrasonic measurement

    International Nuclear Information System (INIS)

    Brown, C.M.

    1978-01-01

    Application of ultrasonic methods for the evaluation and measurement of bond strength has been the object of numerous investigations in the last fifteen years. Some investigators have reported good success (in limited application) while others have experienced dismal failure. One problem common to all investigations was the difficulty in extracting and isolating the many components which comprise the ultrasonic signal reflected from a bonded interface. Part of this problem was due to manually extracting individual parameters from large volumes of raw data. However, with the vast technology now available in the field of signal analysis and computerized data processing, it is feasible to isolate and analyze individual parameters within the ultrasonic signal for great volumes of raw data

  11. Numerical shaping of the ultrasonic wavelet

    International Nuclear Information System (INIS)

    Bonis, M.

    1991-01-01

    Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test

  12. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  13. Ballistic self-annealing during ion implantation

    International Nuclear Information System (INIS)

    Prins, Johan F.

    2001-01-01

    Ion implantation conditions are considered during which the energy, dissipated in the collision cascades, is low enough to ensure that the defects, which are generated during these collisions, consist primarily of vacancies and interstitial atoms. It is proposed that ballistic self-annealing is possible when the point defect density becomes high enough, provided that none, or very few, of the interstitial atoms escape from the layer being implanted. Under these conditions, the fraction of ballistic atoms, generated within the collision cascades from substitutional sites, decreases with increasing ion dose. Furthermore, the fraction of ballistic atoms, which finally end up within vacancies, increases with increasing vacancy density. Provided the crystal structure does not collapse, a damage threshold should be approached where just as many atoms are knocked out of substitutional sites as the number of ballistic atoms that fall back into vacancies. Under these conditions, the average point defect density should approach saturation. This model is applied to recently published Raman data that have been measured on a 3 MeV He + -ion implanted diamond (Orwa et al 2000 Phys. Rev. B 62 5461). The conclusion is reached that this ballistic self-annealing model describes the latter data better than a model in which it is assumed that the saturation in radiation damage is caused by amorphization of the implanted layer. (author)

  14. Contact-free ultrasonic testing: applications to metrology and NDT

    International Nuclear Information System (INIS)

    Le Brun, A.

    1988-01-01

    In some cases classical ultrasonic testing is impossible because of adverse environment (high temperature, ionizing radiations, etc). Ultrasonic waves are created by laser impact and detected by electromagneto-acoustic transducers or laser interferometry. Association of ultrasonics generation by photoacoustic effect and reception by heterodyne interferometer is promising for the future [fr

  15. Immediate provisionalization of immediate implants in the esthetic zone: a prospective case series evaluating implant survival, esthetics, and bone maintenance.

    Science.gov (United States)

    Levin, Barry P; Wilk, Brian L

    2013-05-01

    This prospective study evaluates immediately placed and immediately provisionalized implants in the esthetic zone. All implants were TiO2-blasted, fluoride-modified, grade 4 titanium, with a coronal microthread design. Bone grafting and guided bone regeneration (GBR) was performed at all sites, and screw-retained temporary restorations were delivered on the day of surgery. All of the provisional crown(s) were out of occlusal function and remained in place for at least 8 weeks prior to initiation of definitive restorative therapy. Bone maintenance (BM) was considered successful if radiographs demonstrated proximal bone levels even or coronal to the implant platform. Of the 29 implants placed, 25 (86 percent) achieved bone maintenance at least 12 months post-loading with the final restorations. This study was considered successful, with 100 percent implant survival after at least 1 year loading of the final restoration, and 100 percent of patients were satisfied with the esthetics of their implant treatment.

  16. Ultrasonic actuation for MEMS dormancy-related stiction reduction

    Science.gov (United States)

    Kaajakari, Ville; Kan, Shyi-Herng; Lin, Li-Jen; Lal, Amit; Rodgers, M. Steven

    2000-08-01

    The use of ultrasonic pulses incident on surface micromachines has been shown to reduce dormancy-related failure. We applied ultrasonic pulses from the backside of a silicon substrate carrying SUMMiT processed surface micromachined rotors, used earlier as ultrasonic motors. The amplitude of the pulses was less than what is required to actuate the rotor (sub-threshold actuation). By controlling the ultrasonic pulse exposure time it was found that pulsed samples had smaller actuation voltages as compared to non-pulsed samples after twelve-hour dormancy. This result indicates that the micromachine stiction to surfaces during dormant period can be effectively eliminated, resulting in long-term stability of surface micromachines in critical applications.

  17. Scintigraphic examinations after stent implantation in central airways

    International Nuclear Information System (INIS)

    Richter, W.S.; Kettner, B.I.; Munz, D.L.

    1998-01-01

    Endotracheal and endobronchial stent implantation has been developed as an effective treatment of benign and malignant airway stenosis and of tracheo- or bronchoesophageal fistulas. The selection of the stent type depends on the kind and site of disease. Chest X-ray and bronchoscopy are the procedures of choice for monitoring of stent position, structure, and function. However, with scintigraphic methods the effects of stent implantation on pulmonary ventilation and perfusion can be assessed non-invasively. The validation of the effect of a stent implantation on mucociliary and tussive clearance remains to be elucidated. (orig.) [de

  18. NEET In-Pile Ultrasonic Sensor Enablement-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Daw; J. Rempe; J. Palmer; P. Ramuhalli; R. Montgomery; H.T. Chien; B. Tittmann; B. Reinhardt; P. Keller

    2014-09-01

    Ultrasonic technologies offer the potential to measure a range of parameters during irradiation of fuels and materials, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes under harsh irradiation test conditions. There are two primary issues that currently limit in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. The harsh nature of in-pile testing and the variety of desired measurements demand that an enhanced signal processing capability be developed to make in-pile ultrasonic sensors viable. To address these issues, the NEET ASI program funded a three year Ultrasonic Transducer Irradiation and Signal Processing Enhancements project, which is a collaborative effort between the Idaho National Laboratory, the Pacific Northwest National Laboratory, the Argonne National Laboratory, and the Pennsylvania State University. The objective of this report is to document the objectives and accomplishments from this three year project. As summarized within this document, significant work has been accomplished during this three year project.

  19. Metastatic Breast Cancer in Medication-Related Osteonecrosis Around Mandibular Implants.

    Science.gov (United States)

    Favia, Gianfranco; Tempesta, Angela; Limongelli, Luisa; Crincoli, Vito; Piattelli, Adriano; Maiorano, Eugenio

    2015-09-15

    Many authors have considered dental implants to be unrelated to increased risk of medication-related osteonecrosis of the jaw (MRONJ). Nevertheless, more recently, more cases of peri-implant MRONJ (PI-MRONJ) have been described, thus becoming a challenging health problem. Also, metastatic cancer deposits are not infrequently found at peri-implant sites and this may represent an additional complication for such treatments. We present the case of a breast cancer patient with PI-MRONJ, presenting a clinically and radiologically undetected metastasis within the necrotic bone, and highlight the necessity of an accurate histopathological analysis. A 66-year-old female patient, who had received intravenous bisphosphonates for bone breast cancer metastases, came to our attention for a non-implant surgery-triggered PI-MRONJ. After surgical resection of the necrotic bone, conventional and immunohistochemical examinations were performed, which showed breast cancer deposits within the necrotic bone. Cancer patients with metastatic disease, who are undergoing bisphosphonate treatment, may develop unusual complications, including MRONJ, which is a site at risk for hosting additional metastatic deposits that may be clinically and radiologically overlooked. Such risk is increased by previous or concomitant implant procedures. Consequently, clinicians should be prudent when performing implant surgery in cancer patients with advanced-stage disease and consider the possible occurrence of peri-implant metastases while planning adequate treatments in such patients.

  20. Implantation of autogenous meniscal fragments wrapped with a fascia sheath enhances fibrocartilage regeneration in vivo in a large harvest site defect.

    Science.gov (United States)

    Kobayashi, Yasukazu; Yasuda, Kazunori; Kondo, Eiji; Katsura, Taro; Tanabe, Yoshie; Kimura, Masashi; Tohyama, Harukazu

    2010-04-01

    Concerning meniscal tissue regeneration, many investigators have studied the development of a tissue-engineered meniscus. However, the utility still remains unknown. Implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect may significantly enhance fibrocartilage regeneration in vivo in the defect. Controlled laboratory study. Seventy-five mature rabbits were used in this study. In each animal, an anterior one-third of the right medial meniscus was resected. Then, the animals were divided into the following 3 groups of 25 rabbits each: In group 1, no treatment was applied to the meniscal defect. In group 2, the defect was covered with a fascia sheath. In group 3, after the resected meniscus was fragmented into small pieces, the fragments were grafted into the defect. Then, the defect with the meniscal fragments was covered with a fascia sheath. In each group, 5 rabbits were used for histological evaluation at 3, 6, and 12 weeks after surgery, and 5 rabbits were used for biomechanical evaluation at 6 and 12 weeks after surgery. Histologically, large round cells in group 3 were scattered in the core portion of the meniscus-shaped tissue, and the matrix around these cells was positively stained by safranin O and toluisin blue at 12 weeks. The histological score of group 3 was significantly higher than that of group 1 and group 2. Biomechanically, the maximal load and stiffness of group 3 were significantly greater than those of groups 1 and 2. This study clearly demonstrated that implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect significantly enhanced fibrocartilage regeneration in vivo in the defect at 12 weeks after implantation in the rabbit. This study proposed a novel strategy to treat a large defect after a meniscectomy.

  1. Extrinsic Fabry-Perot ultrasonic detector

    Science.gov (United States)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  2. In vivo osseointegration of dental implants with an antimicrobial peptide coating.

    Science.gov (United States)

    Chen, X; Zhou, X C; Liu, S; Wu, R F; Aparicio, C; Wu, J Y

    2017-05-01

    This study aimed to evaluate the in vivo osseointegration of implants with hydrophobic antimicrobial GL13K-peptide coating in rabbit femoral condyles by micro-CT and histological analysis. Six male Japanese Rabbits (4 months old and weighing 2.5 kg each) were included in this study. Twelve implants (3.75 mm wide, 7 mm long) were randomly distributed in two groups, with six implants in the experimental group coated with GL13K peptide and six implants in the control group without surface coating. Each implant in the test and the control group was randomly implanted in the left or right side of femoral condyles. On one side randomly-selected of the femur, each rabbit received a drill that was left without implant as control for the natural healing of bone. After 3 weeks of healing radiographic evaluation of the implant sites was taken. After 6 weeks of healing, rabbits were sacrificed for evaluation of the short-term osseointegration of the dental implants using digital radiography, micro-CT and histology analysis. To perform evaluation of osseointegration, implant location and group was double blinded for surgeon and histology/radiology researcher. Two rabbits died of wound infection in sites with non-coated implants 2 weeks after surgery. Thus, at least four rabbits per group survived after 6 weeks of healing. The wounds healed without suppuration and inflammation. No implant was loose after 6 weeks of healing. Radiography observations showed good osseointegration after 3 and 6 weeks postoperatively, which proved that the tissues followed a natural healing process. Micro-CT reconstruction and analysis showed that there was no statistically significant difference (P > 0.05) in volume of bone around the implant between implants coated with GL13K peptide and implants without coating. Histomorphometric analysis also showed that the mineralized bone area was no statistically different (P > 0.05) between implants coated with GL13K peptide and

  3. Treatment of an Erratic Extraction Socket for Implant Therapy in a Patient with Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Yusuke Hamada

    2016-01-01

    Full Text Available As implant therapy becomes more commonplace in daily practice, preservation and preparation of edentulous sites are key. Many times, however, implant therapy may not be considered at the time of tooth extraction and additional measures are not taken to conserve the edentulous site. While the healing process in extraction sockets has been well investigated and bone fill can be expected, there are cases where even when clinicians perform thorough debridement of the sockets, connective tissue infiltration into the socket can occur. This phenomenon, known as “erratic healing,” may be associated with factors that lead to peri-implant disease and should be appropriately managed and treated prior to surgical implant placement. This case report describes the successful management of an erratic healing extraction socket in a 62-year-old Caucasian male patient with chronic periodontitis and the outcomes of an evidence-based treatment protocol performed prior to implant therapy. Careful preoperative analysis and cone beam computed tomography imaging can help detect signs of impaired healing in future implant sites and prevent surgical complications.

  4. Treatment of an Erratic Extraction Socket for Implant Therapy in a Patient with Chronic Periodontitis

    Science.gov (United States)

    Prabhu, Srividya

    2016-01-01

    As implant therapy becomes more commonplace in daily practice, preservation and preparation of edentulous sites are key. Many times, however, implant therapy may not be considered at the time of tooth extraction and additional measures are not taken to conserve the edentulous site. While the healing process in extraction sockets has been well investigated and bone fill can be expected, there are cases where even when clinicians perform thorough debridement of the sockets, connective tissue infiltration into the socket can occur. This phenomenon, known as “erratic healing,” may be associated with factors that lead to peri-implant disease and should be appropriately managed and treated prior to surgical implant placement. This case report describes the successful management of an erratic healing extraction socket in a 62-year-old Caucasian male patient with chronic periodontitis and the outcomes of an evidence-based treatment protocol performed prior to implant therapy. Careful preoperative analysis and cone beam computed tomography imaging can help detect signs of impaired healing in future implant sites and prevent surgical complications. PMID:27807485

  5. Treatment of an Erratic Extraction Socket for Implant Therapy in a Patient with Chronic Periodontitis.

    Science.gov (United States)

    Hamada, Yusuke; Prabhu, Srividya; John, Vanchit

    2016-01-01

    As implant therapy becomes more commonplace in daily practice, preservation and preparation of edentulous sites are key. Many times, however, implant therapy may not be considered at the time of tooth extraction and additional measures are not taken to conserve the edentulous site. While the healing process in extraction sockets has been well investigated and bone fill can be expected, there are cases where even when clinicians perform thorough debridement of the sockets, connective tissue infiltration into the socket can occur. This phenomenon, known as "erratic healing," may be associated with factors that lead to peri-implant disease and should be appropriately managed and treated prior to surgical implant placement. This case report describes the successful management of an erratic healing extraction socket in a 62-year-old Caucasian male patient with chronic periodontitis and the outcomes of an evidence-based treatment protocol performed prior to implant therapy. Careful preoperative analysis and cone beam computed tomography imaging can help detect signs of impaired healing in future implant sites and prevent surgical complications.

  6. Clinical evaluation of the stability of implants placed at different supracrestal levels.

    Science.gov (United States)

    Gultekin, B Alper; Sirali, Ali; Gultekin, Pinar; Ersanli, Selim

    2016-01-01

    The aim of this study was to evaluate the stability during healing and before loading of implants placed at two different supracrestal levels according to their collar texture. This retrospective study included patients who received posterior implants with the same macro design. Implants with a machined collar were placed 0.3 mm above the crestal bone (M group), while those with a laser-microtextured collar were placed 1 mm above the crestal bone (L group). All implants healed in a single stage with healing abutments. Implant stability quotient (ISQ) values were determined using resonance frequency analysis immediately after implant placement during surgery and after 1, 4, 8, and 12 weeks after surgery. Other evaluated factors for stability included the implant diameter and length and the site of placement (maxilla or mandible). In total, 103 implants (47 L, 56 M) were evaluated. The median ISQ values at baseline and 1 week after placement were significantly higher for the M group than for the L group (p=0.006 and p=0.031, respectively). There were no differences at the subsequent observation points. The ISQ value was higher for wide-diameter than regular diameter (p=0.001) and mandibular implants than maxillary implants (p=0.001 at 0-8. weeks; p=0.012 at 12 weeks) at all observation points. When diameter data were neglected, the implant length did not influence the ISQ value at all observation points. Our results suggest that submerging implant more inside bone may only influence primary stability. Moreover, the implant diameter and site of placement influence primary and secondary stability before loading, whereas the implant length does not when its diameter is not accounted for.

  7. Internal properties assessment in agar wood trees using ultrasonic velocity measurement

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Mohamad Pauzi Ismail; Mat Rasol Awang; Mohd Fajri Osman; Fakhruzi, M.; Hashim, M.M.

    2010-01-01

    This paper presents the application of ultrasonic velocity in agar wood trees (Aquilaria crassna) with the purpose of evaluating the relationship of the ultrasonic velocity to the variations of internal properties of trees. In this study, three circular cross-sectional discs from the freshly cut tree were selected as samples. First sample with a big hole (decay) in the middle, second sample with internal resinous and the last one is the sample with no defects. The through transmission ultrasonic testing method was carried out using Tico ultrasonic pulse velocity tester which is from Switzerland. Two-dimensional image of internal properties evaluation by an ultrasonic investigation was obtained using Matlab. The results showed that the ultrasonic wave cannot pass through the internal decay or resinous so that the wave went round it and thus ultrasonic wave velocity significantly decreased by increasing the hole or resinous. The difference in color of the image generated by Matlab software based on variation of ultrasonic velocity between the internal decay area and its surrounding area was obvious. Therefore, the properties of internal properties of the three could be detected by ultrasonic line imaging technique. (author)

  8. Recent advances in the design of drug-loaded polymeric implants for the treatment of solid tumors.

    Science.gov (United States)

    Wadee, Ameena; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Penny, Clement; Ndesendo, Valence M K; Kumar, Pradeep; Murphy, Caragh S

    2011-10-01

    The effective treatment of solid tumors continues to be a great challenge to clinicians, despite the development of novel drugs. In order to improve the clinical efficacy of existing chemotherapeutic agents, researchers have considered the possibility of site-specific solid tumor treatment. The greatest advantage of localized delivery is the significantly fewer side effects experienced by patients. Recently, in situ forming implants have attracted considerable interest. These polymeric systems are injected as solutions into tumor sites and the injected solution forms an implant as a result of local environmental stimuli and hence removes the need for surgical implantation. This review summarizes the attempts that have been made to date in the development of polymeric implants for the treatment of solid tumors. Both in situ forming implants and preformed implants, fabricated using natural and synthetic polymers, are described. In addition, the peri- or intra-tumoral delivery of chemotherapeutic agents based on implants inserted surgically into the affected region is also discussed along with a short coverage of implants having an undesirable initial burst release effect. Although these implants have been shown to improve the treatment of various solid tumors, the ideal implant that is able to deliver high doses of chemotherapeutics to the tumor site, over prolonged periods with relatively few side effects on normal tissue, is yet to be formulated.

  9. Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model.

    Science.gov (United States)

    Rediske, A M; Roeder, B L; Brown, M K; Nelson, J L; Robison, R L; Draper, D O; Schaalje, G B; Robison, R A; Pitt, W G

    1999-05-01

    Biofilm infections are a common complication of prosthetic devices in humans. Previous in vitro research has determined that low-frequency ultrasound combined with aminoglycoside antibiotics is an effective method of killing biofilms. We report the development of an in vivo model to determine if ultrasound enhances antibiotic action. Two 24-h-old Escherichia coli (ATCC 10798) biofilms grown on polyethylene disks were implanted subcutaneously on the backs of New Zealand White female rabbits, one on each side of the spine. Low-frequency (28.48-kHz) and low-power-density (100- and 300-mW/cm2) continuous ultrasound treatment was applied for 24 h with and without systemic administration of gentamicin. The disks were then removed, and the number of viable bacteria on each disk was determined. At the low ultrasonic power used in this study, exposure to ultrasound only (no gentamicin) caused no significant difference in bacterial viability. In the presence of antibiotic, there was a significant reduction due to 300-mW/cm2 ultrasound (P = 0.0485) but no significant reduction due to 100-mW/cm2 ultrasound. Tissue damage to the skin was noted at the 300-mW/cm2 treatment level. Further development of this technique has promise in treatment of clinical implant infections.

  10. Influence of keratinized tissue on spontaneous exposure of submerged implants: classification and clinical observations

    Directory of Open Access Journals (Sweden)

    G. Mendoza

    2014-10-01

    Full Text Available Aim: The reasons for spontaneous early exposure (SEE of dental implants during healing have not been established yet. The objective of this study was to assess whether the width of keratinized tissue (KT and other site-related conditions could be associated with implants’ SEE. Materials and methods: Data from 500 implants placed in 138 non-smoking patients, between September 2009 and June 2010, were evaluated. Implants were submerged and allowed to heal for 3 to 6 months. At baseline, the following conditions were documented: the presence of keratinized tissue width > 2 mm; the type of implant site (i.e. fresh extraction socket or edentulous alveolar ridge; concomitant use of guided tissue regeneration. During the healing period, the occurrence of partial or total implants SEE was recorded; thus, a mixed-effects logistic regression analysis was performed to investigate the association between implant site conditions and implant exposure. Results: One hundred and eighty-five implants (37.0% remained submerged after healing and were classified as Class I, whereas 215 (43.0% showed partial spontaneous early exposure (SEE at the first week after implant placement (Class II, and 100 implants (20.0% developed more extensive exposures (Class III. The variables, baseline width of KT (p = 0.18, fresh extraction socket (p = 0.88 and guided tissue regeneration (GTR plus bone substitutes (p = 0.42, were not found to be correlated with implants` SEE, with an odds ratio (OR of 1.29 (95% confidence interval: -0.12–0.63, 1.03 (95% confidence interval: -0.46–0.53 and 1.22 (95% confidence interval: -0.29–0.68, respectively. Conclusion: It was not possible to establish an association between SEE and some implant-related factors; therefore, further investigations focused on the reasons associated to implants’ SEE are needed.

  11. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  12. Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo

    2005-01-01

    This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple

  13. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  14. Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment

    International Nuclear Information System (INIS)

    Lee, Jeong Ki; Park, Moon Ho; Park, Ki Sung; Lee, Jae Ho; Lim, Sung Jin

    2004-01-01

    Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants

  15. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  16. Physical state of implanted W in copper

    International Nuclear Information System (INIS)

    Borders, J.A.; Cullis, A.G.; Poate, J.M.

    1975-01-01

    Transmission electron microscopy and 4 He ion channeling measurements were combined to investigate the physical state of implanted W in copper. For 60 0 K implantations of 2 x 10 15 W cm -2 , W is found to be 100 percent substitutional and is still 90 percent substitutional for a dose of 10 16 W cm -2 . Implantation of 10 17 W cm -2 produces a thin disordered surface layer of W and Cu with the W occupying no regular lattice site. On annealing to 600 0 C, W precipitates are formed with dimensions of a few hundred A and certain preferred orientations in the Cu lattice. (auth)

  17. Hardware Developments of an Ultrasonic Tomography Measurement System

    Directory of Open Access Journals (Sweden)

    Hudabiyah ARSHAD AMARI

    2010-01-01

    Full Text Available This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ultrasonic transceiver. A prototype design of sensor’s jig that will hold 16 transceivers of 14.1mm has been design. Transmission-mode approach with fan beam technique has been used for sensing the flow of gas, liquid and solid. This paper also explains the circuitry designs for the Ultrasonic Tomography System.

  18. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  19. Surface modifications of dental implants.

    Science.gov (United States)

    Stanford, C M

    2008-06-01

    Dental implant surface technologies have been evolving rapidly to enhance a more rapid bone formation on their surface and hold a potential to increase the predictability of expedited implant therapy. While implant outcomes have become highly predictable, there are sites and conditions that result in elevated implant loss. This paper reviews the impact of macro-retentive features which includes approaches to surface oxide modification, thread design, press-fit and sintered-bead technologies to increase predictability of outcomes. Implant designs that lead to controlled lateral compression of the bone can improve primary stability as long as the stress does not exceed the localized yield strength of the cortical bone. Some implant designs have reduced crestal bone loss by use of multiple cutting threads that are closely spaced, smoothed on the tip but designed to create a hoop-stress stability of the implant as it is completely seated in the osteotomy. Following the placement of the implant, there is a predictable sequence of bone turnover and replacement at the interface that allows the newly formed bone to adapt to microscopic roughness on the implant surface, and on some surfaces, a nanotopography (<10(-9) m scale) that has been shown to preferably influence the formation of bone. Newly emerging studies show that bone cells are exquisitely sensitive to these topographical features and will upregulate the expression of bone related genes for new bone formation when grown on these surfaces. We live in an exciting time of rapid changes in the modalities we can offer patients for tooth replacement therapy. Given this, it is our responsibility to be critical when claims are made, incorporate into our practice what is proven and worthwhile, and to continue to support and provide the best patient care possible.

  20. Crestal bone loss around submerged and nonsubmerged dental implants: A systematic review.

    Science.gov (United States)

    Al Amri, Mohammad D

    2016-05-01

    To my knowledge, there is no systematic review of crestal bone loss (CBL) around submerged and nonsubmerged dental implants. The purpose of this review was to systematically assess CBL around submerged and nonsubmerged dental implants. The addressed focused question was, "Does crestal and subcrestal placement of dental implants influence crestal bone levels?" Databases were searched from 1986 through October 2015 using different combinations of the following keywords: crestal, sub-crestal, bone loss, dental implant, submerged, and nonsubmerged. Reference lists of potentially relevant original and review articles were hand-searched to identify any further studies. Letters to the editor, case reports, commentaries, studies on platform-switched implants, and studies published in languages other than English were excluded. In total, 13 studies (6 human and 7 animal), which were performed at universities, were included. In the human studies, the number of participants ranged from 8 to 84 individuals. The follow-up period ranged from 1 to 5 years. CBL at the test sites ranged from 0.17 mm to 0.9 mm and at control sites from 0.02 mm to 1.4 mm. Five human studies reported no significant difference in CBL around implants placed at the test and control sites. All animal studies were performed in dogs with a mean age ranging from 1 to approximately 2 years. The follow-up period ranged from 2 to 6 months. Four animal studies reported no significant difference in CBL around submerged and nonsubmerged implants. No significant difference in CBL was found around submerged and nonsubmerged dental implants. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. On line ultrasonic integrated backscatter

    International Nuclear Information System (INIS)

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  2. Stability studies of Hg implanted YBa$_{2}$Cu$_{3}$O$_{6+x}$

    CERN Document Server

    Araújo, J P; Wahl, U; Marques, J G; Alves, E; Amaral, V S; Lourenço, A A; Galindo, V; Von Papen, T; Senateur, J P; Weiss, F; Vantomme, A; Langouche, G; Melo, A A; Da Silva, M F A; Soares, J C; Sousa, J B

    1999-01-01

    High quality YBa$_{2}$Cu$_{3}$O$_{6+x}$ (YBCO) superconducting thin films were implanted with the radioactive $^{197m}$Hg (T$_{1/2}$ = 24 h) isotope to low fluences of 10$^{13}$ atoms/cm$^{2}$ and 60 keV energy. The lattice location and stability of the implanted Hg were studied combining the Perturbed Angular Correlation (PAC) and Emission Channeling (EC) techniques. We show that Hg can be introduced into the YBCO lattice by ion implantation into unique regular sites. The EC data show that Hg is located on a highly symmetric site on the YBCO lattice, while the PAC data suggests that Hg occupies the Cu(1) site. Annealing studies were performed under vacuum and O$_{2}$ atmosphere and show that Hg starts to diffuse only above 653 K.

  3. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir

    2012-04-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects and then utilized to account for instantaneous softening when ultrasonic energy is applied during deformation. Material model parameters are identified via inverse modeling, i.e. by using experimental data. The versatility and predictive ability of the model are demonstrated and the effect of ultrasonic intensity on the manufacturing process at hand is investigated and compared qualitatively with experimental results reported in the literature. © 2011 Elsevier B.V. All rights reserved.

  4. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Weber, M; Weiss, M [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  5. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H.; Weber, M.; Weiss, M. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  6. The outcome of laparoscopic cholecystectomy by ultrasonic dissection.

    LENUS (Irish Health Repository)

    Sasi, Walid

    2010-04-01

    Electrocautery remains the main energy form used for dissection in laparoscopic cholecystectomy. However, due to its many risks the search continues for safer and more efficient forms of energy. This chapter assesses the outcomes of dissection using ultrasonic energy as compared to monopolar electrocautery during laparoscopic cholecystectomy. Studies included are trials of prospectively randomized adult patients with symptomatic gallstone disease subject either ultrasonic or monopolar electrocautery dissection during laparoscopic cholecystectomy. Seven trials were included in this review, with a total patient number of 695 randomized to two dissection methods: 340 in the electrocautery group and 355 in the ultrasonic group. Ultrasonic dissection is shown to be superior to monopolar electrocautery in laparoscopic cholecystectomy. Disadvantages include a difficult maneuvering technique and overall cost. Appropriate training programs may be implemented to overcome the first disadvantage, and it might be argued that given the combined cost of factors associated with standard clip and cautery technique, cost issues may be outweighed by the benefits of ultrasonic dissection. However, this necessitates further cost-benefit analysis.

  7. Ultrasonic extraction of flavonoids and phenolics from loquat ...

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... ultrasonic pharmaceutical managing machine (Sinobest electronic. Co. Ltd., Jining, Shangdong ... During the ultrasonic treatment, the temperature ..... essential oil extraction by a hydrodistillation process using a 2(4) complete ...

  8. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review

    Science.gov (United States)

    Shadid, Rola Muhammed; Sadaqah, Nasrin Rushdi; Othman, Sahar Abdo

    2014-01-01

    Background. A number of surgical techniques for implant site preparation have been advocated to enhance the implant of primary and secondary stability. However, there is insufficient scientific evidence to support the association between the surgical technique and implant stability. Purpose. This review aimed to investigate the influence of different surgical techniques including the undersized drilling, the osteotome, the piezosurgery, the flapless procedure, and the bone stimulation by low-level laser therapy on the primary and/or secondary stability of dental implants. Materials and methods. A search of PubMed, Cochrane Library, and grey literature was performed. The inclusion criteria comprised observational clinical studies and randomized controlled trials (RCTs) conducted in patients who received dental implants for rehabilitation, studies that evaluated the association between the surgical technique and the implant primary and/or secondary stability. The articles selected were carefully read and classified as low, moderate, and high methodological quality and data of interest were tabulated. Results. Eight clinical studies were included then they were classified as moderate or high methodological quality and control of bias. Conclusions. There is a weak evidence suggesting that any of previously mentioned surgical techniques could influence the primary and/or secondary implant stability. PMID:25126094

  9. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review

    Directory of Open Access Journals (Sweden)

    Rola Muhammed Shadid

    2014-01-01

    Full Text Available Background. A number of surgical techniques for implant site preparation have been advocated to enhance the implant of primary and secondary stability. However, there is insufficient scientific evidence to support the association between the surgical technique and implant stability. Purpose. This review aimed to investigate the influence of different surgical techniques including the undersized drilling, the osteotome, the piezosurgery, the flapless procedure, and the bone stimulation by low-level laser therapy on the primary and/or secondary stability of dental implants. Materials and methods. A search of PubMed, Cochrane Library, and grey literature was performed. The inclusion criteria comprised observational clinical studies and randomized controlled trials (RCTs conducted in patients who received dental implants for rehabilitation, studies that evaluated the association between the surgical technique and the implant primary and/or secondary stability. The articles selected were carefully read and classified as low, moderate, and high methodological quality and data of interest were tabulated. Results. Eight clinical studies were included then they were classified as moderate or high methodological quality and control of bias. Conclusions. There is a weak evidence suggesting that any of previously mentioned surgical techniques could influence the primary and/or secondary implant stability.

  10. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  11. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  12. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-01-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc–10 kHz and 0–4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, T g = 69 °C), whose the glass transition temperature (T g ) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not

  13. Horizontal stability of connective tissue grafts at the buccal aspect of single implants: a 1-year prospective case series.

    Science.gov (United States)

    De Bruyckere, Thomas; Eghbali, Aryan; Younes, Faris; De Bruyn, Hugo; Cosyn, Jan

    2015-09-01

    To clinically evaluate the horizontal stability of a connective tissue graft (CTG) at the buccal aspect of single implants (1); to compare actual gingival thickness between thin and thick gingival biotype (2). Periodontally healthy non-smoking patients with a single implant in the anterior maxilla (15-25) were selected for a prospective case series. All demonstrated a horizontal alveolar defect and were in need of contour augmentation by means of CTG for aesthetic reasons. Patients were enrolled 3 months after implant surgery and had been provided with a provisional screw-retained crown. CTG was inserted in the buccal mucosa via the envelope technique using one intrasulcular incision. An ultrasonic device was used to evaluate mucosal thickness (MT) at the buccal aspect. MT was assessed at t0 (before CTG), t1 (immediately after CTG), t2 (2 weeks after CTG = suture removal), t3 (3 months after CTG = permanent crown installation) and t4 (1 year after implant placement). The gingival biotype was categorized as thin or thick based on the transparency of a periodontal probe through the soft tissues while probing the buccal sulcus of the contra-lateral tooth. Gingival thickness (GT) was measured at the contra-lateral tooth using the same ultrasonic device. Thirty-seven patients (19 men, 18 women; mean age 38) met the selection criteria and consented to the treatment. Mean soft tissue gain immediately after CTG was on average 1.07 mm (SD 0.49). What remained of this tissue gain after 1 year was on average 0.97 mm (SD 0.48; 90.5%). Hence, mean soft tissue loss amounted to 0.10 mm (SD 0.23; 9.5%; p = 0.015) with no significant difference between patients with a thin or thick biotype (p ≥ 0.290). Patients with a thin biotype had a mean GT of 1.02 mm (SD 0.21), whereas GT was on average 1.32 mm (SD 0.31) in subjects with a thick biotype (p = 0.004). Connective tissue graft substantially thickens the peri-implant mucosa with acceptable stability over a 1-year period. © 2015

  14. Impact of Different Surgeons on Dental Implant Failure.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    To assess the influence of several factors on the prevalence of dental implant failure, with special consideration of the placement of implants by different dental surgeons. This retrospective study is based on 2,670 patients who received 10,096 implants at one specialist clinic. Only the data of patients and implants treated by surgeons who had inserted a minimum of 200 implants at the clinic were included. Kaplan-Meier curves were stratified with respect to the individual surgeon. A generalized estimating equation (GEE) method was used to account for the fact that repeated observations (several implants) were placed in a single patient. The factors bone quantity, bone quality, implant location, implant surface, and implant system were analyzed with descriptive statistics separately for each individual surgeon. A total of 10 surgeons were eligible. The differences between the survival curves of each individual were statistically significant. The multivariate GEE model showed the following variables to be statistically significant: surgeon, bruxism, intake of antidepressants, location, implant length, and implant system. The surgeon with the highest absolute number of failures was also the one who inserted the most implants in sites of poor bone and used turned implants in most cases, whereas the surgeon with the lowest absolute number of failures used mainly modern implants. Separate survival analyses of turned and modern implants stratified for the individual surgeon showed statistically significant differences in cumulative survival. Different levels of failure incidence could be observed between the surgeons, occasionally reaching significant levels. Although a direct causal relationship could not be ascertained, the results of the present study suggest that the surgeons' technique, skills, and/or judgment may negatively influence implant survival rates.

  15. Targeted drug delivery to magnetic implants for therapeutic applications

    International Nuclear Information System (INIS)

    Yellen, Benjamin B.; Forbes, Zachary G.; Halverson, Derek S.; Fridman, Gregory; Barbee, Kenneth A.; Chorny, Michael; Levy, Robert; Friedman, Gary

    2005-01-01

    A new method for locally targeted drug delivery is proposed that employs magnetic implants placed directly in the cardiovascular system to attract injected magnetic carriers. Theoretical simulations and experimental results support the assumption that using magnetic implants in combination with externally applied magnetic field will optimize the delivery of magnetic drug to selected sites within a subject

  16. The digital ultrasonic test unit for automatic equipment

    International Nuclear Information System (INIS)

    Hiraoka, T.; Matsuyama, H.

    1976-01-01

    The operations and features of the ultrasonic test unit used and the digital data processing techniques employed are described. This unit is used for a few hundred multi-channel automatic ultrasonic test equipment

  17. Design of ultrasonic probe and evaluation of ultrasonic waves on E.coli in Sour Cherry Juice

    Directory of Open Access Journals (Sweden)

    B Hosseinzadeh Samani

    2015-09-01

    Full Text Available Introduction: The common method used for juice pasteurization is the thermal method since thermal methods contribute highly to inactivating microbes. However, applying high temperatures would lead to inefficient effects on nutrition and food value. Such effects may include vitamin loss, nutritional flavor loss, non-enzyme browning, and protein reshaping (Kuldiloke, 2002. In order to decrease the adverse effects of the thermal pasteurization method, other methods capable of inactivation of microorganisms can be applied. In doing so, non-thermal methods including pasteurization using high hydrostatic pressure processing (HPP, electrical fields, and ultrasound waves are of interest (Chen and Tseng, 1996. The reason for diminishing microbial count in the presence of ultrasonic waves could be due to the burst of very tiny bubbles developed by ultrasounds which expand quickly and burst in a short time. Due to this burst, special temperature and pressure conditions are developed which could initiate or intensify several physical and/or chemical reactions. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. Materials and methods: In order to supply uniform ultrasonic waves, a 1000 W electric generator (Model MPI, Switzerland working at 20±1 kHz frequency was used. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. For this purpose, a certain amount of sour cherry fruit was purchased from local markets. First, the fruits were washed, cleaned and cored. The prepared fruits were then dewatered using an electric juicer. In order to separate pulp suspensions and tissue components, the extracted juice was poured into a centrifuge with the speed of 6000 rpm for 20 min. For complete separation of the remaining suspended particles, the transparent portion of the extract was passed through a

  18. Miniaturized and general purpose fiber optic ultrasonic sources

    International Nuclear Information System (INIS)

    Biagi, E.; Fontani, S.; Masotti, L.; Pieraccini, M.

    1997-01-01

    Innovative photoacoustic sources for ultrasonic NDE, smart structure, and clinical diagnosis are proposed. The working principle is based on thermal conversion of laser pulses into a metallic film evaporated directly onto the tip of a fiber optic. Unique features of the proposed transducers are very high miniaturization and potential easy embedding in smart structure. Additional advantages, high bedding in smart structure. Additional advantages, high ultrasonic frequency, large and flat bandwidth. All these characteristics make the proposed device an ideal ultrasonic source

  19. Morphologic features of puncture sites after exoseal vascular closure device implantation: Changes on follow-up computed tomography

    International Nuclear Information System (INIS)

    Ryu, Hwa Seong; Jang, Joo Yeon; Kim, Tae Un; Lee, Jun Woo; Park, Jung Hwan; Choo, Ki Seok; Cho, Mong; Yoon, Ki Tae; Hong, Young Ki; Jeon, Ung Bae

    2017-01-01

    The study aimed to evaluate the morphologic changes in transarterial chemoembolization (TACE) puncture sites implanted with an ExoSeal vascular closure device (VCD) using follow-up computed tomography (CT). 16 patients who used ExoSeal VCD after TACE were enrolled. Using CT images, the diameters and anterior wall thicknesses of the puncture sites in the common femoral artery (CFA) were compared with those of the contralateral CFA before TACE, at 1 month after every TACE session, and at the final follow-up period. The rates of complications were also evaluated. There were no puncture- or VCD-related complications. Follow-up CT images of the CFA's of patients who used ExoSeal VCDs showed eccentric vascular wall thickening with soft-tissue densities considered to be hemostatic plugs. Final follow-up CT images (mean, 616 days; range, 95–1106 days) revealed partial or complete resorption of the hemostatic plugs. The CFA puncture site diameters did not differ statistically from those of the contralateral CFA on the final follow-up CT (p > 0.05), regardless of the number of VCDs used. Follow-up CT images of patients who used ExoSeal VCDs showed no significant vascular stenosis or significant vessel wall thickening

  20. Morphologic features of puncture sites after exoseal vascular closure device implantation: Changes on follow-up computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hwa Seong; Jang, Joo Yeon; Kim, Tae Un; Lee, Jun Woo; Park, Jung Hwan; Choo, Ki Seok; Cho, Mong; Yoon, Ki Tae; Hong, Young Ki; Jeon, Ung Bae [Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of)

    2017-05-15

    The study aimed to evaluate the morphologic changes in transarterial chemoembolization (TACE) puncture sites implanted with an ExoSeal vascular closure device (VCD) using follow-up computed tomography (CT). 16 patients who used ExoSeal VCD after TACE were enrolled. Using CT images, the diameters and anterior wall thicknesses of the puncture sites in the common femoral artery (CFA) were compared with those of the contralateral CFA before TACE, at 1 month after every TACE session, and at the final follow-up period. The rates of complications were also evaluated. There were no puncture- or VCD-related complications. Follow-up CT images of the CFA's of patients who used ExoSeal VCDs showed eccentric vascular wall thickening with soft-tissue densities considered to be hemostatic plugs. Final follow-up CT images (mean, 616 days; range, 95–1106 days) revealed partial or complete resorption of the hemostatic plugs. The CFA puncture site diameters did not differ statistically from those of the contralateral CFA on the final follow-up CT (p > 0.05), regardless of the number of VCDs used. Follow-up CT images of patients who used ExoSeal VCDs showed no significant vascular stenosis or significant vessel wall thickening.

  1. Role of interstitial implantation in gynecological cancer

    International Nuclear Information System (INIS)

    Nori, D.; Hilaris, B.S.

    1987-01-01

    Recurrent cancer at any site carries a gloomy prognosis. Cancer of the cervix that recurs after radical surgery or curative radiation therapy is a perplexing problem confronting both gynecological and radiation oncologists. In the authors' series, 45% of the patients survived disease-free at 1 year and 10% survived without disease at 5 years or longer following interstitial implantation for recurrent cervical cancer. The optimal utilization of this procedure seems to depend on the site of recurrence, the extent of the disease in the pelvis, and the status of para-aortic node involvement. This retrospective analysis enabled the authors to identify the prognostic factors. The most favorable group benefited by this technique were those who presented with either central recurrence or unilateral, localized pelvic side wall recurrent disease. The least morbidity was noticed in those patients with minimal surgical manipulations at the time of the interstitial implantation. The authors recommended that only a limited and essential surgical procedure should accompany interstitial implantation, since the associated morbidity and mortality is high and survival brief

  2. CLINICAL EVALUATION OF THE STABILITY OF IMPLANTS PLACED AT DIFFERENT SUPRACRESTAL LEVELS

    Directory of Open Access Journals (Sweden)

    B. Alper GÜLTEKIN

    2016-10-01

    Full Text Available Purpose: The aim of this study was to evaluate the stability during healing and before loading of implants placed at two different supracrestal levels according to their collar texture. Materials and Methods: This retrospective study included patients who received posterior implants with the same macro design. Implants with a machined collar were placed 0.3 mm above the crestal bone (M group, while those with a laser-microtextured collar were placed 1 mm above the crestal bone (L group. All implants healed in a single stage with healing abutments. Implant stability quotient (ISQ values were determined using resonance frequency analysis immediately after implant placement during surgery and after 1, 4, 8, and 12 weeks after surgery. Other evaluated factors for stability included the implant diameter and length and the site of placement (maxilla or mandible. Results: In total, 103 implants (47 L, 56 M were evaluated. The median ISQ values at baseline and 1 week after placement were significantly higher for the M group than for the L group (p=0.006 and p=0.031, respectively. There were no differences at the subsequent observation points. The ISQ value was higher for wide-diameter than regular diameter (p=0.001 and mandibular implants than maxillary implants (p=0.001 at 0-8. weeks; p=0.012 at 12 weeks at all observation points. When diameter data were neglected, the implant length did not influence the ISQ value at all observation points. Conclusion: Our results suggest that submerging implant more inside bone may only influence primary stability. Moreover, the implant diameter and site of placement influence primary and secondary stability before loading, whereas the implant length does not when its diameter is not accounted for.

  3. Treatment Alternatives to Negotiate Peri-Implantitis

    Directory of Open Access Journals (Sweden)

    Eli E. Machtei

    2014-01-01

    Full Text Available Peri-implant diseases are becoming a major health issue in dentistry. Despite the magnitude of this problem and the potential grave consequences, commonly acceptable treatment protocols are missing. Hence, the present paper reviews the literature treatment of peri-implantitis in order to explore their benefits and limitations. Treatment of peri-implantitis may include surgical and nonsurgical approaches, either individually or combined. Nonsurgical therapy is aimed at removing local irritants from the implants’ surface with or without surface decontamination and possibly some additional adjunctive therapies agents or devices. Systemic antibiotics may also be incorporated. Surgical therapy is aimed at removing any residual subgingival deposits and additionally reducing the peri-implant pockets depth. This can be done alone or in conjunction with either osseous respective approach or regenerative approach. Finally, if all fails, explantation might be the best alternative in order to arrest the destruction of the osseous structure around the implant, thus preserving whatever is left in this site for future reconstruction. The available literature is still lacking with large heterogeneity in the clinical response thus suggesting possible underlying predisposing conditions that are not all clear to us. Therefore, at present time treatment of peri-implantitis should be considered possible but not necessarily predictable.

  4. Bone modelling at fresh extraction sockets: immediate implant placement versus spontaneous healing: an experimental study in the beagle dog.

    Science.gov (United States)

    Vignoletti, Fabio; Discepoli, Nicola; Müller, Anna; de Sanctis, Massimo; Muñoz, Fernando; Sanz, Mariano

    2012-01-01

    The purpose of this investigation is to describe histologically the undisturbed healing of fresh extraction sockets when compared to immediate implant placement. In eight beagle dogs, after extraction of the 3P3 and 4P4, implants were inserted into the distal sockets of the premolars, while the mesial sockets were left to heal spontaneously. Each animal provided four socket sites (control) and four implant sites (test). After 6 weeks, animals were sacrificed and tissue blocks were dissected, prepared for ground sectioning. The relative vertical buccal bone resorption in relation to the lingual bone was similar in both test and control groups. At immediate implant sites, however, the absolute buccal bone loss observed was 2.32 (SD 0.36) mm, what may indicate that while an apical shift of both the buccal and lingual bone crest occurred at the implant sites, this may not happen in naturally healing sockets. The results from this investigation showed that after tooth extraction the buccal socket wall underwent bone resorption at both test and control sites. This resorption appeared to be more pronounced at the implant sites, although the limitations of the histological evaluation method utilized preclude a definite conclusion. © 2011 John Wiley & Sons A/S.

  5. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  6. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    Science.gov (United States)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  7. Study on the development of ultrasonic gas flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Park, Sang Gug; Yang, Kyu Hong; Jhang, Kyung Young

    2001-01-01

    Ultrasonic flowmeters have more advantages than the conventional method using pressure-difference. In these reasons, many advanced nations are already selling the commercial model. In RIST, we have been developed ultrasonic gas flow meter for the localization since a project was been contracted with POSCO in 1997. This paper describes a new ultrasonic gas flowmeter. This ultrasonic gas flowmeter is developed for accurate measurement of gases in a harsh environmental conditions. It is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. In this study, we had developed the commercial model about the first tested model and applied a completed system to the POSCO gas line. Its performance has already well been proven by extensive field tests for several months in POSCO, iron and steel making company

  8. Patterns of failure after iodine-125 seed implantation for prostate cancer

    International Nuclear Information System (INIS)

    Lamb, David S.; Greig, Lynne; Russell, Grant L.; Nacey, John N.; Broome, Kim; Studd, Rod; Delahunt, Brett; Iupati, Douglas; Jain, Mohua; Rooney, Colin; Murray, Judy; Lamb, Peter J.; Bethwaite, Peter B.

    2014-01-01

    Purpose: To determine the site of relapse when biochemical failure (BF) occurs after iodine-125 seed implantation for prostate cancer. Materials and methods: From 2001–2009, 500 men underwent implantation in Wellington, New Zealand. Men who sustained BF were placed on relapse guidelines that delayed restaging and intervention until the prostate-specific antigen (PSA) was ⩾20 ng/mL. Results: Most implants (86%) had a prostate D90 of ⩾90%, and multivariate analysis showed that this parameter was not a variable that affected the risk of BF. Of 21 BFs that occurred, the site of failure was discovered to be local in one case and distant in nine cases. Restaging failed to identify the site of relapse in two cases. In nine cases the trigger for restaging had not been reached. Conclusions: If post-implant dosimetry is generally within the optimal range, distant rather than local failure appears to be the main cause of BF. Hormone treatment is therefore the most commonly indicated secondary treatment intervention (STI). Delaying the start of STI prevents the unnecessary treatment of men who undergo PSA ‘bounce’ and have PSA dynamics initially mimicking those of BF

  9. Method of noncontacting ultrasonic process monitoring

    Science.gov (United States)

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  10. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ultrasonic monitoring of Iberian fat crystallization during cold storage

    International Nuclear Information System (INIS)

    Corona, E; García-Pérez, J V; Santacatalina, J V; Peña, R; Benedito, J

    2012-01-01

    The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.

  12. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  13. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    Science.gov (United States)

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  14. P-Scan provides accuracy and repeatability in ultrasonics

    International Nuclear Information System (INIS)

    Keys, R.L.

    1987-01-01

    The P-Scan (Projection image scanning technique) is an automated ultrasonic inspection technique, developed to overcome the problems with accuracy and repeatability experienced with manual ultrasonic systems. The equipment and its applications are described. (author)

  15. Ultrasonic experiment on hydrate formation of a synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shicai; Fan, Shuanshi; Liang, Deqing; Zhang, Junshe; Feng, Ziping

    2005-07-01

    The effect of ultrasonic on the induction time and formation rate of natural gas hydrates was investigated in a stainless steel cell in this study. The results show that the induction time with ultrasonic was about 1/6 of that without ultrasonic and only about 1/10 if rehydration after decomposition in water-gas system. In sodium dodecyl sulfate (SDS) solution-gas system, the critical micellar concentration (CMC) was not identified with ultrasonic. The formation rate and storage capacity of hydrate increased with increasing SDS concentration at a range of 0 to 800ppm. However, the increase was insignificant as the SDS concentration increased from 600 to 800ppm, (Author)

  16. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity

    DEFF Research Database (Denmark)

    Svennebring, J.; Manneberg, O.; Skafte-Pedersen, Peder

    2009-01-01

    We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the c......We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field...... sample feeding, a set of several manipulation functions performed in series is demonstrated: sample bypass-injection-aggregation and retention-positioning. Finally, we demonstrate transillumination microscopy imaging Of Ultrasonically trapped COS-7 cell aggregates. Biotechnol. Bioeng. 2009;103: 323-328....

  17. Defect detection and sizing in ultrasonic imaging

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Chapuis, N.; Magnin, I.

    1991-01-01

    This paper introduces imaging processing developed with the SPARTACUS system in the field of ultrasonic testing. The aim of the imaging processing is to detect and to separate defects echoes from background noise. Image segmentation and particularities of ultrasonic images are the base of studied methods. 4 figs.; 6 refs [fr

  18. Spectroscopic investigation on assisted sonocatalytic damage of bovine serum albumin (BSA) by metronidazole (MTZ) under ultrasonic irradiation combined with nano-sized ZnO

    Science.gov (United States)

    Gao, Jingqun; Liu, Bin; Wang, Jun; Jin, Xudong; Jiang, Renzheng; Liu, Lijun; Wang, Baoxin; Xu, Yongnan

    2010-11-01

    The previous work proved that the bovine serum albumin (BSA) could be damaged under the combined action of ultrasonic irradiation and ZnO. In this work, the assisted sonocatalytic damage of BSA using metronidazole (MTZ) as a sensitizer was further investigated by means of UV-vis and fluorescence spectra. The results indicated that the adding of MTZ could obviously promote the sonocatalytic damage of BSA under ultrasonic irradiation in the presence of nano-sized ZnO powder. Furthermore, it was found that the damage degree of BSA was aggravated by some influencing factors except ionic kind and strength. In addition, the damage site of BSA was also studied with synchronous fluorescence technology. It was found that the damage site was mainly at tryptophan (Trp) residue.

  19. Reproducibility problems of in-service ultrasonic testing results

    International Nuclear Information System (INIS)

    Honcu, E.

    1974-01-01

    The reproducibility of the results of ultrasonic testing is the basic precondition for its successful application in in-service inspection of changes in the quality of components of nuclear power installations. The results of periodic ultrasonic inspections are not satisfactory from the point of view of reproducibility. Regardless, the ultrasonic pulse-type method is suitable for evaluating the quality of most components of nuclear installations and often the sole method which may be recommended for inspection with regard to its technical and economic aspects. (J.B.)

  20. Further Investigations on Simultaneous Ultrasonic Coal Flotation

    Directory of Open Access Journals (Sweden)

    Safak Gokhan Ozkan

    2017-09-01

    Full Text Available This study investigates the flotation performance of a representative hard coal slime sample (d80 particle size of minus 0.2 mm obtained from the Prosper-Haniel coal preparation plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell refurbished from an old ultrasonic cleaning bath (2.5 L volume equipped with a single frequency (35 kHz and two different power levels (80–160 W and a sub-aeration-type flotation machine operating at a stable impeller speed (1200 rpm and air rate (2.5 L/min. The reagent combination for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages (40–300 g/t with controlling water temperature (20–25 °C at natural pH (6.5–7.0. The batch coal flotation results were analyzed by comparing the combustible recovery (% and separation efficiency (% values, taking mass yield and ash concentrations of the froths and tailings into account. It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the floated products with lower ash values than the conventional flotation despite using similar reagent dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

  1. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Liang; Jin, Haibo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Agathopoulos, Simeon [Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina (Greece)

    2006-09-29

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte. (author)

  2. Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures

    Science.gov (United States)

    Yan, Dayun; Wang, Jiadao; Liu, Fengbin

    2015-07-01

    In the incubation period of ultrasonic cavitation, due to the impact of microjets on the material surface, the needle-like microjet-pits are formed. Because the formation of microjet-pits relates with the evolution of cavitation erosion on engineering materials, corresponding study will promote the understanding on the mechanism of cavitation erosion. However, little study on the microjet-pits has been carried out, especially in the particles-water mixture. In this study, we firstly demonstrated the microjet-pits on the carbon steel would be significantly inhibited by Al particles in water. Such inhibition effect indicated that particular particles might not only provide growth sites for cavitation bubbles but also affect the collapse of cavitation bubbles near a solid surface. Our study deepened the understanding on the ultrasonic cavitation erosion in the particles-water mixture.

  3. Development and application of the ultrasonic technologies in nuclear engineering

    International Nuclear Information System (INIS)

    Lebedev, Nikolay; Krasilnikov, Dmitry; Vasiliev, Albert; Dubinin, Gennady; Yurmanov, Viktor

    2012-09-01

    Efficiency of some traditional chemical technologies in different areas could be significantly increased by adding ultrasonic treatment. For example, ultrasonic treatment was found to improve make-up water systems, decontamination procedures, etc. Improvement of traditional chemical technologies with implementation of ultrasonic treatment has allowed to significantly reducing water waste, including harmful species and radioactive products. The report shows the examples of the recent ultrasonic technology development and application in Russian nuclear engineering. They are as follows: - Preliminary cleaning of surfaces of in-pile parts (e.g. control sensors) prior to their assemblage and welding - Decontamination of grounds and metal surfaces of components with a complex structure -Decrease in sliding friction between fuel rods and grids during VVER reactor fuel assembly manufacturing -Removal of deposits from reactor fuel surfaces in VVER-440s -Increasing the density and strength of pressed sintered items while making fuel pellets and fuel elements, especially mixed-oxide fuel Surface cleanness is very important for the fuel assembly manufacturing, especially prior to welding. An ultrasonic technology for surface cleaning (from graphite and other lubricants, oxides etc.) was developed and implemented. The ultrasonic cleaning is applicable to the parts having both simple shape and different holes. Ultrasonic technology has allowed to improve the surface quality and environmental safety. Ultrasonic treatment appears to be expedient to intensify the chemical decontamination of solid radioactive waste from grounds of different fractions to metallic components. Ultrasonic treatment reduces the decontamination process duration up to 100 times as much. Excellent decontamination factor was received even for the ground fractions below 1 mm. It should be noted that alternative decontamination techniques (e.g. hydraulic separation) are poorly applicable for such ground

  4. An inverse method for crack characterization from ultrasonic B-Scan images

    International Nuclear Information System (INIS)

    Faur, M.; Roy, O.; Benoist, PH.; Morisseau, PH.

    1996-01-01

    Concern has been expressed about the capabilities of performing non destructive evaluation (NDE) of flaws located near to the outer surface in nuclear pressurized water reactor (PWR) vessels. The ultrasonic examination of PWR is accomplished from the inside with ultrasonic focused transducers working in the pulse echo mode. By recording the echoes as a function of time, the Ascan representation may be obtained. Many ultrasonic flaw detectors used for NDE are based on the simple Ascan concept involving measuring a time interval called 'time of flight'. By combining the Ascan concept synchronized transducer scanning, one can produce Bscan images that are two dimensional descriptions of the flaw interaction with the ultrasonic field. In the following, the flaw is assumed to be an axially oriented crack (the most serious flaw to be found in a pressurized component). In the case of the outer surface cracks (OSC's), analyzing and interpreting ultrasonic Ascan images become difficult because of the various reflections of the ultrasonic beam on the crack and on the outer surface (the so-called corner effect). Methods for automatic interpretation of ultrasonic experimental data are currently under investigation. In this paper, we present an inverse method for determining the geometrical characteristics of OSC's from ultrasonic Bscan images. The direct model used for the inversion procedure predicts synthetic Bscan images of ultrasonic examination of blocks containing planar defects interrogated by focused probes. (authors)

  5. Ultrasonic calibration assembly

    International Nuclear Information System (INIS)

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  6. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  7. Very high temperature ultrasonic thermometer

    International Nuclear Information System (INIS)

    Jorzik, E.

    1983-01-01

    An ultrasonic thermometer comprises an electric pulse transducer head, a pulse transmission line, a notched sensor wire attached to and extending along the axis of said transmission line and a sheath enclosing the transmission line and the sensor wire, a portion of the interior face of the sheath being covered by a stuffing material along at least the length of the notched part of the sensor wire, such that contact between the sensor wire and the stuffing material does not substantially give rise to reflection of an ultrasonic pulse at the point of contact. (author)

  8. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  9. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  10. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  11. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per

    2005-07-01

    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  12. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  13. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    International Nuclear Information System (INIS)

    Pilmane, M; Salms, G; Salma, I; Skagers, A; Locs, J; Loca, D; Berzina-Cimdina, L

    2011-01-01

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNFα), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  14. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pilmane, M [Riga Stradins University, Institute of Anatomy and Anthropology, Dzirciema 16, LV-1007, Riga (Latvia); Salms, G; Salma, I; Skagers, A [Riga Stradins University, Department of Oral and Maxillofacial Surgery, Dzirciema 20. LV-1007, Riga (Latvia); Locs, J; Loca, D; Berzina-Cimdina, L, E-mail: pilmane@latnet.lv [Riga Technical University, Riga Biomaterials innovation and development centre, Pulka 3/3, LV-1007, Riga (Latvia)

    2011-06-23

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNF{alpha}), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  15. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M.; Gil, Francisco Javier; Boyd, Steven K.; Rodríguez, Daniel

    2016-01-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  16. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria [Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby (Denmark); Manzanares-Céspedes, Maria Cristina [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Sevilla, Pablo [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), Barcelona (Spain); Nart, José [Department of Periodontology, School of Dentistry, Universitat Internacional de Catalunya, Sant Cugat (Spain); Manzanares, Norberto [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Manero, José M. [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain); Gil, Francisco Javier [Universitat Internacional de Catalunya, Sant Cugat (Spain); Boyd, Steven K. [McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta (Canada); Rodríguez, Daniel, E-mail: daniel.rodriguez.rius@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain)

    2016-12-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  17. The influence of micro and macro-geometry in term of bone-implant interface in two implant systems: an histomorphometrical study.

    Science.gov (United States)

    Rocci, A; Calcaterra, R; DI Girolamo, M; Rocci, M; Rocci, C; Baggi, L

    2015-01-01

    Many factors could affect the osseous healing of implants such as surface topography of biomaterial, the status of the bone/implant site, implant loading conditions, surgical technique and implant design. The aim of this study was to analyze the BIC of 2 different implants systems characterized by different micro and macrogeometry, that were placed in the posterior maxillary and mandibular jaws of humans, clinically unloaded and retrieved for histomorphometric analyses after 12 weeks. The patients were divided in two groups (Group I and II); group I was composed by 4 patients that each received in the posterior areas of mandible one type A implant [GTB-Plan1Health Amaro (UD) Italy] one type B implant (OsseoSpeed Astra Tech, Dentsply Molndal, Sweden). Group II was composed by 3 patients that each received in the posterior areas of jawsbone one type A implant [GTB-Plan1Health Amaro (UD) Italy] one type B implant (OsseoSpeed Astra Tech, Dentsply Molndal, Sweden). After 12 weeks of healing all the implants of both groups were harvested with the peri-implant bone tissues. Osseointegration process was evaluated throughout measurements of BIC. No statistical significance differences were found among the mean percentage of BIC of Group I - type A were 66,51% versus 49,96% in Group I - type B, as well as among the mean percentage of BIC of Group II - type A were 43.7% versus 60.02% in Group II - type B. Our results highlight that the mean percentage of BIC after 12 weeks from the implants placement without functional loading is not influenced by the composition of the implant surface.

  18. Chemical coloring on stainless steel by ultrasonic irradiation.

    Science.gov (United States)

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Simulation of the Two-Phase Liquid – Gas Flow through Ultrasonic Transceivers Application in Ultrasonic Tomography

    Directory of Open Access Journals (Sweden)

    Zulkarnay Zakaria

    2010-01-01

    Full Text Available In this paper, ultrasonic transmission mode tomography was used to visualize the two phase liquid/gas flow in a pipe/vessel. The sensing element consists of 8, 16 and 32 units ultrasonic transceivers were used to cover the pipe cross-section at different time. The motivation of this paper is to analyze the optimum numbers of transceivers which can give the best performance in providing better image of the two phase liquid/gas flow. This paper also details the development of the system including the ultrasonic transduction circuits, the electronic measurement circuits, the data acquisition system and the image reconstruction techniques. Ten conditions of liquid-gas flow have been simulated. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases while the 32 transceivers has provided the best image for the ten conditions applied.

  20. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  1. Experiences in using ultrasonic holography with numerical and optical reconstruction

    International Nuclear Information System (INIS)

    Schmitz, V.; Wosnitza, M.

    1978-01-01

    At present, ultrasonic holography can resolve and image faults of 1 mm and more and with distances of one ultrasonic wavelength. The main field of application is for thick-walled structural components. Depending on the expected orientation, test probe arrangements as in standard ultrasonic testing are chosen. (orig./RW) [de

  2. Improvement of solar ethanol distillation using ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Jaruwat Jareanjit

    2016-08-01

    Full Text Available This report presents a study on the use of ultrasonic waves in solar ethanol distillation to investigate the performance of ultrasonic waves at a frequency of 30 kHz and at 100 Watts that were installed in the inlet area of a 10-litre distillation tank. Based on the non-continuous distillation process (batch distillation, the experiment demonstrated that using ultrasonic waves in solar ethanol distillation caused the average concentration of hourly distilled ethanol to be higher than that of a normal system (solar ethanol distillation without ultrasonic wave at the same or higher distillation rate and hourly distillation volume. The ultrasonic wave was able to enhance the separation of ethanol from the solution (water-ethanol mixture through solar distillation. The amount of pure ethanol product from each distilled batch was clearly larger than the amount of product obtained from a normal system when the initial concentration of ethanol was lower than 50%v/v (% by volume, where an average of approximately 40% and 20% are obtained for an initial ethanol concentration of 10%v/v and 30%v/v, respectively. Furthermore, the distillation rate varied based on the solar radiation value.

  3. Failed fuel rod detection method by ultrasonic wave

    International Nuclear Information System (INIS)

    Takamatsu, Masatoshi; Muraoka, Shoichi; Ono, Yukio; Yasojima, Yujiro.

    1990-01-01

    Ultrasonic wave signals sent from an ultrasonic receiving element are supplied to an evaluation circuit by way of a gate. A table for gate opening and closing timings at the detecting position in each of the fuel rods in a fuel assembly is stored in a memory. A fuel rod is placed between an ultrasonic transmitting element and the receiving element to determine the positions of the transmitting element and the receiving element by positional sensors. The opening and closing timings at the positions corresponding to the result of the detection are read out from the table, and the gates are opened and closed by the timing. This can introduce the ultrasonic wave signals transmitted through a control rod always to the evaluation circuit passing through the gate. Accordingly, the state of failure of the fuel rod can be detected accurately. (I.N.)

  4. Bone Texture Fractal Dimension Analysis of Ultrasound-Treated Bone around Implant Site: A Double-Blind Clinical Trial

    Directory of Open Access Journals (Sweden)

    Elaf Akram Abdulhameed

    2018-01-01

    Full Text Available Objectives. To evaluate the efficacy of bone texture fractal dimension (FD analysis method in predicting implant stability from intraoral periapical radiographs using two implant protocols. Materials and Methods. A double-blind clinical trial was conducted on 22 subjects who needed dental implants. The participants were randomized into two groups, the control group with standard implant protocol treatment and the intervention group with added low-intensity power ultrasound treatment (LIPUS besides the standard implant protocol. The FD values of bone density were carried out on the mesial and distal sides of the implant on digital intraoral radiographs using the box-counting method. Both resonance frequency (RF and fractal dimension (FD were assessed in three time intervals: after surgery and before and after loading. Results. FD on both the mesial and distal sides serve as very good-to-excellent tests with high validity (ROC area exceeding 0.8 in predicting high implant stability (ISQ ≥ 70. The mesial side measurements were consistently better than the distal side among the intervention groups. The optimum cutoff value for the FD-mesial side that predicts a highly stable implant (ISQ ≥ 70 is ≥1.505. At this optimum cutoff value, the mesial side FD is associated with a perfect sensitivity (100% and fairly high specificity (86.5%. Conclusion. The FD analysis could be recommended as an adjunctive quantitative method in prediction of the implant stability with very high sensitivity and specificity. This trial is registered with ISRCTN72648040.

  5. Ultrasonic weld testing.

    Science.gov (United States)

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  6. System and technique for ultrasonic determination of degree of cooking

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J [Richland, WA; Diaz, Aaron A [W. Richland, WA; Judd, Kayte M [Richland, WA; Pappas, Richard A [Richland, WA; Cliff, William C [Richland, WA; Pfund, David M [Richland, WA; Morgen, Gerald P [Kennewick, WA

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  7. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    Science.gov (United States)

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Energy-Based Analysis of Ultrasonically Assisted Turning

    Directory of Open Access Journals (Sweden)

    G.A. Volkov

    2011-01-01

    Full Text Available The process of ultrasonically-assisted turning (UAT is a superposition of vibration of a cutting tool on its standard movement in conventional turning (CT. The former technique has several advantages compared with the latter, one of the main being a significant decrease in the level of cutting forces. In this paper the effects observed in UAT are analysed employing ideas of dynamic fracture mechanics. The active stage of loading duration depends heavily on ultrasonic frequency and the cutting speed; he application of the fracture criterion based on the notion of incubation time makes it possible to calculate a dependence of this duration on its threshold amplitude. An estimation of energy, necessary to create a threshold pulse in the material, is made by solving the contact Hertz problem. The obtained time dependence of energy has a marked minimum. Thus, the existence of energy-efficient loading duration is demonstrated. This explains the decrease in the cutting force resulting from superimposed ultrasonic vibration. The obtained results are in agreement with experiments on ultrasonic assisted machining of aluminium and Inconel 718 alloy.

  9. Wear reduction through piezoelectrically-assisted ultrasonic lubrication

    International Nuclear Information System (INIS)

    Dong, Sheng; J Dapino, Marcelo

    2014-01-01

    Traditional lubricants are undesirable in harsh aerospace environments and certain automotive applications. Ultrasonic vibrations can be used to reduce and modulate the effective friction coefficient between two sliding surfaces. This paper investigates the relationship between friction force reduction and wear reduction in ultrasonically lubricated surfaces. A pin-on-disc tribometer is modified through the addition of a piezoelectric transducer which vibrates the pin at 22 kHz in the direction perpendicular to the rotating disc surface. Friction and wear metrics including volume loss, surface roughness, friction forces and apparent stick-slip effects are measured without and with ultrasonic vibrations at three different sliding velocities. SEM imaging and 3D profilometry are used to characterize the wear surfaces and guide model development. Over the range of speeds considered, ultrasonic vibrations reduce the effective friction force up to 62% along with a wear reduction of up to 49%. A simple cube model previously developed to quantify friction force reduction is implemented which describes wear reduction within 15% of the experimental data. (paper)

  10. TH-B-204-01: Real-Time Tracking with Implanted Markers

    International Nuclear Information System (INIS)

    Xu, Q.

    2016-01-01

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  11. TH-B-204-01: Real-Time Tracking with Implanted Markers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q. [MD Anderson Cancer Center at Cooper (United States)

    2016-06-15

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  12. Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators

    Science.gov (United States)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    A shape reminiscent of a dog bone has been found to be superior to other shapes for mechanical-amplification horns that are components of piezoelectrically driven actuators used in a series of related devices denoted generally as ultrasonic/sonic drill/corers (USDCs). The first of these devices was reported in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. The dog-bone shape was conceived especially for use in a more recent device in the series, denoted an ultrasonic/ sonic gopher, that was described in Ultrasonic/Sonic Mechanisms for Drilling and Coring (NPO-30291), NASA Tech Briefs, Vol. 27, No. 9 (September 2003), page 65. The figure shows an example of a dog-bone-shaped horn and other components of an ultrasonic gopher. Prerequisite to a meaningful description of this development is an unavoidably lengthy recapitulation of the principle of operation of a USDC and, more specifically, of the ultrasonic/sonic gopher as described previously in NASA Tech Briefs. The ultrasonic actuator includes a stack of piezoelectric rings, the horn, a metal backing, and a bolt that connects the aforementioned parts and provides compressive pre-strain to the piezoelectric stack to prevent breakage of the rings during extension. The stack of piezoelectric rings is excited at the resonance frequency of the overall ultrasonic actuator. Through mechanical amplification by the horn, the displacement in the ultrasonic vibration reaches tens of microns at the tip of the horn. The horn hammers an object that is denoted the free mass because it is free to move longitudinally over a limited distance between hard stops: The free mass bounces back and forth between the ultrasonic horn and a tool bit (a drill bit or a corer). Because the longitudinal speed of the free mass is smaller than the longitudinal speed of vibration of the tip of the horn, contact between the free mass and the horn tip usually occurs at a

  13. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  14. Evaluation of vaginal implant transmitters in elk (Cervus elaphus nelsoni).

    Science.gov (United States)

    Bruce K. Johnson; Terrance McCoy; Christopher O. Kochanny; Rachel C. Cook

    2006-01-01

    The effects of vaginal implant transmitters for tissue damage after 11 wk in 13 captive adult elk (Cervus elaphus nelsoni) and subsequent reproductive performance in 38 free-ranging elk were evaluated. Vaginal implant transmitters are designed to be shed at parturition and are used to locate birth sites of wild ungulates; however, potential adverse...

  15. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  17. Spectroscopic analyses on interaction of bovine serum albumin (BSA) with toluidine blue (TB) and its sonodynamic damage under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun, E-mail: wangjun890@126.co [Department of Chemistry, Liaoning University, Shenyang 110036 (China); Guo Yuwei [Department of Chemistry, Liaoning University, Shenyang 110036 (China); Department of Chemistry, Baotou Normal College, Baotou 014030 (China); Liu Bin [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Cheng Chunping [Department of Chemistry, Baotou Normal College, Baotou 014030 (China); Wang Zhiqiu; Han Guangxi; Gao Jingqun; Zhang Xiangdong [Department of Chemistry, Liaoning University, Shenyang 110036 (China)

    2011-02-15

    In this paper, the toluidine blue (TB) with tricyclic quinone imide plane structure is used as sonosensitizer to study the interaction and sonodynamic damage to bovine serum albumin (BSA) by UV-vis and fluorescence spectroscopy. The results show that the TB can bind to BSA molecules, obviously, and the synergetic effects of TB and ultrasonic irradiation can efficiently damage the BSA molecules. Otherwise, some influencing factors such as ultrasonic irradiation time, TB concentration, pH value and ionic strength on the damage of BSA molecules were also considered by the numbers. Synchronous fluorescence spectroscopy indicates that the tyrosine (Tyr) residues of BSA molecules are damaged more seriously than the tryptophan (Trp) residues under ultrasonic irradiation. - Research Highlights: TB is used as quencher to study interaction to BSA. TB is used as sonosensitizer to study the sonodynamic damage to BSA. Synchronous fluorescence spectroscopy is used to study TB binding site to BSA.

  18. Automated ultrasonic inspection using PULSDAT

    International Nuclear Information System (INIS)

    Naybour, P.J.

    1992-01-01

    PULSDAT (Portable Ultrasonic Data Acquisition Tool) is a system for recording the data from single probe automated ultrasonic inspections. It is one of a range of instruments and software developed by Nuclear Electric to carry out a wide variety of high quality ultrasonic inspections. These vary from simple semi-automated inspections through to multi-probe, highly automated ones. PULSDAT runs under the control of MIPS software, and collects data which is compatible with the GUIDE data display system. PULSDAT is therefore fully compatible with Nuclear Electric's multi-probe inspection systems and utilises all the reliability and quality assurance of the software. It is a rugged, portable system that can be used in areas of difficult access. The paper discusses the benefits of automated inspection and gives an outline of the main features of PULSDAT. Since April 1990 PULSDAT has been used in several applications within Nuclear Electric and this paper presents two examples: the first is a ferritic set-through nozzle and the second is an austenitic fillet weld. (Author)

  19. Effect of Simplifying Drilling Technique on Heat Generation During Osteotomy Preparation for Dental Implant.

    Science.gov (United States)

    El-Kholey, Khalid E; Ramasamy, Saravanan; Kumar R, Sheetal; Elkomy, Aamna

    2017-12-01

    To test the hypothesis that there would be no difference in heat production by reducing the number of drills during the implant site preparation relative to conventional drilling sequence. A total of 120 implant site preparations with 3 different diameters (3.6, 4.3, and 4.6 mm) were performed on bovine ribs. Within the same diameter group, half of the preparations were performed by a simplified drilling procedure (pilot drill + final diameter drill) and other half using the conventional drilling protocol (pilot drill followed by graduated series of drills to widen the site). Heat production by different drilling techniques was evaluated by measuring the bone temperature using k-type thermocouple and a sensitive thermometer before and after each drill. Mean for maximum temperature increase during site preparation of the 3.6, 4.3, and 4.6-mm implants was 2.45, 2.60, and 2.95° when the site was prepared by the simplified procedure, whereas it was 2.85, 3.10, and 3.60° for the sites prepared by the conventional technique, respectively. No significant difference in temperature increase was found when implants of the 3 different diameters were prepared either by the conventional or simplified drilling procedure. The simplified drilling technique produced similar amount of heat comparable to the conventional technique that proved the initial hypothesis.

  20. Development of phased-array ultrasonic testing probe

    International Nuclear Information System (INIS)

    Kawanami, Seiichi; Kurokawa, Masaaki; Taniguchi, Masaru; Tada, Yoshihisa

    2001-01-01

    Phased-array ultrasonic testing was developed for nondestructive evaluation of power plants. Phased-array UT scans and focuses an ultrasonic beam to inspect areas difficult to inspect by conventional UT. We developed a highly sensitive piezoelectric composite, and designed optimized phased-array UT probes. We are applying our phased-array UT to different areas of power plants. (author)

  1. Automated ultrasonic testing--capabilities, limitations and methods

    International Nuclear Information System (INIS)

    Beller, L.S.; Mikesell, C.R.

    1977-01-01

    The requirements for precision and reproducibility of ultrasonic testing during inservice inspection of nuclear reactors are both quantitatively and qualitatively more severe than most current practice in the field can provide. An automated ultrasonic testing (AUT) system, which provides a significant advancement in field examination capabilities, is described. Properties of the system, its application, and typical results are discussed

  2. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  3. Influence of Palatal Coverage and Implant Distribution on Implant Strain in Maxillary Implant Overdentures.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu

    2016-01-01

    Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.

  4. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    Science.gov (United States)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  5. Actively adjustable step-type ultrasonic horns in longitudinal vibration

    Science.gov (United States)

    Lin, Shuyu; Guo, Hao; Xu, Jie

    2018-04-01

    Actively adjustable longitudinal step-type ultrasonic horns are proposed and studied. The horn is composed of a traditional ultrasonic horn and piezoelectric material. In practical applications, this kind of step-type ultrasonic horn is mechanically excited by an ultrasonic transducer and the piezoelectric material is connected to an adjustable electric impedance. In this research, the effects of the electric impedance and of the location of the piezoelectric material on the performance of the horn are studied. It is shown that when the electric resistance is increased, the resonance frequency of the horn is increased; the displacement magnification is increased when the piezoelectric material is located in the large end and decreased when the piezoelectric material is located in the small end of the horn. The displacement magnification for the piezoelectric material in the large end is larger than that for the piezoelectric material in the small end of the horn. Some step-type ultrasonic horns are designed and manufactured; the resonance frequency and the displacement magnification are measured by means of POLYTEC Laser Scanning vibrometer. It is shown that the theoretical resonance frequency and the displacement magnification are in good agreement with the measured results. It is concluded that by means of the insertion of the piezoelectric material in the longitudinal horn, the horn performance can be adjusted by changing the electric impedance and the location of the piezoelectric material in the horn. It is expected that this kind of adjustable ultrasonic horns can be used in traditional and potential ultrasonic technologies where the vibrational performance adjustment is needed.

  6. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  7. Clinical retrospective study of self-reported penicillin allergy on dental implant failures and infections.

    Science.gov (United States)

    French, David; Noroozi, Mehdi; Shariati, Batoul; Larjava, Hannu

    2016-01-01

    The aim of this retrospective study was to investigate whether self-reported allergy to penicillin may contribute to a higher rate of postsurgical infection and implant failure. This retrospective, non-interventional, open cohort study reports on implant survival and infection complications of 5,576 implants placed in private practice by one periodontist, and includes 4,132 implants that were followed for at least 1 year. Logistic regression was applied to examine the relationship between self-reported allergy to penicillin and implant survival, while controlling for potential confounders such as smoking, implant site, bone augmentation, loading protocol, immediate implantation, and bone level at baseline. The cumulative survival rate (CSR) was calculated according to the life table method and the Cox proportional hazard model was fitted to data. Out of 5,106 implants placed in patients taking penicillin it was found that 0.8% failed, while 2.1% failed of the 470 implants placed for patients with self-reported allergy to penicillin (P = .002). Odds of failure for implants placed in penicillin-allergic patients were 3.1 times higher than in non-allergic patients. For immediate implant placement, penicillin-allergic patients had a failure rate 10-times higher than the non-allergic cohort. Timing of implant failure occurring within 6 months following implantation was 80% in the penicillin-allergic group versus 54% in the non-allergic group. From the 48 implant sites showing postoperative infection: penicillin-allergic patients had an infection rate of 3.4% (n = 16/470) versus 0.6% in the non-allergic group (n = 32/5,106) (P penicillin allergy was associated with a higher rate of infection, and primarily affected early implant failure.

  8. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  9. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  10. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    International Nuclear Information System (INIS)

    1980-01-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  11. Poly(vinyl pyrrolidone)-Chitosan implant for endoscopic treatment of vesicoureteral reflux

    International Nuclear Information System (INIS)

    Relleve, Lorna S.; Abad, Lucille V.; Aranilla, Charito T.; Dela Rosa, A.M.; Bolong, David T.; Bisnar, Carlo C.

    2008-01-01

    Radiation-crosslinked poly(vinyl pyrrolidone) (PVP)-Chitosan was prepared as a potential injectable implant for endoscopic treatment of vesicoureteral reflux (VUR). The physical and histological properties of PVP-Chitosan implant in comparison with the commercial dextranomer/hyaluronic acid copolymer (Deflux) have been evaluated in vivo by subcutaneous and abdominal injection in rats over a period of 6 months. The PVP-Chitosan implant was easily injected through 26-gauge needle. Monthly gross examination of the implanted sites showed no significant decrease in volume of implant and no local inflammatory reaction. Histological findings indicated no evidence of migration to the distant organs after 6 months of implantation. Results of this study indicated that PVP-Chitosan implant has properties of a good tissue augmenting substance such as stability, biocompatibility and non-migration but long-term studies are needed to evaluate its therapeutic efficiency. (author)

  12. Case presentation of florid cemento-osseous dysplasia with concomitant cemento-ossifying fibroma discovered during implant explantation.

    Science.gov (United States)

    Gerlach, Robert C; Dixon, Douglas R; Goksel, Tamer; Castle, James T; Henry, Walter A

    2013-03-01

    A 39-year-old African American woman presented for treatment of a symptomatic mandibular right first molar with a large, periapical radiolucency. After initial attempts at endodontic therapy, this tooth was ultimately extracted owing to unabated symptoms. The extraction site underwent ridge preservation grafting, implant placement, and restoration. After 26 months of implant function, the patient returned with clinical symptoms of pain, buccal swelling, and the sensation of a "loose" implant. This case report details a diagnosis of 2 distinct disease entities associated with the implant site, a cemento-ossifying fibroma and florid cemento-osseous dysplasia of the mandible. This diagnosis was determined from clinical, surgical, radiographic, and histopathologic evidence after biopsy and removal of the previously osseointegrated implant following postinsertion failure by fibrous encapsulation. Before implant therapy, it is essential to conduct a thorough radiographic evaluation of any dental arch with suspected bony lesions to prevent implant failure. Published by Mosby, Inc.

  13. Accuracy of implant impressions without impression copings: a three-dimensional analysis.

    Science.gov (United States)

    Kwon, Joo-Hyun; Son, Yong-Ha; Han, Chong-Hyun; Kim, Sunjai

    2011-06-01

    Implant impressions without impression copings can be used for cement-retained implant restorations. A comparison of the accuracy of implant impressions with and without impression copings is needed. The purpose of this study was to evaluate and compare the dimensional accuracy of implant definitive casts that are fabricated by implant impressions with and without impression copings. An acrylic resin maxillary model was fabricated, and 3 implant replicas were secured in the right second premolar, first, and second molars. Two impression techniques were used to fabricate definitive casts (n=10). For the coping group (Group C), open tray impression copings were used for the final impressions. For the no-coping group (Group NC), cementable abutments were connected to the implant replicas, and final impressions were made assuming the abutments were prepared teeth. Computerized calculation of the centroids and long axes of the implant or stone abutment replicas was performed. The Mann-Whitney U test analyzed the amount of linear and rotational distortion between groups (α =.05). At the first molar site, Group NC showed significantly greater linear distortion along the Y-axis, with a small difference between the groups (Group C, 7.8 ± 7.4 μm; Group NC, 19.5 ± 12.2). At the second molar site, increased distortion was noted in Group NC for every linear and rotational variable, except for linear distortion along the Z-axis. Implant impression with open tray impression copings produced more accurate definitive casts than those fabricated without impression copings, especially those with greater inter-abutment distance. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  14. Imaging of implants on chest radiographs: a radiological perspective

    International Nuclear Information System (INIS)

    Burney, K.; Thayur, N.; Husain, S.A.; Martin, R.P.; Wilde, P.

    2007-01-01

    Endovascular and percutaneous techniques have emerged as alternatives to surgical management in the treatment for a wide range of congenital and acquired cardiac, non-vascular and vascular conditions. Consequently, there has been an increasing use of implants such as closure devices, vascular stents (coronary, aortic, pulmonary and superior vena cava) and non-vascular stents like oesophageal and tracheo-bronchial stents. A large number of percutaneously sited implants are used for treating congenital cardiac anomalies such as atrial septal defects (ASD), ventricular septal defects (VSD), and patent ductus arteriosus (PDA). These implants take many shapes and forms. The aim of this review is to demonstrate the radiographic appearances of the various types of cardiovascular, bronchial and oesophageal implants that are visible on plain films. A brief outline of the aims and indications of various implant procedures, the general appearance of the commonest types of implants, and the radiological procedures are discussed. All radiologists are likely to come across implanted devices in plain film reporting. Imaging can be useful in identifying the device, assessing the position, integrity, and for the identification of complications related directly to the implant

  15. Imaging of implants on chest radiographs: a radiological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Burney, K [Department of Clinical Radiology, Bristol Royal Infirmary (United Kingdom); Thayur, N [Department of Clinical Radiology, Bristol Royal Infirmary (United Kingdom); Husain, S A [Department of Respiratory Medicine, Bristol Royal Infirmary (United Kingdom); Martin, R P [Department of Cardiology, Bristol Royal Hospital for Children, Bristol (United Kingdom); Wilde, P [Department of Clinical Radiology, Bristol Royal Infirmary (United Kingdom)

    2007-03-15

    Endovascular and percutaneous techniques have emerged as alternatives to surgical management in the treatment for a wide range of congenital and acquired cardiac, non-vascular and vascular conditions. Consequently, there has been an increasing use of implants such as closure devices, vascular stents (coronary, aortic, pulmonary and superior vena cava) and non-vascular stents like oesophageal and tracheo-bronchial stents. A large number of percutaneously sited implants are used for treating congenital cardiac anomalies such as atrial septal defects (ASD), ventricular septal defects (VSD), and patent ductus arteriosus (PDA). These implants take many shapes and forms. The aim of this review is to demonstrate the radiographic appearances of the various types of cardiovascular, bronchial and oesophageal implants that are visible on plain films. A brief outline of the aims and indications of various implant procedures, the general appearance of the commonest types of implants, and the radiological procedures are discussed. All radiologists are likely to come across implanted devices in plain film reporting. Imaging can be useful in identifying the device, assessing the position, integrity, and for the identification of complications related directly to the implant.

  16. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.

    Science.gov (United States)

    Aw, Moom Sinn; Losic, Dusan

    2013-02-25

    A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. Ultrasonic testing using time of flight diffraction technique (TOFD)

    International Nuclear Information System (INIS)

    Khurram Shahzad; Ahmad Mirza Safeer Ahmad; Muhammad Asif Khan

    2009-04-01

    This paper describes the ultrasonic testing using Time Flight Diffraction (TOFD) Technique for welded samples having different types and sizes of defects. TOFD is a computerized ultrasonic system, able to scan, store and evaluate indications in terms of location, through thickness and length in a more easy and convenient. Time of Flight Diffraction Technique (TOFD) is more fast and easy technique for ultrasonic testing as we can examine a weld i a single scan along the length of the weld with two probes known as D-scan. It shows the image of the complete weld with the defect information. The examinations were performed on carbon steel samples used for ultrasonic testing using 70 degree probes. The images for different type of defects were obtained. (author)

  18. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  19. Ultrasonic Generation and Optimization for EMAT

    International Nuclear Information System (INIS)

    Jian, X.; Dixon, Steve; Edwards, Rachel S.

    2005-01-01

    A model for transient ultrasonic wave generation by EMATs in non-magnetic metals is presented. It combines analytical solutions currently available and FEM to calculate ultrasonic bulk and Rayleigh waves generated by the EMAT. Analytical solutions are used as they can be calculated quickly on a standard mathematical computer package. Calculations agree well with the experimental measurement. The model can be used to optimize EMAT design, and has explained some of the results from our previous published measurements

  20. Longitudinal ultrasonic waves dispersion in bars

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    The exhibition intends to review some aspects of the propagation of the longitudinal ultrasonic pulses shortly in bars of traverse section uniform.Aspects they are part of the denominated geometric dispersion of the pulses.This phenomenon It can present like an additional complication in the ultrasonic essay of low frequency of thin pieces in structures and machines but takes place former ex professed in some applications of the wave guides been accustomed to in the prosecution of signs

  1. Ultrasonic hot powder compaction of Ti-6Al-4V.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-07-01

    Power ultrasonic has been recently employed in a wide variety of manufacturing processes among which ultrasonic assisted powder compaction is a promising powder materials processing technique with significant industrial applications. The products manufactured by the powder metallurgy commonly consist of residual porosities, material impurities, structural non-homogeneities and residual stress. In this paper, it is aimed to apply power ultrasonic to the hot consolidation process of Ti-6Al-4V titanium alloy powder in order to improve mechanical properties. To do this, the effects of ultrasonic power and process temperature and pressure were considered and then deeply studied through a series of experiments. It was shown that the addition of ultrasonic vibration leads to a significant improvement in the consolidation performance and the mechanical strength of the fabricated specimens. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Detecting accuracy of flaws by manual and automatic ultrasonic inspections

    International Nuclear Information System (INIS)

    Iida, K.

    1988-01-01

    As the final stage work in the nine year project on proving tests of the ultrasonic inspection technique applied to the ISI of LWR plants, automatic ultrasonic inspection tests were carried out on EDM notches, surface fatigue cracks, weld defects and stress corrosion cracks, which were deliberately introduced in full size structural components simulating a 1,100 MWe BWR. Investigated items are the performance of a newly assembled automatic inspection apparatus, detection limit of flaws, detection resolution of adjacent collinear or parallel EDM notches, detection reproducibility and detection accuracy. The manual ultrasonic inspection of the same flaws as inspected by the automatic ultrasonic inspection was also carried out in order to have comparative data. This paper reports how it was confirmed that the automatic ultrasonic inspection is much superior to the manual inspection in the flaw detection rate and in the detection reproducibility

  3. A Miniature Probe for Ultrasonic Penetration of a Single Cell

    Directory of Open Access Journals (Sweden)

    Mingfei Xiao

    2009-05-01

    Full Text Available Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

  4. A study on the development of a real-time intelligent system for ultrasonic flaw classification

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun; Lee, Seung Seok

    1998-01-01

    In spite of significant progress in research on ultrasonic pattern recognition it is not widely used in many practical field inspection in weldments. For the convenience of field application of this methodology, following four key issues have to be suitably addressed; 1) a software where the ultrasonic pattern recognition algorithm is efficiently implemented, 2) a real-time ultrasonic testing system which can capture the digitized ultrasonic flaw signal so the pattern recognition software can be applied in a real-time fashion, 3) database of ultrasonic flaw signals in weldments, which is served as a foundation of the ultrasonic pattern recognition algorithm, and finally, 4) ultrasonic features which should be invariant to operational variables of the ultrasonic test system. Presented here is the recent progress in the development of a real-time ultrasonic flaw classification by the novel combination of followings; an intelligent software for ultrasonic flaw classification in weldments, a computer-base real-time ultrasonic nondestructive evaluation system, database of ultrasonic flaw signals, and invariant ultrasonic features called 'normalized features.'

  5. Research of the ultrasonic testing parts reconditioned by welding

    Directory of Open Access Journals (Sweden)

    C. Petriceanu

    2016-07-01

    Full Text Available The paper presents the results obtained following the nondestructive ultrasonic testing of crankpin shaft of a crankshaft that were reconditioned by welding. After the ultrasonic testing, the reconditioned samples were cut and subjected to visual testing and microstructure examination. When the results obtained following the nondestructive tests were analyzed, it was observed that the ultrasonic nondestructive testing method is an efficient way to determine the conformity of the areas that were reconditioned by welding.

  6. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir; El Sayed, Tamer

    2012-01-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects

  7. Local and systemic changes associated with long-term, percutaneous, static implantation with titanium alloys in rhesus macaques (Macaca mulatta)

    Energy Technology Data Exchange (ETDEWEB)

    Frydman, Galit F.; Marini, Robert P.; Bakthavatchalu, Vasudevan; Biddle, Kathleen; Muthupalani, Sureshkumar; Vanderburg, Charles R.; Lai, Barry; Bendapudi, Pavan K.; Tompkins, Ronald G.; Fox, James G.

    2017-04-01

    Metal alloys are frequently used as implant materials in veterinary medicine. Recent studies suggest that many types of metal alloys may induce both local and systemic inflammatory responses. In this study, 37 rhesus macaques with long-term skull-anchored percutaneous titanium alloy implants (0-14 years duration) were evaluated for changes in their hematology, coagulation and serum chemistry profiles. Negative controls (n=28) did not have implants. All of the implanted animals were on IACUC-approved protocols and were not implanted for the purpose of this study. Animals with implants had significantly higher plasma D-dimer and lower antithrombin III concentrations compared with nonimplanted animals (p-values < 0.05). Additionally, animals with implants had significantly higher globulin, and lower albumin and calcium concentrations compared with nonimplanted animals (p-values < 0.05). Many of these changes were positively correlated with duration of implantation as well as the number of implants. Chronic bacterial infection was observed on the skin around many of the implant sites, and within deeper tissues. Representative histopathology around the implant site of two implanted animals revealed chronic suppurative to pyogranulomatous inflammation extending from the skin to the dura mater. X-ray fluorescence microscopy of tissue biopsies from the implant site of the same two animals revealed significant increases in free metal ions within the tissue, including titanium and iron. Free metal ions persisted in the tissues up to 6 months postexplant. These results suggest that long-term skull-anchored percutaneous titanium alloy implants results in localized inflammation, chronic infection, and leaching of metal ions into local tissues.

  8. Ultrasonic imaging of material flaws exploiting multipath information

    Science.gov (United States)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  9. Analysis of ultrasonic techniques for the characterization of microfiltration polymeric membranes

    International Nuclear Information System (INIS)

    Lucas, Carla S.; Baroni, Douglas B.; Costa, Antonio M.L.M.; Bittencourt, Marcelo S.Q.

    2009-01-01

    The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain. (author)

  10. Nondestructive evaluation of a cermet coating using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Roge, B.; Fahr, A.; Giguere, J.S.R.; McRae, K.I.

    2002-01-01

    This paper describes a series of experiments conducted to characterize cermet coatings using conventional ultrasonic and eddy current techniques as well as an ultrasonic leaky surface wave method. The results demonstrate the ability of these techniques to detect the presence of artificial defects on the surface or beneath the surface of the coating. In addition, ultrasonic tests in particular ultrasonic leaky surface waves demonstrate the ability to detect the presence of manufacturing flaws. Ultrasonic time-of-flight and eddy current quadrature measurements also show sensitivity to variations in coating thickness

  11. Reproducibility of the results in ultrasonic testing

    International Nuclear Information System (INIS)

    Chalaye, M.; Launay, J.P.; Thomas, A.

    1980-12-01

    This memorandum reports on the conclusions of the tests carried out in order to evaluate the reproducibility of ultrasonic tests made on welded joints. FRAMATOME have started a study to assess the dispersion of results afforded by the test line and to characterize its behaviour. The tests covered sensors and ultrasonic generators said to be identical to each other (same commercial batch) [fr

  12. Artificial intelligence and ultrasonic tests in detection of defects

    International Nuclear Information System (INIS)

    Barrera Cardiel, G.; Fabian Alvarez, M. a.; Velez Martinez, M.; Villasenor, L.

    2001-01-01

    One of the most serious problems in the quality control of welded unions is the location, identification and classification of defects. As a solution to this problem, a technique for classification, applicable to welded unions done by electric arc welding as well as by friction, is proposed; it is based on ultrasonic signals. The neuronal networks proposed are Kohonen and Multilayer Percept ron, all in a virtual instrument environment. Currently the techniques most used in this field are: radiological analysis (X-rays) and ultrasonic analysis (ultrasonic waves). The X-ray technique in addition to being dangerous requires highly specialized personnel and equipment, therefore its use is restricted. The ultrasonic technique, in spite of being one of the most used for detection of discontinuities, requires personnel with wide experience in the interpretation of ultrasonic signals, this is a time-consuming process which necessarily increases its operation cost. The classification techniques that we propose turn out to be safe, reliable, inexpensive and easy to implement for the solution of this important problem. (Author) 8 refs

  13. Inspection of austenitic welds with ultrasonic phased array technology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F. [Tecnatom (Spain); Dutruc, R.; Ferriere, R. [Metalscan (France)

    2011-07-01

    This series of slides presents the use of ultrasonic phased array technology in the inspection of austenitic welds. The inspection from outside surface (the inspection is performed in contact using wedges to couple the probe to the outer surface of the component) shows that longitudinal wave is the most adequate for perpendicular scans and transversal ultrasonic wave is the most adequate for parallel scans. Detection and length sizing are performed optimally in perpendicular scans. The inspection from inside surface shows: -) Good results in the detection of defects (Sizing has met the requirements imposed by the Authority of the Russian Federation); -) The new design of the mechanical equipment and of the numerous ultrasonic beams refracted by the array probes has increased the volume inspected. The design of the mechanical equipment has also allowed new areas to be inspected (example a piping weld that was not accessible from the outer surface; -) The ultrasonic procedure and Inspection System developed have been validated by the Authority of the Russian Federation. Phase array technique supplies solutions to solve accessibility concerns and improve the ultrasonic inspections of nuclear components

  14. Lattice locations and properties of Fe in Co/Fe co-implanted ZnO

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Johnston, K.; Mølholt, T.E.

    2012-01-01

    The lattice locations and electronic configurations of Fe in 57Co/57Fe implanted ZnO (to (5‐6) × 1014 Fe/cm−2) have been studied by 57Fe Mössbauer emission spectroscopy. The spectra acquired upon room temperature implantation show ∼20% of the probe atoms as Fe2+ on perturbed Zn sites and the rema......The lattice locations and electronic configurations of Fe in 57Co/57Fe implanted ZnO (to (5‐6) × 1014 Fe/cm−2) have been studied by 57Fe Mössbauer emission spectroscopy. The spectra acquired upon room temperature implantation show ∼20% of the probe atoms as Fe2+ on perturbed Zn sites...... and the remaining fraction as Fe2+ in damage sites of interstitial character. After annealing at 773 K, ∼20% remain on crystalline sites, while the damage fraction has partly disappeared and instead a ∼30% fraction occurs as high‐spin Fe3+, presumably in precipitates. This suggests that precipitation of Co/Fe in ZnO...... likely takes place at relatively low temperatures, thus explaining some of the discrepancies in the literature regarding magnetic properties of 3d metal‐doped ZnO....

  15. Effect of ultra-low doses, ASIR and MBIR on density and noise levels of MDCT images of dental implant sites.

    Science.gov (United States)

    Widmann, Gerlig; Al-Shawaf, Reema; Schullian, Peter; Al-Sadhan, Ra'ed; Hörmann, Romed; Al-Ekrish, Asma'a A

    2017-05-01

    Differences in noise and density values in MDCT images obtained using ultra-low doses with FBP, ASIR, and MBIR may possibly affect implant site density analysis. The aim of this study was to compare density and noise measurements recorded from dental implant sites using ultra-low doses combined with FBP, ASIR, and MBIR. Cadavers were scanned using a standard protocol and four low-dose protocols. Scans were reconstructed using FBP, ASIR-50, ASIR-100, and MBIR, and either a bone or standard reconstruction kernel. Density (mean Hounsfield units [HUs]) of alveolar bone and noise levels (mean standard deviation of HUs) was recorded from all datasets and measurements were compared by paired t tests and two-way ANOVA with repeated measures. Significant differences in density and noise were found between the reference dose/FBP protocol and almost all test combinations. Maximum mean differences in HU were 178.35 (bone kernel) and 273.74 (standard kernel), and in noise, were 243.73 (bone kernel) and 153.88 (standard kernel). Decreasing radiation dose increased density and noise regardless of reconstruction technique and kernel. The effect of reconstruction technique on density and noise depends on the reconstruction kernel used. • Ultra-low-dose MDCT protocols allowed more than 90 % reductions in dose. • Decreasing the dose generally increased density and noise. • Effect of IRT on density and noise varies with reconstruction kernel. • Accuracy of low-dose protocols for interpretation of bony anatomy not known. • Effect of low doses on accuracy of computer-aided design models unknown.

  16. Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures

    Directory of Open Access Journals (Sweden)

    Dayun Yan

    2015-07-01

    Full Text Available In the incubation period of ultrasonic cavitation, due to the impact of microjets on the material surface, the needle-like microjet-pits are formed. Because the formation of microjet-pits relates with the evolution of cavitation erosion on engineering materials, corresponding study will promote the understanding on the mechanism of cavitation erosion. However, little study on the microjet-pits has been carried out, especially in the particles-water mixture. In this study, we firstly demonstrated the microjet-pits on the carbon steel would be significantly inhibited by Al particles in water. Such inhibition effect indicated that particular particles might not only provide growth sites for cavitation bubbles but also affect the collapse of cavitation bubbles near a solid surface. Our study deepened the understanding on the ultrasonic cavitation erosion in the particles-water mixture.

  17. Ultrasonic testing X gammagraphy

    International Nuclear Information System (INIS)

    Mello Campos, A.M. de

    1989-01-01

    The experience of 10 years for substituting gammagraphy tests by ultrasonic tests is related. A comparative evaluation of data obtained from both techniques applied to welded butt joints is presented. (author)

  18. Anchoring submersible ultrasonic receivers in river channels with stable substrate

    Science.gov (United States)

    Bettoli, Phillip William; Scholten, G.D.; Hubbs, D.

    2010-01-01

    We developed an anchoring system for submersible ultrasonic receivers (SURs) that we placed on the bottom of the riverine reaches of three main-stem reservoirs in the upper Tennessee River. Each anchor consisted of a steel tube (8.9 x 35.6 cm) welded vertically to a round plate of steel (5.1 x 40.6 cm). All seven SURs and their 57-kg anchors were successfully deployed and retrieved three times over 547 d by a dive team employing surface air-breathing equipment and a davit-equipped boat. All of the anchors and their SURs remained stationary over two consecutive winters on the hard-bottom, thalweg sites where they were deployed. The SUR and its anchor at the most downriver site experienced flows that exceeded 2,100 m(3)/s and mean water column velocities of about 0.9 m/s.

  19. Effect of a preoperative decontamination protocol on surgical site infections in patients undergoing elective orthopedic surgery with hardware implantation.

    Science.gov (United States)

    Bebko, Serge P; Green, David M; Awad, Samir S

    2015-05-01

    Surgical site infections (SSIs), commonly caused by methicillin-resistant Staphylococcus aureus (MRSA), are associated with significant morbidity and mortality, specifically when hardware is implanted in the patient. Previously, we have demonstrated that a preoperative decontamination protocol using chlorhexidine gluconate washcloths and intranasal antiseptic ointment is effective in eradicating MRSA in the nose and on the skin of patients. To examine the effect of a decontamination protocol on SSIs in patients undergoing elective orthopedic surgery with hardware implantation. A prospective database of patients undergoing elective orthopedic surgery with hardware implantation at the Michael E. DeBakey Veterans Affairs Medical Center in Houston, Texas, was analyzed from October 1, 2012, to December 31, 2013. Cohort groups before and after the intervention were compared. Starting in May 2013, during their preoperative visit, all of the patients watched an educational video about MRSA decontamination and were given chlorhexidine washcloths and oral rinse and nasal povidone-iodine solution to be used the night before and the morning of scheduled surgery. Thirty-day SSI rates were collected according to the definitions of the Centers for Disease Control and Prevention National Nosocomial Infections Surveillance. Data on demographics, comorbidities such as chronic obstructive pulmonary disease and coronary artery disease, tobacco use, alcohol use, and body mass index were also collected. Univariate analysis was performed between the 2 groups of patients. Multivariate analysis was used to identify independent predictors of SSI. A total of 709 patients were analyzed (344 controls and 365 patients who were decolonized). Both groups were well matched with no significant differences in age, body mass index, sex, or comorbidities. All of the patients (100%) completed the MRSA decontamination protocol. The SSI rate in the intervention group was significantly lower (1.1%; 4 of

  20. Osseointegration of implants with dendrimers surface characteristics installed conventionally or with Piezosurgery®. A comparative study in the dog.

    Science.gov (United States)

    Bengazi, Franco; Lang, Niklaus P; Canciani, Elena; Viganò, Paolo; Velez, Joaquin Urbizo; Botticelli, Daniele

    2014-01-01

    The first aim of the present experiment was to compare bone healing at implants installed in recipient sites prepared with conventional drills or a piezoelectric device. The second aim was to compare implant osseointegration onto surfaces with and without dendrimers coatings. Six Beagles dogs were used in this study. Five implants with two different surfaces, three with a ZirTi(®) surface (zirconia sand blasted, acid etched), and two with a ZirTi(®)-modified surface with dendrimers of phosphoserine and polylysine were installed in the right side of the mandible. In the most anterior region (P2, P3), two recipient sites were prepared with drills, and one implant ZirTi(®) surface and one coated with dendrimers implants were installed at random. In the posterior region (P4 and M1), three recipient sites were randomly prepared: two sites with a Piezosurgery(®) instrument and one site with drill and two ZirTi(®) surface and one coated with dendrimers implants installed. Three months after the surgery, the animals were sacrificed for histological analysis. No complications occurred during the healing period. Three implants were found not integrated and were excluded from analysis. However, n = 6 was obtained. The distance IS-B at the buccal aspect was 2.2 ± 0.8 and 1.8 ± 0.5 mm, while IS-C was 1.5 ± 0.9 and 1.4 ± 0.6 mm at the Piezosurgery(®) and drill groups, respectively. Similar values were obtained between the dendrimers-coated and ZirTi(®) surface implants. The BIC% values were higher at the drill (72%) compared to the Piezosurgery(®) (67%) sites. The BIC% were also found to be higher at the ZirTi(®) (74%) compared to the dendrimers-coated (65%) implants, the difference being statistically significant. This study has revealed that oral implants may osseointegrate equally well irrespective of whether their bed was prepared utilizing conventional drills with abundant cooling or Piezosurgery(®). Moreover, the surface coating of implants with dendrimers