WorldWideScience

Sample records for ultrasonic imaging methods

  1. A new deconvolution method applied to ultrasonic images

    International Nuclear Information System (INIS)

    Sallard, J.

    1999-01-01

    This dissertation presents the development of a new method for restoration of ultrasonic signals. Our goal is to remove the perturbations induced by the ultrasonic probe and to help to characterize the defects due to a strong local discontinuity of the acoustic impedance. The point of view adopted consists in taking into account the physical properties in the signal processing to develop an algorithm which gives good results even on experimental data. The received ultrasonic signal is modeled as a convolution between a function that represents the waveform emitted by the transducer and a function that is abusively called the 'defect impulse response'. It is established that, in numerous cases, the ultrasonic signal can be expressed as a sum of weighted, phase-shifted replicas of a reference signal. Deconvolution is an ill-posed problem. A priori information must be taken into account to solve the problem. The a priori information translates the physical properties of the ultrasonic signals. The defect impulse response is modeled as a Double-Bernoulli-Gaussian sequence. Deconvolution becomes the problem of detection of the optimal Bernoulli sequence and estimation of the associated complex amplitudes. Optimal parameters of the sequence are those which maximize a likelihood function. We develop a new estimation procedure based on an optimization process. An adapted initialization procedure and an iterative algorithm enables to quickly process a huge number of data. Many experimental ultrasonic data that reflect usual control configurations have been processed and the results demonstrate the robustness of the method. Our algorithm enables not only to remove the waveform emitted by the transducer but also to estimate the phase. This parameter is useful for defect characterization. At last the algorithm makes easier data interpretation by concentrating information. So automatic characterization should be possible in the future. (author)

  2. An inverse method for crack characterization from ultrasonic B-Scan images

    International Nuclear Information System (INIS)

    Faur, M.; Roy, O.; Benoist, PH.; Morisseau, PH.

    1996-01-01

    Concern has been expressed about the capabilities of performing non destructive evaluation (NDE) of flaws located near to the outer surface in nuclear pressurized water reactor (PWR) vessels. The ultrasonic examination of PWR is accomplished from the inside with ultrasonic focused transducers working in the pulse echo mode. By recording the echoes as a function of time, the Ascan representation may be obtained. Many ultrasonic flaw detectors used for NDE are based on the simple Ascan concept involving measuring a time interval called 'time of flight'. By combining the Ascan concept synchronized transducer scanning, one can produce Bscan images that are two dimensional descriptions of the flaw interaction with the ultrasonic field. In the following, the flaw is assumed to be an axially oriented crack (the most serious flaw to be found in a pressurized component). In the case of the outer surface cracks (OSC's), analyzing and interpreting ultrasonic Ascan images become difficult because of the various reflections of the ultrasonic beam on the crack and on the outer surface (the so-called corner effect). Methods for automatic interpretation of ultrasonic experimental data are currently under investigation. In this paper, we present an inverse method for determining the geometrical characteristics of OSC's from ultrasonic Bscan images. The direct model used for the inversion procedure predicts synthetic Bscan images of ultrasonic examination of blocks containing planar defects interrogated by focused probes. (authors)

  3. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  4. Numeric ultrasonic image processing method: application to non-destructive testing of stainless austenitic steel welds

    International Nuclear Information System (INIS)

    Corneloup, G.

    1988-09-01

    A bibliographic research on the means used to improve the ultrasonic inspection of heterogeneous materials such as stainless austenitic steel welds has shown, taking into account the first analysis, a signal assembly in the form of an image (space, time) which carries an original solution to fault detection in highly noisy environments. A numeric grey-level ultrasonic image processing detection method is proposed based on the research of a certain determinism, in the way which the ultrasonic image evolves in space and time in the presence of a defect: the first criterion studies the horizontal stability of the gradients in the image and the second takes into account the time-transient nature of the defect echo. A very important rise in the signal-to-noise ratio obtained in welding inspections evidencing defects (real and artificial) is shown with the help of a computerized ultrasonic image processing/management system, developed for this application [fr

  5. Combination tomographic and cardiographic ultrasonic imaging method and system

    International Nuclear Information System (INIS)

    Yano, T.; Fukukita, H.; Fukumoto, A.; Hayakawa, Y.; Irioka, K.

    1984-01-01

    Ultrasonic echo signals are successively sampled and converted to digital echo data which are written into a first digital memory column by column and then read out row by row into a first buffer memory. The digital echo data which are derived in response to beams successively transmitted in a predetermined direction are written into columns of a second digital memory and read out of the memory in rows into a second buffer memory. The data stored in the first and second buffer memories are read out for digital-to-analog conversion and selectively applied within a television ''frame'' interval to control electron beam intensity of a single cathode ray tube so as to present tomographic and cardiographic images in different display areas of the tube

  6. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  7. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  8. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water

    Science.gov (United States)

    Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.

    2015-03-01

    In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).

  9. Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.

    Science.gov (United States)

    Chong, See Yenn; Todd, Michael D

    2018-05-01

    Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Defect detection and sizing in ultrasonic imaging

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Chapuis, N.; Magnin, I.

    1991-01-01

    This paper introduces imaging processing developed with the SPARTACUS system in the field of ultrasonic testing. The aim of the imaging processing is to detect and to separate defects echoes from background noise. Image segmentation and particularities of ultrasonic images are the base of studied methods. 4 figs.; 6 refs [fr

  11. Inverse method for effects characterization from ultrasonic b-scan images

    International Nuclear Information System (INIS)

    Faur, M.

    1999-02-01

    In service inspections of French nuclear pressure water reactor vessels are carried out automatically in complete immersion from the inside by means of ultrasonic focused probes working in the pulse echo mode. Concern has been expressed about the capabilities of performing non destructive evaluation of the Outer Surface Defects (OSD), i.e. defects located in the vicinity of the outer surface of the inspected components. OSD are insonified by both a direct field that passes through the inner surface (water/steel) of the component containing the defect and a secondary field reflected from the outer surface. Consequently, the Bscan images, containing the signatures of such defects, are complicated and their interpretation is a difficult task. This work deals with extraction of the maximum available information for characterizing OSD from ultrasonic Bscan images. Our main objectives are to obtain the type of OSD and their geometric parameters by means of two specific inverse methods. The first method is used for the identification of the geometrical parameters of the equivalent planar OSD from segmented Bscan images. Ultrasonic equivalent defect sizing model-based methods may be used to size a defect in a material by obtaining a best-fit simple equivalent shape that matches the ultrasonic observed data. We illustrate the application of such an equivalent sizing OSD method that is based on a simplified direct model. The major drawback of this identification method, as used to date, is that only a part of the useful information contained into original Bscan image, i.e. segmented Bscan image, is used for defect characterization. Moreover, it requires the availability of defect classification information (i.e. if the defect is volumetric or planer, e. g. a crack or a lack of fusion), which, generally, may be as difficult to obtain as the defect parameters themselves. Therefore, we propose a parameter estimation method for extracting complementary information on the defect

  12. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for ultrasonic test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice facilitates the interoperability of ultrasonic imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E 2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E 2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, transfer and archival storage. The goal of Practice E 2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E 2339 provides a data dictionary and set of information modules that are applicable to all NDE modalities. This practice supplements Practice E 2339 by providing information object definitions, information ...

  13. Ultrasonic imaging in concrete

    International Nuclear Information System (INIS)

    Ribay, G.; Paris, O.; Rambach, J.M.

    2009-01-01

    The third and final protection barrier confining nuclear reactors is usually a concrete containment structure. Monitoring the structural integrity of these barriers is critical in ensuring the safety of nuclear power plants. The Institute for Radiological Protection and Nuclear Safety (IRSN) in France in collaboration with the French Atomic commission (CEA/LIST) has developed an ultrasonic phased-array technique capable of inspecting thick concrete walls. The non-destructive method is dedicated to detect cracks and bulk defects. Given the thickness of the structure (1.2 m) undergoing inspection and the heterogeneity of the concrete, the optimal frequency lies in the 50-300 kHz range. At these frequencies, the ultrasonic beam profiles are widespread (non-directive) with poor signal-to-noise ratio. Previous studies have shown the potential of using phased-array techniques (i.e., beam focusing and beam steering) in order to improve detection resolution and sizing accuracy. In this paper we present experimental studies performed with array up to 16 transducers working at 200 kHz. Experiments are carried out on representative concrete blocks containing artificial defects. One is a reinforced mock-up representative of the first reinforcing mesh of wall containment. Experimental results show that in spite of the reinforcement, artificial defects deep as half a meter can be detected. Reconstructed images resulting from phased array acquisitions on an artificial crack embedded in a concrete block are also presented and discussed. The presented method allows detecting oriented defects in concrete with improved signal to noise ratio and sensibility. A simulation model of the interaction of ultrasound with a heterogeneous medium like concrete is briefly commented. (authors)

  14. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    Science.gov (United States)

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Ultrasonic grinding method

    International Nuclear Information System (INIS)

    Miyahara, Shuji.

    1990-01-01

    An ultrasonic generator and a liquid supply nozzle are opposed to an object to be ground and a pump is started in this state to supply an organic solvent. Matters to be decontaminated which adheres to the surface of the object to be ground and are difficult to be removed by a mere mechanical removing method can be eliminated previously by the surface active effect of the organic solvent such as ethanol prior to the oscillation of the ultrasonic generator. Subsequently, when the ultrasonic generator is oscillated, scales in the floated state can be removed simply. Further, since the organic solvent can penetrate to provide the surface active effect even in such a narrow portion that the top end of the ultrasonic generator is difficult to the intruded at the surface of the object to be ground, the decontaminating treatment can be applied also to such a narrow portion. (T.M.)

  16. A new deconvolution method applied to ultrasonic images; Etude d'une methode de deconvolution adaptee aux images ultrasonores

    Energy Technology Data Exchange (ETDEWEB)

    Sallard, J

    1999-07-01

    This dissertation presents the development of a new method for restoration of ultrasonic signals. Our goal is to remove the perturbations induced by the ultrasonic probe and to help to characterize the defects due to a strong local discontinuity of the acoustic impedance. The point of view adopted consists in taking into account the physical properties in the signal processing to develop an algorithm which gives good results even on experimental data. The received ultrasonic signal is modeled as a convolution between a function that represents the waveform emitted by the transducer and a function that is abusively called the 'defect impulse response'. It is established that, in numerous cases, the ultrasonic signal can be expressed as a sum of weighted, phase-shifted replicas of a reference signal. Deconvolution is an ill-posed problem. A priori information must be taken into account to solve the problem. The a priori information translates the physical properties of the ultrasonic signals. The defect impulse response is modeled as a Double-Bernoulli-Gaussian sequence. Deconvolution becomes the problem of detection of the optimal Bernoulli sequence and estimation of the associated complex amplitudes. Optimal parameters of the sequence are those which maximize a likelihood function. We develop a new estimation procedure based on an optimization process. An adapted initialization procedure and an iterative algorithm enables to quickly process a huge number of data. Many experimental ultrasonic data that reflect usual control configurations have been processed and the results demonstrate the robustness of the method. Our algorithm enables not only to remove the waveform emitted by the transducer but also to estimate the phase. This parameter is useful for defect characterization. At last the algorithm makes easier data interpretation by concentrating information. So automatic characterization should be possible in the future. (author)

  17. Ultrasonic-testing method

    International Nuclear Information System (INIS)

    Thome, Paul.

    1973-01-01

    Description is given of a device adapted to the detection, by means of ultrasonic waves, of all the flaws and defects included in workpieces when only one face of the latter is accessible. A beam is directed towards the rear-face of the workpiece (e.g. a plate) on which it is reflected. The image thus reflected is fed into a receiver. The latter is under the control of the displacement of that image; simultaneously a transducer checks the condition of the mirror at the places where the beam is reflected. Whenever a flow or defect comes between, a silent zone is formed. By recording the silent zones with respect to the positions of several emitters, it is possible to locates a flaw and to define the outline thereof. The apparatus comprises several ''emitter-receiver'' groups intersecting over the emitter used in order to check the good conditions of the mirror. The invention can be used for searching and identifying flaws and defects in buildings which have to be of top quality (e.g., cofferdams, nuclear devices, shipbuilding yards, aeronautics) [fr

  18. Ultrasonic imaging in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Lubeigt, E. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France); Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Mensah, S.; Chaix, J.F.; Rakotonarivo, S. [Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Gobillot, G. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2015-07-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  19. Ultrasonic imaging in liquid sodium

    International Nuclear Information System (INIS)

    Lubeigt, E.; Mensah, S.; Chaix, J.F.; Rakotonarivo, S.; Gobillot, G.

    2015-01-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  20. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  1. Development and improvement of synthetic imaging methods for non-destructive ultrasonic testing of complex industrial components

    International Nuclear Information System (INIS)

    Bannouf, S.

    2013-01-01

    The goal of this thesis was, initially, to evaluate phased array methods for ultrasonic Non Destructive Testing (NDT) in order to propose optimizations, or to develop new alternative methods. In particular, this works deals with the detection of defects in complex geometries and/or materials parts. The TFM (Total Focusing Method) algorithm provides high resolution images and several representations of a same defect thanks to different reconstruction modes. These properties have been exploited judiciously in order to propose an adaptive imaging method in immersion configuration. We showed that TFM imaging can be used to characterize more precisely the defects. However, this method presents two major drawbacks: the large amount of data to be processed and a low signal-to-noise ratio (SNR), especially in noisy materials. We developed solutions to these two problems. To overcome the limitation caused by the large number of signals to be processed, we propose an algorithm that defines the sparse array to activate. As for the low SNR, it can be now improved by use of virtual sources and a new filtering method based on the DORT method (Decomposition of the Time Reversal Operator). (author) [fr

  2. Ultrasonic imaging: safety considerations

    Science.gov (United States)

    ter Haar, Gail

    2011-01-01

    Modern ultrasound imaging for diagnostic purposes has a wide range of applications. It is used in obstetrics to monitor the progress of pregnancy, in oncology to visualize tumours and their response to treatment, and, in cardiology, contrast-enhanced studies are used to investigate heart function and physiology. An increasing use of diagnostic ultrasound is to provide the first photograph for baby's album—in the form of a souvenir or keepsake scan that might be taken as part of a routine investigation, or during a visit to an independent high-street ‘boutique’. It is therefore important to ensure that any benefit accrued from these applications outweighs any accompanying risk, and to evaluate the existing ultrasound bio-effect and epidemiology literature with this in mind. This review considers the existing laboratory and epidemiological evidence about the safety of diagnostic ultrasound and puts it in the context of current clinical usage. PMID:22866238

  3. Ultrasonic imaging: safety considerations.

    Science.gov (United States)

    Ter Haar, Gail

    2011-08-06

    Modern ultrasound imaging for diagnostic purposes has a wide range of applications. It is used in obstetrics to monitor the progress of pregnancy, in oncology to visualize tumours and their response to treatment, and, in cardiology, contrast-enhanced studies are used to investigate heart function and physiology. An increasing use of diagnostic ultrasound is to provide the first photograph for baby's album-in the form of a souvenir or keepsake scan that might be taken as part of a routine investigation, or during a visit to an independent high-street 'boutique'. It is therefore important to ensure that any benefit accrued from these applications outweighs any accompanying risk, and to evaluate the existing ultrasound bio-effect and epidemiology literature with this in mind. This review considers the existing laboratory and epidemiological evidence about the safety of diagnostic ultrasound and puts it in the context of current clinical usage.

  4. Ultrasonic two-dimensional imaging of the heart with multiscan

    International Nuclear Information System (INIS)

    Roelandt, J.R.T.C.

    1980-01-01

    The aim of the author was to present the implementation into cardiology of the ultrasonic linear array scanner. The first clinical results, the progress in examination technique and potential applications are described. One method which complements the ultrasonic imaging capabilities is the use of the echo contrast. (Auth.)

  5. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  6. Ultrasonic imaging of metastatic carcinoma in thyroid gland

    International Nuclear Information System (INIS)

    Bai Ling; Yang Tao; Tang Ying; Mao Jingning; Chen Wei; Wang Wei

    2008-01-01

    Objectives: To explore the ultrasonic findings of metastatic thyroid carcinoma and to evaluate the diagnostic value of the ultrasonic imaging for patients with metastatic thyroid neoplasm. Methods: The ultrasonic imaging characteristics of ten patients who were diagnosed with metastatic thyroid carcinoma were retrospectively analyzed. In all the cases, fine-needle aspiration cytology (FNAC) of the thyroid was performed during the clinical diagnosis. Results: The ultrasonic images of the ten patients fell into four types: multiple nodules in the thyroid, single nodule in the thyroid, diffuse calcification and heterogeneous echo. Seven cases showed speckled calcific foci. Abnormal blood flow signal was found in 9 cases. Conclusion: The ultrasonic findings of metastatic carcinoma in the thyroid gland are various and non-specific. Color Doppler ultrasound may provide ample evidence. The diagnosis depends on FNAC. (authors)

  7. A method to obtain reference images for evaluation of ultrasonic tissue characterization techniques

    DEFF Research Database (Denmark)

    Jensen, M.S.; Wilhjelm, Jens E.; Sahl, B.

    2002-01-01

    of the macroscopic photograph, due to the histological preparation process. The histological information was "mapped back" into the format of the ultrasound images the following way: On the macroscopic images, outlines were drawn manually which defined the border of the tissue. These outlines were superimposed...... of the various tissue types. Specifically, the macroscopic image revealed the borders between the different tissues, while the histological image identified the four tissue types. A set of 12 reference images based on modified macroscopic outlines was created. The overlap between the ultrasound images...... and the macroscopic images-which are the geometrical basis for the final reference images-was between 77% and 93%. A set of 12 reference images spaced 2.5 mm, identifying spatial location of four different tissue types in porcine muscle has been created. With the reference images, it is possible to quantitatively...

  8. Reconstruction from gamma radiography and ultrasonic images

    International Nuclear Information System (INIS)

    Gautier, S.; Lavayssiere, B.; Idier, J.; Mohammad-Djafari, A.

    1998-02-01

    This work deals with the three-dimensional reconstruction from gamma radiographic and ultrasonic images. Such an issue belongs to the field of data fusion since the data provide complementary information. The two sets of data are independently related to two sets of parameters: gamma ray attenuation and ultrasonic reflectivity. The fusion problem is addressed in a Bayesian framework; the kingpin of the task is then to define a joint a priori model for both attenuation and reflectivity. Thus, the developing of this model and the entailed joint estimation constitute the principal contribution of this work. The results of real data treatments demonstrate the validity of this method as compared to a sequential approach of the two sets of data

  9. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  10. Nonlinear ultrasonic imaging with X wave

    Science.gov (United States)

    Du, Hongwei; Lu, Wei; Feng, Huanqing

    2009-10-01

    X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.

  11. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  12. A new approach to ultrasonic elasticity imaging

    Science.gov (United States)

    Hoerig, Cameron; Ghaboussi, Jamshid; Fatemi, Mostafa; Insana, Michael F.

    2016-04-01

    Biomechanical properties of soft tissues can provide information regarding the local health status. Often the cells in pathological tissues can be found to form a stiff extracellular environment, which is a sensitive, early diagnostic indicator of disease. Quasi-static ultrasonic elasticity imaging provides a way to image the mechanical properties of tissues. Strain images provide a map of the relative tissue stiffness, but ambiguities and artifacts limit its diagnostic value. Accurately mapping intrinsic mechanical parameters of a region may increase diagnostic specificity. However, the inverse problem, whereby force and displacement estimates are used to estimate a constitutive matrix, is ill conditioned. Our method avoids many of the issues involved with solving the inverse problem, such as unknown boundary conditions and incomplete information about the stress field, by building an empirical model directly from measured data. Surface force and volumetric displacement data gathered during imaging are used in conjunction with the AutoProgressive method to teach artificial neural networks the stress-strain relationship of tissues. The Autoprogressive algorithm has been successfully used in many civil engineering applications and to estimate ocular pressure and corneal stiffness; here, we are expanding its use to any tissues imaged ultrasonically. We show that force-displacement data recorded with an ultrasound probe and displacements estimated at a few points in the imaged region can be used to estimate the full stress and strain vectors throughout an entire model while only assuming conservation laws. We will also demonstrate methods to parameterize the mechanical properties based on the stress-strain response of trained neural networks. This method is a fundamentally new approach to medical elasticity imaging that for the first time provides full stress and strain vectors from one set of observation data.

  13. Small scale imaging using ultrasonic tomography

    International Nuclear Information System (INIS)

    Zakaria, Z.; Abdul Rahim, R.; Megat Ali, M.S.A.; Baharuddin, M.Y.; Jahidin, A.H.

    2009-01-01

    Ultrasound technology progressed through the 1960 from simple A-mode and B-mode scans to today M-mode and Doppler two dimensional (2-D) and even three dimensional (3-D) systems. Modern ultrasound imaging has its roots in sonar technology after it was first described by Lord John Rayleigh over 100 years ago on the interaction of acoustic waves with media. Tomography technique was developed as a diagnostic tool in the medical area since the early of 1970s. This research initially focused on how to retrieve a cross sectional images from living and non-living things. After a decade, the application of tomography systems span into the industrial area. However, the long exposure time of medical radiation-based method cannot tolerate the dynamic changes in industrial process two phase liquid/ gas flow system. An alternative system such as a process tomography systems, can give information on the nature of the flow regime characteristic. The overall aim of this paper is to investigate the use of a small scale ultrasonic tomography method based on ultrasonic transmission mode tomography for online monitoring of liquid/ gas flow in pipe/ vessel system through ultrasonic transceivers application. This non-invasive technique applied sixteen transceivers as the sensing elements to cover the pipe/ vessel cross section. The paper also details the transceivers selection criteria, hardware setup, the electronic measurement circuit and also the image reconstruction algorithm applied. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases. (author)

  14. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  15. Imaging techniques for ultrasonic testing; Bildgebende Verfahren fuer die Ultraschallpruefung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [German] Dieser Seminarband enthaelt 16 Vortraege mit folgenden Themen: 1. Von der Bildgebung bis zur Quantifizierung - Ultraschallverfahren in der medizinischen Diagnostik; 2. SAFT, TOFD, Phased Array

  16. Fabrication of NaYF4:Yb,Er Nanoprobes for Cell Imaging Directly by Using the Method of Hydrion Rivalry Aided by Ultrasonic.

    Science.gov (United States)

    Li, Zhihua; Miao, Haixia; Fu, Ying; Liu, Yuxiang; Zhang, Ran; Tang, Bo

    2016-12-01

    A novel method of fabricating water-soluble bio-probes with ultra-small size such as NaYF 4 :Yb,Er (18 nm), NaGdF 4 :Yb,Er (8 nm), CaF 2 :Yb,Er (10 nm), PbS (7 nm), and ZnS (12 nm) has been developed to provide for the solubility switch of nanoparticles from oil-soluble to water-soluble in terms of hydrion rivalry aided by ultrasonic. Using NaYF 4 :Yb,Er (18 nm) as an example, we evaluate the properties of as-prepared water-soluble nanoparticles (NPs) by using thermogravimetric analyses (TGA), Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ) testing, and 1H nuclear magnetic resonance ( 1 HNMR). The measured ζ value shows that the newly prepared hydrophilic NaYF 4 :Yb,Er NPs are the positively charged particles. Acting as reactive electrophilic moiety, the freshly prepared hydrophilic NaYF 4 :Yb,Er NPs have carried out the coupling with amino acids and fluorescence labeling and imaging of HeLa cells directly. Experiments indicate that the method of hydrion rivalry aided by ultrasonic provides a simple and novel opportunity to transform hydrophobic NPs into hydrophilic NPs with good reactivity, which can be imaging some specific biological targets directly.

  17. Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log

    Science.gov (United States)

    Zhang, Jie; Nie, Xin; Xiao, Suyun; Zhang, Chong; Zhang, Chaomo; Zhang, Zhansong

    2018-03-01

    Imaging logging tools can provide us the borehole wall image. The micro-resistivity imaging logging has been used to obtain borehole porosity spectrum. However, the resistivity imaging logging cannot cover the whole borehole wall. In this paper, we propose a method to calculate the porosity spectrum using ultrasonic imaging logging data. Based on the amplitude attenuation equation, we analyze the factors affecting the propagation of wave in drilling fluid and formation and based on the bulk-volume rock model, Wyllie equation and Raymer equation, we establish various conversion models between the reflection coefficient β and porosity ϕ. Then we use the ultrasonic imaging logging and conventional wireline logging data to calculate the near-borehole formation porosity distribution spectrum. The porosity spectrum result obtained from ultrasonic imaging data is compared with the one from the micro-resistivity imaging data, and they turn out to be similar, but with discrepancy, which is caused by the borehole coverage and data input difference. We separate the porosity types by performing threshold value segmentation and generate porosity-depth distribution curves by counting with equal depth spacing on the porosity image. The practice result is good and reveals the efficiency of our method.

  18. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  19. Development of fuel number reader by ultrasonic imaging techniques

    International Nuclear Information System (INIS)

    Omote, T.; Yoshida, T.

    1991-01-01

    This paper reports on a spent fuel ID number reader using ultrasonic imaging techniques that has been developed to realize efficient and automatic verification of fuel numbers, thereby to reduce mental load and radiation exposure for operators engaged in the verification task. The ultrasonic imaging techniques for automatic fuel number recognition are described. High-speed and high reliability imaging of the spent fuel ID number are obtained by using linear array type ultrasonic probe. The ultrasonic wave is scanned by switching array probe in vertical direction, and scanned mechanically in horizontal direction. Time for imaging of spent fuel ID number on assembly was confirmed less than three seconds by these techniques. And it can recognize spent fuel ID number even if spent fuel ID number can not be visualized by an optical method because of depositing fuel number regions by soft card. In order to recognize spent fuel ID number more rapidly and more reliably, coded fuel number expressed by plural separate recesses form is developed. Every coded fuel number consists of six small holes (about 1 mm dia.) and can be marked adjacent to the existing fuel number expressed by letters and numbers

  20. Ultrasonic imaging with a fixed instrument configuration

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-07-04

    Diffraction tomography is a technique based on an inversion of the wave equation which has been proposed for high-resolution ultrasonic imaging. While this approach has been considered for diagnostic medical applications, it has, until recently, been limited by practical limitations on the speed of data acquisition associated with instrument motions. This letter presents the results of an experimental study directed towards demonstrating tomography utilizing a fixed instrument configuration.

  1. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  2. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  3. Characterization methods for ultrasonic test systems

    International Nuclear Information System (INIS)

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented

  4. Inverse method for effects characterization from ultrasonic b-scan images; Caracterisation des defauts par une methode d'inversion lors d'un controle ultrasonore. Application au controle des defauts en paroi externe

    Energy Technology Data Exchange (ETDEWEB)

    Faur, M. [Paris-11 Univ., 91 - Orsay (France)

    1999-02-01

    In service inspections of French nuclear pressure water reactor vessels are carried out automatically in complete immersion from the inside by means of ultrasonic focused probes working in the pulse echo mode. Concern has been expressed about the capabilities of performing non destructive evaluation of the Outer Surface Defects (OSD), i.e. defects located in the vicinity of the outer surface of the inspected components. OSD are insonified by both a direct field that passes through the inner surface (water/steel) of the component containing the defect and a secondary field reflected from the outer surface. Consequently, the Bscan images, containing the signatures of such defects, are complicated and their interpretation is a difficult task. This work deals with extraction of the maximum available information for characterizing OSD from ultrasonic Bscan images. Our main objectives are to obtain the type of OSD and their geometric parameters by means of two specific inverse methods. The first method is used for the identification of the geometrical parameters of the equivalent planar OSD from segmented Bscan images. Ultrasonic equivalent defect sizing model-based methods may be used to size a defect in a material by obtaining a best-fit simple equivalent shape that matches the ultrasonic observed data. We illustrate the application of such an equivalent sizing OSD method that is based on a simplified direct model. The major drawback of this identification method, as used to date, is that only a part of the useful information contained into original Bscan image, i.e. segmented Bscan image, is used for defect characterization. Moreover, it requires the availability of defect classification information (i.e. if the defect is volumetric or planer, e. g. a crack or a lack of fusion), which, generally, may be as difficult to obtain as the defect parameters themselves. Therefore, we propose a parameter estimation method for extracting complementary information on the defect

  5. Ultrasonic off-normal imaging techniques for under sodium viewing

    International Nuclear Information System (INIS)

    Michaels, T.E.; Horn, J.E.

    1979-01-01

    Advanced imaging methods have been evaluated for the purpose of constructing images of objects from ultrasonic data. Feasibility of imaging surfaces which are off-normal to the sound beam has been established. Laboratory results are presented which show a complete image of a typical core component. Using the previous system developed for under sodium viewing (USV), only normal surfaces of this object could be imaged. Using advanced methods, surfaces up to 60 degrees off-normal have been imaged. Details of equipment and procedures used for this image construction are described. Additional work on high temperature transducers, electronics, and signal analysis is required in order to adapt the off-normal viewing process described here to an eventual USV application

  6. Practical approach to ultrasonic imaging using diffraction tomography

    International Nuclear Information System (INIS)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-01-01

    A technique for ultrasonic imaging based on the theory of diffraction tomography is presented. The method utilizes a fixed, circular configuration of transmitters and detectors. This configuration was selected because it avoids many practical limitations associated with the design of a medical imaging device. Practical considerations also motivated the inclusion of effects associated with the transmitter beam pattern rather than pursuing the more conventional approach in which plane-wave illumination is required. In addition, the problem of separately imaging both density and compressibility variations is considered

  7. Practical approach to ultrasonic imaging using diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-04-01

    A technique for ultrasonic imaging based on the theory of diffraction tomography is presented. The method utilizes a fixed, circular configuration of transmitters and detectors. This configuration was selected because it avoids many practical limitations associated with the design of a medical imaging device. Practical considerations also motivated the inclusion of effects associated with the transmitter beam pattern rather than pursuing the more conventional approach in which plane-wave illumination is required. In addition, the problem of separately imaging both density and compressibility variations is considered.

  8. Method of noncontacting ultrasonic process monitoring

    Science.gov (United States)

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  9. Nondestructive evaluation ultrasonic methods for construction materials

    International Nuclear Information System (INIS)

    Chilibon, I.; Zisu, T.; Raetchi, V.

    2002-01-01

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  10. Ultrasonic imaging of materials under unconventional circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Declercq, Nico Felicien, E-mail: declercqdepatin@gatech.edu; McKeon, Peter, E-mail: declercqdepatin@gatech.edu; Liu, Jingfei; Shaw, Anurupa [Georgia Institute of Technology, UMI Georgia Tech - CNRS 2958, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, Laboratory for Ultrasonic Nondestructive Evaluation, 2 rue Marconi, 5070 Met-technopole (France); Slah, Yaacoubi [Institut de Soudure, 4 Bvd Henri Becquerel, Espace Cormontaigne, 57937 Yutz (France)

    2015-03-31

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. “Ultrasonic Imaging of materials” covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirect images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America’s and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD’s to show rainbow patterns under sunlight, can cause spooky images and erroneous

  11. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pyshnyi, Michael Ph. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)

    2009-05-15

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  12. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    International Nuclear Information System (INIS)

    Pyshnyi, Michael Ph.; Kuznetsov, Oleg A.; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A.

    2009-01-01

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  13. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  14. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  15. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  16. Statistical physics of medical ultrasonic images

    International Nuclear Information System (INIS)

    Wagner, R.F.; Insana, M.F.; Brown, D.G.; Smith, S.W.

    1987-01-01

    The physical and statistical properties of backscattered signals in medical ultrasonic imaging are reviewed in terms of: 1) the radiofrequency signal; 2) the envelope (video or magnitude) signal; and 3) the density of samples in simple and in compounded images. There is a wealth of physical information in backscattered signals in medical ultrasound. This information is contained in the radiofrequency spectrum - which is not typically displayed to the viewer - as well as in the higher statistical moments of the envelope or video signal - which are not readily accessed by the human viewer of typical B-scans. This information may be extracted from the detected backscattered signals by straightforward signal processing techniques at low resolution

  17. Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method.

    Science.gov (United States)

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D

    2016-09-19

    Laser ultrasonics is a technique where lasers are employed to generate and detect ultrasound. A data collection method (full matrix capture) and a post processing imaging algorithm, the total focusing method, both developed for ultrasonic arrays, are modified and used in order to enhance the capabilities of laser ultrasonics for nondestructive testing by improving defect detectability and increasing spatial resolution. In this way, a laser induced ultrasonic phased array is synthesized. A model is developed and compared with experimental results from aluminum samples with side drilled holes and slots at depths of 5 - 20 mm from the surface.

  18. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  19. A Reference-Free and Non-Contact Method for Detecting and Imaging Damage in Adhesive-Bonded Structures Using Air-Coupled Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Timotius Yonathan Sunarsa

    2017-12-01

    Full Text Available Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.

  20. Method and apparatus to characterize ultrasonically reflective contrast agents

    Science.gov (United States)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  1. Data collection instrumentation for ultrasonic imaging under sodium

    International Nuclear Information System (INIS)

    McKnight, J.A.; Parker, J.A.

    1981-05-01

    A team at the Risley Nuclear Power Development Establishment has been developing apparatus for the production of ultrasonic images under opaque liquids. The technique is intended for examining objects under liquid sodium at 300 0 C, and the range of possible methods is restricted as a consequence. The method chosen uses pulse-echo ultrasonics combined with mechanical scanning to assemble the final image. The data is collected using a CAMAC system under the control of an Intel 8080 microprocessor. The data is analysed separately and presented on a colour display using a DEC LSl 11 microprocessor controlled system. To achieve the required performance a number of special electronic assemblies were made. A single image requires 2.5 M byte of data. The cost of using the apparatus on a Fast Reactor is such that it is prudent to provide back-up data collection through a data link, and to maximise the data collection rate. This causes problems with the interrupt cycle time of the CAMAC controller, which can be resolved using synchronous programs specifically tailored to each application. (author)

  2. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  3. Ultrasonic image analysis and image-guided interventions.

    Science.gov (United States)

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  4. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging

    Directory of Open Access Journals (Sweden)

    Elaheh Taghaddos

    2015-06-01

    Full Text Available Piezoelectric materials have been vastly used in ultrasonic transducers for medical imaging. In this paper, firstly, the most promising lead-free compositions with perovskite structure for medical imaging applications have been reviewed. The electromechanical properties of various lead-free ceramics, composites, and single crystals based on barium titanate, bismuth sodium titanate, potassium sodium niobate, and lithium niobate are presented. Then, fundamental principles and design considerations of ultrasonic transducers are briefly described. Finally, recent developments in lead-free ultrasonic probes are discussed and their acoustic performance is compared to lead-based transducers. Focused transducers with different beam focusing methods such as lens focusing and mechanical shaping are explained. Additionally, acoustic characteristics of lead-free probes including the pulse-echo results as well as their imaging capabilities for various applications such as phantom imaging, in vitro intravascular ultrasound imaging of swine aorta, and in vivo or ex vivo imaging of human eyes and skin are reviewed.

  5. Effect of zooming on texture features of ultrasonic images

    Directory of Open Access Journals (Sweden)

    Kyriacou Efthyvoulos

    2006-01-01

    Full Text Available Abstract Background Unstable carotid plaques on subjective, visual, assessment using B-mode ultrasound scanning appear as echolucent and heterogeneous. Although previous studies on computer assisted plaque characterisation have standardised B-mode images for brightness, improving the objective assessment of echolucency, little progress has been made towards standardisation of texture analysis methods, which assess plaque heterogeneity. The aim of the present study was to investigate the influence of image zooming during ultrasound scanning on textural features and to test whether or not resolution standardisation decreases the variability introduced. Methods Eighteen still B-mode images of carotid plaques were zoomed during carotid scanning (zoom factor 1.3 and both images were transferred to a PC and normalised. Using bilinear and bicubic interpolation, the original images were interpolated in a process of simulating off-line zoom using the same interpolation factor. With the aid of the colour-coded image, carotid plaques of the original, zoomed and two resampled images for each case were outlined and histogram, first order and second order statistics were subsequently calculated. Results Most second order statistics (21/25, 84% were significantly (p Conclusion Texture analysis of ultrasonic plaques should be performed under standardised resolution settings; otherwise a resolution normalisation algorithm should be applied.

  6. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue

    Directory of Open Access Journals (Sweden)

    Chih-Feng Chao

    2015-01-01

    Full Text Available Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.

  7. ARMA processing for NDE ultrasonic imaging

    International Nuclear Information System (INIS)

    Pao, Y.H.; El-Sherbini, A.

    1984-01-01

    This chapter describes a new method for acoustic image reconstruction for an active multiple sensor system operating in the reflection mode in the Fresnel region. The method is based on the use of an ARMA model for the reconstruction process. Algorithms for estimating the model parameters are presented and computer simulation results are shown. The AR coefficients are obtained independently of the MA coefficients. It is shown that when the ARMA reconstruction method is augmented with the multifrequency approach, it can provide a three-dimensional reconstructed image with high lateral and range resolutions, high signal to noise ratio and reduced sidelobe levels. The proposed ARMA reconstruction method results in high quality images and better performance than that obtainable with conventional methods. The advantages of the method are very high lateral resolution with a limited number of sensors, reduced sidelobes level, and high signal to noise ratio

  8. New approach to gallbladder ultrasonic images analysis and lesions recognition.

    Science.gov (United States)

    Bodzioch, Sławomir; Ogiela, Marek R

    2009-03-01

    This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards detection of disease symptoms on processed images. First, in this paper, there is presented a new method of filtering gallbladder contours from USG images. A major stage in this filtration is to segment and section off areas occupied by the said organ. In most cases this procedure is based on filtration that plays a key role in the process of diagnosing pathological changes. Unfortunately ultrasound images present among the most troublesome methods of analysis owing to the echogenic inconsistency of structures under observation. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours. The algorithm is based on rank filtration, as well as on the analysis of histogram sections on tested organs. The second part concerns detecting lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. Usually the final stage is to make a diagnosis based on the detected symptoms. This last stage can be carried out through either dedicated expert systems or more classic pattern analysis approach like using rules to determine illness basing on detected symptoms. This paper discusses the pattern analysis algorithms for gallbladder image interpretation towards classification of the most frequent illness symptoms of this organ.

  9. Ultrasonic imaging of material flaws exploiting multipath information

    Science.gov (United States)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  10. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  11. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  12. Broadband phase difference method for ultrasonic velocimetry in molten glass

    International Nuclear Information System (INIS)

    Kikura, Hiroshige; Ihara, Tomonori

    2016-01-01

    This study aims to develop ultrasonic Doppler velocimetry in molten glass. Realization of such a technique has two difficulties: ultrasonic transmission into molten salt and Doppler signal processing. Buffer rod technique was developed in our research to transmit ultrasound into high temperature molten glass. This article discusses newly developed signal processing technique named broadband phase difference method. (J.P.N.)

  13. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohara

    2017-06-01

    Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  14. Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation

    International Nuclear Information System (INIS)

    Niu Lili; Qian Ming; Yu Wentao; Jin Qiaofeng; Ling Tao; Zheng Hairong; Wan Kun; Gao Shen

    2010-01-01

    This paper presents a new algorithm for ultrasonic particle image velocimetry (Echo PIV) for improving the flow velocity measurement accuracy and efficiency in regions with high velocity gradients. The conventional Echo PIV algorithm has been modified by incorporating a multiple iterative algorithm, sub-pixel method, filter and interpolation method, and spurious vector elimination algorithm. The new algorithms' performance is assessed by analyzing simulated images with known displacements, and ultrasonic B-mode images of in vitro laminar pipe flow, rotational flow and in vivo rat carotid arterial flow. Results of the simulated images show that the new algorithm produces much smaller bias from the known displacements. For laminar flow, the new algorithm results in 1.1% deviation from the analytically derived value, and 8.8% for the conventional algorithm. The vector quality evaluation for the rotational flow imaging shows that the new algorithm produces better velocity vectors. For in vivo rat carotid arterial flow imaging, the results from the new algorithm deviate 6.6% from the Doppler-measured peak velocities averagely compared to 15% of that from the conventional algorithm. The new Echo PIV algorithm is able to effectively improve the measurement accuracy in imaging flow fields with high velocity gradients.

  15. Separated reconstruction of images from ultrasonic holograms with tridimensional object by digital processing

    International Nuclear Information System (INIS)

    Son, J.H.

    1979-01-01

    Because of much attractiveness, digital reconstruction of image from ultrasonic hologram by computer has been widely studied in recent years. But the method of digital reconstruction of image is displayed in the plain only, so study is done mainly of the hologram obtained from bidimensional objects. Many applications of the ultrasonic holography such as the non-distructive testing and the ultrasonic diagnosis are mostly of the tridimensional object. In the ordinary digital reconstruction of the image from the hologram obtained from tridimensional object, a question of hidden-image problem arises, and the separated reconstruction of the image for the considered part of the object is required. In this paper, multi-diffraction by tridimensional object is assumed to have linearity, ie. superposition property by each diffraction of bidimensional objects. And a new algorithm is proposed here, namely reconstructed image for considered one of bidimensional objects in tridimensional object obtained by means of operation from the two holograms tilted in unequal angles. Such tilted holograms are obtained from the tilted linear array receivers by scanning method. That images can be reconstructed by the operation from two holograms means that the new algorithm is verified. And another new method of the transformation of hologram, that is, transformation of a hologram to arbitrarily tilted hologram, has been proved valid. The reconstructed images obtained with the method of transformation and the method of operation, are the images reconstructed from one hologram by the tridimensional object and more distinctly separated that any images mentioned above. (author)

  16. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    Science.gov (United States)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  17. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors

    International Nuclear Information System (INIS)

    Dancre, M.

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  18. A thinker's guide to ultrasonic imaging

    International Nuclear Information System (INIS)

    Powis, R.L.; Powis, W.J.

    1984-01-01

    Bridging the gap between elementary physics and advanced ultrasonographic theory, this book provides the clinician with an indispensable tool for the most effective use of ultrasound equipment. It is directed to every individual who must take a transducer in hand, make an ultrasonic study, and interpret the visual results. It stands between the very rudimentary texts that provide simple basics and texts in advanced ultrasound science and applications. It is designed to provide an intermediate step in the continuing education of both physician and sonographer. Each chapter stands alone, yet is connected with the others by reference and suggested readings

  19. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  20. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    Science.gov (United States)

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  1. Image processing applied to automatic detection of defects during ultrasonic examination

    International Nuclear Information System (INIS)

    Moysan, J.

    1992-10-01

    This work is a study about image processing applied to ultrasonic BSCAN images which are obtained in the field of non destructive testing of weld. The goal is to define what image processing techniques can bring to ameliorate the exploitation of the data collected and, more precisely, what image processing can do to extract the meaningful echoes which enable to characterize and to size the defects. The report presents non destructive testing by ultrasounds in the nuclear field and it indicates specificities of the propagation of ultrasonic waves in austenitic weld. It gives a state of the art of the data processing applied to ultrasonic images in nondestructive evaluation. A new image analysis is then developed. It is based on a powerful tool, the co-occurrence matrix. This matrix enables to represent, in a whole representation, relations between amplitudes of couples of pixels. From the matrix analysis, a new complete and automatic method has been set down in order to define a threshold which separates echoes from noise. An automatic interpretation of the ultrasonic echoes is then possible. Complete validation has been done with standard pieces

  2. Time reversal for ultrasonic transcranial surgery and echographic imaging

    Science.gov (United States)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  3. Structural damage identification based on laser ultrasonic propagation imaging technology

    Science.gov (United States)

    Chia, Chen-Ciang; Jang, Si-Gwang; Lee, Jung-Ryul; Yoon, Dong-Jin

    2009-06-01

    An ultrasonic propagation imaging (UPI) system consisted of a Q-switched Nd-YAG pulsed laser and a galvanometer laser mirror scanner was developed. The system which requires neither reference data nor fixed focal length could be used for health monitoring of curved structures. If combined with a fiber acoustic wave PZT (FAWPZT) sensor, it could be used to inspect hot target structures that present formidable challenges to the usage of contact piezoelectric transducers mainly due to the operating temperature limitation of transducers and debonding problem due to the mismatch of coefficient of thermal expansion between the target, transducer and bonding material. The inspection of a stainless steel plate with a curvature radius of about 4 m, having 2mm×1mm open-crack was demonstrated at 150°C using a FAWPZT sensor welded on the plate. Highly-curved surfaces scanning capability and adaptivity of the system for large laser incident angle up to 70° was demonstrated on a stainless steel cylinder with 2mm×1mm open-crack. The imaging results were presented in ultrasonic propagation movie which was a moving wavefield emerged from an installed ultrasonic sensor. Damages were localized by the scattering wavefields. The result images enabled easy detection and interpretation of structural defects as anomalies during ultrasonic wave propagation.

  4. Ultrasonic partial discharge monitoring method on instrument transformers

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad

    2012-01-01

    Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.

  5. Micromachined Ultrasonic Transducers for 3-D Imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann

    of state-of-the-art 3-D ultrasound systems. The focus is on row-column addressed transducer arrays. This previously sparsely investigated addressing scheme offers a highly reduced number of transducer elements, resulting in reduced transducer manufacturing costs and data processing. To produce...... such transducer arrays, capacitive micromachined ultrasonic transducer (CMUT) technology is chosen for this project. Properties such as high bandwidth and high design flexibility makes this an attractive transducer technology, which is under continuous development in the research community. A theoretical...... treatment of CMUTs is presented, including investigations of the anisotropic plate behaviour and modal radiation patterns of such devices. Several new CMUT fabrication approaches are developed and investigated in terms of oxide quality and surface protrusions, culminating in a simple four-mask process...

  6. Limited aperture effects on ultrasonic image reconstruction

    International Nuclear Information System (INIS)

    Kogan, V.G.; Rose, J.H.

    1985-01-01

    In the inverse Born approximation the shape of a weak scatterer can be determined from a knowledge of the backscattered ultrasonic amplitude for all directions of incidence and all frequencies. Two questions are considered. First, what information on the scatterer shape is preserved and what is degraded if the scattering data are available only within a limited set of incident directions (limited aperture). This problem is addressed for a spherical weakly scattering uniform flaw. It is shown that the problem of a general uniform ellipsoidal flaw can be reduced to the spherical case by a scale transformation; however, the apertures in these two cases must be related by the same transformation. Second, limited aperture and finite bandwidth Born inversions were performed for strongly scattering flaws (voids and cracks) using numerically generated scattering amplitudes. These inversions were then compared with the weak scattering analytic results, which show many common features

  7. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  8. A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jung, Seung Ho; Jung, Hyun Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly

  9. Research into Thermal Sprayed Coatings with Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    Justinas Gargasas

    2012-01-01

    Full Text Available Research on thermal sprayed coatings with ultrasonic methods is the main object of this thesis. Metal surface coating was applied to modify its mechanical and physical-chemical properties and resistance to external impact and improve aesthetics. Spraying was carried out by scanning the rotating sample of 30 cm/s speed. Surface microstructure, ultrasonic thickness, porosity, micro hardness and surface modulus tests performed. Conclusions were formulated.Article in Lithuanian

  10. Development of computer-controlled ultrasonic image processing system for severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Jong Tai; Kim, Jong Whan; Cho, Young Ro; Ha, Kwang Soon; Park, Rae Jun; Kim, Sang Baik; Kim, Hee Dong; Sim, Chul Moo

    2000-07-01

    In order to verify in-vessel corium cooling mechanism, LAVA(Lower-plenum Arrested Vessel Attack) experiment is being performed as a first stage proof of principle test. The aims of this study are to find a gap formation between corium melt and reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at developing a computer controlled image signal processing system which is able to improve visualization and to measure the gap distribution with 3-dimensional planar image using a time domain signal analysis method as a part of the ultrasonic pulse echo methods and a computerized position control system. An image signal processing system is developed by independently developing an ultrasonic image signal processing technique and a PC controlled position control system and then combining both systems

  11. Development of computer-controlled ultrasonic image processing system for severe accidents research

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Jong Tai; Kim, Jong Whan; Cho, Young Ro; Ha, Kwang Soon; Park, Rae Jun; Kim, Sang Baik; Kim, Hee Dong; Sim, Chul Moo

    2000-07-01

    In order to verify in-vessel corium cooling mechanism, LAVA(Lower-plenum Arrested Vessel Attack) experiment is being performed as a first stage proof of principle test. The aims of this study are to find a gap formation between corium melt and reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at developing a computer controlled image signal processing system which is able to improve visualization and to measure the gap distribution with 3-dimensional planar image using a time domain signal analysis method as a part of the ultrasonic pulse echo methods and a computerized position control system. An image signal processing system is developed by independently developing an ultrasonic image signal processing technique and a PC controlled position control system and then combining both systems.

  12. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  13. Ultrasonic methods for locating hold-up

    International Nuclear Information System (INIS)

    Sinha, D.N.; Olinger, C.T.

    1995-01-01

    Hold-up remains one of the major contributing factors to unaccounted for materials and can be a costly problem in decontamination and decommissioning activities. Ultrasonic techniques are being developed to noninvasively monitor hold-up in process equipment where the inner surface of such equipment may be in contact with the hold-up material. These techniques may be useful in improving hold-up measurements as well as optimizing decontamination techniques

  14. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  15. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  16. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  17. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    Science.gov (United States)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  19. Ultrasonic modelling and imaging in dissimilar welds

    International Nuclear Information System (INIS)

    Shlivinski, A.; Langenberg, K.J.; Marklein, R.

    2004-01-01

    Non-destructive testing of defects in nuclear power plant dissimilar pipe weldings play an important part in safety inspections. Traditionally the imaging of such defects is performed using the synthetic aperture focusing technique (SAFT) algorithm, however since parts of the dissimilar welded structure are made of an anisotropic material, this algorithm may fail to produce correct results. Here we present a modified algorithm that enables a correct imaging of cracks in anisotropic and inhomogeneous complex structures by accounting for the true nature of the wave propagation in such structures, this algorithm is called inhomogeneous anisotropic SAFT (InASAFT). In InASAFT algorithm is shown to yield better results over the SAFT algorithm for complex environments. The InASAFT suffers, though, from the same difficulties of the SAFT algorithm, i.e. ''ghost'' images and lack of clear focused images. However these artefacts can be identified through numerical modelling of the wave propagation in the structure. (orig.)

  20. Ultrasonic Detection Using Correlation Images (Preprint)

    National Research Council Canada - National Science Library

    Cepel, Raini; Ho, K. C; Rinker, Brett A; Palmer, Donald D; Neal, Steven P

    2006-01-01

    .... In this paper, we describe an amplitude independent approach for imaging and detection based on the similarity of adjacent signals, quantified by the correlation coefficient calculated between A-scans...

  1. Ultrasonic modelling and imaging in dissimilar welds

    Energy Technology Data Exchange (ETDEWEB)

    Shlivinski, A.; Langenberg, K.J.; Marklein, R. [Dept. of Electrical Engineering, Univ. of Kassel, Kassel (Germany)

    2004-07-01

    Non-destructive testing of defects in nuclear power plant dissimilar pipe weldings play an important part in safety inspections. Traditionally the imaging of such defects is performed using the synthetic aperture focusing technique (SAFT) algorithm, however since parts of the dissimilar welded structure are made of an anisotropic material, this algorithm may fail to produce correct results. Here we present a modified algorithm that enables a correct imaging of cracks in anisotropic and inhomogeneous complex structures by accounting for the true nature of the wave propagation in such structures, this algorithm is called inhomogeneous anisotropic SAFT (InASAFT). In InASAFT algorithm is shown to yield better results over the SAFT algorithm for complex environments. The InASAFT suffers, though, from the same difficulties of the SAFT algorithm, i.e. ''ghost'' images and lack of clear focused images. However these artefacts can be identified through numerical modelling of the wave propagation in the structure. (orig.)

  2. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    Science.gov (United States)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  3. Detection of fastener loosening in simple lap joint based on ultrasonic wavefield imaging

    Science.gov (United States)

    Gooda Sahib, M. I.; Leong, S. J.; Chia, C. C.; Mustapha, F.

    2017-12-01

    Joints in aero-mechanical structures are critical elements that ensure the structural integrity but they are prone to damages. Inspection of such joints that have no prior baseline data is really challenging but it can be possibly done using the Ultrasonic Propagation Imager (UPI). The feasibility of applying UPI for detection of loosened fastener is investigated in this study. A simple lap joint specimen made by connecting two pieces of 2.5mm thick SAE304 stainless steel plates using five M6 screws and nuts has been used in this study. All fasteners are tightened to 10Nm but one of them is completely loosened to simulate the damage. The wavefield data is processed into ultrasonic wavefield propagation video and a series of spectral amplitude images. The spectral images showed noticeable amplitude difference at the loosened fastener, hence confirmed the feasibility of using UPI for structural joints inspection. A simple contrast maximization method is also introduced to improve the result.

  4. Ultrasonic and advanced methods for nondestructive testing and material characterization

    National Research Council Canada - National Science Library

    Chen, C. H

    2007-01-01

    ... and physics among others. There are at least two dozen NDT methods in use. In fact any sensor that can examine the inside of material nondestructively is useful for NDT. However the ultrasonic methods are still most popular because of its capability, flexibility, and relative cost effectiveness. For this reason this book places a heavy emphasis...

  5. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  6. Reliability of measuring pelvic floor elevation with a diagnostic ultrasonic imaging device

    OpenAIRE

    Ubukata, Hitomi; Maruyama, Hitoshi; Huo, Ming

    2015-01-01

    [Purpose] The purpose of this study was to investigate the reliability of measuring the amount of pelvic floor elevation during pelvic and abdominal muscle contraction with a diagnostic ultrasonic imaging device. [Subjects] The study group comprised 11 healthy women without urinary incontinence or previous birth experience. [Methods] We measured the displacement elevation of the bladder base during contraction of the abdominal and pelvic floor muscles was measured using a diagnostic ultrasoni...

  7. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  8. Analysis of the ultrasonic image of adrenal metastasis in primary lung cancer

    International Nuclear Information System (INIS)

    Bai Ling; Yang Tao; Tang Ying; Mao Jingning; Chen Wei; Wang Yong; Zhang Yan

    2009-01-01

    Objective: To investigate the ultrasonic image of adrenal metastasis in primary lung cancer. Methods: The ultrasonic imaging characteristics of fourteen patients with adrenal metastasis in primary lung cancer were retrospectively reviewed. In all the cases, US-guided percutaneous biopsy was performed for pathological evaluation during the clinical diagnosis. Results and Conclusion: In ultrasonography the adrenal metastatic tumors were manifested as solitary in all the cases, well-defined in 10 cases, irregularly shaped in 10 cases, hypoechoic in 13 cases, and 1 case showed cystoid structure in the tumor. The maximum diameter of the tumor was 3.0-15.3 cm. 9 cases were metastatic adenocarcinoma. The sonographic appearance of adrenal metastasis in primary lung cancer has its characteristics. Ultrasonography can find adrenal metastalic tumors easily and contribute to diagnosis. (authors)

  9. Enhancement of submarine pressure hull steel ultrasonic inspection using imaging and artificial intelligence

    Science.gov (United States)

    Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard

    1995-06-01

    The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.

  10. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  11. Ultrasonic defect detection method for socket welding joint

    International Nuclear Information System (INIS)

    Tominaga, Masaaki; Matsuo, Toshiyuki; Ueno, Akihiro; Watanabe, Kunimichi; Kawamata, Kunio.

    1995-01-01

    The present invention provides a method of detecting defects over a wide range of a socket weld portion of various kinds of pipelines used, for example, in a nuclear power plant. Namely, an inclined probe is disposed to a jig for detecting defects by ultrasonic waves. This is rotated at least by one turn along the peripheral surface of the material to be detected such as weld tube joints. Defects of weld portion of the material can be detected automatically by using ultrasonic waves during the rotation. The inclined probe for detecting defects by ultrasonic waves comprises a transmission portion having a planar transmittance oscillator disposed to a wedge on the transmission side and a receiving portion comprising a planar receiving oscillator disposed to a wedge on the receiving side. With such a constitution, ultrasonic waves are emitted from the transmission portion to the defect detection portion in the welded portion. If a defect is present, defective echo is reflected to the receiving portion disposed ahead of the probe. Since the defective echo changes depending on the height of the detective portion, the estimation of the height of the defect can be facilitated. (I.S.)

  12. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    International Nuclear Information System (INIS)

    Khuri-Yakub, Butrus T; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated front-end electronic circuits we developed and their use for 2D and 3D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a micro-electro-mechanical systems technology for many medical diagnostic and therapeutic applications

  13. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    Science.gov (United States)

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  14. Point spread functions and deconvolution of ultrasonic images.

    Science.gov (United States)

    Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten

    2015-03-01

    This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.

  15. Remote diagnosis via a telecommunication satellite--ultrasonic tomographic image transmission experiments.

    Science.gov (United States)

    Nakajima, I; Inokuchi, S; Tajima, T; Takahashi, T

    1985-04-01

    An experiment to transmit ultrasonic tomographic section images required for remote medical diagnosis and care was conducted using the mobile telecommunication satellite OSCAR-10. The images received showed the intestinal condition of a patient incapable of verbal communication, however the image screen had a fairly coarse particle structure. On the basis of these experiments, were considered as the transmission of ultrasonic tomographic images extremely effective in remote diagnosis.

  16. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    Science.gov (United States)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  17. Stress measurement and bolt tensioning by ultrasonic methods

    International Nuclear Information System (INIS)

    Smith, J.F.; Greiner, J.D.

    1980-01-01

    In the past decade, a new technique has been developed for measuring tensile stresses in solids. This ultrasonic technique has been used thus far primarily for measuring fastener tension. The precision of measurement is routinely to 2-3% and, with special care, to approx. 1%. The method is insensitive to the frictional losses which plague tensioning by torque wrench. Though the approach is relatively new, it promises a wide range of applicability

  18. Stress Measurement and Bolt Tensioning by Ultrasonic Methods

    Science.gov (United States)

    Smith, J. F.; Greiner, John D.

    1980-07-01

    In the past decade, a new technique has been developed for measuring tensile stresses in solids. This ultrasonic technique has been used thus far primarily for measuring fastener tension. The precision of measurement is routinely to 2-3% and, with special care, to ˜1%. The method is insensitive to the frictional losses which plague tensioning by torque wrench. Though the approach is relatively new, it promises a wide range of applicability.

  19. Development of gap measurement technique in-vessel corium retention using ultrasonic pulse echo method

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Jong Hwan; Kang, Kyung Ho; Kim, Sang Baik; Sim, Cheul Muu

    1999-03-01

    A gap between a molten material and a lower vessel is formed in the LAVA experiment, a phase 1 study of Sonata-IV program. In this technical report, quantitative results of the gap measurement using an off-line ultrasonic pulse echo method are presented. This report aims at development of an appropriate ultrasonics test method, by analyzing the problems from the external environmental reason and the internal characteristic reason. The signal analyzing methods to improve the S/N ratio in these problems are divided into the time variant synthesized signal analyzing method and the time invariant synthesized signal analyzing method. In this report, the possibility of the application of these two methods to the gap signal and the noise is considered. In this test, the signal of the propagational direction and reflectional direction through solid-liquid-solid specimen was analyzed to understand the behavior of the reflectional signal in a multi-layered structure by filling the gap with water between the melt and the lower head vessel. The quantitative gap measurement using the off-line ultrasonic pulse echo method was available for a little of the scanned region. But furtherly using DSP technique and imaging technique, the better results will be obtained. Some of the measured signals are presented as 2-dimensional spherical mapping method using distance and amplitude. Other signals difficult in quantitative measurement are saved for a new signal processing method. (author). 11 refs., 4 tabs., 54 figs

  20. A new ultrasonic signal amplification method for detection of bacteria

    Science.gov (United States)

    Kant Shukla, Shiva; Resa López, Pablo; Sierra Sánchez, Carlos; Urréjola, José; Segura, Luis Elvira

    2012-10-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 105 cells ml-1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity.

  1. A new ultrasonic signal amplification method for detection of bacteria

    International Nuclear Information System (INIS)

    Shukla, Shiva Kant; López, Pablo Resa; Sánchez, Carlos Sierra; Segura, Luis Elvira; Urréjola, José

    2012-01-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 10 5 cells ml −1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity. (paper)

  2. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    Science.gov (United States)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  3. Ultrasonic signal processing and B-SCAN imaging for nondestructive testing. Application to under - cladding - cracks

    International Nuclear Information System (INIS)

    Theron, G.

    1988-02-01

    Crack propagation under the stainless steel cladding of nuclear reactor vessels is monitored by ultrasonic testing. This work study signal processing to improve detection and sizing of defects. Two possibilities are examined: processing of each individual signal and simultaneous processing of all the signals giving a B-SCAN image. The bibliographic study of time-frequency methods shows that they are not suitable for pulses. Then decomposition in instantaneous frequency and envelope is used. Effect of interference of 2 close echoes on instantaneous frequency is studies. The deconvolution of B-SCAN images is obtained by the transducer field. A point-by-point deconvolution method, less noise sensitive, is developed. B-SCAN images are processed in 2 phases: interface signal processing and deconvolution. These calculations improve image accuracy and dynamics. Water-stell interface and ferritic-austenitic interface are separated. Echoes of crack top are visualized and crack-hole differentiation is improved [fr

  4. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    Directory of Open Access Journals (Sweden)

    Yuri Álvarez López

    2017-01-01

    Full Text Available One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  5. Indoor Airborne Ultrasonic Wireless Communication Using OFDM Methods.

    Science.gov (United States)

    Jiang, Wentao; Wright, William M D

    2017-09-01

    Concerns still exist over the safety of prolonged exposure to radio frequency (RF) wireless transmissions and there are also potential data security issues due to remote signal interception techniques such as Bluesniping. Airborne ultrasound may be used as an alternative to RF for indoor wireless communication systems for securely transmitting data over short ranges, as signals are difficult to intercept from outside the room. Two types of air-coupled capacitive ultrasonic transducer were used in the implementation of an indoor airborne wireless communication system. One was a commercially available SensComp series 600 ultrasonic transducer with a nominal frequency of 50 kHz, and the other was a prototype transducer with a high- k dielectric layer operating at higher frequencies from 200 to 400 kHz. Binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), and quadrature amplitude modulation (QAM)-based orthogonal frequency division multiplexing modulation methods were successfully implemented using multiple orthogonal subchannels. The modulated ultrasonic signal packets were synchronized using a wireless link, and a least-squares channel estimation algorithm was used to compensate the phase and amplitude distortion introduced by the air channel. By sending and receiving the ultrasonic signals using the SensComp transducers, the achieved maximum system data rate was up to 180 kb/s using 16-QAM with ultrasonic channels from 55 to 99 kHz, over a line-of-sight transmission distance of 6 m with no detectable errors. The transmission range could be extended to 9 and 11 m using QPSK and BPSK modulation schemes, respectively. The achieved data rates for the QPSK and BPSK schemes were 90 and 45 kb/s using the same bandwidth. For the high- k ultrasonic transducers, a maximum data rate up to 800 kb/s with no measurable errors was achieved up to a range of 0.7 m. The attainable transmission ranges were increased to 1.1 and 1.2 m with data rates of 400 and 200 kb

  6. Materials characterization by resonant ultrasonic spectroscopy method

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Jung, H.K.; Joo, Y.S.; Sim, C.M.

    2001-01-01

    A high temperature resonant ultrasound spectroscopy(RUS) was developed. The dynamic elastic constant of RPV weld, which has various different microstructure was determined by RUS. It was confirmed the RUS method is very sensitive to the microstructures of the material. RUS can be used to monitor the degradation of nuclear materials including neutron irradiation embrittlement through the measurement of dynamic elastic constants, elastic anisotropy, high temperature elastic constant and Q-factor

  7. The potential of high resolution ultrasonic in-situ methods

    International Nuclear Information System (INIS)

    Schuster, K.

    2010-01-01

    Document available in extended abstract form only. In the framework of geomechanical assessment of final repository underground openings the knowledge of geophysical rock parameters are of importance. Ultrasonic methods proved to be good geophysical tools to provide appropriate high resolution parameters for the characterisation of rock. In this context the detection and characterisation of rock heterogeneities at different scales, including the Excavation Damaged/disturbed Zone (EDZ/EdZ) features, play an important role. Especially, kinematic and dynamic parameters derived from ultrasonic measurements can be linked very close to rock mechanic investigations and interpretations. BGR uses high resolution ultrasonic methods, starting with emitted frequencies of about 1 kHz (seismic) and going up to about 100 kHz. The method development is going on and appropriate research and investigations are performed since many years at different European radioactive waste disposal related underground research laboratories in different potential host rocks. The most frequented are: Mont Terri Rock Laboratory, Switzerland (Opalinus Clay, OPA), Underground Research Laboratory Meuse/Haute- Marne, France (Callovo-Oxfordian, COX), Underground Research Facility Mol, Belgium (Boom Clay, BC), Aespoe Hard Rock Laboratory, Sweden (granites), Rock Laboratory Grimsel, Switzerland (granites) and Asse salt mine, Germany (rock salt). The methods can be grouped into borehole based methods and noninvasive methods like refraction and reflection methods, which are performed in general from the drift wall. Additionally, as a combination of these both methods a sort of vertical seismic profiling (VSP) is applied. The best qualified method, or a combination of methods, have to be chosen according to the scientific questions and the local site conditions. The degree of spatial resolution of zones of interest or any kind of anomaly depends strongly on the distance of these objects to the ultrasonic

  8. Assessment of the reliability of ultrasonic inspection methods

    International Nuclear Information System (INIS)

    Haines, N.F.; Langston, D.B.; Green, A.J.; Wilson, R.

    1982-01-01

    The reliability of NDT techniques has remained an open question for many years. A reliable technique may be defined as one that, when rigorously applied by a number of inspection teams, consistently finds then correctly sizes all defects of concern. In this paper we report an assessment of the reliability of defect detection by manual ultrasonic methods applied to the inspection of thick section pressure vessel weldments. Initially we consider the available data relating to the inherent physical capabilities of ultrasonic techniques to detect cracks in weldment and then, independently, we assess the likely variability in team to team performance when several teams are asked to follow the same specified test procedure. The two aspects of 'capability' and 'variability' are brought together to provide quantitative estimates of the overall reliability of ultrasonic inspection of thick section pressure vessel weldments based on currently existing data. The final section of the paper considers current research programmes on reliability and presents a view on how these will help to further improve NDT reliability. (author)

  9. Graphene-based ultrasonic detector for photoacoustic imaging

    Science.gov (United States)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  10. Ultrasonic defect sizing using decibel drop methods. III

    International Nuclear Information System (INIS)

    Mills, C.; Goszczynski, J.; Mitchell, A.B.

    1988-03-01

    An earlier study on the use of ultrasonic decibel drop sizing methods for determining the length and vertical extent of flaws in welded steel sections was based on the scanning of machined flaws and fabrication flaws. The present study utilized the techniques developed to perform a similar study of the type of flaws expected to develop during service (e.g. fatigue cracks). The general findings are that: a) the use of decibel drops of less than 14 dB generally undersize the length of fatigue cracks; and b) the use of decibel drop methods to determine vertical extent is questionable

  11. Ultrasonic imaging algorithms with limited transmission cycles for rapid nondestructive evaluation.

    Science.gov (United States)

    Moreau, Ludovic; Drinkwater, Bruce W; Wilcox, Paul D

    2009-09-01

    Imaging algorithms recently developed in ultrasonic nondestructive testing (NDT) have shown good potential for defect characterization. Many of them are based on the concept of collecting the full matrix of data, obtained by firing each element of an ultrasonic phased array independently, while collecting the data with all elements. Because of the finite sound velocity in the test structure, 2 consecutive firings must be separated by a minimum time interval. Depending on the number of elements in a given array, this may become problematic if data must be collected within a short time, as it is often the case, for example, in an industrial context. An obvious way to decrease the duration of data capture is to use a sparse transmit aperture, in which only a restricted number of elements are used to transmit ultrasonic waves. This paper compares 2 approaches aimed at producing an image on the basis of restricted data: the common source method and the effective aperture technique. The effective aperture technique is based on the far-field approximation, and no similar approach exists for the near-field. This paper investigates the performance of this technique in near-field conditions, where most NDT applications are made. First, these methods are described and their point spread functions are compared with that of the Total Focusing Method (TFM), which consists of focusing the array at every point in the image. Then, a map of efficiency is given for the different algorithms in the near-field. The map can be used to select the most appropriate algorithm. Finally, this map is validated by testing the different algorithms on experimental data.

  12. Study on dry-calibration method of ultrasonic flowmeter

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Yasuda, Hidenori.

    1988-01-01

    This paper describes a study on a dry-calibration method for application of an ultrasonic flowmeter to the fields such as nuclear or thermal power plants where high temperature and pressurized fluids are used in coolant or feedwater systems. For the measurement of the flow quantity using the ultrasonic flowmeter, it is important to obtain a correction coefficient of the rate of line averaged axial velocity to plane averaged axial velocity. We have developed analytical method to predict the turbulent flow profiles in the cross sections of piping including bends. The method is based on parabolic flow model and k-ε model with wall functions for the near-wall regions. The axial velocity profiles and the correction coefficients predicted by the analytical method were compared with the experimental results for water and liquid sodium in various L/D conditions. The both results were shown to be in approximate agreement within about 5% accuracy for the flow profiles and about 2% accuracy for the correction coefficients, though the piping had the 90degC bend with a very small redius of curvature. In the case of small L/D conditions, it was also shown that the reverse flow effects could not be disregarded in the predominant direction. However, the accuracy of the dry-calibration by using the analytical method was confirmed to be within about 2% as things were. (author)

  13. A new ultrasonic transducer for improved contrast nonlinear imaging

    International Nuclear Information System (INIS)

    Bouakaz, Ayache; Cate, Folkert ten; Jong, Nico de

    2004-01-01

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  14. High Resolution Ultrasonic Method for 3D Fingerprint Representation in Biometrics

    Science.gov (United States)

    Maev, R. Gr.; Bakulin, E. Y.; Maeva, E. Y.; Severin, F. M.

    Biometrics is an important field which studies different possible ways of personal identification. Among a number of existing biometric techniques fingerprint recognition stands alone - because very large database of fingerprints has already been acquired. Also, fingerprints are an important evidence that can be collected at a crime scene. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. Ultrasonic method of fingerprint imaging was originally introduced over a decade as the mapping of the reflection coefficient at the interface between the finger and a covering plate and has shown very good reliability and free from imperfections of previous two methods. This work introduces a newer development of the ultrasonic fingerprint imaging, focusing on the imaging of the internal structures of fingerprints (including sweat pores) with raw acoustic resolution of about 500 dpi (0.05 mm) using a scanning acoustic microscope to obtain images and acoustic data in the form of 3D data array. C-scans from different depths inside the fingerprint area of fingers of several volunteers were obtained and showed good contrast of ridges-and-valleys patterns and practically exact correspondence to the standard ink-and-paper prints of the same areas. Important feature reveled on the acoustic images was the clear appearance of the sweat pores, which could provide additional means of identification.

  15. Concrete deterioration: detection by ultrasonic pulse velocity method

    International Nuclear Information System (INIS)

    Sutan, N.M.; Jaafar, M.S.; Hamdan, S.

    2003-01-01

    Tests were performed to evaluate the feasibility of using Ultrasonic Pulse Velocity Method (UPVM) in detecting defect and determining its depth during the early age concrete. Five reinforced concrete (RC) slabs of grade 30, 40 and 50 specimens at day 3, 7,14 and 28 with a fabricated void at a known location were used. The results obtained were compared to determine the accuracy of the method hence the effectiveness of the method with different strength and as the concrete matures. This method detects defects in specimens during the early age The accuracy varies with concrete strength and as the concrete mature. The test results indicate the method can be used to assess the in-situ properties of concrete or for quality control on site. The method showed better accuracy with stronger concrete detects defects with the accuracy ranging from 55.75-99.62% from day 3-28 (full strength) respectively. (author)

  16. Interpretation of ultrasonic images; Interpretation von Ultraschall-Abbildungen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W; Schmitz, V; Kroening, M [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

    1998-11-01

    During the evaluation of ultrasonic images, e.g. SAFT-reconstructed B-scan images (SAFT=Synthetic Aperture Focusing Technique) it is often difficult to decide, what is the origin of reconstructed image points: were they caused by defects, specimens geometry or mode-conversions. To facilitate this evaluation a tool based on the comparison of data was developed. Different kinds of data comparison are possible: identification of that RF-signals, which caused the reconstructed image point. This is the comparison of a reconstructed image with the corresponding RF-data. Comparison of two reconstructed images performing a superposition using logical operators. In this case e.g. the reconstruction of an unknown reflector is compared with that of a known one. Comparison of raw-RF-data by simultaneous scanning through two data sets. Here the echoes of an unknown reflector are compared with the echoes of a known one. The necessary datasets of known reflectors may be generated experimentally on reference reflectors or modelled. The aim is the identification of the reflector type, e.g. cracklike or not, the determination of position, size and orientation as well as the identification of accompanying satellite echoes. The interpretation of the SAFT-reconstructed B-scan image is carried out by a complete description of the reflector. In addition to the aim of interpretation the tool described is well suited to educate and train ultrasonic testers. (orig./MM) [Deutsch] Bei der Auswertung von Ultraschall-Abbildungen, z.B. SAFT-rekonstruierten B-Bildern (SAFT=Synthetische Apertur Fokus Technik), ist es oft schwierig zu entscheiden, wo rekonstruierte Bildpunkte herruehren: wurden sie durch Materialfehler, Bauteilgeometrie oder durch Wellenumwandlungen versursacht. Um diese Auswertung zu erleichtern, wurde ein Werkzeug entwickelt, welches auf dem Vergleich von Datensaetzen basiert. Es koennen verschiedene Arten des Datenvergleichs durchgefuehrt werden: Identifikation der HF

  17. Three-dimensional ultrasonic imaging of concrete elements using different SAFT data acquisition and processing schemes

    International Nuclear Information System (INIS)

    Schickert, Martin

    2015-01-01

    Ultrasonic testing systems using transducer arrays and the SAFT (Synthetic Aperture Focusing Technique) reconstruction allow for imaging the internal structure of concrete elements. At one-sided access, three-dimensional representations of the concrete volume can be reconstructed in relatively great detail, permitting to detect and localize objects such as construction elements, built-in components, and flaws. Different SAFT data acquisition and processing schemes can be utilized which differ in terms of the measuring and computational effort and the reconstruction result. In this contribution, two methods are compared with respect to their principle of operation and their imaging characteristics. The first method is the conventional single-channel SAFT algorithm which is implemented using a virtual transducer that is moved within a transducer array by electronic switching. The second method is the Combinational SAFT algorithm (C-SAFT), also named Sampling Phased Array (SPA) or Full Matrix Capture/Total Focusing Method (TFM/FMC), which is realized using a combination of virtual transducers within a transducer array. Five variants of these two methods are compared by means of measurements obtained at test specimens containing objects typical of concrete elements. The automated SAFT imaging system FLEXUS is used for the measurements which includes a three-axis scanner with a 1.0 m × 0.8 m scan range and an electronically switched ultrasonic array consisting of 48 transducers in 16 groups. On the basis of two-dimensional and three-dimensional reconstructed images, qualitative and some quantitative results of the parameters image resolution, signal-to-noise ratio, measurement time, and computational effort are discussed in view of application characteristics of the SAFT variants

  18. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hong Wei [Changsha University of Science and Technology, Changsha (China); Jeong, Hyun Jo [Div. of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2017-04-15

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law.

  19. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    International Nuclear Information System (INIS)

    Hu, Hong Wei; Jeong, Hyun Jo

    2017-01-01

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law

  20. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method.

    Science.gov (United States)

    Hu, Yufei; Zhang, Zhujun; Yang, Chunyan

    2008-07-01

    Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.

  1. Automatic detection and classification of breast tumors in ultrasonic images using texture and morphological features.

    Science.gov (United States)

    Su, Yanni; Wang, Yuanyuan; Jiao, Jing; Guo, Yi

    2011-01-01

    Due to severe presence of speckle noise, poor image contrast and irregular lesion shape, it is challenging to build a fully automatic detection and classification system for breast ultrasonic images. In this paper, a novel and effective computer-aided method including generation of a region of interest (ROI), segmentation and classification of breast tumor is proposed without any manual intervention. By incorporating local features of texture and position, a ROI is firstly detected using a self-organizing map neural network. Then a modified Normalized Cut approach considering the weighted neighborhood gray values is proposed to partition the ROI into clusters and get the initial boundary. In addition, a regional-fitting active contour model is used to adjust the few inaccurate initial boundaries for the final segmentation. Finally, three textures and five morphologic features are extracted from each breast tumor; whereby a highly efficient Affinity Propagation clustering is used to fulfill the malignancy and benign classification for an existing database without any training process. The proposed system is validated by 132 cases (67 benignancies and 65 malignancies) with its performance compared to traditional methods such as level set segmentation, artificial neural network classifiers, and so forth. Experiment results show that the proposed system, which needs no training procedure or manual interference, performs best in detection and classification of ultrasonic breast tumors, while having the lowest computation complexity.

  2. Fast ultrasonic imaging in a liquid filled pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1986-01-01

    A new method is described for the imaging of the interior of a liquid filled metallic pipe using acoustical techniques. The experimental system incorporates an array of 20 acoustical transducers and is capable of capturing the images of moving bubbles at a frame rate in excess of 300/s. The transducers are mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echoes reflected from vapor bubbles in the interior are detected, digitized and processed by a computer to generate an image. The high rate of speed was achieved by the use of newly developed software and electronic circuitry. This approach has eliminated most of the spurious echo signals which degraded the performance of previous imaging systems. The capability of the method is illustrated by imaging actual vapor bubbles in rapid sequence in the pipe. The described imaging system is used to examine reactor cooling systems

  3. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  4. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    Science.gov (United States)

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  5. Sampling phased array a new technique for signal processing and ultrasonic imaging

    OpenAIRE

    Bulavinov, A.; Joneit, D.; Kröning, M.; Bernus, L.; Dalichow, M.H.; Reddy, K.M.

    2006-01-01

    Different signal processing and image reconstruction techniques are applied in ultrasonic non-destructive material evaluation. In recent years, rapid development in the fields of microelectronics and computer engineering lead to wide application of phased array systems. A new phased array technique, called "Sampling Phased Array" has been developed in Fraunhofer Institute for non-destructive testing. It realizes unique approach of measurement and processing of ultrasonic signals. The sampling...

  6. Sampling phased array - a new technique for ultrasonic signal processing and imaging

    OpenAIRE

    Verkooijen, J.; Boulavinov, A.

    2008-01-01

    Over the past 10 years, the improvement in the field of microelectronics and computer engineering has led to significant advances in ultrasonic signal processing and image construction techniques that are currently being applied to non-destructive material evaluation. A new phased array technique, called 'Sampling Phased Array', has been developed in the Fraunhofer Institute for Non-Destructive Testing([1]). It realises a unique approach of measurement and processing of ultrasonic signals. Th...

  7. Sampling phased array, a new technique for ultrasonic signal processing and imaging now available to industry

    OpenAIRE

    Verkooijen, J.; Bulavinov, A.

    2008-01-01

    Over the past 10 years the improvement in the field of microelectronics and computer engineering has led to significant advances in ultrasonic signal processing and image construction techniques that are currently being applied to non-destructive material evaluation. A new phased array technique, called "Sampling Phased Array" has been developed in the Fraunhofer Institute for non-destructive testing [1]. It realizes a unique approach of measurement and processing of ultrasonic signals. The s...

  8. Fast ultrasonic imaging in a liquid filled pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1985-10-01

    A new method is described for the imaging of the interior of a liquid filled metallic pipe using acoustical techniques. The experimental system incorporates an array of 20 acoustical transducers and is capable of capturing the images of moving bubbles at a frame rate in excess of 300/s. The transducers are mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echoes reflected from vapor bubbles in the interior are detected, digitized and processed by a computer to generate an image. The high rate of speed was achieved by the use of newly developed software and electronic circuitry. This approach has eliminated most of the spurious echo signals which degraded the performance of previous imaging systems. The capability of the method is illustrated by imaging actual vapor bubbles in rapid sequence in the pipe. 13 refs

  9. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  10. Progress towards in vitro quantitative imaging of human femur using compound quantitative ultrasonic tomography

    International Nuclear Information System (INIS)

    Lasaygues, Philippe; Ouedraogo, Edgard; Lefebvre, Jean-Pierre; Gindre, Marcel; Talmant, Marilyne; Laugier, Pascal

    2005-01-01

    The objective of this study is to make cross-sectional ultrasonic quantitative tomography of the diaphysis of long bones. Ultrasonic propagation in bones is affected by the severe mismatch between the acoustic properties of this biological solid and those of the surrounding soft medium, namely, the soft tissues in vivo or water in vitro. Bone imaging is then a nonlinear inverse-scattering problem. In this paper, we showed that in vitro quantitative images of sound velocities in a human femur cross section could be reconstructed by combining ultrasonic reflection tomography (URT), which provides images of the macroscopic structure of the bone, and ultrasonic transmission tomography (UTT), which provides quantitative images of the sound velocity. For the shape, we developed an image-processing tool to extract the external and internal boundaries and cortical thickness measurements. For velocity mapping, we used a wavelet analysis tool adapted to ultrasound, which allowed us to detect precisely the time of flight from the transmitted signals. A brief review of the ultrasonic tomography that we developed using correction algorithms of the wavepaths and compensation procedures are presented. Also shown are the first results of our analyses on models and specimens of long bone using our new iterative quantitative protocol

  11. Methodic recommendations on ultrasonic testing of pipeline austenitic butt joints

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.; Tajts, M.Z.; Ermolov, I.N.; Volkov, A.S.; Vyatskov, I.A.; Kesler, N.A.; Shchedrin, I.F.

    1989-01-01

    Recommendations for the application of ultrasonic testing of austenitic welded joints of the Du 500 pipelines with the walls 32-34 mm thick made of steel Kh18N10T are developed. The optimal values of the main parameters of ultrasonic testing are determined experimentally. Principles of calculation of the optimal parameters are considered. 1 ref.; 4 figs

  12. Automated ultrasonic testing--capabilities, limitations and methods

    International Nuclear Information System (INIS)

    Beller, L.S.; Mikesell, C.R.

    1977-01-01

    The requirements for precision and reproducibility of ultrasonic testing during inservice inspection of nuclear reactors are both quantitatively and qualitatively more severe than most current practice in the field can provide. An automated ultrasonic testing (AUT) system, which provides a significant advancement in field examination capabilities, is described. Properties of the system, its application, and typical results are discussed

  13. Computer analysis of gallbladder ultrasonic images towards recognition of pathological lesions

    Science.gov (United States)

    Ogiela, M. R.; Bodzioch, S.

    2011-06-01

    This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards automatic detection and interpretation of disease symptoms on processed US images. First, in this paper, there is presented a new heuristic method of filtering gallbladder contours from images. A major stage in this filtration is to segment and section off areas occupied by the said organ. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours, based on rank filtration, as well as on the analysis of line profile sections on tested organs. The second part concerns detecting the most important lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. The methodology of computer analysis of US gallbladder images presented here is clearly utilitarian in nature and after standardising can be used as a technique for supporting the diagnostics of selected gallbladder disorders using the images of this organ.

  14. Background Noise Removal in Ultrasonic B-scan Images Using Iterative Statistical Techniques

    NARCIS (Netherlands)

    Wells, I.; Charlton, P. C.; Mosey, S.; Donne, K. E.

    2008-01-01

    The interpretation of ultrasonic B-scan images can be a time-consuming process and its success depends on operator skills and experience. Removal of the image background will potentially improve its quality and hence improve operator diagnosis. An automatic background noise removal algorithm is

  15. Discrimination of Breast Tumors in Ultrasonic Images by Classifier Ensemble Trained with AdaBoost

    Science.gov (United States)

    Takemura, Atsushi; Shimizu, Akinobu; Hamamoto, Kazuhiko

    In this paper, we propose a novel method for acurate automated discrimination of breast tumors (carcinoma, fibroadenoma, and cyst). We defined 199 features related to diagnositic observations noticed when a doctor judges breast tumors, such as internal echo, shape, and boundary echo. These features included novel features based on a parameter of log-compressed K distribution, which reflect physical characteristics of ultrasonic B-mode imaging. Furthermore, we propose a discrimination method of breast tumors by using an ensemble classifier based on the multi-class AdaBoost algorithm with effective features selection. Verification by analyzing 200 carcinomas, 30 fibroadenomas and 30 cycts showed the usefulness of the newly defined features and the effectiveness of the discrimination by using an ensemble classifier trained by AdaBoost.

  16. Ultrasonic defect-sizing using decibel drop methods. I

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1987-03-01

    Results are reported of a study performed to investigate the accuracy and repeatability of various ultrasonic decibel (dB) drop sizing methods in determining the length, vertical extent and orientation of artificial and real weld flaws in thin steel sections. Seven artificial flaws and nine real weld flaws were examined; over 200 data plots were produced. The general findings are: a) length and vertical extent are assessed most accurately when using a 14 dB drop from the maximum indication amplitude; b) decibel drops less that 14 dB generally undersize flaws while decibel drops greater than 14 dB generally oversize flaws; c) flaws which are smaller than the width of the sound beam cannot be assessed accurately using dB drop methods; d) large flaws are assessed most accurately when the sound beam strikes the flaws at near normal incidence; e) the vertical extent and orientation of large flaws are plotted most accurately using the beam centre line method as opposed to the beam profile method; and, f) the limitations of dB-drop-sizing methods have considerable ramifications for CAN3-N285.4-M83 and ASME XI evaluation criteria

  17. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    OpenAIRE

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-01-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer...

  18. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  19. A study on the inclusion sizing using immersion ultrasonic C-scan imaging

    International Nuclear Information System (INIS)

    Chen, D; Xiao, H F; Li, M; Xu, J W

    2017-01-01

    Inclusion sizing, especially for large inclusions greater than 30μm provides important reference for metallurgical process control and fatigue life assessment of steel. Ultrasonic non-destructive testing (NDT) shows great advantages in detecting infrequently occurred large inclusions than eddy current, magnetic particle, microscopic or macroscopic examination procedures. In this paper, the performance of inclusion sizing by immersion ultrasonic C-scan imaging is studied numerically. A two-dimensional model that consists of spherically focused transducer, water couplant and steel with embedded inclusion is established and solved numerically by the finite element method. The signal intensity distributions of inclusion with different sizes are acquired and the effects of inclusion type, shape, orientation on signal intensity distribution are analysed. The results show that the 6dB-drop threshold has the smallest relative error compared with the 12dB-drop threshold and the full-drop threshold, which is better for determining inclusion size larger than 100μm. Experiment is also performed to validate the simulated results. (paper)

  20. Self-Calibrating Ultrasonic Methods for In-Situ Monitoring of Fatigue Crack Progression

    International Nuclear Information System (INIS)

    Michaels, J.E.; Mi, B.; Cobb, A.C.; Michaels, T.E.; Stobbe, D.M.

    2005-01-01

    Ultrasonic sensors permanently affixed to aluminum coupons are used to monitor progression of damage during fatigue testing with the long term goal of structural health monitoring for diagnostics and prognostics. Necessary for success are proper design of the ultrasonic testing methods, robust transducer mounting techniques, and real-time signal processing for determining the state of the structure. It is also highly desirable for the overall system to be self-calibrating with built-in diagnostics in order to detect and compensate for sensor degradation or failure. Self-calibrating ultrasonic techniques are applied for monitoring of cracks initiating and propagating from the inaccessible inner diameters of rivet holes where the transducers are mounted on the accessible specimen surface. Angle beam ultrasonic methods are utilized that are suitable for detecting small defects in critical local regions of high stress. Results are presented for aluminum coupons subjected to low cycle fatigue and demonstrate ultrasonic tracking of crack growth

  1. Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements

    NARCIS (Netherlands)

    Barshan, B; Baskent, D

    Two novel methods for surface profile extraction based on multiple ultrasonic range measurements are described and compared. One of the methods employs morphological processing techniques, whereas the other employs a spatial voting scheme followed by simple thresholding. Morphological processing

  2. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  3. Failed fuel rod detection method by ultrasonic wave

    International Nuclear Information System (INIS)

    Takamatsu, Masatoshi; Muraoka, Shoichi; Ono, Yukio; Yasojima, Yujiro.

    1990-01-01

    Ultrasonic wave signals sent from an ultrasonic receiving element are supplied to an evaluation circuit by way of a gate. A table for gate opening and closing timings at the detecting position in each of the fuel rods in a fuel assembly is stored in a memory. A fuel rod is placed between an ultrasonic transmitting element and the receiving element to determine the positions of the transmitting element and the receiving element by positional sensors. The opening and closing timings at the positions corresponding to the result of the detection are read out from the table, and the gates are opened and closed by the timing. This can introduce the ultrasonic wave signals transmitted through a control rod always to the evaluation circuit passing through the gate. Accordingly, the state of failure of the fuel rod can be detected accurately. (I.N.)

  4. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    Science.gov (United States)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  5. Anisotropy analysis of low cement concrete by ultrasonic measurements and image analysis

    Directory of Open Access Journals (Sweden)

    Martinović Sanja P.

    2016-01-01

    Full Text Available The analized material was high alumina low cement castable sintered at three different temperatures. Influence of initial material anisotropy on the thermal shock resistance as well as changes of anisotropy level during the thermal shock were studied. Water quench test was used as an experimental method for the thermal stability testing. Surface anisotropy was analysed by image analysis and structural anisotropy using ultrasonic measurements. The results pointed out that the highest homogeinity and the lowest surface and structural anisotropy was for the samples sintered at 1600ºC. Surface anistoropy had prevailing infuence on behavior of material during the thermal shock, but the structural anisotropy should not be neglected. [Projekat Ministarstva nauke Republike Srbije, br. TR 33007

  6. A multi points ultrasonic detection method for material flow of belt conveyor

    Science.gov (United States)

    Zhang, Li; He, Rongjun

    2018-03-01

    For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.

  7. Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods

    Directory of Open Access Journals (Sweden)

    Christian eDavid

    2015-07-01

    Full Text Available Several methods are compared for the detection of moving capillary fronts in spontaneous imbibition experiments where water invades dry porous rocks. These methods are: (i the continuous monitoring of the mass increase during imbibition, (ii the imaging of the water front motion using X-ray CT scanning, (iii the use of ultrasonic measurements allowing the detection of velocity, amplitude and spectral content of the propagating elastic waves, and (iv the combined use of X-ray CT scanning and ultrasonic monitoring. It is shown that the properties of capillary fronts depend on the heterogeneity of the rocks, and that the information derived from each method on the dynamics of capillary motion can be significantly different. One important result from the direct comparison of the moving capillary front position and the P wave attributes is that the wave amplitude is strongly impacted before the capillary front reaches the sensors, in contrast with the velocity change which is concomitant with the fluid front arrival in the sensors plane.

  8. High-speed biometrics ultrasonic system for 3D fingerprint imaging

    Science.gov (United States)

    Maev, Roman G.; Severin, Fedar

    2012-10-01

    The objective of this research is to develop a new robust fingerprint identification technology based upon forming surface-subsurface (under skin) ultrasonic 3D images of the finger pads. The presented work aims to create specialized ultrasonic scanning methods for biometric purposes. Preliminary research has demonstrated the applicability of acoustic microscopy for fingerprint reading. The additional information from internal skin layers and dermis structures contained in the scan can essentially improve confidence in the identification. Advantages of this system include high resolution and quick scanning time. Operating in pulse-echo mode provides spatial resolution up to 0.05 mm. Technology advantages of the proposed technology are the following: • Full-range scanning of the fingerprint area "nail to nail" (2.5 x 2.5 cm) can be done in less than 5 sec with a resolution of up to 1000 dpi. • Collection of information about the in-depth structure of the fingerprint realized by the set of spherically focused 50 MHz acoustic lens provide the resolution ~ 0.05 mm or better • In addition to fingerprints, this technology can identify sweat porous at the surface and under the skin • No sensitivity to the contamination of the finger's surface • Detection of blood velocity using Doppler effect can be implemented to distinguish living specimens • Utilization as polygraph device • Simple connectivity to fingerprint databases obtained with other techniques • The digitally interpolated images can then be enhanced allowing for greater resolution • Method can be applied to fingernails and underlying tissues, providing more information • A laboratory prototype of the biometrics system based on these described principles was designed, built and tested. It is the first step toward a practical implementation of this technique.

  9. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    International Nuclear Information System (INIS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V

    2013-01-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy. (letter)

  10. Ultrasonic Nanobubbles Carrying Anti-PSMA Nanobody: Construction and Application in Prostate Cancer-Targeted Imaging.

    Directory of Open Access Journals (Sweden)

    Xiaozhou Fan

    Full Text Available To facilitate prostate cancer imaging using targeted molecules, we constructed ultrasonic nanobubbles coupled with specific anti-PSMA (prostate specific membrane antigen nanobodies, and evaluated their in vitro binding capacity and in vivo imaging efficacy. The "targeted" nanobubbles, which were constructed via a biotin-streptavidin system, had an average diameter of 487.60 ± 33.55 nm and carried the anti-PSMA nanobody as demonstrated by immunofluorescence. Microscopy revealed targeted binding of nanobubbles in vitro to PSMA-positive cells. Additionally, ultrasonography indicators of nanobubble imaging (including arrival time, peak time, peak intensity and enhanced duration were evaluated for the ultrasound imaging in three kinds of animal xenografts (LNCaP, C4-2 and MKN45, and showed that these four indicators of targeted nanobubbles exhibited significant differences from blank nanobubbles. Therefore, this study not only presents a novel approach to target prostate cancer ultrasonography, but also provides the basis and methods for constructing small-sized and high-efficient targeted ultrasound nanobubbles.

  11. Evaluation of ultrasonic array imaging algorithms for inspection of a coarse grained material

    Science.gov (United States)

    Van Pamel, A.; Lowe, M. J. S.; Brett, C. R.

    2014-02-01

    Improving the ultrasound inspection capability for coarse grain metals remains of longstanding interest to industry and the NDE research community and is expected to become increasingly important for next generation power plants. A test sample of coarse grained Inconel 625 which is representative of future power plant components has been manufactured to test the detectability of different inspection techniques. Conventional ultrasonic A, B, and C-scans showed the sample to be extraordinarily difficult to inspect due to its scattering behaviour. However, in recent years, array probes and Full Matrix Capture (FMC) imaging algorithms, which extract the maximum amount of information possible, have unlocked exciting possibilities for improvements. This article proposes a robust methodology to evaluate the detection performance of imaging algorithms, applying this to three FMC imaging algorithms; Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the statistics of detection, presenting the detection performance as Probability of Detection (POD) and probability of False Alarm (PFA). The data is captured in pulse-echo mode using 64 element array probes at centre frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very similarly when comparing their flaw detection capabilities on this particular case.

  12. Analytical reverse time migration: An innovation in imaging of infrastructures using ultrasonic shear waves.

    Science.gov (United States)

    Asadollahi, Aziz; Khazanovich, Lev

    2018-04-11

    The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-02-15

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

  14. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    International Nuclear Information System (INIS)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young

    2017-01-01

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process

  15. In silico simulation and in vitro evaluation of an elastomeric scaffold using ultrasonic shear wave imaging

    Science.gov (United States)

    Yu, Jiao; Nie, Erwei; Zhu, Yanying; Hong, Yi

    2018-03-01

    Biodegradable elastomeric scaffolds for soft tissue repair represent a growing area of biomaterials research. Mechanical strength is one of the key factors to consider in the evaluation of candidate materials and the designs for tissue scaffolds. It is desirable to develop non-invasive evaluation methods of the mechanical property of scaffolds which would provide options for monitoring temporal mechanical property changes in situ. In this paper, we conduct in silico simulation and in vitro evaluation of an elastomeric scaffold using a novel ultrasonic shear wave imaging (USWI). The scaffold is fabricated from a biodegradable elastomer, poly(carbonate urethane) urea using salt leaching method. A numerical simulation is performed to test the robustness of the developed inversion algorithm for the elasticity map reconstruction which will be implemented in the phantom experiment. The generation and propagation of shear waves in a homogeneous tissue-mimicking medium with a circular scaffold inclusion is simulated and the elasticity map is well reconstructed. A PVA phantom experiment is performed to test the ability of USWI combined with the inversion algorithm to non-invasively characterize the mechanical property of a porous, biodegradable elastomeric scaffold. The elastic properties of the tested scaffold can be easily differentiated from the surrounding medium in the reconstructed image. The ability of the developed method to identify the edge of the scaffold and characterize the elasticity distribution is demonstrated. Preliminary results in this pilot study support the idea of applying the USWI based method for non-invasive elasticity characterization of tissue scaffolds.

  16. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Jin; Kwak, Hyo Gyoung [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sun Jong [Dept. of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

  17. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    International Nuclear Information System (INIS)

    Kim, Gyu Jin; Kwak, Hyo Gyoung; Park, Sun Jong

    2016-01-01

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members

  18. Calcium phosphate formation from sea urchin - (brissus latecarinatus via modified mechano-chemical (ultrasonic conversion method

    Directory of Open Access Journals (Sweden)

    R. Samur

    2013-07-01

    Full Text Available This study aims to produce apatite structures, such as hydroxyapatite (HA and fluorapatite (FA, from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The experimental results suggest that sea urchin, Brissus latecarinatus skeleton could be an alternative source for the production of various mono or biphasic calcium phosphates with simple and economic mechano-chemical (ultrasonic conversion method.

  19. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    Science.gov (United States)

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  20. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    Science.gov (United States)

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  1. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  2. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  3. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    International Nuclear Information System (INIS)

    Jiang, J; Hall, T J

    2007-01-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows (registered) system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s -1 ) that exceed our previous methods

  4. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    International Nuclear Information System (INIS)

    Stepinski, T.; Lingvall, F.; Ping Wu

    2001-07-01

    The objective of task presented in the first chapter, ultrasonic imaging of EB weld is to investigate imaging methods capable of improving ultrasonic imaging of defects in EB-welds. Algorithms based on ideas from ultrasonic tomography were examined as the first step. After a concise review of literature in the field of tomography the attention is focused on synthetic focusing and particularly on using linear phased array systems for imaging. Synthetic focusing is a technique where the focusing is performed by software after gathering the ultrasonic data. General principles of synthetic aperture focusing technique (SAFT) - a synthetic focusing technique especially suitable for linear ultrasonic arrays are presented. Problems related to the application of SAFT to ultrasonic transducers with large apertures are identified and the solution is proposed. It appears that when the probe becomes larger (i.e., cannot be regarded as a point source) the ultrasonic pulses that it generates will be smeared by its spatial impulse response (SIR). This impairs the spatial resolution achieved for the finite aperture probes comparing to the point source. Thus, a proper application of synthetic focusing requires taking into account the spatially varying probe's SIR. The SIR has to be calculated (measured) in the interesting points of space and than deconvoluted. A technique for deconvoluting the SIR based on Wiener filter is proposed and illustrated by experimental results. Some preliminary results from immersion testing of copper blocks using the ALLIN system in our lab facility are presented. Nonlinear propagation of plane waves in fluids based on the Burgers equation is investigated in the second chapter. The presented method is basically adopted from the existing literature although some modification has been made to adapt to our situation. The solution has been re-derived and two alternative forms feasible for computer calculation are given and some numerical results are

  5. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, T.; Lingvall, F.; Ping Wu [Uppsala Univ. (Sweden). Dept. of Materials Science

    2001-07-01

    The objective of task presented in the first chapter, ultrasonic imaging of EB weld is to investigate imaging methods capable of improving ultrasonic imaging of defects in EB-welds. Algorithms based on ideas from ultrasonic tomography were examined as the first step. After a concise review of literature in the field of tomography the attention is focused on synthetic focusing and particularly on using linear phased array systems for imaging. Synthetic focusing is a technique where the focusing is performed by software after gathering the ultrasonic data. General principles of synthetic aperture focusing technique (SAFT) - a synthetic focusing technique especially suitable for linear ultrasonic arrays are presented. Problems related to the application of SAFT to ultrasonic transducers with large apertures are identified and the solution is proposed. It appears that when the probe becomes larger (i.e., cannot be regarded as a point source) the ultrasonic pulses that it generates will be smeared by its spatial impulse response (SIR). This impairs the spatial resolution achieved for the finite aperture probes comparing to the point source. Thus, a proper application of synthetic focusing requires taking into account the spatially varying probe's SIR. The SIR has to be calculated (measured) in the interesting points of space and than deconvoluted. A technique for deconvoluting the SIR based on Wiener filter is proposed and illustrated by experimental results. Some preliminary results from immersion testing of copper blocks using the ALLIN system in our lab facility are presented. Nonlinear propagation of plane waves in fluids based on the Burgers equation is investigated in the second chapter. The presented method is basically adopted from the existing literature although some modification has been made to adapt to our situation. The solution has been re-derived and two alternative forms feasible for computer calculation are given and some numerical results are

  6. Importance of ultrasonic holography as imaging technique of material faults

    International Nuclear Information System (INIS)

    Schmitz, V.

    1978-01-01

    In ultra-sound testing of thick-wall components the reconstruction of shape and position of material faults stands in the foreground. Ultra-sound holography allows imaging of this kind. The principle of this technique is to completely measure the amount and phase of a sound field arising from the fault location on the surface of the material-piece. The quantity is measured as a complex quantity. To accomplish this, ultra-sound holography works with monochromatic burst-signals. The recording of phase and amplitude formation can be made optically by means of a film carrier as well as numerically in a computer. Corresponding to this fact the reconstruction takes place by means of a laser beam or by means of mathematical formalisms in the computer. Both the methods are realized today and are applied in destruction-free testing. (orig./DG) [de

  7. Terahertz composite imaging method

    Institute of Scientific and Technical Information of China (English)

    QIAO Xiaoli; REN Jiaojiao; ZHANG Dandan; CAO Guohua; LI Lijuan; ZHANG Xinming

    2017-01-01

    In order to improve the imaging quality of terahertz(THz) spectroscopy, Terahertz Composite Imaging Method(TCIM) is proposed. The traditional methods of improving THz spectroscopy image quality are mainly from the aspects of de-noising and image enhancement. TCIM breaks through this limitation. A set of images, reconstructed in a single data collection, can be utilized to construct two kinds of composite images. One algorithm, called Function Superposition Imaging Algorithm(FSIA), is to construct a new gray image utilizing multiple gray images through a certain function. The features of the Region Of Interest (ROI) are more obvious after operating, and it has capability of merging ROIs in multiple images. The other, called Multi-characteristics Pseudo-color Imaging Algorithm(McPcIA), is to construct a pseudo-color image by combining multiple reconstructed gray images in a single data collection. The features of ROI are enhanced by color differences. Two algorithms can not only improve the contrast of ROIs, but also increase the amount of information resulting in analysis convenience. The experimental results show that TCIM is a simple and effective tool for THz spectroscopy image analysis.

  8. [Ultrasonic methods and semiotics in patients with vasculogenic erectile dysfunction].

    Science.gov (United States)

    Zhukov, O B; Zubarev, A R

    2001-01-01

    The authors have developed criteria for ultrasonic assessment of cavernous bodies, arterial and venous circulation in normal penile vessels and in erectile dysfunction in 125 patients; describe modern ultrasound modalities in differential diagnosis of various forms of vasculogenic erectile dysfunction basing on the experience with 92 patients; validate hydrodynamic role of the tunica albuginea in pathogenesis of venocorporal dysfunction and pathological venous drainage. Early ischemic signs of arterial insufficiency were revealed.

  9. Study on the ultrasonic inspection method using the full matrix capture for the in service railway wheel

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jianping; Wang, Li; Zhang, Yu; Gao, Xiaorong; Wang, Zeyong; Peng, Chaoyong [NDT Research Center, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-02-18

    The quality of wheel is especially important for the safety of high speed railway. In this paper, a new ultrasonic array inspection method, the Full Matrix Capture (FMC) has been studied and applied to the high speed railway wheel inspection, especially in the wheel web from the tread. Firstly, the principle of FMC and TFM algorithm is discussed, and then the new optimization is applied to the standard FMC; Secondly the fundamentals of optimization is described in detail and the performance is analyzed. Finally, the experiment has been built with a standard phased array block and railway wheel, and then the testing results are discussed and analyzed. It is demonstrated that this change for the ultrasonic data acquisition and image reconstruction has higher efficiency and lower cost comparing to the FMC's procedure.

  10. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz; Olofsson, Tomas; Wennerstroem, Erik

    2006-12-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the ω-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization

  11. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Olofsson, Tomas; Wennerstroem, Erik [Uppsala Univ., Dept. of Technical Sciences (Sweden). Signals and Systems

    2006-12-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the {omega}-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization.

  12. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors; Analyse d'images tridimensionnelles ultrasonores pour l'inspection en service des reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Dancre, M

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  13. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes.

    Science.gov (United States)

    Cai, Xianlei; Gao, Guang; Yang, Jing; Tang, Xiangming; Dai, Jiangyu; Chen, Dan; Song, Yuzhi

    2014-07-01

    Epiphytic microbes are common inhabitants of freshwater submerged macrophytes, which play an important role in aquatic ecosystems. An important precondition for studying the epiphytic microbes is having an effective method of separating the attached microbes from the host macrophytes. We developed an ultrasound-based method for separating epiphytic microbes from freshwater submerged macrophytes, optimized the conditions of ultrasonic separation with an orthogonal experimental design, and compared the optimized ultrasonic method with manual separation. This method can be particularly useful for freshwater submerged macrophytes having a complex morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparison of three flaw-location methods for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Seiger, H.

    1982-01-01

    Two well-known methods for locating flaws by measurement of the transit time of ultrasonic pulses are examined theoretically. It is shown that neither is sufficiently reliable for use in automated ultrasonic testing. A third method, which takes into account the shape of the sound field from the probe and the uncertainty in measurement of probe-flaw distance and probe position, is introduced. An experimental comparison of the three methods indicates that use of the advanced method results in more accurate location of flaws. (author)

  15. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  16. Determination of the apparent porosity level of refractory concrete during a sintering process using an ultrasonic pulse velocity technique and image analysis

    Directory of Open Access Journals (Sweden)

    LJUBICA M. PAVLOVIĆ

    2010-03-01

    Full Text Available Concrete which undergoes a thermal treatment before (pre-casted concrete blocks and during (concrete embedded in-situ its life-service can be applied in plants operating at high temperature and as thermal insulation. Sintering is a process which occurs within a concrete structure in such conditions. Progression of sintering process can be monitored by the change of the porosity parameters determined with a nondestructive test method - ultrasonic pulse velocity and computer program for image analysis. The experiment has been performed on the samples of corundum and bauxite concrete composites. The apparent porosity of the samples thermally treated at 110, 800, 1000, 1300 and 1500 C was primary investigated with a standard laboratory procedure. Sintering parameters were calculated from the creep testing. The loss of strength and material degradation occurred in concrete when it was subjected to the increased temperature and a compressive load. Mechanical properties indicate and monitor changes within microstructure. The level of surface deterioration after the thermal treatment was determined using Image Pro Plus program. Mechanical strength was estimated using ultrasonic pulse velocity testing. Nondestructive ultrasonic mea¬surement was used as a qualitative description of the porosity change in specimens which is the result of the sintering process. The ultrasonic pulse velocity technique and image analysis proved to be reliable methods for monitoring of micro-structural change during the thermal treatment and service life of refractory concrete.

  17. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    Science.gov (United States)

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Development of ultrasonic inspection equipment using phased array method

    International Nuclear Information System (INIS)

    Kikuchi, Osamu; Yamatoya, Naofumi; Umino, Tomohiro; Baba, Atsushi

    2008-01-01

    This study presents new phased array UT equipments, one is developed as portable type for field inspection and the other is developed for 2D-matrix array (3D Focus-UT). The pulser of square burst wave was adopted for these new equipments to enhance flaw echo amplitude. At over 3 cycles of square burst cycle, the authors confirmed over 10 dB enhancement of bottom echo amplitude. Moreover, a new flaw imaging method using S-SAFT was also adopted for equipments to improve SN ratio and flaw echo resolution in inspection image. The authors verified effects of S-SAFT using side drilled hole specimen, about 2 times of improvement of SN ratio and flaw echo resolution. (author)

  19. Application of ultrasonic extraction method in the preparation of the directive action beverage from black currant

    Directory of Open Access Journals (Sweden)

    N. S. Rodionova

    2016-01-01

    Full Text Available The article presents the results of experimental determination of physical-and chemical parameters, the amount of anthocyanins, the definition of color and organoleptic characteristics of the beverage prepared with ultrasonic extraction method in comparison with the fruit-drink, obtained according to traditional recipe. Black currant was chosen the main raw material for the development of the beverage production technology. It is characterized by a high content of bioactive components that increase the adaptive abilities of human body. The purpose is to use ultrasonic extraction method in the preparation of functionally directed actions beverages. Extractor with submerged ultrasonic emitter was used as an experimental device. The essence of its operation is as follows: a mixture of the extractant and the plant substrate in different ratios was loaded into a container with the emitter, then the ultrasonic generator was turned on. The vibrations of ultrasonic frequency (22 kHz made high-frequency mechanical vibrations that caused the formation of intense cavitation areas and diffuse dissolution of cell substrates in the extractant in the treated mixture. The ultrasonic extraction technique involves brief contact of berries and extractant (up to 15 minutes upon application of ultrasonic vibrations. With an increase in exposure time, the yield of biologically active substances increases to reach an equilibrium state corresponding to the most complete exhaustion of raw materials. All this leads to a significant acceleration of the transition from the active ingredients from the raw materials into the extractant to obtain a product with improved physical - and chemical, organoleptic characteristics, as well as a higher antioxidant activity.

  20. Ultrasonic testing with the phased array method at the pipe connection inner edges in pipings

    International Nuclear Information System (INIS)

    Brekow, G.; Wuestenberg, H.; Hesselmann, H.; Rathgeb, W.

    1991-01-01

    Ultrasonic testing with the phased array method at the pipe connection inner edges in pipings. The pipe connection inner corner tests in feedwater lines to the main coolant pipe were carried out by Preussen-Elektra in cooperation with Siemens KWU and the BAM with the ultrasonic phased array method. The testing plan was developed by means of a computed model. For a trial of the testing plan, numerous ultrasonic measurements with the phased array method were carried out using a pipe test piece with TH-type inner edges, which was a 1:1 model of the reactor component to be tested. The data measured at several test notches in the pipe connection inner edge area covered by a plating of 6 mm were analyzed. (orig./MM) [de

  1. Influence of Ultrasonic Nonlinear Propagation on Hydrophone Calibration Using Two-Transducer Reciprocity Method

    Science.gov (United States)

    Yoshioka, Masahiro; Sato, Sojun; Kikuchi, Tsuneo; Matsuda, Yoichi

    2006-05-01

    In this study, the influence of ultrasonic nonlinear propagation on hydrophone calibration by the two-transducer reciprocity method is investigated quantitatively using the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. It is proposed that the correction for the diffraction and attenuation of ultrasonic waves used in two-transducer reciprocity calibration can be derived using the KZK equation to remove the influence of nonlinear propagation. The validity of the correction is confirmed by comparing the sensitivities calibrated by the two-transducer reciprocity method and laser interferometry.

  2. Effects of surface-mapping corrections and synthetic-aperture focusing techniques on ultrasonic imaging

    International Nuclear Information System (INIS)

    Barna, B.A.; Johnson, J.A.

    1981-01-01

    Improvements in ultrasonic imaging that can be obtained using algorithms that map the surface of targets are evaluated. This information is incorporated in the application of synthetic-aperture focusing techniques which also have the potential to improve image resolution. Images obtained using directed-beam (flat) transducers and the focused transducers normally used for synthetic-aperture processing are quantitatively compared by using no processing, synthetic-aperture processing with no corrections for surface variations, and synthetic-aperture processing with surface mapping. The unprocessed images have relatively poor lateral resolutions because echoes from two adjacent reflectors show interference effects which prevent their identification even if the spacing is larger than the single-hole resolution. The synthetic-aperture-processed images show at least a twofold improvement in lateral resolution and greatly reduced interference effects in multiple-hole images compared to directed-beam images. Perhaps more importantly, in images of test blocks with substantial surface variations portions of the image are displaced from their actual positions by several wavelengths. To correct for this effect an algorithm has been developed for calculating the surface variations. The corrected images produced using this algorithm are accurate within the experimental error. In addition, the same algorithm, when applied to the directed-beam data, produced images that are not only accurately positioned, but that also have a resolution comparable to conventional synthetic-aperture-processed images obtained from focused-transducer data. This suggests that using synthetic-aperture processing on the type of data normally collected during directed-beam ultrasonic inspections would eliminate the need to rescan for synthetic-aperture enhancement

  3. Contribution of the ultrasonic simulation to the testing methods qualification process

    International Nuclear Information System (INIS)

    Le Ber, L.; Calmon, P.; Abittan, E.

    2001-01-01

    The CEA and EDF have started a study concerning the simulation interest in the qualification of nuclear components control by ultrasonic methods. In this framework, the simulation tools of the CEA, as CIVA, have been tested on real control. The method and the results obtained on some examples are presented. (A.L.B.)

  4. Development and Implementation of an Ultrasonic Method to Characterize Acoustic and Mechanical Fingernail Properties

    Science.gov (United States)

    Vacarescu, Rares Anthony

    The human fingernail is a vital organ used by humans on a daily basis and can provide an immense supply of information based on the biological feedback of the body. By studying the quantitative mechanical and acoustic properties of fingernails, a better understanding of the scarcely-investigated field of ungual research can be explored. Investigating fingernail properties with the use of pulse-echo ultrasound is the aim of this thesis. This thesis involves the application of a developed portable ultrasonic device in a hospital-based data collection and the advancement of ultrasonic methodology to include the calculation of acoustic impedance, density and elasticity. The results of the thesis show that the reflectance method can be utilized to determine fingernail properties with a maximum 17% deviation from literature. Repeatability of measurements fell within a 95% confidence interval. Thus, the ultrasonic reflectance method was validated and may have potential clinical and cosmetic applications.

  5. Study on Method of Ultrasonic Gas Temperature Measure Based on FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S H; Xu, F R [Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 (China)

    2006-10-15

    It is always a problem to measure instantaneous temperature of high-temperature and high-pressure gas. There is difficulty for the conventional method of measuring temperature to measure quickly and exactly, and the measuring precision is low, the ability of anti-jamming is bad, etc. So the article introduces a method of measuring burning gas temperature using ultrasonic based on Field-Programmable Gate Array (FPGA). The mathematic model of measuring temperature is built with the relation of velocity of ultrasonic transmitting and gas Kelvin in the ideal gas. The temperature can be figured out by measuring the difference of ultrasonic frequency {delta}f. FPGA is introduced and a high-precision data acquisition system based on digital phase-shift technology is designed. The feasibility of proposed above is confirmed more by measuring pressure of burning gas timely. Experimental result demonstrates that the error is less than 12.. and the precision is heightened to 0.8%.

  6. Wireless ultrasonic wavefield imaging via laser for hidden damage detection inside a steel box girder bridge

    International Nuclear Information System (INIS)

    An, Yun-Kyu; Song, Homin; Sohn, Hoon

    2014-01-01

    This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge. (paper)

  7. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    International Nuclear Information System (INIS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-01-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

  8. Application of acoustical holography for construction shadow images in ultrasonic testing

    International Nuclear Information System (INIS)

    Kutzner, J.; Zimpfer, J.

    1977-01-01

    The full-scale, three-dimensional presentation of material defects by means of acoustical holography is limited on the one hand by an insufficient resolving power in depth of the procedure and, on the other hand, by the fact that the defects of the material to be examined often reflect mirror-like. Examined is the possible range of reducing these limitations by means of constructing shadow images of defects in ultrasonic testing without - as it is usually done - reconstructing the sonic field reflected by the flow but reconstructing the sonic field diffracted at the flow by means of acoustical holography. It has been shown that acoustical holography, during which the amplitude information is always analyzed as well as - on principle - the phase information, improves the efficiency of ultrasonic testing to a large extent. (orig.) [de

  9. A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Hsin-Min Lee

    2017-01-01

    Full Text Available Focusing on the feature of porosity in bamboo charcoal, this study applies the ultrasonic-assisted vibration method to perform surface polishing of the silicon wafer workpiece. The self-developed bamboo charcoal polishing spindle and ultrasonic- assisted vibration mechanism are attached to a single lapping machine. In the machining process, ultrasonic vibration enables the diamond slurry to smoothly pass through the microscopic holes of bamboo charcoal; the end of the bamboo charcoalis able to continue machining on the surface of the workpiece through the grasping force which exists in the microscopic holes. Under the polishing and machining parameters of ultrasonic-assisted vibration, with a diamond slurry concentration of 0.3%, the experimental results show a polishing time of 20 min, a loading of 25 N on the workpiece surface, a spindle speed of 1200 rpm, a vibration frequency of 30 kHz and the original surface roughness value of Ra 0.252 μm equals that of a mirror-like surface at Ra 0.017 μm. These research results prove that by using bamboo charcoal and ultrasonic-assisted vibration for polishing, a very good improvement can be achieved on the workpiece surface.

  10. Method and apparatus for ultrasonic characterization through the thickness direction of a moving web

    Science.gov (United States)

    Jackson, Theodore; Hall, Maclin S.

    2001-01-01

    A method and apparatus for determining the caliper and/or the ultrasonic transit time through the thickness direction of a moving web of material using ultrasonic pulses generated by a rotatable wheel ultrasound apparatus. The apparatus includes a first liquid-filled tire and either a second liquid-filled tire forming a nip or a rotatable cylinder that supports a thin moving web of material such as a moving web of paper and forms a nip with the first liquid-filled tire. The components of ultrasonic transit time through the tires and fluid held within the tires may be resolved and separately employed to determine the separate contributions of the two tire thicknesses and the two fluid paths to the total path length that lies between two ultrasonic transducer surfaces contained within the tires in support of caliper measurements. The present invention provides the benefit of obtaining a transit time and caliper measurement at any point in time as a specimen passes through the nip of rotating tires and eliminates inaccuracies arising from nonuniform tire circumferential thickness by accurately retaining point-to-point specimen transit time and caliper variation information, rather than an average obtained through one or more tire rotations. Morever, ultrasonic transit time through the thickness direction of a moving web may be determined independent of small variations in the wheel axle spacing, tire thickness, and liquid and tire temperatures.

  11. Quantitative Ultrasonic Nakagami Imaging of Neck Fibrosis After Head and Neck Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Yoshida, Emi [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California (United States); Cassidy, Richard J.; Beitler, Jonathan J.; Yu, David S.; Curran, Walter J. [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Liu, Tian, E-mail: tliu34@emory.edu [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2015-06-01

    Purpose: To investigate the feasibility of ultrasound Nakagami imaging to quantitatively assess radiation-induced neck fibrosis, a common sequela of radiation therapy (RT) to the head and neck. Methods and Materials: In a pilot study, 40 study participants were enrolled and classified into 3 subgroups: (1) a control group of 12 healthy volunteers; (2) an asymptomatic group of 11 patients who had received intensity modulated RT for head and neck cancer and had experienced no neck fibrosis; and (3) a symptomatic group of 17 post-RT patients with neck fibrosis. Each study participant underwent 1 ultrasound study in which scans were performed in the longitudinal orientation of the bilateral neck. Three Nakagami parameters were calculated to quantify radiation-induced tissue injury: Nakagami probability distribution function, shape, and scaling parameters. Physician-based assessments of the neck fibrosis were performed according to the Radiation Therapy Oncology Group late morbidity scoring scheme, and patient-based fibrosis assessments were rated based on symptoms such as pain and stiffness. Results: Major discrepancies existed between physician-based and patient-based assessments of radiation-induced fibrosis. Significant differences in all Nakagami parameters were observed between the control group and 2 post-RT groups. Moreover, significant differences in Nakagami shape and scaling parameters were observed among asymptomatic and symptomatic groups. Compared with the control group, the average Nakagami shape parameter value increased by 32.1% (P<.001), and the average Nakagami scaling parameter increased by 55.7% (P<.001) for the asymptomatic group, whereas the Nakagami shape parameter increased by 74.1% (P<.001) and the Nakagami scaling parameter increased by 83.5% (P<.001) for the symptomatic group. Conclusions: Ultrasonic Nakagami imaging is a potential quantitative tool to characterize radiation-induced asymptomatic and symptomatic neck fibrosis.

  12. A New Omni-Directional EMAT for Ultrasonic Lamb Wave Tomography Imaging of Metallic Plate Defects

    Directory of Open Access Journals (Sweden)

    Songling Huang

    2014-02-01

    Full Text Available This paper proposes a new omni-directional electromagnetic acoustic transducer (EMAT for the ultrasonic Lamb wave (ULW tomography imaging (TI of defects in metallic plates. The proposed EMAT is composed of a permanent magnet and a coil with a contra-flexure structure. This new EMAT coil structure is used for omni-directional ULW transmission and reception and ULW TI for the first time. The theoretical background and the working principles of this EMAT are presented and analyzed. The experimental results of its use on a 3 mm thick aluminum plate indicate that the EMAT with a contra-flexure coil (CFC can transmit and receive a pure single A0 mode ULW with a high signal-to-noise ratio (SNR. Thus, the extraction of the projection data used for ULW TI may be performed accurately. The circumferential consistency of the projection data is only slightly influenced by the distortion of the eddy current field that is induced by the new CFC with an irregular shape. When the new EMAT array is used for ULW TI using the cross-hole method and SIRT arithmetic, a desirable imaging quality can be achieved, and the estimated size of an artificial corrosion defect agreed well with its actual value. The relation between the reconstruction resolution and the number of the new EMATs used is analyzed. More TI experiments are carried out when the aluminum plate defect is in two different locations relative to the EMAT array, for the further investigation of the performances of the new EMATs.

  13. Quantitative Ultrasonic Nakagami Imaging of Neck Fibrosis After Head and Neck Radiation Therapy

    International Nuclear Information System (INIS)

    Yang, Xiaofeng; Yoshida, Emi; Cassidy, Richard J.; Beitler, Jonathan J.; Yu, David S.; Curran, Walter J.; Liu, Tian

    2015-01-01

    Purpose: To investigate the feasibility of ultrasound Nakagami imaging to quantitatively assess radiation-induced neck fibrosis, a common sequela of radiation therapy (RT) to the head and neck. Methods and Materials: In a pilot study, 40 study participants were enrolled and classified into 3 subgroups: (1) a control group of 12 healthy volunteers; (2) an asymptomatic group of 11 patients who had received intensity modulated RT for head and neck cancer and had experienced no neck fibrosis; and (3) a symptomatic group of 17 post-RT patients with neck fibrosis. Each study participant underwent 1 ultrasound study in which scans were performed in the longitudinal orientation of the bilateral neck. Three Nakagami parameters were calculated to quantify radiation-induced tissue injury: Nakagami probability distribution function, shape, and scaling parameters. Physician-based assessments of the neck fibrosis were performed according to the Radiation Therapy Oncology Group late morbidity scoring scheme, and patient-based fibrosis assessments were rated based on symptoms such as pain and stiffness. Results: Major discrepancies existed between physician-based and patient-based assessments of radiation-induced fibrosis. Significant differences in all Nakagami parameters were observed between the control group and 2 post-RT groups. Moreover, significant differences in Nakagami shape and scaling parameters were observed among asymptomatic and symptomatic groups. Compared with the control group, the average Nakagami shape parameter value increased by 32.1% (P<.001), and the average Nakagami scaling parameter increased by 55.7% (P<.001) for the asymptomatic group, whereas the Nakagami shape parameter increased by 74.1% (P<.001) and the Nakagami scaling parameter increased by 83.5% (P<.001) for the symptomatic group. Conclusions: Ultrasonic Nakagami imaging is a potential quantitative tool to characterize radiation-induced asymptomatic and symptomatic neck fibrosis

  14. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    Science.gov (United States)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  15. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  16. Employment of a novel ultrasonic method to investigate high pressure phase transitions in oleic acid

    Science.gov (United States)

    Rostocki, A. J.; Siegoczyński, R. M.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Zduniak, M.

    2011-06-01

    In this work, the variation of sound velocity with hydrostatic pressure for oleic acid is evaluated up to 350 MPa. During the measurement, we identified the phase transformation of oleic acid and the presence of the hysteresis of the dependence of sound velocity on pressure. From the performed measurements, it can be seen that the dependence of sound velocity on pressure can be used to investigate phase transformations in natural oils. Ultrasonic waves were excited and detected using piezoelectric LiNbO3(Y-36 cut) 5 MHz transducers. The phase velocity of the longitudinal ultrasonic waves was measured using a cross-correlation method to evaluate the time of flight.

  17. Optimization design and application of composite ultrasonic extraction method for effective constituents of green tea

    Directory of Open Access Journals (Sweden)

    Cheng-Chi Wang

    2015-12-01

    Full Text Available A composite ultrasonic process is used to extract five constituent components of green tea, namely caffeine, catechin, epigallocatechin gallate, epicatechin, and chlorogenic acid. The optimal parameters of the extraction process are determined using the robust Taguchi design method. The extracted products are analyzed using gas chromatography and high-performance liquid chromatography. The experimental results confirm the effectiveness of the proposed ultrasonic technique in extracting the components of interest. Moreover, it is shown that the optimal extraction parameters depend on the particular component. In general, the present findings provide a useful reference for further research on the processing of green tea.

  18. Ultrastructural investigation of root canal dentine surface after application of active ultrasonic method

    Directory of Open Access Journals (Sweden)

    Mitić Aleksandar

    2008-01-01

    Full Text Available INTRODUCTION The basic work principle of all ultrasonic techniques is the piezoelectric effect of producing high frequency ultrasounds of small length, which are transmitted over the endodontic extensions or canal instruments into the root canal. When in contact with the tissue, ultrasonic vibrations are converted into mechanical oscillations. Ultrasonic waves and the obtained oscillations along with the synergic effect of irrigation bring about the elimination of smear layer from the root canal walls. OBJECTIVE The aim of the study was to ultrastucturally examine the effect of smear layer removal from the walls of canals by the application of the active ultrasonic method without irrigation, that is by the application of ultrasound and irrigation using distilled water and 2.5% NaOCl. METHOD The investigation comprised 35 single-canal, extracted human teeth. After removal of the root canal content, experimental samples were divided into three groups. According to the procedure required, the first group was treated by ultrasound without irrigation; the second one by ultrasound with irrigation using distilled water; and the third group was treated by ultrasound and irrigation using 2.5% NaOCl solution. The control samples were treated by machine rotating instruments (Pro-File and were rinsed by distilled water. RESULTS The obtained results showed that the ultrasonic treatment of the root canal without irrigation did not remove the smear layer. The dentine canals are masked, and big dentine particles are scattered on the intertubular dentine. The ultrasonic treatment by using irrigation with distilled water provides cleaner dentine walls and open dentine tubules but with smaller particles on the intertubular dentine. The ultrasound treatment by using irrigation with 2.5% NaOCl solution provides a clean intertubular dentine surface without a smear layer and clearly open dentine tubules. CONCLUSION Instrumentation of the root canal by application of

  19. Intravascular ultrasonic-photoacoustic (IVUP) endoscope with 2.2-mm diameter catheter for medical imaging.

    Science.gov (United States)

    Bui, Nhat Quang; Hlaing, Kyu Kyu; Nguyen, Van Phuc; Nguyen, Trung Hau; Oh, Yun-Ok; Fan, Xiao Feng; Lee, Yong Wook; Nam, Seung Yun; Kang, Hyun Wook; Oh, Junghwan

    2015-10-01

    Intravascular ultrasound (IVUS) imaging is extremely important for detection and characterization of high-risk atherosclerotic plaques as well as gastrointestinal diseases. Recently, intravascular photoacoustic (IVPA) imaging has been used to differentiate the composition of biological tissues with high optical contrast and ultrasonic resolution. The combination of these imaging techniques could provide morphological information and molecular screening to characterize abnormal tissues, which would help physicians to ensure vital therapeutic value and prognostic significance for patients before commencing therapy. In this study, integration of a high-frequency IVUS imaging catheter (45MHz, single-element, unfocused, 0.7mm in diameter) with a multi-mode optical fiber (0.6mm in core diameter, 0.22 NA), an integrated intravascular ultrasonic-photoacoustic (IVUP) imaging catheter, was developed to provide spatial and functional information on light distribution in a turbid sample. Simultaneously, IVUS imaging was co-registered to IVPA imaging to construct 3D volumetric sample images. In a phantom study, a polyvinyl alcohol (PVA) tissue-mimicking arterial vessel phantom with indocyanine green (ICG) and methylene blue (MB) inclusion was used to demonstrate the feasibility of mapping the biological dyes, which are used in cardiovascular and cancer diagnostics. For the ex vivo study, an excised sample of pig intestine with ICG was utilized to target the biomarkers present in the gastrointestinal tumors or the atherosclerotic plaques with the proposed hybrid technique. The results indicated that IVUP endoscope with the 2.2-mm diameter catheter could be a useful tool for medical imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A new ultrasonic method to detect chemical additives in branded milk

    Indian Academy of Sciences (India)

    Abstract. A new ultrasonic method – thermoacoustic analysis – is reported for the detection of the added chemical preservatives in branded milk. The nature of variation and shift in the thermal response of the acoustic parameters specific acoustic impedance, adiabatic compressibility and Rao's specific sound velocity for ...

  1. Rapid flow imaging method

    International Nuclear Information System (INIS)

    Pelc, N.J.; Spritzer, C.E.; Lee, J.N.

    1988-01-01

    A rapid, phase-contrast, MR imaging method of imaging flow has been implemented. The method, called VIGRE (velocity imaging with gradient recalled echoes), consists of two interleaved, narrow flip angle, gradient-recalled acquisitions. One is flow compensated while the second has a specified flow encoding (both peak velocity and direction) that causes signals to contain additional phase in proportion to velocity in the specified direction. Complex image data from the first acquisition are used as a phase reference for the second, yielding immunity from phase accumulation due to causes other than motion. Images with pixel values equal to MΔΘ where M is the magnitude of the flow compensated image and ΔΘ is the phase difference at the pixel, are produced. The magnitude weighting provides additional vessel contrast, suppresses background noise, maintains the flow direction information, and still allows quantitative data to be retrieved. The method has been validated with phantoms and is undergoing initial clinical evaluation. Early results are extremely encouraging

  2. New developments in ultrasonic imaging of the chest and other body organs

    International Nuclear Information System (INIS)

    Campbell, G.W.; Anderson, A.L.

    1978-01-01

    The ultrasonic imaging system described herein was developed to measure chest-wall thickness and the percentage of fat in the chest and around other body organs. The system uses pulse-echo techniques to transmit and detect sound waves reflected from the interfaces of body organs and adjacent tissue. A computer draws these interfaces on color scans, and a code is used to exponentially average data from several points on each scan to find the average thicknesses of the chest wall and fat layers. These average thicknesses are then used to adjust x-ray calibration factors for plutonium lung counters. The correction factor for three subjects measured for fat content ranging from 12.6 to 22.2% was 18 to 41%. The ultrasonic system also defines the shape and position of the kidneys and liver so we are able to more accurately place detectors on the body during in-vivo radiation measurements. We have also developed a technique for displaying the interfaces from a series of ultrasonic chest scans to produce a topographical map that enables us to better understand the shape and contour of the lung and chest-wall interface

  3. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    Science.gov (United States)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  4. Sizing of cracks by ultrasonic testing - Diffraction methods

    International Nuclear Information System (INIS)

    Hoegberg, K.; Sattari-Far, I.; Pers-Anderson, E.B.

    1989-01-01

    The work has been concentrated on manual ultrasonic testing of plates in carbon and austenitic steel with thicknesses of 10-40 mm. Evaluation of data was performed by studying the amplitude, accuracy (crack depth) and visibility. The experience from the project showed that identification of the weak signals from the crack tips requires well-trained personnel. Besides that, the following can be recommended: Estimate if the crack has compressive stresses. Especially shallow cracks are exposed for compressive stresses. Chose a refraction angle ≥ 60 degrees if the crack is deep. Try both low (approx equivalent to 2MHz) and high (approx equivalent to 4-5MHz) frequency. Lower frequencies often increase amplitude response. Avoid the combination of refraction angle greater than 60 degrees and low frequency. Inspect with half as well as full skip. Sometimes a stronger signal is received for full skip, because the amplitude of the diffracted signal is higher from the cracked side. Use complementary measurements with mode conversion techniques. Focused probes can improve the results, especially for complicated geometries. Do not use reference reflectors of EDM-notch type for verification of signal amplitude. No correlation between amplitude from an EDM-notch tip and a crack tip exists. Reference reflectors of EDM-notch type can be used to verify the resolution of the system. A shallow EDM-notch can show if the probe can separate the tip and corner. It is our experience that general solutions does not exist, and each case needs an individual solution

  5. The fabrication of monolayer graphene by ultrasonication method

    Institute of Scientific and Technical Information of China (English)

    江依

    2017-01-01

    Recent years, researchers pay more attention to another outstanding material that could be used in many technique areas of material synthesis and modification, which is named graphene. Graphene can be described as a one-atom thick layer of the mineral graphite, the thickness of graphene is one million times thinner than paper. As we know that carbon has the two -dimensional crystal structure. It can be stacked to form 3D graphite, rolled to form 1D nanotubes, and wrapped to form 0D fullerenes. So graphene is consisted of a single layer of carbon atoms that are bonded together in a repeating pattern of hexagons, which is a one atom thick layer of sp-bonded carbon. Due to the special atom structure, graphene has a range of unusual properties, its strong, conductive and flexible, especially, the excellent thermal conductivity and mechanical stiffness. Except those well-publicized outstanding properties, it is pretty light as well, with a 1-square meter sheet the weight only has 0. 77 milligrams. Those are significant properties in plane values for graphite. Therefore, It is need to discuss that graphene be exfoliated from graphite by the approaching of ultrasonication and centrifugation .

  6. Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods

    Science.gov (United States)

    Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.

    Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.

  7. High Resolution Ultrasonic Method for 3D Fingerprint Recognizable Characteristics in Biometrics Identification

    Science.gov (United States)

    Maev, R. Gr.; Bakulin, E. Yu.; Maeva, A.; Severin, F.

    Biometrics is a rapidly evolving scientific and applied discipline that studies possible ways of personal identification by means of unique biological characteristics. Such identification is important in various situations requiring restricted access to certain areas, information and personal data and for cases of medical emergencies. A number of automated biometric techniques have been developed, including fingerprint, hand shape, eye and facial recognition, thermographic imaging, etc. All these techniques differ in the recognizable parameters, usability, accuracy and cost. Among these, fingerprint recognition stands alone since a very large database of fingerprints has already been acquired. Also, fingerprints are key evidence left at a crime scene and can be used to indentify suspects. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. We introduce a newer development of the ultrasonic fingerprint imaging. The proposed method obtains a scan only once and then varies the C-scan gate position and width to visualize acoustic reflections from any appropriate depth inside the skin. Also, B-scans and A-scans can be recreated from any position using such data array, which gives the control over the visualization options. By setting the C-scan gate deeper inside the skin, distribution of the sweat pores (which are located along the ridges) can be easily visualized. This distribution should be unique for each individual so this provides a means of personal identification, which is not affected by any changes (accidental or intentional) of the fingers' surface conditions. This paper discusses different setups, acoustic parameters of the system, signal and image processing options and possible ways of 3-dimentional visualization that could be used as a recognizable characteristic in biometric identification.

  8. Monitoring Low-Cycle Fatigue Material-Degradation by Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    R. Himawan

    2010-08-01

    Full Text Available Any system consisting of structural material often undergoes fatigue, which is caused by dynamic load cycle. As a structural system, nuclear power plant is very likely to have low-cycle fatigue at many of its components. Taking into account the importance of monitoring low-cycle fatigue on structural components to prevent them from getting failure, the authors have conducted a work to monitor material degradation caused by low-cycle fatigue by using ultrasonic method. An alloy of Cu-40Zn was used as a test specimen. Ultrasonic water immersion procedure was employed in this ultrasonic test. The probe used is a focusing type and has frequency as high as 15 MHz. The specimen area tested is in the middle part divided into 14 points × 23 points. The results, which were frequency spectrums, were analyzed using two parameters: frequency spectrum peak intensity and attenuation function gradient. The analysis indicates that peak intensity increases at the beginning of load cycle and then decreases. Meanwhile, gradient of attenuation function is lower at the beginning of fatigue process, and then consistently gets higher. It concludes that low-fatigue material degradation can be monitored by using ultrasonic method.

  9. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Algorithms for ultrasonic imaging

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz

    2011-07-01

    This report contains research results concerning the use of advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala Univ. in 2009 and 2010. The first part of the report deals with ultrasonic imaging of damage in planar structures using Lamb waves. We present results of the first successful attempt to apply an adaptive beamformer for Lamb waves. Our algorithm is an extension of the adaptive beamformer based on minimum variance distortion less response (MVDR) approach to dispersive, multimodal Lamb waves. We present simulation and experimental results illustrating the performance of the MVDR applied to imaging artificial damage in an aluminum plate. In the second part of the report we present two extensions of the previously proposed 2D phase shift migration algorithms for enhancing resolution in ultrasonic imaging of solid objects. The first extension enables processing 3D data in order to fully utilize the resolution enhancement potential of the technique. The second extension, consists in generalizing the technique to allow for the processing of data acquired using an array instead of a previously concerned single transducer. Robustness issue related to objects having front surfaces that are slightly tilted relative to the scanning axis is also considered

  10. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Algorithms for ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences (Sweden))

    2011-07-15

    This report contains research results concerning the use of advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala Univ. in 2009 and 2010. The first part of the report deals with ultrasonic imaging of damage in planar structures using Lamb waves. We present results of the first successful attempt to apply an adaptive beamformer for Lamb waves. Our algorithm is an extension of the adaptive beamformer based on minimum variance distortion less response (MVDR) approach to dispersive, multimodal Lamb waves. We present simulation and experimental results illustrating the performance of the MVDR applied to imaging artificial damage in an aluminum plate. In the second part of the report we present two extensions of the previously proposed 2D phase shift migration algorithms for enhancing resolution in ultrasonic imaging of solid objects. The first extension enables processing 3D data in order to fully utilize the resolution enhancement potential of the technique. The second extension, consists in generalizing the technique to allow for the processing of data acquired using an array instead of a previously concerned single transducer. Robustness issue related to objects having front surfaces that are slightly tilted relative to the scanning axis is also considered

  11. Magnetic imager and method

    Science.gov (United States)

    Powell, James; Reich, Morris; Danby, Gordon

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  12. A novel method for detecting second harmonic ultrasonic components generated from fastened bolts

    Science.gov (United States)

    Fukuda, Makoto; Imano, Kazuhiko

    2012-09-01

    This study examines the use of ultrasonic second harmonic components in the quality control of bolt-fastened structures. An improved method for detecting the second harmonic components, from a bolt fastened with a nut, using the transmission method is constructed. A hexagon head iron bolt (12-mm diameter and 25-mm long) was used in the experiments. The bolt was fastened using a digital torque wrench. The second harmonic component increased by approximately 20 dB before and after the bolt was fastened. The sources of second harmonic components were contact acoustic nonlinearity in the screw thread interfaces of the bolt-nut and were the plastic deformation in the bolt with fastening bolt. This result was improved by approximately 10 dB compared with previous our method. Consequently, usefulness of the novel method for detecting second harmonic ultrasonic components generated from fastened bolt was confirmed.

  13. The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging

    Science.gov (United States)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-06-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.

  14. Feasibility of ultrasonic and eddy current methods for measurement of residual stress in shot peened metals

    International Nuclear Information System (INIS)

    Lavrentyev, Anton I.; Stucky, Paul A.; Veronesi, William A.

    2000-01-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to nondestructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper presents preliminary results from a feasibility study examining the use of ultrasonic and eddy current NDE methods for residual stress measurement in components where the stress has been introduced by shot peening. With an ultrasonic method, a variation of ultrasonic surface wave speed with shot peening intensity was measured. Near surface conductivity was measured by eddy current methods. Since the effective penetration depth of both methods employed is inversely related to the excitation frequency, by making measurements at different frequencies, each method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity range of 4C to 16C. The experimental results obtained demonstrate a correlation between peening intensity and Rayleigh wave velocity and between peening intensity and conductivity. The data suggests either of the methods may be suitable, with limitations, for detecting unsatisfactory levels of shot peening. Several factors were found to contribute to the measured responses: surface roughness, near surface plastic deformation (cold work) and residual stress. The contribution of each factor was studied experimentally. The feasibility of residual stress determination from the measured data is discussed

  15. Experiments of Long-range Inspection Method in Straight Pipes using Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Eom, H. S.; Lim, S. H.; Kim, J. H.; Joo, Y.S.

    2006-02-01

    This report describes experimental results of a long-range inspection method of pipes using ultrasonic guided waves. In chapter 2, theory of guided wave was reviewed. In chapter 3, equipment and procedures which were used in the experiments were described. Detailed specifications of the specimens described in chapter 4. In chapter 5, we analyzed characteristics of guided wave signals according to shapes and sizes of defects and presents results of various signal processing methods

  16. The feasibility of the auto tuning respiratory compensation system with ultrasonic image tracking technique.

    Science.gov (United States)

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi

    2015-01-01

    The purpose of this study is to assess the feasibility of using the analytical technique of ultrasound images in combination with an auto tumor localization system. During respiration, the activity of breathing in and out causes organs displacement at the lower lobe of the lung, and the maximum displacement range happens in the Superior-Inferior (SI) direction. Therefore, in this study all the tumor positioning is in SI direction under respiratory compensation, in which the compensations are carried out to the organs at the lower lobe and adjacent to the lower lobe of lung.In this research, due to the processes of ultrasound imaging generation, image analysis and signal transmission, when the captured respiratory signals are sent to auto tumor localization system, there was a signal time delay. The total delay time of the entire signal transmission process was 0.254 ± 0.023 seconds (with the lowest standard deviation) after implementing a series of analyses. To compensate for this signal delay time (0.254 ± 0.023 sec), a phase lead compensator (PLC) was designed and built into the auto tumor localization system. By analyzing the impact of the delay time and the respiratory waveforms under different frequencies on the phase lead compensator, an overall system delay time can be configured. Results showed as the respiratory frequency increased, variable value ``a'' and the subsequent gain ``k'' in the controller becomes larger. Moreover, value ``a'' and ``k'' increased as the system delay time increased when the respiratory frequency was fixed. The relationship of value ``a'' and ``k'' to the respiratory frequency can be obtained by using the curve fitting method to compensate for the respiratory motion for tumor localization. Through the comparison of the uncompensated signal and the compensated signal performed by the auto tumor localization system on the simulated respiratory signal, the feasibility of using ultrasound image analysis technology combined with the

  17. Speckle Reduction for Ultrasonic Imaging Using Frequency Compounding and Despeckling Filters along with Coded Excitation and Pulse Compression

    Directory of Open Access Journals (Sweden)

    Joshua S. Ullom

    2012-01-01

    Full Text Available A method for improving the contrast-to-noise ratio (CNR while maintaining the −6 dB axial resolution of ultrasonic B-mode images is proposed. The technique proposed is known as eREC-FC, which enhances a recently developed REC-FC technique. REC-FC is a combination of the coded excitation technique known as resolution enhancement compression (REC and the speckle-reduction technique frequency compounding (FC. In REC-FC, image CNR is improved but at the expense of a reduction in axial resolution. However, by compounding various REC-FC images made from various subband widths, the tradeoff between axial resolution and CNR enhancement can be extended. Further improvements in CNR can be obtained by applying postprocessing despeckling filters to the eREC-FC B-mode images. The despeckling filters evaluated were the following: median, Lee, homogeneous mask area, geometric, and speckle-reducing anisotropic diffusion (SRAD. Simulations and experimental measurements were conducted with a single-element transducer (f/2.66 having a center frequency of 2.25 MHz and a −3 dB bandwidth of 50%. In simulations and experiments, the eREC-FC technique resulted in the same axial resolution that would be typically observed with conventional excitation with a pulse. Moreover, increases in CNR of 348% were obtained in experiments when comparing eREC-FC with a Lee filter to conventional pulsing methods.

  18. Use of ultrasonic array method for positioning multiple partial discharge sources in transformer oil.

    Science.gov (United States)

    Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng

    2014-08-01

    Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.

  19. High pressure changes of the castor oil viscosity by ultrasonic method

    International Nuclear Information System (INIS)

    Rostocki, A J; Siegoczynski, R M; Kielczynski, P; Szalewski, M

    2008-01-01

    The pressure change of viscosity of castor oil have been measured by ultrasonic method within the range of pressure up to 0.9 GPa. For the measurement, the authors have applied a new ultrasonic method based on Bleustein-Gulyaev (B-G) waves. For the lower pressures (up to 0.3 GPa) the results have been compared with earlier results obtained by falling body method, whereas for the higher pressure range results were compared with those obtained by the flow type viscometer. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.4 GPa according to the Barus formula. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. The decomposition of the high pressure phase during the decompression process have shown very large hysteresis of viscosity on pressure. 4. After the decompression process the viscosity lasts higher then a initial value for several hours

  20. Methods in Astronomical Image Processing

    Science.gov (United States)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  1. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  2. Development of pulse-echo ultrasonic propagation imaging system and its delivery to Korea Air Force

    Science.gov (United States)

    Ahmed, Hasan; Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon; Ihn, Jeong-Beom

    2017-04-01

    This paper proposes a full-field pulse-echo ultrasonic propagation imaging (FF-PE-UPI) system for non-destructive evaluation of structural defects. The system works by detection of bulk waves that travel through the thickness of a specimen. This is achieved by joining the laser beams for the ultrasonic wave generation and sensing. This enables accurate and clear damage assessment and defect localization in the thickness with minimum signal processing since bulk waves are less susceptible to dispersion during short propagation through the thickness. The system consists of a Qswitched laser for generating the aforementioned waves, a laser Doppler vibrometer (LDV) for sensing, optical elements to combine the generating and sensing laser beams, a dual-axis automated translation stage for raster scanning of the specimen and a digitizer to record the signals. A graphical user interface (GUI) is developed to control all the individual blocks of the system. Additionally, the software also manages signal acquisition, processing, and display. The GUI is created in C++ using the QT framework. In view of the requirements posed by the Korean Air Force(KAF), the system is designed to be compact and portable to allow for in situ inspection of a selected area of a larger structure such as radome or rudder of an aircraft. The GUI is designed with a minimalistic approach to promote usability and adaptability while masking the intricacies of actual system operation. Through the use of multithreading the software is able to show the results while a specimen is still being scanned. This is achieved by real-time and concurrent acquisition, processing, and display of ultrasonic signal of the latest scan point in the scan area.

  3. Universal Image Steganalytic Method

    Directory of Open Access Journals (Sweden)

    V. Banoci

    2014-12-01

    Full Text Available In the paper we introduce a new universal steganalytic method in JPEG file format that is detecting well-known and also newly developed steganographic methods. The steganalytic model is trained by MHF-DZ steganographic algorithm previously designed by the same authors. The calibration technique with the Feature Based Steganalysis (FBS was employed in order to identify statistical changes caused by embedding a secret data into original image. The steganalyzer concept utilizes Support Vector Machine (SVM classification for training a model that is later used by the same steganalyzer in order to identify between a clean (cover and steganographic image. The aim of the paper was to analyze the variety in accuracy of detection results (ACR while detecting testing steganographic algorithms as F5, Outguess, Model Based Steganography without deblocking, JP Hide and Seek which represent the generally used steganographic tools. The comparison of four feature vectors with different lengths FBS (22, FBS (66 FBS(274 and FBS(285 shows promising results of proposed universal steganalytic method comparing to binary methods.

  4. Structural health monitoring of a railway truss bridge using vibration-based and ultrasonic methods

    Science.gov (United States)

    Kołakowski, Przemysław; Szelążek, Jacek; Sekuła, Krzysztof; Świercz, Andrzej; Mizerski, Krzysztof; Gutkiewicz, Piotr

    2011-03-01

    This paper presents results of in situ investigation of a railway truss bridge in the context of structural health monitoring (SHM). Three experimental methods are examined. Dynamic responses of the bridge recorded by strain gauges are confronted with alternative ways of acquisition using piezoelectric patch sensors and ultrasonic probeheads. All types of sensors produce similar output. Also the corresponding responses of the numerical model of the bridge match experimental data.

  5. Study of titanium nitride elasticity characteristics in the homogeneity range by ultrasonic resonance method

    International Nuclear Information System (INIS)

    Khidirov, I.; Khajdarov, T.

    1995-01-01

    Elasticity characteristics of cubic and tetragonal phases of titanium nitride in the homogeneity range were studied for the first time by ultrasonic resonance method. It is established that the Young modulus, the shift and volume module of cubic titanium nitride elasticity in the homogeneity range change nonlinearly with decrease in nitrogen concentration and correlate with concentration dependences of other physical properties.15 refs., 2 figs

  6. Structural health monitoring of a railway truss bridge using vibration-based and ultrasonic methods

    International Nuclear Information System (INIS)

    Kołakowski, Przemysław; Sekuła, Krzysztof; Szelążek, Jacek; Świercz, Andrzej; Mizerski, Krzysztof; Gutkiewicz, Piotr

    2011-01-01

    This paper presents results of in situ investigation of a railway truss bridge in the context of structural health monitoring (SHM). Three experimental methods are examined. Dynamic responses of the bridge recorded by strain gauges are confronted with alternative ways of acquisition using piezoelectric patch sensors and ultrasonic probeheads. All types of sensors produce similar output. Also the corresponding responses of the numerical model of the bridge match experimental data

  7. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  8. Analysis of ultrasonically rotating droplet using moving particle semi-implicit and distributed point source methods

    Science.gov (United States)

    Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro

    2016-07-01

    Numerical analysis of the rotation of an ultrasonically levitated droplet with a free surface boundary is discussed. The ultrasonically levitated droplet is often reported to rotate owing to the surface tangential component of acoustic radiation force. To observe the torque from an acoustic wave and clarify the mechanism underlying the phenomena, it is effective to take advantage of numerical simulation using the distributed point source method (DPSM) and moving particle semi-implicit (MPS) method, both of which do not require a calculation grid or mesh. In this paper, the numerical treatment of the viscoacoustic torque, which emerges from the viscous boundary layer and governs the acoustical droplet rotation, is discussed. The Reynolds stress traction force is calculated from the DPSM result using the idea of effective normal particle velocity through the boundary layer and input to the MPS surface particles. A droplet levitated in an acoustic chamber is simulated using the proposed calculation method. The droplet is vertically supported by a plane standing wave from an ultrasonic driver and subjected to a rotating sound field excited by two acoustic sources on the side wall with different phases. The rotation of the droplet is successfully reproduced numerically and its acceleration is discussed and compared with those in the literature.

  9. Ultrasonic Guided Wave Method For Crack Detection In Buried Plastic Pipe

    Directory of Open Access Journals (Sweden)

    Wan Hamat Wan Sofian

    2016-01-01

    Full Text Available Plastic pipe are widely used in many fields for the fluid or gaseous product conveyance but basic components of a plastic material made it very sensitive to damage, which requires techniques for detecting damage reliable and efficient. Ultrasonic guided wave is a sensitive method based on propagation of low-frequency excitation in solid structures for damage detection. Ultrasonic guided wave method are performed to investigate the effect of crack to the frequency signal using Fast Fourier Transform (FFT analysis. This paper researched to determine performance of ultrasonic guided wave method in order to detect crack in buried pipeline. It was found that for an uncrack pipe, FFT analysis shows one peak which is the operating frequency by the piezoelectric actuator itself while the FFT analysis for single cracked pipe shows two peak which is the operating frequency by the piezoelectric actuator itself and the resultant frequency from the crack. For multi cracked pipe, the frequency signal shows more than two peak depend the number of crack. The results presented here may facilitate improvements in the accuracy and precision of pipeline crack detection.

  10. Study of different ultrasonic focusing methods applied to non destructive testing

    International Nuclear Information System (INIS)

    El Amrani, M.

    1995-01-01

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends

  11. The maturity characterization of orange fruit by using high frequency ultrasonic echo pulse method

    International Nuclear Information System (INIS)

    Aboudaoud, I; Faiz, B; Aassif, E; Izbaim, D; Abassi, D; Malainine, M; Azergui, M; Moudden, A

    2012-01-01

    In this present work, we develop a new ultrasonic echo pulse method in order to study the feasibility of maturity assessment of orange fruit. This study concerns two varieties of orange (Navel and Mandarin) which are the most harvested in the region of Souss-Massa-Drāa in Morocco. We worked in the range of high frequencies by the means of a focusing transducer with 20MHz as a central frequency. By taking into account the strong attenuation of the ultrasounds in the texture of fruits and vegetables, we limited our study only to the external layer of orange peel. This control is based mainly on the measure of the ultrasonic parameters eventually velocity and attenuation in order to check the aptitude of this technique to detect the maturity degree of the fruit without passing by penetrometric and biochemical measurements which are generally destructives but the mostly correlated with human perception concerning the firmness of the fruit.

  12. Smooth polishing of femtosecond laser induced craters on cemented carbide by ultrasonic vibration method

    Science.gov (United States)

    Wang, H. P.; Guan, Y. C.; Zheng, H. Y.

    2017-12-01

    Rough surface features induced by laser irradiation have been a challenging for the fabrication of micro/nano scale features. In this work, we propose hybrid ultrasonic vibration polishing method to improve surface quality of microcraters produced by femtosecond laser irradiation on cemented carbide. The laser caused rough surfaces are significantly smoothened after ultrasonic vibration polishing due to the strong collision effect of diamond particles on the surfaces. 3D morphology, SEM and AFM analysis has been conducted to characterize surface morphology and topography. Results indicate that the minimal surface roughness of Ra 7.60 nm has been achieved on the polished surfaces. The fabrication of microcraters with smooth surfaces is applicable to molding process for mass production of micro-optical components.

  13. An ultrasonic noncontact method to monitor the doneness of bakery products

    Science.gov (United States)

    Chimenti, D. E.; Faeth, L.

    2000-05-01

    The paper describes a method using ultrasonics and fluid dynamics to assess the state of "doneness" of bakery products, such as bread loaves, online and in situ. The problem in the baking industry is that bread doneness determined by time and temperature can be inaccurate, leaving some product underbaked. We describe a noncontact method using air-pulse excitation and air-coupled ultrasonic motion sensing to infer the state of doneness of the baking loaf while still in the oven and on a moving belt. The ultrasonic sensor operates at 100 kHz using a toneburst excitation and pitch-catch transducer geometry. The problem is one of detecting small (50 micron) movements in the loaf, whose position may vary up to several mm. Further, the loaf movements caused by the air-pulse excitation are rapid (20 to 50 msec). We present a signal-processing system, incorporating a boxcar integrator, that functions as a pulsed, time-domain acoustic interferometer. This instrument is capable of both the high time and spatial resolution essential for the successful operation of the instrument. We estimate a spatial resolution of 30 micron and a temporal resolution of 5 msec, using 100 kHz acoustic waves. The results of numerous in-oven measurements on one-pound bread loaves during the bake cycle will be presented to illustrate the performance of the instrument.

  14. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method

    Science.gov (United States)

    Gopi, D.; Indira, J.; Kavitha, L.; Sekar, M.; Mudali, U. Kamachi

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.

  15. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.

    Science.gov (United States)

    Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi

    2012-07-01

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency.

    Science.gov (United States)

    Liao, Jianqing; Qu, Baida; Liu, Da; Zheng, Naiqin

    2015-11-01

    A new method has been proposed for enhancing extraction yield of rutin from Sophora japonica, in which a novel ultrasonic extraction system has been developed to perform the determination of optimum ultrasonic frequency by a two-step procedure. This study has systematically investigated the influence of a continuous frequency range of 20-92 kHz on rutin yields. The effects of different operating conditions on rutin yields have also been studied in detail such as solvent concentration, solvent to solid ratio, ultrasound power, temperature and particle size. A higher extraction yield was obtained at the ultrasonic frequency of 60-62 kHz which was little affected under other extraction conditions. Comparative studies between existing methods and the present method were done to verify the effectiveness of this method. Results indicated that the new extraction method gave a higher extraction yield compared with existing ultrasound-assisted extraction (UAE) and soxhlet extraction (SE). Thus, the potential use of this method may be promising for extraction of natural materials on an industrial scale in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study

    Science.gov (United States)

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng; Liao, Yin-Yin

    2008-11-01

    Ultrasound is an important clinical tool in noninvasive diagnoses of breast cancer. The Nakagami statistical parameter estimated from the ultrasonic backscattered envelope has been demonstrated to be useful in complementing conventional B-mode scans when classifying breast masses. However, the shadowing effect caused by certain high-attenuation tumors in the B-mode image makes the tumor contour unclear, and thus it is more difficult to choose an appropriate region of interest from which to collect tumor data for estimating the Nakagami parameter. This study explored the feasibility of using the Nakagami parametric image to overcome the shadowing effect for visualizing the properties of breast masses. Experiments were performed on a breast-mimicking phantom and on some typical clinical cases for cysts, fat and tumors (fibroadenoma) (n = 18) in order to explore the performance of the Nakagami image under ideal and practical conditions. The experimental results showed that the Nakagami image pixels (i.e. the local Nakagami parameter) in the cyst, tumor and fat are 0.21 ± 0.01, 0.65 ± 0.05 and 0.98 ± 0.07, respectively, for six independent phantom measurements, and 0.14 ± 0.03, 0.67 ± 0.11 and 0.89 ± 0.08, respectively, for clinical experiments. This suggests that the Nakagami image is able to classify various breast masses (p < 0.005) although the clinical results from tumors of different cases have a larger variance that may be caused by the complexity of real breast tissues. In particular, unlike the B-mode image, the Nakagami image is not subject to significant shadowing effects, making it useful to complement the B-mode image to describe the tumor contour for identifying the tumor-related region when the shadowing effect is stronger or a low system gain is used.

  18. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, P-H; Chang, C-C [Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan (China); Yeh, C-K; Liao, Y-Y [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)], E-mail: mechang@gate.sinica.edu.tw, E-mail: ckyeh@mx.nthu.edu.tw

    2008-11-07

    Ultrasound is an important clinical tool in noninvasive diagnoses of breast cancer. The Nakagami statistical parameter estimated from the ultrasonic backscattered envelope has been demonstrated to be useful in complementing conventional B-mode scans when classifying breast masses. However, the shadowing effect caused by certain high-attenuation tumors in the B-mode image makes the tumor contour unclear, and thus it is more difficult to choose an appropriate region of interest from which to collect tumor data for estimating the Nakagami parameter. This study explored the feasibility of using the Nakagami parametric image to overcome the shadowing effect for visualizing the properties of breast masses. Experiments were performed on a breast-mimicking phantom and on some typical clinical cases for cysts, fat and tumors (fibroadenoma) (n = 18) in order to explore the performance of the Nakagami image under ideal and practical conditions. The experimental results showed that the Nakagami image pixels (i.e. the local Nakagami parameter) in the cyst, tumor and fat are 0.21 {+-} 0.01, 0.65 {+-} 0.05 and 0.98 {+-} 0.07, respectively, for six independent phantom measurements, and 0.14 {+-} 0.03, 0.67 {+-} 0.11 and 0.89 {+-} 0.08, respectively, for clinical experiments. This suggests that the Nakagami image is able to classify various breast masses (p < 0.005) although the clinical results from tumors of different cases have a larger variance that may be caused by the complexity of real breast tissues. In particular, unlike the B-mode image, the Nakagami image is not subject to significant shadowing effects, making it useful to complement the B-mode image to describe the tumor contour for identifying the tumor-related region when the shadowing effect is stronger or a low system gain is used.

  19. Method and device for ultrasonic examination of materials

    International Nuclear Information System (INIS)

    Skinner, R.A.

    1979-01-01

    The examination is performed by applying the pitch-and-catch method, deviations from nominal geometry being automatically taken into account. For this purpose a third transceiver probe is adjustably mounted on the support structure of the transmitter and the receiver probe. The data from small surface areas received by it is processed in a data recording and processing unit, so that position and angular position of the transmitter and the receiver probe can exactly be determined. (DG) [de

  20. Segmentation methodology for automated classification and differentiation of soft tissues in multiband images of high-resolution ultrasonic transmission tomography.

    Science.gov (United States)

    Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z

    2006-08-01

    This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.

  1. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Field deployable processing methods for stay-in-place ultrasonic transducers

    Science.gov (United States)

    Malarich, Nathan; Lissenden, Cliff J.; Tittmann, Bernhard R.

    2018-04-01

    Condition monitoring provides key data for managing the operation and maintenance of mechanical equipment in the power generation, chemical processing, and manufacturing industries. Ultrasonic transducers provide active monitoring capabilities by wall thickness measurements, elastic property determination, crack detection, and other means. In many cases the components operate in harsh environments that may include high temperature, radiation, and hazardous chemicals. Thus, it is desirable to have permanently affixed ultrasonic transducers for condition monitoring in harsh environments. Spray-on transducers provide direct coupling between the active element and the substrate, and can be applied to curved surfaces. We describe a deposition methodology for ultrasonic transducers that can be applied in the field. First, piezoceramic powders mixed into a sol-gel are air-spray deposited onto the substrate. Powder constituents are selected based on the service environment in which the condition monitoring will be performed. Then the deposited coating is pyrolyzed and partially densified using an induction heating system with a custom work coil designed to match the substrate geometry. The next step, applying the electrodes, is more challenging than might be expected because of the porosity of the piezoelectric coating and the potential reactivity of elements in the adjacent layers. After connecting lead wires to the electrodes the transducer is poled and a protective coating can be applied prior to use. Processing of a PZT-bismuth titanate transducer on a large steel substrate is described along with alternate methods.

  3. Image-based overlay measurement using subsurface ultrasonic resonance force microscopy

    Science.gov (United States)

    Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.

    2018-03-01

    Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.

  4. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. NDE of friction stir welds, nonlinear acoustics, ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu [Uppsala Univ., Dept. of Materials Science (Sweden). Signals and Systems

    2004-01-01

    This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated.

  5. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. NDE of friction stir welds, nonlinear acoustics, ultrasonic imaging

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz; Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu

    2004-01-01

    This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated

  6. Data merging of infrared and ultrasonic images for plasma facing components inspection

    Energy Technology Data Exchange (ETDEWEB)

    Richou, M. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)], E-mail: marianne.richou@cea.fr; Durocher, A. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Medrano, M. [Association EURATOM - CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Martinez-Ona, R. [Tecnatom, 28703 S. Sebastian de los Reyes, Madrid (Spain); Moysan, J. [LCND, Universite de la Mediterranee, F-13625 Aix-en-Provence (France); Riccardi, B. [Fusion For Energy, 08019 Barcelona (Spain)

    2009-06-15

    For steady-state magnetic thermonuclear fusion devices which need large power exhaust capability, actively cooled plasma facing components have been developed. In order to guarantee the integrity of these components during the required lifetime, their thermal and mechanical behaviour must be assessed. Before the procurement of the ITER Divertor, the examination of the heat sink to armour joints with non-destructive techniques is an essential topic to be addressed. Defects may be localised at different bonding interfaces. In order to improve the defect detection capability of the SATIR technique, the possibility of merging the infrared thermography test data coming from SATIR results with the ultrasonic test data has been identified. The data merging of SATIR and ultrasonic results has been performed on Carbon Fiber Composite (CFC) monoblocks with calibrated defects, identified by their position and extension. These calibrated defects were realised with machining, with 'stop-off' or by a lack of CFC activation techniques, these last two representing more accurately a real defect. A batch of 56 samples was produced to simulate each possibility of combination with regards to interface location, position and extension and way of realising the defect. The use of a data merging method based on Dempster-Shafer theory improves significantly the detection sensibility and reliability of defect location and size.

  7. Data merging of infrared and ultrasonic images for plasma facing components inspection

    International Nuclear Information System (INIS)

    Richou, M.; Durocher, A.; Medrano, M.; Martinez-Ona, R.; Moysan, J.; Riccardi, B.

    2009-01-01

    For steady-state magnetic thermonuclear fusion devices which need large power exhaust capability, actively cooled plasma facing components have been developed. In order to guarantee the integrity of these components during the required lifetime, their thermal and mechanical behaviour must be assessed. Before the procurement of the ITER Divertor, the examination of the heat sink to armour joints with non-destructive techniques is an essential topic to be addressed. Defects may be localised at different bonding interfaces. In order to improve the defect detection capability of the SATIR technique, the possibility of merging the infrared thermography test data coming from SATIR results with the ultrasonic test data has been identified. The data merging of SATIR and ultrasonic results has been performed on Carbon Fiber Composite (CFC) monoblocks with calibrated defects, identified by their position and extension. These calibrated defects were realised with machining, with 'stop-off' or by a lack of CFC activation techniques, these last two representing more accurately a real defect. A batch of 56 samples was produced to simulate each possibility of combination with regards to interface location, position and extension and way of realising the defect. The use of a data merging method based on Dempster-Shafer theory improves significantly the detection sensibility and reliability of defect location and size.

  8. Hyperspectral image processing methods

    Science.gov (United States)

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  9. Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method

    International Nuclear Information System (INIS)

    Park, Seok Kyun; Baek, Un Chan; Lee, Han Bum; Kim, Myoung Mo

    2000-01-01

    The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of a various column in SRC structure in this study. The advantages and limitations of this method for non-destructive inspection in top down construction joints are investigated. As a result, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints using ultrasonic method

  10. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia.

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W

    2016-07-21

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  11. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  12. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  13. Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure and ultrasonic scattering (Conference Presentation)

    Science.gov (United States)

    Subochev, Pavel V.; Orlova, Anna G.; Turchin, Ilya V.

    2017-03-01

    We will present reflection-mode bioimaging system providing complementary optical, photoacsoutic and acoustic measurements by acoustic detector after each laser pulse with 2kHz repetition rate. The photons absorbed within the biological tissue provide optoacoustic (OA) signals, the photons absorbed by the external electrode of a detector provide the measurable diffuse reflectance (DR) from the sample and the probing ultrasonic (US) pulse. To demonstrate the in vivo capabilities of the system we performed complementary DR/OA/US imaging of small laboratory animals and human palm with 3.5mm/50μm/35μm lateral resolution at up to 3 mm diagnostic depth. Functional OA and DR imaging demonstrated the levels of tissue vascularization and blood supply. Structural US imaging was essential for understanding the position of vessels and zones with different perfusion. Before BiOS-2017 we plan to accomplish more in vivo experiments validating the developed triple-modality system as diagnostic tool to detect vascularization as well as mechanisms of vascular changes when monitoring response to therapy.

  14. Image registration method for medical image sequences

    Science.gov (United States)

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  15. NDE of stresses in thick-walled components by ultrasonic methods

    International Nuclear Information System (INIS)

    Goebbels, K.; Pitsch, H.; Schneider, E.; Nowack, H.

    1985-01-01

    The possibilty of measuring stresses - especially residual stresses - by ultrasonic methods has been presented at the 4th and 5th International Conference on NDE in Nuclear Industry. This contribution now presents results of several applications to thick walled components such as turbines and generators for power plants. The measurement technique using linearly polarized shear waves allows one to characterize the homogeneitry of the residual stress situation along and around cylindrically shaped components. Some important results show that the stress distribution integrated over the cross section of the component has not followed in any case the simple relations derived by stress analysts. Conclusions referring to the stress situation inside the components are discussed

  16. Real-time ultrasonic imaging of the ovary and uterus of the dog.

    Science.gov (United States)

    England, G C; Allen, W E

    1989-01-01

    The reproductive tracts of 50 bitches were ultrasonically imaged to evaluate the appearance of the uterus and ovaries at different stages of the oestrous cycle. Ovarian follicular growth was observed throughout the oestrous period. Follicles increased in size slowly until 7 days after the onset of pro-oestrus. Thereafter there was a rapid increase in diameter, indicating impending ovulation. The maximum recorded follicular diameter was 13 mm. It was not possible to observe ovulation since in the bitch follicles do not collapse as rapidly as in other species. During the post-ovulatory period there was a gradual loss of follicle shape and an increase in wall thickness. It was not possible to image the uterus of prepubertal bitches or young nulliparous bitches in anoestrus. During pro-oestrus and oestrus the uterus became increasingly hypoechoic with central regions of hyperechogenicity, which may represent uterine oedema. Uterine involution was observed in 5 bitches, and a rapid change in uterine diameter occurred over the first 3 days post partum. The ultrasonographic appearance was characteristic at this time.

  17. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro

    International Nuclear Information System (INIS)

    Ma Qingyu; Zhang Dong; Gong Xiufen; Ma Yong

    2007-01-01

    Second or higher order harmonic imaging shows significant improvement in image clarity but is degraded by low signal-noise ratio (SNR) compared with fundamental imaging. This paper presents a phase-coded multi-pulse technique to provide the enhancement of SNR for the desired high-order harmonic ultrasonic imaging. In this technique, with N phase-coded pulses excitation, the received Nth harmonic signal is enhanced by 20 log 10 N dB compared with that in the single-pulse mode, whereas the fundamental and other order harmonic components are efficiently suppressed to reduce image confusion. The principle of this technique is theoretically discussed based on the theory of the finite amplitude sound waves, and examined by measurements of the axial and lateral beam profiles as well as the phase shift of the harmonics. In the experimental imaging for two biological tissue specimens, a plane piston source at 2 MHz is used to transmit a sequence of multiple pulses with equidistant phase shift. The second to fifth harmonic images are obtained using this technique with N = 2 to 5, and compared with the images obtained at the fundamental frequency. Results demonstrate that this technique of relying on higher order harmonics seems to provide a better resolution and contrast of ultrasonic images

  18. Soft tissue tumors - imaging methods

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1985-01-01

    Soft Tissue Tumors - Imaging Methods: Imaging methods play an important diagnostic role in soft tissue tumors concerning a preoperative evaluation of localization, size, topographic relationship, dignity, and metastatic disease. The present paper gives an overview about diagnostic methods available today such as ultrasound, thermography, roentgenographic plain films and xeroradiography, radionuclide methods, computed tomography, lymphography, angiography, and magnetic resonance imaging. Besides sonography particularly computed tomography has the most important diagnostic value in soft tissue tumors. The application of a recently developed method, the magnetic resonance imaging, cannot yet be assessed in its significance. (orig.) [de

  19. A Gaussian beam method for ultrasonic non-destructive evaluation modeling

    Science.gov (United States)

    Jacquet, O.; Leymarie, N.; Cassereau, D.

    2018-05-01

    The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.

  20. Chromium containing silica: effect of ultrasonic and purification methods on color products

    International Nuclear Information System (INIS)

    Martines, M.A.U.; Jafelicci Junior, M.; Davolos, M.R.

    1990-01-01

    Chromium containing silica has numerous applications, such as: fiber-optics, luminescent materials, catalysts and pigments. In paint and ceramic pigments, chromate and dichromate ions, and silica are largely used. In this paper, it has been investigated the effect of pH, heating methods, and ultrasonic stirring on chromium oxidation states coprecipitated with silica. The material has been obtained from the coprecipitation of an aqueous diluted sodium silicate solution and acid chromium nitrate solution, purified by extractions and dialysis, and dried with microwave oven. Products have been characterized by X-ray powder diffraction, infrared vibrational spectroscopy and nitrogem adsorption isotherm (BET). Coprecipitates are non cristalline and the specific surface area value for sample obtained by conventional heating is smaller than the one for sample obtained by ultrasonic method. It is possible to obtain silica with different colors from blue due to the Cr(III), to yellow due to the Cr (VI), depending on the precipitation, purification and drying methods. (author) [pt

  1. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC)

    Science.gov (United States)

    Patra, Subir; Banerjee, Sourav

    2017-01-01

    Material state awareness of composites using conventional Nondestructive Evaluation (NDE) method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC) is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz) scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy. PMID:29258256

  2. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC

    Directory of Open Access Journals (Sweden)

    Subir Patra

    2017-12-01

    Full Text Available Material state awareness of composites using conventional Nondestructive Evaluation (NDE method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy.

  3. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    International Nuclear Information System (INIS)

    Kolkoori, Sanjeevareddy

    2014-01-01

    relations as well as transmission coefficients. The ray tracing model is able to determine the ultrasonic wave fields generated by a point source as well as finite dimension array transducers. The influence of inhomogenity on ultrasonic ray propagation and its interaction with defects in inhomogeneous austenitic welds is presented. The applications of 3D ray tracing model for optimizing experimental parameters during the ultrasonic non-destructive testing of transversal cracks in austenitic welds are presented. An ultrasonic C-scan image in homogeneous and multi-layered anisotropic austenitic steel materials is quantitatively evaluated using a novel 3D ray tracing method. The influence of the columnar grain orientation and the layback orientation on an ultrasonic C-scan image is presented. The ray tracing model results are validated first time quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several important configurations such as anisotropic and homogeneous austenitic steel material, layered austenitic steel and inhomogeneous weld materials which are generally occurring in the ultrasonic NDT of anisotropic materials. Quantitatively, a deviation of 8.6% was observed in the point source generated ultrasonic fields whereas in the case of array source ultrasound fields a deviation of 10.2% was observed. The predicted ultrasonic fields for array transducers in an inhomogeneous austenitic weld material with spatially varying columnar grain orientation using ray tracing method are validated against the results of a commercially available NDT simulation tool (CIVA). The result shows that an accuracy of 89.5% was achieved in the presented ray tracing model in this thesis. Experiments have been conducted on 32 mm thick inhomogeneous austenitic weld material, 62 mm thick austenitic clad material and quantitatively measured the ultrasound beam distortion and field profiles using electrodynamical probes. The inhomogenity in the weld

  4. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Kolkoori, Sanjeevareddy

    2014-07-01

    relations as well as transmission coefficients. The ray tracing model is able to determine the ultrasonic wave fields generated by a point source as well as finite dimension array transducers. The influence of inhomogenity on ultrasonic ray propagation and its interaction with defects in inhomogeneous austenitic welds is presented. The applications of 3D ray tracing model for optimizing experimental parameters during the ultrasonic non-destructive testing of transversal cracks in austenitic welds are presented. An ultrasonic C-scan image in homogeneous and multi-layered anisotropic austenitic steel materials is quantitatively evaluated using a novel 3D ray tracing method. The influence of the columnar grain orientation and the layback orientation on an ultrasonic C-scan image is presented. The ray tracing model results are validated first time quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several important configurations such as anisotropic and homogeneous austenitic steel material, layered austenitic steel and inhomogeneous weld materials which are generally occurring in the ultrasonic NDT of anisotropic materials. Quantitatively, a deviation of 8.6% was observed in the point source generated ultrasonic fields whereas in the case of array source ultrasound fields a deviation of 10.2% was observed. The predicted ultrasonic fields for array transducers in an inhomogeneous austenitic weld material with spatially varying columnar grain orientation using ray tracing method are validated against the results of a commercially available NDT simulation tool (CIVA). The result shows that an accuracy of 89.5% was achieved in the presented ray tracing model in this thesis. Experiments have been conducted on 32 mm thick inhomogeneous austenitic weld material, 62 mm thick austenitic clad material and quantitatively measured the ultrasound beam distortion and field profiles using electrodynamical probes. The inhomogenity in the weld

  5. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  6. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  7. Combination probe for optically assisted ultrasonic velocity-change imaging aimed at detecting unstable blood vessel plaque

    Science.gov (United States)

    Tanigawa, Shohei; Mano, Kazune; Wada, Kenji; Matsunaka, Toshiyuki; Horinaka, Hiromichi

    2016-04-01

    Blood vessel plaque with a large lipid core is at risk of becoming thrombus and is likely to induce acute heart disease. To prevent this, it is necessary to determine not only the plaque's size but also its chemical composition. We, therefore, made the prototype of a combination probe to diagnose carotid artery plaque. It is used to differentiate propagation characteristics between light spectra and ultrasonic images. By propagating light and ultrasound along a common direction, it is possible to effectively warm the diagnosis domain. Moreover, the probe is thought to be compact and be easy to use for diagnosing human carotid artery plaque. We applied the combination probe to a carotid artery phantom with a lipid area and obtained an image of the ultrasonic velocity change in the fatty area.

  8. Imaging Apparatus And Method

    NARCIS (Netherlands)

    Manohar, Srirang; van Leeuwen, A.G.J.M.

    2010-01-01

    A thermoacoustic imaging apparatus comprises an electromagnetic radiation source configured to irradiate a sample area and an acoustic signal detection probe arrangement for detecting acoustic signals. A radiation responsive acoustic signal generator is added outside the sample area. The detection

  9. IMAGING APPARATUS AND METHOD

    NARCIS (Netherlands)

    Manohar, Srirang; van Leeuwen, A.G.J.M.

    2008-01-01

    A thermoacoustic imaging apparatus comprises an electromagnetic radiation source configured to irradiate a sample area and an acoustic signal detection probe arrangement for detecting acoustic signals. A radiation responsive acoustic signal generator is added outside the sample area. The detection

  10. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Determination of corrective factors for an ultrasonic flow measuring method in pipes accounting for perturbations

    International Nuclear Information System (INIS)

    Etter, S.

    1982-01-01

    By current ultrasonic flow measuring equipment (UFME) the mean velocity is measured for one or two measuring paths. This mean velocity is not equal to the velocity averaged over the flow cross-section, by means of which the flow rate is calculated. This difference will be found already for axially symmetrical, fully developed velocity profiles and, to a larger extent, for disturbed profiles varying in flow direction and for nonsteady flow. Corrective factors are defined for steady and nonsteady flows. These factors can be derived from the flow profiles within the UFME. By mathematical simulation of the entrainment effect the influence of cross and swirl flows on various ultrasonic measuring methods is studied. The applied UFME with crossed measuring paths is shown to be largely independent of cross and swirl flows. For evaluation in a computer of velocity network measurements in circular cross-sections the equations for interpolation and integration are derived. Results of the mathematical method are the isotach profile, the flow rate and, for fully developed flow, directly the corrective factor. In the experimental part corrective factors are determined in nonsteady flow in a measuring plane before and in form measuring planes behind a perturbation. (orig./RW) [de

  12. Production of Biodiesel from Lipid of Phytoplankton Chaetoceros calcitrans through Ultrasonic Method

    Science.gov (United States)

    Kwangdinata, Raymond; Raya, Indah; Zakir, Muhammad

    2014-01-01

    A research on production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method has been done. In this research, we carried out a series of phytoplankton cultures to determine the optimum time of growth and biodiesel synthesis process from phytoplankton lipids. Process of biodiesel synthesis consists of two steps, that is, isolation of phytoplankton lipids and biodiesel synthesis from those lipids. Oil isolation process was carried out by ultrasonic extraction method using ethanol 96%, while biodiesel synthesis was carried out by transesterification reaction using methanol and KOH catalyst under sonication. Weight of biodiesel yield per biomass Chaetoceros calcitrans is 35.35%. Characterization of biodiesel was well carried out in terms of physical properties which are density and viscosity and chemical properties which are FFA content, saponification value, and iodine value. These values meet the American Society for Testing and Materials (ASTM D6751) standard levels, except for the viscosity value which was 1.14 g·cm−3. PMID:24688372

  13. Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic doppler method

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)

  14. Introduction to 2D and 3D tomographic methods based on straight line propagation: X-ray, emission and ultrasonic tomography

    International Nuclear Information System (INIS)

    Peyrin, F.; Magnin, I.; Garnero, L.

    1996-01-01

    This paper presents the basic principles of computerized tomography (CT), and its evolution towards three dimensional (3D) imaging. Since the modeling of CT reconstruction relies on the Radon transform, its definition and major properties are first recalled. After a brief summary on conventional 2D methods, we present the imaging principles for two modalities appropriated to this modeling: X-Ray and emission tomography. We describe the evolution of the instrumentation for these two techniques, and emphasize the approximations introduced by a modeling using the Radon transform taking into account the physics of the problem. We also describe the principles of ultrasonic tomography systems, and their major differences with the two previous techniques. At last, we formulate the general problematic of 3D image reconstruction from 2D projections. We consider four classes of reconstruction methods corresponding to the classification to the classification chosen for the synthetic presentation of methods, accompanying this paper. (authors)

  15. Methods of digital image processing

    International Nuclear Information System (INIS)

    Doeler, W.

    1985-01-01

    Increasing use of computerized methods for diagnostical imaging of radiological problems will open up a wide field of applications for digital image processing. The requirements set by routine diagnostics in medical radiology point to picture data storage and documentation and communication as the main points of interest for application of digital image processing. As to the purely radiological problems, the value of digital image processing is to be sought in the improved interpretability of the image information in those cases where the expert's experience and image interpretation by human visual capacities do not suffice. There are many other domains of imaging in medical physics where digital image processing and evaluation is very useful. The paper reviews the various methods available for a variety of problem solutions, and explains the hardware available for the tasks discussed. (orig.) [de

  16. Log response of ultrasonic imaging and its significance for deep mineral prospecting of scientific drilling borehole-2 in Nanling district, China

    International Nuclear Information System (INIS)

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Yue, Xuyuan; Zhou, Xinpeng; Li, Jianguo; Zhao, Bin

    2014-01-01

    The hole NLSD-2, one of the deepest scientific drilling projects in the metallic ore districts of China, is the second scientific drilling deep hole in the Nanling district. Its ultimate depth is 2012.12 m. This hole was created through the implementation of continuous coring, and the measuring of a variety of geophysical well logging methods was performed over the course of the drilling process. This paper analyzes the characteristic responses of the fracture and fractured zone by ultrasonic imaging log data, and characterizes various rules of fracture parameters which change according to drilling depth. It then discusses the denotative meaning of the log results of polymetallic mineralization layers. The formation fractures develop most readily in a depth of 100∼200 m, 600∼850 m and 1450∼1550 m of the hole NLSD-2, and high angle fractures develop most prominently. The strike direction of the fractures is mainly NW-SE, reflecting the orientation of maximum horizontal principal stress. For the polymetallic mineralization layer that occurred in the fractured zone, the characteristic response of ultrasonic imaging log is a wide dark zone, and the characteristic responses of conventional logs displayed high polarizability, high density, high acoustic velocity and low resistivity. All the main polymetallic mineralization layers are developed in fractures or fractured zones, and the fractures and fractured zones can be identified by an ultrasonic imaging log, thus the log results indirectly indicate the occurrence of polymetallic mineralization layers. Additionally, the relationship between the dip direction of fractures and the well deviation provides guidance for straightening of the drilling hole. (paper)

  17. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Resolution improvement of ultrasonic echography methods in non destructive testing by adaptative deconvolution

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echography has a lot of advantages which make it attractive for nondestructive testing. But the important acoustic energy useful to go through very attenuating materials can be got only with resonant translators, that is a limit for the resolution on measured echograms. This resolution can be improved by deconvolution. But this method is a problem for austenitic steel. Here is developed a method of time deconvolution which allows to take in account the characteristics of the wave. A first step of phase correction and a second step of spectral equalization which gives back the spectral contents of ideal reflectivity. The two steps use fast Kalman filters which reduce the cost of the method

  19. Power dissipated measurement of an ultrasonic generator in a viscous medium by flowmetric method.

    Science.gov (United States)

    Mancier, Valérie; Leclercq, Didier

    2008-09-01

    A new flowmetric method of the power dissipated by an ultrasound generator in an aqueous medium has been developed in previous works and described in a preceding paper [V. Mancier, D. Leclercq, Ultrasonics Sonochemistry 14 (2007) 99-106]. The works presented here are an enlargement of this method to a high viscosity liquid (glycerol) for which the classical calorimetric measurements are rather difficult. As expected, it is shown that the dissipated power increases with the medium viscosity. It was also found that this flowmetric method gives good results for various quantities of liquid and positioning of the sonotrode in the tank. Moreover, the important variation of viscosity due to the heating of the liquid during experiments does not disturb flow measurements.

  20. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  1. An ultrasonic-accelerated oxidation method for determining the oxidative stability of biodiesel.

    Science.gov (United States)

    Avila Orozco, Francisco D; Sousa, Antonio C; Domini, Claudia E; Ugulino Araujo, Mario Cesar; Fernández Band, Beatriz S

    2013-05-01

    Biodiesel is considered an alternative energy because it is produced from fats and vegetable oils by means of transesterification. Furthermore, it consists of fatty acid alkyl esters (FAAS) which have a great influence on biodiesel fuel properties and in the storage lifetime of biodiesel itself. The biodiesel storage stability is directly related to the oxidative stability parameter (Induction Time - IT) which is determined by means of the Rancimat® method. This method uses condutimetric monitoring and induces the degradation of FAAS by heating the sample at a constant temperature. The European Committee for Standardization established a standard (EN 14214) to determine the oxidative stability of biodiesel, which requires it to reach a minimum induction period of 6h as tested by Rancimat® method at 110°C. In this research, we aimed at developing a fast and simple alternative method to determine the induction time (IT) based on the FAAS ultrasonic-accelerated oxidation. The sonodegradation of biodiesel samples was induced by means of an ultrasonic homogenizer fitted with an immersible horn at 480Watts of power and 20 duty cycles. The UV-Vis spectrometry was used to monitor the FAAS sonodegradation by measuring the absorbance at 270nm every 2. Biodiesel samples from different feedstock were studied in this work. In all cases, IT was established as the inflection point of the absorbance versus time curve. The induction time values of all biodiesel samples determined using the proposed method was in accordance with those measured through the Rancimat® reference method by showing a R(2)=0.998. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Ultrasonic force microscopy: detection and imaging of ultra-thin molecular domains.

    Science.gov (United States)

    Dinelli, Franco; Albonetti, Cristiano; Kolosov, Oleg V

    2011-03-01

    The analysis of the formation of ultra-thin organic films is a very important issue. In fact, it is known that the properties of organic light emitting diodes and field effect transistors are strongly affected by the early growth stages. For instance, in the case of sexithiophene, the presence of domains made of molecules with the backbone parallel to the substrate surface has been indirectly evidenced by photoluminescence spectroscopy and confocal microscopy. On the contrary, conventional scanning force microscopy both in contact and intermittent contact modes have failed to detect such domains. In this paper, we show that Ultrasonic Force Microscopy (UFM), sensitive to nanomechanical properties, allows one to directly identify the structure of sub-monolayer thick films. Sexithiophene flat domains have been imaged for the first time with nanometer scale spatial resolution. A comparison with lateral force and intermittent contact modes has been carried out in order to explain the origins of the UFM contrast and its advantages. In particular, it indicates that UFM is highly suitable for investigations where high sensitivity to material properties, low specimen damage and high spatial resolution are required. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Ultrasonic Nebulizer Assisted LIBS: a Promising Metal Elements Detection Method for Aqueous Sample Analysis

    International Nuclear Information System (INIS)

    Zhong Shilei; Zheng Ronger; Lu Yuan; Cheng Kai; Xiu Junshan

    2015-01-01

    A newly developed approach for trace metal elements detection for aqueous samples analysis is presented in this paper. The idea of this approach is to improve ablation efficiency by transforming the liquid sample into a dense cloud of droplets using an ultrasonic nebulizer. The resulting droplets are then subjected to analysis by laser induced breakdown spectroscopy (LIBS). A purpose-built ultrasonic nebulizer assisted LIBS (UN-LIBS) system has been applied to the analysis of aqueous samples at trace levels of concentration. Experimental investigations of solution samples were carried out with various dissolved trace metal elements (Mn, Zn, Cu, Pb, Fe, Mg and Na) using this approach. The characteristics of UN-LIBS signal of the elements were investigated regarding the lifetime and S/B ratio and the calibration curves for trace metal elements analyses. The obtained LODs are comparable or much better than the LODS of the reported signal enhancement approaches when the laser pulse energy was as low as 30 mJ. The good linearity of calibration curves and the low LODs shows the potential ability of this method for metal elements analysis application. The density of the electrons was calculated by measuring the Stark width of the line of H α . The possible mechanism of the LIBS signal enhancement of this approach was briefly discussed. (paper)

  4. A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption.

    Science.gov (United States)

    Barathi, M; Kumar, A Santhana Krishna; Rajesh, N

    2014-05-01

    In the present work, we propose for the first time a novel ultrasound assisted methodology involving the impregnation of zirconium in a cellulose matrix. Fluoride from aqueous solution interacts with the cellulose hydroxyl groups and the cationic zirconium hydroxide. Ultrasonication ensures a green and quick alternative to the conventional time intensive method of preparation. The effectiveness of this process was confirmed by comprehensive characterization of zirconium impregnated cellulose (ZrIC) adsorbent using Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction (XRD) studies. The study of various adsorption isotherm models, kinetics and thermodynamics of the interaction validated the method. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A novel method to design sparse linear arrays for ultrasonic phased array.

    Science.gov (United States)

    Yang, Ping; Chen, Bin; Shi, Ke-Ren

    2006-12-22

    In ultrasonic phased array testing, a sparse array can increase the resolution by enlarging the aperture without adding system complexity. Designing a sparse array involves choosing the best or a better configuration from a large number of candidate arrays. We firstly designed sparse arrays by using a genetic algorithm, but found that the arrays have poor performance and poor consistency. So, a method based on the Minimum Redundancy Linear Array was then adopted. Some elements are determined by the minimum-redundancy array firstly in order to ensure spatial resolution and then a genetic algorithm is used to optimize the remaining elements. Sparse arrays designed by this method have much better performance and consistency compared to the arrays designed only by a genetic algorithm. Both simulation and experiment confirm the effectiveness.

  6. An Image Registration Method for Colposcopic Images

    Directory of Open Access Journals (Sweden)

    Efrén Mezura-Montes

    2013-01-01

    sequence and a division of such image into small windows. A search process is then carried out to find the window with the highest affinity in each image of the sequence and replace it with the window in the reference image. The affinity value is based on polynomial approximation of the time series computed and the search is bounded by a search radius which defines the neighborhood of each window. The proposed approach is tested in ten 310-frame real cases in two experiments: the first one to determine the best values for the window size and the search radius and the second one to compare the best obtained results with respect to four registration methods found in the specialized literature. The obtained results show a robust and competitive performance of the proposed approach with a significant lower time with respect to the compared methods.

  7. Ultrasonic Digital Communication System for a Steel Wall Multipath Channel: Methods and Results

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Timothy L. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2005-12-01

    As of the development of this thesis, no commercially available products have been identified for the digital communication of instrumented data across a thick ({approx} 6 n.) steel wall using ultrasound. The specific goal of the current research is to investigate the application of methods for digital communication of instrumented data (i.e., temperature, voltage, etc.) across the wall of a steel pressure vessel. The acoustic transmission of data using ultrasonic transducers prevents the need to breach the wall of such a pressure vessel which could ultimately affect its safety or lifespan, or void the homogeneity of an experiment under test. Actual digital communication paradigms are introduced and implemented for the successful dissemination of data across such a wall utilizing solely an acoustic ultrasonic link. The first, dubbed the ''single-hop'' configuration, can communicate bursts of digital data one-way across the wall using the Differential Binary Phase-Shift Keying (DBPSK) modulation technique as fast as 500 bps. The second, dubbed the ''double-hop'' configuration, transmits a carrier into the vessel, modulates it, and retransmits it externally. Using a pulsed carrier with Pulse Amplitude Modulation (PAM), this technique can communicate digital data as fast as 500 bps. Using a CW carrier, Least Mean-Squared (LMS) adaptive interference suppression, and DBPSK, this method can communicate data as fast as 5 kbps. A third technique, dubbed the ''reflected-power'' configuration, communicates digital data by modulating a pulsed carrier by varying the acoustic impedance at the internal transducer-wall interface. The paradigms of the latter two configurations are believed to be unique. All modulation methods are based on the premise that the wall cannot be breached in any way and can therefore be viably implemented with power delivered wirelessly through the acoustic channel using ultrasound. Methods

  8. Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method

    International Nuclear Information System (INIS)

    Narasimha Murthy, I.; Venkata Rao, D.; Babu Rao, J.

    2012-01-01

    Highlights: ► Nano structured fly ash has been produced by 30 h milling time. ► Al–fly ash nano composites were produced by ultrasonic cavitation route. ► A homogeneous distribution of nano fly ash particles was observed in the matrix. ► No additional contamination in the nano composites from the atmosphere. ► Presence of nano fly ash leads to improvement in the strength of the composites. -- Abstract: In this paper an attempt has been made to modify the micro sized fly ash into nano structured fly ash using high energy ball mill. Ball milling was carried out for the total duration of 30 h. The sample was taken out after every 5 h of milling for characterizing. The nano structured fly ash was characterized for its crystallite size and lattice strain by using X-ray diffractometer. It was found that a steady decrease in the crystallite size and increased lattice strain was observed with milling time; the crystallite size at 30 h milling time was found to be 23 nm. The fresh fly ash particles are mostly spherical in shape; whereas the shape of the 30 h milled fly ash particles is irregular and the surface morphology is rough. Al–fly ash nano composites were produced by ultrasonic cavitation route successfully. Scanning electron microscopy images of nano composites reveal a homogeneous distribution of the nano fly ash particles in the AA 2024 matrix. Energy dispersive spectroscopy analysis of nano composites reveals that the fabricated nano composite did not contain any additional contamination from the atmosphere. As the amount of nano fly ash is increasing the hardness of the composite also increasing. The nano fly ash addition leads to improvement in the compression strength of the composites.

  9. A method for the preparation of curcumin by ultrasonic-assisted ammonium sulfate/ethanol aqueous two phase extraction.

    Science.gov (United States)

    Xu, Guangkuan; Hao, Changchun; Tian, Suyang; Gao, Feng; Sun, Wenyuan; Sun, Runguang

    2017-01-15

    This study investigated a new and easy-to-industrialized extracting method for curcumin from Curcuma longa rhizomes using ultrasonic extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS), and the preparation of curcumin using the semi-preparative HPLC. The single-factor experiments and response surface methodology (RSM) were utilized to determine the optimal material-solvent ratio, ultrasonic intensity (UI) and ultrasonic time. The optimum extraction conditions were finally determined to be material-solvent rate of 3.29:100, ultrasonic intensity of 33.63W/cm 2 and ultrasonic time of 17min. At these optimum conditions, the extraction yield could reach 46.91mg/g. And the extraction yields of curcumin remained stable in the case of amplification, which indicated that scale-up extraction was feasible and efficient. Afterwards, the semi-preparative HPLC experiment was carried out, in which optimal preparation conditions were elected according to the single factor experiment. The prepared curcumin was obtained and the purity could up to 85.58% by the semi-preparative HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A comparison of sputum induction methods: ultrasonic vs compressed-air nebulizer and hypertonic vs isotonic saline inhalation.

    Science.gov (United States)

    Loh, L C; Eg, K P; Puspanathan, P; Tang, S P; Yip, K S; Vijayasingham, P; Thayaparan, T; Kumar, S

    2004-03-01

    Airway inflammation can be demonstrated by the modem method of sputum induction using ultrasonic nebulizer and hypertonic saline. We studied whether compressed-air nebulizer and isotonic saline which are commonly available and cost less, are as effective in inducing sputum in normal adult subjects as the above mentioned tools. Sixteen subjects underwent weekly sputum induction in the following manner: ultrasonic nebulizer (Medix Sonix 2000, Clement Clarke, UK) using hypertonic saline, ultrasonic nebulizer using isotonic saline, compressed-air nebulizer (BestNeb, Taiwan) using hypertonic saline, and compressed-air nebulizer using isotonic saline. Overall, the use of an ultrasonic nebulizer and hypertonic saline yielded significantly higher total sputum cell counts and a higher percentage of cell viability than compressed-air nebulizers and isotonic saline. With the latter, there was a trend towards squamous cell contaminations. The proportion of various sputum cell types was not significantly different between the groups, and the reproducibility in sputum macrophages and neutrophils was high (Intraclass correlation coefficient, r [95%CI]: 0.65 [0.30-0.91] and 0.58 [0.22-0.89], p compressed-air nebulizers and isotonic saline. We conclude that in normal subjects, although both nebulizers and saline types can induce sputum with reproducible cellular profile, ultrasonic nebulizers and hypertonic saline are more effective but less well tolerated.

  11. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    Science.gov (United States)

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Imaging methods in otorhinolaryngology

    International Nuclear Information System (INIS)

    Frey, K.W.; Mees, K.; Vogl, T.

    1989-01-01

    This book is the work of an otorhinolaryngologist and two radiologists, who combined their experience and efforts in order to solve a great variety and number of problems encountered in practical work, taking into account the latest technical potentials and the practical feasibility, which is determined by the equipment available. Every chapter presents the full range of diagnostic methods applicable, starting with the suitable plain radiography methods and proceeding to the various tomographic scanning methods, including conventional tomography. Every technique is assessed in terms of diagnostic value and drawbacks. (orig./MG) With 778 figs [de

  13. Image restoration and processing methods

    International Nuclear Information System (INIS)

    Daniell, G.J.

    1984-01-01

    This review will stress the importance of using image restoration techniques that deal with incomplete, inconsistent, and noisy data and do not introduce spurious features into the processed image. No single image is equally suitable for both the resolution of detail and the accurate measurement of intensities. A good general purpose technique is the maximum entropy method and the basis and use of this will be explained. (orig.)

  14. MLFMA-accelerated Nyström method for ultrasonic scattering - Numerical results and experimental validation

    Science.gov (United States)

    Gurrala, Praveen; Downs, Andrew; Chen, Kun; Song, Jiming; Roberts, Ron

    2018-04-01

    Full wave scattering models for ultrasonic waves are necessary for the accurate prediction of voltage signals received from complex defects/flaws in practical nondestructive evaluation (NDE) measurements. We propose the high-order Nyström method accelerated by the multilevel fast multipole algorithm (MLFMA) as an improvement to the state-of-the-art full-wave scattering models that are based on boundary integral equations. We present numerical results demonstrating improvements in simulation time and memory requirement. Particularly, we demonstrate the need for higher order geom-etry and field approximation in modeling NDE measurements. Also, we illustrate the importance of full-wave scattering models using experimental pulse-echo data from a spherical inclusion in a solid, which cannot be modeled accurately by approximation-based scattering models such as the Kirchhoff approximation.

  15. Ultrasonic inspection method and system for detection of steeple cracking in turbine disk rims

    International Nuclear Information System (INIS)

    Birring, A.S.; Lamping, G.A.; Van der Veer, W.R.; Hanley, J.J.

    1990-01-01

    Steam turbine disks which operate under high cyclic stress in a moist environment can develop cracks in the disk-rim steeples. Detection of these cracks using nondestructive testing methods is necessary to assure safe operation and avoid unnecessary disk replacement. Both magnetic particle (MT) and ultrasonic testing (UT) can be used to inspect the steeples; however, UT can be used without removing the blades. A system for inspecting bladed steeples has been developed that can be applied on a range of disks including those in Westinghouse, General Electric, and Allis Chalmers turbines. The system performs an inspection as the turbine is rotated at slow speeds over turning rolls. This procedure greatly reduces inspection time because the inspection can be done without deblading the disk or resetting the inspection equipment for different rim segments

  16. Analysis of the magnetic properties nanoscale barium hexaferrite (BHF) prepared by milling and ultrasonic method

    International Nuclear Information System (INIS)

    Novizal; Edie, Sasito; Manawan, Mykel T.E.

    2016-01-01

    Barium hexaferrite (BHF) is well established material which widely used respectively as permanent magnets. In this research, we report our recent investigation on magnetic properties analysis of barium hexaferrite (BHF) compounds with a ratio of Fe/Ba: 11 prepared by a mechanical alloying process and high power ultrasonic destruction to promote the soft magnetic properties. The investigation carried out by Scanning Electron Microscope (SEM) shows the grain size between 500-1500 nm, it indicates that each grain is composed of several crystallites or polycrystalline. By mean of X-ray diff raction revealed the phase composition and the mean crystallite size <70 nm. The Characterization of the magnetic properties of the effects of downsizing the particle size of ∼ 200 nm to ∼ 50 nm by the ultasonik method provide saturation value of 0.35 T, remanent 0.24 T and the coercivity is 115 kA / m. (paper)

  17. Preparation of Al/Si functionally graded materials using ultrasonic separation method

    Directory of Open Access Journals (Sweden)

    Zhang Zhongtao

    2008-08-01

    Full Text Available Functionally graded materials (FGM have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare Al/Si FGM using power ultrasonic separation method. Material sample with continuously changing composition and performance/properties was successfully produced. Results showed that the microstructure of the FGM sample transited, from its top to bottom, from the hypereutectic structure with a large quantity of primary Si gradually to the eutectic, and fi nally to the hypoeutectic with numerous primary Al dendrites. The distribution of primary Si and microhardness of the FGM sample also presented graded characteristics, resulting that the wear resistance of the FGM sample decreased from top to bottom. Preliminary discussion was made on the mechanism of the formation of Al/Si FGM.

  18. Methods in quantitative image analysis.

    Science.gov (United States)

    Oberholzer, M; Ostreicher, M; Christen, H; Brühlmann, M

    1996-05-01

    histogram of an existing image (input image) into a new grey value histogram (output image) are most quickly handled by a look-up table (LUT). The histogram of an image can be influenced by gain, offset and gamma of the camera. Gain defines the voltage range, offset defines the reference voltage and gamma the slope of the regression line between the light intensity and the voltage of the camera. A very important descriptor of neighbourhood relations in an image is the co-occurrence matrix. The distance between the pixels (original pixel and its neighbouring pixel) can influence the various parameters calculated from the co-occurrence matrix. The main goals of image enhancement are elimination of surface roughness in an image (smoothing), correction of defects (e.g. noise), extraction of edges, identification of points, strengthening texture elements and improving contrast. In enhancement, two types of operations can be distinguished: pixel-based (point operations) and neighbourhood-based (matrix operations). The most important pixel-based operations are linear stretching of grey values, application of pre-stored LUTs and histogram equalisation. The neighbourhood-based operations work with so-called filters. These are organising elements with an original or initial point in their centre. Filters can be used to accentuate or to suppress specific structures within the image. Filters can work either in the spatial or in the frequency domain. The method used for analysing alterations of grey value intensities in the frequency domain is the Hartley transform. Filter operations in the spatial domain can be based on averaging or ranking the grey values occurring in the organising element. The most important filters, which are usually applied, are the Gaussian filter and the Laplace filter (both averaging filters), and the median filter, the top hat filter and the range operator (all ranking filters). Segmentation of objects is traditionally based on threshold grey values. (AB

  19. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-01-01

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members. PMID:28773347

  20. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method.

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-03-23

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members.

  1. Numerical methods for image registration

    CERN Document Server

    Modersitzki, Jan

    2003-01-01

    Based on the author's lecture notes and research, this well-illustrated and comprehensive text is one of the first to provide an introduction to image registration with particular emphasis on numerical methods in medical imaging. Ideal for researchers in industry and academia, it is also a suitable study guide for graduate mathematicians, computer scientists, engineers, medical physicists, and radiologists.Image registration is utilised whenever information obtained from different viewpoints needs to be combined or compared and unwanted distortion needs to be eliminated. For example, CCTV imag

  2. Twin-Foucault imaging method

    Science.gov (United States)

    Harada, Ken

    2012-02-01

    A method of Lorentz electron microscopy, which enables observation two Foucault images simultaneously by using an electron biprism instead of an objective aperture, was developed. The electron biprism is installed between two electron beams deflected by 180° magnetic domains. Potential applied to the biprism deflects the two electron beams further, and two Foucault images with reversed contrast are then obtained in one visual field. The twin Foucault images are able to extract the magnetic domain structures and to reconstruct an ordinary electron micrograph. The developed Foucault method was demonstrated with a 180° domain structure of manganite La0.825Sr0.175MnO3.

  3. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    International Nuclear Information System (INIS)

    1980-01-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  4. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  5. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  6. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    Science.gov (United States)

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  7. Self-calibration method for rotating laser positioning system using interscanning technology and ultrasonic ranging.

    Science.gov (United States)

    Wu, Jun; Yu, Zhijing; Zhuge, Jingchang

    2016-04-01

    A rotating laser positioning system (RLPS) is an efficient measurement method for large-scale metrology. Due to multiple transmitter stations, which consist of a measurement network, the position relationship of these stations must be first calibrated. However, with such auxiliary devices such as a laser tracker, scale bar, and complex calibration process, the traditional calibration methods greatly reduce the measurement efficiency. This paper proposes a self-calibration method for RLPS, which can automatically obtain the position relationship. The method is implemented through interscanning technology by using a calibration bar mounted on the transmitter station. Each bar is composed of three RLPS receivers and one ultrasonic sensor whose coordinates are known in advance. The calibration algorithm is mainly based on multiplane and distance constraints and is introduced in detail through a two-station mathematical model. The repeated experiments demonstrate that the coordinate measurement uncertainty of spatial points by using this method is about 0.1 mm, and the accuracy experiments show that the average coordinate measurement deviation is about 0.3 mm compared with a laser tracker. The accuracy can meet the requirements of most applications, while the calibration efficiency is significantly improved.

  8. WE-H-206-01: Photoacoustic Tomography: Multiscale Imaging From Organelles to Patients by Ultrasonically Beating the Optical Diffusion Limit

    International Nuclear Information System (INIS)

    Wang, L.

    2016-01-01

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  9. WE-H-206-01: Photoacoustic Tomography: Multiscale Imaging From Organelles to Patients by Ultrasonically Beating the Optical Diffusion Limit

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Washington University (United States)

    2016-06-15

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  10. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    Science.gov (United States)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be

  11. Mathematical methods in elasticity imaging

    CERN Document Server

    Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul

    2015-01-01

    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...

  12. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems

    2004-09-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.

  13. A novel preparation method for drug nanocrystals and characterization by ultrasonic spray assisted electrostatic adsorption

    Directory of Open Access Journals (Sweden)

    Gao B

    2013-10-01

    Full Text Available Bing Gao,1–3 Jun Wang,2 Dunju Wang,1,2 Ziqiang Zhu,1,2 Zhiqiang Qiao,2 Guangcheng Yang,2 Fude Nie21School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China, 2Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China, 3Si Chuan Research Center of New Materials, Mianyang, People's Republic of ChinaPurpose: The purpose of this study was to develop a novel and continuous method for preparing a nanosized particle of drug crystals and to characterize its properties.Materials and methods: A new apparatus was introduced to crystallize nanosized drug crystals of amitriptyline hydrochloride as a model drug. The samples were prepared in the pure state by ultrasonic spray, and elaborated deposition was completed via electrostatic adsorption. Scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy were used to characterize the size of the particles; this was subsequently followed by differential scanning calorimetry.Results and discussion: Nanoparticles of drug crystals were successfully prepared. The size of the drug crystals ranged from 20 nm to 400 nm; the particle size of amitriptyline hydrochloride was approximately 71 nm. The particles were spherical and rectangular in shape. Moreover, the melting point of the nanoparticles decreased from 198.2°C to 196.3°C when compared to raw particle crystals. Furthermore, the agglomeration effect was also attenuated as a result of electrostatic repulsion among each particle when absorbed, and depositing on the inner wall of the gathering unit occurred under the electrostatic effect.Conclusion: Ultrasonic spray-assisted electrostatic adsorption is a very effective and continuous method to produce drug nanocrystals. This method can be applied to poorly water-soluble drugs, and it can also be a very effective alternative for industrial production. Once the

  14. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  15. Fundamentals of Medical Ultrasonics

    CERN Document Server

    Postema, Michiel

    2011-01-01

    This book sets out the physical and engineering principles of acoustics and ultrasound as used for medical applications. It covers the basics of linear acoustics, wave propagation, non-linear acoustics, acoustic properties of tissue, transducer components, and ultrasonic imaging modes, as well as the most common diagnostic and therapeutic applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

  16. Contribution of the ultrasonic simulation to the testing methods qualification process; Contribution de la modelisation ultrasonore au processus de qualification des methodes de controle

    Energy Technology Data Exchange (ETDEWEB)

    Le Ber, L.; Calmon, P. [CEA/Saclay, STA, 91 - Gif-sur-Yvette (France); Abittan, E. [Electricite de France (EDF-GDL), 93 - Saint-Denis (France)

    2001-07-01

    The CEA and EDF have started a study concerning the simulation interest in the qualification of nuclear components control by ultrasonic methods. In this framework, the simulation tools of the CEA, as CIVA, have been tested on real control. The method and the results obtained on some examples are presented. (A.L.B.)

  17. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao, Qi; Xie, Ming; Liu, Yichun; Yi, Jianhong

    2017-01-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  18. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xie, Ming [Kunming Institute of Precious Metals, Kunming 650106 (China); Liu, Yichun, E-mail: liuyichun@kmust.edu.cn [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yi, Jianhong [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2017-07-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  19. ZnO nanowire/TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method

    International Nuclear Information System (INIS)

    Gan Xiaoyan; Li Xiaomin; Gao Xiangdong; Zhuge Fuwei; Yu Weidong

    2010-01-01

    Hybrid ZnO/TiO 2 photoanodes for dye-sensitized solar cells were prepared by combining ZnO nanowire (NW) arrays and TiO 2 nanoparticles (NPs) with the assistance of the ultrasonic irradiation assisted dip-coating method. Results show that the ultrasonic irradiation was an efficient way to promote the gap filling of TiO 2 NPs in the interstices of ZnO NWs. Hybrid ZnO NW/TiO 2 NP electrodes prepared with ultrasonic treatment exhibited better gap filling efficiency and higher visible absorptance. The overall conversion efficiency of the hybrid electrode was 0.79%, representing 35% improvement compared with that of the traditional one (0.58%). The enlarged surface area and improved attachments of TiO 2 NPs onto the walls of ZnO NWs induced by the application of ultrasonic irradiation may be the underlying reason. Electrochemical impedance spectroscopy measurements indicated that hybrid electrodes combined the advantages of improved electron transport along the ZnO NWs and increased surface area provided by infiltrated TiO 2 NPs, both of which are responsible for the improved cell efficiency.

  20. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    International Nuclear Information System (INIS)

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-01-01

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along the ultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. If attenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler

  1. Fatigue crack growth studies on a tee junction using ultrasonic non-destructive methods

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Ramesh, A.S.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    Fatigue cracks need to be detected and sized to maintain structural integrity. The significance of cracks detected in service must also be assessed. This paper describes the on-line ultrasonic testing carried out on a Tee joint subjected to fatigue loading. The initiation and growth of the cracks were monitored for every 5,000 cycles up to 40,000 cycles. The study demonstrated the use of ultrasonic testing for fatigue crack growth detection and sizing. (author)

  2. The improvement of ultrasonic characteristics in weld metal of austenitic stainless steel using magnetic stirring method

    International Nuclear Information System (INIS)

    Arakawa, T.; Tomisawa, Y.

    1988-01-01

    The magnetic stirring welding process was tested to save the difficulty of ultrasonic testing of austenitic stainless steel overlayed welds, due to grain refinement of weld solidification structure. The testing involved stirring the molten pool with Lorenz force induced by the interaction of welding current and alternative magnetic field applied from the outside magnetic coil. This report summarizes improvement of ultrasonic characteristic in austenitic stainless steel overlayed welds caused by magnetic stirring welding process

  3. Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method

    International Nuclear Information System (INIS)

    Liu Youyong; Cao Chuanbao

    2010-01-01

    A simple and effective method, the ultrasonic-assisted co-precipitation method, was employed to synthesize nano-sized LiFePO 4 /C. A glucose solution was used as the carbon source to produce in situ carbon to improve the conductivity of LiFePO 4 . Ultrasonic irradiation was adopted to control the size and homogenize the LiFePO 4 /C particles. The sample was characterized by X-ray powder diffraction, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). FE-SEM and TEM show that the as-prepared sample has a reduced particle size with a uniform size distribution, which is around 50 nm. A uniform amorphous carbon layer with a thickness of about 4-6 nm on the particle surface was observed, as shown in the HRTEM image. The electrochemical performance was demonstrated by the charge-discharge test and electrochemical impedance spectra measurements. The results indicate that the nano-sized LiFePO 4 /C presents enhanced discharge capacities (159, 147 and 135 mAh g -1 at 0.1, 0.5 and 2 C-rate, respectively) and stable cycling performance. This study offers a simple method to design and synthesis nano-sized cathode materials for lithium-ion batteries.

  4. Dynamic analysis of ultrasonically levitated droplet with moving particle semi-implicit and distributed point source method

    Science.gov (United States)

    Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro

    2015-07-01

    Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.

  5. Improvement to defect detection by ultrasonic data processing: the DTVG method

    International Nuclear Information System (INIS)

    Francois, D.

    1995-10-01

    The cast elbows of the pipes of the principal primary circuit of French PWR, made of austenitic-ferritic stainless steel, pose problems to control. In order to improve the ultrasonic detection of defects in coarse-grained materials, we propose a method (called DTVG) based on the statistic study of the spatial stability of events contained in temporal signals. At the Beginning, the method was developed during a thesis (G. Corneloup, 1998) to improve the detection of cracks in thin thickness austenitic welds. Here, we propose to adapt the DTVG method and estimate its performances in detection of defects in thick materials representative of cast austenitic-ferritic elbows steels. The first objective of the study is adapting the original treatment applied to the thin thickness austenitic welds for the detection of defects in thick thickness austenitic-ferritic cast steels. The second objective consist of improving the algorithm to take in account the difference between thin and thick material and estimating the performances of the DTVG method in detection in specimen block with artificial defects. This work has led to adapt the original DTVG method to control thick cast austenitic-ferritic specimen (80 mm) under normal and oblique incidence. More, the study has allowed to make the the treatment automatic (automatic research of parameters). The results have shown that the DTVG method is fitted to detect artificial defects in thick cast austenitic-ferritic sample steel. All the defects in the specimen block have been detected without revealing false indication. (author). 4 refs., 4 figs

  6. System for ultrasonic examination

    International Nuclear Information System (INIS)

    Lund, S.A.; Kristensen, W.D.

    1987-01-01

    A computerized system for the recording of flaw images by ultrasonic examination according to the pulse-echo method includes at least one ultrasonic probe which can be moved in steps over the surface of an object along a rectilinear scanning path. Digital signals containing information on the successive positions of the sound beam, on echo amplitudes, and on the lengths of sound paths to reflectors inside the object, are processed and used for the accumulated storage of circular patterns of echo amplitude data in a matrix memory associated with a sectional plane through the object. A video screen terminal controls the system and transforms the accumulated data into displays of sectional flaw images of greatly improved precision and sharpness of definition. A gradual transfer of filtered data from a number of parallel sectional planes to three further matrix memories associated with projection planes at right angles to each other permits presentation in three dimensions of equally improved projection flaw images. (author) 2 figs

  7. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  8. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Electron beam evaluation, harmonic imaging, materials characterization, and ultrasonic modelling

    International Nuclear Information System (INIS)

    Wu Ping; Lingvall, Fredrik; Stepinski, Tadeusz

    2000-12-01

    This report presents the research in the sixth phase that is concerned with ultrasonic techniques for assessing electron beam (EB) welds in copper canisters. The research has been carried out in three main aspects: (1) comparative inspections of EB welds, (2) EB weld evaluation, and (3) quantitative evaluation of attenuation in copper. Comparative inspections of EB welds in two copper canister blocks have been made by means of ultrasound and radiography. Comparison of the inspected results demonstrate that both techniques complement each other very well. The radiographic technique on the whole gives relatively better spatial resolution but low contrast in radiographs. It can reliably detect voids in EB, but cannot provide information about material structure in the EB weld. Ultrasonic technique provides information about flaw locations and shapes similar to the radiographs. Moreover, it can easily distinguish welded and non-welded zones and be used to study weld's macro- and microstructure. The defects in ultrasonic images often show higher contrast, and some flaw indications may be seen in ultrasonic inspection but not in radiographs. But small flaws are hard to distinguish from grain noise. For EB weld evaluation, first, scattering from EB weld has been investigated using three broadband transducers with different center frequencies. The investigation has shown that more information on scattering and attenuation can be exploited in this case so that the EB welds can be better characterized, and that the best frequency range for characterizing welds is 2 - 5 MHz. Secondly, harmonic imaging (HI) of EB welds have been studied using two different sources of harmonics: (i) transducer harmonics, originating from the high-order resonant modes of transmitters excited by a broadband pulse, and (ii) material harmonics, stemming from the nonlinear distortion of waves propagating in materials. The transducer HI exploits additional information due to transducer harmonics, and

  9. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Electron beam evaluation, harmonic imaging, materials characterization, and ultrasonic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ping; Lingvall, Fredrik; Stepinski, Tadeusz [Uppsala Univ. (Sweden). Dept. of Materials Science

    2000-12-01

    This report presents the research in the sixth phase that is concerned with ultrasonic techniques for assessing electron beam (EB) welds in copper canisters. The research has been carried out in three main aspects: (1) comparative inspections of EB welds, (2) EB weld evaluation, and (3) quantitative evaluation of attenuation in copper. Comparative inspections of EB welds in two copper canister blocks have been made by means of ultrasound and radiography. Comparison of the inspected results demonstrate that both techniques complement each other very well. The radiographic technique on the whole gives relatively better spatial resolution but low contrast in radiographs. It can reliably detect voids in EB, but cannot provide information about material structure in the EB weld. Ultrasonic technique provides information about flaw locations and shapes similar to the radiographs. Moreover, it can easily distinguish welded and non-welded zones and be used to study weld's macro- and microstructure. The defects in ultrasonic images often show higher contrast, and some flaw indications may be seen in ultrasonic inspection but not in radiographs. But small flaws are hard to distinguish from grain noise. For EB weld evaluation, first, scattering from EB weld has been investigated using three broadband transducers with different center frequencies. The investigation has shown that more information on scattering and attenuation can be exploited in this case so that the EB welds can be better characterized, and that the best frequency range for characterizing welds is 2 - 5 MHz. Secondly, harmonic imaging (HI) of EB welds have been studied using two different sources of harmonics: (i) transducer harmonics, originating from the high-order resonant modes of transmitters excited by a broadband pulse, and (ii) material harmonics, stemming from the nonlinear distortion of waves propagating in materials. The transducer HI exploits additional information due to transducer harmonics

  10. Signal analysis approach to ultrasonic evaluation of diffusion bond quality

    International Nuclear Information System (INIS)

    Thomas, Graham; Chinn, Diane

    1999-01-01

    Solid state bonds like the diffusion bond are attractive techniques for joining dissimilar materials since they are not prone to the defects that occur with fusion welding. Ultrasonic methods can detect the presence of totally unbonded regions but have difficulty sensing poor bonded areas where the substrates are in intimate contact. Standard ultrasonic imaging is based on amplitude changes in the signal reflected from the bond interface. Unfortunately, amplitude alone is not sensitive to bond quality. We demonstrated that there is additional information in the ultrasonic signal that correlates with bond quality. In our approach, we interrogated a set of dissimilar diffusion bonded samples with broad band ultrasonic signals. The signals were digitally processed and the characteristics of the signals that corresponded to bond quality were determined. These characteristics or features were processed with pattern recognition algorithms to produce predictions of bond quality. The predicted bond quality was then compared with the destructive measurement to assess the classification capability of the ultrasonic technique

  11. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    Science.gov (United States)

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  12. Comparison between sensitivities of quality control methods using ultrasonic waves, radiography and acoustic emission for the thick welded joint testing

    International Nuclear Information System (INIS)

    Asty, Michel; Birac, Claude

    1981-09-01

    The testing of the thick welded joints of the nuclear industry is carried out by radiography and ultrasonics on completion of welding. When a fault is found, its repair requires a sometimes deep cut down to the position of the fault, then filling in of the cut by hand welding with a coated electrode. This very costly operation also involves the risk of causing new defects when building up by hand. Listening to the acoustic emission during the welding has been considered in order to seek the possibility of detecting defects when they appear, or soon after. The industrial use of this method would make an instant repair of the defective areas possible at less cost and with greater reliability. The study presented concerns the comparison between the results of the various non-destructive testing methods: radiography, ultrasonics and acoustic emission, for a thick welded joint in which the defects have been brought about [fr

  13. Synthesis spherical porous hydroxyapatite/graphene oxide composites by ultrasonic-assisted method for biomedical applications.

    Science.gov (United States)

    Duan, Peizhen; Shen, Juan; Zou, Guohong; Xia, Xu; Jin, Bo; Yu, Jiaxin

    2018-04-10

    Spherical porous hydroxyapatite (SHA)/graphene oxide (GO) composites with different GO (w/w) content of 16%, 40%, and 71% have been fabricated through a facile and controllable ultrasonic-assisted method at room temperature. The products were characterized by x-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, mechanical testing and biomimetic mineralization. Results showed SHA were covered by GO, and SHA/GO composites had an irregular surface with different degrees of wrinkles. The elastic modulus and hardness of SHA/GO-3 composites were up to 12.45 ± 0.33 GPa and 686.67 ± 26.95 MPa, which indicated that the contents of GO had an effect on SHA/GO composites. And the mechanical properties of SHA/GO-2 composites were similar to SHA particles. The biomimetic mineralization in SBF solution showed the bone-like apatite layer on composites surface, which demonstrated that the SHA/GO materials had osseointegration property. Moreover, in vitro cytocompatibility of SHA/GO-2 composites and pure GO were evaluated by cell adhesion and proliferation tests using MC3T3-E1 cells, which demonstrated that the SHA/GO composites can act as a good template for the cells growth and adhesion. These results suggested that the SHA/GO composites will be a promising material for biomedical application.

  14. Deposition of Ni-CGO composite anodes by electrostatic assisted ultrasonic spray pyrolysis method

    International Nuclear Information System (INIS)

    Chen, J.-C.; Chang, C.-L.; Hsu, C.-S.; Hwang, B.-H.

    2007-01-01

    Deposition of composite films of Ni and Gd-doped ceria was carried out using the electrostatic assisted ultrasonic spray pyrolysis method for the first time. The composite films were highly homogeneous, as revealed by element mapping via energy-dispersive spectrometry. Scanning electron microscope examinations revealed that deposition temperature and electric field strength had profound influence on resultant microstructure, while composition of the precursor solution had little effect. A highly porous cauliflower structure ideal for solid oxide fuel cell anode performance was obtained with a deposition temperature of 450 deg. C under an electric field introduced by an applied voltage of 12 kV. Films obtained with a lower deposition temperature of 250 deg. C or a higher applied voltage of 15 kV resulted in denser films with low porosity, while lower applied voltages of 7 or 5 kV resulted in thinner or discontinuous films due to the insufficient electrostatic attraction on the aerosol droplets. As revealed by AC impedance measurement, the area specific resistances of the Ni-CGO anode with porous cauliflower structure were rather low and a value of 0.09 Ω cm 2 at 550 deg. C was obtained

  15. Quantitative imaging methods in osteoporosis.

    Science.gov (United States)

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  16. Resolution enhancement for ultrasonic echographic technique in non destructive testing with an adaptive deconvolution method

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echographic technique has specific advantages which makes it essential in a lot of Non Destructive Testing (NDT) investigations. However, the high acoustic power necessary to propagate through highly attenuating media can only be transmitted by resonant transducers, which induces severe limitations of the resolution on the received echograms. This resolution may be improved with deconvolution methods. But one-dimensional deconvolution methods come up against problems in non destructive testing when the investigated medium is highly anisotropic and inhomogeneous (i.e. austenitic steel). Numerous deconvolution techniques are well documented in the NDT literature. But they often come from other application fields (biomedical engineering, geophysics) and we show they do not apply well to specific NDT problems: frequency-dependent attenuation and non-minimum phase of the emitted wavelet. We therefore introduce a new time-domain approach which takes into account the wavelet features. Our method solves the deconvolution problem as an estimation one and is performed in two steps: (i) A phase correction step which takes into account the phase of the wavelet and estimates a phase-corrected echogram. The phase of the wavelet is only due to the transducer and is assumed time-invariant during the propagation. (ii) A band equalization step which restores the spectral content of the ideal reflectivity. The two steps of the method are performed using fast Kalman filters which allow a significant reduction of the computational effort. Synthetic and actual results are given to prove that this is a good approach for resolution improvement in attenuating media [fr

  17. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave

    Energy Technology Data Exchange (ETDEWEB)

    Machikhin, A S; Pozhar, V E [Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-02-28

    We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)

  18. Imaging method of minute injured area at achilles tendon from multiple MR Images

    International Nuclear Information System (INIS)

    Tokui, Takahiro; Imura, Masataka; Kuroda, Yoshihiro; Oshiro, Osamu; Oguchi, Makoto; Fujiwara, Kazuhisa; Tabata, Yoshito; Ishigaki, Rikuta

    2011-01-01

    Ruptures of Achilles tendon frequently occur while doing sports. Since two-thirds of the people who suffered from the rupture of Achilles tendon feel the pain at Achilles tendon before rupture, to detect the predictor of the rupture is possible. Achilles tendon is soft tissue consisting of unidirectionally-aligned collagen fibers. Therefore, ordinary MRI scanner, ultrasonic instrument or X-ray scanner cannot acquire medical images of Achilles tendon. However, because MR signal intensity changes according to the angle between static magnetic field direction and fiber orientation, MR device can detect strong signal when the angle is 55 deg. In this research, the authors propose the imaging method to detect injured area at Achilles tendon. The method calculates and visualizes the value representing fiber tropism from the matching between MR signal intensity and the model of signal intensity of angle dependence. (author)

  19. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  20. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  1. Development of an ultrasonic nondestructive inspection method for impact damage detection in composite aircraft structures

    Science.gov (United States)

    Capriotti, M.; Kim, H. E.; Lanza di Scalea, F.; Kim, H.

    2017-04-01

    High Energy Wide Area Blunt Impact (HEWABI) due to ground service equipment can often occur in aircraft structures causing major damages. These Wide Area Impact Damages (WAID) can affect the internal components of the structure, hence are usually not visible nor detectable by typical one-sided NDE techniques and can easily compromise the structural safety of the aircraft. In this study, the development of an NDI method is presented together with its application to impacted aircraft frames. The HEWABI from a typical ground service scenario has been previously tested and the desired type of damages have been generated, so that the aircraft panels could become representative study cases. The need of the aircraft industry for a rapid, ramp-friendly system to detect such WAID is here approached with guided ultrasonic waves (GUW) and a scanning tool that accesses the whole structure from the exterior side only. The wide coverage of the specimen provided by GUW has been coupled to a differential detection approach and is aided by an outlier statistical analysis to be able to inspect and detect faults in the challenging composite material and complex structure. The results will be presented and discussed with respect to the detection capability of the system and its response to the different damage types. Receiving Operating Characteristics curves (ROC) are also produced to quantify and assess the performance of the proposed method. Ongoing work is currently aimed at the penetration of the inner components of the structure, such as shear ties and C-frames, exploiting different frequency ranges and signal processing techniques. From the hardware and tool development side, different transducers and coupling methods, such as air-coupled transducers, are under investigation together with the design of a more suitable scanning technique.

  2. Studying and optimizing the biodiesel production from mastic oil aided by ultrasonic using response surface method

    Directory of Open Access Journals (Sweden)

    B Hosseinzdeh Samani

    2016-09-01

    Full Text Available Introduction Biodiesel is a promising renewable substitute source of fuel produced from tree born oils, vegetable based oils, fats of animals and even waste cooking oil, has been identified as one of the key solutions for the alarming global twin problems of fossil fuel depletion and environmental degradation. One of the sources for biodiesel production is mastic which is often grown in mountains. Its kernel contains 55% oil which makes it as a valuable renewable resource for biodiesel production. The objective of this research was to study of the feasibility of biodiesel production from Atlas mastic oil using ultrasonic system and optimization of the process using Response surface methodology. Materials and Methods In order to supply the required oil for the biodiesel production process, the oil should be prepared before the reaction. Hence, the purified oil was methylated using Metcalf et al (1996 method, and the prepared sample was injected into Gas Chromatography device to determine fatty acids profile and molecular weight of the used oil. An ultrasonic processor (Hielscher Model UP400S, USA. was used to perform the transesterification reaction. All the experiments were replicated three times to determine the variability of the results and to assess the experimental errors. The reported values are the average of the individual runs. The different operating parameters used in the present work, to optimize the extent of conversion of Atlas pistache oil, include methanol to oil molar ratio (4:1, 5:1 ,6:1, amplitude (24.1, 62.5 100%, pulse (24.1, 62.5 100%, reaction time (3, 6, 9 min. Results and Discussion Results of analyses showed that the independent variables, namely molar ratio, vibration amplitude, pulse and reaction time had significant effects on the amount of produced methyl ester. By increasing the amplitude and pulse, the methyl ester content increased. Increase in amplitude and pulse cause to increase the mixing effect and physical

  3. Ultrasonic TOFD method application for steel components and welds of 10 mm wall thickness using ultrasonic flaw detector and ULTRA7 TOFD software

    International Nuclear Information System (INIS)

    Kasarov, R.; Tabakova, B.

    2008-01-01

    Pressure Vessels inspection is carried out using complex of NDT techniques. A relatively recent technique ultrasonic NDJ is the Time-of-Flight Diffraction (TOFD,) method as an effective method for detection and sizing of flaws. One of the way inspection heavy duty steel elements and welds is to use manual TOFD technique with longitudinal waves at refracted angles of 45 to 70 degrees. Typically inspections using this method have been on steel elements and welds varying from 12 mm to 300 mm wall thickness. In this paper is presented examples of using the TOFD techniques for 10 mm wall thickness using USM 35X5 and ULTRA-7 TOFD software. This software provides TOFD inspection design (PCS, sound path, beam coverage, dead zones) and validation services. The calculations of the two dead zones are derived from relatively trigonometric equation, graphically displayed on a PC-screen and weld frame form. Using ULTRA-7 TOFD the user must move the gate at which the flaw is located on PC-screen to determine the depth of defect. The diffraction points graphically displayed in a weld frame form and analyzed using geometry calculations. (authors)

  4. Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover

    Directory of Open Access Journals (Sweden)

    Li-Li Zuo

    2012-03-01

    Full Text Available To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.

  5. Comparison of ultrasonic and CO₂laser pretreatment methods on enzyme digestibility of corn stover.

    Science.gov (United States)

    Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li

    2012-01-01

    To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO(2) laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO(2) laser irradiation. The present work demonstrated that the CO(2) laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO(2) laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO(2) laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.

  6. Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials

    International Nuclear Information System (INIS)

    Roth, D.J.; Swickard, S.M.; Stang, D.B.; Deguire, M.R.

    1990-03-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties

  7. Investigation of the visible light photocatalytic activity of BiVO4 prepared by sol gel method assisted by ultrasonication.

    Science.gov (United States)

    Deebasree, J P; Maheskumar, V; Vidhya, B

    2018-07-01

    Visible light induced photocatalyst BiVO 4 with monoclinic scheelite structure has been synthesised via sol gel method assisted by ultrasonication. The prepared samples were characterised using X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis diffused reflectance spectroscopy (DRS) techniques. The photocatalytic efficiency was evaluated by decolourisation of MB under visible light irradiation. The effect of ultrasound output power on the properties of BiVO 4 during and after preparation by sol-gel method has been compared with normal agitated sample (As prepared). The power of ultrasonic vibration has been varied and an ideal output power which yields better catalytic efficiency is determined. BiVO 4 sonicated with 80 W during preparation 80 W (D) exhibited relatively high surface area, better surface morphology and better catalytic efficiency compared to other samples which were sonicated with 100, 160 and 200 W. The results signify that the photodegradation rate of BiVO 4 80 W (D) sample is high up to 96% in 90 min compared to other samples. Change in morphology leading to better catalytic efficiency was obtained just by exposing the sample to ultrasonic radiation without addition of any surfactant. The recovery test showed that the sample was stable for four consecutive cycles. Using radical test, a reasonable mechanism for photodegradation has been proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A quality control method by ultrasonic vibration energy and diagnosis system at trimming process

    International Nuclear Information System (INIS)

    Suh, Chang Min; Song, Gil Ho; Pyoun, Young Shik

    2007-01-01

    In this paper, the characteristics in mechanical properties of ultrasonic cold forging treatment (UCFT) used for the trimming knife and the effects of ultrasonic vibration energy (UVE) into the trimming process on the state of the strip cutting face were studied. And a diagnosis system to quality control for trimming knife and strip cutting face was developed and installed in plant. By the plant application of UCFT, service life of knife was more increased over 100% than that of conventional knife and using the developed diagnosis system, the knife breakage and saw ear have been perfectly detected and quality control of trimming face is effectively obtained

  9. Ultrasonic horn design for ultrasonic machining technologies

    Directory of Open Access Journals (Sweden)

    Naď M.

    2010-07-01

    Full Text Available Many of industrial applications and production technologies are based on the application of ultrasound. In many cases, the phenomenon of ultrasound is also applied in technological processes of the machining of materials. The main element of equipments that use the effects of ultrasound for machining technology is the ultrasonic horn – so called sonotrode. The performance of ultrasonic equipment, respectively ultrasonic machining technologies depends on properly designed of sonotrode shape. The dynamical properties of different geometrical shapes of ultrasonic horns are presented in this paper. Dependence of fundamental modal properties (natural frequencies, mode shapes of various sonotrode shapes for various geometrical parameters is analyzed. Modal analyses of the models are determined by the numerical simulation using finite element method (FEM design procedures. The mutual comparisons of the comparable parameters of the various sonotrode shapes are presented.

  10. Methods of producing luminescent images

    International Nuclear Information System (INIS)

    Broadhead, P.; Newman, G.A.

    1977-01-01

    A method is described for producing a luminescent image in a layer of a binding material in which is dispersed a thermoluminescent material. The layer is heated uniformly to a temperature of 80 to 300 0 C and is exposed to luminescence inducing radiation whilst so heated. The preferred exposing radiation is X-rays and preferably the thermoluminescent material is insensitive to electromagnetic radiation of wavelength longer than 300 mm. Information concerning preparation of the luminescent material is given in BP 1,347,672; this material has the advantage that at elevated temperatures it shows increased sensitivity compared with room temperature. At temperatures in the range 80 to 150 0 C the thermoluminescent material exhibits 'afterglow', allowing the image to persist for several seconds after the X-radiation has ceased, thus allowing the image to be retained for visual inspection in this temperature range. At higher temperatures, however, there is negligible 'afterglow'. The thermoluminescent layers so produced are particularly useful as fluoroscopic screens. The preferred method of heating the thermoluminescent material is described in BP 1,354,149. An example is given of the application of the method. (U.K.)

  11. Internal properties assessment in agar wood trees using ultrasonic velocity measurement

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Mohamad Pauzi Ismail; Mat Rasol Awang; Mohd Fajri Osman; Fakhruzi, M.; Hashim, M.M.

    2010-01-01

    This paper presents the application of ultrasonic velocity in agar wood trees (Aquilaria crassna) with the purpose of evaluating the relationship of the ultrasonic velocity to the variations of internal properties of trees. In this study, three circular cross-sectional discs from the freshly cut tree were selected as samples. First sample with a big hole (decay) in the middle, second sample with internal resinous and the last one is the sample with no defects. The through transmission ultrasonic testing method was carried out using Tico ultrasonic pulse velocity tester which is from Switzerland. Two-dimensional image of internal properties evaluation by an ultrasonic investigation was obtained using Matlab. The results showed that the ultrasonic wave cannot pass through the internal decay or resinous so that the wave went round it and thus ultrasonic wave velocity significantly decreased by increasing the hole or resinous. The difference in color of the image generated by Matlab software based on variation of ultrasonic velocity between the internal decay area and its surrounding area was obvious. Therefore, the properties of internal properties of the three could be detected by ultrasonic line imaging technique. (author)

  12. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  13. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-01-01

    This current report is a summary of information obtained in the 'Information Capture' task of the U.S. DOE-funded 'Under Sodium Viewing (USV) Project.' The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  14. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  15. Method and system of measuring ultrasonic signals in the plane of a moving web

    Science.gov (United States)

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  16. A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation.

    Science.gov (United States)

    Byeon, Jeong Hoon; Kim, Young-Woo

    2012-01-01

    A polyol synthesis of silver nanoparticles in the presence of ultrasonic irradiation was compared with other configurations (at ambient temperature, 120° C, and 120 °C with injected solutions) in the absence of ultrasonic irradiation in order to obtain systematic results for morphology and size distribution. For applying ultrasonic irradiation, rather fine and uniform spherical silver particles (21±3.7 nm) were obtained in a simple (at ambient temperature without mechanical stirring) and fast (within 4 min, 3.61×10(-3) mol min(-1)) manner than other cases (at ambient temperature (for 8 h, 0.03×10(-3) mol min(-1)): 86±16.8 nm, 120 °C (for 12 min, 1.16×10(-3) mol min(-1)): 64±14.9 nm, and 120 °C with injected solutions (during 12 min): 35±6.8 nm; all other cases contained anisotropic shaped particles). Even though the temperature of polyol reaction reached only at 80 °C (silver particle and surrounding components) by ultrasonic irradiation might induce a better formation kinetics and morphological uniformity. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  18. New process of the preparation of catalyzed gas diffusion electrode for PEM fuel cells based on ultrasonic direct solution spray reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, K.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    This paper reported on a newly developed process for in-situ catalyst deposition on gas diffusion electrodes (GDE) for polymer electrolyte fuel cells. This process has the potential to reduce the number of steps for catalyzed GDE fabrication. In addition, the process offers economic advantages for the fuel cell commercialization. In this study, a home-made catalyst maker with ultrasonic spray method was used to prepare a solution of the carbon supported platinum catalyst on the GDL. The sprayed catalyst powder consisted of carbon support. The catalyst particles did not prevent gas flow channels on the GDL. The catalyst layer was shown to be located only on the top surface of the GDL and was not packed into its flow channel. Results of Cross-section SEM image, crystallization, micro structure and electro-catalytic activity for the oxygen reduction reaction were also discussed. 1 ref., 1 fig.

  19. Static modulus of elasticity of concrete measured by the ultrasonic method

    Directory of Open Access Journals (Sweden)

    Sena Rodrigues, S.

    2003-12-01

    Full Text Available Lately, a huge number of accidents caused by problems found in the durability of concrete structures due to inappropriate project design, lack of control of quality during the project s execution, inadequate maintenance practices and an aggressive environment has been reported. This finding has required from the professionals constant inspections and evaluations of the real conditions of all concrete structures. In order to perform those inspections, one should know not only the elastic modulus to analyze the concrete structural behaviour but also to investigate its performance, since the strains may yield cracks able to compromise the durability- of structures. Non-destructive testing techniques, particularly the ultrasonic testing, are performed to evaluate and determine the quality of a concrete structure or element. Currently, such essays have been widely researched and analyzed all over the world because they enable the examination of structures without damaging them. The purpose of the present study was to correlate the ultrasonic pulse velocity and the elastic modulus of several concrete specimens molded with a range of water-cement ratios, different kinds of aggregates and curing methods. All the concrete specimens were tested in different ages to determine the pulse velocity and the static modulus of elasticity standardized according to KBR 8522, through mechanical extensometers, electrical strain gauge and LVTD inductive transducer.

    Recientemente se ha registrado un gran número de accidentes causados por problemas relacionados con la durabilidad de las estructuras de hormigón y debidos a un inadecuado proyecto de diseño, ausencia de control de calidad durante la ejecución del proyecto, prácticas inadecuadas de construcción y un ambiente agresivo. Este hallazgo ha dado lugar a que los ingenieros realicen constantes inspecciones y evaluaciones de la condición real de todas las estructuras de hormigón. Para llevar a cabo

  20. A method of image improvement in three-dimensional imaging

    International Nuclear Information System (INIS)

    Suto, Yasuzo; Huang, Tewen; Furuhata, Kentaro; Uchino, Masafumi.

    1988-01-01

    In general, image interpolation is required when the surface configurations of such structures as bones and organs are three-dimensionally constructed from the multi-sliced images obtained by CT. Image interpolation is a processing method whereby an artificial image is inserted between two adjacent slices to make spatial resolution equal to slice resolution in appearance. Such image interpolation makes it possible to increase the image quality of the constructed three-dimensional image. In our newly-developed algorithm, we have converted the presently and subsequently sliced images to distance images, and generated the interpolation images from these two distance images. As a result, compared with the previous method, three-dimensional images with better image quality have been constructed. (author)

  1. Developing a new ultrasonic method to assess diaphragm movement and comparing the accuracy with existing methods

    DEFF Research Database (Denmark)

    Helbo Skaarup, Søren; Løkke, Anders; Laursen, Christian

    2017-01-01

    Introduction: Diaphragm is the most important respiratory muscle. Movement can be evaluated with ultrasound. Currently two different methods are used, M-mode and B-mode. However, diaphragm movement is complex.Aim: We hypothesized that the two existing methods are imprecise as they only measure...... film clips independently to assess inter-rater variability.Results: We found a linear correlation between FVC and diaphragmatic movement. M-mode had Pearson r=0.84 (95%CI 0.76-0.89), B-mode had r=0.68 (95%CI 0.55-0.79) and Area-measurement had r=0.84 (95%CI 0.77-0.90). Inter-rater agreement was r=0...

  2. CA.C.I.U.S.: Ultrasonic C imaging camera. Contribution to its study and its realization

    International Nuclear Information System (INIS)

    Moretti, Jean-Luc

    1980-10-01

    CA.C.I.U.S. is a dynamic imaging three-dimensional echographic camera. This device provides automatic C images which are frontal slices, orthogonal to the ultrasonic propagation. The detector has a cylindrical shape, its focal length of 250 mm and its size is 220 x 143 mm. The useful field is less large (170 x 143 mm) regarding the impossibility to use entirely the 73 elements electronic pattern on the edges. The emitting array is done in two parts. These two parts. The receiver is an electronically focused mono-dimensional array made of 147 elements (0,8 x 5 mm 2 ) spaced 0,7 mm apart, placed between the emitting arrays. These two arrays contain 22 strips of ten bent transducers (10 x 13,7 mm 2 ). The receiver elements are protected form the water of the tank by a loaded araldite layer of λ/4 thickness which allows a better uniformity response with the reception angle. The array elements are matched to 2.2 MHz, the basking is made of a multilayer plastic material (CELORON). This device allows a geometric focalization of the emission. The thickness of each slice C is 2 ± 0,5 cm, depending on its place in the frontal place (better in the center) and on the weighing factors adjusted at the back of the emitting array. The spatial resolution is 1.5 mm (F. W.H.M.) in the two axis orthogonal to the ultrasonic propagation. Several receivers were made. The electronic pattern was optimized by computer study, its results showed an improving of the image definition. Logarithmic amplifiers were used behind each element to allow simultaneous analysis of small echoes coming from the tissue itself and big boundary echoes. The array was placed in a tank filled with water closed by a double membrane. The visualization was obtained in a grey scale dynamic memory. Several emission reception synchronizations were studied. The slowest mode (1 image by second) gave the best signal on noise ratio. CA.C.I.U.S. demonstrates the reality of the slow dynamic C echography and the necessity

  3. Method of assessing heterogeneity in images

    Science.gov (United States)

    Jacob, Richard E.; Carson, James P.

    2016-08-23

    A method of assessing heterogeneity in images is disclosed. 3D images of an object are acquired. The acquired images may be filtered and masked. Iterative decomposition is performed on the masked images to obtain image subdivisions that are relatively homogeneous. Comparative analysis, such as variogram analysis or correlogram analysis, is performed of the decomposed images to determine spatial relationships between regions of the images that are relatively homogeneous.

  4. Development of nuclear thermal hydraulic verification tests and evaluation technology - Development of the ultrasonic method for two-phase mixture level measurement in nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Kim, Sang Jae; Kim, Hyung Tae; Moon, Young Min [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    An ultrasonic method is developed for the measurement of the two-phase mixture level in the reactor vessel or steam generator. The ultrasonic method is selected among the several non-nuclear two-phase mixture level measurement methods through two steps of selection procedure. A commercial ultrasonic level measurement method is modified for application into the high temperature, pressure, and other conditions. The calculation method of the ultrasonic velocity is modified to consider the medium as the homogeneous mixture of air and steam, and to be applied into the high temperature and pressure conditions. The cross-correlation technique is adopted as a detection method to reduced the effects of the attenuation and the diffused reflection caused by surface fluctuation. The waveguides are developed to reduce the loss of echo and to remove the effects of obstructs. The present experimental study shows that the developed ultrasonic method measures the two-phase mixture level more accurately than the conventional methods do. 21 refs., 60 figs., 13 tabs. (Author)

  5. On-Site Evaluation of Large Components Using Saft and Tofd Ultrasonic Imaging

    Science.gov (United States)

    Spies, M.; Rieder, H.; Dillhöfer, A.

    2011-06-01

    This contribution addresses ultrasonic inspection and evaluation of welds in large components. An approach has been developed in order to enhance the reliability of welded ship propellers. The Synthetic Aperture Focusing Technique (SAFT) has been modified with regard to the curved surfaces and the sound attenuation of cast Ni-Al bronzes. For weld inspection in steels the Time-of-Flight Diffraction technique (TOFD) can provide additional information for specific defect orientations. Both techniques have been combined in view of the determination of defect sizes and shapes in longitudinal welds of pipes with diameters of up to 48 inches. Details on the inspection and evaluation concepts as well as experimental results are presented.

  6. Imaging the Cemento-Enamel Junction Using a 20-MHz Ultrasonic Transducer.

    Science.gov (United States)

    Nguyen, Kim-Cuong T; Le, Lawrence H; Kaipatur, Neelambar R; Major, Paul W

    2016-01-01

    The cemento-enamel junction (CEJ), which is the intersection between enamel and cementum, is an important landmark in the diagnosis of periodontal disease. Pulse-echo ultrasound was used to image the CEJs of six porcine lower central incisors with a single 20-MHz transducer. A notch was longitudinally created on the enamel as a stable marker, from which the CEJ was measured. Data were acquired along the tooth's axis at 0.4-mm intervals. Time-distance data were bandpass-filtered to enhance signal-to-noise ratio and record density was increased fourfold to 0.1-mm spacing by a frequency-distance interpolation scheme. Reflections from the CEJ were unambiguously identified along with those from enamel, dentin and cementum. The notch-CEJ distances measured by the ultrasound and micro-computed tomography methods correlated strongly (r = 0.996, p < 0.05) and were in good agreement with the 95% lines of agreement between -0.49 and 0.17 mm, as statistically determined by Bland-Altman analysis. The results indicate the potential of ultrasound to be a reliable and non-ionizing technique to image the CEJ. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Development of an ultrasonic weld inspection system based on image processing and neural networks

    Science.gov (United States)

    Roca Barceló, Fernando; Jaén del Hierro, Pedro; Ribes Llario, Fran; Real Herráiz, Julia

    2018-04-01

    Several types of discontinuities and defects may be present on a weld, thus leading to a considerable reduction of its resistance. Therefore, ensuring a high welding quality and reliability has become a matter of key importance for many construction and industrial activities. Among the non-destructive weld testing and inspection techniques, the time-of-flight diffraction (TOFD) arises as a very safe (no ionising radiation), precise, reliable and versatile practice. However, this technique presents a relevant drawback, associated to the appearance of speckle noise that should be addressed. In this regard, this paper presents a new, intelligent and automatic method for weld inspection and analysis, based on TOFD, image processing and neural networks. The developed system is capable of detecting weld defects and imperfections with accuracy, and classify them into different categories.

  8. Elastic moduli of boron carbide/copper composites from -400C to 8000C by ultrasonic methods

    International Nuclear Information System (INIS)

    Gieske, J.H.

    1980-10-01

    An ultrasonic through-transmission technique for high attenuating materials was developed to determine the ultrasonic longitudinal and shear velocities in B 4 C/Cu composites to 800 0 C. Ultrasonic velocity data was used to calculate Young's modulus, shear modulus, and Poisson's ratio for the composites from -40 0 C to 800 0 C. 5 figures, 1 table

  9. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  10. Experimental determination of wellbore diameter and shape (4D imaging of wellbore) by using ultrasonic caliper within different fluids for real-time drilling application

    Energy Technology Data Exchange (ETDEWEB)

    Elahifar, Behzad; Esmaeili, Abdolali; Thonhauser, Gerhard [Montanuniversitaet Leoben (Austria); Fruhwirth, Rudolf K. [TDE Thonhauser Data Engineering GmbH, Leoben (Austria)

    2013-03-15

    Drilling programs continue to push into new and more complicated environments. As a result, accurate measurement, interpretation and analysis of drilling data in real time are becoming more critical. One of the key measurement devices for drilling, cementing and formation evaluation is the borehole caliper. An ultrasonic sensor caliper tool is thereby a key measurement device for determining the borehole diameter in MWD or LWD tools. Another use of ultrasonic caliper tools is to offer a method for calculating borehole volumes. Real-time application of ultrasonic caliper tools can also support the early detection of borehole instability. This paper describes the experiments related to the accuracy of the ultrasonic sensor for measuring wellbore diameter by performing the tests in different fluids, comparing the results and determining the weak points of the sensor for detecting echoes. In addition the wellbore profiles were simulated and the simulated results were compared with the recorded data. Different tests related to the position of the caliper tool inside the wellbore were performed as well as the evaluation of the accuracy of the ultrasonic sensor by simulating dog-legs and latches. (orig.)

  11. Statistical methods of evaluating and comparing imaging techniques

    International Nuclear Information System (INIS)

    Freedman, L.S.

    1987-01-01

    Over the past 20 years several new methods of generating images of internal organs and the anatomy of the body have been developed and used to enhance the accuracy of diagnosis and treatment. These include ultrasonic scanning, radioisotope scanning, computerised X-ray tomography (CT) and magnetic resonance imaging (MRI). The new techniques have made a considerable impact on radiological practice in hospital departments, not least on the investigational process for patients suspected or known to have malignant disease. As a consequence of the increased range of imaging techniques now available, there has developed a need to evaluate and compare their usefulness. Over the past 10 years formal studies of the application of imaging technology have been conducted and many reports have appeared in the literature. These studies cover a range of clinical situations. Likewise, the methodologies employed for evaluating and comparing the techniques in question have differed widely. While not attempting an exhaustive review of the clinical studies which have been reported, this paper aims to examine the statistical designs and analyses which have been used. First a brief review of the different types of study is given. Examples of each type are then chosen to illustrate statistical issues related to their design and analysis. In the final sections it is argued that a form of classification for these different types of study might be helpful in clarifying relationships between them and bringing a perspective to the field. A classification based upon a limited analogy with clinical trials is suggested

  12. Simultaneous sound velocity and thickness measurement by the ultrasonic pitch-catch method for corrosion-layer-forming polymeric materials.

    Science.gov (United States)

    Kusano, Masahiro; Takizawa, Shota; Sakai, Tetsuya; Arao, Yoshihiko; Kubouchi, Masatoshi

    2018-01-01

    Since thermosetting resins have excellent resistance to chemicals, fiber reinforced plastics composed of such resins and reinforcement fibers are widely used as construction materials for equipment in chemical plants. Such equipment is usually used for several decades under severe corrosive conditions so that failure due to degradation may result. One of the degradation behaviors in thermosetting resins under chemical solutions is "corrosion-layer-forming" degradation. In this type of degradation, surface resins in contact with a solution corrode, and some of them remain asa corrosion layer on the pristine part. It is difficult to precisely measure the thickness of the pristine part of such degradation type materials by conventional pulse-echo ultrasonic testing, because the sound velocity depends on the degree of corrosion of the polymeric material. In addition, the ultrasonic reflection interface between the pristine part and the corrosion layer is obscure. Thus, we propose a pitch-catch method using a pair of normal and angle probes to measure four parameters: the thicknesses of the pristine part and the corrosion layer, and their respective sound velocities. The validity of the proposed method was confirmed by measuring a two-layer sample and a sample including corroded parts. The results demonstrate that the pitch-catch method can successfully measure the four parameters and evaluate the residual thickness of the pristine part in the corrosion-layer-forming sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Study of different ultrasonic focusing methods applied to non destructive testing; Etude de differentes methodes de focalisation ultrasonore appliquees au controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    El Amrani, M.

    1995-11-17

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends.

  14. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    Science.gov (United States)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  15. COMPARISON OF IMAGE ENHANCEMENT METHODS FOR CHROMOSOME KARYOTYPE IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    Dewa Made Sri Arsa

    2017-02-01

    Full Text Available The chromosome is a set of DNA structure that carry information about our life. The information can be obtained through Karyotyping. The process requires a clear image so the chromosome can be evaluate well. Preprocessing have to be done on chromosome images that is image enhancement. The process starts with image background removing. The image will be cleaned background color. The next step is image enhancement. This paper compares several methods for image enhancement. We evaluate some method in image enhancement like Histogram Equalization (HE, Contrast-limiting Adaptive Histogram Equalization (CLAHE, Histogram Equalization with 3D Block Matching (HE+BM3D, and basic image enhancement, unsharp masking. We examine and discuss the best method for enhancing chromosome image. Therefore, to evaluate the methods, the original image was manipulated by the addition of some noise and blur. Peak Signal-to-noise Ratio (PSNR and Structural Similarity Index (SSIM are used to examine method performance. The output of enhancement method will be compared with result of Professional software for karyotyping analysis named Ikaros MetasystemT M . Based on experimental results, HE+BM3D method gets a stable result on both scenario noised and blur image.

  16. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  17. Application of the Gaussian beam summation method to the study of the ultrasonic wave propagation in a turbulent medium

    International Nuclear Information System (INIS)

    Fiorina, D.

    1998-01-01

    Some systems for the control and the surveillance of fast reactors are based on the characteristics of the ultrasonic wave propagation. We present here the results of a numerical and experimental study of ultrasonic propagation in a thermal turbulent medium. A numerical model, based on the technique of superposition of discrete Fourier modes for representing isotropic and homogeneous turbulence and on the Gaussian beam summation method for calculating the acoustic field, has been implemented in order to study the propagation of a point source wave in a bidimensional turbulent medium. Our model is based on the following principle: the medium is represented by a great number of independent realizations of a turbulent field and for each of them we calculate the acoustic field in a deterministic way. Statistics over a great number of realizations enable us to access to the different quantities of the distorted acoustic field: variance of the time of flight fluctuations, scintillation index and intensity probability density function. In the case of small fluctuations, the results for these three quantities are in a good agreement with analytical solutions. When the level of the fluctuations grows, the model predicts correct evolutions. However, a great sensitivity to the location of a receiver in the vicinity of a caustic has been proved. Calculations in the temporal domain have also been performed. They give an illustration of the possible effects of the turbulence on an impulsion signal. An experimental device, fitted with thermocouples and acoustic transducers, has been used to study the ultrasonic propagation in turbulent water. The different measures permitted to characterize the turbulent field and to get aware of the effect of the turbulence on the acoustic propagation. The acoustical measures agree well with the analytical solution of Chernov and Rytov. They are show the importance of the knowledge of the real spectrum of the fluctuations and the limitations of

  18. Double-compression method for biomedical images

    Science.gov (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana

    2017-08-01

    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  19. Optoelectronic imaging of speckle using image processing method

    Science.gov (United States)

    Wang, Jinjiang; Wang, Pengfei

    2018-01-01

    A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.

  20. Measurement of transitional flow in pipes using ultrasonic flowmeters

    Energy Technology Data Exchange (ETDEWEB)

    Zheng-Gang, Liu; Guang-Sheng, Du; Zhu-Feng, Shao; Qian-Ran, He; Chun-Li, Zhou, E-mail: lzhenggang@sdu.edu.cn [School of Energy and Power Engineering, Qian-Fo-shan campus, Shandong University, Jinan City 250061, Shandong Province (China)

    2014-10-01

    The accuracy of an ultrasonic flowmeter depends on the ratio k of average profile velocity of pipe and average velocity of an ultrasonic propagation path. But there is no appropriate method of calculating k for transition flow. In this paper, the velocity field of the transition flow in a pipe is measured by particle image velocimetry. On this basis, the k of U-shaped and V-shaped ultrasonic flowmeter is obtained when Reynolds number is between 2000 and 20 000. It is shown that the k is constant when the Reynolds number is in the range of 2000–2400 and 5400–20 000, and the k decreases with the increasing of Re when the Reynolds number is 2400–5400. The results of study can be used to improve the measurement accuracy of ultrasonic flowmeters when flow is transition flow and can provide help for the study of pipe flow. (paper)

  1. Color image definition evaluation method based on deep learning method

    Science.gov (United States)

    Liu, Di; Li, YingChun

    2018-01-01

    In order to evaluate different blurring levels of color image and improve the method of image definition evaluation, this paper proposed a method based on the depth learning framework and BP neural network classification model, and presents a non-reference color image clarity evaluation method. Firstly, using VGG16 net as the feature extractor to extract 4,096 dimensions features of the images, then the extracted features and labeled images are employed in BP neural network to train. And finally achieve the color image definition evaluation. The method in this paper are experimented by using images from the CSIQ database. The images are blurred at different levels. There are 4,000 images after the processing. Dividing the 4,000 images into three categories, each category represents a blur level. 300 out of 400 high-dimensional features are trained in VGG16 net and BP neural network, and the rest of 100 samples are tested. The experimental results show that the method can take full advantage of the learning and characterization capability of deep learning. Referring to the current shortcomings of the major existing image clarity evaluation methods, which manually design and extract features. The method in this paper can extract the images features automatically, and has got excellent image quality classification accuracy for the test data set. The accuracy rate is 96%. Moreover, the predicted quality levels of original color images are similar to the perception of the human visual system.

  2. Early Detection of Clinically Significant Prostate Cancer Using Ultrasonic Acoustic Radiation Force Impulse (ARFI) Imaging

    Science.gov (United States)

    2017-10-01

    Toolkit for rapid 3D visualization and image volume interpretation, followed by automated transducer positioning in a user-selected image plane for... Toolkit (IGSTK) to enable rapid 3D visualization and image volume interpretation followed by automated transducer positioning in the user-selected... careers in science, technology, and the humanities. What do you plan to do during the next reporting period to accomplish the goals? If this

  3. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico); Garipov, R., E-mail: ruslan.garipov@mrsolutions.co.uk [MR Solutions Ltd, Surrey (United Kingdom); Rodríguez, A. O., E-mail: arog@xanum.uam.mx [Departamento Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, México, DF 09340 (Mexico)

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  4. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    Science.gov (United States)

    Huang, Lianjie

    2013-10-29

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  5. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S A

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  6. Photoacoustic and Ultrasonic Image-Guided Needle Biopsy of the Prostate

    Science.gov (United States)

    2015-10-01

    tested. Finally, a Delrin transducer holder with multiple translation/rotation ports was mounted on a stainless steel baser (4.c) to allow precision...414 415 416 417 418 419 420 Fig. 7. (a) PA image of wire embedded in ex-vivo liver at 7 cm. (b) PA image of hemoglobin in ex-vivo liver at approximately

  7. Deconvolution algorithms applied in ultrasonics; Methodes de deconvolution en echographie ultrasonore

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, P

    1993-12-01

    In a complete system of acquisition and processing of ultrasonic signals, it is often necessary at one stage to use some processing tools to get rid of the influence of the different elements of that system. By that means, the final quality of the signals in terms of resolution is improved. There are two main characteristics of ultrasonic signals which make this task difficult. Firstly, the signals generated by transducers are very often non-minimum phase. The classical deconvolution algorithms are unable to deal with such characteristics. Secondly, depending on the medium, the shape of the propagating pulse is evolving. The spatial invariance assumption often used in classical deconvolution algorithms is rarely valid. Many classical algorithms, parametric and non-parametric, have been investigated: the Wiener-type, the adaptive predictive techniques, the Oldenburg technique in the frequency domain, the minimum variance deconvolution. All the algorithms have been firstly tested on simulated data. One specific experimental set-up has also been analysed. Simulated and real data has been produced. This set-up demonstrated the interest in applying deconvolution, in terms of the achieved resolution. (author). 32 figs., 29 refs.

  8. Nuclear magnetic resonance imaging method

    International Nuclear Information System (INIS)

    Johnson, G.; MacDonald, J.; Hutchison, S.; Eastwood, L.M.; Redpath, T.W.T.; Mallard, J.R.

    1984-01-01

    A method of deriving three dimensional image information from an object using nuclear magnetic resonance signals comprises subjecting the object to a continuous, static magnetic field and carrying out the following set of sequential steps: 1) exciting nuclear spins in a selected volume (90deg pulse); 2) applying non-aligned first, second and third gradients of the magnetic field; 3) causing the spins to rephase periodically by reversal of the first gradient to produce spin echoes, and applying pulses of the second gradient prior to every read-out of an echo signal from the object, to differently encode the spin in the second gradient direction for each read-out signal. The above steps 1-3 are then successively repeated with different values of gradient of the third gradient, there being a recovery interval between the repetition of successive sets of steps. Alternate echoes only are read out, the other echoes being time-reversed and ignored for convenience. The resulting signals are appropriately sampled, set out in an array and subjected to three dimensional Fourier transformation. (author)

  9. Computational methods in molecular imaging technologies

    CERN Document Server

    Gunjan, Vinit Kumar; Venkatesh, C; Amarnath, M

    2017-01-01

    This book highlights the experimental investigations that have been carried out on magnetic resonance imaging and computed tomography (MRI & CT) images using state-of-the-art Computational Image processing techniques, and tabulates the statistical values wherever necessary. In a very simple and straightforward way, it explains how image processing methods are used to improve the quality of medical images and facilitate analysis. It offers a valuable resource for researchers, engineers, medical doctors and bioinformatics experts alike.

  10. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  11. Detection of Lock on Radar System Based on Ultrasonic US 100 Sensor And Arduino Uno R3 With Image Processing GUI

    Science.gov (United States)

    Baskoro, F.; Reynaldo, B. R.

    2018-04-01

    The development of electronics technology especially in the field of microcontroller occurs very rapidly. There have been many applications and useful use of microcontroller in everyday life as well as in laboratory research. In this study used Arduino Uno R3 as microcontroller-based platform ATMega328 as a sensor distance meter to know the distance of an object with high accuracy. The method used is to utilize the function Timer / Counter in Arduino UNO R3. On the Arduino Uno R3 platform, there is ATMEL ATmega328 microcontroller which has a frequency generating speed up to 20 MHz, 16-bit enumeration capability and using C language as its programming. With the Arduino Uno R3 platform, the ATmega328 microcontroller can be programmed with Arduino IDE software that is simpler and easier because it has been supported by libraries and many support programs. The result of this research is distance measurement to know the location of an object using US ultrasonic wave sensor US 100 with Arduino Uno R3 based on ATMega328 microcontroller which then the result will be displayed using Image Processing.

  12. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging

    Science.gov (United States)

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.

  13. Experimental investigation of surface quality in ultrasonic machining of WC-Co composites through Taguchi method

    Directory of Open Access Journals (Sweden)

    B. S. Pabla

    2016-08-01

    Full Text Available In manufacturing industries, the demand of WC-Co composite is flourishing because of the distinctive characteristics it offers such as: toughness (with hardness, good dimensional stability, higher mechanical strength etc. However, the difficulties in its machining restrict the application and competitiveness of this material. The current article has been targeted at evaluation of the effect of process conditions (varying power rating, cobalt content, tool material, part thickness, tool geometry, and size of abrasive particle on surface roughness in ultrasonic drilling of WC-Co composite. Results showed that abrasive grit size is most influential factor. From the microstructure analysis, the mode of material deformation has been observed and the parameters, i.e. work material properties, grit size, and power rating was revealed as the most crucial for the deformation mode.

  14. Determination of the properties of composite interfaces by an ultrasonic method

    Energy Technology Data Exchange (ETDEWEB)

    Mal, A K; Karim, M R [Dept. of Mechanical, Aerospace and Nuclear Engineering, School of Engineering and Applied Science, Univ. of California, Los Angeles (USA); Bar-Cohen, Y [Douglas Aircraft Co., McDonnell Douglas Corp., Long Beach, CA (USA)

    1990-06-15

    The feasibility of using a recently developed ultrasonic technique to determine certain macroscopic properties of the interface zones of composite laminates is studied. The strong influence of the elastic properties and the thickness of the interface zone on the phase velocity of guided waves is demonstrated by means of a simple model of a single fiber embedded in a layer of the matrix material. The overall dynamic elastic moduli of a unidirectional graphite-epoxy composite laminate are determined through inversion of guided wave dispersion data obtained by the leaky Lamb wave experiment. The thickness and elastic properties of the interlaminar interface zone in a cross-ply graphite-epoxy laminate are also estimated by the same approach. (orig.).

  15. Optimization Design Method for the CMOS-type Capacitive Micro-Machined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    D. Y. Chiou

    2011-12-01

    Full Text Available In this study, an integrated modeling technique for characterization and optimization design of the complementary metal-oxide-semiconductor (CMOS capacitive micro-arrayed ultrasonic transducer (pCMOS-CMUT is presented. Electromechanical finite element simulations are performed to investigate its operational characteristics, such as the collapse voltage and the resonant frequency. Both the numerical and experimental results are in good agreement. In order to simultaneously customize the resonant frequency and minimize the collapse voltage, the genetic algorithm (GA is applied to optimize dimensional parameters of the transducer. From the present results, it is concluded that the FE/GA coupling approach provides another efficient numerical tool for multi-objective design of the pCMOS-CMUT.

  16. Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe

    Science.gov (United States)

    Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.

    2014-03-01

    Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.

  17. Physical Characterization of Solid-Liquid Slurries at High Weight Fractions Using Optical and Ultrasonic Methods

    International Nuclear Information System (INIS)

    Burgess, L.W.; Brodsky, A.M.; Panetta P.D.

    2005-01-01

    Remediation of highly radioactive waste is a major technical and programmatic challenge for the DOE. Rapid, on-line physical characterization of highly concentrated slurries is required for the safe and efficient remediation of 90 million gallons of high level radioactive waste (HLW), sodium bearing waste, and mixed waste. The research presented here, describes a collaborative effort between Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to directly address the need for rapid on-line characterization of the physical properties of HLW slurries during all phases of the remediation process, from in-tank characterization of sediments to monitoring of the concentration, particle size, and degree of agglomeration and gelation of slurries during transport. Near-surface characterization of the slurry flow in the particle size range from nanometer to micrometer is examined using optical low coherence reflectometry. Volumetric characterization at depths in the slurry flow, up to several centimeters in the particle size range from the micrometer to millimeter, is realized by utilizing ultrasonic backscatter and diffuses fields. One of the strengths, the teaming up of significant talents in both experimental and theoretical optics and in ultrasonics, provides a synergistic approach to integrate these complimentary techniques. One of the benefits of this combined approach is the physical characterization of HLW over a concentration and particle size range that is broader than can be achieved with today's technology. This will avoid a costly increase in waste stream volume due to excess dilution, and will lessen chance of plugging pipes that could shut down expensive processing lines

  18. The method of waste liquid atomization/incineration by using ultrasonic industrial burners

    International Nuclear Information System (INIS)

    Bartonek, Thomas

    1999-01-01

    The problem of burning a fuel is closely related to distributing that fuel and mixing it with the combustion air within a pre-designated space, the combustion chamber. For fuel engineers, the rule of thumb is unchanged: mix it and it will burn. That is why the burner designer focuses his attention on incorporating the best possible atomization and mixing, equipment, i.c. in the end, on the construction of the atomizer nozzle and the control of the combustion air. It was these considerations plus the inability of conventional burners to meet the tough demands of today's applications that led DUMAG to undertake an intensive program of research which has now been crowned with success. Below, basic points drawn from the fundamental knowledge of all fuel engineers have been included to bring into sharper focus the operating principles of the DUMAG Ultrasonic Industrial Burner, a world class Austrian product. This paper describes a plant which has been operating without incident since October 1977. Its level of operational effectiveness is at least equivalent to that of a standard oil burner plant. The plant is also in full compliance with current environmental standards following the installation of additional safety equipment such as pre-combustion chambers, sensors to monitor pre-combustion chamber temperatures, cut-off valves for reaction water and solvents to block their flow if no heating oil is being fed in, flue gas density monitor, and finer atomization and better mixing by means of an ultrasonic system - even with fluctuations in the viscosity. By eliminating disposal costs and recovering power from liquid waste materials, the entire plant pays for itself within one year. (Original)

  19. Elasticity Imaging of Ferroelectric Domain Structure in PZT by Ultrasonic Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Tsuji, T.; Ogiso, H.; Fukuda, K.; Yamanaka, K.

    2004-01-01

    UAFM was applied to the observation of the domain structure in lead zirconate titanate (PZT). It imaged the change of elasticity due to grain and domain boundary (DB). For the quantitative evaluation of the contact stiffness, the lateral contact stiffness was taken into account. The stiffness of DB was 10% lower than that within the domain and the width of the DB was about 30 nm. The implication of this work is the understanding of the fatigue mechanism in a PZT memory and the high resolution imaging for a high-density memory

  20. Review methods for image segmentation from computed tomography images

    International Nuclear Information System (INIS)

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-01-01

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan

  1. A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.

    Science.gov (United States)

    Bolborici, V; Dawson, F P; Pugh, M C

    2014-03-01

    Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequencies close to its resonance frequency. This paper presents a non-empirical partial differential equations model for the stator, which is discretized using the finite volume method. The fundamental frequency of the discretized model is computed and compared to the experimentally-measured operating frequency of the stator of Shinsei USR60 piezoelectric motor. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Procedure for the creation of reproducible acoustic coupling using the ultrasonic contact method for nondestructive testing of materials

    International Nuclear Information System (INIS)

    Tomilov, B.V.

    1979-01-01

    The transducer is pressed to the specimen, a lubricating coating being applied as an intermediate layer. By means of a vibrator belonging to the transducer there are generated vibrations, the growth rate of the amplitude of the reflected signal picked up being observed. This growth rate is monotonously decreasing. If the growth rate is abruptly decreasing or if the amplitude of the measured signal remains constant the vibrator is turned off, because now good acoustic contact is established. After a short time of waiting for the residual stress of the transducer to decay, recording of the ultrasonic parameters may then be taken up. The method can be applied to thickness measurements and inhomogeneous materials with low surface quality. (RW) [de

  3. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  4. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  5. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    Science.gov (United States)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  6. Automatic Quadcopter Control Avoiding Obstacle Using Camera with Integrated Ultrasonic Sensor

    Science.gov (United States)

    Anis, Hanafi; Haris Indra Fadhillah, Ahmad; Darma, Surya; Soekirno, Santoso

    2018-04-01

    Automatic navigation on the drone is being developed these days, a wide variety of types of drones and its automatic functions. Drones used in this study was an aircraft with four propellers or quadcopter. In this experiment, image processing used to recognize the position of an object and ultrasonic sensor used to detect obstacle distance. The method used to trace an obsctacle in image processing was the Lucas-Kanade-Tomasi Tracker, which had been widely used due to its high accuracy. Ultrasonic sensor used to complement the image processing success rate to be fully detected object. The obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors. Visual feedback control based PID controllers are used as a control of drones movement. The conclusion of the obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors.

  7. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  8. P-scan, a new system for ultrasonic weld inspection

    International Nuclear Information System (INIS)

    Lund, S.A.; Iversen, S.E.; Holst, H.

    1978-01-01

    The P-scan method is explained. It is described how the new P-scan system improves the ultrasonic method by adding means for visualization, data storage and documentation. Three different scanners are described: One designed for manual operation, another for automatic operation and a third for semiautomatic operation. The p'scan image of an ultrasonically examined test plate is presented and discussed. The variable Display Level (i.e. the inspection sensitivity) facility is described. The main advantage of this facility is the fact that the level can be varied at any time after the inspection. (orig.) [de

  9. An explorative childhood pneumonia analysis based on ultrasonic imaging texture features

    Science.gov (United States)

    Zenteno, Omar; Diaz, Kristians; Lavarello, Roberto; Zimic, Mirko; Correa, Malena; Mayta, Holger; Anticona, Cynthia; Pajuelo, Monica; Oberhelman, Richard; Checkley, William; Gilman, Robert H.; Figueroa, Dante; Castañeda, Benjamín.

    2015-12-01

    According to World Health Organization, pneumonia is the respiratory disease with the highest pediatric mortality rate accounting for 15% of all deaths of children under 5 years old worldwide. The diagnosis of pneumonia is commonly made by clinical criteria with support from ancillary studies and also laboratory findings. Chest imaging is commonly done with chest X-rays and occasionally with a chest CT scan. Lung ultrasound is a promising alternative for chest imaging; however, interpretation is subjective and requires adequate training. In the present work, a two-class classification algorithm based on four Gray-level co-occurrence matrix texture features (i.e., Contrast, Correlation, Energy and Homogeneity) extracted from lung ultrasound images from children aged between six months and five years is presented. Ultrasound data was collected using a L14-5/38 linear transducer. The data consisted of 22 positive- and 68 negative-diagnosed B-mode cine-loops selected by a medical expert and captured in the facilities of the Instituto Nacional de Salud del Niño (Lima, Peru), for a total number of 90 videos obtained from twelve children diagnosed with pneumonia. The classification capacity of each feature was explored independently and the optimal threshold was selected by a receiver operator characteristic (ROC) curve analysis. In addition, a principal component analysis was performed to evaluate the combined performance of all the features. Contrast and correlation resulted the two more significant features. The classification performance of these two features by principal components was evaluated. The results revealed 82% sensitivity, 76% specificity, 78% accuracy and 0.85 area under the ROC.

  10. Multi-spectral quantitative phase imaging based on filtration of light via ultrasonic wave

    Science.gov (United States)

    Machikhin, A. S.; Polschikova, O. V.; Ramazanova, A. G.; Pozhar, V. E.

    2017-07-01

    A new digital holographic microscopy scheme for multi-spectral quantitative phase imaging is proposed and implemented. It is based on acousto-optic filtration of wide-band low-coherence light at the entrance of a Mach-Zehnder interferometer, recording and digital processing of interferograms. The key requirements for the acousto-optic filter are discussed. The effectiveness of the technique is demonstrated by calculating the phase maps of human red blood cells at multiple wavelengths in the range 770-810 nm. The scheme can be used for the measurement of dispersion of thin films and biological samples.

  11. Study of an ultrasonic method of estimating local temperatures of liquid sodium at the output of the core of SFRs

    International Nuclear Information System (INIS)

    Massacret, Nicolas

    2014-01-01

    In the frame of research on Sodium cooled Fast nuclear Reactor (SFR), CEA aims to develop an innovative instrumentation, specific to these reactors. The present work relates to the measurement of the sodium temperature at the outlet of the assemblies of the reactor's core by an ultrasonic method. This instrumentation involves the propagation of ultrasonic waves in liquid sodium, thermally inhomogeneous and turbulent. Environment causes deviations of the acoustic beam that must be understood to predict and quantify to consider ultrasound as a measure means in a core of SFR reactor. To determine the magnitude of these influences, a code named AcRaLiS (Acoustic Ray in Liquid Sodium) has been implemented. In a first step, a thermal-hydraulic study specific to the medium, was conducted to provide an adequate description of the environment and choose a suitable acoustic propagation model. Then an implementation has been performed to allow rapid simulations of the wave propagation at several megahertz in this particular environment. This code provides ultrasounds deviations and changes in beam intensity.Two experiments were designed and conducted to verify the code. The first, named UPSilon innovates by replacing sodium by silicone oil in order to have a stable thermal inhomogeneity during the experiment. It allows to determine the validity of the code AcRaLiS with thermal inhomogeneities. The second, called IKHAR allows to study the influence of water turbulence on the propagation of waves, using the Kelvin-Helmholtz instabilities. Conclusions and perspectives are presented, including perspectives for other application domains. (author) [fr

  12. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  13. Magnetic resonance spectroscopy as an imaging method

    International Nuclear Information System (INIS)

    Bomsdorf, H.; Imme, M.; Jensen, D.; Kunz, D.; Menhardt, W.; Ottenberg, K.; Roeschmann, P.; Schmidt, K.H.; Tschendel, O.; Wieland, J.

    1990-01-01

    An experimental Magnetic Resonance (MR) system with 4 tesla flux density was set up. For that purpose a data acquisition system and RF coils for resonance frequencies up to 170 MHz were developed. Methods for image guided spectroscopy as well as spectroscopic imaging focussing on the nuclei 1 H and 13 C were developed and tested on volunteers and selected patients. The advantages of the high field strength with respect to spectroscopic studies were demonstrated. Developments of a new fast imaging technique for the acquisition of scout images as well as a method for mapping and displaying the magnetic field inhomogeneity in-vivo represent contributions to the optimisation of the experimental procedure in spectroscopic studies. Investigations on the interaction of RF radiation with the exposed tissue allowed conclusions regarding the applicability of MR methods at high field strengths. Methods for display and processing of multi-dimensional spectroscopic imaging data sets were developed and existing methods for real-time image synthesis were extended. Results achieved in the field of computer aided analysis of MR images comprised new techniques for image background detection, contour detection and automatic image interpretation as well as knowledge bases for textural representation of medical knowledge for diagnosis. (orig.) With 82 refs., 3 tabs., 75 figs [de

  14. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  15. Image splitting and remapping method for radiological image compression

    Science.gov (United States)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  16. P-Scan provides accuracy and repeatability in ultrasonics

    International Nuclear Information System (INIS)

    Keys, R.L.

    1987-01-01

    The P-Scan (Projection image scanning technique) is an automated ultrasonic inspection technique, developed to overcome the problems with accuracy and repeatability experienced with manual ultrasonic systems. The equipment and its applications are described. (author)

  17. Magneto-laser-ultrasonic therapy. Particular methodic of different diseases treatment. Scientific materials used in practice. V.4(2)

    International Nuclear Information System (INIS)

    Samosyuk, I.Z.; Chukhraev, N.V.; Myasnikov, V.G.; Samosyuk, N.I.

    2001-01-01

    Contemporary data about the use of magnetotherapy, ultrasound and magnetolaser therapy in resonance energy ranges are presented in this book. Practical methodics of simultaneous and combined use of these physical factors in different branches of clinical medicine (neurology, cardiology, gastroenterology and others) are described. Modern principles of the sensitive zone choice, bases of biorhythmic and resonance phenomena are presented. Practical uses of them became more and more important in physiotherapy and acupuncture. Diseases of different organs are considered, and magnetic, laser and ultrasound mehtods of their treatment are discussed. Special attention is paid to the use of magneto-laser and low-frequency ultrasonic therapy methods for diabetus melitus and respiratory organ treatment. Diseases of urinary tract, of ischemia, insult, ophthalmological ones and series of surgery profile diseases are considered in connection with different modern treatment methods of them. Review of cardiovascular, skin, digestive system diseases, those of ophtalmology, stomatology, otolaryngology nervous-psychic violations is presented and optimum methods of their treatment are recommended. The most part of magneto-laser-ultrasound therapy uses refers to the new generation of series 'MIT' and 'MIT-11' apparata which combine all three treatment factors

  18. Automatic ultrasonic testing and the LOFT in-service inspection program

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1980-01-01

    An automatic ultrasonic testing system has been developed which significantly improves the flaw indication detection and characterization capability over the capability of conventional volumetric examination techniques. The system utilizes an accurately located ultrasonic sensor to generate the examination data. A small computer performs and integrates control and data input/output functions. Computer software has been developed to provide a rigorous method for data analysis and ultrasonic image interpretation. The system has been used as part of an in-service inspection program to examine welds in thich austenitic stainless steel pipes in a small experimental nuclear reactor

  19. Method for position emission mammography image reconstruction

    Science.gov (United States)

    Smith, Mark Frederick

    2004-10-12

    An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.

  20. Linear Methods for Image Interpolation

    OpenAIRE

    Pascal Getreuer

    2011-01-01

    We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.

  1. Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems.

    Science.gov (United States)

    Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V

    2011-07-01

    This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.

  2. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-10-15

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

  3. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    International Nuclear Information System (INIS)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung

    2016-01-01

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived

  4. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  5. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  6. On an image reconstruction method for ECT

    Science.gov (United States)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  7. A dynamic model of the piezoelectric traveling wave rotary ultrasonic motor stator with the finite volume method.

    Science.gov (United States)

    Renteria Marquez, I A; Bolborici, V

    2017-05-01

    This manuscript presents a method to model in detail the piezoelectric traveling wave rotary ultrasonic motor (PTRUSM) stator response under the action of DC and AC voltages. The stator is modeled with a discrete two dimensional system of equations using the finite volume method (FVM). In order to obtain accurate results, a model of the stator bridge is included into the stator model. The model of the stator under the action of DC voltage is presented first, and the results of the model are compared versus a similar model using the commercial finite element software COMSOL Multiphysics. One can observe that there is a difference of less than 5% between the displacements of the stator using the proposed model and the one with COMSOL Multiphysics. After that, the model of the stator under the action of AC voltages is presented. The time domain analysis shows the generation of the traveling wave in the stator surface. One can use this model to accurately calculate the stator surface velocities, elliptical motion of the stator surface and the amplitude and shape of the stator traveling wave. A system of equations discretized with the finite volume method can easily be transformed into electrical circuits, because of that, FVM may be a better choice to develop a model-based control strategy for the PTRUSM. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Investigation of diamond wheel topography in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire using fractal analysis method.

    Science.gov (United States)

    Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li

    2018-03-01

    The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Method for nuclear magnetic resonance imaging

    Science.gov (United States)

    Kehayias, J.J.; Joel, D.D.; Adams, W.H.; Stein, H.L.

    1988-05-26

    A method for in vivo NMR imaging of the blood vessels and organs of a patient characterized by using a dark dye-like imaging substance consisting essentially of a stable, high-purity concentration of D/sub 2/O in a solution with water.

  10. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  11. Low-Temperature Preparation of Tungsten Oxide Anode Buffer Layer via Ultrasonic Spray Pyrolysis Method for Large-Area Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Ran Ji

    2017-07-01

    Full Text Available Tungsten oxide (WO3 is prepared by a low-temperature ultrasonic spray pyrolysis method in air atmosphere, and it is used as an anode buffer layer (ABL for organic solar cells (OSCs. The properties of the WO3 transition metal oxide material as well as the mechanism of ultrasonic spray pyrolysis processes are investigated. The results show that the ultrasonic spray pyrolysized WO3 ABL exhibits low roughness, matched energy level, and high conductivity, which results in high charge transport efficiency and suppressive recombination in OSCs. As a result, compared to the OSCs based on vacuum thermal evaporated WO3, a higher power conversion efficiency of 3.63% is reached with low-temperature ultrasonic spray pyrolysized WO3 ABL. Furthermore, the mostly spray-coated OSCs with large area was fabricated, which has a power conversion efficiency of ~1%. This work significantly enhances our understanding of the preparation and application of low temperature-processed WO3, and highlights the potential of large area, all spray coated OSCs for sustainable commercial fabrication.

  12. Low-Temperature Preparation of Tungsten Oxide Anode Buffer Layer via Ultrasonic Spray Pyrolysis Method for Large-Area Organic Solar Cells.

    Science.gov (United States)

    Ji, Ran; Zheng, Ding; Zhou, Chang; Cheng, Jiang; Yu, Junsheng; Li, Lu

    2017-07-18

    Tungsten oxide (WO₃) is prepared by a low-temperature ultrasonic spray pyrolysis method in air atmosphere, and it is used as an anode buffer layer (ABL) for organic solar cells (OSCs). The properties of the WO₃ transition metal oxide material as well as the mechanism of ultrasonic spray pyrolysis processes are investigated. The results show that the ultrasonic spray pyrolysized WO₃ ABL exhibits low roughness, matched energy level, and high conductivity, which results in high charge transport efficiency and suppressive recombination in OSCs. As a result, compared to the OSCs based on vacuum thermal evaporated WO₃, a higher power conversion efficiency of 3.63% is reached with low-temperature ultrasonic spray pyrolysized WO₃ ABL. Furthermore, the mostly spray-coated OSCs with large area was fabricated, which has a power conversion efficiency of ~1%. This work significantly enhances our understanding of the preparation and application of low temperature-processed WO₃, and highlights the potential of large area, all spray coated OSCs for sustainable commercial fabrication.

  13. Linear Methods for Image Interpolation

    Directory of Open Access Journals (Sweden)

    Pascal Getreuer

    2011-09-01

    Full Text Available We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.

  14. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV)

    International Nuclear Information System (INIS)

    Qian Ming; Niu Lili; Jiang Bo; Jin Qiaofeng; Jiang Chunxiang; Zheng Hairong; Wang Yanping

    2010-01-01

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  15. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).

    Science.gov (United States)

    Qian, Ming; Niu, Lili; Wang, Yanping; Jiang, Bo; Jin, Qiaofeng; Jiang, Chunxiang; Zheng, Hairong

    2010-10-21

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  16. Signal Processing Effects for Ultrasonic Guided Wave Scanning of Composites

    International Nuclear Information System (INIS)

    Roth, D.J.; Cosgriff, L.M.; Martin, R.E.; Burns, E.A.; Teemer, L.

    2005-01-01

    The goal of this ongoing work is to optimize experimental variables for a guided wave scanning method to obtain the most revealing and accurate images of defect conditions in composite materials. This study focuses on signal processing effects involved in forming guided wave scan images. Signal processing is involved at two basic levels for deriving ultrasonic guided wave scan images. At the primary level, NASA GRC has developed algorithms to extract over 30 parameters from the multimode signal and its power spectral density. At the secondary level, there are many variables for which values must be chosen that affect actual computation of these parameters. In this study, a ceramic matrix composite sample having a delamination is characterized using the ultrasonic guided wave scan method. Energy balance and decay rate parameters of the guided wave at each scan location are calculated to form images. These images are compared with ultrasonic c-scan and thermography images. The effect of the time portion of the waveform processed on image quality is assessed by comparing with images formed using the total waveform acquired

  17. Changes in Ultrasonic Velocity from Fluid Substitution, Calculated with Laboratory Methods, Digital Rock Physics, and Biot Theory

    Science.gov (United States)

    Goldfarb, E. J.; Ikeda, K.; Tisato, N.

    2017-12-01

    Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and

  18. Restoration of metal properties of circulation pump blades by the method of surface ultrasonic impact treatment

    Science.gov (United States)

    Povarov, V. P.; Urazov, O. V.; Bakirov, M. B.; Pakhomov, S. S.; Belunik, I. A.

    2017-10-01

    During the transition period to a market economy, the works producing equipment for the nuclear industry became lame duck companies. The market of heavy industry equipment reduced dramatically, and quality control requirements imposed to goods became lower. Deviations from regulations' requirements and technical specifications for equipment manufacture results in inevitable decrease of reliability during operation but also to failure during check tests. It is not always possible to replace promptly ill-conditioned equipment; in such cases, it is necessary to carry out compensatory measures for restoring working properties up to an acceptable level in order to ensure operational reliability due to the strength improvement of the components of machines and constructions during the whole service life or up to the scheduled date of equipment replacement. This paper is dedicated to development and practical implementation of restorative technology of strengthening ultrasonic treatment used for the metal of the blades of impellers of 16DPA10-28 circulation pumps of 10URS unit pump station located at Novovoronezh NPP-2. The dynamic surface treatment was implemented for compensating the technological defects of the metal of blades. It was revealed that the impact elastic-plastic deformation has a comprehensive compensation effect on the metal of blades in the initial state of delivery and creates the surface-strengthening layer with higher strength properties (strain hardening) of the depth up to 1.5 mm. The surface strain hardening increases the cyclic strength, re-distributes beneficially the residual technological and repair stresses, and heals small surface cracks improving the surface quality. The developed technology was used for treatment of 32 blades of impellers of 10PAC01AP001, 10PAC02AP001, 10PAC03AP001, 10PAC04AP001 circulation pumps. The implemented 100-h full-scale test of the pumps revealed the high efficiency of the developed technology and made it possible

  19. Methods for sorting out the defects according to size in automated ultrasonic testing of large-diameter thin-walled tubes

    International Nuclear Information System (INIS)

    Golovkin, A.M.; Matveev, A.S

    1977-01-01

    Two methods have been considered of identifying defects according to their size in the course of an automated ultrasonic testing, namely, according to the echo-signal amplitude, and according to the conventional depth of a defect. The peculiar features of the second method are analyzed, and its equivalence to the first one is proved. For the purpose of identifying defects according to their conventional width, a technique is suggested of standartizing flaw detectors according to the control reflectors of two sizes

  20. Imaging methods in medical diagnosis

    International Nuclear Information System (INIS)

    Krestel, E.

    1981-01-01

    Pictures of parts of the human body or of the human body (views, superposition pictures, pictures of body layers, or photographs) are considerable helps for the medical diagnostics. Physics, electrotechnique, and machine construction make the picture production possible. Modern electronics and optics offer facilities of picture processing which influences the picture quality. Picture interpretation is the the physican's task. The picture-delivering methods applied in medicine include the conventional X-ray diagnostics, X-ray computer tomography, nuclear diagnostics, sonography with ultas sound, and endoscopy. Their rapid development and immprovement was caused by the development of electronics during the past 20 years. A method presently in discussion and development is the Kernspin-tomography. (orig./MG) [de

  1. A NEW IMAGE REGISTRATION METHOD FOR GREY IMAGES

    Institute of Scientific and Technical Information of China (English)

    Nie Xuan; Zhao Rongchun; Jiang Zetao

    2004-01-01

    The proposed algorithm relies on a group of new formulas for calculating tangent slope so as to address angle feature of edge curves of image. It can utilize tangent angle features to estimate automatically and fully the rotation parameters of geometric transform and enable rough matching of images with huge rotation difference. After angle compensation, it can search for matching point sets by correlation criterion, then calculate parameters of affine transform, enable higher-precision emendation of rotation and transferring. Finally, it fulfills precise matching for images with relax-tense iteration method. Compared with the registration approach based on wavelet direction-angle features, the matching algorithm with tangent feature of image edge is more robust and realizes precise registration of various images. Furthermore, it is also helpful in graphics matching.

  2. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  3. Methods for evaluating imaging methods of limited reproducibility

    International Nuclear Information System (INIS)

    Krummenauer, F.

    2005-01-01

    Just like new drugs, new or modified imaging methods must be subjected to objective clinical tests, including tests on humans. In this, it must be ensured that the principle of Good Clinical Practice (GCP) are followed with regard to medical, administrative and methodical quality. Innovative methods fo clinical epidemiology and medical biometry should be applied from the planning stage to the final statistical evaluation. The author presents established and new methods for planning, evaluation and reporting of clinical tests of diagnostic methods, and especially imaging methods, in clinical medicine and illustrates these by means of current research projects in the various medical disciplines. The strategies presented are summarized in a recommendation based on the concept of phases I - IV of clinical drug testing in order to enable standardisation of the clinical evaluation of imaging methods. (orig.)

  4. Flaw acceptance criteria taking into consideration the NDT: radiographic and ultrasonic testing. Analysis through the fracture mechanics methods

    International Nuclear Information System (INIS)

    Capurro, E.; Alicino, F.; Corvi, A.

    1993-01-01

    The present study compares and evaluates the flaw acceptance criteria of the non-destructive inspections meeting European Community standards, through the application of the fracture mechanics methods that were determined and verified by the previous activity. Some choices were made; these, however, do not change the general validity of the conclusions. Shaved full-penetration butt welds of Class 1 components making up the primary circuit were considered and the following parameters varied: standards: French, German, Italian (ASME III) and UK; material: AISI 316 and low alloy steel A 533; base material and weld metal; temperature: RT, 370 deg C for the austenitic and 260 deg C for the ferritic steel; ultrasonic and radiographic methods; defect position: surface and internal; stress condition: situations with different primary and secondary stresses. From a preliminary examination of this study it is evident that the large quantity of results available and the abundance of information contained therein make a simple and exhaustive synthesis difficult. In fact, different analyses are possible and we have, therefore, limited the research to activities to perform a comparison and a general evaluation of the acceptance criteria of the non-destructive testing. (authors). 57 refs., 25 figs., 11 tabs

  5. Prognostic aspects of imaging method development

    International Nuclear Information System (INIS)

    Steinhart, L.

    1987-01-01

    A survey is presented of X-ray diagnostic methods and techniques and possibilities of their further development. Promising methods include direct imaging using digital radiography. In connection with computer technology these methods achieve higher resolution. The storage of obtained images in the computer memory will allow automated processing and evaluation and the use of expert systems. Development is expected to take place especially in computerized tomography using magnetic resonance, and positron computed tomography and other non-radioactive diagnostic methods. (J.B.). 5 figs., 1 tab., 1 ref

  6. Matrix Krylov subspace methods for image restoration

    Directory of Open Access Journals (Sweden)

    khalide jbilou

    2015-09-01

    Full Text Available In the present paper, we consider some matrix Krylov subspace methods for solving ill-posed linear matrix equations and in those problems coming from the restoration of blurred and noisy images. Applying the well known Tikhonov regularization procedure leads to a Sylvester matrix equation depending the Tikhonov regularized parameter. We apply the matrix versions of the well known Krylov subspace methods, namely the Least Squared (LSQR and the conjugate gradient (CG methods to get approximate solutions representing the restored images. Some numerical tests are presented to show the effectiveness of the proposed methods.

  7. Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method

    Science.gov (United States)

    Pal, Arpan; Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta

    2018-03-01

    In the present study, the effects of WC nano-particles content on the microstructure, hardness, wear, and friction behavior of aluminum matrix composites are investigated. Al-WC nano composites with varying wt% of WC (0, 1, 1.5, and 2) are fabricated using ultrasonic cavitation assisted stir-cast method. The microstructure of the nano-composite samples is analyzed using optical microscopy and scanning electron microscopy. Elemental composition is determined by energy dispersive x-ray analysis. Vicker’s microhardness test is performed in different locations on the composite sample surface with a load of 50 gf and 10s dwell time. Wear and friction of the composites under dry sliding is studied using a pin-on-disk tribotester for varying normal load (10–40 N) and sliding speed (0.1–0.4 m/s). Uniform distribution of nano-WC is observed over composite surface without noticeable clustering. Reinforcement of nano-WC particles improves wear resistance and frictional behavior of the composite. Hardness is seen to increase with increase in wt% of nano-particles. Wear behavior of composites depends on formation of layers over the surface mixed with oxidized debris and counter-face particles. Wear mechanism changes from adhesion to abrasion with increase in wt% of hard nano particles.

  8. Investigation on ultrasonication mediated biosurfactant disintegration method in sludge flocs for enhancing hydrolytic enzymes activity and polyhydroxyalkanoates.

    Science.gov (United States)

    Sethupathy, A; Sivashanmugam, P

    2018-06-04

    In this study, a novel biosurfactant potential bacterial strain Pseudomonas pachastrellae RW43 was isolated from pulp and paper sludge and the biosurfactant namely rhamnolipid produced by Pseudomonas pachastrellae RW43 was investigated by varying pH and incubation time in batch liquid fermentation process. The maximal yield of rhamnolipid was found to be 12.1 g/L at an optimized condition of pH 7 and incubation time of 168 h. NMR analysis was performed for identification of molecular structure of produced rhamnolipid and its results concluded that the product was identified as di rhamnolipid. Then, statistically the global optimum conditions for hydrolytic enzymes extraction parameters (sonication power (100 W), extraction time (15 min) and rhamnolipid dosage (2% v/v)) were established. At 30,456 kJ/kg TS specific energy, ultrasonication with rhamnolipid disintegration method extracted maximal consortium activity of hydrolytic enzymes from mixed sludge (municipal and pulp & paper sludge) and the maximum observed were found to be 42.22, 51.75, 34.26, 24.21, 11.35 Units/g VSS respectively for protease, α-amylase, cellulase, lipase and α-glucosidase. Polyhydroxyalkanoates was recovered from enzymes extracted sludge using various solvents namely chloroform, sodium hypochlorite with chloroform and sodium lauryl sulfate with sodium hypochlorite. The maximum recovery was found to be 74 g/kg using sodium hypochlorite and chloroform extraction solvents.

  9. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Structural and Morphological Properties of Nanostructured ZnO Particles Grown by Ultrasonic Spray Pyrolysis Method with Horizontal Furnace

    Directory of Open Access Journals (Sweden)

    G. Flores-Carrasco

    2014-01-01

    Full Text Available ZnO nanoparticles were synthesized in a horizontal furnace at 500°C using different zinc nitrate hexahydrate concentrations (0.01 and 0.1 M as reactive solution by ultrasonic spray pyrolysis method. The physical-chemical properties of synthesized ZnO nanoparticles have been characterized by thermogravimetric analysis (TGA, X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and high resolution transmission electron microscopy (HRTEM. With the TGA is has optimized the temperature at which the initial reactive (Zn(NO32·6H2O, is decomposed completely to give way to its corresponding oxide, ZnO. SEM revealed secondary particles with a quasispherical shape that do not change significantly with the increasing of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248±73 to 470±160 nm; XRD reveals the similar tendency for the crystallite size which changes from 23±4 to 45±4 nm. HRTEM implies that the secondary particles are with hierarchical structure composed of primary nanosized subunits. These results showed that the precursor concentration plays an important role in the evolution on the size, stoichiometry, and morphology of ZnO nanoparticles.

  11. Structural and magnetic properties of Co-doped ZnO thin films grown by ultrasonic spray pyrolysis method

    Science.gov (United States)

    Baghdad, R.; Lemée, N.; Lamura, G.; Zeinert, A.; Hadj-Zoubir, N.; Bousmaha, M.; Bezzerrouk, M. A.; Bouyanfif, H.; Allouche, B.; Zellama, K.

    2017-04-01

    Cobalt-doped ZnO thin films with several different percentage of Co from 0 up to 15 at% were synthesized via a cheap, simple and versatile method i.e. ultrasonic spray pyrolysis at atmospheric pressure and a substrate temperature of 350 °C. The structure of the as-prepared samples was characterized by X-ray diffraction (XRD), Raman spectroscopy and FTIR. The Co-doping effect is revealed by the presence of three additional peaks around 235, 470 and 538 cm-1 respect to the Raman spectra of the unsubstituted film. Fourier transform infrared spectroscopy (FTIR) put in evidence the decrease of the bond force constant f with increasing Co-doping. By ultra-violet visible near infrared (UV-Vis-NIR) spectroscopy on Co-doped samples it was possible to show the presence of additional absorption bands at approximately 570, 620 and 660 nm suggesting that Co2+ ions do not change their oxidation when substituted to zinc and the ZnO lattice does not change its wurtzite structure as well. Finally, all our samples exhibit a paramagnetic behavior without any trace of intrinsic room temperature ferromagnetism.

  12. Structural and optical properties of Cu2ZnSnS4 synthesized by ultrasonic assisted sol-gel method

    Science.gov (United States)

    Rajwar, Birendra Kumar; Sharma, Shailendra Kumar

    2018-05-01

    Cu2ZnSnS4 (CZTS) nanocrystals were synthesized by a simple ultrasonic assisted sol-gel method using two different solvents. Structure and purity of the phase formed were investigated using X-ray diffraction (XRD) and Raman measurements. The average crystallite size were estimated by using Scherrer's formula and found to be 2.09 and 7.15 nm. Raman study reveals the kesterite-phase of prepared samples. The influence of solvent in the morphologies of prepared samples was investigated by field emission scanning electron microscopy (FESEM). Ultraviolet-visible-near-infrared absorption measurement was carried out to calculate the optical band gap of samples. Oxidation state of the constitute elements of as-prepared samples were investigated by X-ray photoelectron spectroscopy (XPS) analysis and the results are in good agreement with the literature. The surface area and pore volume were estimated after analysis of nitrogen adsorption-desorption isotherm curves and found to be 16.5 m2/gm and 0.01 cm3/gm respectively.

  13. Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: Advantage of ultrasonication with precipitation method over conventional method.

    Science.gov (United States)

    Mehta, Dhiraj; Mondal, Poonam; Saharan, Virendra Kumar; George, Suja

    2017-07-01

    This research work presents the synthesis of hydroxyapatite (Hap) nanorods for defluoridation of drinking water by using both conventional (CM) and ultrasonication with precipitation (USPM) methods. Calcium nitrate was reacted with potassium phosphate in presence of ammonia for controlled pH to synthesize Hap nanorods, which was characterized using FTIR, XRD, SEM, TG-DTA, and TEM/EDS for determining its phase composition, structural and thermal decomposition behavior. When USPM method was used for synthesis, the yield of the Hap nanorods was improved from 83.24±1.0% to 90.2±1.0%, and complete phase transformation occurred with formation of elongated Hap nanorods. Effects of process parameters such as solution pH, contact time and adsorbent dose were studied through response surface methodology (RSM). A simple quadratic model was developed using Central Composite Design (CCD) and optimum parameters for fluoride adsorption process were determined to be pH 7, contact time 3h and adsorbent dose 7g/L for maximum removal capacity. Fluoride removal efficiency was predicted to be 93.64% which was very close to the experimental value obtained at 92.86% using ultrasonically prepared Hap. Fluoride adsorption isotherms fitted the Freundlich isotherm with an adsorption capacity of 1.49mg/g, while the kinetic studies revealed that the process followed pseudo-second order model. The treated water quality parameters such as residual fluoride, calcium leached, total hardness and alkalinity was investigated, and it was observed that all these parameters were within the permissible limits as per WHO and BIS standards. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method

    Directory of Open Access Journals (Sweden)

    Chang-Liang Jing

    2015-08-01

    Full Text Available Ultrasonic-assisted extraction (UAE was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM, based on a four-factor, five-level central composite design (CCD, was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid (ABTS and 2,2′-diphenyl-1-picrylhydrazyl (DPPH methods. The results showed good fit with the proposed models for the total flavonoid extraction (R2 = 0.9849, for the antioxidant extraction assayed by ABTS method (R2 = 0.9764, and by DPPH method (R2 = 0.9806. Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa.

  15. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method.

    Science.gov (United States)

    Jing, Chang-Liang; Dong, Xiao-Fang; Tong, Jian-Ming

    2015-08-26

    Ultrasonic-assisted extraction (UAE) was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM), based on a four-factor, five-level central composite design (CCD), was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. The results showed good fit with the proposed models for the total flavonoid extraction (R² = 0.9849), for the antioxidant extraction assayed by ABTS method (R² = 0.9764), and by DPPH method (R² = 0.9806). Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa.

  16. Under sodium ultrasonic viewing for Fast Breeder Reactors: a review

    International Nuclear Information System (INIS)

    Tarpara, Eaglekumar G.; Patankar, V.H.; Vijayan Varier, N.

    2016-09-01

    Liquid Metal Fast Breeder Reactors (LMFBR/FBR) are of two types: Loop type and Pool type. Many countries like USA, Japan, UK, Russia, China, France, Lithuania, Belgium, Korea, and India have worked extensively on these types of FBRs. FBRs are capable of breeding more fissionable fuel than it consumes like breeding of Plutonium-239 from non-fissionable Uranium-238. In FBR, heat is released by fission process and it must be captured and transferred to the electric generator by the liquid metal coolant (i.e. Sodium). Due to continuous operation and for safety and licensing reasons, periodic inspection and maintenance is required for reactor fuel assemblies which carry nuclear fuels. For this reason, under sodium ultrasonic imaging technique is adopted as in-service inspection activity for viewing of core of FBRs. Since liquid sodium is optically opaque, ultrasonic technique is the only method which can be employed for imaging in liquid sodium. In harsh conditions like high temperature and high radiation, there is a restriction on the development of possible ultrasonic visualization systems and selection of the transducer materials which can operate in the core region of reactor at around 200 °C during shutdown of reactor. This report provides a review of works related to ultrasonic imaging in sodium, different materials used in high temperature transducer assemblies and their different coupling/bonding techniques to achieve maximum transmission efficiency in high temperature sodium environment. The report also provides the overview of different architectures and imaging methods of transducer array elements which were used in LMFBRs for inspection and visualization of the reactor core sub-assemblies. The report is focused on a review of some possible beam forming techniques which may be used for nuclear applications for high temperature environment. Published information of the different simulation models are also reviewed which can be adopted to simulate the

  17. Analysis of Non Local Image Denoising Methods

    Science.gov (United States)

    Pardo, Álvaro

    Image denoising is probably one of the most studied problems in the image processing community. Recently a new paradigm on non local denoising was introduced. The Non Local Means method proposed by Buades, Morel and Coll attracted the attention of other researches who proposed improvements and modifications to their proposal. In this work we analyze those methods trying to understand their properties while connecting them to segmentation based on spectral graph properties. We also propose some improvements to automatically estimate the parameters used on these methods.

  18. Handbook of mathematical methods in imaging

    CERN Document Server

    2015-01-01

    The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and com...

  19. Accelerated gradient methods for constrained image deblurring

    International Nuclear Information System (INIS)

    Bonettini, S; Zanella, R; Zanni, L; Bertero, M

    2008-01-01

    In this paper we propose a special gradient projection method for the image deblurring problem, in the framework of the maximum likelihood approach. We present the method in a very general form and we give convergence results under standard assumptions. Then we consider the deblurring problem and the generality of the proposed algorithm allows us to add a energy conservation constraint to the maximum likelihood problem. In order to improve the convergence rate, we devise appropriate scaling strategies and steplength updating rules, especially designed for this application. The effectiveness of the method is evaluated by means of a computational study on astronomical images corrupted by Poisson noise. Comparisons with standard methods for image restoration, such as the expectation maximization algorithm, are also reported.

  20. Image change detection systems, methods, and articles of manufacture

    Science.gov (United States)

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  1. Quality assessment in radiological imaging methods

    International Nuclear Information System (INIS)

    Herstel, W.

    1985-01-01

    The equipment used in diagnostic radiology is becoming more and more complicated. In the imaging process four components are distinguished, each of which can introduce loss in essential information: the X-ray source, the human body, the imaging system and the observer. In nearly all imaging methods the X-ray quantum fluctuations are a limitation to observation. But there are also technical factors. As an illustration it is shown how in a television scanning process the resolution is restricted by the system parameters. A short review is given of test devices and the results are given of an image comparison based on regular bar patterns. Although this method has the disadvantage of measuring mainly the limiting resolution, the results of the test correlate reasonably well with the subjective appreciations of radiographs of bony structures made by a group of trained radiologists. Fluoroscopic systems should preferably be tested using moving structures under dynamic conditions. (author)

  2. Augmented reality application for training in pipe defects ultrasonic investigation

    Directory of Open Access Journals (Sweden)

    Amza Cătălin Gheorghe

    2017-01-01

    Full Text Available The paper presents the development process of an Augmented Reality (AR application used for training operators in using ultrasonic equipment for non-destructive testing (NDT of pipework. The application provides workers useful information regarding the process steps, the main components of ultrasonic equipment and the proper modality of placing, aligning and moving it on pipe and weld. Using tablet or mobile phone device, an operator can see on screen written details and images on standardized working method, thus offering assistance during the training process. Allowing 3D augmented visualization of ultrasonic equipment overlaid on the real-world environment consisting in pipes and welds, the AR application makes the NDT process easier to understand and learn, as the initial evaluation results showed.

  3. Circular SAR Optimization Imaging Method of Buildings

    Directory of Open Access Journals (Sweden)

    Wang Jian-feng

    2015-12-01

    Full Text Available The Circular Synthetic Aperture Radar (CSAR can obtain the entire scattering properties of targets because of its great ability of 360° observation. In this study, an optimal orientation of the CSAR imaging algorithm of buildings is proposed by applying a combination of coherent and incoherent processing techniques. FEKO software is used to construct the electromagnetic scattering modes and simulate the radar echo. The FEKO imaging results are compared with the isotropic scattering results. On comparison, the optimal azimuth coherent accumulation angle of CSAR imaging of buildings is obtained. Practically, the scattering directions of buildings are unknown; therefore, we divide the 360° echo of CSAR into many overlapped and few angle echoes corresponding to the sub-aperture and then perform an imaging procedure on each sub-aperture. Sub-aperture imaging results are applied to obtain the all-around image using incoherent fusion techniques. The polarimetry decomposition method is used to decompose the all-around image and further retrieve the edge information of buildings successfully. The proposed method is validated with P-band airborne CSAR data from Sichuan, China.

  4. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  5. COMPARISON OF DIGITAL IMAGE STEGANOGRAPHY METHODS

    Directory of Open Access Journals (Sweden)

    S. A. Seyyedi

    2013-01-01

    Full Text Available Steganography is a method of hiding information in other information of different format (container. There are many steganography techniques with various types of container. In the Internet, digital images are the most popular and frequently used containers. We consider main image steganography techniques and their advantages and disadvantages. We also identify the requirements of a good steganography algorithm and compare various such algorithms.

  6. Study on Processing Method of Image Shadow

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2014-07-01

    Full Text Available In order to effectively remove disturbance of shadow and enhance robustness of information processing of computer visual image, this paper makes study on inspection and removal of image shadow. It makes study the continual removal algorithm of shadow based on integration, the illumination surface and texture, it respectively introduces their work principles and realization method, it can effectively carrying processing for shadow by test.

  7. Coherent diffractive imaging methods for semiconductor manufacturing

    Science.gov (United States)

    Helfenstein, Patrick; Mochi, Iacopo; Rajeev, Rajendran; Fernandez, Sara; Ekinci, Yasin

    2017-12-01

    The paradigm shift of the semiconductor industry moving from deep ultraviolet to extreme ultraviolet lithography (EUVL) brought about new challenges in the fabrication of illumination and projection optics, which constitute one of the core sources of cost of ownership for many of the metrology tools needed in the lithography process. For this reason, lensless imaging techniques based on coherent diffractive imaging started to raise interest in the EUVL community. This paper presents an overview of currently on-going research endeavors that use a number of methods based on lensless imaging with coherent light.

  8. Improved image alignment method in application to X-ray images and biological images.

    Science.gov (United States)

    Wang, Ching-Wei; Chen, Hsiang-Chou

    2013-08-01

    Alignment of medical images is a vital component of a large number of applications throughout the clinical track of events; not only within clinical diagnostic settings, but prominently so in the area of planning, consummation and evaluation of surgical and radiotherapeutical procedures. However, image registration of medical images is challenging because of variations on data appearance, imaging artifacts and complex data deformation problems. Hence, the aim of this study is to develop a robust image alignment method for medical images. An improved image registration method is proposed, and the method is evaluated with two types of medical data, including biological microscopic tissue images and dental X-ray images and compared with five state-of-the-art image registration techniques. The experimental results show that the presented method consistently performs well on both types of medical images, achieving 88.44 and 88.93% averaged registration accuracies for biological tissue images and X-ray images, respectively, and outperforms the benchmark methods. Based on the Tukey's honestly significant difference test and Fisher's least square difference test tests, the presented method performs significantly better than all existing methods (P ≤ 0.001) for tissue image alignment, and for the X-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (P < 0.001). The software implementation of the presented method and the data used in this study are made publicly available for scientific communities to use (http://www-o.ntust.edu.tw/∼cweiwang/ImprovedImageRegistration/). cweiwang@mail.ntust.edu.tw.

  9. An Improved Image Contrast Assessment Method

    Directory of Open Access Journals (Sweden)

    Yuanyuan Fan

    2013-07-01

    Full Text Available Contrast is an important factor affecting the image quality. In order to overcome the problems of local band-limited contrast, a novel image contrast assessment method based on the property of HVS is proposed. Firstly, the image by low-pass filter is performed fast wavelet decomposition. Secondly, all levels of band-pass filtered image and its corresponding low-pass filtered image are obtained by processing wavelet coefficients. Thirdly, local band-limited contrast is calculated, and the local band-limited contrast entropy is calculated according to the definition of entropy, Finally, the contrast entropy of image is obtained by averaging the local band-limited contrast entropy weighed using CSF coefficient. The experiment results show that the best contrast image can be accurately identified in the sequence images obtained by adjusting the exposure time and stretching gray respectively, the assessment results accord with human visual characteristics and make up the lack of local band-limited contrast.

  10. NMR blood vessel imaging method and apparatus

    International Nuclear Information System (INIS)

    Riederer, S.J.

    1988-01-01

    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data

  11. Ultrasonic Phased Array Techniques for Detection of Flaws of Stud Bolts in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Choi, Sang Woo

    2006-01-01

    The reactor vessel body and closure head are fastened with the stud bolt that is one of crucial parts for safety of the reactor vessels in nuclear power plants. It is reported that the stud bolt is often experienced by fatigue cracks initiated at threads. Stud bolts are inspected by the ultrasonic technique during the overhaul periodically for the prevention of failure which leads to radioactive leakage from the nuclear reactor. The conventional ultrasonic inspection for stud bolts was mainly conducted by reflected echo method based on shadow effect. However, in this technique, there were numerous spurious signals reflected from every oblique surfaces of the thread. In this study, ultrasonic phased array technique was applied to investigate detectability of flaws in stud bolts and characteristics of ultrasonic images corresponding to different scanning methods, that is, sector and linear scan. For this purpose, simplified stud bolt specimens with artificial defects of various depths were prepared

  12. Ultrasonic wave propagation through aberrating layers: experimental verification of the conjugate gradient Rayleigh method

    NARCIS (Netherlands)

    Ledoux, L.A.F.; Berkhoff, Arthur P.; Thijssen, J.M.

    The Conjugate Gradient Rayleigh method for the calculation of acoustic reflection and transmission at a rough interface between two media was experimentally verified. The method is based on a continuous version of the conjugate gradient technique and plane-wave expansions. We measured the beam

  13. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    International Nuclear Information System (INIS)

    Michail, C M; Fountos, G P; Kalyvas, N I; Valais, I G; Kandarakis, I S; Karpetas, G E; Martini, Niki; Koukou, Vaia

    2015-01-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations. (paper)

  14. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz

    2009-08-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  15. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences, Uppsala (Sweden))

    2009-08-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  16. New flowmetric measurement methods of power dissipated by an ultrasonic generator in an aqueous medium.

    Science.gov (United States)

    Mancier, Valérie; Leclercq, Didier

    2007-02-01

    Two new determination methods of the power dissipated in an aqueous medium by an ultrasound generator were developed. They are based on the use of a heat flow sensor inserted between a tank and a heat sink that allows to measure the power directly coming through the sensor. To be exploitable, the first method requires waiting for stationary flow. On the other hand, the second, extrapolated from the first one, makes it possible to determine the dissipated power in only five minutes. Finally, the results obtained with the flowmetric method are compared to the classical calorimetric ones.

  17. Experiences in using ultrasonic holography with numerical and optical reconstruction

    International Nuclear Information System (INIS)

    Schmitz, V.; Wosnitza, M.

    1978-01-01

    At present, ultrasonic holography can resolve and image faults of 1 mm and more and with distances of one ultrasonic wavelength. The main field of application is for thick-walled structural components. Depending on the expected orientation, test probe arrangements as in standard ultrasonic testing are chosen. (orig./RW) [de

  18. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  19. Development of Quantification Method for Bioluminescence Imaging

    International Nuclear Information System (INIS)

    Kim, Hyeon Sik; Min, Jung Joon; Lee, Byeong Il; Choi, Eun Seo; Tak, Yoon O; Choi, Heung Kook; Lee, Ju Young

    2009-01-01

    Optical molecular luminescence imaging is widely used for detection and imaging of bio-photons emitted by luminescent luciferase activation. The measured photons in this method provide the degree of molecular alteration or cell numbers with the advantage of high signal-to-noise ratio. To extract useful information from the measured results, the analysis based on a proper quantification method is necessary. In this research, we propose a quantification method presenting linear response of measured light signal to measurement time. We detected the luminescence signal by using lab-made optical imaging equipment of animal light imaging system (ALIS) and different two kinds of light sources. One is three bacterial light-emitting sources containing different number of bacteria. The other is three different non-bacterial light sources emitting very weak light. By using the concept of the candela and the flux, we could derive simplified linear quantification formula. After experimentally measuring light intensity, the data was processed with the proposed quantification function. We could obtain linear response of photon counts to measurement time by applying the pre-determined quantification function. The ratio of the re-calculated photon counts and measurement time present a constant value although different light source was applied. The quantification function for linear response could be applicable to the standard quantification process. The proposed method could be used for the exact quantitative analysis in various light imaging equipment with presenting linear response behavior of constant light emitting sources to measurement time

  20. Blind image deconvolution methods and convergence

    CERN Document Server

    Chaudhuri, Subhasis; Rameshan, Renu

    2014-01-01

    Blind deconvolution is a classical image processing problem which has been investigated by a large number of researchers over the last four decades. The purpose of this monograph is not to propose yet another method for blind image restoration. Rather the basic issue of deconvolvability has been explored from a theoretical view point. Some authors claim very good results while quite a few claim that blind restoration does not work. The authors clearly detail when such methods are expected to work and when they will not. In order to avoid the assumptions needed for convergence analysis in the