WorldWideScience

Sample records for ultrasonic examination system

  1. System for ultrasonic examination

    International Nuclear Information System (INIS)

    Lund, S.A.; Kristensen, W.D.

    1987-01-01

    A computerized system for the recording of flaw images by ultrasonic examination according to the pulse-echo method includes at least one ultrasonic probe which can be moved in steps over the surface of an object along a rectilinear scanning path. Digital signals containing information on the successive positions of the sound beam, on echo amplitudes, and on the lengths of sound paths to reflectors inside the object, are processed and used for the accumulated storage of circular patterns of echo amplitude data in a matrix memory associated with a sectional plane through the object. A video screen terminal controls the system and transforms the accumulated data into displays of sectional flaw images of greatly improved precision and sharpness of definition. A gradual transfer of filtered data from a number of parallel sectional planes to three further matrix memories associated with projection planes at right angles to each other permits presentation in three dimensions of equally improved projection flaw images. (author) 2 figs

  2. Automated ultrasonic examination of light water reactor systems

    International Nuclear Information System (INIS)

    Walter, J.H.

    1975-01-01

    An automated ultrasonic examination system has been developed to meet the pre- and inservice inspection requirements of light water reactors. This system features remotely-controlled travelling instrument carriers, computerized collection and storage or inspection data in a manner providing real time comparison against code standards, and computer control over the positioning of the instrument carriers to provide precise location data. The system is currently being utilized in the field for a variety of reactor inspections. The principal features of the system and the recent inspection experience are discussed. (author)

  3. Improvement of ultrasonic examination using the Spartacus system

    International Nuclear Information System (INIS)

    Benoist, P.; Chapuis, N.; Cartier, F.; Pincemaille, G.

    1992-01-01

    Improved computer technology and technical advances in data analysis have significantly modified the methods employed to perform ultrasonic inspections. The SPARTACUS system developed by the CEA (French Atomic Agency) in an example of this progress. The nerve center of the system is a graphic workstation. The system permits full digitization of waveform while retaining high data acquisition rates of conventional system. In addition, it enables ultra fast analysis with comprehensive interactive imaging including signal processing (filtering, correlation, deconvolution...), image processing, spectrum analysis, automatic edition of report, 3D presentation. This system is now use during In-Service Inspection with MIS (In-Service Inspection Machine). Some examples of applications are shown: improvement in sizing capabilities, examination of austenitic weldments; thickness measurement (tube applications...), automatic detection

  4. Development of prototype virtual testing system for ultrasonic examination engineers

    International Nuclear Information System (INIS)

    Shohji, Hajime; Hide, Koichiro

    2015-01-01

    The reliability of inspection results is affected by the skill of examination personnel, particularly with regard to manual ultrasonic testing (UT). The number and design of test specimens are among the most important points to be considered during training or assessing the qualification of UT examination personnel. For training, a simulated UT training system using a computer mouse or touch sensor was proposed. However, this system proved to be inadequate as a replacement with for actual UT work. In this study, we have developed a novel virtual UT system that simulates actual UT work for piping welds. This system (Tool for Realistic UltraSound Testing) consists of a dummy UT probe, dummy piping, a computer system, and a 3D position detection system. It can detect the state of the dummy probe (3D position, skewing angle), and displays recorded A-scan data corresponding to the dummy probe status with random noise. Furthermore, it does not display A-scan data if the dummy probe is not in contact with the pipe. Thus, in this way, the system simulates actual UT work. Using this system, it is possible to significantly reduce the number of test specimens being utilized for training or assessing the qualification of UT examination personnel. Additionally, highly efficient training and certification will be achieved through this system. (author)

  5. Mechanized ultrasonic examination of piping systems in nuclear power plants

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1988-01-01

    The success of mechanized ultrasonic examination applied on welds in piping systems in nuclear power plants is highly dependent on its careful preparation. From the development of an adequate examination technique to its implementation on site, many problems are to be solved. This is especially the case when dealing with austenitic welds or dissimilar metal welds. In addition to the specific needs for examination technique based on material properties and requirements for minimum flaw size detection, accessibility and radiation aspects have to be considered. A crew of skilled and highly trained examination personnel is required. Experience in various nuclear power plants, - BWR's and PWR's of different designs - has shown, that even difficult examination problems can be successfully solved, provided that there is a good preparation. The necessary step by step proceeding is illustrated by examples concerning mechanized examination. Preservice inspections and in-service inspections with specific requirements, due to the types of flaws to be found or the type of material concerned, are discussed

  6. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  7. Performance testing of a system for remote ultrasonic examination of the Hanford double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Pfluger, D.C.; Somers, T.; Berger, A.D.

    1995-02-01

    A mobile robotic inspection system is being developed for remote ultrasonic examination of the double wall waste storage tanks at Hanford. Performance testing of the system includes demonstrating robot mobility within the tank annulus, evaluating the accuracy of the vision based navigation process, and verifying ultrasonic and video system performance. This paper briefly describes the system and presents a summary of the plan for performance testing of the ultrasonic testing system. Performance test results will be presented at the conference

  8. Establishment and implementation of performance demonstration system for ultrasonic examination in Korea

    International Nuclear Information System (INIS)

    Kim, Yong-sik

    2007-01-01

    Korea Electric Power Research Institute (KEPRI) and Korea Hydro and Nuclear Power Company (KHNP) developed Korean Performance Demonstration (KPD) system for ultrasonic examination applicable to pressurized light-water reactor and pressurized heavy-water reactor power plants in accordance with ASME Sec. XI App. VIII. In order to develop the KPD system following works were completed. 1) Surveying the welds on piping of all nuclear power plants in Korea, 2) Surveying the bolting configuration of all nuclear power plant in Korea, 3) Determining the number and type of test specimens, 4)Designing the test and the practice specimens, 5) Developing quality assurance procedures for the fabrication of test specimens and system management, 6) Developing generic procedures for manual ultrasonic test, 7) Fabrication and fingerprint of test specimen. After establishing the KPD system, round robin tests were conducted to evaluate the accuracy and reliability of examination results by comparing traditional ASME code and performance demonstration method. KEPRI/KHNP had successfully developed the KPD system to fulfill the performance demonstration requirements of ASME Sec. XI, Appendix VIII, and are executing the performance demonstration test for ultrasonic examination system. (author)

  9. Ultrasonic examination of ceramics and composites for porosities in an automatic scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Gundtoft, H.E.

    1988-05-01

    Using a very precise scanning system and computer evaluation, we can get quantitative results from automatic ultrasonic examination. In this paper two examples dealing with nonmetallic materials are presented. In a ceramic plate (>1 inch thick) small spherical prorosities (down to 0.1 mm) would harm the final product. Several artificial defects made in the plate were used for calibration and optimisation of the technique. Areas with with a microscope. Good agreement with the predicted values from the ultrasonic examination was found. From the NDT-examination the exact position of a porosity is known in all 3 coordinates (x, y and z). The size of the defect can also be measured. A single porosity with a diameter of 0.1 mm can be detected. Carbon-reinforced composites were examined. 8 prepregs were stacked and hardened in an autoclave to form a sheet (1 mm thick). Air trapped in the material resulted in porosities in the final product. A double trough transmission-scanning technique was used for the examination. The porosity percentages were determined by the NDT-technique, and agreement with destructivly determined values on samples from the same sheet was found.

  10. Serus, an expert system for the ultrasonic examination of fuel rods

    International Nuclear Information System (INIS)

    Gondard, C.; Papezyk, F.; Wident, P.

    1987-01-01

    The use of pattern recognition functions and the modelization of the human expert reasoning, allow the automatic identification of defects in welds or structures. The proposed application uses an ultrasonic examination to detect and classify 3 types of defects in end plug welds of PWR fuel rods

  11. Ultrasonic Examination of Jet Pump Diffuser Assemblies

    International Nuclear Information System (INIS)

    Hacker, M.; Levesque, M.; Whitman, G.

    1998-01-01

    In October 1997 the Boiling Water REactor Vessel and Internals Project (BWRVIP) issued the BWR Jet Pump Assembly Inspection and Flaw Evaluation Guidelines (BWRVIP-41). This document identified several welds on the jet pump diffuser assembly that are susceptible to Intergranular Stress Corrosion Cracking (IGSCC) or fatigue, and whose failure could result in jet pump disassembly. Based on the potential for failures, the document recommends inspection of 50% of the high priority welds at the next refueling outage for each BWR, with 100% expansion if flaws are identified. Because each diffuser assembly contains as many as six high priority welds, and access to these welds from the annulus is very restricted, implementing these recommendations can have a significant impact on outage critical path. In an effort to minimize the impact of implementing these recommendations, Framatome Technologies, Inc (FTI) developed a method to perform ultrasonic examinations of the jet pump diffuser assembly welds utilizing remotely operated equipment from the inner diameter (ID) of the diffuser assembly. This paper will discuss the tooling, ultrasonic methods, and delivery techniques used to perform the examinations, as well as the results obtained from a spring 1998 deployment of the system at a U.S. Nuclear Generating Plant. (Author)

  12. Elevated-temperature (6000F), manual contact ultrasonic examination

    International Nuclear Information System (INIS)

    Donnelly, C.W.

    1981-01-01

    Manual contact ultrasonic examination at temperatures above 250 0 F has not been successful in providing meaningful results. Sensitivity of standard transducers degrades rapidly at 250 0 F and above. It has been demonstrated that by using standard transducers and commercially available wedges and couplants in combination with a couplant/cooler system, manual contact ultrasonic examination can be performed at 600 0 F for an essentially 100% duty cycle in conformance to the sensitivity requirement of the ASME B and PV Code

  13. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  14. Ultrasonic examination of stainless steel weldments

    International Nuclear Information System (INIS)

    Mullan, J.V.

    1976-01-01

    Atomic Energy of Canada Ltd. have specified a combination of liquid penetrant, radiography and ultrasonic examination of welds in austenitic stainless steel. In the past, angle wedges attached to ultrasonic transducers have been designed so that only shear waves are propagated in the medium. Shear waves, however, do not penetrate one half inch of weld metal without high transmission losses, so that the signal-to-noise ratio is poor. Canadian Vickers have therefore developed a method using longitudinal waves at 45 deg in the material. The presence also of a shear wave at an angle of 19 deg does not cause confusion, because the shear wave travels slower, and has farther to travel. Some considerations for the design of transducers and wedges are outlined. (N.D.H.)

  15. Ultrasonic examination of JBK-75 strip material

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material [1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)], feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches [0.28 mm deep (0.011 in., about 17% of the strip thickness)] were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests

  16. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  17. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, S. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, A. D. [US Nuclear Regulatory Commission (NRC), Washington, DC (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, M. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  18. Ultrasonic monitoring system

    International Nuclear Information System (INIS)

    McLain, R.E.

    1975-01-01

    The ultrasonic monitoring system is used in LMFBR's, BWR's or PWR's. A remotely controlled, movable instrument carrier may be used which contains the piezo-electric transducer and is connected to the main control console by a transmission cable. An excitation pulse coming from a pulse generator is used to excite the transducer with a maximum of energy, independent of the length of the transmission line. Pulse width and pulse amplitude can be set without any direct interference into the transducer. For this purpose, a resistor whose impedance has been matched to that of the transmission line is connected to the input of the transmission line. Moreover, a capacitor for generation of the excitation pulse is coupled with the transmission line by means of a four-layer switching diode and is discharged. For termination of the excitation and the control pulses, respectively, another four-layer switching diode connected parallel to the capacitor quickly discharges the capacitor. The capacitor and the capacitance of the line constitute a voltage divider. In this way it is possible to change the length of the transmission line and, to safeguard the generation of a pulse of the desired amplitude, only vary the capacitance of the capacitor. (DG/RF) [de

  19. Effect of decision making on ultrasonic examination performance

    International Nuclear Information System (INIS)

    Harris, D.H.

    1992-05-01

    A decision aid was developed to overcome examiner limitations in information processing and decision making during ultrasonic examinations. The aid provided a means of noting signal characteristics as they were observed during the examination, and of presenting them simultaneously for decision making. The aid also served as a way of providing detailed feedback on examination performance during training. The aid was incorporated into worksheets used for the conduct of practice examinations during ultrasonic examination training. To support the introduction and use of the decision aid, one hour of supplementary training was inserted in an existing 64-hour training course on ultrasonic detection of defects. This study represented a modest step in improving the performance of ultrasonic examinations in nuclear power plants. Findings indicated that aided decision making supported by limited training can significantly improve ultrasonic detection performance

  20. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-01-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  1. System of acquisition and analysis of ultrasonic data

    International Nuclear Information System (INIS)

    Vaubert, Y.; Birac, A.M.; Saglio, R.

    1982-08-01

    An original system of acquisition and analysis of ultrasonic data collected during examinations named STADUS-PRODUS has been developed by C.E.A. in Saclay. First developed for the needs of in-service inspection of PWR vessels, it is now used for the different automatic ultrasonic controls with various tools

  2. Ultrasonic Examination of Double-Shell Tank 214-AW-102 Knuckle Region. Examination completed February 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of the knuckle region of Double-Shell Tank 241-AW-102 utilizing the Remotely Operated Nondestructive Examination (RONDE) system. The purpose of this examination was to provide information that could be used to evaluate the integrity of the knuckle region of the primary tank. The requirements for the ultrasonic examination of Tank 241-AW-102 were to detect, characterize (identify, size, and locate), and record measurements made of any circumferentially oriented cracks that might be present in the knuckle area of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-7869, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided t o PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the COGEMA ultrasonic examinations

  3. Ultrasonic system for hyperthermia

    International Nuclear Information System (INIS)

    Seppi, E.J.; Shapiro, E.G.; Zitelli, L.T.

    1985-01-01

    A system using ultrasound has been developed for hyperthermia application. It consists of a water bed containing a large ultrasound transducer array for heat application, an annular imaging transducer for alignment and treatment monitoring, and a 30-channel monitoring system for invasive temperature measurements. The heat applicator array contains 30 transducers mounted in a hexagonal configuration. Four subsets of transducers in the array can be remotely mechanically driven in such a way as to allow control of the distribution and diameter of ultrasound power at the effective focus of the array. The array can be remotely translated in three dimensions and can be rotated about its axis of symmetry. These motions allow positioning of the focal area of the array at the desired location. Each transducer of the array is powered by an individual amplifier and can be controlled in intensity and phase. The system can operate at variable ultrasound frequencies. An imaging transducer located at the center of the heat applicator array is used to collect data for ultrasound imaging and other purposes. Ultrasound images are displayed along with marks indicating the location of the heat applicator focal region for setup and for monitoring during treatment. The entire system is under computer control. This allows for operator ease in the control of the numerous parameters involved in the operation of the system

  4. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  5. Examination of Sandwich Materials Using Air-Coupled Ultrasonics

    DEFF Research Database (Denmark)

    Borum, K.K.; Berggreen, Carl Christian

    2004-01-01

    The air-coupled ultrasonic techniques have been improved drastically in recent years. Better equipment has made this technique much more useful. This paper focuses on the examination of sandwich materials used in naval ships. It is more convenient to be able to make the measurements directly...

  6. Simulations of ultrasonic examination using focused beams properties

    International Nuclear Information System (INIS)

    Calmon, P.; Gondard, C.; Lobjois, D.

    1992-01-01

    A simulation software based on a simplified model has been developed by the C.E.A. in order to predict the results of ultrasonic examinations. The algorithm account for the response of a crack close to the outer surface of a block examined with a focusing probe. It is based on a model described in this paper. This model allows to explain the main features observed on the echodynamic curves. Comparisons between experimental and simulated results show a quite good agreement

  7. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  8. Italian developments in the ultrasonic examination of pressure vessels

    International Nuclear Information System (INIS)

    Regis, V.

    1987-01-01

    A review of developments being pursued in Italy in ultrasonics for application to pressure vessels is presented. Although nuclear construction in Italy has suffered heavy delays, R and D activities promoted by the Italian Electricity Board in the mid 1970s on advanced UT for non-destructive inspection of thick welded sections made it possible to obtain significant results scored by CISE Laboratories, mainly through the design, construction and qualification of the manual UT spectroscopy and signal processing computerized ARICE system and of the mechanized multifrequency acoustic holography HADIS system. Meanwhile theoretical ultrasonic modelling is actively studied in order to implement software applications and the overall reliability of UT inspections with regard to flaw detection, location and sizing. Selected contributions from manufacturers and service companies with a view to improving UT practice are acknowledged, and still wider technology transfers may be expected in the future, also under ENEA industrial promotion programmes. (author)

  9. An Examination of the Feasibility of Ultrasonic Communications Links

    Science.gov (United States)

    2010-06-01

    achieved by human speech and by certain systems of whistled languages (Busnel and Classe, 1976). Hence he concluded that advanced modulation techniques...is that our application area and the ultrasound field are both designated under the umbrella term of ultrasonics. And though the technology of... ultrasound is extensive, the frequency regime at which this equipment operates (200–300 kHz) limits its application to our research. Ultrasound

  10. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  11. An advanced system for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Dressler, K.

    1989-01-01

    As the main component of the AUP system, an ALOK ultrasonic unit has been chosen as it allows for testing of large component areas both search for defects and description of defect geometries. All data required for fault analysis can be obtained by one measuring run. For inspection of primary circuit components in nuclear power stations, the manipulator control and the ultrasonic probe are installed behind the first sufficient shielding. (orig./HP) [de

  12. Integrate models of ultrasonics examination for NDT expertise

    International Nuclear Information System (INIS)

    Calmon, P.; Lhemery, A.; Lecoeur-Taibi, I.; Raillon, R.

    1996-01-01

    For several years, the French Atomic Energy Commission (CEA) has developed a system called CIVA for multiple-technique NDE data acquisition and processing. Modeling tools for ultrasonic non-destructive testing have been developed and implemented within this allowing direct comparison between measured and predicted results. These models are not only devoted to laboratory uses bus also must be usable by ultrasonic operators without special training in simulation techniques. Therefore, emphasis has been on finding the best compromise between as accurate as possible quantitative predictions and ease, simplicity and speed, crucial requirements in the industrial context. This approach has led us to develop approximate models for the different phenomena involved in ultrasonic inspections: radiation, transmission through interfaces, propagation, scattering by defects and boundaries, reception etc. Two main models have been implemented, covering the most commonly encountered NDT configurations. At first, these two models are shortly described. Then, two examples of their applications are shown. Based on the same underlying theories, specific modeling tools are proposed to industrial partners to answer special requirements. To illustrate this, an example is given of a software used a tool to help experts's interpretation during on-site french PWR vessel inspections. Other models can be implemented in CIVA when some assumptions made in the previous models Champ-Sons and Mephisto are not fulfilled, e. g., when less-conventional testing configurations are concerned. We briefly presents as an example a modeling study of echoes arising from cladded steel surfaces achieved in the laboratory. (authors)

  13. Ultrasonic examination of defects close to the outer surface

    International Nuclear Information System (INIS)

    Benoist, P.; Serre, M.; Champigny, F.

    1986-11-01

    During the examination of a pressurized water reactor vessel with an in Service Inspection Machine (MIS), various welds are scanned with immersion ultrasonic focused transducers from the inside of the vessel. Defects close to the outer surface are sometimes detected, and sizing with the successive 6 dB drop method leads to oversize some indications; this is caused by various reflections on the outer wall; the corner echo is of particular importance here. CEA and EDF have started an experimental program in order to study the response of volumetric and planar defects located near the outer surface. We present here the first results obtained with artificial defects. 2 refs

  14. Ultrasonic Examination of Double-Shell Tank 241-AY-101. Examination completed October 2007

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Weier, Dennis R.

    2008-01-01

    AREVA NC Inc., under contract from CH2M Hill Hanford Group, has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AY-101. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. This report is Revision 1 - more data has been added to the original report. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan, RPP-Plan-27202 (Jensen 2005) and summarized on page 1 of this document, are to be reported to CH2M Hill Hanford Group and the Pacific Northwest National Laboratory for further evaluation. Under the contract with CH2M Hill Hanford Group, all data is to be recorded on electronic media and paper copies of all measurements are provided to Pacific Northwest National Laboratory for third-party evaluation. Pacific Northwest National Laboratory is responsible for preparing a report(s) that describes the results of the AREVA NC Inc. ultrasonic examinations.

  15. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  16. Advanced ultrasonic field system: a status report

    International Nuclear Information System (INIS)

    Mikesell, C.R.; Beller, L.S.

    1984-02-01

    An advanced ultrasonic system was developed to obtain highly reproducible inspection data and to overcome certain limitations encountered with the manual scanning method. Experience from field operations from 1976 through 1980 is discussed. The scope includes a description of the computer controlled system, personnel training, inservice inspections, data analysis, and current upgrading of the system

  17. Ultrasonic Ranging System With Increased Resolution

    Science.gov (United States)

    Meyer, William E.; Johnson, William G.

    1987-01-01

    Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.

  18. P-scan, a new system for ultrasonic weld inspection

    International Nuclear Information System (INIS)

    Lund, S.A.; Iversen, S.E.; Holst, H.

    1978-01-01

    The P-scan method is explained. It is described how the new P-scan system improves the ultrasonic method by adding means for visualization, data storage and documentation. Three different scanners are described: One designed for manual operation, another for automatic operation and a third for semiautomatic operation. The p'scan image of an ultrasonically examined test plate is presented and discussed. The variable Display Level (i.e. the inspection sensitivity) facility is described. The main advantage of this facility is the fact that the level can be varied at any time after the inspection. (orig.) [de

  19. Characterization methods for ultrasonic test systems

    International Nuclear Information System (INIS)

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented

  20. Ultrasonic Examination of Double-Shell Tank 241-AY-101 Examination Completed August 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AY-101. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the secondary tank. The requirements for the ultrasonic examination of Tank 241-AY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning or pitting that might be present in the wall of the secondary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP--11832 (Jensen 2002) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  1. Ultrasonic Examination of Double-Shell Tank 241-AP-104. Examination Completed August 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AP-104. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AP-104 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  2. Ultrasonic Examination of Double-Shell Tank 241-SY-103. Examination completed February 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-103. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-103 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  3. Ultrasonic Examination of Double-Shell Tank 241-AZ-102 Examination Completed August 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AZ-102. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AZ-102 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plat (ETP), RPP-11832 (Jensen 2002) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  4. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  5. Ultrasonic nondestructive evaluation systems industrial application issues

    CERN Document Server

    Callegari, Sergio; Montisci, Augusto; Ricci, Marco; Versaci, Mario

    2015-01-01

    This book covers the practical implementation of ultrasonic NDT techniques in an industrial environment, discussing several issues that may emerge and proposing strategies for addressing them successfully.  It aims to bridge advanced academic research results and their application to industrial procedures. The topics covered in the text range from the basic operation of an ultrasonic NDT system to the simulation of the measurement operations; from the choice and generation of the signals energizing the system to the different ways of exploiting the probes and their output signals; and from quality assessment evaluation to the use of soft computing techniques for classification. Throughout the text, an effort is made to embrace a system view where the physical and technological aspects of sensing are addressed together with higher abstraction levels, such as signal and information processing. Consequently, the book aims at guiding the reader through the various tasks requested for developing a complete ultras...

  6. Microcomputer-controlled ultrasonic data acquisition system

    International Nuclear Information System (INIS)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software

  7. STADUS - Ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Saglio, Robert; Birac, A.M.; Frappier, J.C.

    1982-05-01

    The CEA (Commissariat a l'Energie Atomique) has developed a system for the acquisition and analysis of data recorded during ultrasonic testing. Initially this system was designed and built for the needs of in-service inspection of PWR type power reactors. It is in far wider use today for miscellaneous automatic ultrasonic inspection procedures. This system records, in digital form, the ultrasonic data supplied by the transducers (maximum 16 simultaneous channels), and the geometric coordinates defining the position of the inspection tool. Based on these data, which are recorded on floppy disk, this system helps to display data in the form of A SCAN, B SCAN and C SCAN images. In addition, processing programs of data transfer from the STADUS floppy disks have been developed and inserted on computers more powerful than the one used in the STADUS system. These programs serve to obtain different fault charts on an adjustable scale, as well as listings concerning the defect positions and dimensions [fr

  8. Ultrasonic levitation for the examination of gas/solid reactions

    International Nuclear Information System (INIS)

    Kavouras, A.; Krammer, G.

    2003-01-01

    An experimental setup based on acoustic levitation for the examination of gas/solid reactions is presented. In this setup single particles in the diameter range 1 mm-30 μm can be held against gravity for any wanted time in a defined gas atmosphere at elevated temperatures. The change of particle size, shape, and position can be measured and recorded using an optical device, consisting of a camera and a long range microscope. Basic experiments with inert particles of different shape and solid density have shown that the axial position of a reacting particle can be employed to derive its weight change. A method to evaluate this change of the recorded position for the according weight change is proposed. Exemplary results in the context of dry flue gas cleaning using Ca(OH) 2 powder are presented. Single Ca(OH) 2 particles are exposed to a well defined gas atmosphere and after some time these particles are retrieved from the ultrasonic field for further analyses. Only an in situ measurement of the particle weight change (i.e., without removing the particle from the well defined reactive atmosphere) brings information regarding the uptake of water by the sorbent, which accompanies SO 2 and HCl absorption

  9. Ultrasonic identity data storage and archival system

    International Nuclear Information System (INIS)

    Mc Kenzie, J.M.; Self, B.G.; Walker, J.E.

    1987-01-01

    Ultrasonic seals are being used to determine if an underwater stored spent fuel container has been compromised and can be used to determine if a nuclear material container has been compromised. The Seal Pattern Reader (SPAR) is a microprocessor controlled instrument which interrogates an ultrasonic seal to obtain its identity. The SPAR can compare the present identity with a previous identity, which it obtains from a magnetic bubble cassette memory. A system has been developed which allows an IAEA inspector to transfer seal information obtained at a facility by the SPAR to an IAEA-based data storage and retrieval system, using the bubble cassette memory. Likewise, magnetic bubbles can be loaded at the IAEA with seal signature data needed at a facility for comparison purposes. The archived signatures can be retrieved from the data base for relevant statistical manipulation and for plotting

  10. Effects of microstructure on ultrasonic examination of stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1976-01-01

    Ultrasonic inspection of cast stainless steel components or stainless steel welds is difficult, and the results obtained are hard to interpret. The present study describes the effects of stainless steel microstructure on ultrasonic test results. Welded coupons, 2.5 and 5.0 cm thick, were fabricated from Type 304 stainless steel, with Type 308 stainless steel as the weld material. Metallography of the base material shows grain sizes of 15 and 80 μm, and dendrites aligned from the top to the bottom surface in cast material. X-ray diffraction and ultrasonic velocity measurements indicate a random crystal orientation in the base material, but the cast sample had aligned dendrites. The weld material exhibits a dendritic structure with a preferred (100) direction perpendicular to the weld pass. Spectral analysis of ultrasonic broad-band signals through the base materials shows drastic attenuation of higher frequencies with increasing grain size (Rayleigh scattering). Annealing and recrystallization increases the ultrasonic attenuation and produces carbide precipitation at grain boundaries. The microstructural differences of the base metal, heat-affected zone, and weld metal affect the amplitude of ultrasonic reflections from artificial flaws in these zones. Data obtained from two samples of different grain sizes indicate that grain size has little effect when a 1-MHz transducer is used. When going from a 15 to an 80-μm crystalline structure, a 5-MHz unit suffers a 30-dB attenuation in the detection of a 1.2 mm deep notch. The anisotropy of the dendritic structure in stainless steel renewed the interest in the effect of shear-wave polarization. In the (110) crystallographic orientation of stainless steel, two modes of shear waves can be generated, which have velocities differing by a factor of two. This effect may be helpful in ''tuning'' of shear waves by polarization to obtain better penetration in large grain materials such as welds

  11. Ultrasonic Examination of Double-Shell Tank 241-SY-102. Examination Completed June 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-102. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-102 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and/SUMmarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA

  12. Equipment for examination of bodies by means of ultrasonic scanning

    International Nuclear Information System (INIS)

    Hoelzler, G.

    1977-01-01

    Equipment for linear or surface scanning of bodies by ultrasonics where an ultrasonic applicator, consisting of rows of transducer elements arranged one beside the other and made of e.g. piezoelectric crystal plates, and a control unit is used. Control and cadencing of the transducer elements is performed in groups of four or five of neighboring transducers. For control there may be provided for adjacent or engaging scanning of the groups. By this means the number of transducer elements is reduced e.g. by a factor of 2. (orig.) [de

  13. Study of problems associated with the ultrasonic examination of repeatedly repaired austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Subbaratnam, R.; Palaniappan, M.; Baskaran, A.; Chandramohan, R.

    1994-01-01

    In recent years the ultrasonic examination of austenitic stainless steel weldments has gained increased importance as an NDE technique for the volumetric examination in the nuclear power plant construction and other industries. A study has been undertaken to evaluate the effects of multiple repairs on austenitic stainless steel weldments, for the successful ultrasonic examination. The test welds have been subjected to repeated welding cycles and the ultrasonic parameters including the defect characterization have been evaluated for analysis. The paper discusses the approach followed, analysis, results obtained and the recommendations based on the above. 1 fig., 2 tabs

  14. The STADUS ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Frappier, J.C.; Birac, A.M.; Saglio, R.

    1983-01-01

    The use of the PRODUS software for real-time system management results in definitely improved date acquisition, although signal arrival is, of course, a random process. As regards data processing and display; the STADUS-PRODUS combination provides the operator with a high degree of flexibility in changing the parameters from which the three standard A-SCAN, B-SCAN, and C-SCAN displays are generated. STADUS effectivity has been demonstrated in the field through the many reactor vessel inspections performed to date. The system has been a key element in the success of underclad cracking detection and evaluation methods. The STADUS equipment, designed and built by CEA, has the advantage of being capable of acquiring a large number of ultrasonic date simultaneously generated by several transducers (up to sixteen), and to immediately process the date for creating pictures of the zone under examination, as required by the operator. Through these improvements in ultrasonic data acquisition and interpretation, the STADUS system helps enhance the quality of automatic ultrasonic examinations

  15. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    Science.gov (United States)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  16. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  17. Dependence of echo amplitude on defect orientation in ultrasonic examinations

    International Nuclear Information System (INIS)

    Wuestenberg, H.; Kutzner, J.; Engl, G.

    1976-01-01

    A theoretical assessment for the orientation dependence of an ultrasonic defect indication is described. Although other characteristics specific to the object (e.g. the sensitivity variations due to different surfaces and materials) have to be considered, the quantitative estimation for the crack detection and the reliability of the inspection methods for thick walled nuclear components can be estimated by means of the relations described in this paper

  18. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  19. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  20. Real-time ultrasonic weld evaluation system

    Science.gov (United States)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  1. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  2. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  3. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  4. Development of automatic ultrasonic testing system and its application

    International Nuclear Information System (INIS)

    Oh, Sang Hong; Matsuura, Toshihiko; Iwata, Ryusuke; Nakagawa, Michio; Horikawa, Kohsuke; Kim, You Chul

    1997-01-01

    The radiographic testing (RT) has been usually applied to a nondestructive testing, which is carried out on purpose to detect internal defects at welded joints of a penstock. In the case that RT could not be applied to, the ultrasonic testing (UT) was performed. UT was generally carried out by manual scanning and the inspections data were recorded by the inspector in a site. So, as a weak point, there was no objective inspection records correspond to films of RT. It was expected that the automatic ultrasonic testing system by which automatic scanning and automatic recording are possible was developed. In this respect, the automatic ultrasonic testing system was developed. Using newly developed the automatic ultrasonic testing system, test results to the circumferential welded joints of the penstock at a site were shown in this paper.

  5. Advanced ultrasonic and eddy current examinations of the reactor vessel

    International Nuclear Information System (INIS)

    Cvitanovic, M.; Zado, V.

    1996-01-01

    In order to improve safety and reliability of nuclear power plant components, the existing examination methods are permanently developed as well as the new methods of examination are implemented. For the same reason, beside referent requirements, complementary NDE methods are utilized. Some examination methods techniques are not required to be used by referent safety codes and standards but they are frequently practiced as additional prevention to the component failure. This article presents the state of the art methods and techniques currently applied for examination of the reactor vessel base material, clad and weld materials. (author)

  6. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  7. Multi-Canister overpack ultrasonic examination of closure weld

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The method used for non-destructive examination of the closure weld must provide adequate assurance that the weld is structurally sound for the pressure and lifting loads to be imposed, and must be consistent with NRC equivalency requirements established for the SNF Project. Given the large flaw size that would need to exist before the structural integrity of the weld is challenged, liquid penetrant testing of the root and final passes provides adequate assurance of weld quality to meet structural loads. In addition, the helium leak test provides confirmation that the containment boundary is intact and leaktight. While UT examination does provide additional evidence of weld integrity, the value of that additional evidence for this particular application does not justify performing UT examination, given the additional financial and ALARA costs associated with performing the examination

  8. Ultrasonic phased array examination of circumferential weld joint in reactor pressure vessel of BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nanekar, Paritosh, E-mail: pnanekar@barc.gov.in [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jothilakshmi, N. [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Phased array technique developed for weld joint inspection in BWR pressure vessel. • Simulation studies were carried out for conventional and phased array probe. • Conventional ultrasonic test shows in-adequate weld coverage and poor resolution. • Focused sound beam in phased array results in good resolution and sensitivity. • Ultrasonic phased array technique is validated on mock-up with reference defects. - Abstract: The weld joints in the reactor pressure vessel (RPV) of Boiling Water Reactors (BWR) are required to be examined periodically for assurance of structural integrity. Ultrasonic phased array examination technique has been developed in authors’ laboratory for inspection of the top flange to shell circumferential weld joint in RPV of BWRs, which are in operation in India since the late 1960s. The development involved detailed simulation studies for computation of focal laws followed by validation on mock-up. The paper brings out the limitations of the conventional ultrasonic technique and how this can be overcome by the phased array approach for the weld joint under consideration. The phased array technique was successfully employed for field examination of this weld joint in RPV during the re-fuelling outage.

  9. Hardware Developments of an Ultrasonic Tomography Measurement System

    Directory of Open Access Journals (Sweden)

    Hudabiyah ARSHAD AMARI

    2010-01-01

    Full Text Available This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ultrasonic transceiver. A prototype design of sensor’s jig that will hold 16 transceivers of 14.1mm has been design. Transmission-mode approach with fan beam technique has been used for sensing the flow of gas, liquid and solid. This paper also explains the circuitry designs for the Ultrasonic Tomography System.

  10. Magnetic resonance vs. computerized tomography, ultrasonic examinations and nuclear medicine

    International Nuclear Information System (INIS)

    Bruna, J.

    1985-01-01

    A symposium on magnetic resonance in nuclear medicine was held from 23rd to 27th January, 1985 in Munich and Garmisch-Partenkirchen. Discussed were suitable methods, the use of contrast media, the evaluation of results, the application of nuclear magnetic resonance in examining various body organs, and the latest apparatus. NMR achievements in medicine were compared to those by other diagnostic methods. (M.D.)

  11. Method and device for ultrasonic examination of materials

    International Nuclear Information System (INIS)

    Skinner, R.A.

    1979-01-01

    The examination is performed by applying the pitch-and-catch method, deviations from nominal geometry being automatically taken into account. For this purpose a third transceiver probe is adjustably mounted on the support structure of the transmitter and the receiver probe. The data from small surface areas received by it is processed in a data recording and processing unit, so that position and angular position of the transmitter and the receiver probe can exactly be determined. (DG) [de

  12. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  13. Automated ultrasonic inspection system for nuclear power stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The automated system of ultrasonic inspection which was used to conduct weld inspections of the complex primary system of the Borselle PWR station is described. It relies upon mechanically traversing purpose designed multi-crystal ultrasonic probes along the welds. A number of probes are switched sequentially to provide a continuous scan. A typical scan rate of 120 scan/sec is achieved by a multiplexer capable of switching transmitter and receiver individually. The system has wide applications in other industries. (U.K.)

  14. A New Servo Control Drive for Electro Discharge Texturing System Industrial Applications Using Ultrasonic Technology

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2013-07-01

    Full Text Available This paper presents a new ultrasonic servo control drive for electro discharge texturing system industrial applications. The new drive is aiming to overcome the current teething issues of the existing electro discharge texturing system, servo control drive level of precision, processing stability, dynamic response and surface profile of the machined products. The new ultrasonic servo control drive consists of three main apparatuses, an ultrasonic motor, electronic driver and control unit. The ultrasonic motor consists of three main parts, the stator, rotor and sliding element. The motor design process, basic configuration, principles of motion, finite element analysis and experimental examination of the main characteristics is discussed in this paper. The electronic driver of the motor consists of two main stages which are the booster and piezoelectric amplifier. The experimental test and validation of the developed servo control drive in electro discharge texturing platform is also discussed and presented in this paper. The initial results showed that the ultrasonic servo control drive is able to provide: a bidirectional of motion, a resolution of <50μm and a dynamic response of <10msec. The electron microscopic micro examination into the textured samples showed that: a clear improvement in machining stability, products surface profile, a notable reduction in the processing time, arcing and short-circuiting teething phenomena.

  15. Evaluation of computer-based ultrasonic inservice inspection systems

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T.

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems

  16. Development of the ultrasonic technique for examination of centrifugally-cast stainless steel in pressure piping

    International Nuclear Information System (INIS)

    Jurenka, H.J.

    1983-01-01

    Centrifugally - cast stainless steel (CCSS) are used to manufacture a large variety of components in the nuclear industry. Weldments are also made to join these parts to carbon steel items. These welds are usually made of stainless steel or inconel alloys. CCSS is sophisticated material and justification for its use in critical components is safety and reliability. These steels, as any other materials, need to be inspected to assess their structural integrity. Ultrasonic testing is one of the possible techniques. In some cases it is the only one of the feasible methods for this examination. This mainly concerns components in the primary and auxiliary circuits of nuclear plants. For a long time it has been recognized that CCSS items can be extremely difficult to inspect using ultrasonics. Many attempts in various research laboratories were conducted to improve the testing technique

  17. Contributions regarding calculus and design of an ultrasonic system used in plasma metallization

    Science.gov (United States)

    Amza, G.

    2015-11-01

    Paper presents the calculus elements and construction for the ultrasonic system used in reconditioning process by metallization. A series of necessary elements used in ultrasonic system dimensioning are given and an ultrasonic system used in reconditioning process by plasma and grain metallization are presented. Also, a calculated ultrasonic system is modelled to work in resonance regime at the frequency f = 22Khz. Stress map inside material, internal energy variation, lost energy variation on length and volume unit are presented.

  18. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    Science.gov (United States)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  19. Performance investigation on the ultrasonic atomization liquid desiccant regeneration system

    International Nuclear Information System (INIS)

    Yang, Zili; Zhang, Kaisheng; Hwang, Yunho; Lian, Zhiwei

    2016-01-01

    Highlights: • We applied ultrasonic atomization technology to boost liquid desiccant regeneration. • We established a novel UARS and made a thorough study on its performance. • We developed a performance prediction model for UARS and validated its accuracy. • The necessary regeneration temperature dropped significantly (4.4 °C) in UARS. • Energy consumption for regenerating desiccant was reduced greatly (60.4%) in UARS. - Abstract: Liquid desiccant dehumidification systems have accumulated considerable research interest in recent years for their great energy saving potential in buildings. Within the system, the regenerator recovering liquid desiccant plays a major role in its performance. When the ultrasonic atomization technology is applied to atomize the desiccant solution into numerous tiny droplets with diameters around 50 μm, the regeneration process could be greatly enhanced. To validate this approach, a novel ultrasonic atomization liquid desiccant regeneration system (UARS) was studied in this work. An Ideal Regeneration Model (IRM) was developed to predict the regeneration performance of the UARS. Additionally, thorough experiments were carried out to validate the model under different operating conditions of the desiccant solution and air stream. The model predicted values and the experimental results coincided, with the average deviation less than 7.9%. The performance of UARS was compared with other regeneration systems from the open literature, while a case study was conducted for the power consumption and energy saving potential of UARS. It was found that the ultrasonic atomization technology enabled utilization of lower-grade energy for desiccant regeneration with the regeneration temperature lowered as much as 4.4 °C. In addition, a considerable energy saving potential of up to 23.4% could be achieved by the UARS for regenerating per unit mass flow of desiccant solution, while the power consumption of the ultrasonic atomization system

  20. In situ ultrasonic examination of high-strength steam generator support bolts

    International Nuclear Information System (INIS)

    Jusino, A.

    1985-01-01

    Currently employed high-strength steam generator support bolting material (designed prior to ASME Section III Part NF or Component Supports), 38.1 mm in diameter, in combination with high preloads are susceptible to stress corrosion cracking because of the relatively low stress corrosion resistance (K/sub ISCC/) properties. These bolts are part of the pressurized water reactor steam generator supports at the integral support pads (three per steam generator, with each pad housing six, eight, or ten bolts depending on the design). The US Nuclear Regulatory Commission concerns for high-strength bolting were identified in NUREG-0577, ''Potential for Low Fracture Toughness and Laminar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports,'' which was issued for comment on unresolved safety issue A-12. Subsequently, the bolting issues were addressed in generic issue B29. One of the issues deals specifically with high-strength bolting materials, which are vulnerable to stress corrosion cracking. A Westinghouse Owners Group funded program was established to develop in situ ultrasonic examination techniques to determine steam generator support bolting integrity at the head-to-shank and first-thread locations. This program was established in order to determine bolting integrity in place. Ultrasonic techniques were developed for both socket-head and flat-head bolt configurations. As a result of this program, in situ ultrasonic examination techniques were developed for examination of PWR steam generator support bolts. By employing these techniques utilities will be able to ensure the integrity of this in-place bolting without incurring the costs previously experienced during removal for surface examinations

  1. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  2. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  3. A study on the development of a real-time intelligent system for ultrasonic flaw classification

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun; Lee, Seung Seok

    1998-01-01

    In spite of significant progress in research on ultrasonic pattern recognition it is not widely used in many practical field inspection in weldments. For the convenience of field application of this methodology, following four key issues have to be suitably addressed; 1) a software where the ultrasonic pattern recognition algorithm is efficiently implemented, 2) a real-time ultrasonic testing system which can capture the digitized ultrasonic flaw signal so the pattern recognition software can be applied in a real-time fashion, 3) database of ultrasonic flaw signals in weldments, which is served as a foundation of the ultrasonic pattern recognition algorithm, and finally, 4) ultrasonic features which should be invariant to operational variables of the ultrasonic test system. Presented here is the recent progress in the development of a real-time ultrasonic flaw classification by the novel combination of followings; an intelligent software for ultrasonic flaw classification in weldments, a computer-base real-time ultrasonic nondestructive evaluation system, database of ultrasonic flaw signals, and invariant ultrasonic features called 'normalized features.'

  4. Directivity measurements in aluminum using a laser ultrasonics system

    International Nuclear Information System (INIS)

    Sakamoto, J M S; Pacheco, G M; Tittmann, B R; Baba, A

    2011-01-01

    A laser ultrasonics system was setup to measure the directivity (angular dependence pattern) of the amplitude of ultrasonic waves generated in aluminum samples. A pulsed Nd:YAG laser operating at 1064 nm optical wavelength, with typical pulse width (FWHM) of 8 ns, and energy per pulse of 450 mJ, was used to generate the ultrasound waves in the samples. The laser detection system was a Mach-Zehnder interferometer with typical noise-limited resolution of 0.25 nm (rms), frequency range from 50 kHz to 20 MHz, and measurement range from -75 nm/V to +75 nm/V. Two different optical spot sizes of the Nd:YAG laser were used to generate waves in the ablation regime: one was focused and the other was unfocused. Using the obtained data, the directivity graphics were drawn and compared with the theoretical curves, showing a good agreement. The experiments showed the directivity as a function of the optical spot size. For a point ultrasonic source (or focused optical spot), the directivity shows that the longitudinal waves present considerable amplitude in all directions. For a larger ultrasonic source (or an unfocused optical spot) the directivity shows that the longitudinal waves are generated with the higher amplitudes inside angles around ±10 0 .

  5. A radiographic examination system

    International Nuclear Information System (INIS)

    Cable, A.P.; Cable, W.S.

    1983-01-01

    A system for performing radiographic examination, particularly of large items such as international container units is disclosed. The system is formed as an installation comprising housings for respective linear accelerators transmitting a beam of radiation across the path of a conveyor along which the units can be displaced continuously or incrementally. On either end of the installation are container handling areas including roller conveyors with drag chains and transverse manipulators, and the whole installation is secured within automatically operated doors which seal the high energy region when a container on the conveyor is being subjected to examination. The radiation transmitted through a container is detected in a detector system incorporating a fluoroscopic screen light output from which is detected in a camera system such as a television camera, and transmitted as coded pulsed signals by a coding transfer unit to display screens where an image of the transmitted information can be displayed and/or recorded for further use. (author)

  6. The automotive anti-collision system based on Ultrasonic

    Directory of Open Access Journals (Sweden)

    Qi Qinqin

    2017-08-01

    Full Text Available In the existing system of automobile anti-collision,the radar is mainly used for ranging.However,it can't be widely used because of its high cost.In this paper,based on the existing system of automobile anti-collision,the ultrasonic sensor is used to measure the distance and establish relevant anti-collision model.The experimental results show that the alarming information is accurate within a certain range.

  7. Microcomputer-controlled ultrasonic data acquisition system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software.

  8. Development of ultrasonic high temperature system for severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Young Ro and others

    2000-07-01

    The aims of this study are to find a gap formation between corium melt and the reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at suggesting development of a new high temperature measuring system using an ultrasonic method which overcomes the limitations of the present thermocouple method used for severe accident experiments. Also, this report describes the design and manufacturing method of the ultrasonic system. At that time, the sensor element is fabricated to a reflective element using 1mm diameter and 50 mm and 80 mm long tungsten alloy wires. This temperature measuring system is intended to measure up to 2800 deg C

  9. Flood Monitoring and Early Warning System Using Ultrasonic Sensor

    Science.gov (United States)

    Natividad, J. G.; Mendez, J. M.

    2018-03-01

    The purpose of this study is to develop a real-time flood monitoring and early warning system in the northern portion of the province of Isabela, particularly the municipalities near Cagayan River. Ultrasonic sensing techniques have become mature and are widely used in the various fields of engineering and basic science. One of advantage of ultrasonic sensing is its outstanding capability to probe inside objective non-destructively because ultrasound can propagate through any kinds of media including solids, liquids and gases. This study focuses only on the water level detection and early warning system (via website and/or SMS) that alerts concern agencies and individuals for a potential flood event. Furthermore, inquiry system is also included in this study to become more interactive wherein individuals in the community could inquire the actual water level and status of the desired area or location affected by flood thru SMS keyword. The study aims in helping citizens to be prepared and knowledgeable whenever there is a flood. The novelty of this work falls under the utilization of the Arduino, ultrasonic sensors, GSM module, web-monitoring and SMS early warning system in helping stakeholders to mitigate casualties related to flood. The paper envisions helping flood-prone areas which are common in the Philippines particularly to the local communities in the province. Indeed, it is relevant and important as per needs for safety and welfare of the community.

  10. Beat frequency ultrasonic microsphere contrast agent detection system

    Science.gov (United States)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  11. Experimental and field achievements in the ultrasonic examination of austenitic stainless steel

    International Nuclear Information System (INIS)

    Dombret, P.; Cermak, J.; Delaide, M.; Verspeelt, D.; Caussin, P.

    1988-01-01

    In spite of the many disturbances caused in the propagation of acoustic waves by the metallurgical structure of austenitic stainless steel, ultrasonic examination can provide in many cases key information in the process of assessing the structural integrity of industrial installations made from such materials. Indeed the steel structure variability makes every cases peculiar, with the consequence that the achievement of a dedicated feasibility study will often enhance drastically the examination performance. Such an exploratory exercise imposes to use a careful methodology regarding transducer and pulser selection, data analysis, performance evaluation, procedure qualification and field implementation. Through various examples from the nuclear industry field, the paper illustrates that kind of approach, as well as the extent to which it has been made possible to optimize the actual inspection capability and reliability. (author)

  12. Experimental and field achievements in the ultrasonic examination of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Dombret, P; Cermak, J; Delaide, M; Verspeelt, D; Caussin, P

    1988-12-31

    In spite of the many disturbances caused in the propagation of acoustic waves by the metallurgical structure of austenitic stainless steel, ultrasonic examination can provide in many cases key information in the process of assessing the structural integrity of industrial installations made from such materials. Indeed the steel structure variability makes every cases peculiar, with the consequence that the achievement of a dedicated feasibility study will often enhance drastically the examination performance. Such an exploratory exercise imposes to use a careful methodology regarding transducer and pulser selection, data analysis, performance evaluation, procedure qualification and field implementation. Through various examples from the nuclear industry field, the paper illustrates that kind of approach, as well as the extent to which it has been made possible to optimize the actual inspection capability and reliability. (author).

  13. Automated phased array ultrasonic inspection system for rail wheel sets

    International Nuclear Information System (INIS)

    Grosser, Paul; Weiland, M.G.

    2013-01-01

    This paper covers the design, system automation, calibration and validation of an automated ultrasonic system for the inspection of new and in service wheel set assemblies from diesel-electric locomotives and gondola cars. This system uses Phased Array (PA) transducers for flaw detection and Electro-Magnetic Acoustic Transducers (EMAT) for the measurement of residual stress. The system collects, analyses, evaluates and categorizes the wheel sets automatically. This data is archived for future comparison and trending. It is also available for export to a portal lathe for increased efficiency and accuracy of machining, therefore allowing prolonged wheel life.

  14. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  15. Ultrasonic treatment for microbiological control of water systems

    International Nuclear Information System (INIS)

    Broekman, S.; Pohlmann, O.; Beardwooden, E. S.; Cordemans de Meulenaer, E.

    2010-01-01

    A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae; Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm. (authors)

  16. Ultrasonic treatment for microbiological control of water systems

    Energy Technology Data Exchange (ETDEWEB)

    Broekman, S.; Pohlmann, O.; Beardwooden, E. S.; Cordemans de Meulenaer, E. [Ashland Hercules Water Technologies, Krefeld (Germany)

    2010-08-15

    A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae; Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm. (authors)

  17. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  18. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    Science.gov (United States)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  19. Ultrasonic examination of the PVRC plates Nos. 50/52, 51/53 and 204

    International Nuclear Information System (INIS)

    1979-01-01

    The imposed procedure for the ultrasonic examination of the three PVRC plates given to Europe is based on the ASME Boiler and Pressure Vessel Code, Section XI as it applies to a vessel in service and accessible from the outer surface only. This procedure is referred to as the PISC procedure. After one year of use it was modified and remained, until the end of the exercise, characterized by a 50% DAC cut-off. The three plates (50/52, 51/53 and 204) were examined following this procedure by several teams. Results were furnished: - as raw data given by the instrumentation, - as data interpreted by the team. Inspection teams also were allowed to use other procedures which in the report are called alternative procedures. The results of the examination by teams using alternative procedures were given as interpreted data by the team. Those data were corrected and arranged in a data bank on tape and on cards. Full drawings of the teams findings were also produced by the computer for easy understanding and verification of the data. Besides many defects in the welded zones, relevant base-material defects were declared by the teams

  20. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I.

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (author)

  1. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (autho0008.

  2. Chaos and Beyond in a Water Filled Ultrasonic Resonance System

    Science.gov (United States)

    Lazlo, Adler; Yost, W.; Cantrell, John H.

    2013-01-01

    Finite amplitude ultrasonic wave resonances in a one-dimensional liquid-filled cavity, formed by a narrow band transducer and a plane reflector, are reported. The resonances are observed to include not only the expected harmonic and subharmonic signals (1,2) but chaotic signals as well. The generation mechanism requires attaining a threshold value of the driving amplitude that the liquid-filled cavity system becomes sufficiently nonlinear in response. The nonlinear features of the system were recently investigated via the construction of an ultrasonic interferometer having optical precision. The transducers were compressional, undamped quartz and lithium niobate crystals having the frequency range 1-10 MHz, driven by a high power amplifier. Both an optical diffraction system to characterize the diffraction pattern of laser light normally incident to the cavity and a receiving transducer attached to an aligned reflector with lapped flat and parallel surfaces were used to assess the generated resonance response in the cavity. At least 5 regions of excitation are identified.

  3. Microcontroller based multi-channel ultrasonic level monitoring system

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Singh, Inder Jeet; Chadda, V.K.

    2004-01-01

    Microcontroller based Multi-channel Ultrasonic Level Monitoring System developed by Computer Division is based on echo ranging techniques to monitor level. The transmitter directs an ultrasonic burst towards the liquid, which gets reflected from the top of the liquid surface. The time taken for ultrasound to travel from the transmitter to the top of liquid surface is measured and used to calculate the liquid level. The system provides for temperature compensation for accurate measurement as the ultrasound velocity depends on the ambient temperature. It can measure liquid level up to 5 meters. A single monitor can be used to measure level in 6 tanks. PC connectivity has been provided via RS 232 and RS 485 for remote operation and data logging of level. A GUI program developed using LABVIEW package displays level on PC monitor. The program provides for pictorial as well as numerical display for level and temperature in the front panel on the PC monitor. A user can monitor level for any or all tanks from the PC. One unit is installed at CIRUS for measuring level in Acid/ Alkali tanks and one is installed at APSARA for measuring water level in the reactor pool. (author)

  4. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    Science.gov (United States)

    Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.

    2012-12-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  5. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    International Nuclear Information System (INIS)

    Strybulevych, A; Leroy, V; Page, J H; Shum, A L; Koksel, H F; Scanlon, M G

    2012-01-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  6. System and technique for ultrasonic characterization of settling suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Margaret S [Richland, WA; Panetta, Paul D [Richland, WA; Bamberger, Judith A [Richland, WA; Pappas, Richard A [Richland, WA

    2006-11-28

    A system for determining properties of settling suspensions includes a settling container, a mixer, and devices for ultrasonic interrogation transverse to the settling direction. A computer system controls operation of the mixer and the interrogation devices and records the response to the interrogating as a function of settling time, which is then used to determine suspension properties. Attenuation versus settling time for dilute suspensions, such as dilute wood pulp suspension, exhibits a peak at different settling times for suspensions having different properties, and the location of this peak is used as one mechanism for characterizing suspensions. Alternatively or in addition, a plurality of ultrasound receivers are arranged at different angles to a common transmitter to receive scattering responses at a variety of angles during particle settling. Angular differences in scattering as a function of settling time are also used to characterize the suspension.

  7. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  8. System and technique for ultrasonic determination of degree of cooking

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J [Richland, WA; Diaz, Aaron A [W. Richland, WA; Judd, Kayte M [Richland, WA; Pappas, Richard A [Richland, WA; Cliff, William C [Richland, WA; Pfund, David M [Richland, WA; Morgen, Gerald P [Kennewick, WA

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  9. Design and Manufacture an Ultrasonic Dispersion System with Automatic Frequency Adjusting Property

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM

    2011-03-01

    Full Text Available This paper a novel ultrasonic dispersion system for the cleaning application or dispersing of particles which are mixed in liquid has been proposed. The frequency band of designed system is 30 kHz so that the frequency of ultrasonic wave sweeps from 30 kHz to 60 kHz with 100 Hz steps. One of the superiority of manufactured system in compare with the other similar systems which are available in markets is that this system can transfer the maximum and optimum energy of ultrasonic wave inside the liquid tank with the high efficiency in the whole of the usage time of the system. The used ultrasonic transducers in this system as the generator of ultrasonic wave is the type of air coupled ceramic ultrasonic piezoelectric with the nominal maximum power 50 Watt. The frequency characteristic of applied piezoelectric is that it produces the maximum amplitude of ultrasonic wave on the resonance frequency, so this system is designed to work on resonance frequency of piezoelectric, continuously. This is done by the use of control system which is consisted of two major parts, sensing part and controlling part. The manufactured ultrasonic dispersion system is consisted of 9 piezoelectrics so that it can produce 450 watt ultrasonic energy, totally. The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  10. A computer-controlled electronic system for the ultrasonic NDT of components for nuclear power stations

    International Nuclear Information System (INIS)

    Rehrmann, M.; Harbecke, D.

    1987-01-01

    The paper describes an automatic ultrasonic testing system combined with a computer-controlled electronics system, called IMPULS I, for the non-destructive testing of components of nuclear reactors. The system can be used for both in-service inspection and for inspection during the manufacturing process. IMPUL I has more functions and less components than conventional ultrasonic systems, and the system gives good reproducible test results and is easy to operate. (U.K.)

  11. Ultrasonic examination for safe end to nozzle dissimilar metal welds of steam generator

    International Nuclear Information System (INIS)

    Wang Zhuowei; Yu Jingsheng; Wang Jianjun

    2014-01-01

    The safe-end weld of steam generator is narrow seam weld with dissimilar metal, the filling material is nickel alloy 152/182 (material 690). The interior structure is of great anisotropic, and fake signal may occur during the defect detection by ultrasonic wave and the error for defect location may be increased. Stratified inspection by ultrasonic transducers with different angle and focus is a practical method which is verified by the real inspection while the linear indication in the inside surface besides the interior flaws are detected. (authors)

  12. Development of a Multi-Channel Ultrasonic Testing System for Automated Ultrasonic Pipe Inspection of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Cho, Hyun Joon

    2009-01-01

    Currently almost all in-service-inspection techniques, applied in domestic nuclear power plants, are partial to field inspection technique. These kinds of techniques are related to managing nuclear power plants by the operation of foreign-produced inspection devices. There have been so many needs for development of native in-service-inspection device because there is no native diagnosis device for nuclear power plant inspection yet in Korea. In this research, we developed several core techniques to make an automated ultrasonic pipe inspection system for nuclear power plants. A high performance multi-channel ultrasonic pulser/receiver module, an A/D converter module and a digital main CPU module were developed and the performance of the developed modules was verified. The S/N ratio, noise level and signal acquisition performance of the developed modules showed proper level as we designed in the beginning.

  13. Image processing applied to automatic detection of defects during ultrasonic examination

    International Nuclear Information System (INIS)

    Moysan, J.

    1992-10-01

    This work is a study about image processing applied to ultrasonic BSCAN images which are obtained in the field of non destructive testing of weld. The goal is to define what image processing techniques can bring to ameliorate the exploitation of the data collected and, more precisely, what image processing can do to extract the meaningful echoes which enable to characterize and to size the defects. The report presents non destructive testing by ultrasounds in the nuclear field and it indicates specificities of the propagation of ultrasonic waves in austenitic weld. It gives a state of the art of the data processing applied to ultrasonic images in nondestructive evaluation. A new image analysis is then developed. It is based on a powerful tool, the co-occurrence matrix. This matrix enables to represent, in a whole representation, relations between amplitudes of couples of pixels. From the matrix analysis, a new complete and automatic method has been set down in order to define a threshold which separates echoes from noise. An automatic interpretation of the ultrasonic echoes is then possible. Complete validation has been done with standard pieces

  14. Evaluation on ultrasonic examination methods applied to Ni-base alloy weld including cracks due to stress corrosion cracking found in BWR reactor internal

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Kobayashi, Hiroyuki; Higuchi, Shinichi; Shimizu, Sadato

    2005-01-01

    A Ni-base alloy weld, including cracks due to stress corrosion cracking found in the reactor internal of the oldest BWR in Japan, Tsuruga unit 1, in 1999, was examined by three (3) types of UT method. After this examination, a depth of each crack was confirmed by carrying out a little excavation with a grinder and PT examination by turns until each crack disappeared. Then, the depth measured by the former method was compared with the one measured by the latter method. In this fashion, performances of the UT methods were verified. As a result, a combination of the three types of UT method was found to meet the acceptance criteria given by ASME Sec.XI Appendix VIII, Performance Demonstration for Ultrasonic Examination Systems-Supplement 6. In this paper, the results of the UT examination described above and their evaluation are discussed. (author)

  15. Hardware Developments of an Ultrasonic Tomography Measurement System

    OpenAIRE

    Hudabiyah ARSHAD AMARI; Ruzairi ABDUL RAHIM; Mohd Hafiz FAZALUL RAHIMAN; Herlina ABDUL RAHIM; Muhammad Jaysuman PUSPPANATHAN

    2010-01-01

    This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ul...

  16. Computer control in nondestructive testing illustrated by an automatic ultrasonic tube inspection system

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, N.

    1976-06-01

    In Risoe's automatic tube inspection system, data (more than half a million per tube) from ultrasonic dimension measurements and defect inspections are fed into a computer that simultaneously calculates and evaluates the results. (author)

  17. Design and development of Pc-based TOFD ultrasonic scanning system for welds inspection

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismai; Muhammad Faiz Mohd Shukri; Amry Amin Abas

    2010-01-01

    This paper describes the design and development of a portable PC-based ultrasonic scanning system for industrial applications. The system which is called TOFD Ultrasonic Scanning System (TOFUSS) is used to create a gray scale imaging techniques are applied to the RF (AC) signal phase and enables weld integrity to be observed in real time. TOFD consists of a separate ultrasonic transmitter and receiver. The Probes are aimed at the same point in the weld volume. The entire weld is flooded with ultrasound allowing inspection of the weld. With a time of flight path, the ultrasonic velocity and the spatial relationship of the two probes, location and height of the defects can be very accurately calculated. The algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0. (author)

  18. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  19. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  20. Inspection device for external examination of pressure vessels, preferably for ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Figlhuber, D.; Gallwas, J.; Weber, R.; Weber, J.

    1978-01-01

    The inspection device is placed in the annular gap between pressure vessel and biological shield of the BWR. In the annulus there is arranged at least one longitudinal rail which has got vertical guideways. Along it there can be moved on testing paths a manipulator with the ultrasonic search unit. The manipulator drive is outside of the inspection annulus. It is coupled to the manipulator by means of a tension member being guided over a reversing unit mounted at the upper end of the longitudinal rail. As a tension member there may be used a drag chain; the drive and the reversing unit are provided with corresponding chain wheels. (DG) [de

  1. Enhancement of the automatic ultrasonic signal processing system using digital technology

    International Nuclear Information System (INIS)

    Koo, In Soo; Park, H. Y.; Suh, Y. S.; Kim, D. Hoon; Huh, S.; Sung, S. H.; Jang, G. S.; Ryoo, S. G.; Choi, J. H.; Kim, Y. H.; Lee, J. C.; Kim, D. Hyun; Park, H. J.; Kim, Y. C.; Lee, J. P.; Park, C. H.; Kim, M. S.

    1999-12-01

    The objective of this study is to develop the automatic ultrasonic signal processing system which can be used in the inspection equipment to assess the integrity of the reactor vessel by enhancing the performance of the ultrasonic signal processing system. Main activities of this study divided into three categories such as the development of the circuits for generating ultrasonic signal and receiving the signal from the inspection equipment, the development of signal processing algorithm and H/W of the data processing system, and the development of the specification for application programs and system S/W for the analysis and evaluation computer. The results of main activities are as follows 1) the design of the ultrasonic detector and the automatic ultrasonic signal processing system by using the investigation of the state-of-the-art technology in the inside and outside of the country. 2) the development of H/W and S/W of the data processing system based on the results. Especially, the H/W of the data processing system, which have both advantages of digital and analog controls through the real-time digital signal processing, was developed using the DSP which can process the digital signal in the real-time, and was developed not only firmware of the data processing system in order for the peripherals but also the test algorithm of specimen for the calibration. The application programs and the system S/W of the analysis/evaluation computer were developed. Developed equipment was verified by the performance test. Based on developed prototype for the automatic ultrasonic signal processing system, the localization of the overall ultrasonic inspection equipment for nuclear industries would be expected through the further studies of the H/W establishment of real applications, developing the S/W specification of the analysis computer. (author)

  2. Evaluation of an advanced rotor bore examination system

    International Nuclear Information System (INIS)

    Alford, J.W.

    1990-01-01

    Evaluations of in-service turbine-generator rotor forgings are often based on an ultrasonic examination of the near-bore region. A portable rotor bore examination system has been developed that provides discontinuity characterization required for a thorough rotor evaluation. This automated system, its procedures and operations personnel have now been qualified for full-scale field application. System development has benefited from merging several technologies with new methods for precise alignment of the drive unit, calibration block and rotor. The system runs a custom interactive software package that allows for flexible calibration and motion control as well as data acquisition and manipulation. A comprehensive evaluation procedure was developed for system qualification using test specimens with natural and artificial reflectors, including a unique fatigue-crack block. Following a discussion of the system features, this paper discusses the system evaluation based on this procedure

  3. Design of signal reception and processing system of embedded ultrasonic endoscope

    Science.gov (United States)

    Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin

    2009-11-01

    Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.

  4. A universal piezo-driven ultrasonic cell microinjection system.

    Science.gov (United States)

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  5. Development of an intelligent system for ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung-Jin; Kim, Hak-Joon; Cho, Hyeon

    2002-01-01

    Even though ultrasonic pattern recognition is considered as the most effective and promising approach to flaw classification in weldments, its application to the realistic field inspection is still very limited due to the crucial barriers in cost, time and reliability. To reduce such barriers, previously we have proposed an intelligent system approach that consisted of the following four ingredients: (1) a PC-based ultrasonic testing (PC-UT) system; (2) an effective invariant ultrasonic flaw classification algorithm; (3) an intelligent flaw classification software; and (4) a database with abundant experimental flaw signals. In the present work, for performing the ultrasonic flaw classification in weldments in a real-time fashion in many real word situations, we develop an intelligent system, which is called the 'Intelligent Ultrasonic Evaluation System (IUES)' by the integration of the above four ingredients into a single, unified system. In addition, for the improvement of classification accuracy of flaws, especially slag inclusions, we expand the feature set by adding new informative features, and demonstrate the enhanced performance of the IUES with flaw signals in the database constructed previously. And then, to take care of the increased redundancy in the feature set due to the addition of features, we also propose two efficient schemes for feature selection: the forward selection with trial and error, and the forward selection with criteria of the error probability and the linear correlation coefficients of individual features

  6. Review of P-scan computer-based ultrasonic inservice inspection system. Supplement 1

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.

    1995-12-01

    This Supplement reviews the P-scan system, a computer-based ultrasonic system used for inservice inspection of piping and other components in nuclear power plants. The Supplement was prepared using the methodology described in detail in Appendix A of NUREG/CR-5985, and is based on one month of using the system in a laboratory. This Supplement describes and characterizes: computer system, ultrasonic components, and mechanical components; scanning, detection, digitizing, imaging, data interpretation, operator interaction, data handling, and record-keeping. It includes a general description, a review checklist, and detailed results of all tests performed

  7. Qualification of phased array ultrasonic examination on T-joint weld of austenitic stainless steel for ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Park, C.K., E-mail: love879@hanmail.net [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jin, S.W.; Kim, H.S.; Hong, K.H.; Lee, Y.J.; Ahn, H.J.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jung, Y.H.; Roh, B.R. [Hyundai Heavy Industries Co. Ltd., Ulsan 682-792 (Korea, Republic of); Sa, J.W.; Choi, C.H. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • PAUT techniques has been developed by Hyundai Heavy Industries Co., LTD (HHI) and Korea Domestic Agency (KODA) to verify and settle down instrument calibration, test procedures, image processing, and so on. As the first step of development for PAUT technique, Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. Real UT qualification group-1 for T-joint weld was successfully conducted in front of ANB inspector. • In this paper, remarkable progresses of UT qualification are presented for ITER vacuum vessel. - Abstract: Full penetration welding and 100% volumetric examination are required for all welds of pressure retaining parts of the ITER Vacuum Vessel (VV) according to RCC-MR Code and French Order of Nuclear Pressure Equipment (ESPN). The NDE requirement is one of important technical issues because radiographic examination (RT) is not applicable to many welding joints. Therefore the ultrasonic examination (UT) has been selected as an alternative method. Generally the UT on the austenitic welds is regarded as a great challenge due to the high attenuation and dispersion of the ultrasonic signal. In this paper, Phased array ultrasonic examination (PAUT) has been introduced on double sided T-shape austenitic welds of the ITER VV as a major NDE method as well as RT. Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, embedded parallel vertical notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. PAUT techniques on the thick austenitic welds have been developed taking into account the acceptance criteria. Test procedure including calibration of equipment is derived and qualified through

  8. Compact and air-transportable ultrasonic turbine disc bore inspection system

    International Nuclear Information System (INIS)

    Larsen, R.E.; Leon-Salamanca, T.

    1990-01-01

    A compact, lightweight, air-transportable ultrasonic inspection system for bore and keyway regions of shrunk-on turbine discs has been developed. The system utilizes a proprietary ultrasound liquid coupling technique in conjunction with a single pair of gimballed search units to achieve rapid and thorough coverage of bores and keyways in both heavy nuclear and standard fossil discs of nearly any size and having any conceivable web surface contour. Search unit positioning and angulation parameter settings are established in near real-time through a computation algorithm based on a compact vector ray tracing protocol. Modular construction and the use of lightweight, stiff materials throughout facilitates air shipment of the system and its rapid deployment at continental and overseas field sites. Mechanical and ultrasonic features of the system are described. Development and application of the computation algorithm to the ultrasonic inspection of heavy discs at an overseas power station is discussed

  9. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    Science.gov (United States)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  10. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  11. Computer based ultrasonic system for mechanical and acoustical characterization of materials

    International Nuclear Information System (INIS)

    Rosly Jaafar; Mohd Rozni Mohd Yusof; Khaidzir Hamzah; Md Supar Rohani; Rashdi Shah Ahmad; Amiruddin Shaari

    2001-01-01

    Propagation of both modes of ultrasonic waves velocity i.e. longitudinal (compressional) and transverse (shear), propagating in a material are closely linked with the material's physical and mechanical properties. By measuring both velocity modes, materials' properties such as Young's, bulk and shear moduli, compressibility, Poisson ratio and acoustic impedance can be determined. This paper describes the development of a system that is able to perform the above tasks and is known as Computer Based Ultrasonic for Mechanical and Acoustical Characterisation of Materials (UMC). The system was developed in the NDT Instrumentation and Signal Processing (NDTSP) laboratory of the Physics Department, Universiti Teknologi Malaysia. Measurements were made on four solid samples, namely, glass, copper, mild steel and aluminium. The results of measurements obtained were found to be in good agreement with the values of measurements made using standard methods. The main advantage of using this system over other methods is that single measurement of two ultrasonic velocity modes yields six material's properties. (Author)

  12. A quality control method by ultrasonic vibration energy and diagnosis system at trimming process

    International Nuclear Information System (INIS)

    Suh, Chang Min; Song, Gil Ho; Pyoun, Young Shik

    2007-01-01

    In this paper, the characteristics in mechanical properties of ultrasonic cold forging treatment (UCFT) used for the trimming knife and the effects of ultrasonic vibration energy (UVE) into the trimming process on the state of the strip cutting face were studied. And a diagnosis system to quality control for trimming knife and strip cutting face was developed and installed in plant. By the plant application of UCFT, service life of knife was more increased over 100% than that of conventional knife and using the developed diagnosis system, the knife breakage and saw ear have been perfectly detected and quality control of trimming face is effectively obtained

  13. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    International Nuclear Information System (INIS)

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  14. Ultrasonic instrument for continuous measurement of liquid levels in sodium systems

    International Nuclear Information System (INIS)

    Boehmer, L.S.

    1975-01-01

    An ultrasonic level measurement system which provides a continuous digital readout over a range of 3-180 inches, was tested in 500 0 F liquid sodium. The system proved to be accurate and reliable, required no initial warm-up period and experienced no long term drift. Modifications can extend the present operating temperatures to greater than 1200 0 F

  15. Digital signal processing in ultrasonic based navigation system for mobile robots

    Directory of Open Access Journals (Sweden)

    Stączek Paweł

    2017-01-01

    Full Text Available A system for estimating the coordinates of automated guided vehicles (AGV was presented in this article. Ultrasonic waves for distance measurement were applied. Used hardware was characterised, as well as signal processing algorithms. The system was tested on wheeled mobile robot in model 2D environment. The results of working range and errors of position estimation were discussed.

  16. Experience with automatic ultrasonic testing with the P-scan system

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1989-01-01

    In this contribution, there is a report on experience in the automated ultrasonic testing of Austenitic components with the P-scan system. Examples of testing Austenitic joints and mixed joints on pipeline systems in the primary circuit of nuclear powerstations are discussed. Further, the mechanised measurement of wall thickness of pipelines endangered by erosion and corrosion is dealt with. (MM) [de

  17. Development of a multi-beam laser ultrasonic inspection system and its application on flaw sizing

    International Nuclear Information System (INIS)

    Chivavibul, Pornthep; Lin, Shan; Fukutomi, Hiroyuki; Higuchi, Sadao; Ogata, Takashi; Fukuchi, Tetsuo

    2006-01-01

    Laser ultrasonic technique is a powerful tool for non-contact, nondestructive testing of materials. It is expected to apply to where the conventional ultrasonic technique is not applicable. However, this technique suffers from low sensitivity. In order to overcome this shortcoming, a multi-beam laser ultrasonic system was developed to increase signal-to-noise ratio (SNR) and steer beam direction. The system consisted of eight pulsed Nd:YAG lasers used for ultrasonic generation, and a two-wave mixing interferometer with a long-pulsed Nd:YAG used for ultrasonic detection. Spatial and temporal control of the firing of the individual lasers permitted the generation of both phased array single pulse and narrow-band ultrasonic signals. The performance of developed system was verified using aluminum specimens with the wave generation in a slight ablation mode. A significant increase in sensitivity was obtained, with an increase in signal amplitude with no change in noise level. In the narrow band case, tone bursts were successfully generated in both surface and bulk waves. Beam steering of bulk waves was also performed, and the directivity was confirmed by visualization using a conventional transducer. The developed system was applied to flaw sizing using two techniques: shadow and short-path of diffraction (SPOD), using aluminum specimens with 2-mm, 5-mm, 8-mm slit depths. The shadow technique accurately measured the 5- and 8-mm slits, but not the 2-mm slit. The SPOD technique, carried out using a 5-MHz normal longitudinal transducer as a detector instead of TWN interferometer, accurately measured slits in all specimens with an error less than 0.5 mm. (author)

  18. System and process for ultrasonic characterization of deformed structures

    Science.gov (United States)

    Panetta, Paul D [Williamsburg, VA; Morra, Marino [Richland, WA; Johnson, Kenneth I [Richland, WA

    2011-11-22

    Generally speaking, the method of the present invention is performed by making various ultrasonic scans at preselected orientations along the length of a material being tested. Data from the scans are then plotted together with various calculated parameters that are calculated from this data. Lines or curves are then fitted to the respective plotted points. Review of these plotted curves allows the location and severity of defects within these sections to be determined and quantified. With this information various other decisions related to how, when or whether repair or replacement of a particular portion of a structure can be made.

  19. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    International Nuclear Information System (INIS)

    Costa-Felix, Rodrigo P B; Alvarenga, Andre V; Hekkenberg, Rob

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement) shall be collected as function of time to perform all necessary calculations and corrections. Uncertainty determination demands calculation effort of raw and processed data. Although it is possible to be undertaken in an old-fashion way, using spread sheets and manual data collection, automation software are often used in metrology to provide a virtually error free environment concerning data acquisition and repetitive calculations and corrections. Considering that, a fully automate ultrasonic power measurement system was developed and comprehensively tested. A 0,1 mg of precision balance model CP224S (Sartorius, Germany) was used as measuring device and a calibrated continuous wave ultrasound check source (Precision Acoustics, UK) was the device under test. A 150 ml container filled with degassed water and containing an absorbing target at the bottom was placed on the balance pan. Besides the feature of automation software, a routine of power measurement simulation was implemented. It was idealized as a teaching tool of how ultrasonic power emission behaviour is with a radiation force balance equipped with an absorbing target. Automation software was considered as an effective tool for speeding up ultrasonic power measurement, while allowing accurate calculation and attractive graphical partial and final results.

  20. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  1. Three Transducer Ultrasonic Examination of Nuclear Fuel Rod Flush Welds At ENUSA

    International Nuclear Information System (INIS)

    Domingo, A.; Jimenez, J.M.

    1998-01-01

    From 1991 ENUSA are using UT microscope examination of flush weld with longitudinal wave (perpendicular to weld) looking for welding defects as porosity, weld thickness and penetration. In 1994 we included a new transducer off set placed, with shear waves to control cracks in welding. In 1997 we incorporated a new shear transducer, 30 degree centigrade angle, in order to control different orientation of cracks or Grain Boundary Separation (GBS) and to improve software capabilities. Then actual UT microscope equipment used to inspect rod welds consist, mainly in three transducer of 50 MHz mounted over a rotatory head. UT system is electronically synchronized and obtains 750 data points per revolution by transducer. A set of seven images of approx 100.000 data points is obtained for each weld. Thickness, pore size, pore depth, two of crack size and two of crack depth are presented and evaluated evaluated by the computer to obtain weld disposition. Resolution of 0,05 mm pore size is achieved by this equipment, thickness and penetration precision should be in the order of 0,005 mm and 0,05 mm respectively. Crack detection depend basically on its orientation, nevertheless position of transducer assures a high capability detection of cracks which should be formed at these welds. (Author)

  2. Ultrasonic thermometry system for measuring very high temperatures in reactor safety experiments

    International Nuclear Information System (INIS)

    Carlson, G.A.; Sullivan, W.H.; Plein, H.G.; Kerley, T.M.

    1979-06-01

    Ultrasonic thermometry has many potential applications in reactor safety experiments, where extremely high temperatures and lack of visual access may preclude the use of conventional diagnostics. This report details ultrasonic thermometry requirements for one such experiment, the molten fuel pool experiment. Sensors, transducers, and signal processing electronics are described in detail. Axial heat transfer in the sensors is modelled and found acceptably small. Measurement errors, calculations of their effect, and ways to minimize them are given. A rotating sensor concept is discussed which holds promise of alleviating sticking problems at high temperature. Applications of ultrasonic thermometry to three in-core experiments are described. In them, five 10-mm-length sensor elements were used to measure axial temperatures in a UO 2 or UO 2 -steel system fission-heated to about 2860 0 C

  3. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  4. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  5. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  6. DEVELOPMENT AND RESEARCH OF ULTRASONIC OSCILLATORY SYSTEM FOR HARDENING OF SPRING PLATE BILLETS

    Directory of Open Access Journals (Sweden)

    V. A. Tomilo

    2015-01-01

    Full Text Available Various schemes of ultrasonic oscillatory system are developed: with a «force nonsensitive» support, with a «force sensitive» support, with the deforming steel balls in bulk. Results of the ultrasonic treatment showed that hardening of a surface of the samples took place when the vibration amplitude of a radiator exceeds a certain level. The level of hardening increases with increase in amplitude of fluctuations of a radiator. Higher level of hardening is registered when the surface is treated by steel balls.

  7. Research towards ultrasonic systems to assist in-vessel manipulations in liquid metal cooled reactors

    International Nuclear Information System (INIS)

    Dierckx, Marc; Van-Dyck, Dries

    2013-06-01

    We describe the state of the art of the research towards ultrasonic measurement methods for use in lead-bismuth cooled liquid metal reactors. Our current research activities are highly focused on specific tasks in the MYRRHA system, which is a fast spectrum research reactor cooled with the eutectic mixture of lead and bismuth (LBE) and is conceived as an accelerator driven system capable of operating in both sub-critical and critical mode. As liquid metal is opaque to light, normal visual feedback during fuel manipulations in the reactor vessel is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic measurement techniques have been proposed and even developed in the past for operation in sodium cooled reactors. To our knowledge, no such systems have ever been deployed in lead based reactors and we are the first to have a research program in this direction as will be detailed in this paper. We give an overview of the acoustic properties of LBE and compare them with the properties of sodium and water to theoretically show the feasibility of ultrasonic systems operating in LBE. In the second part of the paper we discuss the results of the validation experiments in water and LBE. A typical scene is ultrasonically probed by a mechanical scanning system while the signals are processed to render a 3D visualization on a computer screen. It will become clear that mechanical scanning is capable of producing acceptable images but that it is a time consuming process that is not fit to solve the initial task to providing feedback during manipulations in the reactor vessel. That is why we propose to use several dedicated ultrasonic systems each adapted to a specific task and capable to provide real-time feedback of the ongoing manipulations, as is detailed in the third and final part of the paper. (authors)

  8. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben; Kistrup, Kasper; Andersen, Nis Korsgaard

    2016-01-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser...

  9. Ultrasonic motion analysis system - measurement of temporal and spatial gait parameters

    NARCIS (Netherlands)

    Huitema, RB; Hof, AL; Postema, K

    The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the

  10. Combination tomographic and cardiographic ultrasonic imaging method and system

    International Nuclear Information System (INIS)

    Yano, T.; Fukukita, H.; Fukumoto, A.; Hayakawa, Y.; Irioka, K.

    1984-01-01

    Ultrasonic echo signals are successively sampled and converted to digital echo data which are written into a first digital memory column by column and then read out row by row into a first buffer memory. The digital echo data which are derived in response to beams successively transmitted in a predetermined direction are written into columns of a second digital memory and read out of the memory in rows into a second buffer memory. The data stored in the first and second buffer memories are read out for digital-to-analog conversion and selectively applied within a television ''frame'' interval to control electron beam intensity of a single cathode ray tube so as to present tomographic and cardiographic images in different display areas of the tube

  11. A novel ultrasonic phased array inspection system to NDT for offshore platform structures

    Science.gov (United States)

    Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping

    2007-01-01

    A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.

  12. A study on an object transport system using ultrasonic wave excitation

    International Nuclear Information System (INIS)

    Jeong, Sang Hwa; Kim, Gwang Ho; Choi, Suk Bong; Park, Jun Ho; Cha, Kyoung Rae

    2007-01-01

    The development of information and telecommunication industries leads to the development of semiconductor and optical industries. In recent years, the demand of optical components is growing due to the demand of faster network. On the other hand, conventional transport systems are not adequate for transporting precision optical components and semiconductors. Because the conveyor belt can damage precision optical components with contact force and a magnetic system would destroy the inner structure of semiconductor with magnetic field, a new system for transporting optical components and semiconductors is required. One of the alternatives to the existing systems is a transport system using ultrasonic wave excitation since it can transport precision components such as semiconductors and optical components without damage. In this paper, a transport system using 2-mode ultrasonic wave excitation was developed for transporting optical components and semiconductor, and its performance was evaluated. The relationship between transporting characteristics and flexural beam shapes were evaluated

  13. Field testing and applications of the Ultrasonic Ranging and Data (USRAD) System

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Pickering, D.A.; Blair, M.S.; Espegren, M.L.; Nyquist, J.E.

    1989-01-01

    The Ultrasonic Ranging and Data (USRAD) System is a patented, computerized data acquisition system developed to relate the radiological surveyor's precise physical location to instantaneous radiation data taken during walk-on surveys. The USRAD System incorporates three technologies: radio frequency communications, ultrasonics, and microcomputers. Initial field testing of the USRAD System has resulted in several improvements to walk-on radiological surveys including real-time position data, reproducible survey results, on-site verification of survey coverage, on-site data reduction and graphics, and permanent data storage on magnetic media. Although the USRAD System was developed specifically for use with a gamma-ray detector, it is adaptable to other instruments. Applications of the USRAD System may include verification of remediated and uncontaminated areas, emergency response in mapping pollutant locations after accidents, and characterization of hazardous waste areas. 2 refs., 8 figs

  14. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  15. Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment

    International Nuclear Information System (INIS)

    Lee, Jeong Ki; Park, Moon Ho; Park, Ki Sung; Lee, Jae Ho; Lim, Sung Jin

    2004-01-01

    Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants

  16. Method and system of measuring ultrasonic signals in the plane of a moving web

    Science.gov (United States)

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  17. Automated ultrasonic testing--capabilities, limitations and methods

    International Nuclear Information System (INIS)

    Beller, L.S.; Mikesell, C.R.

    1977-01-01

    The requirements for precision and reproducibility of ultrasonic testing during inservice inspection of nuclear reactors are both quantitatively and qualitatively more severe than most current practice in the field can provide. An automated ultrasonic testing (AUT) system, which provides a significant advancement in field examination capabilities, is described. Properties of the system, its application, and typical results are discussed

  18. Development of computer-controlled ultrasonic image processing system for severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Jong Tai; Kim, Jong Whan; Cho, Young Ro; Ha, Kwang Soon; Park, Rae Jun; Kim, Sang Baik; Kim, Hee Dong; Sim, Chul Moo

    2000-07-01

    In order to verify in-vessel corium cooling mechanism, LAVA(Lower-plenum Arrested Vessel Attack) experiment is being performed as a first stage proof of principle test. The aims of this study are to find a gap formation between corium melt and reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at developing a computer controlled image signal processing system which is able to improve visualization and to measure the gap distribution with 3-dimensional planar image using a time domain signal analysis method as a part of the ultrasonic pulse echo methods and a computerized position control system. An image signal processing system is developed by independently developing an ultrasonic image signal processing technique and a PC controlled position control system and then combining both systems

  19. Development of computer-controlled ultrasonic image processing system for severe accidents research

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Jong Tai; Kim, Jong Whan; Cho, Young Ro; Ha, Kwang Soon; Park, Rae Jun; Kim, Sang Baik; Kim, Hee Dong; Sim, Chul Moo

    2000-07-01

    In order to verify in-vessel corium cooling mechanism, LAVA(Lower-plenum Arrested Vessel Attack) experiment is being performed as a first stage proof of principle test. The aims of this study are to find a gap formation between corium melt and reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at developing a computer controlled image signal processing system which is able to improve visualization and to measure the gap distribution with 3-dimensional planar image using a time domain signal analysis method as a part of the ultrasonic pulse echo methods and a computerized position control system. An image signal processing system is developed by independently developing an ultrasonic image signal processing technique and a PC controlled position control system and then combining both systems.

  20. Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.

    Science.gov (United States)

    Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun

    2013-09-01

    To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Recent technical developments in radiographic and ultrasonic examinations of the mammary glands

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, M

    1981-05-01

    Apart from the improved film-foil combinations the major innovation in mammography is the scanning technique which enables high-quality mammograms to be made especially of thicker objects of higher density. It has already become the method of choice for screening examinations in the major preventive-care centres for breast cancer. Magnification mammography, on the other hand, has some technical drawbacks and is only used as a supplementary technique of examination. Even though it has not yet reached technical maturity, sonography of the mammary glands already plays an important role as an auxiliary or complementary technique, especially to clear up ambiguous palpatory or mammographic findings. It has only limited value in early detection of breast cancer and should therefore be used only as a supplementary technique.

  2. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    International Nuclear Information System (INIS)

    1980-01-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  3. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  4. Five years of testing using the simi-automated ultrasonic time of flight diffraction system

    International Nuclear Information System (INIS)

    Webber, S.A.

    2002-01-01

    This paper provides a brief description of the Time of Flight Diffraction (TOFD) test system and also describes a couple of case histories where the system has been successfully applied. The T.O.F.D. system has been contrasted with the conventional manual ultrasonic technique. Whilst the T.O.F.D. system has proven potential, and is without doubt a valuable tool that will continue to gain market share in the inspection industry, conventional manual ultrasonics still has its part to play and will survive for some time to come. One of the outstanding issues facing the T.O.F.D. systems is the question of acceptance testing which is still the predominant convention specified in most standards. Training for a T.O.F.D. system technician is particularly important and the author suggests there are more traps for the unwary than with the conventional manual ultrasonic systems. The overall judgement of the T.O.F.D. system is that it is a most welcome and powerful tool in the hands of the right operator and will do much to boost the prominence of Non-Destructive Testing

  5. An application of ultrasonic inspection system (INER-SCAN) inspecting generator retaining rings

    International Nuclear Information System (INIS)

    Chen, L.C.; Hwang, S.C.

    1994-01-01

    The performances of the automatic ultrasonic inspecting and imaging system (INER-SCAN) developed by the NDT laboratory of the Institute of Nuclear Energy Research have been enhanced and much more improved to commercial level. With appropriate rearrangements of software libraries, it is used to inspect generator retaining rings which are critical structural rotor components that support the end-turn regions of the rotor wingings against centrifugal forces. The use of the INER-SCAN provides distinct advantages over other systems in terms of the reliability of inspection and the flexibility of system performance modifications. The INER-SCAN system assists users to select and modify ultrasonic parameters under computer-aided environment. In addition, the INER-SCAN system contains the necessary software functions to image the ultrasonic data (A-SCAN, B-SCAN, B'-SCAN, C-SCAN). The use of the imaging system makes it quite easy to evaluate various test parameters and their effects on the discrimination between geometric and IGSCC reflectors. Through experimental test, it is recognized that the system has powerful detectable capability which can find 0.2mm-depth slight scratch on the inner surface of retaining rings. This system can also be used on different generator retaining rings (different in terms of hidden design features) without the need for access to the dimension of retaining ring

  6. On-line ultrasonic inside-diameter control system for Zircaloy

    International Nuclear Information System (INIS)

    Tanaka, Y.; Fujii, N.; Komatsu, M.; Kubota, H.

    1984-01-01

    An ultrasonic inside-diameter (ID) control system was used during the final etching process for producing Zircaloy nuclear fuel cladding tubes. This results in establishing automatic inside-diameter control during etching with an automatic etching system. In this system, the inside-diameter at the center point in the length of each tube is continuously measured with the ultrasonic inside-diameter measuring equipment during the etching process and the etching is automatically stopped by a signal from the control equipment when the inside-diameter reaches the target value. This made the final etching process economical and suitable for large-scale production, having an equal or better level at the inside-diameter of tubes etched with this system than those made by a process controlled by an air-micrometer

  7. Uncertainty management in knowledge based systems for nondestructive testing-an example from ultrasonic testing

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    The use of fuzzy logic, as a framework for uncertainty management, in a knowledge-based system (KBS) for ultrasonic testing of austenitic stainless steels is described. Parameters that may contain uncertain values are identified. Methodologies to handle uncertainty in these parameters using fuzzy logic are detailed. The overall improvement in the performance of the knowledge-based system after incorporating fuzzy logic is discussed. The methodology developed being universal, its extension to other KBS for nondestructive testing and evaluation is highlighted. (author)

  8. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to shipowners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  9. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to ship owners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  10. Non-contact transportation system of small objects using Ultrasonic Waveguides

    International Nuclear Information System (INIS)

    Nakamura, K; Koyama, D

    2012-01-01

    A transportation system for small object or fluid without contact is investigated being based on ultrasonic levitation. Small objects are suspended against gravity at the nodal points in ultrasonic pressure field due to the sound radiation force generated as the gradient of the energy density of the field. In this study, the trapped object is transported in the horizontal plane by introducing the spatial shift of the standing waves by the switching the lateral modes or travelling waves. The goal of the study is to establish a technology which can provide a total system with the flexibility in composing various transportation paths. Methods for linear/rotary stepping motions and continuous linear transportation are explained in this report. All the transportation tracks are composed of a bending vibrator and a reflector. The design for these acoustic cavity/waveguide is discussed.

  11. Simulation and Optimization of Contactless Power Transfer System for Rotary Ultrasonic Machining

    Directory of Open Access Journals (Sweden)

    Wang Xinwei

    2016-01-01

    Full Text Available In today’s rotary ultrasonic machining (RUM, the power transfer system is based on a contactless power system (rotary transformer rather than the slip ring that cannot cope with high-speed rotary of the tool. The efficiency of the rotary transformer is vital to the whole rotary ultrasonic machine. This paper focused on simulation of the rotary transformer and enhancing the efficiency of the rotary transformer by optimizing three main factors that influence its efficiency, including the gap between the two ferrite cores, the ratio of length and width of the ferrite core and the thickness of ferrite. The finite element model of rotary transformer was built on Maxwell platform. Simulation and optimization work was based on the finite element model. The optimization results compared with the initial simulation result showed an approximate 18% enhancement in terms of efficiency, from 77.69% to 95.2%.

  12. The development of PC-based real time ultrasonic metal thickness inspection system

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohd Hanif Md Saad; Mohamad Pauzi Ismail; Ab Razak Hamzah; Abd Nassir Ibrahim; Amri Amin Abas

    2006-01-01

    This paper discusses the development of a PC-Based Real Time Ultrasonic Thickness Measurement system (UTMS) for metallic components such as pipes, pressure vessels and metal slabs. Metal thickness measurement for these components is crucial in industrial plants with dangerous environment, such as in oil and gas industry. From the measured metal thickness, a number of deductions could be made, for example the state and the rate of corrosion propagation inside a pipe or pressure vessel, etc. One of the most widely used methods in assessing metal thickness in industry is through the use of Ultrasonic technology. The benefits of using UTMS lies in the flexibility of data analysis, which includes signal processing, feature extraction, visualization capability and intelligent diagnosis. Data can be acquired in real-time and stored for future usage and application. The system was developed as a standalone computer software using Microsoft Visual-BASIC 6. (Author)

  13. Ultrasonic inspection experience of steam generator tubes at Ontario Hydro and the TRUSTIE inspection system

    International Nuclear Information System (INIS)

    Choi, E.I.; Jansen, D.

    1998-01-01

    Ontario Hydro have been using ultrasonic test (UT) technique to inspect steam generator (SG) tubes since 1993. The UT technique has higher sensitivity in detecting flaws in SG tubes and can characterize the flaws with higher accuracy. Although an outside contractor was used initially, Ontario Hydro has been using a self-developed system since 1995. The TRUSTIE system (Tiny Rotating UltraSonic Tube Inspection Equipment) was developed by Ontario Hydro Technologies specifically for 12.7 mm outside diameter (OD) tubes, and later expanded to larger tubes. To date TRUSTIE has been used in all of Ontario Hydro's nuclear generating stations inspecting for flaws such as pitting, denting, and cracks at top-of-tubesheet to the U-bend region. (author)

  14. Experimental Setup for Ultrasonic-Assisted Desktop Fused Deposition Modeling System

    OpenAIRE

    Maidin, S.; Muhamad, M. K.; Pei, Eujin

    2014-01-01

    Fused deposition modeling (FDM) is an additive manufacturing (AM) process that has been used in various manufacturing fields. However, the drawback of FDM is poor surface finish of part produced, leading to surface roughness and requires hand finishing. In this study, ultrasonic technology will be integrated into a desktop FDM system. Ultrasound has been applied in various conventional machining process and shows good machined surface finish. However, very little research regarding the applic...

  15. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    OpenAIRE

    Qing-Hui WANG; Fang MU; Li-Feng WEI

    2014-01-01

    This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or conce...

  16. Remote inspection of a buried pipeline using a mobile ultrasonic testing system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Rajendran, S; Ramakumar, M S [Bhabha Atomic Research Centre, Mumbai (India). Division of Remote Handling and Robotics

    1994-12-31

    The nuclear reactor, Cirus, has now been in operation for three decades. As part of a programme to ascertain the integrity and safety of the various reactor parts in-service inspection of the embedded portion of the main coolant pipeline will be carried out. A mobile ultrasonic testing system has been developed and tested in the laboratory to measure the wall thickness of an underground pipe from the inner corroded surface using a water-bubbler technique. 3 figs.

  17. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A study of PC-based ultrasonic goniometer system of surface properties and characterization of materials

    Science.gov (United States)

    Sani, S.; Saad, M. H. Md; Jamaludin, N.; Ismail, M. P.; Mohd, S.; Mustapha, I.; Masenwat, N. A.; Tengku Amran, T. S.; Megat Ahmad, M. H. A.

    2018-01-01

    This paper discussed the design and development of a portable PC-based ultrasonic goniometer system that can be used to study material properties using ultrasonic wave. The system utilizes an ultrasonic pulse-receiver card model attached to computer notebook for signal display. A new specific software package (GoNIO) was developed to control the operation of the scanner, displaying the data and analyze characteristics of materials. System testing was carried out using samples with cubic dimension of about 10 mm x 20 mm x 30 mm. This size allows the sample to be fitted into the goniometer specimen holder and immersed in a liquid during measurement. The sample was rotated from incident angle of 0° to 90° during measurement and the amplitude reflected signals were recorded at every one degree of rotation. Immersion transducers were used to generate and receive the ultrasounds that pass through the samples. Longitudinal, shear and Rayleigh wave measurements were performed on the samples to determine the Dynamic Young’s Modulus. Results of measurements are explained and discussed.

  19. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas.

    Science.gov (United States)

    Tang, Hailiang; Zhang, Haishi; Xie, Qing; Gong, Ye; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu

    2014-12-01

    Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique.

  20. Getting the most out of your new plant with a chordal ultrasonic feedwater flow measurement system

    International Nuclear Information System (INIS)

    Estrada, Herb; Hauser, Ernie

    2007-01-01

    The economic advantages of a chordal ultrasonic feedwater flow measurement system over conventional (flow nozzle-based) feedwater instrumentation are analyzed for new plants having ratings ranging from 1100 MWe to 1600 MWe. Specifically, each of the following topics is considered: The value of a 1.7% increase in the rating of the new plant, made possible by the reduced uncertainty in the determination of thermal power. The value of reduced startup time owing to enhanced steam supply water level control. The value of the reduced feedwater pumping power brought about by the elimination of flow nozzles. The value of the reduced calibration burden owing to the elimination of the feedwater flow differential pressure transmitters and resistance thermometers. The net difference in the acquisition costs of the ultrasonic system versus conventional feedwater flow instrumentation. The net savings in installation costs of the ultrasonic system vis-a-vis conventional feedwater flow instrumentation. The potential savings in outage time due to the reduced frequency of low steam supply water level trips (scrams) of the reactor. (author)

  1. A Laser-based Ultrasonic Inspection System to Detect Micro Fatigue Cracks

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Park, Moon Cheol; Lim, Chang Hwan; Cha, Hyung Ki

    2005-01-01

    Laser-based ultrasonic techniques have been established as a viable non-contact alternative to piezoelectric transducers for generating and receiving ultrasound. Laser-based ultrasonic inspection system provides a number of advantages over the conventional generation by piezoelectric transducers, especially a non-contact generation and detection of ultrasonic waves, high spatial scanning resolution, controllable narrow-band and wide-band spectrum, absolute measurements of the moving distance, use of fiber optics, and an ability to operate on curved and rough surfaces and at hard-to-access locations like a nuclear power plant. Ochiai and Miura used the laser-based ultrasound to detect micro fatigue cracks for the inspection of a material degradation in nuclear power plants. This widely applicable laser-based ultrasonic inspection system is comparatively expensive and provides low signal-to-noise ratio to measure ultrasound by using the laser interferometer. Many studies have been carried out to improve the measuring efficiency of the laser interferometer. One of the widely used laser interferometer types to measure the ultrasound is the Confocal Fabry-Perot Interferometer(CFPI). The measurement gain of the CFPI is slightly and continually varied according to the small change of the cavity length and the fluctuations of the measuring laser beam frequency with time. If we continually adjust the voltage of a PZT which is fixed to one of the interferometer mirrors, the optimum working point of the CFPI can be fixed. Though a static stabilizer can fix the gain of the CFPI where the CW laser beam is targeted at one position, it can not be used when the CW laser beam is scanned like a scanning laser source(SLS) technique. A dynamic stabilizer can be used for the scanning ultrasonic inspection system. A robust dynamic stabilizer is needed for an application to the industrial inspection fields. Kromine showed that the SLS technique is effective to detect small fatigue cracks

  2. Computerized hydraulic scanning system for quantitative non destructive examination

    International Nuclear Information System (INIS)

    Gundtoft, H.E.

    1982-01-01

    A hydraulic scanning system with five degrees of freedom is described. It is primarily designed as a universal system for fast and accurate ultrasonic inspection of materials for their internal variation in properties. The whole system is controlled by a minicomputer which also is used for evaluating and presenting of the results of the inspection. (author)

  3. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    International Nuclear Information System (INIS)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B

    2006-01-01

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily

  4. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B [Instrument Department, College of Mechatronics Engineering and Automation, National University of Defense Technology, ChangSha, Hunan, 410073 (China)

    2006-10-15

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily.

  5. A New Low-frequency Sonophoresis System Combined with Ultrasonic Motor and Transducer

    Science.gov (United States)

    Zhu, Pancheng; Peng, Hanmin; Yang, Jianzhi; Mao, Ting; Sheng, Juan

    2018-03-01

    Low frequency sonophoresis (LFS) is currently being attempted as a transdermal drug delivery method in clinical areas. However, it lacks both an effective control method and the equipment to satisfy the varying drug dosage requirements of individual patients. Herein, a novel method aimed at controlling permeability is proposed and developed, using a pressure control strategy which is based on an accurate, adjustable and non-invasive ultrasound transdermal drug delivery system in in vitro LFS. The system mainly consists of a lead screw linear ultrasonic motor and an ultrasonic transducer, in which the former offers pressure and the latter provides ultrasound wave in the liquid. The ultrasound can enhance non-invasive permeation and the pressure from the motor can control the permeability. The calculated and experimental results demonstrate that the maximum pressure on artificial skin is under the area with the maximum vibration amplitude of the ultrasonic transducer, and the total pressure consists of acoustic pressure from the transducer and approximate static pressure from the motor. Changing the static pressure from the ultrasonic motor can effectively control the non-invasive permeability, by adjusting the duty ratio or the amplitude of the motor’s driving voltage. In addition, the permeability control of calcein by thrust control is realized in 15 min, indicating the suitability of this method for application in accurate medical technology. The obtained results reveal that the issue of difficult permeability control can be addressed, using this control method in in vitro LFS to open up a route to the design of accurate drug delivery technology for individual patients.

  6. Examination of High-Torque Sandwich-Type Spherical Ultrasonic Motor Using with High-Power Multimode Annular Vibrating Stator

    Directory of Open Access Journals (Sweden)

    Ai Mizuno

    2018-02-01

    Full Text Available Spherical ultrasonic motors (SUSMs that can operate with multiple degrees of freedom (MDOF using only a single stator have high holding torque and high torque at low speed, which makes reduction gearing unnecessary. The simple structure of MDOF-SUSMs makes them useful as compact actuators, but their development is still insufficient for applications such as joints of humanoid robots and other systems that require MDOF and high torque. To increase the torque of a sandwich-type MDOF-SUSM, we have not only made the vibrating stator and spherical rotor larger but also improved the structure using three design concepts: (1 increasing the strength of all three vibration modes using multilayered piezoelectric actuators (MPAs embedded in the stator, (2 enhancing the rigidity of the friction driving portion of the stator for transmitting more vibration force to the friction-driven rotor surface, and (3 making the support mechanism more stable. An MDOF-SUSM prototype was tested, and the maximum torques of rotation around the X(Y-axis and Z-axis were measured as 1.48 N∙m and 2.05 N∙m, respectively. Moreover, the values for torque per unit weight of the stator were obtained as 0.87 N∙m/kg for the X(Y-axis and 1.20 N∙m/kg for the Z-axis. These are larger than values reported for any other sandwich-type MDOF-SUSM of which we are aware. Hence, the new design concepts were shown to be effective for increasing torque. In addition, we measured the transient response and calculated the load characteristics of rotation around the rotor’s three orthogonal axes.

  7. Measurements of the gap/displacement and development of the ultrasonic temperature measuring system applied to severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Cho, Young Ro; Park, Rae Jun; Kim, Sang Baik; Sim, Chul Moo

    2001-02-01

    This report, in order to measure quantitative LAVA experimental results, focuses on measuring the gap formed on the lower head vessel using a ultrasonic pulse echo method and neutron radiography, measuring displacement of the lower head vessel using capacitance method, building a measuring system and developing high temperature measurement system using ultrasonic method. The scope of gap measurement and system development using the ultrasonic method is 2-dimensional image processing using tomographical B scan method and 2- and 3-dimensional image processing using C scan methods based on the one dimensional time domain A scan signal. For some test specimen, the gap size is quantitative represented apply C scan methods. The important ultrasonic image processing technique is on the development of accurate position control system. The requirements of the position control system are a contact technique on the test specimen and a fine moving technique. Since the specimen is hemispherical, the contact technique is very difficult. Therefore, the gap measurement using the ultrasonic pulse echo method was applied developing the position controlling scanner system. Along with the ultrasonic method, neutron radiography method using KAERI's neutron source was attempted 4 times and the results are compared. The fine displacement of the hemispherical specimen was measured using a capacitive displacement sensor. The requirements for this measuring technique are fixing of the capacitance sensor to the experimental facilities and a remote control position varying system. This remote control position varying system was manufactured with a electrical motor. The development of a high temperature measuring system using a ultrasonic method the second year plan, is performed with developing a sensor which can measure up to 2300 deg C

  8. Evaluation of Ultrasonic Waves System in Repellency of Red Beetle of Flour (Tribolium castaneum Herbs

    Directory of Open Access Journals (Sweden)

    P. Ahmadi Moghaddam

    2016-06-01

    Full Text Available Introduction: Increase of world population, lack of food sources, and need for food security, protection of agricultural products against losses, drought, pests, and diseases, all seems to be necessary more than ever. During the years, grains have been the main food of humans, especially wheat, barley, rice, and corn. So production and storage of these products is important for societies. One of the main problems in this field is protecting the grains in stores until consuming or planting them again. Annually, over hundreds of millions tons of grains are lost by pests present in stores and not observing the scientific principles of storing. Control of insects and pests during storage as a destructive factor of stored products by harmless methods is necessary. There are restrictions in use of chemically control methods against pests in stores. Therefore in recent decades, physically control methods have attracted a lot of attentions. The purpose of using physically control methods is eliminating pests with minimum destructive effect on the environment. These methods directly affect on pests or change their living situations and create an unsafe environment for them. One of the tools that indirectly affect pests is ultrasonic waves. Ultrasonic waves are mechanical waves which can properly penetrate in air and porous areas. These waves are completely safe for the environment and cause no damage to the environment. Ultrasonic waves as new safe strategy in insect control can prepare unsafe areas for annoying insects and agricultural pests. The main characteristics of ultrasonic waves are safe for humans and environment. Materials and Methods: In this study, experiments were carried out to assess the repellent impact of ultrasonic waves on one important storage pest, red flour beetle (Tribolium castaneum Herbs. The system, which produces ultrasonic waves, includes distributor of ultrasonic waves, power supply, central processor, oscillator, display

  9. New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency.

    Science.gov (United States)

    Liao, Jianqing; Qu, Baida; Liu, Da; Zheng, Naiqin

    2015-11-01

    A new method has been proposed for enhancing extraction yield of rutin from Sophora japonica, in which a novel ultrasonic extraction system has been developed to perform the determination of optimum ultrasonic frequency by a two-step procedure. This study has systematically investigated the influence of a continuous frequency range of 20-92 kHz on rutin yields. The effects of different operating conditions on rutin yields have also been studied in detail such as solvent concentration, solvent to solid ratio, ultrasound power, temperature and particle size. A higher extraction yield was obtained at the ultrasonic frequency of 60-62 kHz which was little affected under other extraction conditions. Comparative studies between existing methods and the present method were done to verify the effectiveness of this method. Results indicated that the new extraction method gave a higher extraction yield compared with existing ultrasound-assisted extraction (UAE) and soxhlet extraction (SE). Thus, the potential use of this method may be promising for extraction of natural materials on an industrial scale in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Development of pulse-echo ultrasonic propagation imaging system and its delivery to Korea Air Force

    Science.gov (United States)

    Ahmed, Hasan; Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon; Ihn, Jeong-Beom

    2017-04-01

    This paper proposes a full-field pulse-echo ultrasonic propagation imaging (FF-PE-UPI) system for non-destructive evaluation of structural defects. The system works by detection of bulk waves that travel through the thickness of a specimen. This is achieved by joining the laser beams for the ultrasonic wave generation and sensing. This enables accurate and clear damage assessment and defect localization in the thickness with minimum signal processing since bulk waves are less susceptible to dispersion during short propagation through the thickness. The system consists of a Qswitched laser for generating the aforementioned waves, a laser Doppler vibrometer (LDV) for sensing, optical elements to combine the generating and sensing laser beams, a dual-axis automated translation stage for raster scanning of the specimen and a digitizer to record the signals. A graphical user interface (GUI) is developed to control all the individual blocks of the system. Additionally, the software also manages signal acquisition, processing, and display. The GUI is created in C++ using the QT framework. In view of the requirements posed by the Korean Air Force(KAF), the system is designed to be compact and portable to allow for in situ inspection of a selected area of a larger structure such as radome or rudder of an aircraft. The GUI is designed with a minimalistic approach to promote usability and adaptability while masking the intricacies of actual system operation. Through the use of multithreading the software is able to show the results while a specimen is still being scanned. This is achieved by real-time and concurrent acquisition, processing, and display of ultrasonic signal of the latest scan point in the scan area.

  11. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  12. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  13. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    Directory of Open Access Journals (Sweden)

    Qing-Hui WANG

    2014-02-01

    Full Text Available This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or concentration, the proposed detection system with lower cost and higher accuracy can be applied in the occasion which needs simultaneous monitoring of gas concentration and flow rate.

  14. An ultrasonic-based localization system for underground mines

    CSIR Research Space (South Africa)

    Jordaan, JP

    2017-07-01

    Full Text Available -based localization system for underground mines 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), 24-26 July 2017, Emden, Germany JP Jordaan, CP Kruger, BJ Silva and GP Hancke Abstract: Localization is important for a wide range...

  15. Design and characterization of an ultrasonic lamb-wave power delivery system.

    Science.gov (United States)

    Kural, Aleksander; Pullin, Rhys; Holford, Karen; Lees, Jonathan; Naylon, Jack; Paget, Christophe; Featherston, Carol

    2013-06-01

    In this paper, a novel design for an ultrasonic power transmission system designed for use in aircraft structural monitoring systems is described. The prototype system uses ultrasonic Lamb waves to carry energy along plates, such as those used in aircraft structures, and commercially available piezoelectric patch transducers as the transmitter and receiver. This sets it apart from other acoustic power transmission systems reported to date. The optimum configuration transmitted 12.7 mW of power across a distance of 54 cm in a 1.5-mm-thick aluminum plate, while being driven by a 20-Vpp, 35-kHz sinusoidal electric signal. This is in the same order of magnitude as the power required by the wireless sensors nodes of a structural health monitoring system currently being developed by Cardiff University and its partners. Thus, the power transmission system can be considered a viable component of the power source combination considered for the sensor nodes, which will also include vibration and thermal energy harvesting. The paper describes the design and optimization of the transmission and reception circuits with the use of inductive compensation. The use of laser vibrometry to characterize the transducers and to understand the signal propagation between them is also reported.

  16. The Mechatronic System Design Of Ultrasonic Scanner For Inservice Inspection Of Research Reactor

    Science.gov (United States)

    Handono, Khairul; Kristedjo, K.; Awwaluddin, M.; Shobary, Ihsan

    2018-02-01

    The mechatronic system design of ultrasonic scanner for inservices inspection of Research Reactor has been conducted. The requirement designed must be reliable operated, safety to personnel and equipments, ease of maintenance and operation, protection of equipment mechanically, interchangeability of equipments and addition of the several model of probe immersion ultrasonic tranducer. In order to achieve the above goals and obtain the desired results, a mechatronic design based on mechanical and electronic practical experiences will be needed. In this paper consist of the mechanical design and the system mechanical movement using stepper motor control. The criteria and the methods of designs of mechanical and electronic equipments of the system have been discussed and investigated. A mechanical and instrumentation control system drawing and requirement of design will be presented as the outcome of the design. The designed of mechanical system is consequently simulated by solidwork software. The intention of the above research is to create solutions in different ways of inservice inspection of integrity of Reactor.

  17. SIIA: a knowledge-based assistant for the SAFT ultrasonic inspection system(a)

    International Nuclear Information System (INIS)

    Melton, R.B.; Doctor, S.R.; Taylor, T.T.; Badalamente, R.V.

    1987-01-01

    SIIA(b) is a knowledge-based system designed to assist in making the operation of the Synthetic Aperture Focussing Technique (SAFT) Ultrasonic Inspection System more reliable and efficient. This paper reports on their effort to develop a prototype version of SIIA to demonstrate the feasibility of using knowledge-based systems in nondestructive evaluation (NDE). The first section of the paper describes the structure of the problem and their conceptual design of the knowledge-based system. The next section describes the current state of the prototype SIIA system and relates some of their experiences in developing the system. The final section discusses their plans for future development of SIIA and the implications of this type of system for other NDE techniques and applications

  18. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  19. Development of evaluation system of ultrasonic testing data

    International Nuclear Information System (INIS)

    Takeuchi, Iwao; Morimoto, Kazuo; Hamana, Michio; Taniguchi, Masaru; Hiraga, Seiji

    1996-01-01

    Mitsubishi Heavy Industries, Ltd. performs non-destructive inspections on water pipes and construction in power stations and various plants. For countermeasures concerning efficient operating with extra safety for long time operating of plants, our customers have asked us for detection with more accurate inspections and improvements on evaluation skills for sizing defects. For these requirements we have adopted noise removal methods such as split-spectrum processing(SSP) and sizing technique for detects such as time of flight diffraction(TOFD). We developed accurate and easily operating evaluation systems which made detection for defects and sizing of defects which are highly developed. We have become possible to perform non-destructive inspections efficiently and effectively. (author)

  20. Evaluation of an Ultrasonic Insulin Delivery System in Hyperglycemic Rabbits

    Directory of Open Access Journals (Sweden)

    Ameneh Sazgarnia

    2010-03-01

    Full Text Available Introduction: Sonophoresis has been assessed as a novel approach to create skin permeability and drug delivery using low frequencies of ultrasound waves in the range of 20 kHz to 3 MHz. In this study, a system including seven 40 kHz piezoelectric transducers and an insulin chamber designed by the Medical Physics Research Center has been evaluated on hyperglycemic rabbits. Materials and Methods: Thirty five rabbits became hyperglycemic through Alloxan monohydrate injection and were divided into five groups. The rabbits were treated in two main groups (with insulin and ultrasound radiation in two radiation periods, one main control group and two further control groups (one group with ultrasound radiation with longer radiation period in absence of insulin and presence of normal saline; and the other group without ultrasound radiation in presence of insulin. By filling the system chamber with insulin and placing it on the skin of the abdomen and activating the piezoelectric transducers, blood samples were drawn from the animals before ultrasound irradiation and after it in specified intervals. The glucose level was measured using a glucometer and the serum insulin level was determined using a radioimmunoassay method. Results: Maximum decrease in glucose level was recorded for a 20 minute irradiation in a 180 minute period, and the highest increase in insulin level was recorded for the10 minute radiation group in a 60 minute period. Discussion and Conclusion: Because rapid uptake and reaching a peak in a short time and its swift decrease make a good scheme for controlling glucose level after meals, the 10 minute radiation seems to be more suitable. Also, it is predicted that irradiation time in the interval between food consumption and use of the instrument is critical.

  1. Managing examination malpractice in Nigerian University system ...

    African Journals Online (AJOL)

    Examination malpractice is as old as examination itself. However, the rate at which examination malpractices occurs in the Nigerian educational system is highly disturbing. The challenge therefore needs prompt attention. The phenomenon which has both moral and legal dimensions is considered as a hydra-headed ...

  2. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  3. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Directory of Open Access Journals (Sweden)

    Marko Hočevar

    2012-11-01

    Full Text Available This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits.

  4. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Science.gov (United States)

    Stajnko, Denis; Berk, Peter; Lešnik, Mario; Jejčič, Viktor; Lakota, Miran; Štrancar, Andrej; Hočevar, Marko; Rakun, Jurij

    2012-01-01

    This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD) on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits. PMID:23202220

  5. A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation.

    Science.gov (United States)

    Qiu, Weibao; Zhou, Juan; Chen, Yan; Su, Min; Li, Guofeng; Zhao, Huixia; Gu, Xianyi; Meng, De; Wang, Congzhi; Xiao, Yang; Lam, Kwok Ho; Dai, Jiyan; Zheng, Hairong

    2017-12-01

    Fundamental insights into the function of the neural circuits often follows from the advances in methodologies and tools for neuroscience. Electrode- and optical- based stimulation methods have been used widely for neuro-modulation with high resolution. However, they are suffering from inherent invasive surgical procedure. Ultrasound has been proved as a promising technology for neuro-stimulation in a non-invasive manner. However, no portable ultrasound system has been developed particularly for neuro-stimulation. The utilities used currently are assembled by traditional functional generator, power amplifier, and general transducer, therefore, resulting in lack of flexibility. This paper presents a portable system to achieve ultrasonic neuro-stimulation to satisfy various studies. The system incorporated a high voltage waveform generator and a matching circuit that were optimized for neuro-stimulation. A new switching mode power amplifier was designed and fabricated. The noise generated by the power amplifier was reduced (about 30 dB), and the size and weight were smaller in contrast with commercial equipment. In addition, a miniaturized ultrasound transducer was fabricated using Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) 1-3 composite single crystal for the improved ultrasonic performance. The spatial peak temporal average pressure was higher than 250 kPa in the range of 0.5-5 MHz. In vitro and in vivo studies were conducted to show the performance of the system.

  6. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    Science.gov (United States)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  7. Pressure piping systems examination. 2. ed

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This Code is Part 13 of the IP Model Code of Safe Practice in the Petroleum Industry. Its purpose is to provide a guide to safe practices in the in-service examination and test of piping systems used in the petroleum and chemical industries. The Code gives general requirements regarding the provision and maintenance of adequate documentation, in-service examination, the control of modifications and repairs, examination frequency, protective devices and testing of piping systems. (author)

  8. Experience with an ultrasonic sealing system for nuclear safeguards in irradiated fuel bay demonstrations

    International Nuclear Information System (INIS)

    White, B.F.; Smith, M.T.

    1985-07-01

    The development of the irradiated fuel safeguards containment assembly for CANDU nuclear generating stations has stimulated the development of the AECL Random Coil Sealing System. The ARC seal combines the identity and integrity elements in an ultrasonically-determined signature. This is verified in situ, in real time with the seal reading system. The maturation of this technology has been facilitated with demonstration trials in the NRU and NPD irradiated fuel bays. The NPD demonstration includes operation of the systems tooling by Ontario Hydro staff. It provides the opportunity for IAEA inspectors from Toronto and Vienna to direct the operational procedures and to perform the data acquisition. The procedures and systems developed in these trials are reviewed. The estimation of the system performance characteristics from the observations is presented. A minimum frequency of reading for individual seals is recommended to be once per annum following initial deployment

  9. Verification and Examination Management of Complex Systems

    Directory of Open Access Journals (Sweden)

    Stian Ruud

    2014-10-01

    Full Text Available As ship systems become more complex, with an increasing number of safety-critical functions, many interconnected subsystems, tight integration to other systems, and a large amount of potential failure modes, several industry parties have identified the need for improved methods for managing the verification and examination efforts of such complex systems. Such needs are even more prominent now that the marine and offshore industries are targeting more activities and operations in the Arctic environment. In this paper, a set of requirements and a method for verification and examination management are proposed for allocating examination efforts to selected subsystems. The method is based on a definition of a verification risk function for a given system topology and given requirements. The marginal verification risks for the subsystems may then be evaluated, so that examination efforts for the subsystem can be allocated. Two cases of requirements and systems are used to demonstrate the proposed method. The method establishes a systematic relationship between the verification loss, the logic system topology, verification method performance, examination stop criterion, the required examination effort, and a proposed sequence of examinations to reach the examination stop criterion.

  10. SHAPE EFFECT OF ANNULAR CONCENTRATOR IN ULTRASONIC SYSTEM ON AMPLIFICATION FACTOR OF VIBRATIONS AMPLITUDE

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2016-01-01

    Full Text Available The paper contains a theoretical underpinning on creation of ultrasonic vibration concentrators based on annular elastic elements with non-circular (ellipse-like eccentric shape of internal contour. Shape of internal contour in polar coordinates is described by Fourier series relative to angular coordinate that consists of a constant term and first and second harmonics. An effect of geometric parameters of the concentrator on amplification factor and natural vibration frequencies has been investigated with the help of a finite element method. The paper reveals the possibility to control an amplification factor of annular concentrators while varying eccentricity of internal contour and mean value of cross-section thickness. The amplification factor satisfies a condition K < N, where N is thickness ratio of amplifier input and output sections, and it is decreasing with increase of vibration mode order. The similar condition has been satisfied for conical bar concentrator with the difference that in the case of bar concentrators an amplification is ensured due to variation of diameter and N will represent ratio of diameters. It has been proved that modification of internal contour shape makes it possible to carry out a wide-band tuning of natural frequencies of concentrator vibrations without alteration of its overall dimensions and substantial change of amplification factor, which is important for frequency matching of the concentrator and ultrasonic vibratory system. Advantages of the proposed concentrators include simplicity of design and manufacturing, small overall dimensions, possibility for natural frequency tuning by means of static load variation. The developed concentrators can find their application in ultrasonic devices and instruments for technological and medical purposes.

  11. Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting

    Science.gov (United States)

    Shi, Qiongfeng; Wang, Tao; Kobayashi, Takeshi; Lee, Chengkuo

    2016-05-01

    Acoustic energy transfer (AET) has been widely used for contactless energy delivery to implantable devices. However, most of the energy harvesters (ultrasonic receivers) for AET are macro-scale transducers with large volume and limited operation bandwidth. Here, we propose and investigate two microelectromechanical systems diaphragm based piezoelectric ultrasonic energy harvesters (PUEHs) as an alternative for AET. The proposed PUEHs consist of micro-scale diaphragm array with different geometric parameter design. Diaphragms in PUEH-1 have large length to width ratio to achieve broadband property, while its energy harvesting performance is compromised. Diaphragms in PUEH-2 have smaller length to width ratio and thinner thickness to achieve both broadband property and good energy harvesting performance. Both PUEHs have miniaturized size and wide operation bandwidth that are ideally suitable to be integrated as power source for implantable biomedical devices. PUEH-1 has a merged -6 dB bandwidth of 74.5% with a central frequency of 350 kHz. PUEH-2 has two separate -6 dB bandwidth of 73.7%/30.8% with central frequencies of 285 kHz/650 kHz. They can adapt to various ultrasonic sources with different working frequency spectrum. Maximum output power is 34.3 nW and 84.3 nW for PUEH-1 and PUEH-2 at 1 mW/cm2 ultrasound intensity input, respectively. The associated power density is 0.734 μW/cm2 and 4.1 μW/cm2, respectively. Better energy harvesting performance is achieved for PUEH-2 because of the optimized length to width ratio and thickness design. Both PUEHs offer more alignment flexibility with more than 40% power when they are in the range of the ultrasound transmitter.

  12. VVER-1000 RPV Head Examination Control System

    International Nuclear Information System (INIS)

    Erak, Z.; Gortan, K.

    2006-01-01

    This article presents the electronic system used for automated NDT examination of VVER-1000 Reactor Pressure Vessel Head (RPVH). The control system drives the inspection tool with end-effectors to needed position. When the final position is reached, the eddy current and ultra sound acquisition system performs the data acquisition. The system is composed of 3 layers. The first layer is the hardware layer consisting of motors driving the tool and end-effectors along with sensors needed to obtain the positioning data. The second layer is the MAC-8 control system performing basic monitoring and control routines as an interconnection between first and third layer. The third layer is the control software, running on PC, which is used as a human-machine-interface. Presentation contains details of examination techniques with focus on eddy current examination as well as details on manipulator and end effectors developed by Inetec for VVER-1000 RPVH examination.(author)

  13. The effect of non-uniform temperature and velocity fields on long range ultrasonic measurement systems in MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wyer, Nicolas; Schram, Christophe [von Karman Institute For Fluids Dynamic (Belgium); Van Dyck, Dries; Dierckx, Marc [Belgian Nuclear Research Center (Belgium)

    2015-07-01

    SCK.CEN, the Belgian Nuclear Research Center, is developing MYRRHA, a generation IV liquid metal cooled nuclear research reactor. As the liquid metal coolant is opaque to light, normal visual feedback during fuel manipulations is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic based instrumentation is under development at SCK.CEN to provide feedback during operations under liquid metal. One of the tasks that will be tackled using ultrasound is the detection and localization of a potentially lost fuel assembly. In this application, the distance between ultrasonic sensor and target may be as large as 2.5 m. At these distances, non uniform velocity and temperature fields in the liquid metal potentially influence the propagation of the ultrasonic signals, affecting the performance of the ultrasonic systems. In this paper, we investigate how relevant temperature and velocity gradients inside the liquid metal influence the propagation of ultrasonic waves. The effect of temperature and velocity gradients are simulated by means of a newly developed numerical ray-tracing model. The performance of the model is validated by dedicated water experiments. The setup is capable of creating velocity and temperature gradients representative for MYRRHA conditions. Once validated in water, the same model is used to make predictions for the effect of gradients in the MYRRHA liquid metal environment. (authors)

  14. Ultrasonic measurement of gap between calandria tube and liquid injection shutdown system tube in PHWR

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Sohn, Seok Man; Lee, Jun Shin; Lee, Sun Ki; Lee, Jong Po

    2001-01-01

    Sag of CT or liquid injection shutdown system tubes in pressurized heavy water reactor is known to occur due to irradiation creep and growth during plant operation. When the sag of CT is big enough, the CT tube possibly comes in contact with liquid injection shutdown system tube (LIN) crossing beneath the CT, which subsequently may prevent the safe operation. It is therefore necessary to check the gap between the two tubes in order to confirm no contacts when using a proper measure periodically during the plant life. An ultrasonic gap measuring probe assembly which can be fed through viewing port installed on the calandria was developed and utilized to measure the sags of both tubes in a pressurized heavy water reactor in Korea. It was found that the centerlines of CT and LIN can be precisely detected by ultrasonic wave. The gaps between two tubes were easily obtained from the relative distance of the measured centerline elevations of the tubes. But the measured gap data observed at the viewing port were actually not the data at the crossing point of CT and LIN. To get the actual gap between two tubes, mathematical modeling for the deflection curves of two tubes was used. The sags of CT and LIN tubes were also obtained by comparison of the present centerlines with the initial elevations at the beginning of plant operation. The gaps between two tubes in the unmeasurable regions were calculated based on the measurement data and the channel power distribution

  15. Development of an ultrasonic flow and temperature measurement system for pressurized water reactors

    International Nuclear Information System (INIS)

    James, R.W.; Lubnow, T.; Baumgart, G.; Ravetti, D.

    1996-01-01

    In U.S. nuclear plants, primary coolant flow and reactor thermal power are calculated from a measurement of feedwater flow to the steam generator combined with knowledge of steam generator heat transfer characteristics nd measurement of hot leg temperature by resistance temperature detectors (RTDs). The calculation of plant thermal output is complicated by an indirect measurement of primary coolant mass flow rate and thermal streaming in the region where hot leg temperature is typically measured. Uncertainty in the thermal output calculation results from uncertainties in steam generator characteristics, in the hot leg temperature due to thermal streaming, and in fouling of venturi nozzles used for feedwater flow measurement. This in turn leads to operation of power plants ar lower levels of efficiency. The Electric Power Research Institute (EPRI) has on ongoing project to develop a prototype system to directly measure primary coolant flow rate and bulk average temperature using ultrasonic transducers externally mounted on the pipe. The topic of this paper is a summary of the project experience in developing this system. The technology being developed in this project is based in part upon previously existing ultrasonic feedwater flow measurement technology developed by MPR Associates and Caldon, Inc EPRI is a non-profit company performing research for U.S. and international electric power utilities. (authors)

  16. Verification of an interaction model of an ultrasonic oscillatory system with periodontal tissues

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2014-01-01

    Full Text Available Verification of an interaction model of an ultrasonic oscillatory system with biological tissues which was developed in COMSOL Multiphysics was carried out. It was shown that calculation results in COMSOL Multiphysics obtained using the “Finer” grid (the ratio of the grid step to a minimum transversal section area of the model ≤ 0.3 mm-1 best of all qualitatively and quantitatively corresponded to practical results. The average relative error of the obtained results in comparison with the experimental ones did not exceed 4.0%. Influence of geometrical parameters (thickness of load on electrical admittance of the ultrasonic oscillatory system interacting with biological tissues was investigated. It was shown that increase in thickness of load within the range from 0 to 95 mm led to decrease in calculated values of natural resonance frequency of longitudinal fluctuations and electrical admittance from 26,58 to 26,35 kHz and from 0,86 to 0,44 mS.

  17. The ultrasonic ranging and data system for radiological surveys in the UMTRA [Uranium Mill Tailings Remedial Action] Project

    International Nuclear Information System (INIS)

    Little, C.A.; Berven, B.A.; Blair, M.S.; Dickerson, K.S.; Pickering, D.A.

    1988-01-01

    The Ultrasonic Ranging and Data System (USRADS) was developed to allow radiation exposure data and positional information to be collected, stored and analyzed in a more efficient manner than currently employed on the (Uranium Mill Tailings Remedial Action (UMTRA) project. USRADS is a portable unit which employs ultrasonics, radio frequency transmissions, and a personal computer. Operational experience indicates that the system results in increased information about the property with decreased data analysis and transcription effort and only slightly more field effort. 5 refs., 3 figs., 2 tabs

  18. The state of the art in non destructive testing of nuclear fuel cladding tubes using ultrasonic rotary systems; on line computer and statistics

    International Nuclear Information System (INIS)

    Rauscher, Rudolf

    Nondestructive evaluation of nuclear fuel cladding by ultrasonic tests is described. Ultrasonic transducers for detection of flaws and dimensions are built in a rotary system with a speed of 8000 rpm. The testing system is adapted to a configuration consisting of two microcomputers connected to each other

  19. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  20. Current status of automated ultrasonic pipe inspection systems - ISI of stainless steel piping systems in BWR power plants

    International Nuclear Information System (INIS)

    Jeong, P.

    1985-01-01

    The field of ultrasonics nondestructive testing is constantly expanding its ability of acquiring data and its speed by implementing a computer into the testing system. The computer made it possible to store massive test data into a compact magnetic hard disk for permanent records. The data outputs are displayed on the color CRT screen, and varieties of image display methods, such as A-scan, B-scan, C-scan, P-scan, or many other 3 dimensional isometric views and the modified display techniques are available to an operator. Various hardcopy machines are now a part of the testing system so that the displayed data outputs can be easily copied and filed for permanent documentation. The faster and more accurate mechanized scanners are gradually being substituted for the conventional manual scanning method which has been a major time consuming part of the testing operation. When all such improvements are combined into an integral unit, a reliable, fully automated ultrasonic testing system can by made. The fully automated ultrasonic testing system is needed not only for fast data acquisition, processing, and reliable data display, but also, even more importantly, for considerable reduction of human intervention, which could be a critical factor under the severely limited field environment. Obviously, in the past several years, tremendous accomplishments have been made in automating the test system, and many such systems are being used in the field. However, most of the existing automated systems are still bulky in size and the displayed data is often difficult to interpret to the field operators. Major effect should, therefore, be directed to size reduction of the system as well as improvement on the system reliability

  1. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration.

    Science.gov (United States)

    Smithard, Joel; Rajic, Nik; van der Velden, Stephen; Norman, Patrick; Rosalie, Cedric; Galea, Steve; Mei, Hanfei; Lin, Bin; Giurgiutiu, Victor

    2017-07-20

    A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module⁺ (AUSAM⁺). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz-5 MHz. The AUSAM⁺ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application.

  2. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  3. Ultrasonic sensor system to detect solids in a milk pasteurization process

    Science.gov (United States)

    Barroeta Z., Carlos; Sanchez M., Fernando L.; Fernando R., G. Moreno; Montes P., Laura

    2002-11-01

    In the food industry, many products require a specific process. In the milk industry, the raw milk passes through several process stages before reaching the end user in a very qualitative and healthy way. One of the problems of the milk is that it can contain solids in suspension, result of contamination of the milk, or inherent to the pasteurization process itself. In order to control these solids, a solid detection system is being developed, which will detect the solids by the reflection and refraction of ultrasonic waves. The sensor must be set in the upper part of the milk containers, and with a grid array to allow the control system to prevent these solids from entering into the pipes of the processing plant. The sensing system may activate an acoustic alarm to indicate that a solid has been detected, and a visual one to indicate the affected part of the process. (To be presented in Spanish.)

  4. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  5. Nervous system examination on YouTube.

    Science.gov (United States)

    Azer, Samy A; Aleshaiwi, Sarah M; Algrain, Hala A; Alkhelaif, Rana A

    2012-12-22

    Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words "nervous system examination", "nervous system clinical examination", "cranial nerves examination", "CNS examination", "examination of cerebellum", "balance and coordination examination". Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Currently, YouTube provides an adequate resource for learning nervous system examination, which can be used by medical students

  6. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  7. Computerized examination system on radioprotection knowledge

    International Nuclear Information System (INIS)

    Stanescu, Gabriel; Rosca Fartat, Gabriela; Ghilea, Simion

    2008-01-01

    The aim of this paper is to present the recognition system of the education and training in the field of radioprotection based on the examination system and the software solutions adopted by the regulatory authority in Romania. The Romanian Radiation Protection system is in place since 1950, when the first nuclear research reactor was built and activities involving radioactive sources started to be developed, and several developing phases were passed through. Linked to the Romanian Radiation Protection system an Education, Training and Recognition system was developed. The recognition of the competencies achieved by the personnel in the framework of the education and training system consists in obtaining a work permit. It is mandatory at least for the radiological safety officers to posses a work permit granted by the Romanian Regulatory Body (CNCAN) based on an examination of the radioprotection knowledge. The examination consists in solving a questionnaire on radioprotection and legislation issues. Each participant receives a questionnaire with 60 questions and has to solve it in a time limit of one hour. In 2007 the examination system has been improved by authors who designed a software and a database which contains all the questions and answers with related explanations. For each examination session the software generates randomly for each participant the examination questionnaire. More than 2000 questions and answers from the database are published on the web site of CNCAN for different fields of ionizing radiation applications. Moreover the generated questions and participant's answers are registered in order to perform the further analysis and review. The result is an objective and transparent examination system which encourages the continuous training and retraining. (author)

  8. FAILURE MODE EFFECTS AND CRITICALITY ANALYSIS (FMECA AS A QUALITY TOOL TO PLAN IMPROVEMENTS IN ULTRASONIC MOULD CLEANING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cristiano Fragassa

    2016-12-01

    Full Text Available Inside the complex process used for tire production, ultrasonic cleaning treatment probably represents the best solution to preserve the functionality of tire moulds, by removing residuals from moulds and keeping an unaltered quality for their surfaces. Ultrasonic Mould Cleaning Systems (UMCS is, however, a complicated technology that combines ultrasonic waves, high temperature and a succession of acid and basic attacks. At the same time, an UMCS plant, as part of a long productive chain, has to guarantee the highest productivity reducing failures and maintenances. This article describes the use of Failure Mode Effects and Criticality Analysis (FMECA as a methodology for improving quality in cleaning process. In particular, FMECA was utilized to identify potential defects in the original plant design, to recognize the inner causes of some failures actually occurred during operations and, finally, to suggest definitive re-design actions. Changes were implemented and the new UMCS offers a better quality in term of higher availability and productivity.

  9. 77 FR 36536 - Examination Rating System

    Science.gov (United States)

    2012-06-19

    ... operations of the Bank System's Office of Finance, ratings were assigned only to the areas of Corporate... FEDERAL HOUSING FINANCE AGENCY [No. 2012-N-06] Examination Rating System AGENCY: Federal Housing Finance Agency. ACTION: Notice with request for comments. SUMMARY: The Federal Housing Finance Agency...

  10. Nervous system examination on YouTube

    OpenAIRE

    Azer Samy A; AlEshaiwi Sarah M; AlGrain Hala A; AlKhelaif Rana A

    2012-01-01

    Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “...

  11. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    Directory of Open Access Journals (Sweden)

    Cheng Huan Xin

    2016-01-01

    Full Text Available This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circuit, ultrasonic signal. Design of preamplifier, controllable gain amplifier two-stage amplifier circuit for receiving signal is amplified. Including data acquisition circuit detection circuit and A/D conversion circuit, single chip microcomputer and the LabVIEW platform via A serial port communication agreement. In the aspect of software design, the design of the EMAT pipe nondestructive testing system based on LabVIEW human-computer interaction interface.

  12. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    International Nuclear Information System (INIS)

    Poulsen, Carl Esben; Kistrup, Kasper; Andersen, Nis Korsgaard; Taboryski, Rafael; Hansen, Mikkel Fougt; Wolff, Anders

    2016-01-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser beam. The technology is demonstrated on an injection moulded microfluidic device featuring high-aspect ratio ( h   ×   w   =  2000 μ m  ×  550 μ m) and free-standing channel walls, where bonding is achieved with no detectable channel deformation. The bonding strength is similar to conventional EDs and the fabricated system can withstand pressures of over 9.5 bar. (technical note)

  13. Ultrasonic inspection method and system for detection of steeple cracking in turbine disk rims

    International Nuclear Information System (INIS)

    Birring, A.S.; Lamping, G.A.; Van der Veer, W.R.; Hanley, J.J.

    1990-01-01

    Steam turbine disks which operate under high cyclic stress in a moist environment can develop cracks in the disk-rim steeples. Detection of these cracks using nondestructive testing methods is necessary to assure safe operation and avoid unnecessary disk replacement. Both magnetic particle (MT) and ultrasonic testing (UT) can be used to inspect the steeples; however, UT can be used without removing the blades. A system for inspecting bladed steeples has been developed that can be applied on a range of disks including those in Westinghouse, General Electric, and Allis Chalmers turbines. The system performs an inspection as the turbine is rotated at slow speeds over turning rolls. This procedure greatly reduces inspection time because the inspection can be done without deblading the disk or resetting the inspection equipment for different rim segments

  14. PROSPECTS FOR APPLICATION OF FLEXIBLE ULTRASONIC WAVEGUIDE SYSTEMS IN MEDICINE AND ENGINEERING

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2010-01-01

    Full Text Available The article presents comprehensive review of current and possible future applications of flexible ultrasonic waveguides in medicine and engineering. Issues of design, modelling and manufacturing of flexible waveguides are considered. The article also presents some results of the authors in this field, particularly modelling techniques developed for the design of flexible waveguides and ultrasonic technologies and equipment for ultrasonic thromboectomy, heating of frozen fuel and ultrasonic drilling of brittle materials. Novel technology for manufacturing flexible waveguides based on electrolytic-plasma machining is also described

  15. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    Science.gov (United States)

    Greenwood, Margaret S [Richland, WA

    2008-07-08

    A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.

  16. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system

    Science.gov (United States)

    Zinin, Pavel V.; Prakapenka, Vitali B.; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K.

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  17. High-speed biometrics ultrasonic system for 3D fingerprint imaging

    Science.gov (United States)

    Maev, Roman G.; Severin, Fedar

    2012-10-01

    The objective of this research is to develop a new robust fingerprint identification technology based upon forming surface-subsurface (under skin) ultrasonic 3D images of the finger pads. The presented work aims to create specialized ultrasonic scanning methods for biometric purposes. Preliminary research has demonstrated the applicability of acoustic microscopy for fingerprint reading. The additional information from internal skin layers and dermis structures contained in the scan can essentially improve confidence in the identification. Advantages of this system include high resolution and quick scanning time. Operating in pulse-echo mode provides spatial resolution up to 0.05 mm. Technology advantages of the proposed technology are the following: • Full-range scanning of the fingerprint area "nail to nail" (2.5 x 2.5 cm) can be done in less than 5 sec with a resolution of up to 1000 dpi. • Collection of information about the in-depth structure of the fingerprint realized by the set of spherically focused 50 MHz acoustic lens provide the resolution ~ 0.05 mm or better • In addition to fingerprints, this technology can identify sweat porous at the surface and under the skin • No sensitivity to the contamination of the finger's surface • Detection of blood velocity using Doppler effect can be implemented to distinguish living specimens • Utilization as polygraph device • Simple connectivity to fingerprint databases obtained with other techniques • The digitally interpolated images can then be enhanced allowing for greater resolution • Method can be applied to fingernails and underlying tissues, providing more information • A laboratory prototype of the biometrics system based on these described principles was designed, built and tested. It is the first step toward a practical implementation of this technique.

  18. Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement

    International Nuclear Information System (INIS)

    Shahab, S; Erturk, A

    2014-01-01

    There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive–inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and

  19. Nervous system examination on YouTube

    Directory of Open Access Journals (Sweden)

    Azer Samy A

    2012-12-01

    Full Text Available Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47% of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2 and mainly covered examination of the whole nervous system (8 videos, 13%, cranial nerves (42 videos, 69%, upper limbs (6 videos, 10%, lower limbs (3 videos, 5%, balance and co-ordination (2 videos, 3%. The other 68 (53% videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0. The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers. The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD. Conclusions Currently, YouTube provides an adequate resource

  20. Nervous system examination on YouTube

    Science.gov (United States)

    2012-01-01

    Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Conclusions Currently, YouTube provides an adequate resource for learning

  1. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    NARCIS (Netherlands)

    Costa-Felix, R.P.B.; Alvarenga, A.V.; Hekkenberg, R.

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement)

  2. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  3. Automatic ultrasonic testing and the LOFT in-service inspection program

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1980-01-01

    An automatic ultrasonic testing system has been developed which significantly improves the flaw indication detection and characterization capability over the capability of conventional volumetric examination techniques. The system utilizes an accurately located ultrasonic sensor to generate the examination data. A small computer performs and integrates control and data input/output functions. Computer software has been developed to provide a rigorous method for data analysis and ultrasonic image interpretation. The system has been used as part of an in-service inspection program to examine welds in thich austenitic stainless steel pipes in a small experimental nuclear reactor

  4. Impact Dynamics of a Percussive System Based on Rotary-Percussive Ultrasonic Drill

    Directory of Open Access Journals (Sweden)

    Yinchao Wang

    2017-01-01

    Full Text Available This paper presents an impact dynamic analysis of a percussive system based on rotary-percussive ultrasonic drill (RPUD. The RPUD employs vibrations on two sides of one single piezoelectric stack to achieve rotary-percussive motion, which improves drilling efficiency. The RPUD’s percussive system is composed of a percussive horn, a free mass, and a drill tool. The percussive horn enlarges longitudinal vibration from piezoelectric stack and delivers the vibration to the drill tool through the free mass, which forms the percussive motion. Based on the theory of conservation of momentum and Newton’s impact law, collision process of the percussive system under no-load condition is analyzed to establish the collision model between the percussive horn, the free mass, and the drill tool. The collision model shows that free mass transfers high-frequency small-amplitude vibration of percussive horn into low-frequency large-amplitude vibration of drill tool through impact. As an important parameter of free mass, the greater the weight of the free mass, the higher the kinetic energy obtained by drill tool after collision. High-speed camera system and drilling experiments are employed to validate the inference results of collision model by using a prototype of the RPUD.

  5. Early Warning System of Flood Disaster Based on Ultrasonic Sensors and Wireless Technology

    Science.gov (United States)

    Indrasari, W.; Iswanto, B. H.; Andayani, M.

    2018-04-01

    A flood disaster provides considerable losses to the people who live around the river. To mitigate losses of material due to flood disaster required an early warning system of flood disaster. For that reason, it necessary to design a system that provide alert to the people prior the flood disaster. And this paper describes development of a device for early detection system of flood disasters. This device consists of two ultrasonic sensors as a water level detector, and a water flow sensor as a water flow velocity sensor. The wireless technology and GSM is used as an information medium. The system is designed based on water level conditions in the Katulampa Dam, Bogor. Characterization of water level detector showed that the device effectively works in a range of water level of 14-250 cm, with a maximum relative error of 4.3%. Meanwhile the wireless works properly as far as 75 m, and the SMS transmission time is 8.20 second.

  6. Development and performance of a new prosthesis system using ultrasonic sensor for wrist movements: a preliminary study

    Science.gov (United States)

    2014-01-01

    Background The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user. Methods The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements. Results The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45° - 55° of rotation or about 14 cm – 16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation. Conclusion The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics. PMID:24755242

  7. THE COMPARATIVE ANALYSIS OF THE ULTRASONIC EXAMINATION AND Х-RAY MAMMOGRAPHY OF THE MEN WITH MASS PATHOLOGY IN THE MAMMARY GLAND PROJECTION

    Directory of Open Access Journals (Sweden)

    V. B. Akimova

    2015-01-01

    Full Text Available Based on the scientific materials of domestic and foreign authors as well as on own observations, the results of the ultrasonic and mammographic research of the man’s mass pathology in the mammary gland projection being found in the process of differential diagnosis between malignant and benign tumors with similar clinical picture are presented in the article. Methodologically there has been carried out the analysis of the distinctive and rare signs of the benign process and malignant transformation of the man’s mass pathology in the mammary gland projection. In order to compare X-Ray and ultrasonic characteristics of the mass pathology in the patients’ mammary gland projection similar visual effects in the process of the prebiopsy clinical diagnosis forming has been studied in pairs. Mammography pictures and visualization in B-regime have been studied critically: shape correctness, localization, irregularity and obscurity of contours, presence of pathological inclusions, data of the colour and spectral Doppler sonography and 3D-regime scanning. According to the results of visual examinaion objective indications for needle biopsy of the man’s mass pathology in the mammary gland projection have been presented to the reader. The calculation of operation characteristics of different research methods of the mammary gland and combination of these methods has been done. The regularity of the information increase with an increase of the methods applied has been revealed. Based on the catamnesis examples of 317 men, the analysis of the necessity to make a combined examination variants of the mammary gland as the only definite opportunity to get a clinical diagnosis has been done.

  8. Ultrasonic testing using time of flight diffraction technique (TOFD)

    International Nuclear Information System (INIS)

    Khurram Shahzad; Ahmad Mirza Safeer Ahmad; Muhammad Asif Khan

    2009-04-01

    This paper describes the ultrasonic testing using Time Flight Diffraction (TOFD) Technique for welded samples having different types and sizes of defects. TOFD is a computerized ultrasonic system, able to scan, store and evaluate indications in terms of location, through thickness and length in a more easy and convenient. Time of Flight Diffraction Technique (TOFD) is more fast and easy technique for ultrasonic testing as we can examine a weld i a single scan along the length of the weld with two probes known as D-scan. It shows the image of the complete weld with the defect information. The examinations were performed on carbon steel samples used for ultrasonic testing using 70 degree probes. The images for different type of defects were obtained. (author)

  9. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  10. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  11. Automated Damage Assessment System for Ballistic Protective Inserts Using Low Frequency Ultrasonics

    National Research Council Canada - National Science Library

    Godinez-Azcuaga, Valery F; Ozevin, Didem; Finlayson, Richard D; Colanto, David

    2006-01-01

    .... Radiography and low frequency ultrasonics are two methods that can provide information about the condition of a BPI, with respect to cracking and porosity in the ceramic plate and debonding between layers...

  12. Designing and Evaluating an Ultrasonic System for Identification of Weed Species

    Directory of Open Access Journals (Sweden)

    danial gandomzadeh

    2016-09-01

    Full Text Available Introduction: Considering the importance of healthy and inexpensive agricultural production, it is necessary to seek ways for precisely discrimination of weeds in the field to minimize the use of herbicides. In this research the feasibility of weed detection due to the reflected ultrasonic waves from some common weeds including Portulacaceae, Chenopodium album L, Tribulus terrestris L, Amaranthus retroflexus L and Salsola iberica, was investigated. Materials and Methods: An electronic circuit with several parts such as a microcontroller, a power supply (5 DC volts, a RS-232 output port, and an ultrasonic wave generator and detector was constructed. It emits a 40 KHz ultrasonic wave and receives the recursive wave which is reflected from the weed canopy. It can be mounted on an adjustable tripod that is aligned along the three main directions (X, Y, and Z and can also be turned around the X axis. The data acquisition was accomplished in the research field of the College of Agriculture, Ferdowsi University of Mashhad. The experiments were performed by mounting the system at constant height of 4 cm from the crop canopy. To avoid interfering of the recursive wave with the emitted wave, the generator and the detector were placed far apart. For each experiment the temperature and the relative humidity were recorded in a check list. For the Neural Network the so called BDLRF algorithm was used for training the network and started with a relatively constant large step size of learning rate and momentum term . Before destabilizing the network or when the convergence is slowed down, these values are decreased monotonically (22. In this study Double Sequential Classification Method was used for weed discrimination. This classification method can better simulate the human procedure for classification of different objects, from each other. The human being at the first stage, and based on some distinguishable criteria classifies the things into some main

  13. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  14. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  15. A new multiple channel data recording system for mechanised ultrasonic testing of pipes and nozzles by A-scan processing

    International Nuclear Information System (INIS)

    Heumueller, R.; Rathgeb, W.; Szafarska, E.; Bertus, N.; Erhard, A.; Montag, H.J.; Wuestenberg, H.

    1989-01-01

    A system of equipment for ultrasonic testing in nuclear technique is introduced. This is a four channel ultrasonic equipment, which consists of a manipulator suitable for components, up to four conventional test heads, a test head connection box connected with them via 20 metres of coaxial cable, a documentation unit for signal detection and conversion, a data collection computer for parametricising the equipment, measurement display and representation and a disc memory. The advantages of this test system lie in its easy use because of the compact equipment dimensions, in the data collection of the complete A picture by the documentation unit and in the flexible evaluation of the collected data by the computer. (MM) [de

  16. Development and Certification of Ultrasonic Background Noise Test (UBNT) System for use on the International Space Station (ISS)

    Science.gov (United States)

    Prosser, William H.; Madaras, Eric I.

    2011-01-01

    As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment

  17. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  18. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    Science.gov (United States)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  19. New Ultrasonic Controller and Characterization System for Low Temperature Drying Process Intensification

    Science.gov (United States)

    Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.

    Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.

  20. Humidification of unwrapped chilled meat on retail display using an ultrasonic fogging system.

    Science.gov (United States)

    Brown, Tim; Corry, Janet E L; Evans, Judith A

    2007-12-01

    The effects of an ultrasonic humidification system on unwrapped meat in a chilled retail display cabinet were assessed. Humidification raised the relative humidity of the cabinet air from a mean of 76.7% to just below saturation at 98.8%. This reduced the mean evaporative weight loss from whole samples of meat after 14h from 1.68% to 0.62% of their initial weight. The rate of deterioration in the appearance of the meat due to dehydration was reduced to the extent that while the unhumidified trial was terminated after 14h because all samples were judged to be unacceptable, the humidified trial was continued for 24h without any major changes in appearance. Levels of presumptive pseudomonas bacteria were relatively high in water samples taken from the humidification system and defrost water during the humidified trial, but Legionella spp. were not isolated. Significant increases in the numbers of bacteria on the meat during either trial were only found in one case, that of humidified minced beef. However, some of the samples had high counts even before display, and this may have masked any effect due to humidification. Differences in levels of air-borne contamination were small and inconsistent. Air temperatures were raised by humidification by between 1 and 2°C and this was reflected in similarly raised product temperatures. Temperatures of air leaving the evaporator indicated that this was due to icing of the evaporator in the periods leading up to defrosts.

  1. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  2. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    Science.gov (United States)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  3. Measuring time-of-flight in an ultrasonic LPS system using generalized cross-correlation.

    Science.gov (United States)

    Villladangos, José Manuel; Ureña, Jesús; García, Juan Jesús; Mazo, Manuel; Hernández, Alvaro; Jiménez, Ana; Ruíz, Daniel; De Marziani, Carlos

    2011-01-01

    In this article, a time-of-flight detection technique in the frequency domain is described for an ultrasonic local positioning system (LPS) based on encoded beacons. Beacon transmissions have been synchronized and become simultaneous by means of the DS-CDMA (direct-sequence code Division multiple access) technique. Every beacon has been associated to a 255-bit Kasami code. The detection of signal arrival instant at the receiver, from which the distance to each beacon can be obtained, is based on the application of the generalized cross-correlation (GCC), by using the cross-spectral density between the received signal and the sequence to be detected. Prior filtering to enhance the frequency components around the carrier frequency (40 kHz) has improved estimations when obtaining the correlation function maximum, which implies an improvement in distance measurement precision. Positioning has been achieved by using hyperbolic trilateration, based on the time differences of arrival (TDOA) between a reference beacon and the others.

  4. Light scattering by ultrasonically-controlled small particles: system design, calibration, and measurement results

    Science.gov (United States)

    Kassamakov, Ivan; Maconi, Göran; Penttilä, Antti; Helander, Petteri; Gritsevich, Maria; Puranen, Tuomas; Salmi, Ari; Hæggström, Edward; Muinonen, Karri

    2018-02-01

    We present the design of a novel scatterometer for precise measurement of the angular Mueller matrix profile of a mm- to µm-sized sample held in place by sound. The scatterometer comprises a tunable multimode Argon-krypton laser (with possibility to set 1 of the 12 wavelengths in visible range), linear polarizers, a reference photomultiplier tube (PMT) for monitoring the beam intensity, and a micro-PMT module mounted radially towards the sample at an adjustable radius. The measurement angle is controlled by a motor-driven rotation stage with an accuracy of 15'. The system is fully automated using LabVIEW, including the FPGA-based data acquisition and the instrument's user interface. The calibration protocol ensures accurate measurements by using a control sphere sample (diameter 3 mm, refractive index of 1.5) fixed first on a static holder followed by accurate multi-wavelength measurements of the same sample levitated ultrasonically. To demonstrate performance of the scatterometer, we conducted detailed measurements of light scattered by a particle derived from the Chelyabinsk meteorite, as well as planetary analogue materials. The measurements are the first of this kind, since they are obtained using controlled spectral angular scattering including linear polarization effects, for arbitrary shaped objects. Thus, our novel approach permits a non-destructive, disturbance-free measurement with control of the orientation and location of the scattering object.

  5. Self-calibration method for rotating laser positioning system using interscanning technology and ultrasonic ranging.

    Science.gov (United States)

    Wu, Jun; Yu, Zhijing; Zhuge, Jingchang

    2016-04-01

    A rotating laser positioning system (RLPS) is an efficient measurement method for large-scale metrology. Due to multiple transmitter stations, which consist of a measurement network, the position relationship of these stations must be first calibrated. However, with such auxiliary devices such as a laser tracker, scale bar, and complex calibration process, the traditional calibration methods greatly reduce the measurement efficiency. This paper proposes a self-calibration method for RLPS, which can automatically obtain the position relationship. The method is implemented through interscanning technology by using a calibration bar mounted on the transmitter station. Each bar is composed of three RLPS receivers and one ultrasonic sensor whose coordinates are known in advance. The calibration algorithm is mainly based on multiplane and distance constraints and is introduced in detail through a two-station mathematical model. The repeated experiments demonstrate that the coordinate measurement uncertainty of spatial points by using this method is about 0.1 mm, and the accuracy experiments show that the average coordinate measurement deviation is about 0.3 mm compared with a laser tracker. The accuracy can meet the requirements of most applications, while the calibration efficiency is significantly improved.

  6. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  7. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  8. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  9. Humidity control of an incubator using the microcontroller-based active humidifier system employing an ultrasonic nebulizer.

    Science.gov (United States)

    Güler, I; Burunkaya, M

    2002-01-01

    Relative humidity levels of an incubator were measured and controlled. An ultrasonic nebulizer system as an active humidifier was used to humidify the incubator environment. An integrated circuit-type humidity sensor was used to measure the humidity level of the incubator environment. Measurement and control processes were achieved by a PIC microcontroller. The high-performance and high-speed PIC provided the flexibility of the system. The developed system can be used effectively for the intensive care of newborns and/or premature babies. Since the humidifier generates an aerosol in ambient conditions, it is possible to provide the high relative humidity level for therapeutic and diagnostic purposes in medicine.

  10. The selection of ultrasonic transducers for inspection of pipeline girth welds. Vol. 3. Evaluation of the pitch-catch technique for examination of the body region

    Energy Technology Data Exchange (ETDEWEB)

    Glover, A G; Fingerhut, M P; Dorling, D V

    1988-10-01

    Research was conducted to develop an ultrasonic inspection design for the nondestructive evaluation of pipeline girth welds made by the mechanized gas metal arc (GMA) welding process for onshore and offshore pipeline construction. This report describes the work carried out to evaluate the performance to the pitch-catch technique with respect to its ability to examine the body region of mechanized GMA welds in 19.5 mm thick material. Evaluation of the pitch-catch technique was carried out on simulated and real weld defects. Results show that an inspection design method and criteria can be specified for the detection of lack of sidewall fusion defects in the body region of mechanized GMA welds. The criteria specified a pitch-catch technique using a 2.25 MHz 45{degrees} transmitter and a 2.25 MHz 55{degrees} receiver probe. A single pair of these transducers can inspect wall thickness from 9.7 mm to 23.0 mm. The pitch-catch technique evaluated on 19.5 mm wall thickness materials demonstrated that the detection goal of projected depth with a signal-to-noise ratio of greater than 12dB could be met, and that no problems occurred with false indications or missed defects. High sensitivities to small defects in the body region were obtained using a single pair of pitch-catch probes that inspected the body region as a single plane. 4 refs., 14 figs., 6 tabs.

  11. The effects of ultrasonic solidification on aluminum

    OpenAIRE

    Đorđević Slavko 1

    2003-01-01

    The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  12. The effects of ultrasonic solidification on aluminum

    Directory of Open Access Journals (Sweden)

    Đorđević Slavko 1

    2003-01-01

    Full Text Available The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  13. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  14. Development of automatic reactor vessel inspection systems: development of data acquisition and analysis system for the nuclear vessel weld

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. H.; Lim, H. T.; Um, B. G. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-03-01

    The objective of this project is to develop an automated ultrasonic data acquisition and data analysis system to examine the reactor vessel weldsIn order to examine nuclear vessel welds including reactor pressure vessel(RPV), huge amount of ultrasonic data from 6 channels should be able to be on-line processed. In addition, ultrasonic transducer scanning device should be remotely controlled, because working place is high radiation area. This kind of an automated ultrasonic testing equipment has not been developed domestically yet In order to develop an automated ultrasonic testing system, RPV ultrasonic testing equipments developed in foreign countries were investigated and the capability of high speed ultrasonic signal processing hardwares was analyzed in this study, ultrasonic signal processing system was designed. And also, ultrasonic data acquisition and analysis software was developed. 11 refs., 6 figs., 9 tabs. (Author)

  15. Design - manufacturing and characterization of specific ultrasonic probes

    International Nuclear Information System (INIS)

    Petit, J.

    1985-01-01

    Optimization of ultrasonic examinations requires essentially to determine precisely parameters used for manufacturing of probes and to check characteristics of beams used. The system presented permits an automatic determination of dimensions of beams in conditions which are totally representative of those of their use. In the field of ultrasonic examinations a good estimate or knowledge of sound beams is of great help to solve difficult examination problems. The FRAMATOME's Centre d'Etude et de Recherche en Essais Non Destructifs (CEREND) : (Study and Research Center in Non-Destructive Testing) has developed and elaborated various techniques in order to improve ultrasonic examinations with specific probes. These techniques concern design, manufacturing and characterization of these probes

  16. Ultrasonic leak detection

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1977-01-01

    A scanning ultrasonic microphone was used to detect the presence and locate the sources of hydraulic noises in piping systems in a reactor environment. The intensity changes of the noises correspond to changes of flow conditions within the system caused by throttled valves, flow rate changes, and leaks. (author)

  17. Computerized ultrasonic quality control system in the production of helical welded tubes

    International Nuclear Information System (INIS)

    Tar, J.

    1976-01-01

    The inspection of helical welded steel tubes by means of an ultrasonic automatic equipment is described. This equipment is able to recognize the defects of the weld, to identify them and to continuously report back the informations necessary for their elimination

  18. System for ultrasonic testing of welded seams. Einrichtung zur Ultraschallpruefung von Schweissnaehten

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, J K; Troizkij, V A; Agronskaja, E V; Vasiliev, L N; Orel, V G; Naida, V L; Baldakov, V F; Ustjusanin, J V; Litvinenko, V A; Petrovskij, S N

    1984-07-12

    The invention concerns a device for the ultrasonic testing of welded joints which can be used in particular for quality control of multi-layer weldments. The testing equipment consists of probe, material testing device, amplitude discriminator, recording device, up and down counters and threshold value stages. (GSCH).

  19. Ultrasonic study on ternary liquid systems by laser-sound interaction

    International Nuclear Information System (INIS)

    Behboudnia, M.; Necati Ecevit, F.; Aydin, R.

    1994-01-01

    To investigate the ultrasound velocity in liquid mixtures an interferometer based on Raman-Nath diffraction of laser light by sound waves is described. Ultrasonic velocity measurements in water in dependence of temperature and in carboxylic acids with triethylamine in benzene of different mole fractions are presented. (author). 14 refs, 4 figs, 1 tab

  20. Design and installation of high-temperature ultrasonic measuring system and grinder for nuclear fuel containing trans-uranium elements

    International Nuclear Information System (INIS)

    Serizawa, Hiroyuki; Kikuchi, Hironobu; Iwai, Takashi; Arai, Yasuo; Kurosawa, Makoto; Mimura, Hideaki; Abe, Jiro

    2005-07-01

    A high-temperature ultrasonic measuring system had been designed and installed in a glovebox (711-DGB) to study a mechanical property of nuclear fuel containing trans-uranium (TRU) elements. A figuration apparatus for the cylinder-type sample preparation had also been modified and installed in an established glovebox (142-D). The system consists of an ultrasonic probe, a heating furnace, cooling water-circulating system, a cooling air compressor, vacuum system, gas supplying system and control system. An A/D converter board and an pulsar/receiver board for the measurement of wave velocity were installed in a personal computer. The apparatus was modified to install into the glovebox. Some safety functions were supplied to the control system. The shape and size of the sample was revised to minimize the amount of TRU elements for the use of the measurement. The maximum sample temperature is 1500degC. The performance of the installed apparatuses and the glovebox were confirmed through a series of tests. (author)

  1. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    Science.gov (United States)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  2. Ultrasonic Technology in Duress Alarms.

    Science.gov (United States)

    Lee, Martha A.

    2000-01-01

    Provides the pros and cons of the most commonly used technologies in personal duress alarm systems in the school environment. Discussed are radio frequency devices, infrared systems, and ultrasonic technology. (GR)

  3. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  4. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  5. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  6. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  7. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  8. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking

  9. Final results of double-shell tank 241-AY-102 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AY-102. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AY-102 primary tank wall and welds. The inspection found some indication of insignificant general and local wall thinning with no cracks detected

  10. Final results of double-shell tank 241-AN-105 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AN-105. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AN-105 primary tank wall primary knuckle, and secondary tank bottom. The inspection found some indication of general and local wall thinning with no cracks detected

  11. The feasibility of the auto tuning respiratory compensation system with ultrasonic image tracking technique.

    Science.gov (United States)

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi

    2015-01-01

    developed auto tumor localization system can be evaluated. The results show that the simulated respiratory signals under different frequencies of 0.5, 0.333, 0.25, 0.2 and 0.167 Hz with phase lead compensators were improved and stabilized. The compensation rate increased to the range of 7.04$∼ $18.82%, and the final compensation rate is about 97%. Therefore the auto tumor localization system combined with the ultrasound image analysis techniques is feasible.In this study, the developed ultrasound image analysis techniques combined into the auto tumor localization system has the following four advantages: (1) It is a non-invasive way (ultrasonic images) to monitor the entire compensating process of the active respiration instead of using a C-arm (invasive) to observe the organs motion. (2) During radiation therapy, the whole treatment process can be continuous, which can save the overall treatment time. (3) It is an independent system, which can be mounted onto any treatment couch. (4) Users can operate this system easily without the need of prior complicated training process.

  12. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  13. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  14. Renal Sympathetic Denervation System via Intraluminal Ultrasonic Ablation: Therapeutic Intravascular Ultrasound Design and Preclinical Evaluation.

    Science.gov (United States)

    Chernin, Gil; Szwarcfiter, Iris; Bausback, Yvonne; Jonas, Michael

    2017-05-01

    To assess the safety and performance of a nonfocused and nonballooned ultrasonic (US) catheter-based renal sympathetic denervation (RDN) system in normotensive swine. RDN with the therapeutic intravascular US catheter was evaluated in 3 experiments: (i) therapeutic intravascular US RDN vs a control group of untreated animals with follow-up of 30, 45, and 90 days (n = 6; n = 12 renal arteries for each group); (ii) therapeutic intravascular US RDN vs radiofrequency (RF) RDN in the contralateral artery in the same animal (n = 2; n = 4 renal arteries); and (iii) therapeutic intravascular US RDN in a recently stent-implanted renal artery (n = 2; n = 4 renal arteries). In the first experiment, therapeutic intravascular US RDN was safe, without angiographic evidence of dissection or renal artery stenosis. Neuronal tissue vacuolization, nuclei pyknosis, and perineuronal inflammation were evident after RDN, without renal artery wall damage. Norepinephrine levels were significantly lower after therapeutic intravascular US RDN after 30, 45, and 90 days compared with the control group (200.17 pg/mg ± 63.35, 184.75 pg/mg ± 44.51, and 203.43 pg/mg ± 58.54, respectively, vs 342.42 pg/mg ± 79.97). In the second experiment, deeper neuronal ablation penetrance was found with therapeutic intravascular US RDN vs RF RDN (maximal penetrance from endothelium of 7.0 mm vs 3.5 mm, respectively). There was less damage to the artery wall after therapeutic intravascular US RDN than with RF RDN, after which edema and injured endothelium were seen. In the third experiment, denervation inside the stent-implanted segments was feasible without damage to the renal artery wall or stent. The therapeutic intravascular US system performed safely and reduced norepinephrine levels. Deeper penetrance and better preservation of vessel wall were observed with therapeutic intravascular US RDN vs RF RDN. Neuronal ablations were observed in stent-implanted renal arteries. Copyright © 2017 SIR. Published

  15. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    International Nuclear Information System (INIS)

    Athi, N; Wylie, S R; Cullen, J D; Al-Jader, M; Al-Shamma'a, A I; Shaw, A

    2009-01-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  16. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    Science.gov (United States)

    Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.

    2009-07-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  17. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to

  18. Investigation of ZnI2-KI-C3H7NO system by ultrasonic method

    International Nuclear Information System (INIS)

    Shevchenko, V.M.; Surovtsev, V.I.; Gorenbejn, E.Ya.

    1975-01-01

    Applicability of the ultrasonic impulses for the research of complex formation in the solutions was demonstrated using ZnI 2 -KI-C 3 H 7 NO system as an example. Changing the solvent structure during complexing was studied. It was determined that ion solvation numbers reflect electrostriction influence of ions on the surrounding solvent moleculas. The maximum effect on dimethylformamide (C 3 H 7 NO) was made by the complex compound KZnI 3 acting as destrictor and the sound speed decrease was the highest in its solution. Possibility of using adiabatic compressibility of the solutions for complexing studies is analysed

  19. Scintigraphic examination of the sympathicoadrenal system

    International Nuclear Information System (INIS)

    Dabasi, Gabriella; Duffek, Laszlo

    1989-01-01

    Experiences with 100 131 I-metaiodo-benzylguanidine (MIGB) scintigraphy are described. The importance of the examination is stressed in the diagnostics of neuroblastoma in childhood and in the determination of the clinical stage and follow-up of the disease. MIGB scintigraphy plays a primary role in the imaging examination procedures aimed at the localization of pheochromocytoma, especially in the extraadrenal, multiplex and malignant diseases. The disturbance of adrenergic innervation in Shy-Drager syndrome can be demonstrated with radiopharmacon. (author) 19 refs.; 5 figs

  20. High-yield synthesis of vaterite microparticles in gypsum suspension system via ultrasonic probe vibration/magnetic stirring

    Science.gov (United States)

    Wang, Bo; Pan, Zihe; Cheng, Huaigang; Chen, Zuliang; Cheng, Fangqin

    2018-06-01

    Vaterite-type calcium carbonate particles have some unique properties such as high hydrophilicity, large surface areas, and hierarchical structures consisting of primary vaterite particles in comparison with calcite or aragonite-type polymorphs. In this paper, gypsum (CaSO4·2H2O) suspension is used to synthesize micro-sized vaterite CaCO3 through magnetic stirring (MS) and ultrasonic probe vibration (UPV) methods. The effects of ammonia concentration, CO2 flow rate, solid-liquid ratio on the gypsum carbonation process, mineral phase composition, morphology and particle size distribution of CaCO3 are investigated. The results show that the carbonation process is significantly influenced by ammonia concentration, CO2 flow rate and ultrasound. Comparing with magnetic stirring, ultrasonic probe vibration take less time to reach the complete carbonate reaction. Gypsum is transformed to vaterite with the conversion rate about ∼95% when the mole ratio of NH4+/Ca2+ is 2.4 otherwise the carbonation reaction was uncompleted with gypsum residues left. Comparing with MS method, the UPV method resulted in smaller size and narrower size distribution of as-prepared microparticles and approximately 80% reduction of the particle size was achieved. It is established that increasing the solid-liquid ratio resulted in larger particle size in MS system and smaller particle size in UPV system. Increasing CO2 flow rate caused the particle size decreased in MS system and increased in UPV system.

  1. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonic deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  2. Examination of nuclear systems of fourth generation

    International Nuclear Information System (INIS)

    2015-01-01

    This report proposes a detailed discussion of the six nuclear systems selected by the Generation IV International Forum with the objective of coordinating research and development activities which should result in the deployment of nuclear systems (reactors and associated fuel cycle installations) of fourth generation by the second half of the 21. century. These systems are: sodium cooled fast reactors (SFR), very high temperature reactors (VHTR), gas cooled fast reactors (GFR), lead cooled fast reactors (LFR) or lead bismuth eutectic reactors (LBE), molten salt reactors (MSR), and supercritical water reactors (SCWR). Fast systems are interesting as they favour the transmutation of fertile materials into fissile materials. History and perspectives of development, main characteristics, management of safety functions, risk analysis, impact on the environment, radiation protection and decommissioning, concept maturity and R and D needs are discussed for each of these systems. A comparison is reported in terms of main characteristics of reactors, of neutron characteristics and reactivity control, of sensitivity to cooling losses, of confinement function, of exploitation safety, of in-service inspection, of behaviour in case of severe accident, of toxicity of chemical substances, of sensitivity to aggressions (seism), of concept maturity and technological difficulties. The report also proposes a review of the various fuels which can be used in these different systems and which have been considered as eligible by the International Forum: oxides, carbides, nitrides, metals, waste processing. The last part addresses the transmutation of long life radioactive elements: physics, context, assessment of scenarios soundness, influence of transmutation on installations and transports

  3. Development of data acquisition and analysis system for the nuclear vessel weld

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. P.; Park, C. H.; Lim, H. T.; Noh, H. C. [Research Institute of KAITEC, Taejeon (Korea)

    2000-03-01

    The objective of this project is to develop an automated ultrasonic data acquisition and data analysis system to examine heavy vessel welds. In order to examine nuclear vessel welds including reactor pressure vessel(RPV), huge amount of ultrasonic data from 6 channels should be able to be on-line processed. In addition, ultrasonic transducer scanning device should be remotely controlled, because working place is high radiation area. This kind of an automated ultrasonic testing equipment has not been developed domestically yet. In order to develop an automated ultrasonic testing system, RPV ultrasonic testing equipments developed in foreign countries were investigated and the capability of high speed ultrasonic signal processing hardwares was analyzed. In this study, ultrasonic signal processing system was designed. And also, ultrasonic data acquisition software was developed. 11 refs., 6 figs. (Author)

  4. 77 FR 67644 - Examination Rating System

    Science.gov (United States)

    2012-11-13

    ... condition, performance, and risk management. Under the new rating system, each Bank and Enterprise, as well... Home Loan Bank's or Enterprise's capital, asset quality, management, earnings, liquidity, sensitivity... performance from business fluctuations and adverse changes in the economic environment. Risk management...

  5. Experience in ultrasonic gap measurement between calandria tubes and liquid injection shutdown systems nozzles in Bruce Nuclear Generating Station

    International Nuclear Information System (INIS)

    Abucay, R.C.; Mahil, K.S.; Goszczynski, J.J.

    1995-01-01

    The gaps between calandria tubes (CT) and Liquid Injection Shutdown System (LISS) nozzles at the Bruce Nuclear Generating Station ''A'' (Bruce A) are known to decrease with time due to radiation induced creep/sag of the calandria tubes. If this gap decreases to a point where the calandria tubes come into contact with the LISS nozzle, the calandria tubes could fail as a result of fretting damage. Proximity measurements were needed to verify the analytical models and ensure that CT/LISS nozzle contact does not occur earlier than predicted. The technique used was originally developed at Ontario Hydro Technologies (formerly Ontario Hydro Research Division) in the late seventies and put into practical use by Research and Productivity Council (RPC) of New Brunswick, who carried out similar measurements at Point Lepreau NGS in 1989 and 1991. The gap measurement was accomplished y inserting an inspection probe, containing four ultrasonic transducers (2 to measure gaps and 2 to check for probe tilt) and a Fredericks electrolytic potentiometer as a probe rotational sensor, inside LISS Nozzle number-sign 7. The ultrasonic measurements were fed to a system computer that was programmed to convert the readings into fully compensated gaps, taking into account moderator heavy water temperature and probe tilt. Since the measured gaps were found to be generally larger than predicted, the time to CT/LISS nozzle contact is now being re-evaluated and the planned LISS nozzle replacement will likely be deferred, resulting in considerable savings

  6. Recent experiences with ultrasonic inservice inspection systems with phased array probes on spherical bottoms of boiling water reactors

    International Nuclear Information System (INIS)

    Wustenberg, H.; Brekow, G.; Erhard, A.; Hein, E.

    1988-01-01

    The special geometry of the spherical bottom of boiling water reactors with control rods and measuring nozzles requires a very special surveillance technique during the in-service inspection. Reside visual inspection an ultrasonic inspection has been established due to the requirements of German authorities. A first application of a new phased array system took place August 1987. The 100% inspection of a spherical bottom had been enabled by the application of phased array probes with electronically controlled skewing angles. The data acquisition had been based on the storage of whole A-scans, which had been pixellized into 256 points. This A-scan storage procedure makes possible the application of a simple and fast algorithm to present the data as TD-(time displacement)-scans. Defect reconstruction by echotomographique approaches are under development. This paper presents the ultrasonic technique applied including the phased array probes, the electronic system, as well as the software package used for the control of the inspection parameters depending on the probe position

  7. Document Examination: Applications of Image Processing Systems.

    Science.gov (United States)

    Kopainsky, B

    1989-12-01

    Dealing with images is a familiar business for an expert in questioned documents: microscopic, photographic, infrared, and other optical techniques generate images containing the information he or she is looking for. A recent method for extracting most of this information is digital image processing, ranging from the simple contrast and contour enhancement to the advanced restoration of blurred texts. When combined with a sophisticated physical imaging system, an image pricessing system has proven to be a powerful and fast tool for routine non-destructive scanning of suspect documents. This article reviews frequent applications, comprising techniques to increase legibility, two-dimensional spectroscopy (ink discrimination, alterations, erased entries, etc.), comparison techniques (stamps, typescript letters, photo substitution), and densitometry. Computerized comparison of handwriting is not included. Copyright © 1989 Central Police University.

  8. Applications of the automatic ultrasonic testing system ALOK combined with a phased array system

    International Nuclear Information System (INIS)

    Stanger, H.K.; Kappes, W.; Licht, R.; Bohn, H.; Barbian, O.A.

    1987-01-01

    The combination of the automatic testing system ALOK with a controlled probe in the form of a phased array device is a possibility to meet the high requirements on the test method with regard to the statements of the test as well as the requirements on the reduction of operation and preparation times. The system's applications are not limited to the testing of reactors in nuclear technology (basic tests and recurring tests of the RPV and other primary circuit components); they are also of great importance in the non-nuclear sector e.g. the testing of pipelines, of reactors in the chemical field and of offshore structures as well as tests of components in the field of production. The modularity of the system permits an adaptation to the particular testing task with the possibility of using different manipulation and hardware systems. (orig./DG) [de

  9. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  10. Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow.

    Science.gov (United States)

    Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael

    2015-11-01

    The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Development of automatic flaw detection systems for magnetic particle examination

    International Nuclear Information System (INIS)

    Shirai, T.; Kimura, J.; Amako, T.

    1988-01-01

    Utilizing a video camera and an image processor, development was carried out on automatic flaw detection and discrimination techniques for the purpose of achieving automated magnetic particle examination. Following this, fluorescent wet magnetic particle examination systems for blade roots and rotor grooves of turbine rotors and the non-fluorescent dry magnetic particle examination system for butt welds, were developed. This paper describes these automatic magnetic particle examination (MT) systems and the functional test results

  12. Ultrasonic Welded Resorbable Mesh (SonicWeld Rx System) in Reconstruction of Segmental Mandibular Defects: Technical Note and Report of 2 Cases.

    Science.gov (United States)

    Shanti, Rabie M; Yampolsky, Andrew; Milles, Maano; Braidy, Hani

    2015-11-01

    The present report describes 2 patients who underwent mandibular reconstruction after segmental mandibulectomy for benign pathology. The potential of an ultrasonic-aided biodegradable system for containment of a nonvascularized bone graft is discussed. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Application of a Musical Whistling Certificate Examination System as a Group Examination

    Science.gov (United States)

    Mori, Mikio; Ogihara, Mitsuhiro; Sugahara, Shin-Ichi; Taniguchi, Shuji; Kato, Shozo; Araki, Chikahiro

    Recently, some professional whistlers have set up music schools to teach musical whistling. However, so far, there is no licensed examination for musical whistling. In this paper, we propose an examination system for evaluating musical whistling. The system conducts an examination in musical whistling on a personal computer (PC). It can be used to award four grades, from the second to the fifth. These grades are designed according to the standards adopted by the school for musical whistling established by the Japanese professional whistler Moku-San. It is expected that the group examination of this examination is held in the examination center where other general certification examinations are held. Thus, the influence of the whistle sound on the PC microphone normally used should be considered. For this purpose, we examined the feasibility of using a bone-conductive microphone for a musical whistling certificate examination system. This paper shows that the proposed system in which bone-transmitted sounds are considered gives good performance under a noisy environment, as demonstrated in a group examination of musical whistling using bone-transmitted sounds. The timing of a candidates whistling tends to not match because the applause sound output from the PC was inaudible for a person older than 60 years.

  14. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  15. Development of ultrasonic testing DSP inspection technique for class 1 system piping in nuclear power plants

    International Nuclear Information System (INIS)

    Ku, Kil Mo; Lee, Ik Whan; Jeong, Hyun Kyu; Park, Moon Ho; Heo, Hyung; Kong, Un Sik

    1996-01-01

    The purpose of this study is to explore the utilization of new constant-Q SSP in ultrasonic NDE. Various engineering problems are reviewed, and suggestions for implementation of the technique are provided. The filters of new Constant-Q SSP centered on frequency points, and normalized type of the filtered signals was not nromalized. The new Constant-Q SSP uses the frequency-dependant response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal with gaussian bandpass filters. The principles of the SSP and the various optimization algorithms are recalled, and the conventional decomposition method for the SSP was presented

  16. Development of ultrasonic testing DSP inspection technique for class 1 system piping in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Kil Mo; Lee, Ik Whan; Jeong, Hyun Kyu; Park, Moon Ho; Heo, Hyung; Kong, Un Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    The purpose of this study is to explore the utilization of new constant-Q SSP in ultrasonic NDE. Various engineering problems are reviewed, and suggestions for implementation of the technique are provided. The filters of new Constant-Q SSP centered on frequency points, and normalized type of the filtered signals was not nromalized. The new Constant-Q SSP uses the frequency-dependant response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal with gaussian bandpass filters. The principles of the SSP and the various optimization algorithms are recalled, and the conventional decomposition method for the SSP was presented.

  17. Ultrasonic Digital Communication System for a Steel Wall Multipath Channel: Methods and Results

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Timothy L. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2005-12-01

    As of the development of this thesis, no commercially available products have been identified for the digital communication of instrumented data across a thick ({approx} 6 n.) steel wall using ultrasound. The specific goal of the current research is to investigate the application of methods for digital communication of instrumented data (i.e., temperature, voltage, etc.) across the wall of a steel pressure vessel. The acoustic transmission of data using ultrasonic transducers prevents the need to breach the wall of such a pressure vessel which could ultimately affect its safety or lifespan, or void the homogeneity of an experiment under test. Actual digital communication paradigms are introduced and implemented for the successful dissemination of data across such a wall utilizing solely an acoustic ultrasonic link. The first, dubbed the ''single-hop'' configuration, can communicate bursts of digital data one-way across the wall using the Differential Binary Phase-Shift Keying (DBPSK) modulation technique as fast as 500 bps. The second, dubbed the ''double-hop'' configuration, transmits a carrier into the vessel, modulates it, and retransmits it externally. Using a pulsed carrier with Pulse Amplitude Modulation (PAM), this technique can communicate digital data as fast as 500 bps. Using a CW carrier, Least Mean-Squared (LMS) adaptive interference suppression, and DBPSK, this method can communicate data as fast as 5 kbps. A third technique, dubbed the ''reflected-power'' configuration, communicates digital data by modulating a pulsed carrier by varying the acoustic impedance at the internal transducer-wall interface. The paradigms of the latter two configurations are believed to be unique. All modulation methods are based on the premise that the wall cannot be breached in any way and can therefore be viably implemented with power delivered wirelessly through the acoustic channel using ultrasound. Methods

  18. Detection of delamination defects in plate type fuel elements applying an automated C-Scan ultrasonic system

    International Nuclear Information System (INIS)

    Katchadjian, P.; Desimone, C.; Ziobrowski, C.; Garcia, A.

    2002-01-01

    For the inspection of plate type fuel elements to be used in Research Nuclear Reactors it was applied an immersion pulse-echo ultrasonic technique. For that reason an automated movement system was implemented according to the axes X, Y and Z that allows to automate the test and to show the results obtained in format of C-Scan, facilitating the immediate identification of possible defects and making repetitive the inspection. In this work problems found during the laboratory tests and factors that difficult the inspection are commented. Also the results of C-Scans over UMo fuel elements with pattern defects are shown. Finally, the main characteristics of the transducer with the one the better results were obtained are detailed. (author)

  19. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  20. Ultrasonic hydrometer

    Science.gov (United States)

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  1. P-Scan provides accuracy and repeatability in ultrasonics

    International Nuclear Information System (INIS)

    Keys, R.L.

    1987-01-01

    The P-Scan (Projection image scanning technique) is an automated ultrasonic inspection technique, developed to overcome the problems with accuracy and repeatability experienced with manual ultrasonic systems. The equipment and its applications are described. (author)

  2. Mode Identification of Guided Ultrasonic Wave using Time- Frequency Algorithm

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Cho, Yong Sang; Kim, Yong Sik; Lee, Hee Jong

    2007-01-01

    The ultrasonic guided waves are waves whose propagation characteristics depend on structural thickness and shape such as those in plates, tubes, rods, and embedded layers. If the angle of incidence or the frequency of sound is adjusted properly, the reflected and refracted energy within the structure will constructively interfere, thereby launching the guided wave. Because these waves penetrate the entire thickness of the tube and propagate parallel to the surface, a large portion of the material can be examined from a single transducer location. The guided ultrasonic wave has various merits like above. But various kind of modes are propagating through the entire thickness, so we don't know the which mode is received. Most of applications are limited from mode selection and mode identification. So the mode identification is very important process for guided ultrasonic inspection application. In this study, various time-frequency analysis methodologies are developed and compared for mode identification tool of guided ultrasonic signal. For this study, a high power tone-burst ultrasonic system set up for the generation and receive of guided waves. And artificial notches were fabricated on the Aluminum plate for the experiment on the mode identification

  3. Round Robin Test for Performance Demonstration System of Ultrasound Examination Personnel in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Young Ho; Yang, Seung Han; Kim, Yong Sik; Yoon, Byung Sik; Lee, Hee Jong

    2005-01-01

    Ultrasound testing performance during in-service inspection for the main components of NPPs is strongly affected by each examination person. Therefore, ASME established a more strict qualification requirement in Sec. XI Appendix VIII for the ultrasound testing personnel in nuclear power plants. The Korean Performance Demonstration (KPD) System according to the ASME code for the ultrasonic testing personnel, equipments, and procedures to apply to the Class 1 and 2 piping ultrasound examination of nuclear power plants in Korea was established. And a round robin test was conducted in order to verify the effectiveness of PD method by comparing the examination results from the method of Performance Demonstration (PD) and a traditional ASME code dB-drop method. The round robin test shows that the reliability of the PD method is better than that of the dB-drop method. As a result, application of the PD method to the in-service inspection of the nuclear power plants will improve the performance of ultrasound testing

  4. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  5. State-of-practice review of ultrasonic in-service inspection of Class I system piping in commercial nuclear power plants

    International Nuclear Information System (INIS)

    Morris, C.J.; Becker, F.L.

    1982-08-01

    The Pacific Northwest Laboratory conducted a survey to determine the state of practice of ultrasonic in-service inspection of primary system piping in light water reactors. Personnel at four utilities, five inspection organizations, and three domestic reactor manufacturers were interviewed. The intention of the study was to provide a better understanding of the actual practices employed in in-service inspection of primary system piping and of the difficulties encountered

  6. Development of Hardware and Software for Automated Ultrasonic Testing

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Lee, Hee Jong; Yang, Seung Ok

    2012-01-01

    Nondestructive testing (NDT) for the construction and operating of NPPs plays an important role in confirming the integrity of the NPPs. Especially, Automated ultrasonic testing (AUT) is one of the primary nondestructive examination methods for in-service inspection of the welding parts in major components in NPPs. AUT is a reliable nondestructive testing because the data of AUT are saved and reviewed with other examiners. Korea Hydro and Nuclear Power-Central Research Institute (KHNP-CRI) has developed an automated ultrasonic testing (AUT) system based on a high speed pulser-receiver. In combination with the designed software and hardware architecture, this new system permits user configurations for a wide range of user-specific applications through fully automated inspections using compact portable systems with up to eight channels. This paper gives an overview of hardware (H/W) and software (S/W) for the AUT system to inspect welds in NPPs

  7. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  8. Investigation of an expert health monitoring system for aeronautical structures based on pattern recognition and acousto-ultrasonics

    Science.gov (United States)

    Tibaduiza-Burgos, Diego Alexander; Torres-Arredondo, Miguel Angel

    2015-08-01

    Aeronautical structures are subjected to damage during their service raising the necessity for periodic inspection and maintenance of their components so that structural integrity and safe operation can be guaranteed. Cost reduction related to minimizing the out-of-service time of the aircraft, together with the advantages offered by real-time and safe-life service monitoring, have led to a boom in the design of inexpensive and structurally integrated transducer networks comprising actuators, sensors, signal processing units and controllers. These kinds of automated systems are normally referred to as smart structures and offer a multitude of new solutions to engineering problems and multi-functional capabilities. It is thus expected that structural health monitoring (SHM) systems will become one of the leading technologies for assessing and assuring the structural integrity of future aircraft. This study is devoted to the development and experimental investigation of an SHM methodology for the detection of damage in real scale complex aeronautical structures. The work focuses on each aspect of the SHM system and highlights the potentialities of the health monitoring technique based on acousto-ultrasonics and data-driven modelling within the concepts of sensor data fusion, feature extraction and pattern recognition. The methodology is experimentally demonstrated on an aircraft skin panel and fuselage panel for which several damage scenarios are analysed. The detection performance in both structures is quantified and presented.

  9. A Novel Dual Traffic/Flash Flood Monitoring System Using Passive Infrared/Ultrasonic Sensors

    KAUST Repository

    Mousa, Mustafa; Odat, Enas M.; Claudel, Christian

    2015-01-01

    Floods are the most common type of natural disaster, causing thousands of casualties every year. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the high concentration of population in cities. Since most flash flood casualties are caused by a lack of information, it is critical to generate accurate and detailed warnings of flash floods. However, deploying an infrastructure that solely monitor flash floods makes little economic sense, since the average periodicity of catastrophic flash floods exceeds the lifetime of a typical sensor network. To address this issue, we propose a new sensing device that can simultaneously monitor urban flash floods and another phenomenon of interest (traffic congestion on the present case). This sensing device is based on the combination of an ultrasonic rangefinder with one or multiple remote temperature sensors. We show an implementation of this device, and illustrate its performance in both traffic flow and flash flood sensing. Field data shows that the sensor can detect vehicles with a 99% accuracy, in addition to estimating their speed and classifying them in function of their length. The same sensor can also monitor urban water levels with an accuracy of less than 2 cm. Two of the sensors have been deployed in a flood prone area, where they captured the only (minor) flash flood that occurred over the one-year test period, with no false detection, and an agreement in the estimated water level estimate (during the flash flood event) of about 2 cm.

  10. A Novel Dual Traffic/Flash Flood Monitoring System Using Passive Infrared/Ultrasonic Sensors

    KAUST Repository

    Mousa, Mustafa

    2015-10-19

    Floods are the most common type of natural disaster, causing thousands of casualties every year. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the high concentration of population in cities. Since most flash flood casualties are caused by a lack of information, it is critical to generate accurate and detailed warnings of flash floods. However, deploying an infrastructure that solely monitor flash floods makes little economic sense, since the average periodicity of catastrophic flash floods exceeds the lifetime of a typical sensor network. To address this issue, we propose a new sensing device that can simultaneously monitor urban flash floods and another phenomenon of interest (traffic congestion on the present case). This sensing device is based on the combination of an ultrasonic rangefinder with one or multiple remote temperature sensors. We show an implementation of this device, and illustrate its performance in both traffic flow and flash flood sensing. Field data shows that the sensor can detect vehicles with a 99% accuracy, in addition to estimating their speed and classifying them in function of their length. The same sensor can also monitor urban water levels with an accuracy of less than 2 cm. Two of the sensors have been deployed in a flood prone area, where they captured the only (minor) flash flood that occurred over the one-year test period, with no false detection, and an agreement in the estimated water level estimate (during the flash flood event) of about 2 cm.

  11. Defect detection and sizing in ultrasonic imaging

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Chapuis, N.; Magnin, I.

    1991-01-01

    This paper introduces imaging processing developed with the SPARTACUS system in the field of ultrasonic testing. The aim of the imaging processing is to detect and to separate defects echoes from background noise. Image segmentation and particularities of ultrasonic images are the base of studied methods. 4 figs.; 6 refs [fr

  12. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  13. Ultrasonic welding for fast bonding of self-aligned structures in lab-on-a-chip systems

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Carl Esben; Hansen, Mikkel Fougt

    2015-01-01

    Ultrasonic welding is a rapid, promising bonding method for the bonding of polymer chips; yet its use is still limited. We present two lab-on-a-chip applications where ultrasonic welding can be preferably applied: (1) Self-aligned gapless bonding of a two-part chip with a tolerance of 50 um; (2...... solutions offered here can significantly help bridge the gap between academia and industry, where the differences in production methods and materials pose a challenge when transferring technology....

  14. System for Automatic Generation of Examination Papers in Discrete Mathematics

    Science.gov (United States)

    Fridenfalk, Mikael

    2013-01-01

    A system was developed for automatic generation of problems and solutions for examinations in a university distance course in discrete mathematics and tested in a pilot experiment involving 200 students. Considering the success of such systems in the past, particularly including automatic assessment, it should not take long before such systems are…

  15. A framework for semantic driven electronic examination system for ...

    African Journals Online (AJOL)

    The framework is implemented using Java programming language and a prototype of the proposed system is tested and compared with the existing system. Results show that words that are synonymous to any given correct answer are equally recognize as correct option. Hence, the e - examination system reliability, ...

  16. Accurate three dimensional characterization of ultrasonic sound fields (by computer controlled rotational scanning)

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, T.

    1981-07-01

    A rotational scanning system has recently been developed at Risoe National Laboratory. It allows sound fields from ultrasonic transducers to be examined in 3 dimensions. Using different calculation and plotting programs, any section in the sound field can be plotted. Results from examination of transducers for automatic inspection are presented. (author)

  17. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  18. Examining the work-home interface: an ecological systems perspective

    OpenAIRE

    MacKinnon, Richard A,

    2012-01-01

    This dissertation outlines a mixed-methods investigation of work-life balance, examining the construct from an ecological systems theory perspective. This necessitated research at the individual, group, organisational and wider societal levels and included three studies: two using quantitative methodology and one using qualitative.\\ud The quantitative phase included two studies that examined the experience of the home-work interface from the perspective of the employee, examining the impact o...

  19. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  20. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  1. Ultrasonic inspection development at HEDL

    International Nuclear Information System (INIS)

    Day, C.K.; Mech, S.J.; Michaels, T.E.; Dixon, N.E.

    1978-01-01

    Ultrasonic testing methods and equipment are being developed to support preservice and in-service inspection of selected FFTF welds. A digital computer system is employed in the analysis of both simulated FFTF pipe sections and plate specimens containing fatigue cracks. It is anticipated that test evaluation standards containing fatigue cracks will partially eliminate questions formerly associated with weld test calibration producers by providing natural cracks which follow grain boundaries and stress patterns resembling piping situ conditions. Studies have revealed that commercial transducers may satisfy LMFBR ultrasonic pipe inspection applications: The test system evaluation included transducers and wedge coupling and fluid coupling materials which exhibited acceptable performance at temperatures to 2300C. Results are presented that demonstrate the feasibility of ultrasonic inspection of components immersed in sodium at temperatures to 2600C. (UK)

  2. Ultrasonic inspection of liquid-metal-filled austenitic stainless steel piping welds

    International Nuclear Information System (INIS)

    Mech, S.J.; Martin, J.D.

    1982-01-01

    The goal of this effort is to reliably detect a crack extending 25 to 50% through the wall of Schedule 40 sodium filled pipe at refueling temperatures (204 0 C [400 0 F]) using remote examination techniques. The task of demonstrating a prototype ultrasonic ISI system under simulated refueling conditions was laid out in two phases. The first phase was initiation of long-lead efforts which were key elements of a practical prototype system, including ultrasonic signal analysis efforts and laboratory prototype support systems. The second phase, dependent on successful completion of the first, consisted of development and demonstration of a prototype system in a simulated ISI environment

  3. RANZAR Body Systems Framework of diagnostic imaging examination descriptors

    International Nuclear Information System (INIS)

    Pitman, Alexander D.; Penlington, Lisa; Doromal, Darren; Vukolova, Natalia; Slater, Gregory

    2014-01-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were ‘greyed out’. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities.

  4. Performance considerations of ultrasonic distance measurement with well defined properties

    International Nuclear Information System (INIS)

    Elmer, Hannes; Schweinzer, Herbert

    2005-01-01

    Conventional ultrasonic distance measurement systems based on narrow bandwidth ultrasonic bursts and amplitude detection are often used because of their low costs and easy implementation. However, the achievable results strongly depend on the actual environments where the system is implemented: in case of well defined objects that are always located near the measurement direction of the system, in general good results are obtained. If arbitrary objects are expected that are moreover located in arbitrary positions in front of the sensor, strongly object dependent areas where objects are detected with decreasing accuracy towards their borders must be taken into account. In previous works we developed an ultrasonic measurement system that provides accurate distance measurement values within a well defined detection area that is independent of the reflection properties of the objects. This measurement system is based on the One Bit Correlation method that is described in the following. To minimise its implementation efforts, it is necessary to examine the influence of the system parameters as e.g. the correlation length to the results that are expected in case of different signal to noise ratios of the received signal. In the following, these examinations are shown and the obtained results are discussed that allow getting a well conditioned system that makes best use of given system resources

  5. Ultrasonic Stir Welding Development for Ground-Based and In Situ Fabrication and Repair for In-Space Propulsion Systems/Commercial Space Sector

    Science.gov (United States)

    Ding, Jeff

    2015-01-01

    The completed Center Innovation Fund (CIF) project used the upgraded Ultrasonic Stir Weld (USW) Prototype System (built in 2013/2014) to begin characterizing the weld process using 2219 aluminum (fig. 1). This work is being done in Bldg. 4755 at NASA Marshall Space Flight Center (MSFC). The capabilities of the USW system provides the means to precisely control and document individual welding parameters. The current upgraded system has the following capabilities: (1) Ability to 'pulse' ultrasonic (US) energy on and off and adjust parameters real-time (travel speed, spindle rpm, US amplitude, X and Z axis positions, and plunge and pin axis force; (2) Means to measure draw force; (3) Ability to record US power versus time; (4) Increasing stiffness of Z axis drive and reduce head deflection using laser technology; (5) Adding linear encoder to better control tool penetration setting; (6) Ultrasonic energy integrated into stir rod and containment plate; (7) Maximum 600 rpm; (8) Maximum Z force 15,000 lb; (9) Real-time data acquisition and logging capabilities at a minimum frequency of 10 Hz; and (10) Two separate transducer power supplies operating at 4.5 kW power.

  6. Development of an on-line ultrasonic system to monitor flow-accelerated corrosion of piping in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, N.Y.; Bahn, C.B.; Lee, S.G.; Kim, J.H.; Hwang, I.S.; Lee, J.H.; Kim, J.T.; Luk, V.

    2004-01-01

    Designs of contemporary nuclear power plants (NPPs) are concentrated on improving plant life as well as safety. As the nuclear industry prepares for continued operation beyond the design lifetime of existing NPP, aging management through advanced monitoring is called for. Therefore, we suggested two approaches to develop the on-line piping monitoring system. Piping located in some position is reported to go through flow accelerated corrosion (FAC). One is to monitor electrochemical parameters, ECP and pH, which can show occurrence of corrosion. The other is to monitor mechanical parameters, displacement and acceleration. These parameters are shown to change with thickness. Both measured parameters will be combined to quantify the amount of FAC of a target piping. In this paper, we report the progress of a multidisciplinary effort on monitoring of flow-induced vibration, which changes with reducing thickness. Vibration characteristics are measured using accelerometers, capacitive sensor and fiber optic sensors. To theoretically support the measurement, we analyzed the vibration mode change in a given thickness with the aid of finite element analysis assuming FAC phenomenon is represented only as thickness change. A high temperature flow loop has been developed to simulate the NPP secondary condition to show the applicability of new sensors. Ultrasonic transducer is introduced as validation purpose by directly measuring thickness. By this process, we identify performance and applicability of chosen sensors and also obtain base data for analyzing measured value in unknown conditions. (orig.)

  7. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  8. Tissue doses in X-ray examinations of osteoarticular system

    International Nuclear Information System (INIS)

    Rabkin, I.Kh.; Stavitskij, R.V.; Blinov, N.N.; Vasil'ev, Yu.D.

    1985-01-01

    The X-ray method in diagnosis of the osteoarticular system disease is described. Problems on tissue dose distribution in X-ray examinations of a skeleton, a skull, humeral articulation, cervical, thoracic and lumbar vertebrae, hip joint, hipbones are considered. The values of specific tissue doses in roentgenography of the osteoarticular system are given

  9. Advanced ultrasonic inspections

    International Nuclear Information System (INIS)

    Ghia, S.

    1990-08-01

    Acoustic Emission (AE) continuous monitoring and periodical inspections by advanced ultrasonic have been applied to evaluate defect evolution within a PWR reduced scale (1:5) pressure vessel subjected to cyclic mechanical fatigue test. This experimental activity has been carried out in the frame of the Primary Circuit Component Life Prediction programme. In the time period covered by this report actions were performed as following: (1) Ultrasonic examination by multifrequency acoustic holography to evaluate defect evolution subsequently repair and heat treatment of the R2 vessel carried out in March 1988. For the purpose, measurements were performed both at 0 and 200 bar of internal pressure. As uniformity of the procedures adopted, for calibration and testing, made the results comparable with the previous ones no evidence for significant growing of the examined defects has been found. (2) Acoustic emission monitoring has then been carried out during fatigue test from 416000 to 565000 fatigue cycles. Analysis of a large amount of data has been performed paying particular attention to the distinction between friction phenomena and crack growth in order to obtain a correct diagnosis of flaw evolution. The signal duration distribution and the correlation of AE appearance time versus load cycle phase were considered to characterise stick-slip processes. A general intensification of AE activity has been recorded during this last period of monitoring and previous known AE sources were confirmed together with the appearance of new AE sources some of them correlable with real defects

  10. Examination of neural systems sub-serving facebook "addiction".

    Science.gov (United States)

    Turel, Ofir; He, Qinghua; Xue, Gui; Xiao, Lin; Bechara, Antoine

    2014-12-01

    Because addictive behaviors typically result from violated homeostasis of the impulsive (amygdala-striatal) and inhibitory (prefrontal cortex) brain systems, this study examined whether these systems sub-serve a specific case of technology-related addiction, namely Facebook "addiction." Using a go/no-go paradigm in functional MRI settings, the study examined how these brain systems in 20 Facebook users (M age = 20.3 yr., SD = 1.3, range = 18-23) who completed a Facebook addiction questionnaire, responded to Facebook and less potent (traffic sign) stimuli. The findings indicated that at least at the examined levels of addiction-like symptoms, technology-related "addictions" share some neural features with substance and gambling addictions, but more importantly they also differ from such addictions in their brain etiology and possibly pathogenesis, as related to abnormal functioning of the inhibitory-control brain system.

  11. Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds.

    Directory of Open Access Journals (Sweden)

    Gustavo Arriaga

    Full Text Available Humans and song-learning birds communicate acoustically using learned vocalizations. The characteristic features of this social communication behavior include vocal control by forebrain motor areas, a direct cortical projection to brainstem vocal motor neurons, and dependence on auditory feedback to develop and maintain learned vocalizations. These features have so far not been found in closely related primate and avian species that do not learn vocalizations. Male mice produce courtship ultrasonic vocalizations with acoustic features similar to songs of song-learning birds. However, it is assumed that mice lack a forebrain system for vocal modification and that their ultrasonic vocalizations are innate. Here we investigated the mouse song system and discovered that it includes a motor cortex region active during singing, that projects directly to brainstem vocal motor neurons and is necessary for keeping song more stereotyped and on pitch. We also discovered that male mice depend on auditory feedback to maintain some ultrasonic song features, and that sub-strains with differences in their songs can match each other's pitch when cross-housed under competitive social conditions. We conclude that male mice have some limited vocal modification abilities with at least some neuroanatomical features thought to be unique to humans and song-learning birds. To explain our findings, we propose a continuum hypothesis of vocal learning.

  12. Ultrasonic wave propagation in powders

    Science.gov (United States)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  13. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  14. On line ultrasonic integrated backscatter

    International Nuclear Information System (INIS)

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  15. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  16. Development of ultrasonically levitated drops as microreactors for study of enzyme kinetics and potential as a universal portable analysis system

    Science.gov (United States)

    Scheeline, A.; Pierre, Z.; Field, C. R.; Ginsberg, M. D.

    2009-05-01

    Development of microfluidics has focused on carrying out chemical synthesis and analysis in ever-smaller volumes of solution. In most cases, flow systems are made of either quartz, glass, or an easily moldable polymer such as polydimethylsiloxane (Whitesides 2006). As the system shrinks, the ratio of surface area to volume increases. For studies of either free radical chemistry or protein chemistry, this is undesirable. Proteins stick to surfaces, biofilms grow on surfaces, and radicals annihilate on walls (Lewis et al. 2006). Thus, under those circumstances where small amounts of reactants must be employed, typical microfluidic systems are incompatible with the chemistry one wishes to study. We have developed an alternative approach. We use ultrasonically levitated microliter drops as well mixed microreactors. Depending on whether capillaries (to form the drop) and electrochemical sensors are in contact with the drop or whether there are no contacting solids, the ratio of solid surface area to volume is low or zero. The only interface seen by reactants is a liquid/air interface (or, more generally, liquid/gas, as any gas may be used to support the drop). While drop levitation has been reported since at least the 1940's, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fabricated the lowest power levitator in the literature (Field; Scheeline 2007). The low consumption aspects of ordinary microfluidics combine with a contact-free determination cell (the levitated drop) that ensures against cross-contamination, minimizes the likelihood of biofilm formation, and is robust to changes in temperature and humidity (Lide 1992). We report kinetics measurements in levitated drops and explain how outgrowths of these accomplishments will lead to portable chemistry/biology laboratories well suited to detection of a wide range of chemical and biological agents in the asymmetric battlefield environment.

  17. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  18. Role of fluorographic examinations in diagnosis of respiratory system diseases

    International Nuclear Information System (INIS)

    Vil'derman, A.M.; Tsurkan, E.P.; Moskovchuk, A.F.

    1984-01-01

    Materials are considered on the role of fluorography in diagnosis of posttuberculous changes and chromic respiratory system diseases during total epidemiologic examination of 7791 adults from urban and rural population. A scheme is developed that characterize diagnosed pathology of respiratory organs with references to medical establishments rendering medical supervision and forms of supervision. It is shown that fluorograhic examination of the population provide an early diagnosis of both tuberculosis, neoplastic diseases and nonspecific pulmonary diseases that have no visible clinical symptomatology

  19. RANZCR Body Systems Framework of diagnostic imaging examination descriptors.

    Science.gov (United States)

    Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia

    2014-08-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.

  20. Welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems using fundamental- and higher-resonance frequencies.

    Science.gov (United States)

    Tsujino, Jiromaru; Hongoh, Misugi; Yoshikuni, Masafumi; Hashii, Hidekazu; Ueoka, Tetsugi

    2004-04-01

    The welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems that are driven at only the fundamental-resonance frequency vibration were compared, and also those of the welding systems that were driven at the fundamental and several higher resonance frequencies simultaneously were studied. At high frequency, welding characteristics can be improved due to the larger vibration loss of plastic materials. For welding of rather thin or small specimens, as the fundamental frequency of these welding systems is higher and the numbers of driven higher frequencies are driven simultaneously, larger welded area and weld strength were obtained.

  1. Development of a Fibre-Phased Array Laser-EMAT Ultrasonic System for Defect Inspection

    International Nuclear Information System (INIS)

    Pei, C; Demachi, K; Koyama, K; Uesaka, M; Fukuchi, T; Chen, Z

    2014-01-01

    In this work, a phased array laser ultrasound system with using fibre optic delivery and a custom-designed focusing objective lens has been developed for enhancing the ultrasound generation. The fibre-phased array method is applied to improve the sensitivity and detecting ability of the laser-EMAT system for defect inspection

  2. Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks

    Science.gov (United States)

    2013-01-01

    In 1990, NASA grounded its space shuttle fleet. The reason: leaks detected in the hydrogen fuel systems of the Space Shuttles Atlantis and Columbia. Unless the sources of the leaks could be identified and fixed, the shuttles would not be safe to fly. To help locate the existing leaks and check for others, Kennedy Space Center engineers used portable ultrasonic detectors to scan the fuel systems. As a gas or liquid escapes from a leak, the resulting turbulence creates ultrasonic noise, explains Gary Mohr, president of Elmsford, New York-based UE Systems Inc., a long-time leader in ultrasonic detector technologies. "In lay terms, the leak is like a dog whistle, and the detector is like the dog ear." Because the ultrasound emissions from a leak are highly localized, they can be used not only to identify the presence of a leak but also to help pinpoint a leak s location. The NASA engineers employed UE s detectors to examine the shuttle fuel tanks and solid rocket boosters, but encountered difficulty with the devices limited range-certain areas of the shuttle proved difficult or unsafe to scan up close. To remedy the problem, the engineers created a long-range attachment for the detectors, similar to "a zoom lens on a camera," Mohr says. "If you are on the ground, and the leak is 50 feet away, the detector would now give you the same impression as if you were only 25 feet away." The enhancement also had the effect of reducing background noise, allowing for a clearer, more precise detection of a leak s location.

  3. Acoustic leak detection and ultrasonic crack detection

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Claytor, T.N.; Groenwald, R.

    1983-10-01

    A program is under way to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. An ALD facility has been constructed and tests have begun on five laboratory-grown cracks (three fatigue and two thermal-fatigue and two field-induced IGSCC specimens. After ultrasonic testing revealed cracks in the Georgia Power Co. HATCH-1 BWR recirculation header, the utility installed an ALD system. Data from HATCH-1 have given an indication of the background noise level at a BWR recirculation header sweepolet weld. The HATCH leak detection system was tested to determine the sensitivity and dynamic range. Other background data have been acquired at the Watts Bar Nuclear Reactor in Tennessee. An ANL waveguide system, including transducer and electronics, was installed and tested on an accumulator safety injection pipe. The possibility of using ultrasonic wave scattering patterns to discriminate between IGSCCs and geometric reflectors has been explored. Thirteen reflectors (field IGSCCs, graphite wool IGSCCs, weld roots, and slits) were examined. Work with cast stainless steel (SS) included sound velocity and attenuation in isotropic and anisotropic cast SS. Reducing anisotropy does not help reduce attenuation in large-grained material. Large artificial flaws (e.g., a 1-cm-deep notch with a 4-cm path) could not be detected in isotropic centrifugally cast SS (1 to 2-mm grains) by longitudinal or shear waves at frequencies of 1 MHz or greater, but could be detected with 0.5-MHz shear waves. 13 figures

  4. Examining the Relationship between Organization Systems and Information Security Awareness

    Science.gov (United States)

    Tintamusik, Yanarong

    2010-01-01

    The focus of this dissertation was to examine the crucial relationship between organization systems within the framework of the organizational behavior theory and information security awareness (ISA) of users within the framework of the information security theory. Despite advanced security technologies designed to protect information assets,…

  5. Tone burst generator for a Non-Destructive Testing system based on ultrasonic guided waves

    OpenAIRE

    Jiménez Sánchez, Daniel

    2011-01-01

    English: This PFC provides a design of a tested and specific tone-burst generator circuit for a Non-Destructive System based on ultrasonid guided waves. This circuit includes a complementary protection circuit for the NDT system working in a pulse-echo configuration. In this paper, a brief state f art about different driving circuits employed in distinct NDE systems is presented. Castellano: El PFC proporciona un diseño electrónico específico y probado de un circuito excitador de salvas (C...

  6. Development of a system for acquiring, reconstructing, and visualizing three-dimensional ultrasonic angiograms

    Science.gov (United States)

    Edwards, Warren S.; Ritchie, Cameron J.; Kim, Yongmin; Mack, Laurence A.

    1995-04-01

    We have developed a three-dimensional (3D) imaging system using power Doppler (PD) ultrasound (US). This system can be used for visualizing and analyzing the vascular anatomy of parenchymal organs. To create the 3D PD images, we acquired a series of two-dimensional PD images from a commercial US scanner and recorded the position and orientation of each image using a 3D magnetic position sensor. Three-dimensional volumes were reconstructed using specially designed software and then volume rendered for display. We assessed the feasibility and geometric accuracy of our system with various flow phantoms. The system was then tested on a volunteer by scanning a transplanted kidney. The reconstructed volumes of the flow phantom contained less than 1 mm of geometric distortion and the 3D images of the transplanted kidney depicted the segmental, arcuate, and interlobar vessels.

  7. Modelling Terminal Examination System For Senior High Schools In Ghana

    Directory of Open Access Journals (Sweden)

    Seidu Azizu

    2017-10-01

    Full Text Available Modelling terminal examination management system using link softwares for Senior High Schools in Ghana is reported. Both Microsoft Excel and Access were integrated as back and front-end respectively. The two softwares were linked for update of records as well as security purposes during data entry of students records. The link was collapsed after the deadline of data entry to convert the access table to local and enhance data security. Based on the proposed system multiple parameters such as invigilators marks grades attendance and absenteeism were assessed and identified for the various subjects in the entire examination processes. The System applied structured query languagesql for searching specific named parameter for analysis where the total number written papers number of students and performance could also be accessed.

  8. Designing a system for measuring the flow of material transported on belts using ultrasonic sensors

    Science.gov (United States)

    Mihuţ, N. M.

    2015-11-01

    Excavation tailings (scraping) and extracting the useful (lignite) in surface mine pits in Mining Basin Oltenia is achieved with technological lines of excavation - transport - dump of high productivity. A correlation of working capacity of the main components of technological lines (motor rotor, high capacity transport, car dumps) is necessary for economic reasons on electricity consumption. To achieve experience in the process was chosen excavator SRS 1400 from South Jilt career in the CET Turceni. The question of coal excavated volume has a great importance in the mine pits. At the excavation is desired a density estimate for each machine production tracking, cost estimation and tracking product unit profitability of each band on various sections zones. Permanent display size excavated volume snapshots in the excavator's cabin permits to track tape loading, eliminating unproductive times and information management to determine profitability. Another important requirement is closing the loop of the machine drive system of an excavator for a uniform deposition of carbon on the strip, thus achieving automatic control of the loading belt. Such equipment is important for the system dispatching in surface mine pits. Through a system of three ultrasound transducers to determine the smart instant of coal excavated section which, coupled with the tape speed, integrated over time will determine the amount of excavated coal. The basis of the system developed is a device for determining the volume and quantity of coal excavated acting on the march and optimize the system speed excavator working order. The device is designed primarily following the careers of lignite production: rotor excavators, rubber conveyor belts and dump facilities. Newly developed system aims to achieve the following determines: the optimum energy excavation depending on the nature of excavated material - lignite, shale, clay, etc., economic times to use the excavator bucket teeth rotor, energy

  9. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  10. Fundamentals and Applications of Ultrasonic Waves

    CERN Document Server

    Cheeke, J David N

    2012-01-01

    Designed specifically for newcomers to the field, this fully updated second edition begins with fundamentals and quickly advances beyond general wave concepts into an in-depth treatment of ultrasonic waves in isotropic media. Focusing on the physics of acoustic waves, their propagation, technology, and applications, this accessible overview of ultrasonics includes accounts of viscoelasticity and multiple scattering. It examines new technologies, including atomic force acoustic microscopy, lasers, micro-acoustics, and nanotechnology. In addition, it highlights both direct and indirect applicati

  11. Particle transport in a He-microchip plasma atomic emission system with an ultrasonic nebulizer for aqueous sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joosuck [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Lim, H.B. [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)], E-mail: plasma@dankook.ac.kr

    2008-11-15

    The transport efficiency of dried particles generated from an ultrasonic nebulizer (USN) was studied to improve the analytical performance of a lab-made, He-microchip plasma system, in which a quartz tube ({approx} 1 mm i.d.) was positioned inside the central channel of a poly(dimethylsiloxane) (PDMS) polymer chip. The polymer microchip plasma has the advantages of low cost, small size, easy handling and design, and self-ignition with long stabilization (> 24 h). However, direct introduction of aqueous solution into the microplasma for the detection of metals remains problematic due to plasma instability. In addition, the much smaller size of the system can cause signal suppression due to low transport efficiency. Therefore, knowledge of particle transport efficiency in this microplasma system is required to enhance the sensitivity and stability. The weight of transported particles in the range of 0.02 to 10 mg m{sup -3} was measured using a piezobalance with a precision of 0.4-17.8%, depending on the operating conditions. The significant effects of the USN operating conditions and the physical properties of the tubing, namely, length, inner diameter and surface characteristics, on the number of particles transported from the nebulizer to the microplasma were studied. When selected metals, such as Na, Mg and Pb, at a concentration of 5 mg L{sup -1} were nebulized, transported particles were obtained with a mass range of 0.5-5 mg m{sup -3}, depending on atomic weights. For application of the He-rf-microplasma, the atomic emission system was optimized by changing both the radio frequency (rf) power (60-200 W) and cooling temperature of the USN (- 12-9 deg. C). The limits of detection obtained for K, Na and Cu were 0.26, 0.22, and 0.28 mg L{sup -1}, respectively. These results confirmed the suitable stability and sensitivity of the He-rf-PDMS microchip plasma for application as an atomization source.

  12. An examination of expert systems activities within the nuclear industry

    International Nuclear Information System (INIS)

    Bernard, J.A.; Washio, Takashi.

    1988-01-01

    This paper provides an overview of a detailed evaluation that the authors recently completed on expert systems applications within the nuclear industry. That evaluation examined the motivation for utilizing expert systems, identified the areas to which they were being applied, and provided an assessment of their utility. Listed here are some of the salient findings of that report. (1) Utilities are developing their own artificial intelligence tools rather than using commercial products. (2) Few expert systems are being developed for the express purpose of capturing human expertise. (3) A number of successful expert systems have been developed to assist in plant design, management, and maintenance scheduling. (4) Interactive diagnostic systems are being developed for the analysis of physical processes that vary slowly. (5) Real-time diagnostic expert systems are currently at the cutting edge of the technology. (6) Operator adviser and emergency response expert systems constitute ∼25% of the total. (7) Research on the use of expert systems for reactor control is quite active. (8) Too few quantitative evaluations of the benefits of expert systems to reactor operators have been performed. The operator's need is for timely, factual information on plant status. Hence, the true challenge to expert systems is real-time diagnostics

  13. A miniature ultrasonic actuator-control system for plant stem diameter micro-variation measurements

    Science.gov (United States)

    Measurements of micro-variations in plant stem diameter are potentially useful to optimize irrigation decision support systems that are based on plant physiological responses. However, for this technology to be suitable for field applications, problems associated with stem softness and micro variati...

  14. Ultrasonic horn design for ultrasonic machining technologies

    Directory of Open Access Journals (Sweden)

    Naď M.

    2010-07-01

    Full Text Available Many of industrial applications and production technologies are based on the application of ultrasound. In many cases, the phenomenon of ultrasound is also applied in technological processes of the machining of materials. The main element of equipments that use the effects of ultrasound for machining technology is the ultrasonic horn – so called sonotrode. The performance of ultrasonic equipment, respectively ultrasonic machining technologies depends on properly designed of sonotrode shape. The dynamical properties of different geometrical shapes of ultrasonic horns are presented in this paper. Dependence of fundamental modal properties (natural frequencies, mode shapes of various sonotrode shapes for various geometrical parameters is analyzed. Modal analyses of the models are determined by the numerical simulation using finite element method (FEM design procedures. The mutual comparisons of the comparable parameters of the various sonotrode shapes are presented.

  15. Comparison of the samples injection systems with ultrasonic nebulizer and with pneumatic nebulizer for the metal determination in water by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Marin, Sergio R; Pismante, Paola A

    2005-01-01

    The natural waters, depending on their use, must fulfill the exigencies and requirements that fix national and international norms. These establish conditions with respect to the concentration levels that must be some metals. In this work the development of inductively coupled plasma emission optical spectrometry with ultrasonic injection system is presented. The determination of aluminum, arsenic, barium, cadmium, zinc, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, lead, strontium and vanadium, at levels of ultra-trace in water samples is studied by this technique. The wavelengths that represented better sensitivity and minors spectral interferences, were selected from the Literature specialized in the analysis of this type of material. Also the conditions of work for the ultrasonic nebulization: temperature, pressure, flow speed of argon, and flow speed of sample was determined. The greater sensitivity of the injection system by ultrasonic nebulization forehead to the injection system by pneumatic nebulization, is verified when comparing the spectral intensity of the selected wavelengths. Also the limits of detection and quantification was obtained by both systems. The validity of the results obtained in this method is verified applying the test of Fisher, who determines the degree of homogeneity of the variances, and the test of Student, to determine the trazability obtained with these values. For these studies, the certified material of reference TM-24.2 of National Water Research Institute Environment Canada (NWRI), was used. The positive answer to the criteria of evaluation E and Z-Score, obtained by this technique, allows to verify that it fulfills the exigencies to be used in the determination of metals at the required levels (au)

  16. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    OpenAIRE

    Cheng Huan Xin; Meng Xiang Yong; Li Jing; Cheng Li

    2016-01-01

    This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT) metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circu...

  17. Mechanized ultrasonic inspection of austenitic pipe systems; Mechanisierte Ultraschallpruefung von austenitischen Rohrleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, K.; Luecking, J.; Medenbach, S. [ABB ZAQ GmbH, Essen (Germany)

    1999-08-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [Deutsch] Das Ziel dieses Beitrages ist die Vorstellung der von der ABB ZAQ GmbH eingesetzten Standardprueftechniken fuer die Pruefung austenitischer Anlagenkomponenten. Im einzelnen wird die Grundwerkstoffpruefung (Rohre, Boegen, Formstuecke), die Schweissnahtpruefung und die Mischnahtpruefung angesprochen. Es werden dabei die Techniken fuer `Detection` und `Sizing` differenziert betrachtet und erlaeutert. (orig.)

  18. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  19. Automation of the radiological survey process: USRADS ultrasonic ranging and data system

    International Nuclear Information System (INIS)

    Berven, B.A.; Blair, M.S.; Little, C.A.

    1987-01-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) serves as the Inclusion Survey Contractor (ISC) in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action project (UMTRAP). The ISC is to identify properties in the vicinity of 24 inactive uranium mill sites suspected of having 226 Ra-bearing uranium mill tailings by-product material originating from the processing of uranium ore contamination. Mobile gamma scanning was the primary method used to identify these properties. Once identified, the ISC conducts an inclusion survey. This survey performs sufficient radiological measurements to determine if uranium mill tailing contamination is present, and, if so, if it is in excess of relevant Environmental Protection Agency (EPA) criteria. Radon emanating from 226 Ra is the primary pathway of exposure to human occupants at these sites. EPA criteria focus on controlling 226 Ra concentration in soil. The concentration of 226 Ra in soil can be measured directly by soil sampling and subsequent gamma spectrographic analysis of the sample, or by direct measurement of the gamma exposure rate at the soil surface using portable instrumentation in the field. In both methods, the concentration of 226 Ra is inferred by examining the frequency of gamma emission of 214 Bi, a radioactive decay product in the 238 U decay chain

  20. Examination of a microwave sensing system using superconducting devices

    International Nuclear Information System (INIS)

    Sekiya, N.; Mukaida, M.; Saito, A.; Hirano, S.; Oshima, S.

    2005-01-01

    We have designed and fabricated a microwave sensing system integrated with superconducting devices which can detect motion for crime prevention and security purposes. The system consists of a transmitting antenna, a receiving antenna, a power divider as a directional coupler, and a mixer. The antennas and the directional coupler were fabricated using 50-nm thick YBa 2 Cu 3 O 7-δ (YBCO) thin films. A superconducting antenna with a resonant frequency of 10.525 GHz and a superconducting directional coupler were designed and fabricated for the system. A Schottky barrier diode was used as a mixer. These devices were integrated and their operation as a sensor was examined. Comparisons of the output voltage of the IF signal amplifier showed that the superconducting integrated sensor system was superior to the normal conductor sensor

  1. Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems.

    Science.gov (United States)

    Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V

    2011-07-01

    This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.

  2. An Examination of Organizatinal Performance Measurement System Utilization

    OpenAIRE

    DeBusk, Gerald Kenneth

    2003-01-01

    This dissertation provides results of three studies, which examine the utilization of organizational performance measurement systems. Evidence gathered in the first study provides insight into the number of perspectives or components found in the evaluation of an organization's performance and the relative weight placed on those components. The evidence suggests that the number of performance measurement components and their relative composition is situational. Components depend heavily on th...

  3. Effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel: An in vitro study.

    Science.gov (United States)

    Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo

    2018-04-01

    To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (Pspot lesion compared with sound enamel, and this group differed significantly from the ST1 group (Pspot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.

  4. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  5. Development of an ultrasonic weld inspection system based on image processing and neural networks

    Science.gov (United States)

    Roca Barceló, Fernando; Jaén del Hierro, Pedro; Ribes Llario, Fran; Real Herráiz, Julia

    2018-04-01

    Several types of discontinuities and defects may be present on a weld, thus leading to a considerable reduction of its resistance. Therefore, ensuring a high welding quality and reliability has become a matter of key importance for many construction and industrial activities. Among the non-destructive weld testing and inspection techniques, the time-of-flight diffraction (TOFD) arises as a very safe (no ionising radiation), precise, reliable and versatile practice. However, this technique presents a relevant drawback, associated to the appearance of speckle noise that should be addressed. In this regard, this paper presents a new, intelligent and automatic method for weld inspection and analysis, based on TOFD, image processing and neural networks. The developed system is capable of detecting weld defects and imperfections with accuracy, and classify them into different categories.

  6. Noninvasive ultrasonic measurements of temperature distribution and heat fluxes in nuclear systems

    International Nuclear Information System (INIS)

    Jia, Yunlu; Skliar, Mikhail

    2015-01-01

    Measurements of temperature and heat fluxes through structural materials are important in many nuclear systems. One such example is dry storage casks (DSC) that are built to store highly radioactive materials, such as spent nuclear reactor fuel. The temperature inside casks must be maintained within allowable limits of the fuel assemblies and the DSC components because many degradation mechanisms are thermally controlled. In order to obtain direct, real-time measurements of temperature distribution without insertion of sensing elements into harsh environment of storage casks, we are developing noninvasive ultrasound (US) methods for measuring spatial distribution of temperature inside solid materials, such as concrete overpacks, steel casings, thimbles, and rods. The measured temperature distribution can then be used to obtain heat fluxes that provide calorimetric characterisation of the fuel decay, fuel distribution inside the cask, its integrity, and accounting of nuclear materials. The physical basis of the proposed approach is the temperature dependence of the speed of sound in solids. By measuring the time it takes an ultrasound signal to travel a known distance between a transducer and a receiver, the indication about the temperature distribution along the path of the ultrasound propagation may be obtained. However, when temperature along the path of US propagation is non-uniform, the overall time of flight of an ultrasound signal depends on the temperature distribution in a complex and unknown way. To overcome this difficulty, the central idea of our method is to create an US propagation path inside material of interest which incorporates partial ultrasound reflectors (back scatterers) at known locations and use the train of created multiple echoes to estimate the temperature distribution. In this paper, we discuss experimental validation of this approach, the achievable accuracy and spatial resolution of the measured temperature profile, and stress the

  7. The selection of ultrasonic transducers for inspection of pipeline girth welds. Vol. 2. Evaluation of a unique creeping wave probe for examination of the cap region in pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Fingerhut, M P; Glover, A G; Dorling, D V

    1988-10-01

    This work is part of a program aimed at developing an ultrasonic inspection design for the nondestructive evaluation of pipeline girth welds made by the mechanized gas metal arc (GMA) welding process for onshore and offshore pipeline construction. The feasibility of using creeping waves for examination of the cap region was investigated and, as a result, a specification for an experimental creeping wave transducer developed and a probe was designed to provide a beam oriented nearly perpendicular to expected defects in the cap region of the weld. The performance of this experimental creeping wave transducer was evaluated with respect to its ability to detect simulated and real weld defects in the cap region of mechanized GMA welds in 9.5 mm material. The probe was successful in detecting planar lack of sidewall fusion welding defects with a signal-to-noise ratio of greater than 12 dB, at depths of up to 4.2 mm from the plate surface. This indicates maximum pipe wall thicknesses of 10.9 mm may be satisfactorily examined before additional probes are required, assuming complete coverage in the root region is provided by other probes. The creeping wave probe not only performed well in the detection of real weld defects in the cap region for which it was intended, but also showed potential for detecting and discriminating some planar defects in the root region. 9 refs., 23 figs., 3 tabs.

  8. Metrological control of instruments, equipment and measurement system for ultrasonic meters of flow; Controle metrologico de instrumentos, equipamentos e sistema de medicao para medidores ultra-sonicos de vazao

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Oscar de

    2004-07-01

    Following the actual tendency to obtaining greater precision in Natural Gas measurement, in the past few years the use of Ultrasonic Flow Meters as Custody Transfer applications has grown significantly. There are several units currently operating in Brazil. The legislation for model approval, measure system certification and periodical metrological control of the above mentioned equipment, is currently under elaboration final stage. It was placed under public inquire through the 'Portaria 037' of 2004 of INMETRO, which proposes the authorization to perform the Metrological control by the Operator, once it has a quality system implemented according NBR ISO 9001-2000 and/or ISO 17025. This paper describes the verification procedure adopted by most of ultrasonic meters manufacturers. It also describes the application of the procedure for create the 'Metrological Control System of the Measurement System' of a 12'' Ultrasonic Meter installed and operating, with 3 years operation's data. (author)

  9. Research of the ultrasonic testing parts reconditioned by welding

    Directory of Open Access Journals (Sweden)

    C. Petriceanu

    2016-07-01

    Full Text Available The paper presents the results obtained following the nondestructive ultrasonic testing of crankpin shaft of a crankshaft that were reconditioned by welding. After the ultrasonic testing, the reconditioned samples were cut and subjected to visual testing and microstructure examination. When the results obtained following the nondestructive tests were analyzed, it was observed that the ultrasonic nondestructive testing method is an efficient way to determine the conformity of the areas that were reconditioned by welding.

  10. Quality assurance of brazed copper plates through advanced ultrasonic NDE

    OpenAIRE

    Segreto, T.; Caggiano, A.; Teti, R.

    2016-01-01

    Ultrasonic non-destructive methods have demonstrated great potential for the detection of flaws in a material under examination. In particular, discontinuities produced by welding, brazing, and soldering are regularly inspected through ultrasonic techniques. In this paper, an advanced ultrasonic non-destructive evaluation technique is applied for the quality control of brazed copper cells in order to realize an accelerometer prototype for cancer proton therapy. The cells are composed of two h...

  11. Design of embedded system to determine liquid refractive index based on ultrasonic sensor using an ATMega328

    Science.gov (United States)

    Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.

    2018-05-01

    The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.

  12. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    Science.gov (United States)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  13. Mathematical modeling of a single stage ultrasonically assisted distillation process.

    Science.gov (United States)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan; Abdullah, Tuan Amran Tuan; Nasef, Mohamed M; Ali, Mohamad W

    2015-05-01

    The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Proposed new ultrasonic test bed

    International Nuclear Information System (INIS)

    Maxfield, B.W.

    1978-01-01

    Within the last four or five years, a great deal of progress has been made both here and in a number of other laboratories in developing techniques that will enable considerably more information to be obtained from the ultrasonic examination of an object. Some of these recent developments relate to information contained within the diffracted beam which does not return along the incident path. An ultrasonic examination based upon an evaluation of diffracted energy must use at least two transducers, one for transmission and the other for reception. Current indications are that even more reliable test results will be achieved using a receiving transducer that can scan a significant portion of the diffracted field including that portion which is back-reflected. In general, this scan can be interpreted most accurately if it follows a path related to the surface shape. If more than one region within the object is to be interrogated, then the transmitting transducer must also be scanned, again along a path related to the surface shape. The large quantity of information obtained as the result of such an examination must be subjected to sophisticated computer analysis in order to be displayed in a meaningful and intelligible manner. Although one motivation for building such an instrument is to explore new ultrasonic test procedures that are evolving from current laboratory research, this is neither the sole motivation nor the only use for this instrument. Such a mechanical and electronic device would permit conventional ultrasonic tests to be performed on parts of complex geometry without the expensive and time-consuming special fixturing that is currently required. May possible test geometries could be explored in practice prior to the construction of a specialized test apparatus. Hence, it would be necessary to design much, if any, flexibility into the special test apparatus

  15. Dynamic Takagi-Sugeno Model for the Control of Ultrasonic Motor

    Directory of Open Access Journals (Sweden)

    Shi Jingzhuo

    2011-01-01

    Full Text Available Model of ultrasonic motor is the foundation of the design of ultrasonic motor's speed and position controller. A two-input and one-output dynamic Takagi-Sugeno model of ultrasonic motor driving system is worked out using fuzzy reasoning modeling method in this paper. Many fuzzy reasoning modeling methods are sensitive to the initial values and easy to fall into local minimum, and have a large amount of calculation. In order to overcome these defects, equalized universe method is used in this paper to get clusters centers and obtain fuzzy clustering membership functions, and then, the unknown parameters of the conclusions of fuzzy rules are identified using least-square method. Different experimental data that are tested with different operational conditions are used to examine the validity of the fuzzy model. Comparison between experimental data and calculated data of the model indicates that the model can well describe the nonlinear characteristics among the frequency, amplitude of driving voltage and rotating speed. The proposed fuzzy model can be used to analyze the performance of ultrasonic motor driving system, and also can be used to design the speed and position controller of ultrasonic motor.

  16. Recent experience in nuclear plant nondestructive examinations

    International Nuclear Information System (INIS)

    Epps, T.N.

    1986-01-01

    This paper reviews recent experience in nuclear plant inservice inspection activities including ultrasonic examination of piping materials, personnel qualification, results, and the overall significance to the industry. Several areas of concern to the nuclear power industry have recently been addressed by Southern Company Services' (SCS) Inspection, Testing, and Engineering Department during implementation of preservice and in-service inspection activities in the SCS system. The most significant of these activities is the ultrasonic inspection of Type 304 stainless steel piping for the presence of intergranular stress corrosion cracking (IGSCC). This activity has been in the forefront of boiling water reactor (BWR) in-service inspections for the past several years

  17. Ultrasonic location system =

    Science.gov (United States)

    Albuquerque, Daniel Filipe

    Esta tese apresenta um sistema de localizacao baseado exclusivamente em ultrassons, nao necessitando de recorrer a qualquer outra tecnologia. Este sistema de localizacao foi concebido para poder operar em ambientes onde qualquer outra tecnologia nao pode ser utilizada ou o seu uso esta condicionado, como sao exemplo aplicacoes subaquaticas ou ambientes hospitalares. O sistema de localizacao proposto faz uso de uma rede de farois fixos permitindo que estacoes moveis se localizem. Devido a necessidade de transmissao de dados e medicao de distancias foi desenvolvido um pulso de ultrassons robusto a ecos que permite realizar ambas as tarefas com sucesso. O sistema de localizacao permite que as estacoes moveis se localizem escutando apenas a informacao em pulsos de ultrassons enviados pelos farois usando para tal um algoritmo baseado em diferencas de tempo de chegada. Desta forma a privacidade dos utilizadores e garantida e o sistema torna-se completamente independente do numero de utilizadores. Por forma a facilitar a implementacao da rede de farois apenas sera necessario determinar manualmente a posicao de alguns dos farois, designados por farois ancora. Estes irao permitir que os restantes farois, completamente autonomos, se possam localizar atraves de um algoritmo iterativo de localizacao baseado na minimizacao de uma funcao de custo. Para que este sistema possa funcionar como previsto sera necessario que os farois possam sincronizar os seus relogios e medir a distancia entre eles. Para tal, esta tese propoe um protocolo de sincronizacao de relogio que permite tambem obter as medidas de distancia entre os farois trocando somente tres mensagens de ultrassons. Adicionalmente, o sistema de localizacao permite que farois danificados possam ser substituidos sem comprometer a operabilidade da rede reduzindo a complexidade na manutencao. Para alem do mencionado, foi igualmente implementado um simulador de ultrassons para ambientes fechados, o qual provou ser bastante preciso e uma ferramenta de elevado valor para simular o comportamento do sistema de localizacao sobre condicoes controladas.

  18. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  19. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  20. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  1. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  2. Effects of vector ultrasonic system debridement and conventional instrumentation on the levels of TNF-α in gingival crevicular fluid of patients with chronic periodontitis.

    Science.gov (United States)

    Arpağ, Osman Fatih; Dağ, Ahmet; İzol, Bozan Serhat; Cimitay, Gülcan; Uysal, Ersin

    2017-12-01

    Tumor necrosis factor alpha (TNF-α) is an inflammatory mediator whose levels are increased in the gingival crevicular fluid and blood serum in the case of chronic periodontitis. The aim of this study was to determine the effect of vector ultrasonic system (VUS) on the levels of TNF-α in gingival crevicular fluid (GCF) and the clinical parameters in patients with chronic periodontitis. The study protocol was conducted using split-mouth design in 30 patients with chronic periodontitis. VUS and scaling and root planing (S/RP) were applied separately to 2 quadrants, including the upper and the lower jaws. At baseline and after 6 months, clinical parameters including plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL) were recorded, and concentrations of TNF-α in GCF were determined by enzyme-linked immunosorbent assay (ELISA). Intergroup comparisons were evaluated by the independent Students' t-test, and the Pearson correlation was used to determine the relationship between parameters. The level of significance was set at 5%. Both treatment modalities provided statistically significant improvements in clinical periodontal parameters and TNF-α levels after 6 months (p 0.05). The use of the vector ultrasonic system in the non-surgical treatment of chronic periodontitis presents beneficial improvements for the clinical attachment level and the probing pocket depth as well as TNF-α levels in GCF.

  3. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  4. Ultrasonic decontamination robot

    International Nuclear Information System (INIS)

    Patenaude, R.S.

    1984-01-01

    An ultrasonic decontamination robot removes radioactive contamination from the internal surface of the inlet and outlet headers, divider plate, tube sheet, and lower portions of tubes of a nuclear power plant steam generator. A programmable microprocessor controller guides the movement of a robotic arm mounted in the header manway. An ultrasonic transducer having a solvent delivery subsystem through which ultrasonic action is achieved is moved by the arm over the surfaces. A solvent recovery suction tube is positioned within the header to remove solvent therefrom while avoiding interference with the main robotic arm. The solvent composition, temperature, pressure, viscosity, and purity are controlled to optimize the ultrasonic scrubbing action. The ultrasonic transducer is controlled at a power density, frequency, and on-off mode cycle such as to optimize scrubbing action within the range of transducer-to-surface distance and solvent layer thickness selected for the particular conditions encountered. Both solvent and transducer control actions are optimized by the programmable microprocessor. (author)

  5. Automated ultrasonic inspection using PULSDAT

    International Nuclear Information System (INIS)

    Naybour, P.J.

    1992-01-01

    PULSDAT (Portable Ultrasonic Data Acquisition Tool) is a system for recording the data from single probe automated ultrasonic inspections. It is one of a range of instruments and software developed by Nuclear Electric to carry out a wide variety of high quality ultrasonic inspections. These vary from simple semi-automated inspections through to multi-probe, highly automated ones. PULSDAT runs under the control of MIPS software, and collects data which is compatible with the GUIDE data display system. PULSDAT is therefore fully compatible with Nuclear Electric's multi-probe inspection systems and utilises all the reliability and quality assurance of the software. It is a rugged, portable system that can be used in areas of difficult access. The paper discusses the benefits of automated inspection and gives an outline of the main features of PULSDAT. Since April 1990 PULSDAT has been used in several applications within Nuclear Electric and this paper presents two examples: the first is a ferritic set-through nozzle and the second is an austenitic fillet weld. (Author)

  6. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  7. Residual stress determination of rail tread using a laser ultrasonic technique

    International Nuclear Information System (INIS)

    Wang, Jing; Feng, Qibo

    2015-01-01

    A non-destructive method for measuring the residual stress on rail tread that uses a laser-generated ultrasonic technique is proposed. The residual stress distribution of different parts on both the new rail and used rail were examined. The surface acoustic waves (SAWs) are excited by a scanning line laser and detected by a laser ultrasonic detection system. A digital correlation method was used for calculating the changes in velocity of SAWs, which reflects the stress distribution. A wavelet de-noising technique and a least square fit were used for signal processing to improve the measurement accuracy. The effects of ultrasonic propagation distance and surface roughness on the determination of residual stress were analyzed and simulated. Results from the study demonstrate that the stress distribution results are accordant with the practical situation, and the laser-generated SAWs technique is a promising tool for the determination of residual stress in the railway inspection and other industrial testing fields. (paper)

  8. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author)

  9. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author).

  10. The ultrasonic shop map and its use in preservice inspection

    International Nuclear Information System (INIS)

    Caplan, J.S.

    1975-01-01

    Prior to the introduction of Section X1 of the ASME Code on Inservice Inspection, a plan was introduced by Westinghouse to perform ultrasonic examinations of areas of high stress and high fluence of reactor pressure vessels in the manufacturer's shop and subsequent to the shop hydrostatic test. The tests provided a shop reference map of ultrasonic responses to use in subsequent preservice and inservice inspections, and attempted to locate any ultrasonic reflections beyond the acceptance standards of ASME Section III and, later, of Section X1. The history of the program is reviewed. Thirty-six vessels were examined during 1970 to 1973. As a result of indications discovered during ultrasonic examination repairs were carried out on five of these. Details are given of inspections and repairs. A summary is also given of the indications detected and of the correlations between the ultrasonic evaluation and actual flow characteristics. (U.K.)

  11. Ultrasonic two-dimensional imaging of the heart with multiscan

    International Nuclear Information System (INIS)

    Roelandt, J.R.T.C.

    1980-01-01

    The aim of the author was to present the implementation into cardiology of the ultrasonic linear array scanner. The first clinical results, the progress in examination technique and potential applications are described. One method which complements the ultrasonic imaging capabilities is the use of the echo contrast. (Auth.)

  12. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  13. Evaluation method of TiO2-SiO2 ultra-low-expansion glasses with periodic striae using the LFB ultrasonic material characterization system.

    Science.gov (United States)

    Kushibiki, Jun-ichi; Arakawa, Mototaka; Ohashi, Yuji; Suzuki, Kouji

    2006-09-01

    Experimental procedures and standard specimens for characterizing and evaluating TiO2-SiO2 ultra-low expansion glasses with periodic striae using the line-focus-beam (LFB) ultrasonic material characterization system are discussed. Two types of specimens were prepared, with specimen surfaces parallel and perpendicular to the striae plane using two different grades of glass ingots. The inhomogeneities of each of the specimens were evaluated at 225 MHz. It was clarified that parallel specimens are useful for accurately measuring velocity variations of leaky surface acoustic waves (LSAWs) excited on a water-loaded specimen surface associated with the striae. Perpendicular specimens are useful for obtaining periodicities in the striae for LSAW propagation perpendicular to the striae plane on a surface and for precisely measuring averaged velocities for LSAW propagation parallel to the striae plane. The standard velocity of Rayleigh-type LSAWs traveling parallel to the striae plane for the perpendicular specimens was numerically calculated using the measured velocities of longitudinal and shear waves and density. Consequently, a reliable standard specimen with an LSAW velocity of 3308.18 +/- 0.35 m/s at 23 degrees C and its temperature coefficient of 0.39 (m/s)/degrees C was obtained for a TiO2-SiO2 glass with a TiO2 concentration of 7.09 wt%. A basis for the striae analysis using this ultrasonic method was established.

  14. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Secoisolariciresinol Diglucoside from Flaxseed (Linum usitatissimum L. with Further Purification by an Aqueous Two-Phase System

    Directory of Open Access Journals (Sweden)

    Zhi-Jian Tan

    2015-09-01

    Full Text Available In this work, a two-step extraction methodology of ionic liquid-based ultrasonic-assisted extraction (IL-UAE and ionic liquid-based aqueous two-phase system (IL-ATPS was developed for the extraction and purification of secoisolariciresinol diglucoside (SDG from flaxseed. In the IL-UAE step, several kinds of ILs were investigated as the extractants, to identify the IL that affords the optimum extraction yield. The extraction conditions such as IL concentration, ultrasonic irradiation time, and liquid–solid ratio were optimized using response surface methodology (RSM. In the IL-ATPS step, ATPS formed by adding kosmotropic salts to the IL extract was used for further separation and purification of SDG. The most influential parameters (type and concentration of salt, temperature, and pH were investigated to obtain the optimum extraction efficiency. The maximum extraction efficiency was 93.35% under the optimal conditions of 45.86% (w/w IL and 8.27% (w/w Na2SO4 at 22 °C and pH 11.0. Thus, the combination of IL-UAE and IL-ATPS makes up a simple and effective methodology for the extraction and purification of SDG. This process is also expected to be highly useful for the extraction and purification of bioactive compounds from other important medicinal plants.

  15. Studies on Section XI ultrasonic repeatability

    International Nuclear Information System (INIS)

    Jamison, T.D.; McDearman, W.R.

    1981-05-01

    A block representative of a nuclear component has been welded containing intentional defects. Acoustic emission data taken during the welding correlate well with ultrasonic data. Repetitive ultrasonic examinations have been performed by skilled operators using a procedure based on that desribed in ASME Section XI. These examinations were performed by different examination teams using different ultrasonic equipment in such a manner that the effects on the repeatability of the ultrasonic test method caused by the operator and by the use of different equipment could be estimated. It was tentatively concluded that when considering a large number of inspections: (1) there is no significant difference in indication sizing between operators, and (2) there is a significant difference in amplitude and defect sizing when instruments having different, Code acceptable operating characteristics are used. It was determined that the Section XI sizing parameters follow a bivariate normal distribution. Data derived from ultrasonically and physically sizing indications in nuclear components during farication show that the Section XI technique tends to overestimate the size of the reflectors

  16. Ultrasonic unit for line-by-line ultrasonic scanning of bodies

    International Nuclear Information System (INIS)

    Soldner, R.

    1978-01-01

    The ultrasonic unit for medical diagnostics operates by the sectorial scanning principle, which avoids direct coupling of the transducer head to the surface of the body. For this purpose, several transmitter/receiver units (approx. 100) are arranged on a partial ring of a circular arc and the ultrasonic beams, which can be triggered sequentially in time, are directed at a common intersection behind the ultrasonic window of the unit, i.e., outside the unit. A mechanical system is employed to set and adjust the partial ring carrying the transmitter/receiver units. (DG) [de

  17. Pre and post garter spring repositioning ultrasonic inspection of pressure tubes

    International Nuclear Information System (INIS)

    Desimone, C.; Katchadjian, P.; Tacchia, Mauricio

    1997-01-01

    This paper present a description of the ultrasonic cracked hydride blister detections system used for pre and post inspection of pressure tubes during garter spring repositioning in CNE (Embalse Nuclear Power Station). Ultrasonic system setup configuration, transducers characteristics, blister detection head, calibration of parameters, operating procedure, records of ultrasonic inspections and evaluation. (author) [es

  18. Examining Technology, Structure and Identity During an Enterprise System Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Rosio

    2008-11-12

    This paper presents a longitudinal study of an Enterprise System (ES) implementation by critically examining the discursive context in which an ES implementation unfolds. The findings show that users strongly supported the ES in the earlier stage of implementation when the technology was an imaginary phenomenon. However, in later stages, when the technology is in use, user support was not consistent. In this phase the ES produces loss of control and an inability to function as an arbiter of fairness (in allocating resources associated with the system) thereby directly challenging existing professional identities and roles. These outcomes, in turn, generate acts of resistance on the part of workers. Users reach inside the technology and reshape it by devising creative workarounds that produce a sense of reskilling to counter the deskilling produced by the loss of control and power. The analysis also shows that an ES is a complex social phenomenon that is intricately linked to and complicit in shaping organizational structure and identity. In particular this study shows how technology, structure, and identity are in a mutually constitutive relationship.

  19. Examination of the haemostatic system in radiation and combination hazards

    International Nuclear Information System (INIS)

    Boegelein, K.

    1980-01-01

    Female mice of the NMRI-lineage were exposed to irradiation and, additionally, to an open wound in the back skin. The coagulation and the fibrinolysis were examined, comparing them with those of animals who had either been irradiated or had an open back skin wound, and the thrombocytes were counted. Here, no pathological values of the plasmatic coagulation system were found. In the first days, only after combined radiation damage, an increased coagulation potential could be found. Also indications to a reduction of the fibrinolytic activity were found. At the same time, the circulating thrombocytes were increased in most cases. With the radiation-induced thrombocytopenia, the coagulation was reduced; the thrombo-elasticity was reduced, the coagulation time was elongated. The significance and duration of the coagulation disturbances varied with the radiation dose of the combination hazards. During the haemorrhagic phase, in the animals with combined hazards the fibrinolytic potential was increased. The possible causes and the peculiarities of the elongations in the coagulation and fibrinolysis system by combined radiation hazards and possible therapies are discussed. (orig./MG) [de

  20. Examination of GyE system for HIMAC carbon therapy

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki; Matsufuji, Naruhiro; Miyamoto, Tadaaki; Mizoe, Junetsu; Kamada, Tadashi; Tsuji, Hiroshi; Kato, Hirotoshi; Baba, Masayuki; Tsujii, Hirohiko

    2006-01-01

    Purpose: A retrospective analysis was made to examine appropriateness in the estimation of the biologic effectiveness of carbon-ion radiotherapy using resultant data from clinical trials at the heavy-ion medical accelerator complex (HIMAC) at the National Institute of Radiological Sciences in Chiba, Japan. Methods and Materials: At HIMAC, relative biologic effectiveness (RBE) values of therapeutic carbon beams were determined based on experimental results of cell responses, on values expected with the linear-quadratic model, and based on experiences with neutron therapy. We use fixed RBE values independent of dose levels, although this apparently contradicts radiobiologic observations. Our RBE system depends only on LET of the heavy-ion radiation fields. With this RBE system, over 2,000 patients have been treated by carbon beams. With data from these patients, the local control rate of non-small-cell lung cancer was analyzed to verify the clinical RBE of the carbon beam. The local control rate was compared with rates published by groups from Gunma University and Massachusetts General Hospital. Using a simplified tumor control probability (TCP) model, clinical RBE values were obtained for different levels of TCP. Results: For the 50% level of the clinical TCP, the RBE values nearly coincide with those for in vitro human salivary gland cell survival at 10%. For the higher levels of clinical TCP, the RBE values approach closer to those adapted in clinical trials at HIMAC

  1. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  2. Thin-plate-type embedded ultrasonic transducer based on magnetostriction for the thickness monitoring of the secondary piping system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Seung Hyun [Center for Safety Measurement, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

  3. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  4. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    Science.gov (United States)

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  5. Overview of the ultrasonic instrumentation research in the MYRRHA project

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, M.; Leysen, W.; Van Dyck, D. [Belgian Nuclear Research Center SCK.CEN (Belgium)

    2015-07-01

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the required ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  6. Ultrasonic testing X gammagraphy

    International Nuclear Information System (INIS)

    Mello Campos, A.M. de

    1989-01-01

    The experience of 10 years for substituting gammagraphy tests by ultrasonic tests is related. A comparative evaluation of data obtained from both techniques applied to welded butt joints is presented. (author)

  7. Ultrasonic grinding method

    International Nuclear Information System (INIS)

    Miyahara, Shuji.

    1990-01-01

    An ultrasonic generator and a liquid supply nozzle are opposed to an object to be ground and a pump is started in this state to supply an organic solvent. Matters to be decontaminated which adheres to the surface of the object to be ground and are difficult to be removed by a mere mechanical removing method can be eliminated previously by the surface active effect of the organic solvent such as ethanol prior to the oscillation of the ultrasonic generator. Subsequently, when the ultrasonic generator is oscillated, scales in the floated state can be removed simply. Further, since the organic solvent can penetrate to provide the surface active effect even in such a narrow portion that the top end of the ultrasonic generator is difficult to the intruded at the surface of the object to be ground, the decontaminating treatment can be applied also to such a narrow portion. (T.M.)

  8. Using institutional and behavioural economics to examine animal health systems.

    Science.gov (United States)

    Wolf, C A

    2017-04-01

    Economics provides a framework for understanding management decisions and their policy implications for the animal health system. While the neoclassical economic model is useful for framing animal health decisions on the farm, some of its assumptions and prescriptive results may be unrealistic. Institutional and behavioural economics address some of these potential shortcomings by considering the role of information, psychology and social factors in decisions. Framing such decisions under contract theory allows us to consider asymmetric information between policy-makers and farmers. Perverse incentives may exist in the area of preventing and reporting disease. Behavioural economics examines the role of internal and external psychological and social factors. Biases, heuristics, habit, social norms and other such aspects can result in farm decision-makers arriving at what might be considered irrational or otherwise sub-optimal decisions. Framing choices and providing relevant information and examples can alleviate these behavioural issues. The implications of this approach for disease policy and an applied research and outreach programme to respond to animal diseases are discussed.

  9. Fundamentals of Medical Ultrasonics

    CERN Document Server

    Postema, Michiel

    2011-01-01

    This book sets out the physical and engineering principles of acoustics and ultrasound as used for medical applications. It covers the basics of linear acoustics, wave propagation, non-linear acoustics, acoustic properties of tissue, transducer components, and ultrasonic imaging modes, as well as the most common diagnostic and therapeutic applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

  10. Automated ultrasonic inspection of nuclear plant components

    International Nuclear Information System (INIS)

    Baron, J.A.; Dolbey, M.P.

    1982-01-01

    For reasons of safety and efficiency, automated systems are used in performing ultrasonic inspection of nuclear components. An automated system designed specifically for the inspection of headers in a nuclear plant is described. In-service inspection results obtained with this system are shown to correlate with pre-service inspection results obtained by manual methods

  11. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  12. Ultrasonic characterization of microstructure in powder metal alloy

    Science.gov (United States)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  13. Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry

    Directory of Open Access Journals (Sweden)

    Marco Matteucci

    2016-10-01

    Full Text Available We compare ultrasonic welding (UW and thermal bonding (TB for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW, as well as pressure and temperature (for TB, were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education.

  14. [The use of ultrasonic files in canal preparation].

    Science.gov (United States)

    Calas, P; Terrie, B

    1990-01-01

    The continuous high volume of irrigating solution delivered by the ultrasonic system facilitates the root canal debridement. An excellent cleaning of dentin wall is obtained even on surfaces unreached by the mechanical instrumentation. In order to obtain an efficacious preparation, the use of ultrasonic files were combined with instrumentation. This new technique is described in this article.

  15. Coastal zone color scanner ``system calibration'': A retrospective examination

    Science.gov (United States)

    Evans, Robert H.; Gordon, Howard R.

    1994-04-01

    During its lifetime the coastal zone color scanner (CZCS) produced approximately 66,000 images. These have been placed in an archive of "raw" radiance (sensor counts) in a subsampled format that is easily accessible. They have also been processed to form global fields, at reduced resolution, of normalized water-leaving radiance, phytoplankton pigments, and diffuse attenuation coefficient. Using this archive, we have tried to characterize some aspects of the "system calibration" for the 8-year lifetime of CZCS. Specifically, we have assumed that the sensitivity of the red band decayed in a simple manner similar to the well-known long-term degradation of the shorter-wavelength bands, and we examined the sensitivity of the green and yellow bands by computing the globally averaged water-leaving radiance, over 10-day periods, for all of the imagery. The results provide evidence that in addition to the long-term degradation, short-term (2 weeks to 1 month) variations in the radiometric sensitivity of these bands started in early fall 1981 and continued for the rest of the mission. In contrast, the data suggest the absence of such variations prior to August 1981. It is reasonable to believe that the sensitivity of the blue (and probably the red) band underwent such variations as well; however, our methodology cannot be used to study the other bands. Thus after these fluctuations began, the actual values of CZCS-estimated pigment concentrations at a given location should be viewed with skepticism; however, the global patterns of derived pigment concentration should be valid. Had an extensive set of surface measurements of water-leaving radiance, e.g., from moored buoys or drifters, been available during the CZCS mission, these fluctuations could have been removed from the data set, and this would have greatly increased its value. The lessons learned from CZCS, that is, the requirement of good radiometric calibration and stability and the necessity of "sea truth" stations

  16. Coastal zone color scanner 'system calibration': A retrospective examination

    Science.gov (United States)

    Evans, Robert H.; Gordon, Howard R.

    1994-01-01

    During its lifetime the Coastal Zone Color Scanner (CZCS) produced approximately 66,000 images. These have been placed in an archive of 'raw' radiance (sensor counts) in a subsampled format that is easily accessible. They have also been processed to form global fields, at reduced resolution, of normalized water-leaving radiance, phytoplankton pigments, and diffuse attenuation coefficient. Using this archive, we have tried to characterize some aspects of the 'system calibration' for the 8-year lifetime of CZCS. Specifically, we have assumed that the sensitivity of the red band decayed in a simple manner similar to the well-known long-term degradation of the shorter-wavelength bands, and we examined the sensitivity of the green and yellow bands by computing the globally averaged water-leaving radiance, over 10-day periods, for all of the imagery. The results provided evidence that in addition to the long-term degradation, short-term (2 weeks to 1 month) variations in the radiometric sensitivity of these bands started in early fall 1981 and continued for the rest of the mission. In contrast, the data suggested the absence of such variations prior to August 1981. It is reasonable to believe that the sensitivity of the blue (and probably the red) band underwent such variations as well; however our methodology cannot be used to study the other bands. Thus, after these fluctuations began, the actual values of CZCS - estimated pigment concentrations at a given location should be viewed with skepticism; however, the global patterns of derived pigment concentrations should be valid. Had an extensive set of surface measurements of water-leaving radiance, e.r., from moored buoyes or drifters, had been available during the CZCS mission, these fluctuations could have been removed from the data set, and this would have greatly increased its value. The lessons learned from CZCS that is, the requirement of good radiometric calibration and stability and the necessity of 'sea truth

  17. Case of minute hepatocellular carcinoma found by CT scan and diagnosed cytology under the ultrasonic aspiration transducer

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Waichi; Moriai, Norihiko; Komatsu, Kanji [Yuri Kumiai Sogo Hospital, Akita (Japan)

    1983-11-01

    CT scan detected a suspected minute hepatocellular carcinoma in a case of liver cirrhosis followed up for more than 10 years. A definite diagnosis was established by ultrasonic guided aspiration cytology. The cancer was resected using ultrasonic examination during operation.

  18. The Remotely Operated Nondestructive Examination System for Examining the Knuckle Region of Hanford's Double Shell Waste Tanks

    International Nuclear Information System (INIS)

    Crawford, Susan L.; Pardini, Allan F.; Donald Thompson and Dale Chimenti

    2005-01-01

    The Pacific Northwest National Laboratory has developed a technology to address the examination requirements associated with the knuckle region of Hanford's double shell waste tanks. This examination poses a significant technical challenge because the area that requires examination is in a confined space, high radiation region and is not accessible using conventional measurement techniques. This paper describes the development, deployment, and modification of the remotely operated nondestructive examination (RONDE) system that utilizes a technique known as Synthetic Aperture Focusing (SAFT). The system detects stress corrosion cracking in the high stress region of the knuckle and characterizes the crack with tandem SAFT. PNNL has qualified the system to perform inspections on the entire knuckle region of Hanford's double shell waste tanks

  19. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  20. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  1. Exploitation examination of reliability of coal dust systems

    International Nuclear Information System (INIS)

    Dojchinovski, Ilija; Trajkovski, Kole

    1997-01-01

    Designers and operators wish is, long, failure free operation at designed parameters of every system. Always we know the system start up time, but we don't know how long this system will operate successfully. Because of that in this article is given a method how, step by step, to determine the reliability of the system. Reliability parameters are obtained from experimental and operational data. When reliability parameters are determined then it is very easy to compare reliability of similar systems, for example excavators, or different systems, such as truck and rubber band transport system. Practical use of the theory of reliability is by purchasing of the systems when manufacturers have to have and present reliability parameters and on this way we can decide which system satisfies our needs regarding the quality-price-reliability. Reliability can be practically used in system operation where: 1) system reliability is maintained with proper start, use and shutdown of the system; 2) a system reliability is maintained with good maintenance organization; 3) a system reliability is maintained with innovations and improvements with final purpose removing of the imperfections experienced through the operation. Reliability is very important parameter in power generation plants. (Author)

  2. Ultrasonic measurements and technologies

    CERN Document Server

    Kočiš, Štefan

    1996-01-01

    An impulse for writing this book has originated from the effort to sum­ marize and publicise the acquired results of a research team at the De­ partment of Automation of the Faculty of Electrical Engineering and In­ formatics, Slovak Technical University in Bratislava. The research team has been involved for a long time with control problems for machine production mechanisms and, in recent (approximately 15) years, its effort was aimed mostly at the control of electrical servosystems of robots. Within this scope, the members of the authors' staff solved the State Re­ search Task Ultrasonic sensing of the position of a robot hand, which was coordinated by the Institute of Technical Cybernetics of the Slovak Academy of Sciences in Bratislava. The problem was solved in a complex way, i.e. from a conceptual de­ sign of the measurement, through the measurement and evaluation sys­ tem, up to connection to the control system of a robot. Compensation of the atmospheric influence on the precision of measurement,...

  3. Development of automatic reactor vessel inspection systems; development of data acquisition and analysis system for the nuclear vessel weld

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Po; Park, C. H.; Kim, H. T.; Noh, H. C.; Lee, J. M.; Kim, C. K.; Um, B. G. [Research Institute of KAITEC, Seoul (Korea)

    2002-03-01

    The objective of this project is to develop an automated ultrasonic data acquisition and data analysis system to examine heavy vessel welds. In order to examine nuclear vessel welds including reactor pressure vessel(RPV), huge amount of ultrasonic data from 6 channels should be able to be on-line processed. In addition, ultrasonic transducer scanning device should be remotely controlled, because working place is high radiation area. This kind of an automated ultrasonic testing equipment has not been developed domestically yet. In order to develop an automated ultrasonic testing system, RPV ultrasonic testing equipments developed in foreign countries were investigated and the capability of high speed ultrasonic signal processing hardwares was analyzed. In this study, ultrasonic signal processing system was designed. And also, ultrasonic data acquisition software was developed. The new systems were tested on the RPV welds of Ulchin Unit 6 to confirm their functions and capabilities. They worked very well as designed and the tests were successfully completed. 13 refs., 34 figs., 11 tabs. (Author)

  4. Switch and examine transmit diversity for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2011-01-01

    In this paper, we develop a switch and examine transmit diversity algorithm for spectrum sharing cognitive networks. We consider a cognitive network composed of a primary link that employs constant rate and constant power transmission scheme

  5. Non-destructive examination system of vitreous body

    Science.gov (United States)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  6. Development and evaluation of a novel low power, high frequency piezoelectric-based ultrasonic reactor for intensifying the transesterification reaction

    Directory of Open Access Journals (Sweden)

    Mortaza Aghbashlo

    2016-12-01

    Full Text Available In this study, a novel low power, high frequency piezoelectric-based ultrasonic reactor was developed and evaluated for intensifying the transesterification process. The reactor was equipped with an automatic temperature control system, a heating element, a precise temperature sensor, and a piezoelectric-based ultrasonic module. The conversion efficiency and specific energy consumption of the reactor were examined under different operational conditions, i.e., reactor temperature (40‒60 °C, ultrasonication time (6‒10 min, and alcohol/oil molar ratio (4:1‒8:1. Transesterification of waste cooking oil (WCO was performed in the presence of a base-catalyst (potassium hydroxide using methanol. According to the obtained results, alcohol/oil molar ratio of 6:1, ultrasonication time of 10 min, and reactor temperature of 60 °C were found as the best operational conditions. Under these conditions, the reactor converted WCO to biodiesel with a conversion efficiency of 97.12%, meeting the ASTM standard satisfactorily, while the lowest specific energy consumption of 378 kJ/kg was also recorded. It should be noted that the highest conversion efficiency of 99.3 %, achieved at reactor temperature of 60 °C, ultrasonication time of 10 min, and alcohol/oil molar ratio of 8:1, was not favorable as the associated specific energy consumption was higher at 395 kJ/kg. Overall, the low power, high frequency piezoelectric-based ultrasonic module could be regarded as an efficient and reliable technology for intensifying the transesterification process in terms of energy consumption, conversion efficiency, and processing time, in comparison with high power, low frequency ultrasonic system reported previously. Finally, this technology could also be considered for designing, developing, and retrofitting chemical reactors being employed for non-biofuel applications as well.

  7. Comparison of high-resolution ultrasonic resonator technology and Raman spectroscopy as novel process analytical tools for drug quantification in self-emulsifying drug delivery systems.

    Science.gov (United States)

    Stillhart, Cordula; Kuentz, Martin

    2012-02-05

    Self-emulsifying drug delivery systems (SEDDS) are complex mixtures in which drug quantification can become a challenging task. Thus, a general need exists for novel analytical methods and a particular interest lies in techniques with the potential for process monitoring. This article compares Raman spectroscopy with high-resolution ultrasonic resonator technology (URT) for drug quantification in SEDDS. The model drugs fenofibrate, indomethacin, and probucol were quantitatively assayed in different self-emulsifying formulations. We measured ultrasound velocity and attenuation in the bulk formulation containing drug at different concentrations. The formulations were also studied by Raman spectroscopy. We used both, an in-line immersion probe for the bulk formulation and a multi-fiber sensor for measuring through hard-gelatin capsules that were filled with SEDDS. Each method was assessed by calculating the relative standard error of prediction (RSEP) as well as the limit of quantification (LOQ) and the mean recovery. Raman spectroscopy led to excellent calibration models for the bulk formulation as well as the capsules. The RSEP depended on the SEDDS type with values of 1.5-3.8%, while LOQ was between 0.04 and 0.35% (w/w) for drug quantification in the bulk. Similarly, the analysis of the capsules led to RSEP of 1.9-6.5% and LOQ of 0.01-0.41% (w/w). On the other hand, ultrasound attenuation resulted in RSEP of 2.3-4.4% and LOQ of 0.1-0.6% (w/w). Moreover, ultrasound velocity provided an interesting analytical response in cases where the drug strongly affected the density or compressibility of the SEDDS. We conclude that ultrasonic resonator technology and Raman spectroscopy constitute suitable methods for drug quantification in SEDDS, which is promising for their use as process analytical technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Examination of the Benefits of Standardized Interfaces on Space Systems

    Science.gov (United States)

    2015-09-01

    them to enter the once impenetrable aerospace market: Elon Musk with Space Exploration Technologies (SpaceX), Richard Branson with Virgin Galactic, and...systems-engineering- guide/se-life cycle-building-blocks/concept-development/highlevel-conceptual- definition. Musk , Elon . 2009. Risky Business... Musk , 2009) Unknown effects of prolonged exposure to radiation Degraded system capability (JPL 2015) Replenishment of the system capability may

  9. A Miniature Probe for Ultrasonic Penetration of a Single Cell

    Directory of Open Access Journals (Sweden)

    Mingfei Xiao

    2009-05-01

    Full Text Available Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

  10. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  11. Fuel rod puncturing and fission gas monitoring system examination techniques

    International Nuclear Information System (INIS)

    Song, Woong Sup

    1999-02-01

    Fission gas products accumulated in irradiated fuel rod is 1-2 cm 3 in CANDU and 40-50 cm 3 in PWR fuel rod. Fuel rod puncturing and fission gas monitoring system can be used for both CANDU and PWR fuel rod. This system comprises puncturing device located at in cell part and monitoring device located at out cell part. The system has computerized 9 modes and can calculate both void volume and mass volume only single puncturing. This report describes techniques and procedure for operating fuel rod puncturing and gas monitoring system which can be play an important role in successful operation of the devices. Results obtained from the analysis can give more influence over design for fuel rods. (Author). 6 refs., 9 figs

  12. Mandatory appearances of forensic examiner for cross-examination in court and related systemic improvement under china's criminal procedure

    Directory of Open Access Journals (Sweden)

    Jianye Qu

    2017-01-01

    Full Text Available In China's criminal procedure system, forensic advice is one of the key types of evidence. These advices play an important part in discovering the facts of a case, convictions, and sentencing, and they cannot be ignored in assessments of guilt and the death penalty. However, due to broad and flexible criminal laws, in actual litigation, the nonappearance of forensic examiner or mere provision of documentation of advice read in court has become the norm. This has led to the existence in name only of cross-examination rights, which directly damages the legitimate rights and interests of the parties and the objective and impartial rulings of referees. At present, there is no legal clarity in criminal proceedings that examiner should or should not be examined in court. In my opinion, the entire court system should require an appearance in court, which must be a clear mandatory appearance with specific exceptions. The system should guarantee the forensic examiner' mandatory appearances, which would inevitably improve the rules of evidence.

  13. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  14. Examining a scaled dynamical system of telomere shortening

    Science.gov (United States)

    Cyrenne, Benoit M.; Gooding, Robert J.

    2015-02-01

    A model of telomere dynamics is proposed and examined. Our model, which extends a previously introduced model that incorporates stem cells as progenitors of new cells, imposes the Hayflick limit, the maximum number of cell divisions that are possible. This new model leads to cell populations for which the average telomere length is not necessarily a monotonically decreasing function of time, in contrast to previously published models. We provide a phase diagram indicating where such results would be expected via the introduction of scaled populations, rate constants and time. The application of this model to available leukocyte baboon data is discussed.

  15. Optimization on scoliosis examination on Canons DR system

    DEFF Research Database (Denmark)

    Precht, Helle

    2007-01-01

    recordings of scoliosis today are carried out on CR systems even though most radiological departments have DR systems available. Theoretically speaking the two modalities are similar regarding dose and image quality. In this project consequently, the focus will be to obtain images of equal dose and quality...... at a DR system when using different receptors during the exam. This is a completely new opportunity, as it has earlier been difficult to compare distinct scintilators connected to the receptors due to unlike processing of the image. Given that Canon have released a receptor with CsI scintilator we...... in which theory is used as a background for the test setup and later audit appraisal. Two tests are carried out on two different hospitals with each their receptor, and afterwards the results are compared. To guarantee comparable tests the results are verified through status checks and statistical t...

  16. Facilitated and selective oxidation of thiophenic sulfur compounds using MoOx/Al₂O₃-H₂O₂ system under ultrasonic irradiation.

    Science.gov (United States)

    Akbari, Azam; Omidkhah, Mohammadreza; Towfighi Darian, Jafar

    2015-03-01

    Oxidative desulfurization of thiophenic sulfur compounds of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) with MoOx/Al₂O₃ catalyst and H₂O₂ oxidant has been facilitated and more selective under ultrasonic irradiation. The catalyst with the optimum 10% of Mo loading consisted of isolated tetrahedral molybdenum oxide species based on FTIR analysis. The increase of Mo loading to 15% and 20% caused to generation of polymolybdate and MoO₃ crystals which decreased desulfurization activity. Sonication enhanced the apparent reaction rate constants in oxidation of all three sulfur compounds. An increase in the Arrhenius factor (A0), which is the total number of collisions per second, could explain the acceleration in the rate constants by sonication. The apparent activated energy (Ea) of BT oxidation was reduced from 96.6 to 75.3 kJ/mol by using ultrasound. This indicated that ultrasound had also a chemical effect, like a catalytic influence, in the acceleration of BT removal. DBT oxidation was reduced when investigated in the presence of tetralin, naphthalene and 2-methyl naphthalene as the model aromatic compounds of actual light oils. A higher selectivity toward DBT elimination in the presence of aromatics was obtained by sonication when compared with the silent treatment. Ultrasound cleaned the catalyst surface from adsorbed aromatics. On the basis of the obtained results, a mechanistic proposal for this desulfurization was explained. Oxidation was performed by nucleophilic attack of sulfur atom to the molybdenum peroxide species of tetrahedral molybdates, which was more advanced by sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Dosimeters examinations in a system of radiation monitoring

    International Nuclear Information System (INIS)

    Polsky, O.; Zaytsev, V.V.

    2008-01-01

    The development of an atomic industry and atomic engineering was accompanied scientifically - are justified by conceptual approaches, directional on security of a radiation safety of the personnel and occupied items, where the serving staff lived. It has allowed receiving the enough complete information on radiation doses, comparative performances of illnesses and is brave origins of stochastic effects. Last years on the foreground began to go out problems of influence on the population of ionizing radiation natural, and also engineering changed hum noise. The probability of origin of negative consequences at origin concerning small doses, characteristic for the term, which has usually to the present time, of an exposure of the population of large industrial canters and cities, depends not only from individual, but also on collective doses considerable on number of groups of the people in view of duration of action of the radiation factor. The generalized material of long-term examinations on medial individual doses obtained by population from natural radionuclide, medical procedures in long-term dynamic is obtained. On the basis of long-term data the calculations of stochastic effects among the population of the Moscow region of Russia are given. These effects come from technological radiances of radiation, medical examinations and procedures, from radiation incidents and other radiances of an exposure of the population. It is shown, that nominal coefficient of probability of aggregate stochastic effect matters 5,9 unities on 0,01 inverse Sv that is compounded with literary data

  18. Systemic accident analysis: examining the gap between research and practice.

    Science.gov (United States)

    Underwood, Peter; Waterson, Patrick

    2013-06-01

    The systems approach is arguably the dominant concept within accident analysis research. Viewing accidents as a result of uncontrolled system interactions, it forms the theoretical basis of various systemic accident analysis (SAA) models and methods. Despite the proposed benefits of SAA, such as an improved description of accident causation, evidence within the scientific literature suggests that these techniques are not being used in practice and that a research-practice gap exists. The aim of this study was to explore the issues stemming from research and practice which could hinder the awareness, adoption and usage of SAA. To achieve this, semi-structured interviews were conducted with 42 safety experts from ten countries and a variety of industries, including rail, aviation and maritime. This study suggests that the research-practice gap should be closed and efforts to bridge the gap should focus on ensuring that systemic methods meet the needs of practitioners and improving the communication of SAA research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Binary Solvent Extraction System and Extraction Time Effects on Phenolic Antioxidants from Kenaf Seeds (Hibiscus cannabinus L.) Extracted by a Pulsed Ultrasonic-Assisted Extraction

    OpenAIRE

    Yu Hua Wong; Hwee Wen Lau; Chin Ping Tan; Kamariah Long; Kar Lin Nyam

    2014-01-01

    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β -carotene bleaching inhibition assay, and ferric reducing antioxi...

  20. Ultrasonic weld testing.

    Science.gov (United States)

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  1. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  2. Deconvolution algorithms applied in ultrasonics

    International Nuclear Information System (INIS)

    Perrot, P.

    1993-12-01

    In a complete system of acquisition and processing of ultrasonic signals, it is often necessary at one stage to use some processing tools to get rid of the influence of the different elements of that system. By that means, the final quality of the signals in terms of resolution is improved. There are two main characteristics of ultrasonic signals which make this task difficult. Firstly, the signals generated by transducers are very often non-minimum phase. The classical deconvolution algorithms are unable to deal with such characteristics. Secondly, depending on the medium, the shape of the propagating pulse is evolving. The spatial invariance assumption often used in classical deconvolution algorithms is rarely valid. Many classical algorithms, parametric and non-parametric, have been investigated: the Wiener-type, the adaptive predictive techniques, the Oldenburg technique in the frequency domain, the minimum variance deconvolution. All the algorithms have been firstly tested on simulated data. One specific experimental set-up has also been analysed. Simulated and real data has been produced. This set-up demonstrated the interest in applying deconvolution, in terms of the achieved resolution. (author). 32 figs., 29 refs

  3. Ultrasonic inspection of inpile tubes

    International Nuclear Information System (INIS)

    Boyd, D.M.; Bossi, H.

    1985-01-01

    The in-service inspection (ISI) of inpile tubes can be performed accurately and safely with a semiautomatic ultrasonic inspection system. The ultrasonic technique uses a set of multiple transducers to detect and size cracks, voids, and laminations radially and circumferentially. Welds are also inspected for defects. The system is designed to inspect stainless steel and Inconel tubes ranging from 53.8 mm (2.12 in.) to 101.6 mm (4 in.) inner diameter with wall thickness on the order of 5 mm. The inspection head contains seven transducers mounted in a surface-following device. Six angle-beam transducers generate shear waves in the tubes. Two of the six are oriented to detect circumferential cracks, and two detect axial cracks. Although each of these four transducers is used in the pulse-echo mode, they are oriented in aligned sets so pitch-catch operation is possible if desired. The remaining angle-beam transducers are angulated to detect flaws that are off axial or circumferential orientation. The seventh transducer is used for longitudinal inspection and detects and sizes laminar-type defects

  4. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud [Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2014-05-15

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm{sup 2} and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm{sup 2} and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress.

  5. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    International Nuclear Information System (INIS)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud

    2014-01-01

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm 2 and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm 2 and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress

  6. Switch and examine transmit diversity for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.

    2011-06-01

    In this paper, we develop a switch and examine transmit diversity algorithm for spectrum sharing cognitive networks. We consider a cognitive network composed of a primary link that employs constant rate and constant power transmission scheme with automatic-and-repeat request (ARQ) protocol, while the secondary link is composed of a fixed power multiple-antenna secondary transmitter and a single antenna receiver. Our objective is to develop a low complex transmit diversity algorithm at the secondary transmitter that maximizes the performance of the secondary link in terms of the effective throughput while maintaining a predetermined maximum loss in the packet rate of the primary link. In achieving this objective, we develop an algorithm that selects the best antenna, which maintains the quality of the secondary link in terms of signal-to-noise ratio above a specific threshold, based on overhearing the acknowledgment (ACK) and negative acknowledgment (NACK) feedback messages transmitted over the primary link. We also develop closed form expressions for the bit error rates and the effective throughput of the secondary link. © 2011 IEEE.

  7. Development of an ultrasonic process for soil remediation

    International Nuclear Information System (INIS)

    Wu, J.M.; Huang, H.S.; Livengood, C.D.

    1995-01-01

    An ultrasonic process for the detoxification of carbon tetrachloride- (CCl 4 - ) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl 4 concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl 4 concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl 4 concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed

  8. An examination of pharmaceutical systems in severely disrupted countries

    Directory of Open Access Journals (Sweden)

    Kohler Jillian Clare

    2012-12-01

    Full Text Available Abstract This research assesses informal markets that dominate pharmaceutical systems in severely disrupted countries and identifies areas for further investigation. Findings are based on recent academic papers, policy and grey literature, and field studies in Somalia, Afghanistan, the Democratic Republic of Congo and Haiti. The public sector in the studied countries is characterized in part by weak Ministries of Health and low donor coordination. Informal markets, where medicines are regularly sold in market stalls and unregulated pharmacies, often accompanied by unqualified medical advice, have proliferated. Counterfeit and sub-standard medicines trade networks have also developed. To help increase medicine availability for citizens, informal markets should be integrated into existing access to medicines initiatives.

  9. Re-examination of the neptunium-hydrogen system

    International Nuclear Information System (INIS)

    Ward, J.W.; Bartscher, W.; Rebizant, J.

    1986-01-01

    New P-C-T studies have been made on the Np + H system, using ultrapure double-electrorefined metal. Measurements were carried out over six orders of magnitude in pressure, from 0.0005 to 70 bar. The solubility of hydrogen was found to be very low. Metal-dihydride plateaus were flat, the two-phase boundary extremely sharp; this occurred at the unusual value H/Np approx. = 2.13. The dihydride lattice expanded upon addition of hydrogen, also in contrast to other trivalent rare-earth and actinide hydrides. A rather narrow cubic/hexagonal two-phase region was found (only on dehydriding), together with an even narrower hexagonal phase region. The effect of the beta-gamma transition at 576 0 C could be seen both in the curvature of the phase boundary and the partial molal enthalpy values. Entropies of formation were found to be nearly constant. The data below 576 0 C can be described by the equation ln P(bar) = 13.297 - 13233/T(K), giving values, adjusted for the reaction 0.93 Np + H 2 = 0.93 NpH/sub 2.13/: ΔH/sub f/(NpH/sub 2.13/) = 118.3 kJ/mol (28.27 kcal/mol), and ΔS/sub f/(NpH/sub 2.13/) = 118.4 J/mol-K (28.3 cal/mol/-K). Integral heats and entropies are calculated for the entire system, and the unusual phase behavior is discussed in terms of the electronic structure

  10. Does Pharmaceutical Pricing Transparency Matter? Examining Brazil's Public Procurement System.

    Science.gov (United States)

    Kohler, Jillian Clare; Mitsakakis, Nicholas; Saadat, Faridah; Byng, Danalyn; Martinez, Martha Gabriela

    2015-08-04

    We review procurement and pricing transparency practices for pharmaceutical products. We specifically focus on Brazil and examine its approach to increasing pricing transparency, with the aim of determining the level of effectiveness in lower prices using a tool (Banco de Preços em Saúde, BPS) that only reveals purchase prices as compared to other tools (in other countries) that establish a greater degree of price transparency. A general report of Preços em Saúde (BPS) and Sistema Integrado de Administração de Serviços Gerais (SIASG) pricing data was created for 25 drugs that met specific criteria. To explore the linear time trend of each of the drugs, separate regression models were fitted for each drug, resulting in a total of 19 models. Each model controlled for the state variable and the interaction between state and time, in order to accommodate expected heterogeneity in the data. Additionally, the models controlled for procurement quantities and the effect they have on the unit price. Secondary analysis using mixed effects models was also carried out to account for the impact that institutions and suppliers may have upon the unit price. Adjusting for these predictor variables (procurement quantities, supplier, purchasing institution) was important to determine the sole effect that time has had on unit prices. A total of 2 x 19 = 38 models were estimated to explore the overall effect of time on changes in unit price. All statistical analyses were performed using the R statistical software, while the linear mixed effects models were fitted using the lme4 R package. The findings from our analysis suggest that there is no pattern of consistent price decreases within the two Brazilian states during the five-year period for which the prices were analyzed. While the BPS does allow for an increase in transparency and information on drug purchase prices in Brazil, it has not shown to lead to consistent reductions in drug purchase prices for some of the most

  11. Ultrasonic Communication Project, Phase 1, FY1999

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, H.D.; Akerman, M.A.; Baylor, V.M.

    2000-06-01

    This Phase 1 project has been successful in identifying, exploring, and demonstrating methods for ultrasonic-based communication with an emphasis on the application of digital signal processing techniques. During the project, at the direction of the agency project monitor, particular attention was directed at sending and receiving ultrasonic data through air and through pipes that would be commonly found in buildings. Efforts were also focused on development of a method for transmitting computer files ultrasonically. New methods were identified and evaluated for ultrasonic communication. These methods are based on a technique called DFS. With DFS, individual alphanumeric characters are broken down into a sequence of bits, and each bit is used to generate a discrete ultrasonic frequency. Characters are then transmitted one-bit-at-a-time, and reconstructed by the receiver. This technique was put into practice through the development of LabVIEW{trademark}VIs. These VIs were integrated with specially developed electronic circuits to provide a system for demonstrating the transmission and reception/reconstruction of typed messages and computer files. Tests were performed to determine the envelope for ultrasound transmission through pipes (with and without water) versus through air. The practical aspects of connections, efficient electronics, impedance matching, and the effect of damping mechanisms were all investigated. These tests resulted in a considerable number of reference charts that illustrate the absorption of ultrasound through different pipe materials, both with and without water, as a function of distance. Ultrasound was found to be least attenuated by copper pipe and most attenuated by PVC pipe. Water in the pipe provides additional damping and attenuation of ultrasonic signals. Dramatic improvements are observed, however, in ultrasound signal strength if the transducers are directly coupled to the water, rather than simply attaching them to the outside of

  12. Mandatory appearances of forensic examiner for cross-examination in court and related systemic improvement under china's criminal procedure

    OpenAIRE

    Jianye Qu; Min Guo

    2017-01-01

    In China's criminal procedure system, forensic advice is one of the key types of evidence. These advices play an important part in discovering the facts of a case, convictions, and sentencing, and they cannot be ignored in assessments of guilt and the death penalty. However, due to broad and flexible criminal laws, in actual litigation, the nonappearance of forensic examiner or mere provision of documentation of advice read in court has become the norm. This has led to the existence in name o...

  13. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs

  14. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs.

  15. Ultrasonic Monitoring of the Progress of Lactic Acid Fermentation

    Science.gov (United States)

    Masuzawa, Nobuyoshi; Kimura, Akihiro; Ohdaira, Etsuzo

    2003-05-01

    Promotion of lactic acid fermentation by ultrasonic irradiation has been attempted. It is possible to determine the progress of fermentation and production of a curd, i.e., yoghurt and or kefir, by measuring acidity using a pH meter. However, this method is inconvenient and indirect for the evaluation of the progress of lactic acid fermentation under anaerobic condition. In this study, an ultrasonic monitoring method for evaluating the progress of lactic acid fermentation was examined.

  16. Ultrasonic NDE and mechanical testing of fiber placement composites

    Science.gov (United States)

    Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.

    2002-05-01

    A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.

  17. Ultrasonic thermometry for nuclear power plants

    International Nuclear Information System (INIS)

    Saravana Kumar, S.; Arunraj, A.L.R.; Swaminathan, K.

    2013-01-01

    Ultrasonic transducer provides a method of measurement of temperature in industrial tanks and boilers containing different liquids with varied salt content. This method is used to measure the average temperature continuously where other traditional methods available do not offer. Traditional methods used for temperature measurement like infrared thermometers, thermocouples, measures temperature at a single location. Numerous thermocouples are to be fixed at various part of the boiler in order to measure the temperature of the entire boiler, which incurs high cost. Reliability of the system decreases, with increasing number of thermocouples. When they fail at a point, the time incurred in finding the faulty part or faulty thermocouple is high. Ultrasonic transducer provides continuous measurement for all different characteristic liquids with higher accuracy and lesser response time. Fault location and clearance time is also less in ultrasonic measurement method, since only a couple of transducers used for the entire boiler structure. Additionally ultrasonic thermometry along support measuring electronic system can be built of low cost. (author)

  18. Hardware Development of Ultrasonic Tomography for Composition Determination of Water and Oil Flow

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2007-01-01

    Full Text Available A monitoring system for water and oil flow using ultrasonic Tomography is implemented. Information such as the type of flow, the composition of the water and oil can be obtained from the system. The composition of the flow is determined based on the propagation time of the ultrasonic waves. The ultrasonic Tomography system includes the sensors fixture design, signal conditioning circuits and image reconstruction software. The image reconstruction algorithm that used is the Linear Back Projection (LBP algorithm.

  19. A study on the ultrasonic measurement for damage evaluation of power plant bearing

    International Nuclear Information System (INIS)

    Lee, Sang Guk

    2004-01-01

    For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. Ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program

  20. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  1. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  2. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  3. Ultrasonic boiler inspection and economic analysis guidelines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Boiler tube failures cause approximately 6% availability loss of large fossil-fired power generating plants. This loss can be reduced by systematic approaches using ultrasonic examination and root cause failure analysis methods. Two projects sponsored by EPRI have provided utility engineers with guidelines for performing ultrasonic examinations and with details on 22 types of tube failure mechanisms. A manual has been published that provides descriptions of typical locations, superficial appearances, damage mechanisms, metallurgy, microstructural changes, likely root causes, and potential corrective actions. Application of the principles in the manual is being demonstrated in an EPRI-funded project at 10 electric utilities over the next two years. Guidelines have been published that prescribe the activities necessary for ultrasonic examinations of boiler tubes. Eight essential elements of a boiler examination should be performed to assure that possible economic benefits are obtained. Work was supported by EPRI under RP 1890 and RP 1865. A software package has been developed for effectively planning inspections for wall thinning in fossil-fired boiler tubing. The software assists in minimizing costs associated with maintenance, such as inspection and repair, while the life of the boiler is maximized

  4. Ultrasonic calibration assembly

    International Nuclear Information System (INIS)

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  5. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  6. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  7. Reduction of aerosols produced by ultrasonic scalers.

    Science.gov (United States)

    Harrel, S K; Barnes, J B; Rivera-Hidalgo, F

    1996-01-01

    There is concern with decreased air quality and potential aerosol contamination in the dental operatory. This problem has been addressed by the Centers for Disease Control and Prevention, which recommends that all sources of blood-contaminated splatter and aerosols be minimized. One of the major sources of potential aerosol contamination in the dental setting is the ultrasonic scaler. This study looks at the use of a high volume evacuator attachment for the ultrasonic scaler handpiece. Artificial teeth were mock-scaled for 1 minute with and without the evacuator attachment. The mock scaling was performed within a plastic enclosure that had a 1 cm grid laid out on 4 sides. Scaling was performed 10 times each by 2 operators. An erythrosin solution was used for the ultrasonic scaler coolant with a coolant volume of 17.5 ml/min. The number of squares containing a red erythrosin spot were counted and considered to represent aerosol contamination. The high volume evacuator attachment produced a 93% reduction in the number of contaminated squares (chi squared significant at P < 0.05). There was no increase in heat transfer to a tooth analogue when the high volume evacuator attachment was used with the ultrasonic scaler as compared to the scaler without the evacuator attachment. It is felt that the high volume evacuator attachment is capable of significantly reducing the amount of aerosol contamination produced within the test system without increased heat transfer to the tooth.

  8. An Examination of Personal Values and Value Systems of Chinese and U.S. Business Students

    Science.gov (United States)

    Giacomino, Don E.; Li, Xin; Michael D. Akers,

    2013-01-01

    Using the Rokeach Value Survey and the Musser and Orke typology this paper examines the personal values and value systems of business students in China and compares the results with the results of a recent study that used similar methodology to examine the values and value systems of U.S. students. The study also examines the differences in values…

  9. Study of ultrasonic imagine of spleen in patients with leukemia

    International Nuclear Information System (INIS)

    Zheng Hui; Zhou Chunyan; Jiang Ju; Luo Liying; Huang Yanhong

    2011-01-01

    To investigate spleen ultrasonic imagine in patients with leukemia and to provide basis information for preventing and treat disease,the spleens imaging of 158 patients with leukemia were detected by B mode ultrasonicgraphy and the data of clinical medical examination were analyzed.The results showed that the spleens' ultrasonic imagine of patients with leukemia were not related to the degree of anemia.The ultrasonic imagines of spleen in patients with chronic leukemia were different to the other kinds of leukemia.The ultrasonic imagine of spleens in leukemia patients are related to types and development of leukemia.The B-ultrasound screening should be used to help clinical diagnosis and treatment of patients with leukemia. (authors)

  10. Application of Ultrasonic Waves on Maintaining Freshness of Tilapia Fillet

    Directory of Open Access Journals (Sweden)

    Ruddy Suwandi

    2015-06-01

    Full Text Available ish fillet is one of fisheries products that easily deteriorated; hence handling techniques are needed to maintain the freshness. Ultrasonic wave have been widely applied to some of food products for maintaining freshness through microbial inactivation, however the ultrasonic application to fisheries products has not been reported. The purpose of this study was to analyze the effect of ultrasonic wave on fish freshness. The stages of the study were sample preparation, sonication, freshness parameters examination and histology observation. Ultrasonic wave did not affectthe organoleptic value and the TVB, but affected the pH value and the TPC. The sample in which the TPC value was found significantly different, were further observed after 48 and 96 hours storage. The result showed that the TPC value of sonicated sample for 9 minutes was lower to that of without sonication. Histology analysis showed, however, sonication made the structure of muscle fiber less compact and deformation of myomer was found.

  11. Data collection instrumentation for ultrasonic imaging under sodium

    International Nuclear Information System (INIS)

    McKnight, J.A.; Parker, J.A.

    1981-05-01

    A team at the Risley Nuclear Power Development Establishment has been developing apparatus for the production of ultrasonic images under opaque liquids. The technique is intended for examining objects under liquid sodium at 300 0 C, and the range of possible methods is restricted as a consequence. The method chosen uses pulse-echo ultrasonics combined with mechanical scanning to assemble the final image. The data is collected using a CAMAC system under the control of an Intel 8080 microprocessor. The data is analysed separately and presented on a colour display using a DEC LSl 11 microprocessor controlled system. To achieve the required performance a number of special electronic assemblies were made. A single image requires 2.5 M byte of data. The cost of using the apparatus on a Fast Reactor is such that it is prudent to provide back-up data collection through a data link, and to maximise the data collection rate. This causes problems with the interrupt cycle time of the CAMAC controller, which can be resolved using synchronous programs specifically tailored to each application. (author)

  12. Ultrasonic partial discharge monitoring method on instrument transformers

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad

    2012-01-01

    Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.

  13. Ultrasonic experiment on hydrate formation of a synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shicai; Fan, Shuanshi; Liang, Deqing; Zhang, Junshe; Feng, Ziping

    2005-07-01

    The effect of ultrasonic on the induction time and formation rate of natural gas hydrates was investigated in a stainless steel cell in this study. The results show that the induction time with ultrasonic was about 1/6 of that without ultrasonic and only about 1/10 if rehydration after decomposition in water-gas system. In sodium dodecyl sulfate (SDS) solution-gas system, the critical micellar concentration (CMC) was not identified with ultrasonic. The formation rate and storage capacity of hydrate increased with increasing SDS concentration at a range of 0 to 800ppm. However, the increase was insignificant as the SDS concentration increased from 600 to 800ppm, (Author)

  14. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  15. First-in-Man Experience with a Novel Catheter-Based Renal Denervation System of Ultrasonic Ablation in Patients with Resistant Hypertension.

    Science.gov (United States)

    Chernin, Gil; Szwarcfiter, Iris; Scheinert, Dierk; Blessing, Erwin; Diehm, Nicolas; Dens, Jo; Walton, Antony; Verheye, Stefan; Shetty, Sharad; Jonas, Michael

    2018-06-16

    To report results of renal denervation (RDN) with the first catheter-based, non-balloon occlusion ultrasonic system in patients with resistant hypertension. In a multicenter, single-arm trial, 39 patients with resistant hypertension (defined as uncontrolled hypertension while taking ≥ 3 antihypertensive medications) were treated. The cohort consisted of 4 groups: severe resistant hypertension (office systolic blood pressure [OSBP] ≥ 160 mm Hg) treated with a unidirectional catheter (group 1; n = 14); severe resistant hypertension treated with a multidirectional catheter (group 2; n = 18); moderate resistant hypertension (OSBP 140-159 mm Hg) treated with a multidirectional catheter (group 3; n = 5); and recurrent severe resistant hypertension, after an initial response to RF RDN (group 4; n = 2). Blood pressure monitoring was performed for 6 months. Severe adverse events were not noted immediately after the procedure or during follow-up. Treatment time was longer with unidirectional than with multidirectional catheters (36.7 min ± 9.6 vs 11.9 min ± 5.8; P < .001). Mean reductions in office blood pressure (systolic/diastolic) at 1, 3, and 6 months were -26.1/-9.6 mm Hg, -28.0/-9.9 mm Hg, and -30.6/-14.1 mm Hg (P < .01 for all). Per-group analysis showed significant OSBP reduction for groups 1 and 2. Patients with isolated systolic hypertension had a significantly smaller reduction in OSBP after 6 months compared with patients with combined systolic/diastolic hypertension (-16.2 mm Hg ± 18.5 vs -9.9 mm Hg ± 33.4; P < .005). Use of the RDN system was feasible and safe in this phase I study. Significant blood pressure reductions were observed over 6 months, although less in patients with isolated systolic hypertension. Copyright © 2018 SIR. All rights reserved.

  16. Computer-aided detection system for chest radiography: reducing report turnaround times of examinations with abnormalities.

    Science.gov (United States)

    Kao, E-Fong; Liu, Gin-Chung; Lee, Lo-Yeh; Tsai, Huei-Yi; Jaw, Twei-Shiun

    2015-06-01

    The ability to give high priority to examinations with pathological findings could be very useful to radiologists with large work lists who wish to first evaluate the most critical studies. A computer-aided detection (CAD) system for identifying chest examinations with abnormalities has therefore been developed. To evaluate the effectiveness of a CAD system on report turnaround times of chest examinations with abnormalities. The CAD system was designed to automatically mark chest examinations with possible abnormalities in the work list of radiologists interpreting chest examinations. The system evaluation was performed in two phases: two radiologists interpreted the chest examinations without CAD in phase 1 and with CAD in phase 2. The time information recorded by the radiology information system was then used to calculate the turnaround times. All chest examinations were reviewed by two other radiologists and were divided into normal and abnormal groups. The turnaround times for the examinations with pathological findings with and without the CAD system assistance were compared. The sensitivity and specificity of the CAD for chest abnormalities were 0.790 and 0.697, respectively, and use of the CAD system decreased the turnaround time for chest examinations with abnormalities by 44%. The turnaround times required for radiologists to identify chest examinations with abnormalities could be reduced by using the CAD system. This system could be useful for radiologists with large work lists who wish to first evaluate the most critical studies. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    DEFF Research Database (Denmark)

    Kistrup, Kasper

    for ultrasonic welding, suitable for microfluidic systems. A methodology has been established where energy directors can be quickly added to existing mould inserts, using laser micromachining. The produced device was performance tested by isolating methicillin-resistant Staphylococcus aureus from bovine whole....... The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...

  18. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  19. Inspection of copper canisters for spent nuclear fuel by means of ultrasonic array system. Modelling, defect detection and grain noise estimation

    International Nuclear Information System (INIS)

    Wu Ping; Stepinski, T.

    1998-07-01

    The work presented in the report has been split into three overlapping tasks which have the following objectives: (1) development of beam-forming tools, and verification of modeling tools; (2) investigation of detection and resolution limits; (3) evaluation of attenuation, estimation and suppression of grain noise. For beam-forming tools, a method of designing steered and/or focused beams in immersed solids is presented based on geometrical acoustics. Presently, the beam designs are only related to delays but not to apodization. These focused, steered beams are intended to be used for sizing defects and inspecting the regions close to canisters outer walls. The modeling tool developed previously for simulating elastic fields radiated by planar arrays into immersed solids has been verified by comparing with the results obtained from PASS, a software developed by Dr. Didier Cassereau, France. The results from our modeling tool are in excellent agreement with those from PASS. Since the array coming with the ALLIN ultrasonic array system is not planar, but cylindrically curved in elevation, and it works not in transmission mode, but in pulse echo mode, the above modeling tool for the planar arrays cannot be applied directly. Therefore, the modeling tool has been upgraded for the ALLIN array. The theory underlying this modeling tool is the extended angular spectrum approach (ASA) which was developed based on the conventional ASA that only applies to planar sources. Experimental verification of the modeling tool has shown that the results from the tool agree very well with the measurements. To quantify the fields from the ALLIN array and to facilitate the comparison of simulated results with the measured ones, the ALLIN array system has been calibrated based on the existing functionality, and an analytical model has been proposed for simulating measured acoustic echo pulses. To investigate the detection and resolution limits, we have carried out a series of experiments

  20. Design and Implementation of an Ultrasonic Local Positioning System for Robot Guidance in a Heavy Liquid Metal Environment

    International Nuclear Information System (INIS)

    De-Cock, Wouter; Kenis, Steven; Van-Roy, Ken; Verachtert, Lieven; Leroux, Paul

    2013-06-01

    In this paper, we describe a preliminary research towards the use of chirp coded spread spectrum techniques to implement a local positioning system to assist robot operators during manipulations and maintenance tasks in the future MYRRHA reactor. Preliminary test results in a simple experimental setup show promising results towards further developments of the system as the developed algorithms are able to discriminate between different transducers. (authors)