WorldWideScience

Sample records for ultrasonic composite oscillator

  1. Three-dimensional analyses of ultrasonic scaler oscillations.

    Science.gov (United States)

    Lea, Simon C; Felver, Bernhard; Landini, Gabriel; Walmsley, A Damien

    2009-01-01

    It is stated that the oscillation patterns of dental ultrasonic scalers are dependent upon whether the instrument is of a magnetostrictive or piezoelectric design. These patterns are then linked to differences in root surface debridement in vitro. Piezoelectric (A, P) and magnetostrictive (Slimline, TFI-3) ultrasonic scalers (three of each) were evaluated, loaded (100 g/200 g) and unloaded with a 3D laser vibrometer. Loads were applied to the probe tips via teeth mounted in a load-measuring device. Elliptical motion was demonstrated for all probes under loaded and unloaded conditions. Loading flattened the elliptical motion along the length of the probe. Unloaded, Slimline tip 1 was significantly different to tips 2 and 3 (p0.207). All TFI-3 tips were different to each other (p0.867). Generator power increased all Slimline and P tip vibrations (pultrasound production mechanism and are dependent upon probe shape and generator power. Loaded probes oscillated with an elliptical pattern.

  2. Composite biaxially textured substrates using ultrasonic consolidation

    Science.gov (United States)

    Blue, Craig A; Goyal, Amit

    2013-04-23

    A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a .phi.-scan having a FWHM of no more than 15.degree. in all directions, the second sheet remaining untextured, to form a composite sheet.

  3. Joint formation of dissimilar steels in pressure welding with superposition of ultrasonic oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, A P; Golovanenko, S A; Sukhanov, V E; Kazantsev, V F

    1983-12-01

    Investigation results of kinetics and quality of carbon steel joints with the steel 12Kh18N10T, obtained by pressure welding with superposition of ultrasonic oscillations with the frequency 16.5-18.0 kHz are given. The effect of ultrasonic oscillations on the process of physical contact development of the surfaces welded, formation of microstructure and impact viscosity of the compound, is shown.

  4. INVESTIGATION OF MATERIAL RESISTANCE TO PLASTIC DEFORMATION AT PROCESSING METALS BY PRESSURE WITH IMPOSING ULTRASONIC OSCILLATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Klubovich

    2007-01-01

    Full Text Available The paper contains substantiation for application of experimental technique in order to investigate material resistance to plastic deformation at processing metals by pressure with imposing ultrasonic oscillations while proceeding from laws of similarity. It is shown that at modeling any metal processing by pressure with imposing ultrasonic oscillations it is possible to consider that actual elastic and plastic metal properties remain constant during processing under ultrasound action. The second aspect that requires a special attention at modeling is pulse or vibration-shock deformation at processing metals by pressure with imposing ultrasonic oscillations.

  5. Acoustic streaming induced by an ultrasonically oscillating endodontic file

    NARCIS (Netherlands)

    Verhaagen, B.; Boutsioukis, C.; van der Sluis, L.W.M.; Versluis, M.

    2014-01-01

    Ultrasonically activated irrigation is an advanced dental technique for irrigation of the root canal system during a root canal treatment. The basic cleaning mechanism is a result of acoustic streaming induced by an oscillating file, leading to mixing of the irrigant and pressure and shear stresses

  6. Acoustic streaming induced by an ultrasonically oscillating endodontic file

    NARCIS (Netherlands)

    Verhaagen, B.; Boutsioukis, C.; van der Sluis, L. W. M.; Versluis, M.

    Ultrasonically activated irrigation is an advanced dental technique for irrigation of the root canal system during a root canal treatment. The basic cleaning mechanism is a result of acoustic streaming induced by an oscillating file, leading to mixing of the irrigant and pressure and shear stresses

  7. Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models

    NARCIS (Netherlands)

    Macedo, R.G.; Verhaagen, B.; Fernandez Rivas, D.; Gardeniers, J.G.E.; van der Sluis, L.W.M.; Wesselink, P.R.; Versluis, M.

    2014-01-01

    Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet

  8. Ultrasonic Characterization of Aerospace Composites

    Science.gov (United States)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  9. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  10. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  11. Prediction of strength of wood composite materials using ultrasonic

    International Nuclear Information System (INIS)

    Mahmoud, M.K.; Emam, A.

    2005-01-01

    Wood is a biological material integrating a very large variability of its mechanical properties (tensile and compressive), on the two directional longitudinal and transverse Ultrasonic method has been utilized to measure both wood physical and / or wood mechanical properties. The aim of this article is to show the development of ultrasonic technique for quality evaluation of trees, wood material and wood based composites. For quality assessment of these products we discuss the nondestructive evaluation of different factors such as: moisture content, temperature, biological degradation induced by bacterial attack and fungal attack. These techniques were adapted for trees, timber and wood based composites. The present study discusses the prediction of tensile and compressive strength of wood composite materials using ultrasonic testing. Empirical relationships between the tensile properties, compression strength and ultrasonic were proposed. The experimental results indicate the possibility of establishing a relationship between tensile strength and compression values. Moreover, the fractures in tensile and compressive are discussed by photographic

  12. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.

  13. Ultrasonic NDE and mechanical testing of fiber placement composites

    Science.gov (United States)

    Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.

    2002-05-01

    A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.

  14. Damage detection in composites using nonlinear ultrasonically modulated thermography

    Science.gov (United States)

    Malfense Fierro, G.-P.; Dionysopoulos, D.; Meo, M.; Ciampa, F.

    2018-03-01

    This paper proposes a novel nonlinear ultrasonically stimulated thermography technique for a quick and reliable assessment of material damage in carbon fibre reinforced plastic (CFRP) composite materials. The proposed nondestructive evaluation (NDE) method requires narrow sweep ultrasonic excitation using contact piezoelectric transducers in order to identify dual excitation frequencies associated with the damage resonance. High-amplitude signals and higher harmonic generation are necessary conditions for an accurate identification of these two input frequencies. Dual periodic excitation using high- and low-frequency input signals was then performed in order to generate frictional heating at the crack location that was measured by an infrared (IR) camera. To validate this concept, an impact damaged CFRP composite panel was tested and the experimental results were compared with traditional flash thermography. A laser vibrometer was used to investigate the response of the material with dual frequency excitation. The proposed nonlinear ultrasonically modulated thermography successfully detected barely visible impact damage in CFRP composites. Hence, it can be considered as an alternative to traditional flash thermography and thermosonics by allowing repeatable detection of damage in composites.

  15. Ultrasonic Characterisation of Epoxy Resin/Polyethylene Terephthalate (PET Char Powder Composites

    Directory of Open Access Journals (Sweden)

    Imran ORAL

    2016-11-01

    Full Text Available This study is carried out in order to determine the elastic properties of the Epoxy Resin (ER / Polyethylene terephthalate (PET Char Powder Composites by ultrasonic wave velocity measurement method. Plastic waste was recycled as raw material for the preparation of epoxy composite materials. The supplied chars were mixed with epoxy resin matrix at weight percentages of 10 %, 20 % and 30 % for preparing ER/PET Char Powder (PCP composites. The effect of PET char powder on the elastic properties of ER/PCP composites were investigated by ultrasonic pulse-echo method. According to the obtained results, the composition ratio of 80:20 is the most appropriate composition ratio, which gave the highest elastic constants values for ER/PCP composites. On the other hand, the best electrical conductivity value was obtained for 70:30 composition ratio. It was observed that ultrasonic shear wave velocity correlated more perfectly than any other parameters with hardness.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12190

  16. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  17. Dynamic tensile tests with superimposed ultrasonic oscillations for stainless steel type 321 at room temperature

    International Nuclear Information System (INIS)

    Schinke, B.; Malmberg, T.

    1987-01-01

    In recent years various containment codes for Fast Breeder Reactor accidents have been assessed by comparison with explosion tests in water-filled vessels (COVA experiments). Common to the various codes, a systematic underestimation of the circumferential vessel strains was found. In the COVA tests high frequency pressure oscillations in the ultrasonic range were observed and thus it has been conjectured that the phenomenon of ''acoustic softening'' might be relevant in explaining the discrepancies in the strains. To validate this conjecture a hydro-pneumatic tensile test apparatus was developed which allows dynamic tensile testing at room temperature with and without superimposed ultrasonic oscillations. The dynamic tensile tests on the COVA sheet material (stainless steel AISI 321) without ultrasonic insonation show a linear dependence of the flow stress on the logarithm of the strain rate. The results at low strain rates (10 -3 s -1 ) agree favourably with previous measurements but at high rates (50 s -1 ) at 20% lower flow stress is observed. The dynamic tensile tests with continuous and intermittent insonation show the phenomenon of ''acoustic softening'': The average flow stress is reduced by an amount of about half the oscillating amplitude. At high strain rates the reduction is less. A severe ''acoustic softening'' observed by several authors for various metals at low strain rates was not observed. The experimental results were compared with the theory of the superpositon mechanism assuming a rate-independent elastic-plastic and an elastic-viscoplastic constitutive model. Although the rate-independent model is capable to predict qualitatively some of the observed effects, a better description is obtained with the viscoplastic model. The conclusion is that the ''acoustic softening'' of the COVA material is far too small to explain the discrepancies between measured and computed strains found in the containment code validation studies. (orig.)

  18. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  19. Effect of Stone Size and Composition on Ultrasonic Propulsion Ex Vivo.

    Science.gov (United States)

    Janssen, Karmon M; Brand, Timothy C; Bailey, Michael R; Cunitz, Bryan W; Harper, Jonathan D; Sorensen, Mathew D; Dunmire, Barbrina

    2018-01-01

    To evaluate in more detail the effectiveness of a new designed more efficient ultrasonic propulsion for large stones and specific stone compositions in a tissue phantom model. In the first clinical trial of noninvasive ultrasonic propulsion, urinary stones of unknown compositions and sizes up to 10 mm were successfully repositioned. The study included 8- to 12-mm stones of 4 different primary compositions (calcium oxalate monohydrate, ammonium acid urate, calcium phosphate, and struvite) and a renal calyx phantom consisting of a 12 mm × 30 mm well in a 10-cm block of tissue-mimicking material. Primary outcome was the number of times a stone was expelled over 10 attempts, with ultrasonic propulsion burst duration varying from 0.5 seconds to 5 seconds. Overall success rate at expelling stones was 95%. All calcium oxalate monohydrate and ammonium acid urate stones were expelled 100% of the time. The largest stone (12 mm) became lodged within the 12-mm phantom calyx 25% of the time regardless of the burst duration. With the 0.5-second burst, there was insufficient energy to expel the heaviest stone (0.88 g), but there was sufficient energy at the longer burst durations. With a single burst, ultrasonic propulsion successfully moved most stones at least 3 cm and, regardless of size or composition, expelled them from the calyx. Ultrasonic propulsion is limited to the stones smaller than the calyceal space, and for each burst duration, related to maximum stone mass. Published by Elsevier Inc.

  20. Hardware Development of Ultrasonic Tomography for Composition Determination of Water and Oil Flow

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2007-01-01

    Full Text Available A monitoring system for water and oil flow using ultrasonic Tomography is implemented. Information such as the type of flow, the composition of the water and oil can be obtained from the system. The composition of the flow is determined based on the propagation time of the ultrasonic waves. The ultrasonic Tomography system includes the sensors fixture design, signal conditioning circuits and image reconstruction software. The image reconstruction algorithm that used is the Linear Back Projection (LBP algorithm.

  1. Ultrasonic grinding method

    International Nuclear Information System (INIS)

    Miyahara, Shuji.

    1990-01-01

    An ultrasonic generator and a liquid supply nozzle are opposed to an object to be ground and a pump is started in this state to supply an organic solvent. Matters to be decontaminated which adheres to the surface of the object to be ground and are difficult to be removed by a mere mechanical removing method can be eliminated previously by the surface active effect of the organic solvent such as ethanol prior to the oscillation of the ultrasonic generator. Subsequently, when the ultrasonic generator is oscillated, scales in the floated state can be removed simply. Further, since the organic solvent can penetrate to provide the surface active effect even in such a narrow portion that the top end of the ultrasonic generator is difficult to the intruded at the surface of the object to be ground, the decontaminating treatment can be applied also to such a narrow portion. (T.M.)

  2. Elastic moduli of boron carbide/copper composites from -400C to 8000C by ultrasonic methods

    International Nuclear Information System (INIS)

    Gieske, J.H.

    1980-10-01

    An ultrasonic through-transmission technique for high attenuating materials was developed to determine the ultrasonic longitudinal and shear velocities in B 4 C/Cu composites to 800 0 C. Ultrasonic velocity data was used to calculate Young's modulus, shear modulus, and Poisson's ratio for the composites from -40 0 C to 800 0 C. 5 figures, 1 table

  3. Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models.

    Science.gov (United States)

    Macedo, R G; Verhaagen, B; Fernandez Rivas, D; Gardeniers, J G E; van der Sluis, L W M; Wesselink, P R; Versluis, M

    2014-01-01

    Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet fully elucidated. Using sensitive equipment, the sonoluminescence (SL) and sonochemiluminescence (SCL) around these files have been measured in this study, showing that cavitation occurs even at very low power settings. Luminol photography and high-speed visualizations provided information on the spatial and temporal distribution of the cavitation bubbles. A large bubble cloud was observed at the tip of the files, but this was found not to contribute to SCL. Rather, smaller, individual bubbles observed at antinodes of the oscillating file with a smaller amplitude were leading to SCL. Confinements of the size of bovine and human root canals increased the amount of SL and SCL. The root canal models also showed the occurrence of air entrainment, resulting in the generation of stable bubbles, and of droplets, near the air-liquid interface and leading eventually to a loss of the liquid. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Using Ultrasonic Lamb Waves To Measure Moduli Of Composites

    Science.gov (United States)

    Kautz, Harold E.

    1995-01-01

    Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.

  5. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  6. Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg{sub 2}Si/Al composite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jixing, E-mail: linjixing@163.com [Department of Material Engineering, Zhejiang Industry & Trade Vocational College, Wenzhou 325003 (China); College of Materials Science and Engineering, Jilin University, Changchun 130000 (China); Bai, Guangzhu [Department of Material Engineering, Zhejiang Industry & Trade Vocational College, Wenzhou 325003 (China); School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Liu, Zheng [School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Niu, Liyuan [Department of Material Engineering, Zhejiang Industry & Trade Vocational College, Wenzhou 325003 (China); Li, Guangyu [College of Materials Science and Engineering, Jilin University, Changchun 130000 (China); Wen, Cuie [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2016-08-01

    In situ Mg{sub 2}Si/Al composites are receiving increasing attention for industrial applications because of their inherently stable interfaces, light weight, excellent combination of mechanical properties and low processing costs. The composite is formed through in situ nucleation and growth of a reinforcing phase Mg{sub 2}Si from the parent matrix during solidification. In this study, we report the effect of ultrasonic stirring with different times on the solidification structure and mechanical properties of in situ Mg{sub 2}Si/Al composites. X-ray diffraction analysis, optical microscopy and scanning electron microscopy were used to analyze the microstructural evolution of the composites. The mechanical properties of the composites were tested by using hardness and tensile testers. Our results showed that 40 s ultrasonic stirring resulted in the optimal impact on the refining both the primary and eutectic Mg{sub 2}Si particles and improving the shapes of the primary Mg{sub 2}Si particles. The composites with 40 s ultrasonic stirring exhibited simultaneously enhanced tensile strength and elongation and the tensile fracture morphology was shown to be quasi-cleavage with a large number of dimples. This study proves that ultrasonic stirring is effective in degassing, removal of impurities, refining, and improving the shapes of the reinforcing phase, leading to significantly enhance the mechanical performance of the composites. - Highlights: • Ultrasonic technique shows excellent impact during Al composite processing. • Ultrasonic stirring improves the shapes of Mg{sub 2}Si particles with higher circularity. • Ultrasonic stirring results in an increase in the tensile strength of the composite. • Ultrasonic stirring leads to a significantly increased elongation of the composite. • Tensile fracture of composite with ultrasonic stirring shows more ductile features.

  7. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  8. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  9. Signal Processing Effects for Ultrasonic Guided Wave Scanning of Composites

    International Nuclear Information System (INIS)

    Roth, D.J.; Cosgriff, L.M.; Martin, R.E.; Burns, E.A.; Teemer, L.

    2005-01-01

    The goal of this ongoing work is to optimize experimental variables for a guided wave scanning method to obtain the most revealing and accurate images of defect conditions in composite materials. This study focuses on signal processing effects involved in forming guided wave scan images. Signal processing is involved at two basic levels for deriving ultrasonic guided wave scan images. At the primary level, NASA GRC has developed algorithms to extract over 30 parameters from the multimode signal and its power spectral density. At the secondary level, there are many variables for which values must be chosen that affect actual computation of these parameters. In this study, a ceramic matrix composite sample having a delamination is characterized using the ultrasonic guided wave scan method. Energy balance and decay rate parameters of the guided wave at each scan location are calculated to form images. These images are compared with ultrasonic c-scan and thermography images. The effect of the time portion of the waveform processed on image quality is assessed by comparing with images formed using the total waveform acquired

  10. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    Science.gov (United States)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  11. Ultrasonic signal analysis according to laser ultrasound generation position for the detection of delamination in composites

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyung Min; Choi In Young; Kim, Seong Jong; Kang, Young June [Chonbuk National University, Jeonju (Korea, Republic of); Lee, Gil Dong [GP Inc., Daejeon (Korea, Republic of)

    2015-11-15

    Carbon-fiber-reinforced plastic should be inspected in the fabrication process to enhance quality by preventing defects, such as delamination and voids. Conventional ultrasonic evaluation methods cannot be applied during the fabrication process because they require contact measurement by a transducer. Thus, an optical method using a laser was employed in this study for non-contact ultrasonic evaluation. Ultrasonic signals were generated by a pulsed laser and received by using a laser interferometer. First, an ultrasonic signal was generated from the back side of a material sample with artificial internal defects in the composite. The ultrasonic signal directed through the interior of the specimen was then detected at the front side. After determining the locations of the internal defects, the defects were quantitatively evaluated from the front side of the composite by using ultrasonic signal generation and reception.

  12. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  13. Enhanced Sonocatalytic Degradation of Rhodamine B by Graphene-TiO2 Composites Synthesized by an Ultrasonic-Assisted Method%Enhanced Sonocatalytic Degradation of Rhodamine B by Graphene-TiO2 Composites Synthesized by an Ultrasonic-Assisted Method

    Institute of Scientific and Technical Information of China (English)

    ZHU Lei; Trisha GHOSH; Chong-Yeon PARK; MENG Ze-Da; OH Won-Chun

    2012-01-01

    A series of graphene-TiO2 composites was fabricated from graphene oxide and titanium n-butoxide (TNB) by an ultrasonic-assisted method.The structure and composition of the nanocomposites were characterized by Raman spectroscopy,BET surface area measurements,X-ray diffraction,transmission electron microscopy,and ultraviolet-visible absorption spectroscopy.The average size of the TiO2 nanoparticles on the graphene nanosheets was controlled at around 10-15 nm without using surfactant,which is attributed to the pyrolysis and condensation of dissolved TNB into TiO2 by ultrasonic irradiation.The catalytic activity of the composites under ultrasonic irradiation was determined using a rhodamine B (RhB) solution.The graphene-TiO2 composites possessed a high specific surface area,which increased the decolorization rate for RhB solution.This is because the graphene and TiO2 nanoparticles in the composites interact strongly,which enhances the photoelectric conversion of TiO2 by reducing the recombination ofphotogenerated electron-hole pairs.

  14. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    Science.gov (United States)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR

  15. Effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel: An in vitro study.

    Science.gov (United States)

    Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo

    2018-04-01

    To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (Pspot lesion compared with sound enamel, and this group differed significantly from the ST1 group (Pspot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.

  16. 3-D printed composites with ultrasonically arranged complex microstructure

    Science.gov (United States)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-04-01

    This paper demonstrates the efficacy of implementing ultrasonic manipulation within a modified form of stereolithographic 3D printing to form complex microstructures in printed components. Currently 3D printed components are limited both in terms of structural performance and specialised functionality. This study aims to demonstrate a novel method for 3D printing composite materials, by arranging microparticles suspended within a photocurable resin. The resin is selectively cured by a 3-axis gantry-mounted 405nm laser. Ultrasonic forces are used to arrange the microfibres into predetermined patterns within the resin, with unidirectional microfibre alignment and a hexagonal lattice structure demonstrated. An example of dynamic microstructure variation within a single print layer is also presented.

  17. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    Science.gov (United States)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  18. Ultrasonic techniques for repair of aircraft structures with bonded composite patches

    Science.gov (United States)

    Smith, S. H.; Senapati, N.; Francini, R. B.

    1994-01-01

    This is a paper on a research and development project to demonstrate a novel ultrasonic process for the field application of boron/epoxy (B/Ep) patches for repair of aircraft structures. The first phase of the project was on process optimization and testing to develop the most practical ultrasonic processing techniques. Accelerated testing and aging behavior of precured B/Ep patches, which were ultrasonically bonded to simulated B-52 wing panel assemblies, were performed by conducting flight-by-flight spectrum loading fatigue tests. The spectrum represented 2340 missions/flights or 30 years of service. The effects of steady-state applied temperature and prior exposure of the B/Ep composite patches were evaluated. Representative experimental results of this phase of the project are presented.

  19. Simulation and fabrication of 0-3 composite PZT films for ultrahigh frequency (100-300 MHz) ultrasonic transducers

    Science.gov (United States)

    Chen, Xiaoyang; Fei, Chunlong; Chen, Zeyu; Chen, Ruimin; Yu, Ping; Chen, Zhongping; Shung, K. Kirk; Zhou, Qifa

    2016-03-01

    This paper presents simulation, fabrication, and characterization of single-element ultrahigh frequency (100-300-MHz) needle ultrasonic transducers based on 0-3 composite Pb(Zr0.52Ti0.48)O3 (PZT) films prepared by using composite ceramic sol-gel film and sol-infiltration technique. The center frequency of the developed transducer at 300-MHz was the highest frequency of PbTiO3 ceramic-based ultrasonic transducers ever reported. Furthermore, a brief description of the composite model was followed by the development of a new expression for predicting the longitudinal velocity, the clamped dielectric constant, and the complex electromechanical coupling coefficient kt of these films, which is very important in ultrasonic transducer design. Moreover, these parameters are difficult to obtain by measuring the frequency dependence of impedance and phase angle because of the weak signal of the previous 0-3 composite films transducer (>100 MHz). The modeling results show that the Cubes model with a geometric factor n = 0.05 fits well with the measured data. This model will be helpful for developing the 0-3 composite systems for ultrahigh frequency ultrasonic transducer design.

  20. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  1. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.

    Science.gov (United States)

    Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R

    2018-02-01

    This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  3. The effects of ultrasonic solidification on aluminum

    OpenAIRE

    Đorđević Slavko 1

    2003-01-01

    The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  4. The effects of ultrasonic solidification on aluminum

    Directory of Open Access Journals (Sweden)

    Đorđević Slavko 1

    2003-01-01

    Full Text Available The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  5. A comparative study on the property determination of metal matrix composites using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1997-01-01

    Ultrasonic and eddy current methods were developed for the quantitative determination of material properties in particulate reinforced metal matrix composites. The proposed techniques employed measurements of ultrasonic velocity and eddy current conductivity, together with theoretical models which relate the effective anisotropic properties of the composites to their microstructures. The approach was used for a wide range of SiC particulate reinforced Al matrix(SiC p /Al) composites to estimate the particulate volume fractions of the composites. The SiC p volume fraction was calculated by coupling the measured velocity and conductivity with their corresponding model predictions. Both methods were shown to be reliable in determining the reinforcement volume fractions. However, the ultrasonic method was found to be better than the eddy current method, since the electrical conductivity was sensitive to the presence of intermetallic compounds formed during processing stage.

  6. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    Science.gov (United States)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  7. Ultrasonic and dielectric studies of polymer PDMS composites with ZnO and onion-like carbons nanoinclusions

    International Nuclear Information System (INIS)

    Samulionis, V; Macutkevic, J; Banys, J; Belovickis, J; Shenderova, O

    2015-01-01

    The ultrasonic and dielectric temperature investigations were performed in polydi- methylsiloxane (PDMS) with zinc oxide (ZnO) and onion-like carbon (OLC) nanocomposites. In the glass transition region, the ultrasonic velocity dispersion and large ultrasonic attenuation maxima were observed. The positions of ultrasonic attenuation peaks were slightly shifted to higher temperatures after doping PDMS with OLC and ZnO nanoparticles. The ultrasonic relaxation was compared to that of dielectric and such behaviour was described by Vogel- Fulcher law. The upshift of the glass transition temperature with addition of nanoparticles was confirmed by both methods. The additional increase of ultrasonic attenuation in composites doped with OLC and ZnO was observed at room temperature and such behaviour we attributed to ultrasound-nanofiller interaction in polymer matrix. (paper)

  8. Ultrasonic and dielectric studies of polymer PDMS composites with ZnO and onion-like carbons nanoinclusions

    Science.gov (United States)

    Samulionis, V.; Macutkevic, J.; Banys, J.; Belovickis, J.; Shenderova, O.

    2015-07-01

    The ultrasonic and dielectric temperature investigations were performed in polydi- methylsiloxane (PDMS) with zinc oxide (ZnO) and onion-like carbon (OLC) nanocomposites. In the glass transition region, the ultrasonic velocity dispersion and large ultrasonic attenuation maxima were observed. The positions of ultrasonic attenuation peaks were slightly shifted to higher temperatures after doping PDMS with OLC and ZnO nanoparticles. The ultrasonic relaxation was compared to that of dielectric and such behaviour was described by Vogel- Fulcher law. The upshift of the glass transition temperature with addition of nanoparticles was confirmed by both methods. The additional increase of ultrasonic attenuation in composites doped with OLC and ZnO was observed at room temperature and such behaviour we attributed to ultrasound-nanofiller interaction in polymer matrix.

  9. Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds

    NARCIS (Netherlands)

    Viegas Ochoa de Carvalho, Pedro; Fernandez Villegas, I.; Groves, R.M.; Benedictus, R.

    2016-01-01

    Ultrasonic welding is a very promising technique for joining thermoplastic composite (TpC) components in aircraft primary structures [1, 2]. The potential introduction of new lightweight structures in civil aviation has been driving the change towards condition-based maintenance (CBM) as an

  10. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  11. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  12. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    Science.gov (United States)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  13. Theoretical assessment of different ultrasonic configurations for defects detection in composite components

    DEFF Research Database (Denmark)

    Kappatos, Vassilios; Asfis, Georgios; Salonitis, Konstantinos

    2017-01-01

    physical models representative of laminated Carbon Fiber Reinforced Polymer (CFRP) composites, consisting of a variety of artificial delamination defect modes (different sizes and depth), were numerically tested. Different ultrasonic configurations on both the positioning and the firing of the probe...

  14. Ultrasonic Transducer Fabricated Using Lead-Free BFO-BTO+Mn Piezoelectric 1-3 Composite

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2015-05-01

    Full Text Available Mn-doped 0.7BiFeO3-0.3BaTiO3 (BFO-0.3BTO+Mn 1% mol lead-free piezoelectric ceramic were fabricated by traditional solid state reaction. The phase structure, microstructure, and ferroelectric properties were investigated. Additionally, lead-free 1–3 composites with 60% volume fraction of BFO-BTO+Mn ceramic were fabricated for ultrasonic transducer applications by a conventional dice-and-fill method. The BFO-BTO+Mn 1-3 composite has a higher electromechanical coupling coefficient (kt = 46.4% and lower acoustic impedance (Za ~ 18 MRayls compared with that of the ceramic. Based on this, lead-free piezoelectric ceramic composite, single element ultrasonic transducer with a center frequency of 2.54 MHz has been fabricated and characterized. The single element transducer exhibits good performance with a broad bandwidth of 53%. The insertion loss of the transducer was about 33.5 dB.

  15. Modeling of ultrasonic processes utilizing a generic software framework

    Science.gov (United States)

    Bruns, P.; Twiefel, J.; Wallaschek, J.

    2017-06-01

    Modeling of ultrasonic processes is typically characterized by a high degree of complexity. Different domains and size scales must be regarded, so that it is rather difficult to build up a single detailed overall model. Developing partial models is a common approach to overcome this difficulty. In this paper a generic but simple software framework is presented which allows to coupe arbitrary partial models by slave modules with well-defined interfaces and a master module for coordination. Two examples are given to present the developed framework. The first one is the parameterization of a load model for ultrasonically-induced cavitation. The piezoelectric oscillator, its mounting, and the process load are described individually by partial models. These partial models then are coupled using the framework. The load model is composed of spring-damper-elements which are parameterized by experimental results. In the second example, the ideal mounting position for an oscillator utilized in ultrasonic assisted machining of stone is determined. Partial models for the ultrasonic oscillator, its mounting, the simplified contact process, and the workpiece’s material characteristics are presented. For both applications input and output variables are defined to meet the requirements of the framework’s interface.

  16. Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures

    Science.gov (United States)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  17. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    International Nuclear Information System (INIS)

    Boubenia, R; Rosenkrantz, E; P, P; Ferrandis, J-Y; Despetis, F

    2016-01-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten). (paper)

  18. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    Science.gov (United States)

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    Science.gov (United States)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  20. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  1. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  2. Broadband and High Sensitive Time-of-Flight Diffraction Ultrasonic Transducers Based on PMNT/Epoxy 1–3 Piezoelectric Composite

    Directory of Open Access Journals (Sweden)

    Dongxu Liu

    2015-03-01

    Full Text Available 5–6 MHz PMNT/epoxy 1–3 composites were prepared by a modified dice-and-fill method. They exhibit excellent properties for ultrasonic transducer applications, such as ultrahigh thickness electromechanical coupling coefficient kt (85.7%, large piezoelectric coefficient d33 (1209 pC/N, and relatively low acoustic impedance Z (1.82 × 107 kg/(m2·s. Besides, two types of Time-of-Flight Diffraction (TOFD ultrasonic transducers have been designed, fabricated, and characterized, which have different matching layer schemes with the acoustic impedance of 4.8 and 5.7 × 106 kg/(m2·s, respectively. In the detection on a backwall of 12.7 mm polystyrene, the former exhibits higher detectivity, the relative pulse-echo sensitivity and −6 dB relative bandwidth are −21.93 dB and 102.7%, respectively, while the later exhibits broader bandwidth, the relative pulse-echo sensitivity and −6 dB relative bandwidth are −24.08 dB and 117.3%, respectively. These TOFD ultrasonic transducers based on PMNT/epoxy 1–3 composite exhibit considerably improved performance over the commercial PZT/epoxy 1–3 composite TOFD ultrasonic transducer.

  3. Recent Development in Ultrasonic Guided Waves for Aircraft and Composite Materials

    International Nuclear Information System (INIS)

    Rose, Joseph L.

    2009-01-01

    Emphasis in the paper is placed on describing guided wave successes and challenges for applications in aircraft and composite materials inspection. Guided wave imaging methods discussed includes line of sight, tomography, guided wave C-scan, phased array, and ultrasonic vibration methods. Applications outlined encircles lap splice, bonded repair patch, fuselage corrosion, water loaded structures, delamination, and ice detection and de-icing of various structures.

  4. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring

    International Nuclear Information System (INIS)

    Chen, H Y; Lv, J T; Zhang, S Q; Zhang, L G; Li, J

    2005-01-01

    At the present time, the ultrasonic Doppler measuring means has been extensively used in the human body's bloodstream speed measuring. The ultrasonic Doppler measuring means can achieve the measuring of liquid flux by detecting Doppler frequency shift of ultrasonic in the process of liquid spread. However, the detected sound wave is a weak signal that is flooded in the strong noise signal. The traditional measuring method depends on signal-to-noise ratio. Under the very low signal-to-noise ratio or the strong noise signal background, the signal frequency is not measured. This article studied on chaotic movement of Duffing oscillator and intermittent chaotic characteristic on chaotic oscillator of Duffing equation. In the light of the range of the bloodstream speed of human body and the principle of Doppler shift, the paper determines the frequency shift range. An oscillator array including many oscillators is designed according to it. The reflected ultrasonic frequency information can be ascertained accurately by the intermittent chaos quality of the oscillator. The signal-to-noise ratio of -26.5 dB is obtained by the result of the experiment. Compared with the tradition the frequency method compare, the dependence to signal-to-noise ratio is lowered consumedly. The measuring precision of the bloodstream speed is heightened

  5. Ultrasonic defect detection method for socket welding joint

    International Nuclear Information System (INIS)

    Tominaga, Masaaki; Matsuo, Toshiyuki; Ueno, Akihiro; Watanabe, Kunimichi; Kawamata, Kunio.

    1995-01-01

    The present invention provides a method of detecting defects over a wide range of a socket weld portion of various kinds of pipelines used, for example, in a nuclear power plant. Namely, an inclined probe is disposed to a jig for detecting defects by ultrasonic waves. This is rotated at least by one turn along the peripheral surface of the material to be detected such as weld tube joints. Defects of weld portion of the material can be detected automatically by using ultrasonic waves during the rotation. The inclined probe for detecting defects by ultrasonic waves comprises a transmission portion having a planar transmittance oscillator disposed to a wedge on the transmission side and a receiving portion comprising a planar receiving oscillator disposed to a wedge on the receiving side. With such a constitution, ultrasonic waves are emitted from the transmission portion to the defect detection portion in the welded portion. If a defect is present, defective echo is reflected to the receiving portion disposed ahead of the probe. Since the defective echo changes depending on the height of the detective portion, the estimation of the height of the defect can be facilitated. (I.S.)

  6. Non-destructive Inspection of Multi-layered Composite Using Ultrasonic Signal Processing

    International Nuclear Information System (INIS)

    Ng, S C; Ismail, N; Ali, Aidy; Sahari, Barkawi; Yusof, J M; Chu, B W

    2011-01-01

    Composites exhibit higher strength and stiffness, better design practice and greater corrosion resistance compare to metal material. However, composites are susceptible to impact damage and the typical damage behaviour in the laminated composites is fibre-breakage and delamination. Detection of failure in laminated composites is complicated compared with ordinary non-destructive testing for metal materials as they are sensitive to echoes drown in noise due to the properties of the constituent materials and the multi-layered structure of the composites. In the current study, the detection of failure in multi-layered composite materials is investigated. To obtain a high probability of defect detection in composite materials, signal processing algorithms were used to resolve echoes associated with defects in glass fibre-reinforced plastics (GRP) detected by using ultrasonic testing. Pulse-echo method with single transducer was used to transmit and receive ultrasound. The obtained signals were processed to reduce noise and to extract suitable features. Results were validated on GRP with and without defects in order to demonstrate the feasibility of the method on defect detection in composites.

  7. Effect of Ultrasonic Versus Manual Cementation on the Fracture Strength of Resin Composite Laminates

    NARCIS (Netherlands)

    Ozcan, M.; Mese, A.

    2009-01-01

    This study evaluated the effect of conventional versus ultrasonic cementation techniques on the fracture strength of resin composite laminates. In addition, the failure modes were assessed. Window-type preparations I mm above the cemento-enamel junction were made on intact human maxillary central

  8. Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement

    International Nuclear Information System (INIS)

    Park, Y. H.; Choi, W. C.; Koo, J. H.; Song, M. G.; Ju, E. S.

    2000-01-01

    Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement were carried out according to the angle of the ultrasonic oscillator, materials of the reflector and each section when ultrasonic is reflected several times. Angles of the ultrasonic oscillator such as 30 deg., 45 .deg., 60 .deg., 90 .deg., 120 .deg., 135 .deg. and 150 .deg. were selected, and turbulent intensities were compared at Reynolds No. 2,000 and 4,000. Materials of the reflector such as wood, acryl, iron and glass were selected, and time mean velocity vector and turbulent intensity were compared at Reynolds No. 4,000. The zone which was observed was selected from first section to fourth section when ultrasonic was reflected several times. Every data such as time mean velocity vector and time mean turbulent intensity which was obtained by PIV measurement was examined, compared and discussed at Reynolds No. 2,000 and 4,000 to know the degree of turbulence enhancement in each case

  9. Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite joints

    Science.gov (United States)

    Ochôa, Pedro; Fernandez Villegas, Irene; Groves, Roger M.; Benedictus, Rinze

    2018-01-01

    One of the advantages of thermoplastic composites relative to their thermoset counterparts is the possibility of assembling components through welding. Ultrasonic welding in particular is very promising for industrialization. However, uncertainty in the fatigue and fracture behaviour of composites is still an obstacle to the full utilisation of these materials. Health monitoring is then of vital importance, and Lamb wave techniques have been widely recognised as some of the most promising approaches for that end. This paper presents the first experimental study about the influence of welding travel on the transmission of Lamb waves across ultrasonically welded thermoplastic composite joints in single-lap configuration. The main aim of this research is to start to understand how guided waves interact with the internal structure of ultrasonic welds, so that benign, manufacturing-related structural features can be distinguished from damaging ones in signal interpretation. The power transmission coefficient and the correlation coefficient proved to be suitable for analysing the wave propagation phenomena, allowing quantitative identification of small variations of weld-line thickness and intermolecular diffusion at the weld interface. The conclusions are used to develop a tentative damage detection criterion which can later on assist the design of a Lamb wave based structural health monitoring system for thermoplastic composite structures. The Lamb wave test results are backed up by phased-array inspections, which also provide some extra insight on the internal structure of ultrasonic welds.

  10. Guided waves and ultrasonic characterization of three-dimensional composites

    Science.gov (United States)

    Leymarie, Nicolas; Baste, Stéphane

    2000-05-01

    Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.

  11. Ultrasonic Ranging System With Increased Resolution

    Science.gov (United States)

    Meyer, William E.; Johnson, William G.

    1987-01-01

    Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.

  12. Determination of the properties of composite interfaces by an ultrasonic method

    Energy Technology Data Exchange (ETDEWEB)

    Mal, A K; Karim, M R [Dept. of Mechanical, Aerospace and Nuclear Engineering, School of Engineering and Applied Science, Univ. of California, Los Angeles (USA); Bar-Cohen, Y [Douglas Aircraft Co., McDonnell Douglas Corp., Long Beach, CA (USA)

    1990-06-15

    The feasibility of using a recently developed ultrasonic technique to determine certain macroscopic properties of the interface zones of composite laminates is studied. The strong influence of the elastic properties and the thickness of the interface zone on the phase velocity of guided waves is demonstrated by means of a simple model of a single fiber embedded in a layer of the matrix material. The overall dynamic elastic moduli of a unidirectional graphite-epoxy composite laminate are determined through inversion of guided wave dispersion data obtained by the leaky Lamb wave experiment. The thickness and elastic properties of the interlaminar interface zone in a cross-ply graphite-epoxy laminate are also estimated by the same approach. (orig.).

  13. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor

    Science.gov (United States)

    Deng, Shi-ting; Yu, Hong; Liu, Di; Bi, Yong-guang

    2017-10-01

    To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.

  14. Optimization design and application of composite ultrasonic extraction method for effective constituents of green tea

    Directory of Open Access Journals (Sweden)

    Cheng-Chi Wang

    2015-12-01

    Full Text Available A composite ultrasonic process is used to extract five constituent components of green tea, namely caffeine, catechin, epigallocatechin gallate, epicatechin, and chlorogenic acid. The optimal parameters of the extraction process are determined using the robust Taguchi design method. The extracted products are analyzed using gas chromatography and high-performance liquid chromatography. The experimental results confirm the effectiveness of the proposed ultrasonic technique in extracting the components of interest. Moreover, it is shown that the optimal extraction parameters depend on the particular component. In general, the present findings provide a useful reference for further research on the processing of green tea.

  15. Disk Refining and Ultrasonication Treated Sugarcane Bagasse Residues for Poly(Vinyl Alcohol) Bio-composites

    Science.gov (United States)

    Qingzheng Cheng; Zhaohui Tong; Luisa Dempere; Lonnie Ingram; Letian Wang; J.Y. Zhu

    2013-01-01

    Disk refining and ultrasonication treated sugarcane bagasse residues reclaimed from the waste stream of a simplified bioethanol process after fermentation were used to fabricate biobased composites with poly(vinyl alcohol) (PVA) by film casting. The morphologies and the size distributions of residue particles were characterized by scanning electronic microscopy and...

  16. Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method

    International Nuclear Information System (INIS)

    Narasimha Murthy, I.; Venkata Rao, D.; Babu Rao, J.

    2012-01-01

    Highlights: ► Nano structured fly ash has been produced by 30 h milling time. ► Al–fly ash nano composites were produced by ultrasonic cavitation route. ► A homogeneous distribution of nano fly ash particles was observed in the matrix. ► No additional contamination in the nano composites from the atmosphere. ► Presence of nano fly ash leads to improvement in the strength of the composites. -- Abstract: In this paper an attempt has been made to modify the micro sized fly ash into nano structured fly ash using high energy ball mill. Ball milling was carried out for the total duration of 30 h. The sample was taken out after every 5 h of milling for characterizing. The nano structured fly ash was characterized for its crystallite size and lattice strain by using X-ray diffractometer. It was found that a steady decrease in the crystallite size and increased lattice strain was observed with milling time; the crystallite size at 30 h milling time was found to be 23 nm. The fresh fly ash particles are mostly spherical in shape; whereas the shape of the 30 h milled fly ash particles is irregular and the surface morphology is rough. Al–fly ash nano composites were produced by ultrasonic cavitation route successfully. Scanning electron microscopy images of nano composites reveal a homogeneous distribution of the nano fly ash particles in the AA 2024 matrix. Energy dispersive spectroscopy analysis of nano composites reveals that the fabricated nano composite did not contain any additional contamination from the atmosphere. As the amount of nano fly ash is increasing the hardness of the composite also increasing. The nano fly ash addition leads to improvement in the compression strength of the composites.

  17. Dispersed Sensing Networks in Nano-Engineered Polymer Composites: From Static Strain Measurement to Ultrasonic Wave Acquisition

    Directory of Open Access Journals (Sweden)

    Yehai Li

    2018-05-01

    Full Text Available Self-sensing capability of composite materials has been the core of intensive research over the years and particularly boosted up by the recent quantum leap in nanotechnology. The capacity of most existing self-sensing approaches is restricted to static strains or low-frequency structural vibration. In this study, a new breed of functionalized epoxy-based composites is developed and fabricated, with a graphene nanoparticle-enriched, dispersed sensing network, whereby to self-perceive broadband elastic disturbance from static strains, through low-frequency vibration to guided waves in an ultrasonic regime. Owing to the dispersed and networked sensing capability, signals can be captured at any desired part of the composites. Experimental validation has demonstrated that the functionalized composites can self-sense strains, outperforming conventional metal foil strain sensors with a significantly enhanced gauge factor and a much broader response bandwidth. Precise and fast self-response of the composites to broadband ultrasonic signals (up to 440 kHz has revealed that the composite structure itself can serve as ultrasound sensors, comparable to piezoceramic sensors in performance, whereas avoiding the use of bulky cables and wires as used in a piezoceramic sensor network. This study has spotlighted promising potentials of the developed approach to functionalize conventional composites with a self-sensing capability of high-sensitivity yet minimized intrusion to original structures.

  18. Nanocellulose Composite Materials Synthesizes with Ultrasonic Agitation

    Science.gov (United States)

    Kidd, Timothy; Folken, Andrew; Fritch, Byron; Bradley, Derek

    We have extended current techniques in forming nanocellulose composite solids, suspensions and aerogels to enhance the breakdown of cellulose into its molecular components. Using only mechanical processing which includes ball milling, using a simple mortar and pestle, and ultrasonic agitation, we are able to create very low concentration uniform nanocellulose suspensions in water, as well as incorporate other materials such as graphite, carbon nanotubes, and magnetic materials. Of interest is that no chemical processing is necessary, nor is the use of nanoparticles, necessary for composite formation. Using both graphite and carbon nanotubes, we are able to achieve conducting nanocellulose solids and aerogels. Standard magnetic powder can also be incorporated to create magnetic solids. The technique also allows for the creation of an extremely fine nanocellulose suspension in water. Using extremely low concentrations, less than 1% cellulose by mass, along with careful control over processing parameters, we are able to achieve highly dilute, yet homogenous nanocellulose suspensions. When air dried, these suspensions have similar hardness and strength properties to those created with more typical starting cellulose concentrations (2-10%). However, when freeze-dried, these dilute suspensions form aerogels with a new morphology with much higher surface area than those with higher starting concentrations. We are currently examining the effect of this higher surface area on the properties of nanocellulose aerogel composites and how it influences the impact of incorporating nanocellulose into other polymer materials.

  19. Fabrication of metal-matrix composites and adaptive composites using ultrasonic consolidation process

    International Nuclear Information System (INIS)

    Kong, C.Y.; Soar, R.C.

    2005-01-01

    Ultrasonic consolidation (UC) has been used to embed thermally sensitive and damage intolerant fibres within aluminium matrix structures using high frequency, low amplitude, mechanical vibrations. The UC process can induce plastic flow in the metal foils being bonded, to allow the embedding of fibres at typically 25% of the melting temperature of the base metal and at a fraction of the clamping force when compared to fusion processes. To date, the UC process has successfully embedded Sigma silicon carbide (SiC) fibres, shape memory alloy wires and optical fibres, which are presented in this paper. The eventual aim of this research is targeted at the fabrication of adaptive composite structures having the ability to measure external stimuli and respond by adapting their structure accordingly, through the action of embedded active and passive functional fibres within a freeform fabricated metal-matrix structure. This paper presents the fundamental studies of this research to identify embedding methods and working range for the fabrication of adaptive composite structures. The methods considered have produced embedded fibre specimens in which large amounts of plastic flow have been observed, within the matrix, as it is deformed around the fibres, resulting in fully consolidated specimens without damage to the fibres. The microscopic observation techniques and macroscopic functionality tests confirms that the UC process could be applied to the fabrication of metal-matrix composites and adaptive composites, where fusion techniques are not feasible and where a 'cold' process is necessary

  20. Ultrasonic osteotome: A cutting edge technology, our experience in 96 patients

    Directory of Open Access Journals (Sweden)

    V Velho

    2014-01-01

    Full Text Available Background: The ultrasonic osteotome is a tissue-specific device that allows the surgeon to make precise osteotomies while protecting collateral or adjacent soft tissue structures. The recurring impacts pulverize the noncompliant crystalline structure resulting in a precise cut. The more compliant adjacent soft tissue is not affected by the ultrasonic oscillation. Objective: The purpose of this study is to present our experience of using this technology in osteotomies. Materials and Methods: We reviewed 96 patients, both male and female; of different ages in which ultrasonic osteotome was used to perform an osteotomy of different manners (Craniotomy, laminotomy, facetectomy, etc.. Patients with head injury, spine injury, degenerative spine diseases, and brain tumors were included in this study. Results: In all these patients, the bone cut was even with minimal surrounding bone loss. The time required for the osteotomy was reduced to half. There was no damage to underlying dura, cord or nerve structures. Conclusions: Ultrasonic osteotome is a safe and effective ultrasonic bone cutting device that can be used to facilitate osteotomies in various types of cranial and spinal surgeries. This device allows precision bone cutting with minimal surrounding bone loss and obviates the risk associated with the use of high-speed burrs and oscillating saws.

  1. Standard Guide for Acousto-Ultrasonic Assessment of Composites, Laminates, and Bonded Joints

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide explains the rationale and basic technology for the acousto-ultrasonic (AU) method. Guidelines are given for nondestructive evaluation (NDE) of flaws and physical characteristics that influence the mechanical properties and relative strength of composite structures (for example, filament-wound pressure vessels), adhesive bonds (for example, joints between metal plates), and interlaminar and fiber/matrix bonds in man-made composites and natural composites (for example, wood products). 1.2 This guide covers technical details and rules that must be observed to ensure reliable and reproducible quantitative AU assessments of laminates, composites, and bonded structures. The underlying principles, prototype apparatus, instrumentation, standardization, examination methods, and data analysis for such assessments are covered. Limitations of the AU method and guidelines for taking advantage of its capabilities are cited. 1.3 The objective of AU is to assess subtle flaws and associated strength variations...

  2. Ultrasonic decontamination robot

    International Nuclear Information System (INIS)

    Patenaude, R.S.

    1984-01-01

    An ultrasonic decontamination robot removes radioactive contamination from the internal surface of the inlet and outlet headers, divider plate, tube sheet, and lower portions of tubes of a nuclear power plant steam generator. A programmable microprocessor controller guides the movement of a robotic arm mounted in the header manway. An ultrasonic transducer having a solvent delivery subsystem through which ultrasonic action is achieved is moved by the arm over the surfaces. A solvent recovery suction tube is positioned within the header to remove solvent therefrom while avoiding interference with the main robotic arm. The solvent composition, temperature, pressure, viscosity, and purity are controlled to optimize the ultrasonic scrubbing action. The ultrasonic transducer is controlled at a power density, frequency, and on-off mode cycle such as to optimize scrubbing action within the range of transducer-to-surface distance and solvent layer thickness selected for the particular conditions encountered. Both solvent and transducer control actions are optimized by the programmable microprocessor. (author)

  3. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ultrasonic Determination of the Elastic Constants of Epoxy-natural Fiber Composites

    Science.gov (United States)

    Valencia, C. A. Meza; Pazos-Ospina, J. F.; Franco, E. E.; Ealo, Joao L.; Collazos-Burbano, D. A.; Garcia, G. F. Casanova

    This paper shows the applications ultrasonic through-transmission technique to determine the elastic constants of two polymer-natural fiber composite materials with potential industrial application and economic and environmental advantages. The transversely isotropic coconut-epoxy and fique-epoxy samples were analyzed using an experimental setup which allows the sample to be rotated with respect to transducers faces and measures the time-of-flight at different angles of incidence. Then, the elastic properties of the material were obtained by fitting the experimental data to the Christoffel equation. Results show a good agreement between the measured elastic constants and the values predicted by an analytical model. The velocities as a function of the incidence angle are reported and the effect of the natural fiber on the stiffness of the composite is discussed.

  5. Parametric study of guided ultrasonic wave propagation in carbon-fiber composite plates

    Science.gov (United States)

    Ibrahim, N. A.; Kamarudin, M. A.; Jurimi, M. H. F. M.; Murat, B. I. S.

    2018-03-01

    The aim of this work is to study the guided ultrasonic wave (GUW) behaviour in composite plates using 3D Finite Element Analysis (FEA). Two types of composite models are chosen: plates with and without damage. The damage is modelled as a circular-shaped delamination inside the plate, representing one kind of low-velocity impact damage. Parameters such as excitation frequency, monitoring directivity, plate thickness, delamination size and shape were used to investigate the influence of these parameters on the GUW propagation and scattering behaviour. The models were constructed and coded in Matlab platform, while the simulations were performed in ABAQUS Explicit. From the results, the received signals have shown a strong dependency on the parameters. Significant scattering from the models with delamination were also observed, which indicates the possibility of using GUW for rapid non-destructive monitoring of composite panels and structures.

  6. Effects of sleeve gastrectomy on the composition and diurnal oscillation of gut microbiota related to the metabolic improvements.

    Science.gov (United States)

    Shao, Yikai; Shen, Qiwei; Hua, Rong; Evers, Simon S; He, Kai; Yao, Qiyuan

    2018-03-07

    Disruptions of the composition and diurnal oscillation of gut microbiota are involved in metabolic disorders. To identify alterations in both the composition and diurnal oscillation of gut microbiota after high-fat diet (HFD) feeding and sleeve gastrectomy (SG) related to host metabolic status. University laboratories. Twenty-one 6-week-old male C57 BL/6 J mice were randomized on an HFD (n = 14) or normal chow (NC, n = 7). After 14 weeks of feeding, HFD-induced obese mice were randomized to receive either SG or sham surgery (n = 7 in each group). Fecal samples were collected every 6 hours over a 24-hour period at 14 weeks of NC or HFD feeding and subsequently 8 weeks after surgery. The composition and diurnal oscillation of gut microbiota were characterized using next-generation Illumina sequencing of 16 S rDNA. HFD feeding led to adiposity, disrupted composition, and impaired diurnal oscillation of gut microbiota relative to NC. After surgery, SG mice had considerable weight loss, improved glucose tolerance, and insulin sensitivity compared with sham mice. SG restored the reduced richness and disruptions in the composition of gut microbiota. The diminished diurnal oscillation of gut microbiota was improved after SG. SG not only changed the disrupted composition of gut microbiota toward that of NC feeding, but also improved the dampened diurnal oscillation of gut microbiota due to HFD feeding. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  7. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  8. Ultrasonic inspection of composite hydrogen reservoirs using frequency diversity techniques

    International Nuclear Information System (INIS)

    Zellouf, D.; Goyette, J.; Massicotte, D.; Bose, T.K.

    2000-01-01

    During their service, cryogenic tanks are subjected to both hydrostatic and hygrothermic stresses. This can have as a consequence the initiation of the propagation of cracks within the structure of the material. Nevertheless, the analysis of ultrasonic signals collected during the inspection of composite materials must be dealt with carefully because of the presence of a strong background noise due to the reinforcement. This background noise results mostly from the interferences between the waves diffracted on the reinforcement. The target echo and the noise in which it is embedded both have the same frequency bandwidth. Thus we cannot use conventional linear filters to improve the signal-to-noise ratio

  9. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  10. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study.

    Science.gov (United States)

    Hossam, A Eid; Rafi, A Togoo; Ahmed, A Saleh; Sumanth, Phani Cr

    2013-06-01

    This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19.

  11. Applications research in ultrasonic testing of carbon fiber composite based on an optical fiber F-p sensor

    Science.gov (United States)

    Shan, Ning

    2016-10-01

    Carbon fiber composite is widely applied to the field of aerospace engineering because of its excellent performance. But it will be able to form more defects in the process of manufacturing inevitably on account of unique manufacturing process. Meanwhile it has sophisticated structure and services in the bad environment long time. The existence of defects will be able to cause the sharp decline in component's performance when the defect accumulates to a certain degree. So the reliability and safety test demand of carbon fiber composite is higher and higher. Ultrasonic testing technology is the important means used for characteristics of component inspection of composite materials. Ultrasonic information detection uses acoustic transducer generally. It need coupling agent and is higher demand for the surface of sample. It has narrow frequency band and low test precision. The extrinsic type optical fiber F-P interference cavity structure is designed to this problem. Its optical interference model is studied. The initial length of F-P cavity is designed. The realtime online detection system of carbon fiber composite is established based on optical fiber F-P Ultrasound sensing technology. Finally, the testing experiment study is conducted. The results show that the system can realize real-time online detection of carbon fiber composite's defect effectively. It operates simply and realizes easily. It has low cost and is easy to practical engineering.

  12. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    Science.gov (United States)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  13. Methodology of investigation of the effect of ultrasonic oscillations on mechanical properties of structural materials in a wide range of temperatures and strain rates

    International Nuclear Information System (INIS)

    Bakay, S.O.; Gurin, V.A.; Gurin, I.V.; Neklyudov, I.M.; Gorbatenko, V.M.; Netesov, V.M.; Dub, S.N.

    2007-01-01

    The present message is devoted to the description of a method of research of influence of ultrasound on physicomechanical properties of constructional materials during plastic deformation in vacuum. The functional diagram and the description of created experimental facility which allows to carry out researches by this method is resulted. The created method and the equipment it has been approved for studying influence of ultrasound on physicomechanical properties of carbon composite materials of nuclear industry. Mechanical properties of carbon - carbon composite materials are investigated in a range of temperatures from room up to 600 degree C, at various strain rates, in conditions of ultrasonic vibrations and without them. The analysis of results received is carried out at use of a method of mechanical tests of samples of carbon before ultrasonic processing on nanohardness. The comparative estimation of the received experimental data is resulted

  14. Improving tribological properties of (Zn–Ni)/nano Al{sub 2}O{sub 3} composite coatings produced by ultrasonic assisted pulse plating

    Energy Technology Data Exchange (ETDEWEB)

    Ataie, Sayed Alireza, E-mail: ataie_s_alireza@metaleng.iust.ac.ir; Zakeri, Alireza

    2016-07-25

    In this study pulse electroplating was used to deposit the composite coating of (Zn–Ni) strengthened by Al{sub 2}O{sub 3} nanoparticles on mild steel plate. The effect of Al{sub 2}O{sub 3} fraction and ultrasonic irradiation on the properties of the composite coating was also investigated. Scanning electron microscopy and energy dispersive spectroscopy techniques were employed to characterize the morphology and composition of the coating. Topography and surface roughness were investigated by atomic force microscopy. Also in order to evaluate the mechanical properties of the coating micro hardness and wear tests were conducted. It was found that coating hardness was increased from 538 HV to 750 HV and friction coefficient was decreased from 0.588 to 0.392. Results revealed that tribological properties of coating could be improved significantly by using suitable ultrasonic intensity simultaneously with pulse plating. - Highlights: • SEM indicated on the elimination of cracks and pores when ultrasounds were used. • XRD result showed nano sized grains of Zn–Ni matrix was developed in this research. • Simultaneous pulse plating and ultrasonic conditions improved the properties of the coating. • A (Zn–Ni)/nano alumina uniform composite coating for especial applications was developed. • Micro hardness and wear behavior of the coating was modified by intensifying the ultrasound.

  15. Incorporation of composite defects from ultrasonic NDE into CAD and FE models

    Science.gov (United States)

    Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh

    2017-02-01

    Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.

  16. Modelling of ultrasonic beam propagation from an array through transversely isotropic fibre reinforced composites using Multi Gaussian beams

    NARCIS (Netherlands)

    Anand, C.; Shroff, S.; Groves, R.M.; Benedictus, R.

    2017-01-01

    Ultrasonic arrays are used for non-destructive evaluation of structures for aerospace and other applications. With the increase in the usage of fibre-reinforced composites in aerospace structures, this evaluation becomes complex due to the effects of attenuation and reflection from the layer

  17. Ultrasonic test of carbon composite/copper joints in the ITER divertor

    International Nuclear Information System (INIS)

    Roccella, S.; Cacciotti, E.; Candura, D.; Mancini, A.; Pizzuto, A.; Reale, A.; Tatì, A.; Visca, E.

    2013-01-01

    Highlights: • ENEA developed and tested a specimen for the simulation of defects at the interface between CFC and copper. • The use of an ultrasonic technique properly set permitted to highlight and size with high accuracy the defects. • The technology developed could be employed successfully in the production of these components for high heat flux applications. -- Abstract: The vertical targets of the ITER divertor consist of high flux units (HFU) actively cooled: CuCrZr tubes armoured by tungsten and carbon/carbon fibre composite (CFC). The armour is obtained with holed parallelepiped blocks, called monoblocks, previously prepared and welded onto the tubes by means diffusion bonding. The monoblock preparation consists in the casting of a layer of copper oxygen free (Cu OFHC) inside the monoblock hole. Each HFU is covered with more than 100 monoblocks that have to be joined simultaneously to the tube. Therefore, it is very important to individuate any defects present in the casting of Cu OFHC or at the interface with the CFC before the monoblocks are installed on the units. This paper discusses the application of non-destructive testing by ultrasound (US) method for the control of the joining interfaces between CFC monoblocks and Cu OFHC, before the brazing on the CrCrZr tube. In ENEA laboratory an ultrasonic technique (UT) suitable for the control of these joints with size and geometry according to the ITER specifications has been developed and widely tested. Real defects in this type of joints are, however, still hardly detected by UT. The CFC surface has to be machined to improve the mechanical strength of the joint. This results in a surface not perpendicular to the ultrasonic wave. Moreover, CFC is characterized by high acoustic attenuation of the ultrasonic wave and then it is not easy to get information regarding the Cu/CFC bonding. Nevertheless, the UT sharpness and simplicity pushes to perform some further study. With this purpose, a sample with

  18. Ultrasonic test of carbon composite/copper joints in the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Roccella, S., E-mail: selanna.roccella@enea.it [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Cacciotti, E. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Candura, D. [Ansaldo Nucleare S.p.A., C. so F.M. Perrone 25, 16152 Genoa (Italy); Mancini, A.; Pizzuto, A.; Reale, A. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Tatì, A. [Associazione Euratom-ENEA sulla Fusione, C.R. Casaccia, Via Anguillarese 301, 00123 Santa Maria di Galeria, RM (Italy); Visca, E. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: • ENEA developed and tested a specimen for the simulation of defects at the interface between CFC and copper. • The use of an ultrasonic technique properly set permitted to highlight and size with high accuracy the defects. • The technology developed could be employed successfully in the production of these components for high heat flux applications. -- Abstract: The vertical targets of the ITER divertor consist of high flux units (HFU) actively cooled: CuCrZr tubes armoured by tungsten and carbon/carbon fibre composite (CFC). The armour is obtained with holed parallelepiped blocks, called monoblocks, previously prepared and welded onto the tubes by means diffusion bonding. The monoblock preparation consists in the casting of a layer of copper oxygen free (Cu OFHC) inside the monoblock hole. Each HFU is covered with more than 100 monoblocks that have to be joined simultaneously to the tube. Therefore, it is very important to individuate any defects present in the casting of Cu OFHC or at the interface with the CFC before the monoblocks are installed on the units. This paper discusses the application of non-destructive testing by ultrasound (US) method for the control of the joining interfaces between CFC monoblocks and Cu OFHC, before the brazing on the CrCrZr tube. In ENEA laboratory an ultrasonic technique (UT) suitable for the control of these joints with size and geometry according to the ITER specifications has been developed and widely tested. Real defects in this type of joints are, however, still hardly detected by UT. The CFC surface has to be machined to improve the mechanical strength of the joint. This results in a surface not perpendicular to the ultrasonic wave. Moreover, CFC is characterized by high acoustic attenuation of the ultrasonic wave and then it is not easy to get information regarding the Cu/CFC bonding. Nevertheless, the UT sharpness and simplicity pushes to perform some further study. With this purpose, a sample with

  19. Ultrasonic Spot and Torsion Welding of Aluminum to Titanium Alloys: Process, Properties and Interfacial Microstructure

    Science.gov (United States)

    Balle, Frank; Magin, Jens

    Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.

  20. Research on ultrasonic flow detection techniques for LWR facilities

    International Nuclear Information System (INIS)

    Kimura, Katsumi; Fukuhara, Hiroaki; Hoshimoto, Kenichi; Matsumoto, Shojiro; Yamawaki, Hisashi; Ito, Hideyuki; Uetake, Ichizo

    1986-01-01

    Aiming at establishing the techniques for inspecting the inside of LWR pressure vessels by ultrasonic flaw detection from the outside of the vessels, the development of a probe suitable to the flaw detection in the thick steel plates with stainless steel overlay and the method of its driving, the examination of the ultrasonic characteristics of austenitic stainless steel welded metal used for overlay, and the improvement of the detectability of defects and the accuracy of measuring dimensions by the application of signal processing techniques to ultrasonic flaw detection were attempted. In order to cope with the impedance lowering accompanying the increase of oscillator size, the oscillator was divided into the rings with equal area, and the driving and signal receiving were carried out individually, in this way, the good results were obtained by summing the signals. It was theoretically proved that it is rational to use longitudinal waves for the flaw detection in overlay. It was found that by displaying the results of flaw detection as pictures using a microcomputer, the capability of defect detection was increased. Also by the signal processing combining Fourier transformation and filtering, noise removal and the heightening of the accuracy of measuring dimensions were able to be attained. (Kako, I.)

  1. Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration.

    Science.gov (United States)

    Jiang, S; Huang, L J; An, Q; Geng, L; Wang, X J; Wang, S

    2018-05-01

    Titanium-magnesium (Ti-Mg) composites with bicontinuous structure have been successfully fabricated by powder metallurgy and ultrasonic infiltration for biomaterial potential. In the composites, Ti phase is distributed continuously by sintering necks, while Mg phase is also continuous, distributing at the interconnected pores surrounding the Ti phase. The results showed that the fabricated Ti-Mg composites exhibited low modulus and high strength, which are very suitable for load bearing biomedical materials. The composites with 100 µm and 230 µm particle sizes exhibited Young's modulus of 37.6 GPa and 23.4 GPa, 500.7 MPa and 340 MPa of compressive strength and 631.5 MPa and 375.2 MPa of bending strength, respectively. Moreover, both of the modulus and strength of the composites increase with decreasing of Ti particle sizes. In vitro study has been done for the preliminary evaluation of the Ti-Mg composites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Yi Yuan

    2016-07-01

    Full Text Available Noninvasive focused ultrasound stimulation (FUS can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC between neuronal oscillations is tightly associated with cognitive processes, including learning, attention and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9 W/cm2, 9.6 W/cm2, and 19.2 W/cm2. The local field potentials (LFPs in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4-8 Hz and gamma (30-80 Hz bands and between the alpha (9-13 Hz and ripple (81-200 Hz bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity.

  3. Phononic band gaps and phase singularities in the ultrasonic response from toughened composites

    Science.gov (United States)

    Smith, Robert A.; Nelson, Luke J.; Mienczakowski, Martin J.

    2018-04-01

    Ultrasonic 3D characterization of ply-level features in layered composites, such as out-of-plane wrinkles and ply drops, is now possible with carefully applied analytic-signal analysis. Study of instantaneous amplitude, phase and frequency in the ultrasonic response has revealed some interesting effects, which become more problematic for 3D characterization as the inter-ply resin-layer thicknesses increase. In modern particle-toughened laminates, the thicker resin layers cause phase singularities to be observed; these are locations where the instantaneous amplitude is zero, so the instantaneous phase is undefined. The depth at which these occur has been observed experimentally to vary with resin- layer thickness, such that a phase-singularity surface is formed; beyond this surface, the ultrasonic response is reduced and significantly more difficult to interpret, so a method for removing the effect would be advantageous. The underlying physics has been studied using an analytical one-dimensional multi-layer model. This has been sufficient to determine that the cause is linked to a phononic band gap in the ultrasound transmitted through multiple equally-spaced partial reflectors. As a result, the phase singularity also depends on input-pulse center frequency and bandwidth. Various methods for overcoming the confusing effects in the data have been proposed and subsequently investigated using the analytical model. This paper will show experimental and modelled evidence of phase-singularities and phase-singularity surfaces, as well as the success of methods for reducing their effects.

  4. Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam

    Science.gov (United States)

    Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.

    2018-04-01

    The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.

  5. Preparation of graphene-enhanced nickel-phosphorus composite films by ultrasonic-assisted electroless plating

    Science.gov (United States)

    Yu, Qian; Zhou, Tianfeng; Jiang, Yonggang; Yan, Xing; An, Zhonglie; Wang, Xibin; Zhang, Deyuan; Ono, Takahito

    2018-03-01

    To improve the mechanical properties of nickel-phosphorus (Ni-P) mold material for glass molding, an ultrasonic-assisted electroless plating method is proposed for the synthesis of graphene-enhanced nickel-phosphorus (G-Ni-P) composite films on heat-resistant stainless steel (06Cr25Ni20). Graphene flakes are prepared by an electrochemical exfoliation method. The surface roughness of the as-plated G-Ni-P composite plating is Ra 2.84 μm, which is higher than that of the Ni-P plating deposited using the same method. After annealing at 400 ºC for 2 h, the main phase of the G-Ni-P composite is transformed to crystalline Ni3P with an average grain size of 32.8 nm. The Vickers hardness and Young's modulus of the G-Ni-P composite are increased by 8.0% and 8.2% compared with the values of Ni-P, respectively. The detailed plating process is of great significance for the fabrication of G-Ni-P mold materials with enhanced mechanical properties.

  6. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    International Nuclear Information System (INIS)

    Shoupeng, Song; Zhou, Jiang

    2017-01-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry. (paper)

  7. Vibration control of ultrasonic cutting via dynamic absorber

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Y.A. [Department of Mathematics, Faculty of Science, Zagazig University, Zagazig (Egypt)]. E-mail: yasser31270@yahoo.com

    2007-08-15

    Ultrasonic machining (USM) is one of the most effective non-conventional techniques. Its application especially to hard-to-machine material (HTM) is growing rapidly. The main operation condition of USM is at resonance where an exciter derives a tuned blade or a tool. In this paper, the coupling of two non-linear oscillators of the main system and absorber representing ultrasonic cutting process are investigated. This leads to a two-degree-of-freedom Duffing's oscillator in which such non-linear effects can be neutralized under certain dynamic conditions. The aim of this work is the control of the system behavior at principal parametric resonance condition where the system damage is probable. An approximate solution is derived up to the second order for the coupled system. A threshold value of linear damping has been obtained, where the system vibration can be reduced dramatically. The stability of the system is investigated applying both phase-plane and frequency response techniques. The effects of the different parameters of the absorber on system behavior are studied numerically. Comparison with the available published work is reported.

  8. Pitch catch ultrasonic study on unidirectional CFRP composite laminates using rayleigh wave transducers

    International Nuclear Information System (INIS)

    Park, Je Woong; Yang, In Young; Im, Kwang Hee; Hsu, David K.; Jung, Jong An

    2012-01-01

    The importance of carbon fiber reinforced plastics (CFRP) has been generally recognized, and CFRP composite laminates have become widely used. Thus, a nondestructive technique would be very useful for evaluating CF/epoxy composite laminates. A pitch catch UT signal is more sensitive than is a normal incidence backwall echo of a longitudinal wave in composites. The depth of the sampling volume where the pitch catch UT signal came from is relatively shallow, but the depth can be increased by increasing the separation distance of the transmitting and receiving probes. Moreover, a method is utilized to determine the porosity content of a composite lay up by processing micrograph images of the laminate. The porosity content of a composite structure is critical to the overall strength and performance of the structure. The image processing method developed utilizes software to process micrograph images of the test sample. The results from the image processing method are compared with existing data. Beam profile is characterized in unidirectional CFRP using pitch catch Rayleigh probes. The one sided and two sided pitch catch techniques are utilized to produce C scan images with the aid of an automatic scanner. The pitch catch ultrasonic signal corresponds with the simulated results of unidirectional CFRP composites

  9. Modeling of ultrasonic wave propagation in composite materials obtained by the resin transfer molding process; Modelisation de la propagation ultrasonore dans les materiaux composites obtenus par le procede de fabrication RTM (Resin Transfer Molding)

    Energy Technology Data Exchange (ETDEWEB)

    Lonne, S.

    2003-11-01

    The Resin Transfer Molding process for manufacturing composite materials is used to produce parts of complex shape. During the ultrasonic examination of such parts, attenuation is measured to characterize possible porosity content (a potential defect in this material). However, strong variation of attenuation is observed including on sound plates. The present study aims at explaining this by developing a model for ultrasonic propagation and attenuation in such parts which complex microstructure exhibits a multiple-scale aspect. An original model has been developed to predict attenuation at the elementary scale of an unidirectional layer of carbon fibers in an epoxy matrix. It couples multiple scattering by fibers and viscoelastic losses phenomena. It has been experimentally validated and applies to arbitrary two-phase fiber reinforced composites whatever the fiber volume fraction. At the upper scale of a ply made of several elementary layers of various orientations, the anisotropic behavior of ultrasonic waves and their attenuation are obtained by a homogenization procedure. An actual plate is made of several plies separated by pure resin layers. Plies and layers thicknesses are highly variable. A statistical study has been conducted to evaluate the influence of these geometrical variations on the ultrasonic transmission predicted by a model derived from Thomson-Haskell formalism. Ultrasonic attenuation variability practically observed is quantitatively reproduced and explained as resulting from the geometrical irregularity of the microstructure. (author)

  10. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  11. Using ultrasonic measurements and a two-phase composite model to assess radiation damage in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Wang, J.A.

    1996-01-01

    Ultrasonic methods used in the study of radiation damage and recovery in single crystals appear to also be useful for similar studies on polycrystalline alloys. Ultrasonic methods have demonstrated a sensitivity to radiation damage as affected by neutron fluence, irradiation temperature, large changes in composition, and possibly, as well, by neutron energy spectrum. On the microstructure defect evolution, only the residual defects created through the radiation event will contribute to the final macroscopic material property change. From a microstructure point, it is generally accepted that radiation hardening and embrittlement in metals are caused by clusters of vacancies, interstitial, and solute atoms that impede the motion of slip dislocations. Although vacancy-type defects are a major contributor to the material hardening, they also indicate the presence of other interstitial defects. Thus the total volume change of vacancy-type defects before and after irradiation can serve as a direct index to the final material property changes. The volume change of the vacancy-type defects can be determined by utilizing the two -phase composite model (matrix and void-type inclusion) to interpret wave velocities of baseline and irradiated specimens that are obtained from the ultrasonic wave experiment. This is a relatively economic and straightforward procedure. The correlation of the volume change of the vacancy-type defects with the existing destructive mechanical test results may play an important role in the future for the prediction of the radiation embrittlement and remaining plant lifetime, especially for the older plants on the verge of exhausting all the available mechanical test specimens loaded in the surveillance capsules. The above hypothesis was supported by the limited irradiated data analyzed and presented in his paper. The proposed ultrasonic methodology also has a potential application to assess creep damage in fossil power plants

  12. Measurement of liquid level in a natural circulation circuit using an ultrasonic technique

    International Nuclear Information System (INIS)

    Barbosa, Amanda Cardozo; Su, Jian

    2017-01-01

    The measurement by an ultrasonic technique of the water level in the expansion tank of the Natural Circulation Circuit (NCC) of the Experimental Thermo-Hydraulic Laboratory of the Institute of Nuclear Engineering is presented. In the single-phase NCC operation the water level in the expansion tank is stable. However, during the two-phase operation, oscillations occur in the water level due to temperature and vacuum fraction variations. Thus, the development of a technique that allows the measurement of these oscillations, will allow an estimation of the variation of the vacuum fraction of the circuit over time. The experimental set - up was performed on a test bench, using an ultrasonic transducer. The ultrasonic technique used is pulse-echo, in which the same transducer is the transmitter and receiver of the signal. The transducer-shoe assembly is part of an ultrasonic system consisting of an ultrasonic signal generating plate, transducers and a computer (PC) with a program in LabView to control the system. The program is able to calculate the transit time that the ultrasonic signals take to cross the tank base wall, the layer (level) of liquid and return to the transducer. Knowing the speed of the ultrasound in the wall and in the liquid it is possible to calculate the thickness of the wall and the height of the liquid. Measurements were made by filling the tank with a known volume of water and under varying temperature conditions, from room temperature to 90 deg C. The liquid heights are determined and the volume of water calculated by measuring the temperature with a digital thermometer. The volumes measured were highly accurate when compared to the known volumes

  13. Development of phased-array ultrasonic testing probe

    International Nuclear Information System (INIS)

    Kawanami, Seiichi; Kurokawa, Masaaki; Taniguchi, Masaru; Tada, Yoshihisa

    2001-01-01

    Phased-array ultrasonic testing was developed for nondestructive evaluation of power plants. Phased-array UT scans and focuses an ultrasonic beam to inspect areas difficult to inspect by conventional UT. We developed a highly sensitive piezoelectric composite, and designed optimized phased-array UT probes. We are applying our phased-array UT to different areas of power plants. (author)

  14. The elastic modulus of alumina-zirconia composite using through transmission ultrasonics

    International Nuclear Information System (INIS)

    Tan, K.S.; Hing, P.

    1996-01-01

    The elastic modulus of unstabilized Al 2 O 3 -ZrO 2 composites is determined from ultrasonic velocities and density measurements. The dynamic elastic modulus and the density of the green unstabilized Al 2 O 3 -ZrO 2 follow the rule of mixture. However, the elastic modulus and density of the sintered Al 2 O 3 -ZrO 2 do not follow the rule of mixture. The elastic modulus and diametrical compressive fracture stress of the Al 2 O 3 can be enhanced by (1) a high green (before sintering) compacting pressure and (2) addition of about 3wt% unstabilized ZrO 2 at a sintering time of two hours at 1550 degC. The ZrO 2 is found to improve the bulk density of the composite by a reduction in the porosity. This improves the elastic modulus and the diametrical compressive fracture stress. The thermal expansion on cooling with > 25wt% ZrO 2 in the Al 2 O 3 matrix has also been established. (author)

  15. Wireless cardiac action potential transmission with ultrasonically inserted silicon microprobes

    International Nuclear Information System (INIS)

    Shen, C J; Ramkumar, A; Lal, A; Gilmour, R F Jr

    2011-01-01

    This paper reports on the integration of ultrasonically inserted horn-shaped cardiac probes with wireless transmission of 3D cardiac action potential measurement for applications in ex vivo preparations such as monitoring the onset of ventricular fibrillation. Ultrasonically inserted silicon horn probes permit reduced penetration force during insertion, allowing silicon, a brittle material, to penetrate cardiac tissue. The probes also allow recording from multiple sites that are lithographically defined. An application-specific integrated circuit has been designed with a 40 dB amplifying stage and a frequency modulating oscillator at 95 MHz to wirelessly transmit the recorded action potentials. This ultrasonically inserted microprobe wireless system demonstrates the initial results in wireless monitoring of 3D action potential propagation, and the extraction of parameters of interest including the action potential duration and diastolic interval

  16. Friction control using ultrasonic oscillation for rolling-element linear-motion guide

    International Nuclear Information System (INIS)

    Oiwa, Takaaki

    2006-01-01

    This article reports a friction-control method for rolling-element linear-motion guides used for precision positioning. In general, static friction greater than dynamic friction generates stick-slip motion and diminishes the positioning accuracy. Two ultrasonic actuators excite both the rail and the carriage of the guide to give relative displacements to bearing surfaces. In order to effectively propagate the vibration over the entire rail without damping, the actuator drives at that frequency with a half wavelength corresponding to the distances between the rail mounting bolts. This also minimizes undesirable vibration of the machine structure. Moreover, the bearing surfaces of the carriage are resonated by a second ultrasonic actuator. The experiments using a force sensor showed that the static and dynamic friction forces were reduced by approximately 25% at any place on the 600-mm-long rail. Moreover, excitation only at very low velocity decreased the static friction peak

  17. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study

    OpenAIRE

    Hossam, A. Eid; Rafi, A. Togoo; Ahmed, A Saleh; Sumanth, Phani CR

    2013-01-01

    Background: This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities.

  18. Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals.

    Science.gov (United States)

    Boutsioukis, C; Verhaagen, B; Walmsley, A D; Versluis, M; van der Sluis, L W M

    2013-11-01

    (i) To quantify in a simulated root canal model the file-to-wall contact during ultrasonic activation of an irrigant and to evaluate the effect of root canal size, file insertion depth, ultrasonic power, root canal level and previous training, (ii) To investigate the effect of file-to-wall contact on file oscillation. File-to-wall contact was measured during ultrasonic activation of the irrigant performed by 15 trained and 15 untrained participants in two metal root canal models. Results were analyzed by two 5-way mixed-design anovas. The level of significance was set at P root canal (P root canal (P irrigant activation. Therefore, the term 'Passive Ultrasonic Irrigation' should be amended to 'Ultrasonically Activated Irrigation'. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Ultrasonic examination of ceramics and composites for porosities in an automatic scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Gundtoft, H.E.

    1988-05-01

    Using a very precise scanning system and computer evaluation, we can get quantitative results from automatic ultrasonic examination. In this paper two examples dealing with nonmetallic materials are presented. In a ceramic plate (>1 inch thick) small spherical prorosities (down to 0.1 mm) would harm the final product. Several artificial defects made in the plate were used for calibration and optimisation of the technique. Areas with with a microscope. Good agreement with the predicted values from the ultrasonic examination was found. From the NDT-examination the exact position of a porosity is known in all 3 coordinates (x, y and z). The size of the defect can also be measured. A single porosity with a diameter of 0.1 mm can be detected. Carbon-reinforced composites were examined. 8 prepregs were stacked and hardened in an autoclave to form a sheet (1 mm thick). Air trapped in the material resulted in porosities in the final product. A double trough transmission-scanning technique was used for the examination. The porosity percentages were determined by the NDT-technique, and agreement with destructivly determined values on samples from the same sheet was found.

  20. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  1. Characterising the acoustoplastic effect in an ultrasonically assisted metal forming process

    International Nuclear Information System (INIS)

    Aziz, S A; Lucas, M

    2012-01-01

    An investigation through experiments and finite element analysis (FEA) has been carried out to study the effects of applying ultrasonic oscillations to the lower platen in forming tests for two different metals. Previous research has shown that by applying ultrasonic vibrations to the lower platen in compression tests on pure aluminium specimens, the resulting stress-strain relationship can be characterised by a temporary effective softening of the material properties during intervals of ultrasonic excitation. The current research demonstrates this effect in two different metal specimens and additionally shows that finite element simulations can be used to model the behaviour in terms of both volume and surface effects. In this study, the ultrasonic excitation was introduced both prior to and post yield and the process simulations were developed in the FEA software Abaqus. The data recorded from experiments and predicted by the FEA illustrate how ultrasonically assisted metal forming can result in a lowering of the static flow stress, consistent with the effective material softening proposed previously in studies of the acoustoplastic effect.

  2. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    Science.gov (United States)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  3. Synthesis spherical porous hydroxyapatite/graphene oxide composites by ultrasonic-assisted method for biomedical applications.

    Science.gov (United States)

    Duan, Peizhen; Shen, Juan; Zou, Guohong; Xia, Xu; Jin, Bo; Yu, Jiaxin

    2018-04-10

    Spherical porous hydroxyapatite (SHA)/graphene oxide (GO) composites with different GO (w/w) content of 16%, 40%, and 71% have been fabricated through a facile and controllable ultrasonic-assisted method at room temperature. The products were characterized by x-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, mechanical testing and biomimetic mineralization. Results showed SHA were covered by GO, and SHA/GO composites had an irregular surface with different degrees of wrinkles. The elastic modulus and hardness of SHA/GO-3 composites were up to 12.45 ± 0.33 GPa and 686.67 ± 26.95 MPa, which indicated that the contents of GO had an effect on SHA/GO composites. And the mechanical properties of SHA/GO-2 composites were similar to SHA particles. The biomimetic mineralization in SBF solution showed the bone-like apatite layer on composites surface, which demonstrated that the SHA/GO materials had osseointegration property. Moreover, in vitro cytocompatibility of SHA/GO-2 composites and pure GO were evaluated by cell adhesion and proliferation tests using MC3T3-E1 cells, which demonstrated that the SHA/GO composites can act as a good template for the cells growth and adhesion. These results suggested that the SHA/GO composites will be a promising material for biomedical application.

  4. Ultrasonic impact treatment of CoCrMo alloy: Surface composition and properties

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@list.ru; Filatova, V.S.; Makeeva, I.N.; Vasylyev, M.A.

    2017-06-30

    Highlights: • Ultrasonic impact treatment in air enhances oxidation of CoCrMo alloy. • Impact treatment promotes segregation and accumulation of carbon on the surface. • Intense deformation brings about partial dissolution of carbides. • Impact-induced fcc-to-hcp transformation and hardening of the alloy. • Impact treatment improves corrosion properties of the alloy. - Abstract: X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and X-ray diffraction were employed to study the effect of intense mechanical treatment on the surface chemical state, composition and structure of a commercial biomedical CoCrMo alloy (‘Bondi-Loy’). The ultrasonic impact treatment of the alloy in air with duration up to 30 s was found to cause the deformation-enhanced oxidation and deformation-induced surface segregation of the components and impurities from the bulk. The compositionally inhomogeneous mixed oxide layer formed under impact treatment was composed mainly of Cr{sub 2}O{sub 3} and silicon oxide with admixture of CoO, MoO{sub 2}, MoO{sub 3} and iron oxide/hydroxide, the latter being transferred onto the alloy surface from the steel pin. The impact treatment promoted a progressive accumulation of carbon on the alloy surface due to its deformation-induced segregation from the bulk and deformation-induced uptake of hydrocarbons from the ambient; concurrently, the dissolution/refinement of carbides originally present in the as-cast CoCrMo alloy occurred. The impact treatment gave rise to a two-fold increase in the volume fraction of the martensitic hcp ε-phase, a 30% increase in the surface microhardness and improved resistance to corrosion in the solution of artificial saliva compared to the as-polished alloy.

  5. Ultrasonic detection of cracks in uniaxial glass fibre rods

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-01-01

    Full Text Available Conference on Computational and Applied Mechanics SACAM06 Cape Town, 16-18 January 2006 �SACAM ULTRASONIC DETECTION OF CRACKS IN UNIAXIAL GLASS FIBRE RODS Derren Wood and Philip Loveday Sensor Science and Technology, CSIR Materials Science... means of detecting internal and/or surface damage in composites which is safe, quick and relatively cost effective. Various ultrasonic techniques have been applied in the past to detect defects in composite media, the most well known being perhaps...

  6. Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method

    Science.gov (United States)

    Pal, Arpan; Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta

    2018-03-01

    In the present study, the effects of WC nano-particles content on the microstructure, hardness, wear, and friction behavior of aluminum matrix composites are investigated. Al-WC nano composites with varying wt% of WC (0, 1, 1.5, and 2) are fabricated using ultrasonic cavitation assisted stir-cast method. The microstructure of the nano-composite samples is analyzed using optical microscopy and scanning electron microscopy. Elemental composition is determined by energy dispersive x-ray analysis. Vicker’s microhardness test is performed in different locations on the composite sample surface with a load of 50 gf and 10s dwell time. Wear and friction of the composites under dry sliding is studied using a pin-on-disk tribotester for varying normal load (10–40 N) and sliding speed (0.1–0.4 m/s). Uniform distribution of nano-WC is observed over composite surface without noticeable clustering. Reinforcement of nano-WC particles improves wear resistance and frictional behavior of the composite. Hardness is seen to increase with increase in wt% of nano-particles. Wear behavior of composites depends on formation of layers over the surface mixed with oxidized debris and counter-face particles. Wear mechanism changes from adhesion to abrasion with increase in wt% of hard nano particles.

  7. Design and Demonstration of Automated Data Analysis Algorithms for Ultrasonic Inspection of Complex Composite Panels with Bonds

    Science.gov (United States)

    2016-02-01

    all of the ADA called indications into three groups: true positives (TP), missed calls (MC) and false calls (FC). Note, an indication position error...data review burden and improve the reliability of the ultrasonic inspection of large composite structures, automated data analysis ( ADA ) algorithms...thickness and backwall C-scan images. 15. SUBJECT TERMS automated data analysis ( ADA ) algorithms; time-of-flight indications; backwall amplitude dropout

  8. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  9. Chemical coloring on stainless steel by ultrasonic irradiation.

    Science.gov (United States)

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Joining NbTi superconductors by ultrasonic welding

    International Nuclear Information System (INIS)

    Hafstrom, J.W.; Killpatrick, D.H.; Niemann, R.C.; Purcell, J.R.; Thresh, H.R.

    1976-01-01

    An important consideration in the design and construction of large, high-field, superconducting magnets is the capability to fabricate reliable, high-strength, low-resistance joints. A process for joining NbTi, copper stabilized, superconducting composites by ultrasonic welding is described. This process yields a joint strength comparable to that of the superconducting composite and a resistivity significantly lower than achieved by conventional soft soldering. The superconducting properties of the composite are not affected by the joining process. Scarfing the joint to maintain a constant conductor cross section does not degrade its electrical or mechanical properties. The application of the ultrasonic joining process, including process control, scarfing, and NDT procedures, in the construction of the superconducting magnet (U.S. SCMS) for the joint U. S. -- Soviet MHD program is described

  11. Effect of different oxidants on polyaniline/single walled carbon nanotubes composites synthesized via ultrasonically initiated in-situ chemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gull, Nafisa, E-mail: gullchemist@gmail.com [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Khan, Shahzad Maqsood, E-mail: shahzadkhan81@hotmail.com [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Islam, Atif; Zia, Saba; Shafiq, Muhammad; Sabir, Aneela; Munawar, Muhammad Azeem [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Butt, Muhammad Taqi Zahid [College of Engineering and Emerging Technologies, University of the Punjab, Lahore, 54590 (Pakistan); Jamil, Tahir [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan)

    2016-04-01

    This study is aimed at investigating the effect of different oxidants on properties of polyaniline/single walled carbon nanotubes (PANI/SWCNT) composites and scrutinizing a suitable oxidant to improve the properties of composites. PANI/SWCNT composites were fabricated via ultrasonically initiated in-situ chemical polymerization technique using four different oxidants; hydrogen peroxide (H{sub 2}O{sub 2}), ammonium peroxidisulphate ((NH{sub 4}){sub 2}S{sub 2}O{sub 8}), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and potassium iodate (KIO{sub 3}). Percent yield (97%), molecular weight (45532 g mol{sup −1}) and electrical conductivity (0.835 S cm{sup −1}) were found maximum for composite prepared in the presence of H{sub 2}O{sub 2}. Structural confirmation of PANI and charge transfer complex formation between PANI and SWCNT were confirmed by fourier transform infrared spectroscopy, UV–visible spectroscopy and X-ray diffraction spectroscopy. Thermogravimetric analysis verified that the PANI/SWCNT composite synthesized using H{sub 2}O{sub 2} had maximum thermal stability with least thermal degradation (∼28%). Minimal thermal transitions of the composite were also observed for same composite by differential scanning calorimetry. Scanning electron microscopic images of PANI/SWCNT composites revealed that SWCNT were properly dispersed in PANI matrix when H{sub 2}O{sub 2} was used. Above results provide the valuable suggestion that; H{sub 2}O{sub 2} is a promising oxidant to enhance structural, thermal, electrical and microscopic properties of composites. - Highlights: • Ultrasonically initiated in-situ chemical polymerization protocol was devised for synthesis of PANI/SWCNT composites. • SEM micrographs of PANI/SWCNT-1 showed uniform dispersed structure. • Better thermal stability and conductivity was evidenced for H{sub 2}O{sub 2} based PANI/SWCNT composite. • π–π interaction between PANI and SWCNT is confirmed by FTIR and UV

  12. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shengjie [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China); Sun, Junying, E-mail: wodaoshi@sohu.com [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China); Li, Yadong [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Li, Jun [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China); Cui, Wenguo [Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, Jiangsu 215007 (China); Li, Bin, E-mail: binli@suda.edu.cn [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China)

    2014-02-01

    Polymeric nanofibrous composite scaffolds incorporating bioglass and bioceramics have been increasingly promising for bone tissue engineering. In the present study, electrospun poly (L-lactic acid) (PLLA) scaffolds containing dicalcium silicate (C{sub 2}S) nanoparticles (approximately 300 nm) were fabricated. Using a novel ultrasonic dispersion and aging method, uniform C{sub 2}S nanoparticles were prepared and they were homogenously distributed in the PLLA nanofibers upon electrospinning. In vitro, the PLLA-C{sub 2}S fibers induced the formation of HAp on the surface when immersed in simulated body fluid (SBF). During culture, the osteoblastic MC3T3-E1 cells adhered well on PLLA-C{sub 2}S scaffolds, as evidenced by the well-defined actin stress fibers and well-spreading morphology. Further, compared to pure PLLA scaffolds without C{sub 2}S, PLLA-C{sub 2}S scaffolds markedly promoted the proliferation of MC3T3-E1 cells as well as their osteogenic differentiation, which was characterized by the enhanced alkaline phosphatase (ALP) activity. Together, findings from this study clearly demonstrated that PLLA-C{sub 2}S composite scaffold may function as an ideal candidate for bone tissue engineering. - Highlights: • Dicalcium silicate (C{sub 2}S) nanoparticles were prepared via a sol–gel process. • C{sub 2}S nanoparticles were stabilized using ultrasonic-aging technique. • PLLA-C{sub 2}S composite nanofibers were fabricated through electrospinning technique. • C{sub 2}S nanoparticles could be homogenously distributed in nanofibers. • The composite scaffolds enhanced proliferation and differentiation of osteoblasts.

  13. Deposition of Ni-CGO composite anodes by electrostatic assisted ultrasonic spray pyrolysis method

    International Nuclear Information System (INIS)

    Chen, J.-C.; Chang, C.-L.; Hsu, C.-S.; Hwang, B.-H.

    2007-01-01

    Deposition of composite films of Ni and Gd-doped ceria was carried out using the electrostatic assisted ultrasonic spray pyrolysis method for the first time. The composite films were highly homogeneous, as revealed by element mapping via energy-dispersive spectrometry. Scanning electron microscope examinations revealed that deposition temperature and electric field strength had profound influence on resultant microstructure, while composition of the precursor solution had little effect. A highly porous cauliflower structure ideal for solid oxide fuel cell anode performance was obtained with a deposition temperature of 450 deg. C under an electric field introduced by an applied voltage of 12 kV. Films obtained with a lower deposition temperature of 250 deg. C or a higher applied voltage of 15 kV resulted in denser films with low porosity, while lower applied voltages of 7 or 5 kV resulted in thinner or discontinuous films due to the insufficient electrostatic attraction on the aerosol droplets. As revealed by AC impedance measurement, the area specific resistances of the Ni-CGO anode with porous cauliflower structure were rather low and a value of 0.09 Ω cm 2 at 550 deg. C was obtained

  14. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  15. Association schemes perspective of microbubble cluster in ultrasonic fields.

    Science.gov (United States)

    Behnia, S; Yahyavi, M; Habibpourbisafar, R

    2018-06-01

    Dynamics of a cluster of chaotic oscillators on a network are studied using coupled maps. By introducing the association schemes, we obtain coupling strength in the adjacency matrices form, which satisfies Markov matrices property. We remark that in general, the stability region of the cluster of oscillators at the synchronization state is characterized by Lyapunov exponent which can be defined based on the N-coupled map. As a detailed physical example, dynamics of microbubble cluster in an ultrasonic field are studied using coupled maps. Microbubble cluster dynamics have an indicative highly active nonlinear phenomenon, were not easy to be explained. In this paper, a cluster of microbubbles with a thin elastic shell based on the modified Keller-Herring equation in an ultrasonic field is demonstrated in the framework of the globally coupled map. On the other hand, a relation between the microbubble elements is replaced by a relation between the vertices. Based on this method, the stability region of microbubbles pulsations at complete synchronization state has been obtained analytically. In this way, distances between microbubbles as coupling strength play the crucial role. In the stability region, we thus observe that the problem of study of dynamics of N-microbubble oscillators reduce to that of a single microbubble. Therefore, the important parameters of the isolated microbubble such as applied pressure, driving frequency and the initial radius have effective behavior on the synchronization state. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Experimental investigation of surface quality in ultrasonic machining of WC-Co composites through Taguchi method

    Directory of Open Access Journals (Sweden)

    B. S. Pabla

    2016-08-01

    Full Text Available In manufacturing industries, the demand of WC-Co composite is flourishing because of the distinctive characteristics it offers such as: toughness (with hardness, good dimensional stability, higher mechanical strength etc. However, the difficulties in its machining restrict the application and competitiveness of this material. The current article has been targeted at evaluation of the effect of process conditions (varying power rating, cobalt content, tool material, part thickness, tool geometry, and size of abrasive particle on surface roughness in ultrasonic drilling of WC-Co composite. Results showed that abrasive grit size is most influential factor. From the microstructure analysis, the mode of material deformation has been observed and the parameters, i.e. work material properties, grit size, and power rating was revealed as the most crucial for the deformation mode.

  17. Ultrasonic detection technology based on joint robot on composite component with complex surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Juan; Xu, Chunguang; Zhang, Lan [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China)

    2014-02-18

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order to express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.

  18. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  19. Influence of microparticle size on cavitation noise during ultrasonic vibration

    Directory of Open Access Journals (Sweden)

    H. Ge

    2015-09-01

    Full Text Available The cavitation noise in the ultrasonic vibration system was found to be influenced by the size of microparticles added in water. The SiO2 microparticles with the diameter smaller than 100 μm reduced the cavitation noise, and the reason was attributed to the constrained oscillation of the cavitation bubbles, which were stabilized by the microparticles.

  20. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft.

    Science.gov (United States)

    Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F; Dahmene, Fethi

    2017-09-19

    This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  1. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    Science.gov (United States)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  2. Ultrastructural investigation of root canal dentine surface after application of active ultrasonic method

    Directory of Open Access Journals (Sweden)

    Mitić Aleksandar

    2008-01-01

    Full Text Available INTRODUCTION The basic work principle of all ultrasonic techniques is the piezoelectric effect of producing high frequency ultrasounds of small length, which are transmitted over the endodontic extensions or canal instruments into the root canal. When in contact with the tissue, ultrasonic vibrations are converted into mechanical oscillations. Ultrasonic waves and the obtained oscillations along with the synergic effect of irrigation bring about the elimination of smear layer from the root canal walls. OBJECTIVE The aim of the study was to ultrastucturally examine the effect of smear layer removal from the walls of canals by the application of the active ultrasonic method without irrigation, that is by the application of ultrasound and irrigation using distilled water and 2.5% NaOCl. METHOD The investigation comprised 35 single-canal, extracted human teeth. After removal of the root canal content, experimental samples were divided into three groups. According to the procedure required, the first group was treated by ultrasound without irrigation; the second one by ultrasound with irrigation using distilled water; and the third group was treated by ultrasound and irrigation using 2.5% NaOCl solution. The control samples were treated by machine rotating instruments (Pro-File and were rinsed by distilled water. RESULTS The obtained results showed that the ultrasonic treatment of the root canal without irrigation did not remove the smear layer. The dentine canals are masked, and big dentine particles are scattered on the intertubular dentine. The ultrasonic treatment by using irrigation with distilled water provides cleaner dentine walls and open dentine tubules but with smaller particles on the intertubular dentine. The ultrasound treatment by using irrigation with 2.5% NaOCl solution provides a clean intertubular dentine surface without a smear layer and clearly open dentine tubules. CONCLUSION Instrumentation of the root canal by application of

  3. Ultrasonic and dielectric studies of polymer PDMS composites with ZnO and onion-like carbons nanoinclusions

    OpenAIRE

    Samulionis, Vytautas; Macutkevič, Jan; Banys, Jūras; Shenderova, Olga

    2015-01-01

    The ultrasonic and dielectric temperature investigations were performed in polydi-methylsiloxane (PDMS) with zinc oxide (ZnO) and onion-like carbon (OLC) nanocomposites. In the glass transition region, the ultrasonic velocity dispersion and large ultrasonic attenuation maxima were observed. The positions of ultrasonic attenuation peaks were slightly shifted to higher temperatures after doping PDMS with OLC and ZnO nanoparticles. The ultrasonic relaxation was compared to that of dielectric and...

  4. Preparation of Er3+:Y3Al5O12/WO3-KNbO3 composite and application in treatment of methamphetamine under ultrasonic irradiation.

    Science.gov (United States)

    Zhang, Hongbo; Huang, Yingying; Li, Guanshu; Wang, Guowei; Fang, Dawei; Song, Youtao; Wang, Jun

    2017-03-01

    Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 composite powder as an effective sonocatalyst was prepared via collosol-gelling-hydrothermal and high-temperature calcination methods. The textures of materials were observed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). In order to estimate the sonocatalytic activity of Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 composite powder, the sonocatalytic degradation of methamphetamine (MAPA) was performed. Furthermore, the influences of mass ratio of WO 3 and KNbO 3 , ultrasonic irradiation time, catalyst addition amount, initial methamphetamine (MAPA) concentration and used times on the sonocatalytic degradation of methamphetamine (MAPA) caused by Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 composite powder were investigated by using gas chromatography. Under optimal conditions of 1.00g/L Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 addition amount and 10.00mg/L methamphetamine (MAPA) initial concentration, 68% of methamphetamine (MAPA) could be removed after 150min ultrasonic irradiation. The experimental results showed that the Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 as sonocatalyst displayed an excellent sonocatalytic activity in degradation of methamphetamine (MAPA) under ultrasonic irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Electrophoretic deposition of ultrasonicated and functionalized nanomaterials for multifunctional composites

    Science.gov (United States)

    An, Qi

    Recent advances in the synthesis and characterization of nanostructured composite materials have enabled a broad range of opportunities for engineering the properties of polymer-matrix materials. Carbon nanotubes (CNTs) are known to have exceptional mechanical, electrical and thermal properties. Because of their small size, CNTs can occupy regions between traditional micro-scale reinforcements and create a hierarchical micro/nano structure spanning several orders of magnitude. Since CNTs possess critical reinforcement dimensions below 100 nm, new opportunities exist for tailoring the fiber/matrix interphase regions and ultimately the mechanical and electrical performance of advanced fiber-composites with minimal impact on the fiber-dominated properties. This growing interest in nanoscale hybridization with conventional fiber reinforcement has highlighted the need to develop new processing techniques for successful CNT integration. In this work, a novel and industrially scalable approach for producing multi-scale hybrid carbon nanotube/fiber composites using an electrophoretic deposition (EPD) technique has been studied as an alternative to in situ chemical vapor deposition growth (CVD). EPD is a widely used industrial coating process employed in areas ranging from automotive to electronics production. The method has a number of benefits which include low energy use and the ability to homogenously coat complex shapes with well adhered films of controlled thickness and density. A stable aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) was produced using a novel ozonolysis and ultrasonication (USO) technique that results in dispersion and functionalization in a single step. Networks of CNTs span between adjacent fibers and the resulting composites exhibit significant increases in electrical conductivity and considerable improvements in the interlaminar shear strength and fracture toughness. In order to better understand the underlying mechanisms behind the

  6. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    Science.gov (United States)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  7. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Slah Yaacoubi

    2017-09-01

    Full Text Available This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  8. Statistical tools for ultrasonic analysis of dispersive fluids

    OpenAIRE

    Martinsson, Jesper

    2006-01-01

    This thesis focuses on the possibility of using ultrasonic measurement techniques for energy gas characterization. The idea is to combine both on-line flow measurements with non-invasive fluid characterization in the same measurement setup using the same sensor(s). The long-term goal of the project is to develop measurement methods based on ultrasonic techniques that can measure; the flow rate, the energy content, detect impurities, and estimate the composition. In this thesis different probl...

  9. Ultrasonic characterization of GRC with high percentage of fly ash substitution.

    Science.gov (United States)

    Genovés, V; Gosálbez, J; Miralles, R; Bonilla, M; Payá, J

    2015-07-01

    New applications of non-destructive techniques (NDT) with ultrasonic tests (attenuation and velocity by means of ultrasonic frequency sweeps) have been developed for the characterization of fibre-reinforced cementitious composites. According to new lines of research on glass-fibre reinforced cement (GRC) matrix modification, two similar GRC composites with high percentages of fly ash and different water/binder ratios will be studied. Conventional techniques have been used to confirm their low Ca(OH)(2) content (thermogravimetry), fibre integrity (Scanning Electron Microscopy), low porosity (Mercury Intrusion Porosimetry) and good mechanical properties (compression and four points bending test). Ultrasound frequency sweeps allowed the estimation of the attenuation and pulse velocity as functions of frequency. This ultrasonic characterization was correlated successfully with conventional techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Green synthesis of dimension-controlled silver nanoparticle–graphene oxide with in situ ultrasonication

    International Nuclear Information System (INIS)

    Hui, K.S.; Hui, K.N.; Dinh, D.A.; Tsang, C.H.; Cho, Y.R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-01-01

    Graphical abstract: -- Abstract: A green chemical approach to control the dimensions of Ag nanoparticle-decorated graphene oxide (AgNP–GO) composites was proposed by in situ ultrasonication of a mixture of AgNO 3 and GO solution with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. The AgNP–GO composites were characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, Raman spectra and ultraviolet–visible absorption spectra. The results demonstrated that Ag nanoparticles with an average diameter of ∼15 nm were uniformly dispersed on the surface of GO nanosheets by in situ ultrasonication of 1 min with vitamin C. Increasing the ultrasonication times resulted in Ag nanoparticles with tunable dimensions ranging from 15 to 55 nm being formed on the surface of GO nanosheets. The amount of silver nitrate and the ultrasonication time play a key role in the control of the dimension of Ag nanoparticles on GO, and a formation mechanism of the as-prepared AgNP–GO composites is proposed. This study provides a guide to controlling the dimensions of AgNP–GO composites, which may hold promise as advanced materials for various analytical applications such as catalysis, sensors and microchips

  11. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC)

    Science.gov (United States)

    Patra, Subir; Banerjee, Sourav

    2017-01-01

    Material state awareness of composites using conventional Nondestructive Evaluation (NDE) method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC) is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz) scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy. PMID:29258256

  12. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC

    Directory of Open Access Journals (Sweden)

    Subir Patra

    2017-12-01

    Full Text Available Material state awareness of composites using conventional Nondestructive Evaluation (NDE method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy.

  13. Ultrasonic preparation of nano-nickel/activated carbon composite using spent electroless nickel plating bath and application in degradation of 2,6-dichlorophenol.

    Science.gov (United States)

    Su, Jingyu; Jin, Guanping; Li, Changyong; Zhu, Xiaohui; Dou, Yan; Li, Yong; Wang, Xin; Wang, Kunwei; Gu, Qianqian

    2014-11-01

    Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine-formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AC). PdCl2 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2,6-dichlorophenol. Copyright © 2014. Published by Elsevier B.V.

  14. NEET In-Pile Ultrasonic Sensor Enablement-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Daw; J. Rempe; J. Palmer; P. Ramuhalli; R. Montgomery; H.T. Chien; B. Tittmann; B. Reinhardt; P. Keller

    2014-09-01

    Ultrasonic technologies offer the potential to measure a range of parameters during irradiation of fuels and materials, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes under harsh irradiation test conditions. There are two primary issues that currently limit in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. The harsh nature of in-pile testing and the variety of desired measurements demand that an enhanced signal processing capability be developed to make in-pile ultrasonic sensors viable. To address these issues, the NEET ASI program funded a three year Ultrasonic Transducer Irradiation and Signal Processing Enhancements project, which is a collaborative effort between the Idaho National Laboratory, the Pacific Northwest National Laboratory, the Argonne National Laboratory, and the Pennsylvania State University. The objective of this report is to document the objectives and accomplishments from this three year project. As summarized within this document, significant work has been accomplished during this three year project.

  15. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    International Nuclear Information System (INIS)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun; Kim, Yong Kwon

    2014-01-01

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  16. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Yong Kwon [Technology Research and Development Institute, KEPCO Plant Service and Engineering Co., Ltd, Naju (Korea, Republic of)

    2014-04-15

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  17. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging

    Directory of Open Access Journals (Sweden)

    Elaheh Taghaddos

    2015-06-01

    Full Text Available Piezoelectric materials have been vastly used in ultrasonic transducers for medical imaging. In this paper, firstly, the most promising lead-free compositions with perovskite structure for medical imaging applications have been reviewed. The electromechanical properties of various lead-free ceramics, composites, and single crystals based on barium titanate, bismuth sodium titanate, potassium sodium niobate, and lithium niobate are presented. Then, fundamental principles and design considerations of ultrasonic transducers are briefly described. Finally, recent developments in lead-free ultrasonic probes are discussed and their acoustic performance is compared to lead-based transducers. Focused transducers with different beam focusing methods such as lens focusing and mechanical shaping are explained. Additionally, acoustic characteristics of lead-free probes including the pulse-echo results as well as their imaging capabilities for various applications such as phantom imaging, in vitro intravascular ultrasound imaging of swine aorta, and in vivo or ex vivo imaging of human eyes and skin are reviewed.

  18. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities.

    Directory of Open Access Journals (Sweden)

    Hui Teng

    Full Text Available Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS generation.

  19. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Matt, Howard M. [Univ. of California, San Diego, CA (United States)

    2006-01-01

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  20. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia Nano-Biotechnology Research (Malaysia); Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  1. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  2. Rotary ultrasonic machining of CFRP: A comparison with grinding.

    Science.gov (United States)

    Ning, F D; Cong, W L; Pei, Z J; Treadwell, C

    2016-03-01

    Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  4. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2010-04-02

    Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  5. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    International Nuclear Information System (INIS)

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-01-01

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11–54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types

  6. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  7. Surface quality prediction model of nano-composite ceramics in ultrasonic vibration-assisted ELID mirror grinding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Chen, Fan; Jia, Xiao-feng; Zhao, Chong-yang; Wang, Xiao-bo [Henan Polytechnic University, Jiaozuo (China)

    2017-04-15

    Ultrasonic vibration-assisted Electrolytic in-process dressing (ELID) grinding is a highly efficient and highly precise machining method. The surface quality prediction model in ultrasonic vibration-assisted ELID mirror grinding was studied. First, the interaction between grits and workpiece surface was analyzed according to kinematic mechanics, and the surface roughness model was developed. The variations in surface roughness under different parameters was subsequently calculated and analyzed by MATLAB. Results indicate that compared with the ordinary ELID grinding, ultrasonic vibration-assisted ELID grinding is superior, because it has more stable and better surface quality and has an improved range of ductile machining.

  8. Ultrasonication aided in-situ transesterification of microbial lipids to biodiesel.

    Science.gov (United States)

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y; Valéro, Jose R

    2014-10-01

    In-situ transesterification of microbial lipid to biodiesel has been paid substantial attention due to the fact that the lipid extraction and transesterification can be conducted in one-stage process. To improve the feasibility of in-situ transesterification, ultrasonication was employed to reduce methanol requirement and reaction time. The results showed that the use of ultrasonication could achieve high conversion of lipid to FAMEs (92.1% w lipid conversion/w total lipids) with methanol to lipid molar ratio 60:1 and NaOH addition 1% w/w lipid in 20 min, while methanol to lipid molar ratio 360:1, NaOH addition 1% w/w lipid, and reaction time 12h was required to obtain similar yield in in-situ transesterification without ultrasonication. The compositions of FAMEs obtained in case of ultrasonication aided in-situ transesterification were similar as that of two-stage extraction followed by transesterification processes. Copyright © 2014. Published by Elsevier Ltd.

  9. Ultrasonic horn design for ultrasonic machining technologies

    Directory of Open Access Journals (Sweden)

    Naď M.

    2010-07-01

    Full Text Available Many of industrial applications and production technologies are based on the application of ultrasound. In many cases, the phenomenon of ultrasound is also applied in technological processes of the machining of materials. The main element of equipments that use the effects of ultrasound for machining technology is the ultrasonic horn – so called sonotrode. The performance of ultrasonic equipment, respectively ultrasonic machining technologies depends on properly designed of sonotrode shape. The dynamical properties of different geometrical shapes of ultrasonic horns are presented in this paper. Dependence of fundamental modal properties (natural frequencies, mode shapes of various sonotrode shapes for various geometrical parameters is analyzed. Modal analyses of the models are determined by the numerical simulation using finite element method (FEM design procedures. The mutual comparisons of the comparable parameters of the various sonotrode shapes are presented.

  10. Ultrasonically assisted drilling: A finite-element model incorporating acoustic softening effects

    International Nuclear Information System (INIS)

    Phadnis, V A; Roy, A; Silberschmidt, V V

    2013-01-01

    Ultrasonically assisted drilling (UAD) is a novel machining technique suitable for drilling in hard-to-machine quasi-brittle materials such as carbon fibre reinforced polymer composites (CFRP). UAD has been shown to possess several advantages compared to conventional drilling (CD), including reduced thrust forces, diminished burr formation at drill exit and an overall improvement in roundness and surface finish of the drilled hole. Recently, our in-house experiments of UAD in CFRP composites demonstrated remarkable reductions in thrust-force and torque measurements (average force reductions in excess of 80%) when compared to CD with the same machining parameters. In this study, a 3D finite-element model of drilling in CFRP is developed. In order to model acoustic (ultrasonic) softening effects, a phenomenological model, which accounts for ultrasonically induced plastic strain, was implemented in ABAQUS/Explicit. The model also accounts for dynamic frictional effects, which also contribute to the overall improved machining characteristics in UAD. The model is validated with experimental findings, where an excellent correlation between the reduced thrust force and torque magnitude was achieved

  11. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    Science.gov (United States)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially

  12. Quality evaluation of cast Al-SiCp composites

    International Nuclear Information System (INIS)

    Adalarasu, S.; Mahadevan, S.; Satyanarayana, K.G.; Pai, B.C.; Pillai, R.M.

    1996-01-01

    This paper presents a methodology for using x-ray radiography and ultrasonic for testing the soundness and distribution of dispersoids and identifying the casting defects in a cast aluminium cast alloy matrix SiCp composites. The ultrasonic inspection could detect in 6061-SiCp cast composites 1) the presence of low levels of locked in stresses and 2) existence of local imperfection due to the combined effects of the local solidification condition and the presence of the dispersoids which were not possible through x-ray radiography. This clearly suggests that ultrasonic test can be used as a powerful NDE tool for screening the composite ingots. (author)

  13. Ultrasonic and structural features of some borosilicate glasses ...

    Indian Academy of Sciences (India)

    Therefore, the glass structure becomes contractedand compacted, which decreases its molar volume and increases its rigidity. This concept was asserted from the increase in the ultrasonic velocity, Debye temperature and elastic moduli with the increase of SiO2 content. The present compositional dependence of the elastic ...

  14. Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys.

    Science.gov (United States)

    Sheng, Minqi; Wang, Chao; Zhong, Qingdong; Wei, Yinyin; Wang, Yi

    2010-01-01

    In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd(2)O(3) in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn(3)(PO(4))(2).4H(2)O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd(2)O(3) reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.

  15. Ultrasonic evaluation of local human skin anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : anisotropy * ultrasonic testing * human skin in-vivo * fabric-fiber composite * signal processing Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Paper/324_Tokar.pdf

  16. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors

    International Nuclear Information System (INIS)

    Imbert, Ch.

    1997-01-01

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  17. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  18. Preparation and characterization of composites of ultrasonic gel and copper sulphate for using as magnetic resonance body simulator

    International Nuclear Information System (INIS)

    Cardoso, Gabriela P.; Soares, Sidney S.; Gontijo, Rodrigo M.G.; Batista, Adriana S.M.; Pereira, Esther Lorrayne M.

    2017-01-01

    The use of magnetic resonance (MRI) body simulators has application in both equipment control and didactics, providing training to new professionals, regarding the manipulation of parameters related to image weights. For this, it is necessary to simulate longitudinal (T1) and transverse (T2) relaxation times in order to control the extrinsic echo time (TE) and repetition time (TR) parameters in obtaining images with different contrasts. For this purpose, composites with different proportions of ultrasonic gel and copper sulphate were prepared for submission to MRI for the characterization of the times T1 and T2. The selection of copper sulphate, paramagnetic material, was conducted considering relaxation times similar to the different body tissues in order to reproduce images of suitable contrasts. Copper sulphate powder was characterized by the X-Ray Diffraction (XRD) technique which showed characteristic peaks of copper and sulfate group. The composite was evaluated using Fourier Transform Infrared Spectrometry (FTIR) and Visible Ultraviolet Spectrometry (UV-Vis) techniques, demonstrating composite stability for future imaging tests. In the UV-Vis analyzes the peak centered at 725 nm was monitored by the overlap of the peaks at wavelengths between 200 - 450 nm, gel and copper. FTIR of the copper sulphate powder was used for comparison with composite spectrum

  19. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  20. Analytical ultrasonics for characterization of metallurgical microstructures and transformations

    Science.gov (United States)

    Rosen, M.

    1986-01-01

    The application of contact (piezoelectric) and noncontact (laser generation and detection) ultrasonic techniques for dynamic investigation of precipitation hardening processes in aluminum alloys, as well as crystallization and phase transformation in rapidly solidified amorphous and microcrystalline alloys is discussed. From the variations of the sound velocity and attenuation the precipitation mechanism and kinetics were determined. In addition, a correlation was established between the observed changes in the velocity and attenuation and the mechanical properties of age-hardenable aluminum alloys. The behavior of the elastic moduli, determined ultrasonically, were found to be sensitive to relaxation, crystallization and phase decomposition phenomena in rapidly solidified metallic glasses. Analytical ultrasonics enables determination of the activation energies and growth parameters of the reactions. Therefrom theoretical models can be constructed to explain the changes in mechanical and physical properties upon heat treatment of glassy alloys. The composition dependence of the elastic moduli in amorphous Cu-Zr alloys was found to be related to the glass transition temperature, and consequently to the glass forming ability of these alloys. Dynamic ultrasonic analysis was found to be feasible for on-line, real-time, monitoring of metallurgical processes.

  1. 3D printed components with ultrasonically arranged microscale structure

    Science.gov (United States)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-02-01

    This paper shows the first application of in situ manipulation of discontinuous fibrous structure mid-print, within a 3D printed polymeric composite architecture. Currently, rapid prototyping methods (fused filament fabrication, stereolithography) are gaining increasing popularity within the engineering commnity to build structural components. Unfortunately, the full potential of these components is limited by the mechanical properties of the materials used. The aim of this study is to create and demonstrate a novel method to instantaneously orient micro-scale glass fibres within a selectively cured photocurable resin system, using ultrasonic forces to align the fibres in the desired 3D architecture. To achieve this we have mounted a switchable, focused laser module on the carriage of a three-axis 3D printing stage, above an in-house ultrasonic alignment rig containing a mixture of photocurable resin and discontinuous 14 μm diameter glass fibre reinforcement(50 μm length). In our study, a suitable print speed of 20 mm s-1 was used, which is comparable to conventional additive layer techniques. We show the ability to construct in-plane orthogonally aligned sections printed side by side, where the precise orientation of the configurations is controlled by switching the ultrasonic standing wave profile mid-print. This approach permits the realisation of complex fibrous architectures within a 3D printed landscape. The versatile nature of the ultrasonic manipulation technique also permits a wide range of particle types (diameters, aspect ratios and functions) and architectures (in-plane, and out-plane) to be patterned, leading to the creation of a new generation of fibrous reinforced composites for 3D printing.

  2. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    Science.gov (United States)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  3. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    Directory of Open Access Journals (Sweden)

    Caterina Casavola

    2018-04-01

    Full Text Available Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT on T-pull samples made by carbon fiber reinforced polymers (CFRP and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  4. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    Science.gov (United States)

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  5. Assessment of cumulative damage by using ultrasonic C-scan on carbon fiber/epoxy composites under thermal cycling

    Directory of Open Access Journals (Sweden)

    Marcos Yutaka Shiino

    2012-08-01

    Full Text Available In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.

  6. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  7. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  8. FPGA Implementation of an Amplitude-Modulated Continuous-Wave Ultrasonic Ranger Using Restructured Phase-Locking Scheme

    Directory of Open Access Journals (Sweden)

    P. Sumathi

    2010-01-01

    Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.

  9. Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings

    Directory of Open Access Journals (Sweden)

    Francesca eLionetto

    2015-04-01

    Full Text Available Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation.The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.

  10. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  11. Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2010-01-01

    Copper thin film on silane modified poly(ethylene terephthalate) (PET) substrate was fabricated by ultrasonic-assisted electroless deposition. The composition and topography of copper plating PET films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Peel adhesion strength, as high as 16.7 N/cm, was achieved for the planting copper layer to the modified PET substrate with ultrasonic-assisted deposition; however, a relative low value as 11.9 N/cm was obtained for the sample without ultrasonic vibration by the same measurement. The electrical conductivity of Cu film was changed from 7.9 x 10 4 to 2.1 x 10 5 S/cm by using ultrasonic technique. Ultrasonic operation has the significant merits of fast deposition and formation of good membranes for electroless deposition of Cu on PET film.

  12. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    Science.gov (United States)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-01

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ±e2/2 h at half filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.

  13. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  14. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  15. A study on the nondestructive evaluation of carbon/carbon disk using ultrasonics

    International Nuclear Information System (INIS)

    Im, Kwang Hee; Yang, In Young; Jeong, Hyun Jo

    1998-01-01

    It is useful to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity for carbon/carbon (C/C) composites because the manufacturing of C/C brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to attributable to the manufacturing process. In a carbon/carbon brake disk manufactured by a combination of pitch impregnation and CVI(Vapor infiltration method), the spatial variation of ultrasonic velocity was measured and found to be consistent with the nonuniform densification behavior in the manufacturing process. Low frequency(5 MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. These results were compared with those obtained by dry-coupling ultrasonics. A good correlation was found between ultrasonic velocity and material density on a set of small blocks cut out of the disk. Pulse-echo C-scans at higher frequency (25 MHz) were used to image near-sulfate material property anomalies associated with certain steps in the manufacturing process, such as the placement of spacers between disks during the final CVI.

  16. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Science.gov (United States)

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  17. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    Science.gov (United States)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  18. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S A

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  20. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  1. Estimating adipose tissue in the chest wall using ultrasonic and alternate 40K and biometric measurements

    International Nuclear Information System (INIS)

    Anderson, A.L.; Campbell, G.W.; Singh, M.S.

    1982-01-01

    The percentage of adipose (fat) tissue in the chest wall must be known to accurately measure Pu in the human lung. Correction factors of 100% or more in X-ray detection efficiency are common in a normal population of individuals of differing body composition and have been determined in the past by means of elaborate and costly ultrasonic measurements of the subject's chest. Methods using simple 40 K and biometric measurement techniques have been investigated to determine the adipose content in the human chest wall. These methods compare favorably with ultrasonic measurements and allow laboratories not possessing ultrasonic equipment to make appropriate corrections for x-ray detection efficiency. These methods predict adipose content to within 15% of the absolute ultrasonic value. (author)

  2. Ultrasonic study of molecular interaction in binary liquid mixtures at ...

    Indian Academy of Sciences (India)

    The variation of these parameters with composition of the mixture helps us in understanding the nature and extent of interaction between unlike molecules in the mixtures. Further, theoretical values of ultrasonic speed were evaluated using theories and empirical relations. The relative merits of these theories and relations ...

  3. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  4. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    Science.gov (United States)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  5. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  6. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    Science.gov (United States)

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Vibration suppression in ultrasonic machining described by non-linear differential equations

    International Nuclear Information System (INIS)

    Kamel, M. M.; El-Ganaini, W. A. A.; Hamed, Y. S.

    2009-01-01

    Vibrations are usually undesired phenomena as they may cause damage or destruction of the system. However, sometimes they are desirable, as in ultrasonic machining (USM). In such case, the problem is a complicated one, as it is required to reduce the vibration of the machine head and have reasonable amplitude for the tool. In the present work, the coupling of two non-linear oscillators of the tool holder and tool representing ultrasonic cutting process is investigated. This leads to a two-degree-of-freedom system subjected to multi-external excitation force. The aim of this work is to control the tool holder behavior at simultaneous primary and internal resonance condition and have high amplitude for the tool. Multiple scale perturbation method is applied to obtain a solution up to the second order approximations. Other different resonance cases are reported and studied numerically. The stability of the system is investigated applying both phase-plane and frequency response techniques. The effects of the different parameters of the tool on the system behavior are studied numerically. Comparison with the available published work is reported

  8. Ultrasonic unit for line-by-line ultrasonic scanning of bodies

    International Nuclear Information System (INIS)

    Soldner, R.

    1978-01-01

    The ultrasonic unit for medical diagnostics operates by the sectorial scanning principle, which avoids direct coupling of the transducer head to the surface of the body. For this purpose, several transmitter/receiver units (approx. 100) are arranged on a partial ring of a circular arc and the ultrasonic beams, which can be triggered sequentially in time, are directed at a common intersection behind the ultrasonic window of the unit, i.e., outside the unit. A mechanical system is employed to set and adjust the partial ring carrying the transmitter/receiver units. (DG) [de

  9. Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J Y; Klima, J

    2007-09-01

    In order to undertake irradiation of polymer blocks or films by ultrasound, this paper deals with the measurements of ultrasonic power and its distribution within the cell by several methods. The electric power measured at the transducer input is compared to the ultrasonic power input to the cell evaluated by calorimetry and radiation force measurement for different generator settings. Results obtained in the specific case of new transducer types (composites and focused composites i.e., HIFU: high intensity focused ultrasound) provide an opportunity to conduct a discussion about measurement methods. It has thus been confirmed that these measurement techniques can be applied to HIFU transducers. For all cases, results underlined the fact that measurement of radiation pressure for power evaluation is more adapted to low powers (generator-transducer-liquid and sample.

  10. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    Directory of Open Access Journals (Sweden)

    Margherita Capriotti

    2017-06-01

    Full Text Available This paper discusses a non-destructive evaluation (NDE technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI from ground service equipment (GSE, such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  11. NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    JE Daw; JL Rempe; BR Tittmann; B Reinhardt; P Ramuhalli; R Montgomery; HT Chien

    2012-09-01

    Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are less intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.

  12. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys

    2017-01-01

    Full Text Available Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  13. Intensely oscillating cavitation bubble in microfluidics

    International Nuclear Information System (INIS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-01-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range. (paper)

  14. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    International Nuclear Information System (INIS)

    Shu, Song; Guo, Jia-Xiu; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Luo, De-Ming

    2016-01-01

    Graphical abstract: - Highlights: • Fe/NAC-60 exhibits the best desulfurization activity. • Different oscillation time can change surface area and pore volume of catalysts. • Ultrasonic oscillation increases Fe dispersion on carrier and effective pores. • Pore sizes play a crucial role during the SO 2 removal. - Abstract: A series of Fe-loaded activated carbons treated by HNO 3 (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N 2 adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe 3 O 4 . The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m 2 /g and total pore volume of 0.961 cm 3 /g with micropore volume of 0.437 cm 3 /g and is larger than Fe/NAC-0 (823 m 2 /g, 0.733 and 0.342 cm 3 /g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m 2 /g and 0.481 cm 3 /g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution influences SO 2 adsorption, and fresh Fe/NAC-60 has

  15. DETECTION OF DELAMINATION IN A COMPOSITE PLATE BY SEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A numerical method of integration of Green's functi ons of strip element method (SEM) is proposed. The response of ultrasonic sourc e generated by a transducer on the surface of a multi-ply composite plate conta ining a delamination is analyzed by the use of SEM. The numerical results show that the scanning features of the ultrasonic waves may be used to identify the d elamination inside the composite plate .

  16. 3D ultrasound characterization of woven composites

    Science.gov (United States)

    Tayong, Rostand B.; Mienczakowski, Martin J.; Smith, Robert A.

    2018-04-01

    Recent studies on the Non-Destructive Testing (NDT) of composites for the aerospace industry have led to an understanding of ultrasonic propagation in these materials [1]. Techniques for enhanced ultrasonic imaging of the internal structure of composite laminates containing unidirectional fibers have been proposed and tested in a laboratory environment. For the automotive industry, textile composites are often preferred and widely used. The reason for this is that these types of composites offer good mechanical performance, with resistance to delamination and reduced manufacturing costs. In this study, two models are developed and shown to be suitable to characterize the woven specimen. The first model is a 1D analytical model that makes simplified assumptions and the second is a 3D time-domain Finite Element (FE) model developed [2] for advanced understanding of the woven composite response to an ultrasonic excitation. For each of the proposed models, three parameters are defined and used to analyze the structure behavior. They are the instantaneous amplitude, instantaneous phase and instantaneous frequency. These parameters are employed to track the in-plane fiber orientation and the ply-interface location and for the sentencing of features. Three different specimens with the following weave type: 3D orthogonal, 2D plain and Multilayer stitching were considered and scanned (using a focused ultrasonic transducer) to validate the proposed models. As a preliminary study, the work only focuses on the Orthogonal weave specimen. The results obtained from experimental, analytical and FE modeling, B-scan and C-scan are compared, discussed and presented in terms of the above defined parameters.

  17. Effects of ultrasonic pretreatment on quantity and composition of bacterial DNA recovered from granular activated carbon used for drinking water treatment.

    Science.gov (United States)

    Kim, Tae Gwan; Kim, Sun-Hye; Cho, Kyung-Suk

    2014-01-01

    Effects of ultrasonic pretreatment on bacterial DNA recovery from granular activated carbon (GAC) were investigated. GAC (Calgon F400), biologically activated, was sampled from an actual drinking water plant. Different ultrasonic energy densities (0-400 J·cm(-3)) were applied with agitation (250 rpm for 30 min), and recovered bacterial DNA was quantified using quantitative PCR. Energy density was linearly correlated with the concentration of carbon fines produced from GAC during ultrasonication. Ultrasonication alone had no effect on DNA recovery at ≤60 J·cm(-3), but a strongly adverse effect at >67 J·cm(-3) due to the produced carbon fines. Agitation along with ultrasonication strongly enhanced the bacterial DNA recovery when ≤40 J·cm(-3) was applied, although it did not affect the production of carbon fines. Ribosomal tag pyrosequencing was used to compare recovered bacterial communities (0, 20 and 30 J·cm(-3) with or without agitation). Ultrasonication allowed for obtaining a more diverse and richer bacterial community from GAC, compared with the control. Agitation did not show a positive effect on community organization (richness and diversity). Consistently, canonical correspondence analysis indicated that the energy density was associated with the relative abundances of particular bacterial members (P carbon fines as a by-product by ultrasonication interfere with the DNA recovery.

  18. A universal piezo-driven ultrasonic cell microinjection system.

    Science.gov (United States)

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  19. Microscale 1-3-Type (Na,K)NbO(3)-Based Pb-Free Piezocomposites for High-Frequency Ultrasonic Transducer Applications.

    Science.gov (United States)

    Shen, Zong-Yang; Li, Jing-Feng; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk

    2011-05-01

    Fine-grained Pb-free (Na(0.535)K(0.485))(0.95)Li(0.05)(Nb(0.8)Ta(0.2))O(3) (NKLNT) piezoceramics prepared by spark plasma sintering (SPS) technique was used to fabricate NKLNT/epoxy 1-3 composites with a modified dice-fill method. Because of its good machinability, SPSed NKLNT ceramic rods could be miniaturized to a lateral width of 50 µm. After lapping down to 56 µm in thickness, the composite was used to fabricate an ultrasonic transducer as the active piezoelectric element. This composite transducer showed a bandwidth at -6 dB nearly 90%at a center frequency of 29 MHz, demonstrating that this Pb-free composite thick film is very promising for the fabrication of high-frequency ultrasonic transducers in medical imaging applications.

  20. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  1. Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite.

    Science.gov (United States)

    Vukomanović, Marija; Mitrić, Miodrag; Skapin, Sreco D; Zagar, Ema; Plavec, Janez; Ignjatović, Nenad; Uskoković, Dragan

    2010-06-01

    In this work poly(D,L-lactide-co-glycolide) (PLGA) and a poly(d,l-lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) composite processed in an ultrasonic field at higher (25 degrees C) and lower (8 degrees C) temperatures were studied with respect to the molecular properties of the obtained materials. The processing of the PLGA and the PLGA/HAp composite in an ultrasonic field resulted in a change of molar mass averages of the polymer/polymeric part of these materials, while an amorphous structure and a 50:50 lactide-to-glycolide co-monomer ratio were preserved without the formation of crystalline oligomers. However, mobility of polymeric chains obtained after ultrasonic processing was lower indicating ordering the structure of polymeric chains as a result of processing. Additionally, it was observed that the mobility of the PLGA macromolecules was lower within the composite in comparison with the mobility of the chains within the PLGA alone in the case when both were obtained after ultrasonic processing. This was a consequence of the structure formation through the interactions between the PLGA and the HAp. Based on these results different degradation rate of PLGA in composite can be expected, which is important in the application of this material for the controlled drug delivery of medicaments. (c) 2010 Elsevier B.V. All rights reserved.

  2. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  3. Numerical modeling of ultrasonic cavitation in ionic liquids

    Science.gov (United States)

    Calvisi, Michael L.; Elder, Ross M.

    2017-11-01

    Ionic liquids have favorable properties for sonochemistry applications in which the high temperatures and pressures achieved by cavitation bubbles are important drivers of chemical processes. Two different numerical models are presented to simulate ultrasonic cavitation in ionic liquids, each with different capabilities and physical assumptions. A model based on a compressible form of the Rayleigh-Plesset equation (RPE) simulates ultrasonic cavitation of a spherical bubble with a homogeneous interior, incorporating evaporation and condensation at the bubble surface, and temperature-varying thermodynamic properties in the interior. A second, more computationally intensive model of a spherical bubble uses the finite element method (FEM) and accounts for spatial variations in pressure and temperature throughout the flow domain. This model provides insight into heat transfer across the bubble surface and throughout the bubble interior and exterior. Parametric studies are presented for sonochemistry applications involving ionic liquids as a solvent, examining a range of realistic ionic liquid properties and initial conditions to determine their effect on temperature and pressure. Results from the two models are presented for parametric variations including viscosity, thermal conductivity, water content of the ionic liquid solvent, acoustic frequency, and initial bubble pressure. An additional study performed with the FEM model examines thermal penetration into the surrounding ionic liquid during bubble oscillation. The results suggest the prospect of tuning ionic liquid properties for specific applications.

  4. Experimental study on titanium wire drawing with ultrasonic vibration.

    Science.gov (United States)

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assessment of Aluminum FSW Joints Using Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Adamus K.

    2017-12-01

    Full Text Available The paper concerns aluminum joints made using friction stir welding. Although in the aerospace industry there is a tendency to replace metal components with composites, aluminum continues to be a valuable material. Its share in the aircraft structures is the biggest among all structural metals. Lots of aluminum components are made of sheets and most of them require joining. Friction stir welding is a relatively new joining technology, particularly with regard to the sheets having a thickness of 1 mm or lower. The paper is dedicated to non-destructive testing of such joints using ultrasonic inspection. It was found that ultrasonic testing allows for distinguishing between joints without material discontinuities, joint with material discontinuities at the advancing side and joint with discontinuities extending through the whole width of the stir zone. During research only horizontally aligned defects were taken into account.

  6. Mn-Doped CaBi4Ti4O15/Pb(Zr,TiO3 Ultrasonic Transducers for Continuous Monitoring at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Makiko Kobayashi

    2017-11-01

    Full Text Available Continuous ultrasonic in-situ monitoring for industrial applications is difficult owing to the high operating temperatures in industrial fields. It is expected that ultrasonic transducers consisting of a CaBi4Ti4O15(CBT/Pb(Zr,TiO3(PZT sol-gel composite could be one solution for ultrasonic nondestructive testing (NDT above 500 °C because no couplant is required and CBT has a high Curie temperature. To verify the high temperature durability, CBT/PZT sol-gel composite films were fabricated on titanium substrates by spray coating, and the CBT/PZT samples were tested in a furnace at various temperatures. Reflected echoes with a high signal-to-noise ratio were observed up to 600 °C. A thermal cycle test was conducted from room temperature to 600 °C, and no significant deterioration was found after the second thermal cycle. To investigate the long-term high-temperature durability, a CBT/PZT ultrasonic transducer was tested in the furnace at 600 °C for 36 h. Ultrasonic responses were recorded every 3 h, and the sensitivity and signal-to-noise ratio were stable throughout the experiment.

  7. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.

    Science.gov (United States)

    Peng, Chengxin; Chen, Bingdi; Qin, Yao; Yang, Shihe; Li, Chunzhong; Zuo, Yuanhui; Liu, Siyang; Yang, Jinhu

    2012-02-28

    In this paper, we report a facile ultrasonic method to synthesize well-dispersed CoO quantum dots (3-8 nm) on graphene nanosheets at room temperature by employing Co(4)(CO)(12) as cobalt precursor. The prepared CoO/graphene composites displayed high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (1592 mAh g(-1) after 50 cycles), high Coulombic efficiency (over 95%), excellent cycling stability, and high rate capability (1008 mAh g(-1) with a total retention of 77.6% after 50 cycles at a current density of 1000 mA g(-1), dramatically increased from the initial 50 mA g(-1)). The extraordinary performance arises from the structure advantages of the composites: the nanosized CoO quantum dots with high dispersity on conductive graphene substrates supply not only large quantity of accessible active sites for lithium-ion insertion but also good conductivity and short diffusion length for lithium ions, which are beneficial for high capacity and rate capability. Meanwhile, the isolated CoO quantum dots anchored tightly on the graphene nanosheets can effectively circumvent the volume expansion/contraction associated with lithium insertion/extraction during discharge/charge processes, which is good for high capacity as well as cycling stability. Moreover, regarding the anomalous behavior of capacity increase with cycles (activation effect) observed, we proposed a tentative hypothesis stressing the competition between the conductivity increase and the amorphorization of the composite electrodes during cycling in determining the trends of the capacity, in the hope to gain a fuller understanding of the inner working of the novel nanostructured electrode-based lithium-ion batteries.

  8. Ultrasonic Beam Propagation in Highly Anisotropic Materials Simulated by Multi-Gaussian Beams

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo; Schmerr, Lester W.

    2007-01-01

    The necessity of nondestructively inspecting fiber-reinforced composites, austenitic steels, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface play key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasi longitudinal (qL) beam propagates in the symmetry plane of a transversely isotropic gr/ep composite. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions

  9. Microwave radiation absorption and Shubnikov-de Haas oscillations in semimetal InAs/GaSb/AlSb composite quantum wells

    Czech Academy of Sciences Publication Activity Database

    Mikhailova, M. P.; Veinger, A.I.; Kochman, I.V.; Semenikhin, P.V.; Kalinina, K.V.; Parfeniev, R.V.; Berezovets, V.A.; Safonchik, M.O.; Hospodková, Alice; Pangrác, Jiří; Zíková, Markéta; Hulicius, Eduard

    2016-01-01

    Roč. 10, č. 4 (2016), 1-8, č. článku 046013. ISSN 1934-2608 R&D Projects: GA ČR GA13-15286S; GA MŠk LO1603 Institutional support: RVO:68378271 Keywords : Shubnikov-de Haas oscillations * microwave absorption * electron-paramagnetic resonance * composite quantum wells * InAs/GaSb/AlSb * MOVPE Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.325, year: 2016

  10. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    Science.gov (United States)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  11. Light exposure influences the diurnal oscillation of gut microbiota in mice.

    Science.gov (United States)

    Wu, Guangyan; Tang, Wenli; He, Yan; Hu, Jingjuan; Gong, Shenhai; He, Zhanke; Wei, Guoquan; Lv, Liyi; Jiang, Yong; Zhou, Hongwei; Chen, Peng

    2018-05-03

    The gut microbiota exhibit diurnal compositional and functional oscillations that influence the host homeostasis. However, the upstream factors that affect the microbial oscillations remain elusive. Here, we focused on the potential impact of light exposure, the main factor that affects the host circadian oscillation, on the diurnal oscillations of intestinal microflora to explore the upstream factor that governs the fluctuations of the gut microbes. The gut microbiota of the mice that were underwent regular light/dark (LD) cycles exhibited a robust rhythm at both compositional and functional level, in all parts of the intestine. Comparably, constant darkness (DD) led to the loss of the rhythmic oscillations in almost all parts of the intestine. Additionally, the abundance of Clostridia in DD conditions was dramatically enhanced in the small intestine. Our data indicated light exposure is the upstream factor that governs the regular diurnal fluctuations of gut microbiota in vivo. Copyright © 2018. Published by Elsevier Inc.

  12. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  13. bcc transition metals under pressure: results from ultrasonic interferometry and diamond-cell experiments

    International Nuclear Information System (INIS)

    Katahara, K.W.; Manghnani, M.H.; Ming, L.C.; Fisher, E.S.

    1976-01-01

    Hydrostatic pressure derivatives of the single-crystal elastic moduli, dC/sub ij//dP, have been measured ultrasonically for b.c.c. Nb--Mo and Ta--W solid solutions. The composition dependence of various electronic properties of these alloys is known to be reasonably well approximated by a rigid-electron-band filling model where e/a, the electron per atom ratio, is the primary parameter. The results indicate that the elastic moduli and their pressure derivatives may also be calculated in such a model. In particular, the dC/sub ij//dP show relatively sharp increases at e/a compositions of 5.4 for Nb--Mo and 5.7 for Ta--W. Both compositions correspond to changes in Fermi surface topology, as deduced from existing band calculations and the rigid band assumption. The results are discussed in the light of related electronic properties and possible geophysical applications. A comparison is also made between ultrasonic results and X-ray diffraction data for Nb. Using diamond-anvil pressure cell, compression of Nb was determined by X-ray diffraction up to 55 kbar in a liquid medium under purely hydrostatic conditions, and up to 175 kbar in a solid medium under nonhydrostatic conditions. The data obtained under hydrostatic conditions agree well with the ultrasonic equation of state and shock wave data, whereas the nonhydrostatic results tend to imply either a higher bulk modulus K/sub s/ or a higher (par. deltaK/sub s//par. deltaP)/sub T/

  14. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  15. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  16. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  17. Spectroscopic analyses on sonocatalytic damage to bovine serum albumin (BSA) induced by ZnO/hydroxylapatite (ZnO/HA) composite under ultrasonic irradiation

    Science.gov (United States)

    Wang, Zhiqiu; Li, Ying; Wang, Jun; Zou, Mingming; Gao, Jingqun; Kong, Yumei; Li, Kai; Han, Guangxi

    ZnO/hydroxylapatite (ZnO/HA) composite with HA molar content of 6.0% was prepared by the method of precipitation and heat-treated at 500 °C for 40 min and was characterized by powder X-ray diffraction (XRD). The sonocatalytic activities of ZnO/HA composite was carried out through the damage of bovine serum albumin (BSA) in aqueous solution. Furthermore, the effects of several factors on the damage of BSA molecules were evaluated by means of UV-vis and fluorescence spectra. Experimental results indicated that the damage degree of BSA aggravated with the increase of ultrasonic irradiation time, irradiation power and ZnO/HA addition amount, but weakened with the increase of solution acidity and ionic strength. In addition, the damage site to BSA was also studied by synchronous fluorescence technology and the damage site was mainly at tryptophan (Trp) residue. This paper provides a valuable reference for driving sonocatalytic method to treat tumor in clinic application.

  18. High temperature flexible ultrasonic transducers for structural health monitoring and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Shih, J.L. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Kobayashi, M.; Jen, C.K.; Tatibouet, J. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station

    2009-07-01

    Ultrasonic techniques are often used for non-destructive testing (NDT) and structural health monitoring (SHM) of pipes in nuclear and fossil fuel power plants, petrochemical plants and other structures as a method to improve safety and extend the service life of the structure. In such applications, ultrasonic transducers (UTs) must be able to operate at high temperature, and must come in contact with structures that have surfaces with different curvatures. As such, flexible UTs (FUTs) are most suitable because they ensure self-alignment to the object's surface. The purpose of this study was to develop FUTs that have high flexibility similar to commercially available polyvinylidene fluoride PVDF FUTs, but which can operate at up to at least 150 degrees C and have a high ultrasonic performance comparable to commercial broadband UTs. The fabrication of the FUT consisted of a sol-gel based sensor fabrication process. The substrate was a 75 {mu}m thick titanium (Ti) membrane, a piezoelectric composite with a thickness larger than 85 {mu}m and a top electrode. The ultrasonic performance of the FUT in terms of signal strength was found to be at least as good as commercially available broadband ultrasonic transducers at room temperature. Onsite gluing and brazing installation techniques which bond the FUTs onto steel pipes for SHM and NDT purposes up to 100 and 150 degrees C were developed, respectively. The best thickness measurement accuracy of FUT at 150 degrees C was estimated to be 26 {mu}m. 18 refs., 2 tabs., 6 figs.

  19. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Song [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Guo, Jia-Xiu, E-mail: guojiaxiu@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Sichuan Provincial Environmental Protection Environmental Catalysis and Materials Engineering Technology Center, Chengdu 610065, Sichuan (China); Liu, Xiao-Li [National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Wang, Xue-Jiao [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Yin, Hua-Qiang [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Sichuan Provincial Environmental Protection Environmental Catalysis and Materials Engineering Technology Center, Chengdu 610065, Sichuan (China); Luo, De-Ming [National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China)

    2016-01-01

    Graphical abstract: - Highlights: • Fe/NAC-60 exhibits the best desulfurization activity. • Different oscillation time can change surface area and pore volume of catalysts. • Ultrasonic oscillation increases Fe dispersion on carrier and effective pores. • Pore sizes play a crucial role during the SO{sub 2} removal. - Abstract: A series of Fe-loaded activated carbons treated by HNO{sub 3} (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N{sub 2} adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe{sub 3}O{sub 4}. The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m{sup 2}/g and total pore volume of 0.961 cm{sup 3}/g with micropore volume of 0.437 cm{sup 3}/g and is larger than Fe/NAC-0 (823 m{sup 2}/g, 0.733 and 0.342 cm{sup 3}/g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m{sup 2}/g and 0.481 cm{sup 3}/g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution

  20. Controlled X-ray pumping in a wide range of piezo-electric oscillation frequencies

    CERN Document Server

    Navasardyan, M A; Galoyan, K G

    1986-01-01

    In case of Laue diffraction the transmitted X-ray reflection in shown to be effectively controllable in the perfect quartz single crystal when it generates ultrasonic oscillations at the resonance frequency or in its vicinity. The maximum effective amplitude of applied sinusoidal oscillations is equal to 70 V. The pumping degree depends on the voltage amplitude. In this work monochromatic K subalpha sub 1 and K subalpha sub 2 molybdenum lines satisfying the thin crystal condition, mu t<=1, are used (mu is the linear absorption coefficient of the sample for the given wavelength and t is its thickness). The radiation was reflected from different planes such as (1011), (1011), (2022) etc. The complete pumping strongly restricts the structural factor possibilities in estimating the intensity of diffracted X-rays in case of considerable deformations in the bulk of perfect single crystal.

  1. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  2. Ultrasonic and viscosimetric studies of samarium laurate in benzene-dimethylsulfoxide mixtures

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Anis, M.

    1995-01-01

    Ultrasonic and viscosity measurements of samarium laurate in benzene-DMSO mixtures of different compositions (7:3 and 1:1 V/V) have been used to determine the critical micelle concentration (CMC), soap-solvent interaction, and various acoustic parameters of the system. The values of critical micelle concentration increase with increasing amount of DMSO in the solvent mixtures. The viscosity results have been explained on the basis of equations proposed by Einstein, Vand. Moulik, and Jones-Dole. The values of CMC for samarium laurate obtained from the viscosity measurements are in agreement with the results obtained from ultrasonic measurements. The results show that the soap molecules do not aggregate appreciably below CMC there is a marked change in the aggregation behaviour at CMC. (author)

  3. Ultrasonic splitting of oil-in-water emulsions

    DEFF Research Database (Denmark)

    Hald, Jens; König, Ralf; Benes, Ewald

    1999-01-01

    Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions, the avai......Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions......, the available piezoelectric composite transducer technology was improved and a dedicated resonator with crossed plane wave sonication geometry has been developed. The resonator chamber is entirely made of aluminium or tempax glass and the PZT piezoceramic transducer delivers an acoustic energy flow density...... of up to 24 W/cm2 into the sonication volume. The chosen resonance frequency is kept stable by automatic frequency control utilizing the maximum true power criterion. Physically and chemically well-defined low and high density pure laboratory and also industrially used cooling-lubricating oil...

  4. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  5. 1 kHz 3.3 μm Nd:YAG KTiOAsO₄ optical parametric oscillator system for laser ultrasound excitation of carbon-fiber-reinforced plastics.

    Science.gov (United States)

    Puncken, Oliver; Gandara, David Mendoza; Damjanic, Marcin; Mahnke, Peter; Bergmann, Ralf B; Kalms, Michael; Peuser, Peter; Wessels, Peter; Neumann, Jörg; Schnars, Ulf

    2016-02-20

    We present a new laser prototype for laser ultrasonics excitation. The fundamental wavelength of a Q-switched Nd:YAG laser with a repetition rate of 1 kHz is converted to 3.3 μm with a KTiOAsO4 optical parametric oscillator. The achieved pulse energy at 3.3 μm is 1.7 mJ, and the pulse duration at the fundamental wavelength of 1.06 μm has been measured to be 21 ns. The ultrasonic excitation efficiency is about 3.5 times better compared to the application of state-of-the-art CO2 lasers.

  6. First Neutrino Oscillation Results from the NOvA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, Kanika [Fermilab

    2016-11-29

    NOvA is a long-baseline neutrino oscillation experiment on the NuMI muon neutrino beam at Fermilab. It consists of two functionally identical, nearly fully-active liquid-scintillator tracking calorimeters. The Near Detector (ND) at Fermilab is used to study the neutrino beam spectrum and composition before oscillations occur. The Far Detector in northern Minnesota, 810 km away, observes the oscillated beam and is used to extract the oscillation parameters. NOvA is designed to observe oscillations in two channels: disappearance channel ( ν μ → ν μ ) and ν e appearance channel ( ν μ → ν e ). This paper reports the measurements of both these channels based on the first NOvA data taken from February 16, 2014 till May 15, 2015

  7. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  8. Hot-Dip Coating of Lead-free Aluminum on Steel Substrates with Ultrasonic Vibration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hot-dip coating has been practically employed in manufacturing zinc alloy coated steel sheets. However, it is difficult to coat aluminum alloy on a bulky steel substrate without sufficient preheating, because a rapidly solidified layer containing gas babbles is formed on a substrate surface. A variety of iron-aluminides are also formed at the interface of a steel and aluminum hot-dip coating system, which is the main difficulty in joining of steel with aluminum. Ultrasonic vibration was applied to a steel substrate during hot-dip coating of aluminum alloy to control a rapidly solidified layer and a brittle reaction layer. Hot dipping of columnar steel substrates into molten aluminum alloy (Al-2.7 mass fraction Si-4.6 mass fraction Sn) was carried out through the use of a Langevin oscillator with resonant frequency of 19.5 kHz. The application of ultrasonic vibration is quite effective to control a rapidly solidified layer and a surface oxide layer from a substrate surface by the sonocapillary effect based on a cavitation phenomenon, so that the intimate contact is achieved at the beginning of hot-dip coating. The application of ultrasonic vibration to hot-dipping is effective to control a reaction layer with less than 5μm in thickness. An impact test exhibits that the good adhesive strength is approved in hot-dipped aluminum coatings with a thin reaction layer of approximately 5μm.

  9. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  10. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  11. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  12. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  13. Research results on productivity stabilization by ultrasonic camera (plant with membrane ceramic elements during vine processing

    Directory of Open Access Journals (Sweden)

    V. T. Antufyev

    2016-01-01

    Full Text Available The article describes solutions to the problems of declining productivity of ceramic membrane elements for wine processing on the final manufacturing phase. A relative stabilization of filtration velocity, venting efficiency and wine lightening were experimentally confirmed during contacts with oscillation waves of ultrasonic transmitter on the ceramic filter. Which significantly reduced the cost of various preservatives to increase periods storage. To study the processes of wine processing by the proposed method it was made an experimental installation on the basis of pilot machine MRp-1/2 for bottling of quiet liquids and an ultrasonic device "Volna– M" UZTA-1/22-OM with a firmly, waveguide which transmits sound, fixed filter frame on the ultrasound emitter. To stabilize the performance of ultrasonic units with ceramic membrane elements without quality deterioration of wines it was empirically determined rational parameters of power of ultrasound input and pressure in the system. The given derived dependencies and graphs allow to define the time of relatively stable operating filter regime. It was revealed a significant cost reduction on filtration, as it allows escape from the contamination of the product by various preservatives, and increasing of storage duration in a sealed container during aseptic filling without a thermal sterilization. Ultrasonic emitter contact by superposition wave vibrations on the ceramic filter increases not only the efficiency of gas removal, but also improves the organoleptic characteristics, stabilizes the filters, improves their productivity. Gas removal creates unfavorable conditions for development of the yeast, which in turn increases the shelf life of semisweet wine.

  14. Hybrid ray-FDTD model for the simulation of the ultrasonic inspection of CFRP parts

    Science.gov (United States)

    Jezzine, Karim; Ségur, Damien; Ecault, Romain; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    Carbon Fiber Reinforced Polymers (CFRP) are commonly used in structural parts in the aeronautic industry, to reduce the weight of aircraft while maintaining high mechanical performances. Simulation of the ultrasonic inspections of these parts has to face the highly heterogeneous and anisotropic characteristics of these materials. To model the propagation of ultrasound in these composite structures, we propose two complementary approaches. The first one is based on a ray model predicting the propagation of the ultrasound in an anisotropic effective medium obtained from a homogenization of the material. The ray model is designed to deal with possibly curved parts and subsequent continuously varying anisotropic orientations. The second approach is based on the coupling of the ray model, and a finite difference scheme in time domain (FDTD). The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Inspections of flat or curved composite panels, as well as stiffeners can be performed. The models have been implemented in the CIVA software platform and compared to experiments. We also present an application of the simulation to the performance demonstration of the adaptive inspection technique SAUL (Surface Adaptive Ultrasound).

  15. 3D Guided Wave Motion Analysis on Laminated Composites

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  16. Composite particles and symplectic (Semi-) groups

    International Nuclear Information System (INIS)

    Kramer, P.

    1978-01-01

    Nuclear composits particle dynamics is intimately related to the fermion character of nucleons. This property is implemented via the permutational structure of nuclear states, leading to the concept of exchange and to the quantum number of the orbital partition. We review Weyl operators and representations of linear canonical transformations in Bargmann Hilbert space. In section 4 we use canonical transformations to describe the general n-body dynamics. In section 5 we derive the composite particle dynamics and discuss an algorithm to obtain the interaction of composite particles whose constituents are assumed to be in harmonic oscillator states. As a first example we treat in section 6 composite particles with unexcited internal oscillator states. In section 7 we deal with composite particles of internal oscillator shell configurations. (orig.) [de

  17. 21 CFR 872.4850 - Ultrasonic scaler.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  18. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome.

    Science.gov (United States)

    Hu, Jie; Jia, Xuejing; Fang, Xiaobin; Li, Peng; He, Chengwei; Chen, Meiwan

    2016-04-01

    Ultrasonic-assisted extraction technology was employed to prepare Ligusticum chuanxiong Hort polysaccharide. Single factor test and orthogonal experimental design were used to optimize the extraction conditions. The results showed that the optimal extraction conditions consisted of ultrasonic temperature of 80°C, ultrasonic time of 40 min and water to raw material ratio of 30 mL/g. Three novel polysaccharides fractions, LCX0, LCX1 and LCX2, were isolated and purified from the crude polysaccharides using DEAE-52 cellulose and Sephadex G-100 column chromatography. The molecular weight and monosaccharide composition of three LCX polysaccharides fractions were analyzed with gel permeation chromatography (GPC) and HPLC analysis, respectively. Furthermore, the antioxidant and in vitro anticancer activities of the polysaccharides were investigated. Compared with LCX0, LCX2 and LCX1 showed relative higher antioxidant activity and inhibitory activity to the growth of HepG2, SMMC7721, A549 and HCT-116 cells. It is suggested that the novel polysaccharides from rhizome of L. chuanxiong could be promising bioactive macromolecules for biomedical use. Copyright © 2016. Published by Elsevier B.V.

  19. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil.

    Science.gov (United States)

    Tian, Yuting; Xu, Zhenbo; Zheng, Baodong; Martin Lo, Y

    2013-01-01

    The effectiveness of ultrasonic-assisted extraction (UAE) of pomegranate seed oil (PSO) was evaluated using a variety of solvents. Petroleum ether was the most effective for oil extraction, followed by n-hexane, ethyl acetate, diethyl ether, acetone, and isopropanol. Several variables, such as ultrasonic power, extraction temperature, extraction time, and the ratio of solvent volume and seed weight (S/S ratio) were studied for optimization using response surface methodology (RSM). The highest oil yield, 25.11% (w/w), was obtained using petroleum ether under optimal conditions for ultrasonic power, extraction temperature, extraction time, and S/S ratio at 140 W, 40 °C, 36 min, and 10 ml/g, respectively. The PSO yield extracted by UAE was significantly higher than by using Soxhlet extraction (SE; 20.50%) and supercriti cal fluid extraction (SFE; 15.72%). The fatty acid compositions were significantly different among the PSO extracted by Soxhlet extraction, SFE, and UAE, with punicic acid (>65%) being the most dominant using UAE. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A 20-day period standing oscillation in the northern winter stratosphere

    Directory of Open Access Journals (Sweden)

    K. Hocke

    2013-04-01

    Full Text Available Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.

  1. Grinding, Machining Morphological Studies on C/SiC Composites

    Science.gov (United States)

    Xiao, Chun-fang; Han, Bing

    2018-05-01

    C/SiC composite is a typical material difficult to machine. It is hard and brittle. In machining, the cutting force is large, the material removal rate is low, the edge is prone to collapse, and the tool wear is serious. In this paper, the grinding of C/Si composites material along the direction of fiber distribution is studied respectively. The surface microstructure and mechanical properties of C/SiC composites processed by ultrasonic machining were evaluated. The change of surface quality with the change of processing parameters has also been studied. By comparing the performances of conventional grinding and ultrasonic grinding, the surface roughness and functional characteristics of the material can be improved by optimizing the processing parameters.

  2. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonic deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  3. Quality control of disinfection in ultrasonic baths

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Technical University Dresden (Germany). Faculty of Mechanical Engineering; Jatzwauk, L. [University Hospital of the Technical University Dresden (Germany). Abt. Krankenhaushygiene

    2002-07-01

    Numerous investigations under laboratory conditions confirmed the microbicidal efficacy of ultrasonication. Morphological destruction was shown on bacteria and fungi as well as on different virus species. Ultrasonic treatment seems to increase the effect of different antibiotics and disinfectants. Reasons for this synergism are largely unknown and uninvestigated, but the active principle seems to bee the dispersing effect of ultrasonication in combination with the destruction of cell wall or cell membrane. Unfortunately no validation of test conditions exists for most of these investigations, regarding intensity and frequency of ultrasonic waves, temperature of liquid medium and measurement of cavitation which is an essential part of physical and chemical effects in ultrasonic baths. In contrast to most laboratory experiments sound density of ultrasound for treatment of medical instruments is below 1 W/cm{sup 2} because instruments will be destroyed under stronger ultrasonic conditions. The frequency is below 50 KHz. This paper describes bactericidal and fungicidal effects of low- intensity-ultrasonication and its synergistical support to chemical disinfection. (orig.)

  4. Effect of phase morphologies on the mechanical properties of babbitt-bronze composite interfaces

    Science.gov (United States)

    Liaw, P. K.; Gungor, M. N.; Logsdon, W. A.; Ijiri, Y.; Taszarek, B. J.; Frohlich, S.

    1990-02-01

    Interfaces of two different babbitt-bronze composites were tested ultrasonically and then were fractured using the Chalmers test method. The primary distinction between the two composites was in the copper content. Use of less copper in the babbitt resulted in interfaces with higher strength, lower ductility, less cracking, and less unbonded area. The differences appeared to stem from the structure of the intermetallic compounds found at the interface, namely, the Cu3Sn and the Cu6Sn5 layers. The low-copper composite failed within a thick, dendrite-like Cu6Sn5 layer, while the high-copper one separated at the interface between a smooth Cu6Sn5 layer and the babbitt metal. The rough interface morphology seemed responsible for the low-copper composite’s increased strength. The correlation between mechanical and ultrasonic properties was poor for the low-copper composite but excellent for the high-copper one. These results suggest that interface morphology can significantly affect mechanical as well as ultrasonic properties.

  5. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  6. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  7. Ultra-fast microwave sintering of PZT/FCO particulate composites prepared by ultrasonic mixing; Sinterizacao ultrarrapida por micro-ondas de compositos particulados PZT/FCO preparados por mistura em ultrassom

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, C.P.; Zabotto, F.L.; Garcia, D.; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2017-07-15

    Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (PZT) and Fe{sub 2}CoO{sub 4} (FCO) powders were synthesized separately by the Pechini method and then ultrasonically mixed in molar proportions of 80/20 and 50/50 of PZT/FCO. The resulting composites were pressed and subjected to conventional and ultrafast microwave-assisted sintering. The structure and microstructure of the sintered samples were analyzed, respectively, by X-ray diffraction and scanning electron microscopy. The dielectric constant as a function of temperature, electrical resistivity and magnetoelectric coupling coefficient were measured. The results indicated that the ultrasonic mixing method applied to PZT and FCO was fast and efficient, and that sintering resulted in globally connected (0-3) particulate composites and uniform distribution of the ferromagnetic phase (FCO) grains in the ferroelectric matrix (PZT). The structural analysis indicated that microwave sintering changed the arrangement (1-3) of the material's local connectivity, which was attributed to the intensification of diffusion processes that occur in this type of sintering, particularly in nanometric systems. The high values of resistivity indicated that although both sintering methods preserved the integrity of the two phases, microwave sintering was more efficient, ensuring the magnetoelectric behavior of all the composites under study. The values of H{sub max} field were dependent on the ferrite phase concentration and sintering; 80/20 1.4 and 1.9 kOe, and 50/50 3.5 and 3.0 kOe in the samples sintered by microwave and conventionally, consistent with the literature, which confirmed the integrity of the constituent phases PZT and FCO. (author)

  8. Generation of native polythiophene/PCBM composite nanoparticles via the combination of ultrasonic micronization of droplets and thermocleaving from aqueous dispersion

    DEFF Research Database (Denmark)

    Nan, Yaxiong; Hu, Xiaolian; Larsen-Olsen, Thue Trofod

    2011-01-01

    -PT/PCBM nanoparticles were determined by atomic force microscopy (AFM), small-angle x-ray scattering (SAXS) and grazing incidence SAXS (GISAXS), giving an average size of ~ 140 nm. The GISAXS results reveal that n-PT/PCBM nanoparticles pack in an ordered structure as opposed to the P3MHOCT/PCBM nanoparticles......We report the preparation of native polythiophene (n-PT)/[6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) composite nanoparticles from a poly[3-(2-methylhex-2-yl)oxy-carbonyldithiophene] (P3MHOCT)/PCBM aqueous dispersion prepared from an ultrasonically generated emulsion. The subsequent steps....... The successful vapour-phase preparation of phase-separated n-PT/PCBM nanoparticles provides a new route to all-aqueous processing of conjugated materials relevant to efficient polymer solar cells with long operational stability. The use of ultrasound was involved in both liquid and gas phases demonstrating...

  9. Anomalous normal mode oscillations in semiconductor microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Hou, H.Q.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

  10. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  11. An HDF5-based framework for the distribution and analysis of ultrasonic concrete data

    Science.gov (United States)

    Prince, Luke; Clayton, Dwight; Santos-Villalobos, Hector

    2017-02-01

    There are many commercial ultrasonic tomography devices (UTDs) available for use in nondestructive evaluation (NDE) of reinforced concrete structures. These devices emit, measure, and store ultrasonic signals typically in the 25 kHz to 5 MHz frequency range. UTDs are characterized by a composition of multiple transducers, also known as a transducer array or phased array. Often, UTDs data are in a proprietary format. Consequently, NDE research data is limited to those who have prior non-disclosure agreements or the appropriate licenses. Thus, there is a need for a proper universal data framework to exist such that proprietary file datasets for different concrete specimens can be converted, organized, and stored with relative metadata for individual or collaborative NDE research. Building upon the Hierarchical Data Format (HDF5) model, we have developed a UTD data management framework and Graphic User Interface (GUI) to promote the algorithmic reconstruction of ultrasonic data in a controlled environment for easily reproducible and publishable results.

  12. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  13. Measurement of liquid level in a natural circulation circuit using an ultrasonic technique; Medição de nível de líquido em um circuito de circulação natural utilizando uma técnica ultrassônica

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Amanda Cardozo, E-mail: amandabarbosa@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Faccini, José L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The measurement by an ultrasonic technique of the water level in the expansion tank of the Natural Circulation Circuit (NCC) of the Experimental Thermo-Hydraulic Laboratory of the Institute of Nuclear Engineering is presented. In the single-phase NCC operation the water level in the expansion tank is stable. However, during the two-phase operation, oscillations occur in the water level due to temperature and vacuum fraction variations. Thus, the development of a technique that allows the measurement of these oscillations, will allow an estimation of the variation of the vacuum fraction of the circuit over time. The experimental set - up was performed on a test bench, using an ultrasonic transducer. The ultrasonic technique used is pulse-echo, in which the same transducer is the transmitter and receiver of the signal. The transducer-shoe assembly is part of an ultrasonic system consisting of an ultrasonic signal generating plate, transducers and a computer (PC) with a program in LabView to control the system. The program is able to calculate the transit time that the ultrasonic signals take to cross the tank base wall, the layer (level) of liquid and return to the transducer. Knowing the speed of the ultrasound in the wall and in the liquid it is possible to calculate the thickness of the wall and the height of the liquid. Measurements were made by filling the tank with a known volume of water and under varying temperature conditions, from room temperature to 90 deg C. The liquid heights are determined and the volume of water calculated by measuring the temperature with a digital thermometer. The volumes measured were highly accurate when compared to the known volumes.

  14. Ultrasonic level sensors for liquids under high pressure

    Science.gov (United States)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  15. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  16. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  17. An Ultrasonic Wheel-Array Probe

    Science.gov (United States)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.

    2004-02-01

    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  18. Piezoelectric ultrasonic micromotor with 1.5 mm diameter.

    Science.gov (United States)

    Dong, Shuxiang; Lim, Siak P; Lee, Kwork H; Zhang, Jingdong; Lim, Leong C; Uchino, Kenji

    2003-04-01

    A piezoelectric ultrasonic micromotor has been developed using a lead zirconate titanate (PZT) ceramic/metal composite tube stator that was 1.5 mm in diameter and 7 mm in length. The micromotor was operated in its first bending vibration mode (approximately 70 kHz), producing speeds from hundreds to over 2000 rpm in both rotational directions. The maximum torque-output was 45 microN-m, which is far superior to previous PZT thin film-based micromotors. This micromotor showed good reliability and stability for more than 300 hours of continued operation.

  19. Ultrasonic Linear Motor with Two Independent Vibrations

    Science.gov (United States)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  20. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  1. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  2. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  3. X-ray testing of fiber composite plastics

    International Nuclear Information System (INIS)

    Altmann, O.; Lembke, B.

    1984-01-01

    Besides the ultrasonic test, X-raying is the most important non-destructive test procedure for supporting fibre composite structures. This report presents some auxiliary means and test results regarding the limits of fault detectibility during the X-raying of fiber composite structures, preferrably carbon fiber laminates (CFRP). (orig.) [de

  4. A study on non-contact ultrasonic technique for on-line inspection of CFRP

    International Nuclear Information System (INIS)

    Lee, Seung-Joon; Park, Won-Su; Lee, Joon-Hyun; Byun, Joon-Hyung

    2007-01-01

    The advantages of carbon fiber reinforced plastic materials (CFRP) are: they are light structure materials, they have corrosion resistance, and higher specific strength and elasticity. The recently developed 3-dimentional fiber placement system is able to produce a more complex and various shaped structures due to less limitations of a product shape according to the problem in conventional fabrication process. This fiber placement system stacks the narrow prepreg tape on the mold according to the designed sequence and thickness. Non-destructive evaluation was rquired for these composites to evaluate changes in strength caused by defects such as delamination and porosity. Additionally, the expectent quality should be satisfied for the high cost fabrication process using the fiber placement system. Therefore, an on line non-destructive evaluation system is required and real-time complement is needed when the defects are detected [1]. Defect imaging by the ultrasonic C-scan method is a useful technique for defect detection in CFRP. However, the conventional ultrasonic C-scan technique cannot be applied during the fabrication process because the test piece should be immersed into the water. Therefore, non-contact ultrasonic techniques should be applied during the fabricating process. For the development of non-contact ultrasonic techniques available in non-destructive evaluation of CFRP, a recent laser-generated ultrasonic technique and an air-coupled transducer that transmit and receive ultrasounds in the air are studied [2-3]. In this study, generating and receiving techniques of laser-generated ultrasound and the characteristics of received signals upon the internal defects of CFRO were studied for non-contact inspection

  5. Detailed simulation of ultrasonic inspections

    International Nuclear Information System (INIS)

    Chaplin, K.R.; Douglas, S.R.; Dunford, D.

    1997-01-01

    Simulation of ultrasonic inspection of engineering components have been performed at the Chalk River Laboratories of AECL for over 10 years. The computer model, called EWE for Elastic Wave Equations, solves the Elastic Wave Equations using a novel finite difference scheme. It simulates the propagation of an ultrasonic wave from the transducer to a flaw, the scatter of waves from the flaw, and measurement of signals at a receive transducer. Regions of different materials, water and steel for example, can be simulated. In addition, regions with slightly different material properties from the parent material can be investigated. The two major types of output are displays of the ultrasonic waves inside the component and the corresponding A-scans. EPRI and other organizations have used ultrasonic models for: defining acceptable ultrasonic inspection procedures, designing and evaluating inspection techniques, and for quantifying inspection reliability. The EWE model has been applied to the inspection of large pipes in a nuclear plant, gas pipeline welds and steam generator tubes. Most recent work has dealt with the ultrasonic inspection of pressure tubes in CANDU reactors. Pressure tube inspections can reliably detect and size defects; however, there are improvements that can be made. For example, knowing the sharpness of a flaw-tip is crucial for fitness for service assessments. Computer modelling of the ultrasonic inspection of flaws with different root radius has suggested inspection techniques that provide flaw tip radius information. A preliminary investigation of these methods has been made in the laboratory. The basis for the model will be reviewed at the presentation. Then the results of computer simulations will be displayed on a PC using an interactive program that analyzes simulated A-scans. This software tool gives inspection staff direct access to the results of computer simulations. (author)

  6. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  7. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  8. Stresses in ultrasonically assisted bone cutting

    International Nuclear Information System (INIS)

    Alam, K; Mitrofanov, A V; Silberschmidt, V V; Baeker, M

    2009-01-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  9. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  10. Ultrasonic characterization of pork fat crystallization during cold storage.

    Science.gov (United States)

    Corona, Edith; García-Pérez, José V; Santacatalina, Juan V; Ventanas, Sonia; Benedito, José

    2014-05-01

    In this work, the feasibility of using ultrasonic velocity measurements for characterizing and differentiating the crystallization pattern in 2 pork backfats (Montanera and Cebo Iberian fats) during cold storage (0 °C, 2 °C, 5 °C, 7 °C, and 10 °C) was evaluated. The fatty acid profile, thermal behavior, and textural properties (hardness) of fat were also determined. Both fats became harder during cold storage (average hardness increase for both fats, 11.5 N, 8 N, and 1.8 N at 0, °C 2 °C, and 5 °C , respectively), showing a 2-step pattern related with the separate crystallization of the different existing triacylglycerols, which was well described using a modified Avrami equation (explained variance > 99%). Due to a greater content of saturated triacylglycerols, Cebo fat (45.1%) was harder than Montanera (41.8%). The ultrasonic velocity followed a similar 2-step pattern to hardness during cold storage, being found an average increase for both fats of 184, 161, and 150 m/s at 0 °C 2 °C, and 5 °C, respectively. Thus, ultrasonic measurements were useful both to characterize the textural changes taking place during cold storage and to differentiate between fats with different composition. The cold storage of dry-cured meat products during their distribution and retail sale exert an important effect on their textural properties and consumers' acceptance due to the crystallization of the fat fraction, which is greatly influenced by the type of fat. In this work, a nondestructive ultrasonic technique was used to identify the textural changes provoked by the crystallization during cold storage, and to differentiate between fats, which could be used for quality control purposes. © 2014 Institute of Food Technologists®

  11. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  12. Si/C composite lithium-ion battery anodes synthesized using silicon nanoparticles from porous silicon

    International Nuclear Information System (INIS)

    Park, Jung-Bae; Lee, Kwan-Hee; Jeon, Young-Jun; Lim, Sung-Hwan; Lee, Sung-Man

    2014-01-01

    The synthesis of Si nanoparticles by ultrasonication processing of porous Si powder and a novel method for preparing a high-capacity Si/C composite using this technique is reported. The porous Si powder is prepared by selectively etching the silicide phase of a Ti 24 Si 76 alloy consisting of Si and silicide phases. The particle size of the nanocrystalline Si is determined by the crystallite size of the Si and silicide phases in the alloy powder. Ultrasonication of the porous Si obtained from the mechanically alloyed Ti 24 Si 76 alloy generates nanocrystalline Si particles of size about 5 nm. Growth of the Si and silicide phases in the alloy is induced by annealing of the mechanically alloyed sample, with a consequent increase in the size of the Si particles obtained after ultrasonication. Application of the ultrasonication process to the fabrication of Si/C composite anode materials generates nanometer-scale Si particles in situ that are distributed in the matrix. Analysis of the phases obtained and evaluation of the distribution of the nanometer-scale Si particles in the composites via XRD/TEM measurements show that the nanometer-scale Si particles are effectively synthesized and uniformly distributed in the carbon matrix, leading to enhanced electrochemical performance of the Si/C composites

  13. Energy spectrum inverse problem of q-deformed harmonic oscillator and entanglement of composite bosons

    Science.gov (United States)

    Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-06-01

    Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.

  14. Method and apparatus to characterize ultrasonically reflective contrast agents

    Science.gov (United States)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  15. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  17. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  18. Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks

    Directory of Open Access Journals (Sweden)

    C. Galán-Marín

    2013-01-01

    Full Text Available The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, and energy dispersive X-ray fluorescence (EDXRF techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.

  19. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  20. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  1. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  2. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  3. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  4. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  5. Ultrasonic Surface Measurements for the investigation of superficial alteration of natural stones

    Science.gov (United States)

    Meier, Thomas; Auras, Michael; Bilgili, Filiz; Christen, Sandra; Cristiano, Luigia; Krompholz, Rolf; Mosca, Ilaria; Rose, David

    2013-04-01

    Seismic waveform analysis is applicable also to the centimeter and decimeter scale for non-destructive testing of pavement, facades, plaster, sculptures, or load-bearing structures like pillars. Mostly transmission measurements are performed and travel-times of first arriving P-waves are considered that have limited resolution for the upper centimeters of an object. In contrast, surface measurements are well suited to quantify superficial alterations of material properties e.g. due to weathering. A number of surface measurements have been carried out in the laboratory as well as on real structures in order to study systematically the information content of ultrasonic waveforms and their variability under real conditions. As a preposition for ultrasonic waveform analysis, reproducible, broad-band measurements have to be carried out with a definite radiation pattern and an about 1 mm accuracy of the measurement geometry. We used special coupling devices for effective ultrasonic surface measurements in the laboratory as well as at real objects. Samples of concrete with varying composition and samples of natural stone - marble, tuff, and sandstone - were repeatedly weathered and tested by ultrasonic measurements. The resistance of the samples to weathering and the penetration depth of the weathering are analyzed. Furthermore, material specific calibration curves for changes in velocities of elastic waves due to weathering can be obtained by these tests. Tests on real structures have been carried out for marble (Schlossbrücke, Berlin) and sandstone (Porta Nigra, Trier). Altogether, these test measurements show clearly that despite of the internal inhomogeneity of many real objects, their surface roughness and topography especially ultrasonic Rayleigh waves are well suited to study material alterations in the upper centimeters. Dispersion of Rayleigh waves may be inverted for shear-wave velocity as a function of depth.

  6. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  7. Antiproliferative activity of Curcuma phaeocaulis Valeton extract using ultrasonic assistance and response surface methodology.

    Science.gov (United States)

    Wang, Xiaoqin; Jiang, Ying; Hu, Daode

    2017-01-02

    The objective of the study was to optimize the ultrasonic-assisted extraction of curdione, furanodienone, curcumol, and germacrone from Curcuma phaeocaulis Valeton (Val.) and investigate the antiproliferative activity of the extract. Under the suitable high-performance liquid chromatography condition, the calibration curves for these four tested compounds showed high levels of linearity and the recoveries of these four compounds were between 97.9 and 104.3%. Response surface methodology (RSM) combining central composite design and desirability function (DF) was used to define optimal extraction parameters. The results of RSM and DF revealed that the optimum conditions were obtained as 8 mL g -1 for liquid-solid ratio, 70% ethanol concentration, and 20 min of ultrasonic time. It was found that the surface structures of the sonicated herbal materials were fluffy and irregular. The C. phaeocaulis Val. extract significantly inhibited the proliferation of RKO and HT-29 cells in vitro. The results reveal that the RSM can be effectively used for optimizing the ultrasonic-assisted extraction of bioactive components from C. phaeocaulis Val. for antiproliferative activity.

  8. Optimization of focused ultrasonic extraction of propellant components determined by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Fryš, Ondřej; Česla, Petr; Bajerová, Petra; Adam, Martin; Ventura, Karel

    2012-09-15

    A method for focused ultrasonic extraction of nitroglycerin, triphenyl amine and acetyl tributyl citrate presented in double-base propellant samples following by the gas chromatography/mass spectrometry analysis was developed. A face-centered central composite design of the experiments and response surface modeling was used for optimization of the time, amplitude and sample amount. The dichloromethane was used as the extractant solvent. The optimal extraction conditions with respect to the maximum yield of the lowest abundant compound triphenyl amine were found at the 20 min extraction time, 35% amplitude of ultrasonic waves and 2.5 g of the propellant sample. The results obtained under optimal conditions were compared with the results achieved with validated Soxhlet extraction method, which is typically used for isolation and pre-concentration of compounds from the samples of explosives. The extraction yields for acetyl tributyl citrate using both extraction methods were comparable; however, the yield of ultrasonic extraction of nitroglycerin and triphenyl amine was lower than using Soxhlet extraction. The possible sources of different extraction yields are estimated and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Ultrasonic characterization of yogurt fermentation process

    OpenAIRE

    IZBAIM , DRIS; FAIZ , BOUAZZA; MOUDDEN , ALI; MALAININE , MOHAMED; ABOUDAOUD , Idriss

    2012-01-01

    International audience; The objective of this work is to characterize the fermentation of yogurt based on an ultrasonic technique. Conventionally, the acidity of the yogurt is measured by a pH meter to determine the progress of fermentation. However, the pH meter should be cleaned and calibrated for each measurement and, therefore, this method is not practical. In this regard, ultrasonic techniques are fast, non-invasive and inexpensive. The measurement of ultrasonic parameters such as amplit...

  10. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    International Nuclear Information System (INIS)

    Yadawa, P K

    2012-01-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB 2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB 2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB 2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  11. Comparison of pulse characteristic of low frequency ultrasonic probes for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Suhairy Sani; Muhammad Pauzi Ismail

    2006-01-01

    Ultrasonic testing of concrete or large volume of composites usually is done in low frequency range. To obtain low frequency pulse, a low frequency pulser/receiver is used attached to a low frequency probe as transmitter/receiver. Concrete is highly attenuative and a high energy pulse is essential to ensure good penetration of test samples. High energy pulse can be obtained by producing low frequency ultrasonic waves.To achieve high penetration in concrete, a low frequency probe is fabricated with the centre frequency lying at around 100 kHz. The probe is fabricated with single crystal of 18 mm thickness without any backing material to obtain wider pulse and higher pulse power. Then, comparison of pulse characteristic is done between the fabricated probe and a commercially available probe to determine the quality of the probe fabricated. (Author)

  12. Studies on Section XI ultrasonic repeatability

    International Nuclear Information System (INIS)

    Jamison, T.D.; McDearman, W.R.

    1981-05-01

    A block representative of a nuclear component has been welded containing intentional defects. Acoustic emission data taken during the welding correlate well with ultrasonic data. Repetitive ultrasonic examinations have been performed by skilled operators using a procedure based on that desribed in ASME Section XI. These examinations were performed by different examination teams using different ultrasonic equipment in such a manner that the effects on the repeatability of the ultrasonic test method caused by the operator and by the use of different equipment could be estimated. It was tentatively concluded that when considering a large number of inspections: (1) there is no significant difference in indication sizing between operators, and (2) there is a significant difference in amplitude and defect sizing when instruments having different, Code acceptable operating characteristics are used. It was determined that the Section XI sizing parameters follow a bivariate normal distribution. Data derived from ultrasonically and physically sizing indications in nuclear components during farication show that the Section XI technique tends to overestimate the size of the reflectors

  13. Uncertainty estimation of ultrasonic thickness measurement

    International Nuclear Information System (INIS)

    Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain

    2009-01-01

    The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)

  14. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic fluids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is ...

  15. OSCILLATING MODE OF TOPINAMBUR TUBERS DRYING

    Directory of Open Access Journals (Sweden)

    A. V. Golubkivich

    2015-01-01

    Full Text Available Specifics of a chemical composition of tubers and green material of a topinambur (Helianthus tuberosus, high efficiency and ecological plasticity, profitability of growing, biotechnological potential of use enable to identify a topinambur as a of high-energy cultures of the future. High moisture of various topinambur parts, features of the mechanism of a heat and mass transfer set a problem of search of the new drying methods promoting to increase dehydration efficiency and produce a quality product. A method of calculation of duration of the oscillating mode of topinambur tubers drying in a dense layer is worked out. The topinambur tubers cut on cubes with the side of 6 mm were taken as object of researches. Researches were conducted in the setting of various drying modes: two experiences at the oscillating mode with height of a material layer of 0.07 m and 0.17 m; and also as a check experiment was material drying at a constant temperature of the drying agent. Duration of the oscillating mode of topinambur tubers drying was calculated on their basis of received curves of changes of moisture content at various modes of drying. Estimate indicators were confirmed with experimental data. Results of determination of duration of the oscillating modes of topinambur tubers drying proved that efficiency of the oscillating modes is 18 percent higher, than at control experiment.

  16. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    International Nuclear Information System (INIS)

    Torres-Arredondo, M-A; Fritzen, C-P; Tibaduiza, D-A; Mujica, L E; Rodellar, J; McGugan, M; Toftegaard, H; Borum, K-K

    2013-01-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures. (paper)

  17. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  18. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  19. Ultrasonic attenuation in superconducting zinc

    International Nuclear Information System (INIS)

    Auluck, S.

    1978-01-01

    The differences in the Zn ultrasonic attenuation data of different workers are analyzed. The superconducting energy gaps deduced from our analysis of the ultrasonic-attenuation data of Cleavelin and Marshall are consistent with the gaps deduced from the knowledge of the Fermi surface and the electron-phonon mass enhancement factor

  20. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  1. Ultrasonic assisted hot metal powder compaction.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  3. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  4. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2014-01-01

    Full Text Available Ultrasonic vibration assisted micro end grinding (UAMEG is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.

  5. Formation of hypereutectic silicon particles in hypoeutectic Al-Si alloys under the influence of high-intensity ultrasonic vibration

    Directory of Open Access Journals (Sweden)

    Xiaogang Jian

    2013-03-01

    Full Text Available The modification of eutectic silicon is of general interest since fine eutectic silicon along with fine primary aluminum grains improves mechanical properties and ductilities. In this study, high intensity ultrasonic vibration was used to modify the complex microstructure of aluminum hypoeutectic alloys. The ultrasonic vibrator was placed at the bottom of a copper mold with molten aluminum. Hypoeutectic Al-Si alloy specimens with a unique in-depth profile of microstructure distribution were obtained. Polyhedral silicon particles, which should form in a hypereutectic alloy, were obtained in a hypoeutectic Al-Si alloy near the ultrasonic radiator where the silicon concentration was higher than the eutectic composition. The formation of hypereutectic silicon near the radiator surface indicates that high-intensity ultrasonic vibration can be used to influence the phase transformation process of metals and alloys. The size and morphology of both the silicon phase and the aluminum phase varies with increasing distance from the ultrasonic probe/radiator. Silicon morphology develops into three zones. Polyhedral primary silicon particles present in zone I, within 15 mm from the ultrasonic probe/radiator. Transition from hypereutectic silicon to eutectic silicon occurs in zone II about 15 to 20 祄 from the ultrasonic probe/radiator. The bulk of the ingot is in zone III and is hypoeutectic Al-Si alloy containing fine lamellar and fibrous eutectic silicon. The grain size is about 15 to 25 祄 in zone I, 25 to 35 祄 in zone II, and 25 to 55 祄 in zone III. The morphology of the primary ?Al phase is also changed from dendritic (in untreated samples to globular. Phase evolution during the solidification process of the alloy subjected to ultrasonic vibration is described.

  6. Lumber defect detection by ultrasonics

    Science.gov (United States)

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  7. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  8. Fundamentals and applications of ultrasonic waves

    CERN Document Server

    Cheeke, J David N

    2002-01-01

    Ultrasonics. A subject with applications across all the basic sciences, engineering, medicine, and oceanography, yet even the broader topic of acoustics is now rarely offered at undergraduate levels. Ultrasonics is addressed primarily at the doctoral level, and texts appropriate for beginning graduate students or newcomers to the field are virtually nonexistent.Fundamentals and Applications of Ultrasonic Waves fills that void. Designed specifically for senior undergraduates, beginning graduate students, and those just entering the field, it begins with the fundamentals, but goes well beyond th

  9. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  10. Laser ultrasonic receivers based on photorefractive materials in non-destructive testing

    International Nuclear Information System (INIS)

    Zamiri Hosseinzadeh, S.

    2014-01-01

    SiO 20 ), LiNbO:Fe+2 and polymer composites like AODCST/PVK/BBP/PCBM and Dc/PVK/ECZ/C 60 are presented and their sensitivities and response times are compared. In these types of interferometers, a reference beam and a phase modulated signal beam (due to generated ultrasonic waves) interfere inside the photorefractive material and the reference beam is diffracted in the signal beam direction. The planar wave front of the reference beam adapts to the distorted wave front of the object beam and because of this reason, such interferometers are called adaptive interferometers. By interference of both beams on a fast photodiode surface, one can detect the generated bulk and surface ultrasonic pulses. This laser receiver is not as sensitive as contact receivers such as piezoelectric transducers. Different methods were used in this work to enhance the sensitivity of TWMIs and to detect the ultrasonic waves with a higher Signal to Noise Ratio (SNR). For instance, focusing the ultrasound waves with a spatial light modulator (SLM) to shape the beam profile of a picosecond laser with a 1064nm wavelength in a ring shape, using PR materials with higher coupling gain and using a special balanced detection based on two PR crystals are some methods which are performed to enhance the efficiency of TWMIs. Based on presented details in this work, a better understanding of the photorefractive effect principle as well as of the TWMI operation based on different PR materials, such as crystals and polymer composites, is possible. Furthermore fabrication of PR polymers and application of TWMI in industrial applications, such as defect detection, phase transformation and thickness measurement in metal sheets, are presented. (author) [de

  11. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    Science.gov (United States)

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  12. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  13. Recent progress in online ultrasonic process monitoring

    Science.gov (United States)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  14. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  15. Correlation of mechanical properties with nondestructive evaluation of babbitt metal/bronze composite interface

    Science.gov (United States)

    Ijiri, Y.; Liaw, P. K.; Taszarek, B. J.; Frohlich, S.; Gungor, M. N.

    1988-09-01

    Interfaces of the babbitt metal-bronze composite were examined ultrasonically and were fractured using the Chalmers test method. It was found that the ultrasonic results correlated with the bond strength, the ductility, and the degree of bonding at the tested interface. Specifically, high ultrasonic reflection percentages were associated with low bond strength, low ductility, and low percentages of bonded regions. The fracture mechanism in the bonded area of the babbitt-bronze interface is related to the presence of the intermetallic compound, Cu6Sn5, at the interface. It is suggested that the non-destructive ultrasonic technique can detect the bond integrity of babbitted metals.

  16. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  17. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  18. Ultrasonic wave propagation in powders

    Science.gov (United States)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  19. Standard practice for leaks using ultrasonics

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 Practice A, Pressurization—This practice covers procedures for calibration of ultrasonic instruments, location, and estimated measurements of gas leakage to atmosphere by the airborne ultrasonic technique. 1.2 In general practice this should be limited to leaks detected by two classifications of instruments, Class I and Class II. Class I instruments should have a minimum detectable leak rate of 6.7 × 10−7 mol/s (1.5 × 10−2 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Class II instruments should have a minimal detectable leak rate of 6.7 × 10−6 mol/s (1.5 × 10−1 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Refer to Guide E432 for additional information. 1.3 Practice B, Ultrasonic Transmitter—For object under test not capable of being pressurized but capable of having ultrasonic tone placed/injected into the test area to act as an ultrasonic leak trace source. 1.3.1 This practice is limited to leaks producing leakage o...

  20. Epoxy based photoresist/carbon nanoparticle composites

    DEFF Research Database (Denmark)

    Lillemose, Michael; Gammelgaard, Lauge; Richter, Jacob

    2008-01-01

    We have fabricated composites of SU-8 polymer and three different types of carbon nanoparticles (NPs) using ultrasonic mixing. Structures of composite thin films have been patterned on a characterization chip with standard UV photolithography. Using a four-point bending probe, a well defined stress...... is applied to the composite thin film and we have demonstrated that the composites are piezoresistive. Stable gauge factors of 5-9 have been measured, but we have also observed piezoresistive responses with gauge factors as high as 50. As SU-8 is much softer than silicon and the gauge factor of the composite...

  1. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    Science.gov (United States)

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of an ultrasonic process for soil remediation

    International Nuclear Information System (INIS)

    Wu, J.M.; Huang, H.S.; Livengood, C.D.

    1995-01-01

    An ultrasonic process for the detoxification of carbon tetrachloride- (CCl 4 - ) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl 4 concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl 4 concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl 4 concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed

  3. Ultrasonic characterization of vegetable oil product

    International Nuclear Information System (INIS)

    Sidek Hj Abd Aziz; Chow Sai Pew; Abdul Halim Shaari; Nor Azizah Shaari

    1992-01-01

    The ultrasonic wave velocity and attenuation of a number vegetable oil products were measured using an ultrasonic pulse echo overlap technique from room temperature up to 90 0 C. Among the liquid samples studied were refined bleach deodorized (RED) palm oil, palm olein, coconut oil, corn oil and soya bean oil. The velocity of sound in vegetable oil products varies from about 1200 to 200 ms-1 and decrease linearly as the temperature increases. The ultrasonic properties of the oil are much dependent on their viscosity, density, relaxation effect and vibrational anharmonicity

  4. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  5. Preparation and characterization of CNTs/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation.

    Science.gov (United States)

    Yin, Xiaochun; Li, Sai; He, Guangjian; Feng, Yanhong; Wen, Jingsong

    2018-05-01

    In this work, design and development of a new melt mixing method and corresponding mixer for polymer materials were reported. Effects of ultrasonic power and sonication time on the carbon nanotubes (CNTs) filled ultra high molecular weight polyethylene (UHMWPE) nanocomposites were experimentally studied. Transmission Electron Microscopy images showed that homogeneous dispersion of CNTs in intractable UHMWPE matrix is successfully realized due to the synergetic effect of ultrasonic wave and extensional deformation without any aid of other additives or solvents. Differential scanning calorimetry results revealed an increase in crystallinity and crystallization rate due to the finer dispersion of the CNTs in the matrix which act as nucleating point. Composites' complex viscosity and storage modulus decreased sharply at first and then leveled off with the increase of sonication time or the ultrasonic power. The thermal stability and the tensile strength of the CNTs/UHMWPE nanocomposites improved by using this novel mixing method. This is the first method that combined the ultrasonic wave and the extensional deformation in which the elongation rate, sonication time and ultrasonic power can be adjusted simultaneously during mixing. The novel mixer offers several advantages such as environment-friendly, high mixing efficiency, self-cleaning and wide adaptability to materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-07-01

    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  7. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  8. Self-sustained carbon monoxide oxidation oscillations on size-selected platinum nanoparticles at atmospheric pressure

    DEFF Research Database (Denmark)

    Jensen, Robert; Andersen, Thomas; Nierhoff, Anders Ulrik Fregerslev

    2013-01-01

    High-quality mass spectrometry data of the oscillatory behavior of CO oxidation on SiO2 supported Pt-nanoparticles at atmospheric pressure have been acquired as a function of pressure, coverage, gas composition and nanoparticle size. The oscillations are self-sustained for several days at constant......, temperature, pressure and CO/O2 ratio. The frequency of the oscillations is very well defined and increases over time. The oscillation frequency is furthermore strongly temperature dependent with increasing temperature resulting in increasing frequency. A plausible mechanism for the oscillations is proposed...

  9. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors; Visualisation ultrasonore rapide sous sodium. application aux reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Imbert, Ch

    1997-05-30

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  11. Study of the ultrasonic waves action on the preparation of calcium aluminates cements

    International Nuclear Information System (INIS)

    Lourenco, R.R.; Exposito, C.C.D.; Rodrigues, J.A.

    2009-01-01

    Calcium aluminates cements were prepared through a route that uses the sonochemical process. In this process, calcia and alumina in an aqueous suspension are put under an ultrasonic bath during some time. After that, the water is evaporated and the material is heat treated. In this work, the action of ultrasonic waves were studied on initials molar compositions calcia:alumina of 1:1. It was also verified the influence of the water on the reactivity of initial solids. SEM and X-ray diffraction were used to characterize the obtained materials. In addition, mechanical strength of the products was evaluated through splitting tensile tests. The X-ray diffractograms showed that the presence of the water was enough to form hydrated compounds. However the material subjected to the sonochemical process presented the highest mechanical strength, indicating the potential of this route of synthesis. (author)

  12. Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2009-01-01

    Electroless deposition of Cu on poly(ethylene terephthalate) (PET) fabric modified with 3-mercaptopropyltriethoxysilane was investigated. Morphology, composition, structure, thermal decomposing behavior of copper coating PET fabric after ultrasonic washing in water for 1 h were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectrometer, X-ray diffraction (XRD), and thermogravimetric analysis (TG), respectively. Copper plating on modified fabric has good adherence stability and high electric conductivity before and after ultrasonic washing, while copper coating fabric without modification is easily destroyed during the washing process, which leads to the textile changing from conductor to dielectric. As the copper weight on the treated fabric is 28 g/m 2 , the shielding effectiveness (SE) is more than 54 dB at frequency ranging from 0.01 MHz to 18 GHz.

  13. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  14. Ultrasonic Abrasive Removal Of EDM Recast

    Science.gov (United States)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  15. Fundamentals of Medical Ultrasonics

    CERN Document Server

    Postema, Michiel

    2011-01-01

    This book sets out the physical and engineering principles of acoustics and ultrasound as used for medical applications. It covers the basics of linear acoustics, wave propagation, non-linear acoustics, acoustic properties of tissue, transducer components, and ultrasonic imaging modes, as well as the most common diagnostic and therapeutic applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

  16. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  17. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  18. Feasibility on fiber orientation detection on unidirectional CFRP composite laminates using nondestructive evaluation techniques

    Science.gov (United States)

    Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee

    2007-07-01

    In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.

  19. Effects of blending composition of tung oil and ultrasonic irradiation intensity on the biodiesel production

    International Nuclear Information System (INIS)

    Manh, Do-Van; Chen, Yi-Hung; Chang, Chia-Chi; Chang, Ching-Yuan; Hanh, Hoang-Duc; Chau, Nguyen-Hoai; Tuyen, Trinh-Van; Long, Pham-Quoc; Minh, Chau-Van

    2012-01-01

    The beneficial use of tung oil in pre-blended oil for the production of biodiesel was studied at various blending compositions of tung, canola and palm oils (C BT , C BC and C BP ). The effects of C BT , ultrasonic power (P WUS ) and sample loading (V L ) on the yield (Y F ) and the properties of acid value, iodine values (IV), kinematic viscosity (KV), density and cold filter plugging point (CFPP) were investigated. The pre-blending of tung oil with palm oil greatly decreases the CFPP of palm oil biodiesel, whereas the presence of canola and palm oils with tung oil reduces the IV and KV of tung oil biodiesel. For P WUS /V L = 0.92–2.08 W/mL, C BT can be as high as 60 wt.% with 30 wt.% C BC and 10 wt.% C BP to produce biodiesel with high Y F and satisfactory qualities of the said properties. -- Highlights: ► Yield and properties of tung oil biodiesel are improved as tung oil is pre-blended with canola and palm oils. ► Pre-blending of palm oil with tung and canola oils reduces the CFPP of palm oil biodiesel from 13 to −5 °C. ► A beneficial use of tung oil as high as 60 wt.% blended with canola and palm oils is achievable. ► A sufficient P WUS per sample volume is required to ensure satisfactory properties.

  20. Experimental issues at ultrasonically aided micro-EDM of CoCr alloys

    Directory of Open Access Journals (Sweden)

    Marinescu Niculae

    2017-01-01

    Full Text Available The paper deals with researches of microtopography obtained at different working modes at ultrasonically aided micro-electrical discharge machining (μEDM+US and pure micro-EDM, using both commanded and relaxation pulses. Images of machined surface taken with scanning electron microscope were analyzed in correlation with chemical composition of samples detected by X rays spectrometer. This led to some explanations of material removal mechanism, aiming at improvement of process modelling and performances increase of μEDM+US.

  1. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    Science.gov (United States)

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  2. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  3. Boltzmann map for quantum oscillators

    International Nuclear Information System (INIS)

    Streater, R.F.

    1987-01-01

    The authors define a map tau on the space of quasifree states of the CCR or CAR of more than one harmonic oscillator which increases entropy except at fixed points of tau. The map tau is the composition of a double stochastic map T*, and the quasifree reduction Q. Under mixing conditions on T, iterates of tau take any initial state to the Gibbs states, provided that the oscillator frequencies are mutually rational. They give an example of a system with three degrees of freedom with energies omega 1 , omega 2 , and omega 3 mutually irrational, but obeying a relation n 1 omega 1 + n 2 omega 2 = n 3 omega 3 , n/sub i/epsilon Z. The iterated Boltzmann map converges from an initial state rho to independent Gibbs states of the three oscillators at betas (inverse temperatures) β 1 , β 2 , β 3 obeying the equation n 1 omega 1 β 1 + n 2 omega 3 β 1 number. The equilibrium state can be rewritten as a grand canonical state. They show that for two, three, or four fermions we can get the usual rate equations as a special case

  4. Development of an intelligent ultrasonic welding defect classification software

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Jeong, Hee Don

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress in the research on this methodology, it has not been widely used in many practical ultrasonic inspections of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments based on their ultrasonic signals using various tools in artificial intelligence such as neural networks. This software shows the excellent performance in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks. This performance demonstrates the high possibility of this software as a practical tool for ultrasonic flaw classification in weldments.

  5. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  6. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    Science.gov (United States)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  7. Ultrasonic imaging of metastatic carcinoma in thyroid gland

    International Nuclear Information System (INIS)

    Bai Ling; Yang Tao; Tang Ying; Mao Jingning; Chen Wei; Wang Wei

    2008-01-01

    Objectives: To explore the ultrasonic findings of metastatic thyroid carcinoma and to evaluate the diagnostic value of the ultrasonic imaging for patients with metastatic thyroid neoplasm. Methods: The ultrasonic imaging characteristics of ten patients who were diagnosed with metastatic thyroid carcinoma were retrospectively analyzed. In all the cases, fine-needle aspiration cytology (FNAC) of the thyroid was performed during the clinical diagnosis. Results: The ultrasonic images of the ten patients fell into four types: multiple nodules in the thyroid, single nodule in the thyroid, diffuse calcification and heterogeneous echo. Seven cases showed speckled calcific foci. Abnormal blood flow signal was found in 9 cases. Conclusion: The ultrasonic findings of metastatic carcinoma in the thyroid gland are various and non-specific. Color Doppler ultrasound may provide ample evidence. The diagnosis depends on FNAC. (authors)

  8. Molecular Interactions in Binary Mixtures of Benzene with 1-Alkanols(C5,C7,C8) at 35℃:An Ultrasonic Study

    Institute of Scientific and Technical Information of China (English)

    ALI,A.; IBRAHIM.M; 等

    2003-01-01

    Densities and ultrasonic speeds have been measured in binary mixtures of benzene with 1-pentanol,1-heptanol and 1-octanol,and in the pure components,as a function of compostion at 35℃.The isentropic compressibility,intermolecular free length,relative association,acoustic impedance,isothermal compressibility,thermal expansion coefficient,deviations in isentropic compressibility,excess freee length,excess volume,deviations in ultrasonic speed,excess acoustic impedance,apparent molar compressibility,apparent molar volume,partial molar volume of 1-alkanol in benzene have been calculated from the experimental data of densities and ultrasonic speeds.The variation of these parameters with composition indicates weak interaction between the component molecules and this interaction decreases in the order:1-pentanol>1-heptanol>1-octanol.Further,theoretical values of ultrasonic speeds were evaluated using free length theory,collision factor theory,Nomoto's relation and Van Dael-Vangeel ideal mixing relation.The relative merits of these theories and relations were discussed for these systems.

  9. Overview of the ultrasonic instrumentation research in the MYRRHA project

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, M.; Leysen, W.; Van Dyck, D. [Belgian Nuclear Research Center SCK.CEN (Belgium)

    2015-07-01

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the required ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  10. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  11. Benchmarking of Computational Models for NDE and SHM of Composites

    Science.gov (United States)

    Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna

    2016-01-01

    Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.

  12. Ultrasonic thermometry for nuclear power plants

    International Nuclear Information System (INIS)

    Saravana Kumar, S.; Arunraj, A.L.R.; Swaminathan, K.

    2013-01-01

    Ultrasonic transducer provides a method of measurement of temperature in industrial tanks and boilers containing different liquids with varied salt content. This method is used to measure the average temperature continuously where other traditional methods available do not offer. Traditional methods used for temperature measurement like infrared thermometers, thermocouples, measures temperature at a single location. Numerous thermocouples are to be fixed at various part of the boiler in order to measure the temperature of the entire boiler, which incurs high cost. Reliability of the system decreases, with increasing number of thermocouples. When they fail at a point, the time incurred in finding the faulty part or faulty thermocouple is high. Ultrasonic transducer provides continuous measurement for all different characteristic liquids with higher accuracy and lesser response time. Fault location and clearance time is also less in ultrasonic measurement method, since only a couple of transducers used for the entire boiler structure. Additionally ultrasonic thermometry along support measuring electronic system can be built of low cost. (author)

  13. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  14. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  15. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  16. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  17. Ultrasonic inspection development at HEDL

    International Nuclear Information System (INIS)

    Day, C.K.; Mech, S.J.; Michaels, T.E.; Dixon, N.E.

    1978-01-01

    Ultrasonic testing methods and equipment are being developed to support preservice and in-service inspection of selected FFTF welds. A digital computer system is employed in the analysis of both simulated FFTF pipe sections and plate specimens containing fatigue cracks. It is anticipated that test evaluation standards containing fatigue cracks will partially eliminate questions formerly associated with weld test calibration producers by providing natural cracks which follow grain boundaries and stress patterns resembling piping situ conditions. Studies have revealed that commercial transducers may satisfy LMFBR ultrasonic pipe inspection applications: The test system evaluation included transducers and wedge coupling and fluid coupling materials which exhibited acceptable performance at temperatures to 2300C. Results are presented that demonstrate the feasibility of ultrasonic inspection of components immersed in sodium at temperatures to 2600C. (UK)

  18. Effect of decision making on ultrasonic examination performance

    International Nuclear Information System (INIS)

    Harris, D.H.

    1992-05-01

    A decision aid was developed to overcome examiner limitations in information processing and decision making during ultrasonic examinations. The aid provided a means of noting signal characteristics as they were observed during the examination, and of presenting them simultaneously for decision making. The aid also served as a way of providing detailed feedback on examination performance during training. The aid was incorporated into worksheets used for the conduct of practice examinations during ultrasonic examination training. To support the introduction and use of the decision aid, one hour of supplementary training was inserted in an existing 64-hour training course on ultrasonic detection of defects. This study represented a modest step in improving the performance of ultrasonic examinations in nuclear power plants. Findings indicated that aided decision making supported by limited training can significantly improve ultrasonic detection performance

  19. A Biomimetic Ultrasonic Whistle for Use as a Bat Deterrent on Wind Turbines

    Science.gov (United States)

    Sievert, Paul; Seyed-Aghazadeh, Banafsheh; Carlson, Daniel; Dowling, Zara; Modarres-Sadeghi, Yahya

    2016-11-01

    As wind energy continues to gain worldwide prominence, more and more turbines are detrimentally influencing bat colonies. In 2012 alone, an estimated 600,000 bats were killed by wind turbines in the United States. Bats show a tendency to fly towards turbines. The objective of this work is to deter bats from the proximity of the swept area of operational wind turbine blades. Established field studies have shown that bats avoid broadband ultrasonic noise on the same frequency spectrum as their echolocation chirps. A biomimetic ultrasonic pulse generator for use as a bat deterrent on wind turbines is designed and studied experimentally. This device, which works based on the fundamentals of flow-induced oscillations of a flexible sheet is a whistle-like device inspired by a bat larynx, mechanically powered via air flow on a wind turbine blade. Current device prototypes have proven robust at producing ultrasound across the 20 - 70 kHz range for flow inlet velocities of 4 - 14 m/s. Ultimately, a deterrent as described here could provide a reliable, cost-effective means of alerting bats to the presence of moving turbine blades, reducing bat mortality at wind facilities, and reducing regulatory uncertainty for wind facility developers. The financial support provided by the US Department of Energy, and the Massachusetts Clean Energy center is acknowledged.

  20. Characterization of piezoelectric macrofiber composite actuated winglets

    International Nuclear Information System (INIS)

    Guha, T K; Oates, W S; Kumar, R

    2015-01-01

    The present study primarily focuses on the design, development, and structural characterization of an oscillating winglet actuated using a piezoelectric macrofiber composite (MFC). The primary objective is to study the effect of controlled wingtip oscillations on the evolution of wingtip vortices, with a goal of weakening these potentially harmful tip vortices by introducing controlled instabilities through both spatial and temporal perturbations producible through winglet oscillations. MFC-actuated winglets have been characterized under different input excitation and pressure-loading conditions. The winglet oscillations show bimodal behavior for both structural and actuation modes of resonance. The oscillatory amplitude at these actuation modes increases linearly with the magnitude of excitation. During wind-tunnel tests, fluid-structure interactions led to structural vibrations of the wing. The effect of these vibrations on the overall winglet oscillations decreased when the strength of actuation increased. At high input excitation, the actuated winglet was capable of generating controlled oscillations. As a proof of concept, the current study has demonstrated that microfiber composite-actuated winglets produce sufficient displacements to alter the development of the wingtip vortex. (paper)

  1. Applications of Flexible Ultrasonic Transducer Array for Defect Detection at 150 °C

    Directory of Open Access Journals (Sweden)

    Jiunn-Woei Liaw

    2013-01-01

    Full Text Available In this study, the feasibility of using a one dimensional 16-element flexible ultrasonic transducer (FUT array for nondestructive testing at 150 °C is demonstrated. The FUT arrays were made by a sol-gel sprayed piezoelectric film technology; a PZT composite film was sprayed on a titanium foil of 75 µm thickness. Since the FUT array is flexible, it was attached to a steel pipe with an outer diameter of 89 mm and a wall thickness of 6.5 mm at 150 °C. Using the ultrasonic pulse-echo mode, pipe thickness measurements could be performed. Moreover, using the ultrasonic pulse-echo and pitch-catch modes of each element of FUT array, the defect detection was performed on an Al alloy block of 30 mm thickness with a side-drilled hole (SDH of f3 mm at 150 °C. In addition, a post-processing algorithm based on the total focusing method was used to process the full matrix of these A-scan signals of each single transmitter and multi-receivers, and then the phase-array image was obtained to indicate this defect- SDH. Both results show the capability of FUT array being operated at 150 °C for the corrosion and defect detections.

  2. Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques

    Science.gov (United States)

    Saddeek, Yasser B.; Mohamed, Hamdy F. M.; Azooz, Moenis A.

    2004-07-01

    Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B2O3 + 10 Al2O3 + 40 RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size.

  3. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, D.A. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Hui, K.N., E-mail: bizhui@pusan.ac.kr [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Cho, Y.R. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Zhou, Wei [Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005 (China); Hong, Xiaoting [School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006 (China); Chun, Ho-Hwan [Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2014-04-01

    Graphical abstract: - Highlights: • A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed at room temperature. • With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. • The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. • The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). - Abstract: A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO{sub 3} and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  4. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Dinh, D.A.; Hui, K.S.; Hui, K.N.; Cho, Y.R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-01-01

    Graphical abstract: - Highlights: • A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed at room temperature. • With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. • The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N 2 /H 2 gas flow for 1 h. • The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). - Abstract: A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO 3 and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N 2 /H 2 gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips

  5. On-line ultrasonic gas entrainment monitor

    International Nuclear Information System (INIS)

    Day, C.K.; Pedersen, H.N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes is described. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose

  6. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  7. Multi-response optimization of machining characteristics in ultrasonic machining of WC-Co composite through Taguchi method and grey-fuzzy logic

    Directory of Open Access Journals (Sweden)

    Ravi Pratap Singh

    2018-01-01

    Full Text Available This article addresses the application of grey based fuzzy logic coupled with Taguchi’s approach for optimization of multi performance characteristics in ultrasonic machining of WC-Co composite material. The Taguchi’s L-36 array has been employed to conduct the experimentation and also to observe the influence of different process variables (power rating, cobalt content, tool geometry, thickness of work piece, tool material, abrasive grit size on machining characteristics. Grey relational fuzzy grade has been computed by converting the multiple responses, i.e., material removal rate and tool wear rate obtained from Taguchi’s approach into a single performance characteristic using grey based fuzzy logic. In addition, analysis of variance (ANOVA has also been attempted in a view to identify the significant parameters. Results revealed grit size and power rating as leading parameters for optimization of multi performance characteristics. From the microstructure analysis, the mode of material deformation has been observed and the critical parameters (i.e., work material properties, grit size, and power rating for the deformation mode have been established.

  8. Effect of water-methanol mixed solvents on the ultrasonic relaxation of cadmium acetate

    International Nuclear Information System (INIS)

    Sree Rama Murthy, J.; Ramachandra Rao, B.

    1976-01-01

    Measurements of ultrasonic absorption have been made by pulse technique in 1 M solutions of cadmium acetate with water-methanol mixed solvents. Results are analysed by assuming a single relaxation mechanism. The characteristic frequency of relaxation is found to decrease with increasing composition of methanol in the solvent. It is proposed that the mechanism of relaxation may be perturbation of chemical equilibrium between complex CdAc + ions and Cd ++ , Ac - species by soundwaves. (author)

  9. Contribution to the improved ultrasonic testing of glass fiber-reinforced polymers based on analytic modeling; Beitrag zur Verbesserung der Ultraschallpruefung glasfaserverstaerkter Polymere auf der Grundlage analytischer Modellierung

    Energy Technology Data Exchange (ETDEWEB)

    Gripp, S.

    2001-04-01

    The non-destructive testing of acoustic anisotropic materials like fiber composites has been evaluated. Modelling enabled predictions about wave deflection, direction of wave propagation, and refractive angle of ultrasonic waves in these media. Thus, measurements could be carried out using unidirectional glass-fiber composites.

  10. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  11. Particle-stabilized oscillating diver: a self-assembled responsive capsule

    DEFF Research Database (Denmark)

    Tavacoli, Joe; Thijssen, Job H. J.; Clegg, Paul S.

    2011-01-01

    We report the experimental discovery of a self-assembled capsule, with density set by interfacial glass beads and an internal bubble, that automatically performs regular oscillations up and down a vial in response to a temperature gradient. Similar composites featuring interfacial particles...

  12. Bulk viscosity and ultrasonic attenuation in liquid metals

    International Nuclear Information System (INIS)

    Awasthi, O.N.; Murthy, B.V.S.

    1984-11-01

    Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)

  13. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    Science.gov (United States)

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  14. Ultrasonic techniques for fluids characterization

    CERN Document Server

    Povey, Malcolm J W

    1997-01-01

    This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Key Features * Appeals to anyone using ultrasound to study fluids * Provides the first detailed description of the ultrasound profiling technique for dispersions * Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat * Presents the l...

  15. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  16. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    Science.gov (United States)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  17. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  18. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  19. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  20. Determine bond strength by ultrasonic measurement

    International Nuclear Information System (INIS)

    Brown, C.M.

    1978-01-01

    Application of ultrasonic methods for the evaluation and measurement of bond strength has been the object of numerous investigations in the last fifteen years. Some investigators have reported good success (in limited application) while others have experienced dismal failure. One problem common to all investigations was the difficulty in extracting and isolating the many components which comprise the ultrasonic signal reflected from a bonded interface. Part of this problem was due to manually extracting individual parameters from large volumes of raw data. However, with the vast technology now available in the field of signal analysis and computerized data processing, it is feasible to isolate and analyze individual parameters within the ultrasonic signal for great volumes of raw data

  1. Numerical shaping of the ultrasonic wavelet

    International Nuclear Information System (INIS)

    Bonis, M.

    1991-01-01

    Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test

  2. Synthesis and on-line ultrasonic characterisation of bulk and nanocrystalline La{sub 0.68}Sr{sub 0.32}MnO{sub 3} perovskite manganite

    Energy Technology Data Exchange (ETDEWEB)

    Sakthipandi, K. [Centre for Nano Science and Technology, K S Rangasamy College of Technology, Tiruchengode 637215, Tamil Nadu (India); Rajendran, V., E-mail: veerajendran@gmail.com [Centre for Nano Science and Technology, K S Rangasamy College of Technology, Tiruchengode 637215, Tamil Nadu (India); Jayakumar, T.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Kulandivelu, P. [Department of Mechanical Engineering, K S Rangasamy College of Technology, Tiruchengode 637215, Tamil Nadu (India)

    2011-02-24

    Research highlights: > The first and novel approach, the ultrasonic velocity, attenuation and elastic moduli of nanosample was measured using ultrasonic through transmission method, at a fundamental frequency of 5 MHz over wide range of temperatures. > The paper has design and fabrication of high temperature ultrasonic velocity and attenuation measurements over a wide range of temperatures 300-1200 K. - Abstract: La{sub 0.68}Sr{sub 0.32}MnO{sub 3} perovskite manganite samples were prepared using sonochemical reactor and solid state reaction technique. The ultrasonic velocity, attenuation and elastic moduli of samples were measured using ultrasonic through transmission method, at a fundamental frequency of 5 MHz over a wide range of temperatures. The temperature dependence of the ultrasonic parameters shows an interesting anomaly in all the compositions. The observed dramatic softening and hardening in sound velocities or attenuation is related to phase transitions. The linear magnetostriction effect is more dominant in the perovskite than volume magnetostriction effect which is evident from the observed anomalous in both longitudinal and shear velocities and attenuation. Further, a decrease in grain size in the sintered sample leads to a shift in the ferromagnetic transition temperature (T{sub C}) from 375 to 370 K.

  3. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  4. Contact-free ultrasonic testing: applications to metrology and NDT

    International Nuclear Information System (INIS)

    Le Brun, A.

    1988-01-01

    In some cases classical ultrasonic testing is impossible because of adverse environment (high temperature, ionizing radiations, etc). Ultrasonic waves are created by laser impact and detected by electromagneto-acoustic transducers or laser interferometry. Association of ultrasonics generation by photoacoustic effect and reception by heterodyne interferometer is promising for the future [fr

  5. Salt-Assisted Ultrasonic Deaggregation of Nanodiamond.

    Science.gov (United States)

    Turcheniuk, K; Trecazzi, C; Deeleepojananan, C; Mochalin, V N

    2016-09-28

    We report a new facile, inexpensive, and contaminant-free technique of salt-assisted ultrasonic deaggregation (SAUD) of nanodiamond into single-digit particles stable in aqueous colloidal solution in a wide pH range. The technique utilizes the energy of ultrasound to break apart nanodiamond aggregates in sodium chloride aqueous slurry. In contrast to current deaggregation techniques, which introduce zirconia contaminants into nanodiamond, the single-digit nanodiamond colloids produced by SAUD have no toxic or difficult-to-remove impurities and are therefore well-suited to produce nanodiamonds for numerous applications, including theranostics, composites, and lubrication, etc. Requiring only aqueous slurry of sodium chloride and standard horn sonicator, and yielding highly pure well-dispersed nanodiamond colloids, the technique is an attractive alternative to current nanodiamond deaggregation protocols and can be easily implemented in any laboratory or scaled up for industrial use.

  6. Ultrasonic actuation for MEMS dormancy-related stiction reduction

    Science.gov (United States)

    Kaajakari, Ville; Kan, Shyi-Herng; Lin, Li-Jen; Lal, Amit; Rodgers, M. Steven

    2000-08-01

    The use of ultrasonic pulses incident on surface micromachines has been shown to reduce dormancy-related failure. We applied ultrasonic pulses from the backside of a silicon substrate carrying SUMMiT processed surface micromachined rotors, used earlier as ultrasonic motors. The amplitude of the pulses was less than what is required to actuate the rotor (sub-threshold actuation). By controlling the ultrasonic pulse exposure time it was found that pulsed samples had smaller actuation voltages as compared to non-pulsed samples after twelve-hour dormancy. This result indicates that the micromachine stiction to surfaces during dormant period can be effectively eliminated, resulting in long-term stability of surface micromachines in critical applications.

  7. Ultrasonic force microscopy on poly(vinyl alcohol)/SrTiO3 nano-perovskites hybrid films

    International Nuclear Information System (INIS)

    Marino, Salvatore; Joshi, Girish M.; Lusuardi, Angelo; Cuberes, M. Teresa

    2014-01-01

    Atomic Force Microscopy (AFM) and Ultrasonic Force Microscopy (UFM) have been applied to the characterization of composite samples formed by SrTiO 3 (STO) nanoparticles (NPs) and polyvinyl alcohol (PVA). The morphological features of the STO NPs were much better resolved using UFM than contact-mode AFM topography. For high STO concentrations the individual STO NPs formed nanoclusters, which gathered in microaggregates. The STO aggregates, covered by PVA, exhibited no AFM frictional contrast, but were clearly distinguished from the PVA matrix using UFM. Similar aggregation was observed for NPs in the composite samples and for NPs deposited on top of a flat silicon substrate from milliQ water solution in the absence of polymer. In the hybrid films, most STO nanoparticles typically presented a lower UFM contrast than the PVA matrix, even though stiffer sample regions such as STO should give rise to a higher UFM contrast. STO NPs with intermediate contrast were characterized by an UFM halo of lower contrast at the PVA/STO interface. The results may be explained by considering that ultrasound is effectively damped on the nanometer scale at PVA/STO interfaces. According to our data, the nanoscale ultrasonic response at the PVA/STO interface plays a fundamental role in the UFM image contrast. - Highlights: • Hybrid films of SrTiO 3 nanoparticles and PVA have been studied using AFM, FFM and UFM. • The SrTiO 3 nanoparticles form nano-clusters from 3 to 5 individuals, which for high concentrations gather in micro-aggregates. • Most SrTiO 3 nanoparticles in the composite samples exhibited a lower (softer) UFM contrast than the PVA matrix. • In the UFM images, SrTiO 3 nanoparticles with intermediate contrast are delimited by a lower-contrast halo at the PVA boundary. • The nanoscale ultrasonic response at the PVA/SrTiO 3 interface plays a fundamental role in the UFM image contrast

  8. Analyzing endosonic root canal file oscillations: an in vitro evaluation.

    Science.gov (United States)

    Lea, Simon C; Walmsley, A Damien; Lumley, Philip J

    2010-05-01

    Passive ultrasonic irrigation may be used to improve bacterial reduction within the root canal. The technique relies on a small file being driven to oscillate freely within the canal and activating an irrigant solution through biophysical forces such as microstreaming. There is limited information regarding a file's oscillation patterns when operated while surrounded by fluid as is the case within a canal root. Files of different sizes (#10 and #30, 27 mm and 31 mm) were connected to an ultrasound generator via a 120 degrees file holder. Files were immersed in a water bath, and a laser vibrometer set up with measurement lines superimposed over the files. The laser vibrometer was scanned over the oscillating files. Measurements were repeated 10 times for each file/power setting used. File mode shapes are comprised of a series of nodes/antinodes, with thinner, longer files producing more antinodes. The maximum vibration occurred at the free end of the file. Increasing generator power had no significant effect on this maximum amplitude (p > 0.20). Maximum displacement amplitudes were 17 to 22 microm (#10 file, 27 mm), 15 to 21 microm (#10 file, 31 mm), 6 to 9 microm (#30 file, 27 mm), and 5 to 7 microm (#30, 31 mm) for all power settings. Antinodes occurring along the remaining file length were significantly larger at generator power 1 than at powers 2 through 5 (p generator powers, energy delivered to the file is dissipated in unwanted vibration resulting in reduced vibration displacement amplitudes. This may reduce the occurrence of the biophysical forces necessary to maximize the technique's effectiveness. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. CRITICAL VELOCITY OF CONTROLLABILITY OF SLIDING FRICTION BY NORMAL OSCILLATIONS IN VISCOELASTIC CONTACTS

    Directory of Open Access Journals (Sweden)

    Mikhail Popov

    2016-12-01

    Full Text Available Sliding friction can be reduced substantially by applying ultrasonic vibration in the sliding plane or in the normal direction. This effect is well known and used in many applications ranging from press forming to ultrasonic actuators. One of the characteristics of the phenomenon is that, at a given frequency and amplitude of oscillation, the observed friction reduction diminishes with increasing sliding velocity. Beyond a certain critical sliding velocity, there is no longer any difference between the coefficients of friction with or without vibration. This critical velocity depends on material and kinematic parameters and is a key characteristic that must be accounted for by any theory of influence of vibration on friction. Recently, the critical sliding velocity has been interpreted as the transition point from periodic stick-slip to pure sliding and was calculated for purely elastic contacts under uniform sliding with periodic normal loading. Here we perform a similar analysis of the critical velocity in viscoelastic contacts using a Kelvin material to describe viscoelasticity. A closed-form solution is presented, which contains previously reported results as special cases. This paves the way for more detailed studies of active control of friction in viscoelastic systems, a previously neglected topic with possible applications in elastomer technology and in medicine.

  10. Extrinsic Fabry-Perot ultrasonic detector

    Science.gov (United States)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  11. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.

    Science.gov (United States)

    Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A

    2018-03-01

    Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.

  12. Internal properties assessment in agar wood trees using ultrasonic velocity measurement

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Mohamad Pauzi Ismail; Mat Rasol Awang; Mohd Fajri Osman; Fakhruzi, M.; Hashim, M.M.

    2010-01-01

    This paper presents the application of ultrasonic velocity in agar wood trees (Aquilaria crassna) with the purpose of evaluating the relationship of the ultrasonic velocity to the variations of internal properties of trees. In this study, three circular cross-sectional discs from the freshly cut tree were selected as samples. First sample with a big hole (decay) in the middle, second sample with internal resinous and the last one is the sample with no defects. The through transmission ultrasonic testing method was carried out using Tico ultrasonic pulse velocity tester which is from Switzerland. Two-dimensional image of internal properties evaluation by an ultrasonic investigation was obtained using Matlab. The results showed that the ultrasonic wave cannot pass through the internal decay or resinous so that the wave went round it and thus ultrasonic wave velocity significantly decreased by increasing the hole or resinous. The difference in color of the image generated by Matlab software based on variation of ultrasonic velocity between the internal decay area and its surrounding area was obvious. Therefore, the properties of internal properties of the three could be detected by ultrasonic line imaging technique. (author)

  13. A novel ultrasonic velocity sensing approach to monitoring state of charge of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Chou, Yi-Sin; Hsu, Ning-Yih; Jeng, King-Tsai; Chen, Kuan-Hsiang; Yen, Shi-Chern

    2016-01-01

    Highlights: • This is the first to apply ultrasonic sensing technique to monitor SOC of VRB. • Ultrasound velocity is affected by concentration and temperature of a solution. • The ultrasonic sensing is applicable to both positive and negative sides of VRB. • An empirical model equation fits the results of this two-component system well. • The SOC of a VRB can be properly measured using ultrasonic sensing. - Abstract: A novel ultrasonic velocity sensing approach is proposed and investigated to monitor the state of charge (SOC) of a vanadium redox flow battery (VRB, or VRFB). The positive electrode is designated as the energy storage capacity-limiting one so that the molar ratio of the V"5"+ ion in the positive electrolyte solution determines the SOC of a VRB. The tested single-cell VRB is connected to an ultrasonic sensor and charged/discharged almost to its two extremes at a constant current of 2 A under various operating temperatures. It is found that the ultrasound velocity exhibits distinct variations in accordance with changes of vanadium ion compositions in the positive electrolyte solution as the SOC of the VRB varies. The SOC obtained can be depicted in a 3D plot in terms of ultrasound velocity and operating temperature. An empirical model equation is proposed and found to fit the experimental results of both charging and discharging stages quite well. The advantages of this SOC sensing approach are that it is totally independent of VRB operations and can be readily applied to both sides of the electrodes. It is expected to develop into a dependable method for accurate and real-time monitoring of SOC for VRB.

  14. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  15. Development of an ultrasonic shear reflection technique to monitor the crystallization of cocoa butter.

    Science.gov (United States)

    Rigolle, Annelien; Foubert, Imogen; Hettler, Jan; Verboven, Erik; Demuynck, Ruth; Van Den Abeele, Koen

    2015-09-01

    The quasi-isothermal crystallization process of cocoa butter was monitored by an ultrasonic shear reflection technique utilizing a custom-built experimental set-up in a temperature controlled environment. To facilitate the interpretation of the measurement results, the propagation of shear waves was first theoretically studied in different configurations of gas, liquid or solid layers with varying thickness for the case of normal incidence, yielding theoretical equations of the shear wave reflection coefficient (swRC) for different layering conditions. The typical experimentally observed pattern of the swRC during quasi-isothermal cocoa butter crystallization was subsequently linked to the theoretical equations. The remarkable oscillatory damped response in the swRC as function of the crystallization time could be explained by constructive and destructive interference of a first reflection at the boundary between a plexiglass delay line and the crystallized cocoa butter and a second reflection occurring at the interface between crystallized and liquid substance. This hypothesis was supported by the excitation frequency dependence of the oscillations. The quality of the fit of the theoretical model to the experimental results was very good and also the reproducibility between different independent measurements was acceptable. Finally, measurements at different temperatures (18°C and 20°C) suggested that the technique was able to detect differences in crystallization behavior, as measurements at 18°C displayed faster oscillations compared to measurements at 20°C. Moreover, this was also confirmed by the theoretical model, as a higher value of the crystallization rate parameter K, exhibited more rapid oscillations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  17. STUDY ON ULTRASONIC DEGREASING OF SHEEPSKIN WASTE

    Directory of Open Access Journals (Sweden)

    BĂLĂU MÎNDRU Tudorel

    2014-05-01

    Full Text Available Leather industry is a relatively large source of waste from raw material, so skin waste recovery is a goal of clean technologies. Capitalization of skin waste aims to obtain: chemical auxiliaries, technical articles, hydrolyzed protein, artificial leather, composite building materials, heat sources and collagen biomaterials with applications in medicine, cosmetics, etc. A first step in the recovery of skin waste is the degreasing operation. Ultrasound is an effective tool to improve the efficiency of the conventional degreasing affecting the chemical substances as well as the treated skin. In addition, the processing time is reduced. Ultrasound is known to enhance the emulsification and dispersion of oils/fat. The usual degreasing methods requires more emulsifier/solvent ratio and process time for emulsification and additional solvent for washing out the emulsified fat. This paper investigates the possibility of recovery through ecological processes of leather waste from finishing operations for further capitalization. The present study aims emulsification and subsequent removal of the fat present in the chamois powder waste from polishing operation with the aid of ultrasound by an aqueous ecofriendly method. The study also took into account the ultrasonic treatment of the leather waste using trichlorethylene as a medium of propagation-degreasing, and realized a comparative analysis of efficiency of fat extraction by Soxhlet method and via ultrasonication. IR-ATR and optical microscopy highlight both morphological and chemical-structural changes of treated materials by different degreasing methods

  18. Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo

    2005-01-01

    This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple

  19. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  20. Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor.

    Science.gov (United States)

    Dong, Bin; Huang, Xiani; Yang, Xiaogang; Li, Guang; Xia, Lan; Chen, George

    2017-11-01

    A joint chemical reactor system referred to as an ultrasonic-intensified micro-impinging jetting reactor (UIJR), which possesses the feature of fast micro-mixing, was proposed and has been employed for rapid preparation of FePO 4 particles that are amalgamated by nanoscale primary crystals. As one of the important precursors for the fabrication of lithium iron phosphate cathode, the properties of FePO 4 nano particles significantly affect the performance of the lithium iron phosphate cathode. Thus, the effects of joint use of impinging stream and ultrasonic irradiation on the formation of mesoporous structure of FePO 4 nano precursor particles and the electrochemical properties of amalgamated LiFePO 4 /C have been investigated. Additionally, the effects of the reactant concentration (C=0.5, 1.0 and 1.5molL -1 ), and volumetric flow rate (V=17.15, 51.44, and 85.74mLmin -1 ) on synthesis of FePO 4 ·2H 2 O nucleus have been studied when the impinging jetting reactor (IJR) and UIJR are to operate in nonsubmerged mode. It was affirmed from the experiments that the FePO 4 nano precursor particles prepared using UIJR have well-formed mesoporous structures with the primary crystal size of 44.6nm, an average pore size of 15.2nm, and a specific surface area of 134.54m 2 g -1 when the reactant concentration and volumetric flow rate are 1.0molL -1 and 85.74mLmin -1 respectively. The amalgamated LiFePO 4 /C composites can deliver good electrochemical performance with discharge capacities of 156.7mAhg -1 at 0.1C, and exhibit 138.0mAhg -1 after 100 cycles at 0.5C, which is 95.3% of the initial discharge capacity. Copyright © 2017. Published by Elsevier B.V.

  1. Combination probe for optically assisted ultrasonic velocity-change imaging aimed at detecting unstable blood vessel plaque

    Science.gov (United States)

    Tanigawa, Shohei; Mano, Kazune; Wada, Kenji; Matsunaka, Toshiyuki; Horinaka, Hiromichi

    2016-04-01

    Blood vessel plaque with a large lipid core is at risk of becoming thrombus and is likely to induce acute heart disease. To prevent this, it is necessary to determine not only the plaque's size but also its chemical composition. We, therefore, made the prototype of a combination probe to diagnose carotid artery plaque. It is used to differentiate propagation characteristics between light spectra and ultrasonic images. By propagating light and ultrasound along a common direction, it is possible to effectively warm the diagnosis domain. Moreover, the probe is thought to be compact and be easy to use for diagnosing human carotid artery plaque. We applied the combination probe to a carotid artery phantom with a lipid area and obtained an image of the ultrasonic velocity change in the fatty area.

  2. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  3. Hardware Developments of an Ultrasonic Tomography Measurement System

    Directory of Open Access Journals (Sweden)

    Hudabiyah ARSHAD AMARI

    2010-01-01

    Full Text Available This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ultrasonic transceiver. A prototype design of sensor’s jig that will hold 16 transceivers of 14.1mm has been design. Transmission-mode approach with fan beam technique has been used for sensing the flow of gas, liquid and solid. This paper also explains the circuitry designs for the Ultrasonic Tomography System.

  4. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  5. Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling

    Science.gov (United States)

    Naď, Milan; Čičmancová, Lenka; Hajdu, Štefan

    2016-12-01

    Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.

  6. Evaluation of Ultrasonic Waves System in Repellency of Red Beetle of Flour (Tribolium castaneum Herbs

    Directory of Open Access Journals (Sweden)

    P. Ahmadi Moghaddam

    2016-06-01

    Full Text Available Introduction: Increase of world population, lack of food sources, and need for food security, protection of agricultural products against losses, drought, pests, and diseases, all seems to be necessary more than ever. During the years, grains have been the main food of humans, especially wheat, barley, rice, and corn. So production and storage of these products is important for societies. One of the main problems in this field is protecting the grains in stores until consuming or planting them again. Annually, over hundreds of millions tons of grains are lost by pests present in stores and not observing the scientific principles of storing. Control of insects and pests during storage as a destructive factor of stored products by harmless methods is necessary. There are restrictions in use of chemically control methods against pests in stores. Therefore in recent decades, physically control methods have attracted a lot of attentions. The purpose of using physically control methods is eliminating pests with minimum destructive effect on the environment. These methods directly affect on pests or change their living situations and create an unsafe environment for them. One of the tools that indirectly affect pests is ultrasonic waves. Ultrasonic waves are mechanical waves which can properly penetrate in air and porous areas. These waves are completely safe for the environment and cause no damage to the environment. Ultrasonic waves as new safe strategy in insect control can prepare unsafe areas for annoying insects and agricultural pests. The main characteristics of ultrasonic waves are safe for humans and environment. Materials and Methods: In this study, experiments were carried out to assess the repellent impact of ultrasonic waves on one important storage pest, red flour beetle (Tribolium castaneum Herbs. The system, which produces ultrasonic waves, includes distributor of ultrasonic waves, power supply, central processor, oscillator, display

  7. On line ultrasonic integrated backscatter

    International Nuclear Information System (INIS)

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  8. Sensitivity and Nonlinearity of Thermoacoustic Oscillations

    Science.gov (United States)

    Juniper, Matthew P.; Sujith, R. I.

    2018-01-01

    Nine decades of rocket engine and gas turbine development have shown that thermoacoustic oscillations are difficult to predict but can usually be eliminated with relatively small ad hoc design changes. These changes can, however, be ruinously expensive to devise. This review explains why linear and nonlinear thermoacoustic behavior is so sensitive to parameters such as operating point, fuel composition, and injector geometry. It shows how nonperiodic behavior arises in experiments and simulations and discusses how fluctuations in thermoacoustic systems with turbulent reacting flow, which are usually filtered or averaged out as noise, can reveal useful information. Finally, it proposes tools to exploit this sensitivity in the future: adjoint-based sensitivity analysis to optimize passive control designs and complex systems theory to warn of impending thermoacoustic oscillations and to identify the most sensitive elements of a thermoacoustic system.

  9. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir

    2012-04-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects and then utilized to account for instantaneous softening when ultrasonic energy is applied during deformation. Material model parameters are identified via inverse modeling, i.e. by using experimental data. The versatility and predictive ability of the model are demonstrated and the effect of ultrasonic intensity on the manufacturing process at hand is investigated and compared qualitatively with experimental results reported in the literature. © 2011 Elsevier B.V. All rights reserved.

  10. Ultrasonic study of elastic creep in piezoceramics.

    Science.gov (United States)

    Tsaplev, V M; Konovalov, R S

    2017-11-01

    Ultrasonic method and experimental setup for study the elastic creep of piezoelectric materials are described. The results of experimental studies of time behavior of the Young's modulus and the internal friction are presented as well as the longitudinal and transversal piezomoduli and the electromechanical coupling factor. Four compositions of piezoelectric ceramics both soft and hard, based on BaTiO 3 and PZT, were compressed for a long time (0÷10 7 s) by significant static loads (0÷120MPa). The possible physical mechanisms that cause the creep are briefly considered. The concept of a spectrum of activation energies of the corresponding processes is introduced. The upper and the lower boundaries of the relaxation times spectrum were measured and corresponding activation energies were found. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Weber, M; Weiss, M [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  12. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H.; Weber, M.; Weiss, M. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  13. The outcome of laparoscopic cholecystectomy by ultrasonic dissection.

    LENUS (Irish Health Repository)

    Sasi, Walid

    2010-04-01

    Electrocautery remains the main energy form used for dissection in laparoscopic cholecystectomy. However, due to its many risks the search continues for safer and more efficient forms of energy. This chapter assesses the outcomes of dissection using ultrasonic energy as compared to monopolar electrocautery during laparoscopic cholecystectomy. Studies included are trials of prospectively randomized adult patients with symptomatic gallstone disease subject either ultrasonic or monopolar electrocautery dissection during laparoscopic cholecystectomy. Seven trials were included in this review, with a total patient number of 695 randomized to two dissection methods: 340 in the electrocautery group and 355 in the ultrasonic group. Ultrasonic dissection is shown to be superior to monopolar electrocautery in laparoscopic cholecystectomy. Disadvantages include a difficult maneuvering technique and overall cost. Appropriate training programs may be implemented to overcome the first disadvantage, and it might be argued that given the combined cost of factors associated with standard clip and cautery technique, cost issues may be outweighed by the benefits of ultrasonic dissection. However, this necessitates further cost-benefit analysis.

  14. On Limitations of the Ultrasonic Characterization of Pieces Manufactured with Highly Attenuating Materials

    Science.gov (United States)

    Ramos, A.; Moreno, E.; Rubio, B.; Calas, H.; Galarza, N.; Rubio, J.; Diez, L.; Castellanos, L.; Gómez, T.

    Some technical aspects of two Spanish cooperation projects, funded by DPI and Innpacto Programs of the R&D National Plan, are discussed. The objective is to analyze the common belief about than the ultrasonic testing in MHz range is not a tool utilizable to detect internal flaws in highly attenuating pieces made of coarse-grained steel. In fact high-strength steels, used in some safe industrial infrastructures of energy & transport sectors, are difficult to be inspected using the conventional "state of the art" in ultrasonic technology, due to their internal microstructures are very attenuating and coarse-grained. It is studied if this inspection difficulty could be overcome by finding intense interrogating pulses and advanced signal processing of the acquired echoes. A possible solution would depend on drastically improving signal-to-noise-ratios, by applying new advances on: ultrasonic transduction, HV electronics for intense pulsed driving of the testing probes, and an "ad-hoc" digital processing or focusing of the received noisy signals, in function of each material to be inspected. To attain this challenging aim on robust steel pieces would open the possibility of obtaining improvements in inspecting critical industrial components made of highly attenuating & dispersive materials, as new composites in aeronautic and motorway bridges, or new metallic alloys in nuclear area, where additional testing limitations often appear.

  15. Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saddeek, Yasser B. [Physics Department, Faculty of Science, Al-Azhar University, Assiut (Egypt); Mohamed, Hamdy F.M. [Physics Department, Faculty of Science, El-Minia University, B.O. 61519 El-Minia (Egypt); Azooz, Moenis A. [Glass Research Department, National Research Center, Dokki, Cairo (Egypt)

    2004-07-01

    Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B{sub 2}O{sub 3}+ 10 Al {sub 2}O {sub 3}+40RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques

    International Nuclear Information System (INIS)

    Saddeek, Yasser B.; Mohamed, Hamdy F.M.; Azooz, Moenis A.

    2004-01-01

    Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B 2 O 3 + 10 Al 2 O 3 +40RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Spectrometry of the Earth using Neutrino Oscillations

    Science.gov (United States)

    Rott, C.; Taketa, A.; Bose, D.

    2015-01-01

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth’s inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth’s electron density. The Earth’s chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth’s matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject extreme cases of outer core composition. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways. PMID:26489447

  18. Ultrasonic extraction of flavonoids and phenolics from loquat ...

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... ultrasonic pharmaceutical managing machine (Sinobest electronic. Co. Ltd., Jining, Shangdong ... During the ultrasonic treatment, the temperature ..... essential oil extraction by a hydrodistillation process using a 2(4) complete ...

  19. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  20. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  1. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-01-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc–10 kHz and 0–4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, T g = 69 °C), whose the glass transition temperature (T g ) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not

  2. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingwei, E-mail: ywsong@imr.ac.cn; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L{sup -1} nicotinic acid (NA) solution, named as vitamin B{sub 3}, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings. - Highlights: Black-Right-Pointing-Pointer NA/calcium phosphate composite coating is prepared to protect Mg-3Zn alloy implant. Black-Right-Pointing-Pointer Nicotinic acid (vitamin B{sub 3}) is available to obtain a protective bottom film. Black-Right-Pointing-Pointer Ultrasonic agitation greatly improves the compactness of calcium phosphate coating. Black-Right-Pointing-Pointer The composite coating can reduce the biodegradation rate of Mg-3Zn twenty times. Black-Right-Pointing-Pointer The composite coating is biodegraded by the dissolution of flakes into chippings.

  3. The digital ultrasonic test unit for automatic equipment

    International Nuclear Information System (INIS)

    Hiraoka, T.; Matsuyama, H.

    1976-01-01

    The operations and features of the ultrasonic test unit used and the digital data processing techniques employed are described. This unit is used for a few hundred multi-channel automatic ultrasonic test equipment

  4. Design of ultrasonic probe and evaluation of ultrasonic waves on E.coli in Sour Cherry Juice

    Directory of Open Access Journals (Sweden)

    B Hosseinzadeh Samani

    2015-09-01

    Full Text Available Introduction: The common method used for juice pasteurization is the thermal method since thermal methods contribute highly to inactivating microbes. However, applying high temperatures would lead to inefficient effects on nutrition and food value. Such effects may include vitamin loss, nutritional flavor loss, non-enzyme browning, and protein reshaping (Kuldiloke, 2002. In order to decrease the adverse effects of the thermal pasteurization method, other methods capable of inactivation of microorganisms can be applied. In doing so, non-thermal methods including pasteurization using high hydrostatic pressure processing (HPP, electrical fields, and ultrasound waves are of interest (Chen and Tseng, 1996. The reason for diminishing microbial count in the presence of ultrasonic waves could be due to the burst of very tiny bubbles developed by ultrasounds which expand quickly and burst in a short time. Due to this burst, special temperature and pressure conditions are developed which could initiate or intensify several physical and/or chemical reactions. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. Materials and methods: In order to supply uniform ultrasonic waves, a 1000 W electric generator (Model MPI, Switzerland working at 20±1 kHz frequency was used. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. For this purpose, a certain amount of sour cherry fruit was purchased from local markets. First, the fruits were washed, cleaned and cored. The prepared fruits were then dewatered using an electric juicer. In order to separate pulp suspensions and tissue components, the extracted juice was poured into a centrifuge with the speed of 6000 rpm for 20 min. For complete separation of the remaining suspended particles, the transparent portion of the extract was passed through a

  5. Study of novel carbon fiber composite used exfoliated carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Masahiro [Oita Univ., 700 Dannoharu, Oita 870-1192 (Japan)], E-mail: toyoda22@cc.oita-u.ac.jp; Kohara, Ryotaro; Tsumura, Tomoki [Oita Univ., 700 Dannoharu, Oita 870-1192 (Japan); Mutoh, Hiroyuki; Sakai, Mototsugu [Toyohashi Univ. of Tech., Toyohashi 441-8580 (Japan)

    2009-04-15

    One of the applications for carbon nanotubes (CNTs), CNT composite has been studied to reinforce of polymer. However, CNTs have not shown enough reinforced effect, because of poor dispersibility of itself and low purification. These characteristics are connected with the lowering mechanical strength in CNT's reinforced polymer composite. On the other hand, exfoliated carbon fibers (ExCFs) prepared through electrochemical processing were found to have unique morphology such as nanometer or sub-micrometer sized fibrils and well dispersibility. Fabrication of composite using its ExCFs was investigated. ExCFs changed in nanometer-sized fibrils by using ultrasonication and CNTs dispersed by using ultrasonication were compounded with polymethyl methacrylate (PMMA) in situ process through polymerization, and then their mechanical properties were examined. Flexural strength and elasticity of PMMA composite reinforced by ExCFs increased 166 and 171% respectively at addition of only 2.0 wt.% comparison with bulk PMMA. There was no significant aggregation in fracture surface, and homogeneous dispersion of ExCFs throughout the PMMA matrix was recognized. It was better than that of PMMA composite reinforced by CNTs. Homogeneous dispersion might be strongly related to mechanical properties. ExCFs might be expected to be applied to nano-composite instead of CNTs.

  6. Miniaturized and general purpose fiber optic ultrasonic sources

    International Nuclear Information System (INIS)

    Biagi, E.; Fontani, S.; Masotti, L.; Pieraccini, M.

    1997-01-01

    Innovative photoacoustic sources for ultrasonic NDE, smart structure, and clinical diagnosis are proposed. The working principle is based on thermal conversion of laser pulses into a metallic film evaporated directly onto the tip of a fiber optic. Unique features of the proposed transducers are very high miniaturization and potential easy embedding in smart structure. Additional advantages, high bedding in smart structure. Additional advantages, high ultrasonic frequency, large and flat bandwidth. All these characteristics make the proposed device an ideal ultrasonic source

  7. Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers.

    Science.gov (United States)

    Chang, Wei-Chieh; Lan, Ding-Hung; Lee, Kun-Mu; Wang, Xiao-Feng; Liu, Cheng-Liang

    2017-04-10

    This study investigated a new film-deposition technique, ultrasonic spray-coating, for use in the production of a photoactive layer of perovskite solar cells. Stable atomization and facile fabrication of perovskite thin films by ultrasonic spray-coating were achieved in a one-step method through manipulating the ink formulation (e.g., solution concentration, precursor composition, and mixing solvent ratio) and the drying kinetics (e.g., post-annealing temperature). The performance of the perovskite solar cells was mainly influenced by the intrinsic film morphology and crystalline orientation of the deposited perovskite layer. By suitable optimization of the spreading and drying conditions of the ink, ultrasonic spray-coated perovskite photovoltaic devices were obtained with a maximum power conversion efficiency of 11.30 %, a fill factor of 73.6 %, a short-circuit current of 19.7 mA cm -1 , and an open-circuit voltage of 0.78 V, respectively. Notably, the average power efficiency reached above 10 %, attributed to the large flower-like perovskite crystal with orientation along the (1 1 2)/(2 0 0) and (2 2 4)/(4 0 0) directions. Thus, the ultrasonic spray-coating method for perovskite photoactive layers, combining advantages of good photovoltaic performance results and benefits from cost and processing, has the potential for large-scale commercial production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  9. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    Science.gov (United States)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  10. Study on the development of ultrasonic gas flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Park, Sang Gug; Yang, Kyu Hong; Jhang, Kyung Young

    2001-01-01

    Ultrasonic flowmeters have more advantages than the conventional method using pressure-difference. In these reasons, many advanced nations are already selling the commercial model. In RIST, we have been developed ultrasonic gas flow meter for the localization since a project was been contracted with POSCO in 1997. This paper describes a new ultrasonic gas flowmeter. This ultrasonic gas flowmeter is developed for accurate measurement of gases in a harsh environmental conditions. It is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. In this study, we had developed the commercial model about the first tested model and applied a completed system to the POSCO gas line. Its performance has already well been proven by extensive field tests for several months in POSCO, iron and steel making company

  11. Method of noncontacting ultrasonic process monitoring

    Science.gov (United States)

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  12. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ultrasonic monitoring of Iberian fat crystallization during cold storage

    International Nuclear Information System (INIS)

    Corona, E; García-Pérez, J V; Santacatalina, J V; Peña, R; Benedito, J

    2012-01-01

    The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.

  14. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  15. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    Science.gov (United States)

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  16. P-Scan provides accuracy and repeatability in ultrasonics

    International Nuclear Information System (INIS)

    Keys, R.L.

    1987-01-01

    The P-Scan (Projection image scanning technique) is an automated ultrasonic inspection technique, developed to overcome the problems with accuracy and repeatability experienced with manual ultrasonic systems. The equipment and its applications are described. (author)

  17. Ultrasonic experiment on hydrate formation of a synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shicai; Fan, Shuanshi; Liang, Deqing; Zhang, Junshe; Feng, Ziping

    2005-07-01

    The effect of ultrasonic on the induction time and formation rate of natural gas hydrates was investigated in a stainless steel cell in this study. The results show that the induction time with ultrasonic was about 1/6 of that without ultrasonic and only about 1/10 if rehydration after decomposition in water-gas system. In sodium dodecyl sulfate (SDS) solution-gas system, the critical micellar concentration (CMC) was not identified with ultrasonic. The formation rate and storage capacity of hydrate increased with increasing SDS concentration at a range of 0 to 800ppm. However, the increase was insignificant as the SDS concentration increased from 600 to 800ppm, (Author)

  18. Nonlinear Acoustic and Ultrasonic NDT of Aeronautical Components

    Science.gov (United States)

    Van Den Abeele, Koen; Katkowski, Tomasz; Mattei, Christophe

    2006-05-01

    In response to the demand for innovative microdamage inspection systems, with high sensitivity and undoubted accuracy, we are currently investigating the use and robustness of several acoustic and ultrasonic NDT techniques based on Nonlinear Elastic Wave Spectroscopy (NEWS) for the characterization of microdamage in aeronautical components. In this report, we illustrate the results of an amplitude dependent analysis of the resonance behaviour, both in time (signal reverberation) and in frequency (sweep) domain. The technique is applied to intact and damaged samples of Carbon Fiber Reinforced Plastics (CFRP) composites after thermal loading or mechanical fatigue. The method shows a considerable gain in sensitivity and an incontestable interpretation of the results for nonlinear signatures in comparison with the linear characteristics. For highly fatigued samples, slow dynamical effects are observed.

  19. Synthesis and characterization of hydroxyapatite-gelatine composite materials for orthopaedic application

    International Nuclear Information System (INIS)

    Yanovska, A.; Kuznetsov, V.; Stanislavov, A.; Husak, E.; Pogorielov, M.; Starikov, V.; Bolshanina, S.; Danilchenko, S.

    2016-01-01

    The composite materials based on hydroxyapatite (HA) and gelatine (Gel) with addition of silver and zirconium oxide were obtained. The study investigates a combination of low powered ultrasonic irradiation and low concentration of gelatine in the co-precipitation synthesis. These composites have different weight ratios of organic/inorganic components and may be synthesized in two ways: simple mixing and co-precipitation. Both of which were compared. The estimation of porosity, in vivo testing, surface morphology and phase composition as well as the IR-analysis were provided. Hydroxyapatite was the main crystalline phase in obtained composites. While around powdered HA-Gel composite the connective tissue capsule is formed without bone tissue formation, HA-Gel-Ag porous composite implantation leads to formation of new bone tissue and activation of cell proliferation. Addition of silver ions into composite material allows decreasing inflammation on the first stage of implantation and has positive effect on bone tissue formation. Some of the obtained composite materials containing silver or ZrO_2 are biocompatible. bio-resorbable and osteoconductive with high level of porosity (75–85%). - Highlights: • Hydroxyapatite-gelatine composites with addition of Ag"+ and ZrO_2 were obtained. • Composites were synthesized in two ways: simple mixing and co-precipitation. • Co-precipitation synthesis combined ultrasonic treatment and low concentration of gelatine. • Obtained composites have different weight ratios of organic/inorganic components. • Some composites are osteoconductive and all of them have high level of porosity (75–85%).

  20. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity

    DEFF Research Database (Denmark)

    Svennebring, J.; Manneberg, O.; Skafte-Pedersen, Peder

    2009-01-01

    We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the c......We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field...... sample feeding, a set of several manipulation functions performed in series is demonstrated: sample bypass-injection-aggregation and retention-positioning. Finally, we demonstrate transillumination microscopy imaging Of Ultrasonically trapped COS-7 cell aggregates. Biotechnol. Bioeng. 2009;103: 323-328....

  1. Defect detection and sizing in ultrasonic imaging

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Chapuis, N.; Magnin, I.

    1991-01-01

    This paper introduces imaging processing developed with the SPARTACUS system in the field of ultrasonic testing. The aim of the imaging processing is to detect and to separate defects echoes from background noise. Image segmentation and particularities of ultrasonic images are the base of studied methods. 4 figs.; 6 refs [fr

  2. Ultrasonic force microscopy on poly(vinyl alcohol)/SrTiO{sub 3} nano-perovskites hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Salvatore, E-mail: smarino71@gmail.com [Laboratory of Nanotechnology, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén (Spain); Joshi, Girish M. [Polymer Nanocomposite Laboratory, Materials Physics Division, School of Advanced Sciences VIT University, Vellore 14, Tamil Nadu (India); Lusuardi, Angelo [Laboratory of Nanotechnology, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén (Spain); Cuberes, M. Teresa, E-mail: teresa.cuberes@uclm.es [Laboratory of Nanotechnology, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén (Spain)

    2014-07-01

    Atomic Force Microscopy (AFM) and Ultrasonic Force Microscopy (UFM) have been applied to the characterization of composite samples formed by SrTiO{sub 3} (STO) nanoparticles (NPs) and polyvinyl alcohol (PVA). The morphological features of the STO NPs were much better resolved using UFM than contact-mode AFM topography. For high STO concentrations the individual STO NPs formed nanoclusters, which gathered in microaggregates. The STO aggregates, covered by PVA, exhibited no AFM frictional contrast, but were clearly distinguished from the PVA matrix using UFM. Similar aggregation was observed for NPs in the composite samples and for NPs deposited on top of a flat silicon substrate from milliQ water solution in the absence of polymer. In the hybrid films, most STO nanoparticles typically presented a lower UFM contrast than the PVA matrix, even though stiffer sample regions such as STO should give rise to a higher UFM contrast. STO NPs with intermediate contrast were characterized by an UFM halo of lower contrast at the PVA/STO interface. The results may be explained by considering that ultrasound is effectively damped on the nanometer scale at PVA/STO interfaces. According to our data, the nanoscale ultrasonic response at the PVA/STO interface plays a fundamental role in the UFM image contrast. - Highlights: • Hybrid films of SrTiO{sub 3} nanoparticles and PVA have been studied using AFM, FFM and UFM. • The SrTiO{sub 3} nanoparticles form nano-clusters from 3 to 5 individuals, which for high concentrations gather in micro-aggregates. • Most SrTiO{sub 3} nanoparticles in the composite samples exhibited a lower (softer) UFM contrast than the PVA matrix. • In the UFM images, SrTiO{sub 3} nanoparticles with intermediate contrast are delimited by a lower-contrast halo at the PVA boundary. • The nanoscale ultrasonic response at the PVA/SrTiO{sub 3} interface plays a fundamental role in the UFM image contrast.

  3. Modeling of termokinetic oscillations at partial oxidation of methane

    Science.gov (United States)

    Arutyunov, A. V.; Belyaev, A. A.; Inovenkov, I. N.; Nefedov, V. V.

    2017-12-01

    Partial oxidation of natural gas at moderate temperatures below 1500 K has significant interest for a number of industrial applications. But such processes can proceed at different unstable regimes including oscillating modes. Nonlinear phenomena at partial oxidation of methane were observed at different conditions. The investigation of the complex nonlinear system of equations that describes this process is a real method to insure its stability at industrial conditions and, at the same time, is an effective tool for its further enhancement. Numerical analysis of methane oxidation kinetics in the continuous stirred-tank reactor, with the use of detailed kinetic model has shown the possibility of the appearance of oscillating modes in the appropriate range of reaction parameters that characterize the composition, pressure, reagents flow, thermophysical features of the system, and geometry of the reactor. The appearance of oscillating modes is connected both with the reaction kinetics, heat release and sink and reagents introduction and removing. At that, oscillations appear only at a limited range of parameters, but can be accompanied by significant change in the yield of products. We have determined the range of initial temperature and pressure at which oscillations can be observed, if all other parameters remained fixed. The boundaries of existence of oscillations on the phase plane were calculated. It was shown that depending on the position inside the oscillation region the oscillations have different frequency and amplitude. It was reviled the role of heat exchange with the environment: at the absence of heat exchange the oscillating modes are impossible. In the vicinity of the boundary of phase range, where oscillations exist, significant change of concentration of some products were observed, for example, that of CO2, which in this case one of the principal products is. At that, insignificant increase in pressure not only change the character of CO2 behaving

  4. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon

    Science.gov (United States)

    Ghaedi, M.; Azad, F. Nasiri; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M.

    2016-10-01

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20 mg g- 1) is sufficient for the rapid removal of high amount of MG dye in short time (3.99 min).

  5. Reproducibility problems of in-service ultrasonic testing results

    International Nuclear Information System (INIS)

    Honcu, E.

    1974-01-01

    The reproducibility of the results of ultrasonic testing is the basic precondition for its successful application in in-service inspection of changes in the quality of components of nuclear power installations. The results of periodic ultrasonic inspections are not satisfactory from the point of view of reproducibility. Regardless, the ultrasonic pulse-type method is suitable for evaluating the quality of most components of nuclear installations and often the sole method which may be recommended for inspection with regard to its technical and economic aspects. (J.B.)

  6. Further Investigations on Simultaneous Ultrasonic Coal Flotation

    Directory of Open Access Journals (Sweden)

    Safak Gokhan Ozkan

    2017-09-01

    Full Text Available This study investigates the flotation performance of a representative hard coal slime sample (d80 particle size of minus 0.2 mm obtained from the Prosper-Haniel coal preparation plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell refurbished from an old ultrasonic cleaning bath (2.5 L volume equipped with a single frequency (35 kHz and two different power levels (80–160 W and a sub-aeration-type flotation machine operating at a stable impeller speed (1200 rpm and air rate (2.5 L/min. The reagent combination for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages (40–300 g/t with controlling water temperature (20–25 °C at natural pH (6.5–7.0. The batch coal flotation results were analyzed by comparing the combustible recovery (% and separation efficiency (% values, taking mass yield and ash concentrations of the froths and tailings into account. It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the floated products with lower ash values than the conventional flotation despite using similar reagent dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

  7. Magnetic vortex excitation as spin torque oscillator and its unusual trajectories

    Science.gov (United States)

    Natarajan, Kanimozhi; Muthuraj, Ponsudana; Rajamani, Amuda; Arumugam, Brinda

    2018-05-01

    We report an interesting observation of unusual trajectories of vortex core oscillations in a spin valve pillar. Micromagnetic simulation in the composite free layer spin valve nano-pillar shows magnetic vortex excitation under critical current density. When current density is slightly increased and wave vector is properly tuned, for the first time we observe a star like and square gyration. Surprisingly this star like and square gyration also leads to steady, coherent and sustained oscillations. Moreover, the frequency of gyration is also very high for this unusual trajectories. The power spectral analysis reveals that there is a marked increase in output power and frequency with less distortions. Our investigation explores the possibility of these unusual trajectories to exhibit spin torque oscillations.

  8. Development and application of the ultrasonic technologies in nuclear engineering

    International Nuclear Information System (INIS)

    Lebedev, Nikolay; Krasilnikov, Dmitry; Vasiliev, Albert; Dubinin, Gennady; Yurmanov, Viktor

    2012-09-01

    Efficiency of some traditional chemical technologies in different areas could be significantly increased by adding ultrasonic treatment. For example, ultrasonic treatment was found to improve make-up water systems, decontamination procedures, etc. Improvement of traditional chemical technologies with implementation of ultrasonic treatment has allowed to significantly reducing water waste, including harmful species and radioactive products. The report shows the examples of the recent ultrasonic technology development and application in Russian nuclear engineering. They are as follows: - Preliminary cleaning of surfaces of in-pile parts (e.g. control sensors) prior to their assemblage and welding - Decontamination of grounds and metal surfaces of components with a complex structure -Decrease in sliding friction between fuel rods and grids during VVER reactor fuel assembly manufacturing -Removal of deposits from reactor fuel surfaces in VVER-440s -Increasing the density and strength of pressed sintered items while making fuel pellets and fuel elements, especially mixed-oxide fuel Surface cleanness is very important for the fuel assembly manufacturing, especially prior to welding. An ultrasonic technology for surface cleaning (from graphite and other lubricants, oxides etc.) was developed and implemented. The ultrasonic cleaning is applicable to the parts having both simple shape and different holes. Ultrasonic technology has allowed to improve the surface quality and environmental safety. Ultrasonic treatment appears to be expedient to intensify the chemical decontamination of solid radioactive waste from grounds of different fractions to metallic components. Ultrasonic treatment reduces the decontamination process duration up to 100 times as much. Excellent decontamination factor was received even for the ground fractions below 1 mm. It should be noted that alternative decontamination techniques (e.g. hydraulic separation) are poorly applicable for such ground

  9. An inverse method for crack characterization from ultrasonic B-Scan images

    International Nuclear Information System (INIS)

    Faur, M.; Roy, O.; Benoist, PH.; Morisseau, PH.

    1996-01-01

    Concern has been expressed about the capabilities of performing non destructive evaluation (NDE) of flaws located near to the outer surface in nuclear pressurized water reactor (PWR) vessels. The ultrasonic examination of PWR is accomplished from the inside with ultrasonic focused transducers working in the pulse echo mode. By recording the echoes as a function of time, the Ascan representation may be obtained. Many ultrasonic flaw detectors used for NDE are based on the simple Ascan concept involving measuring a time interval called 'time of flight'. By combining the Ascan concept synchronized transducer scanning, one can produce Bscan images that are two dimensional descriptions of the flaw interaction with the ultrasonic field. In the following, the flaw is assumed to be an axially oriented crack (the most serious flaw to be found in a pressurized component). In the case of the outer surface cracks (OSC's), analyzing and interpreting ultrasonic Ascan images become difficult because of the various reflections of the ultrasonic beam on the crack and on the outer surface (the so-called corner effect). Methods for automatic interpretation of ultrasonic experimental data are currently under investigation. In this paper, we present an inverse method for determining the geometrical characteristics of OSC's from ultrasonic Bscan images. The direct model used for the inversion procedure predicts synthetic Bscan images of ultrasonic examination of blocks containing planar defects interrogated by focused probes. (authors)

  10. Ultrasonic calibration assembly

    International Nuclear Information System (INIS)

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  11. Evaluation of Pu sample oscillations in CESAR

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, M.

    1974-10-15

    A set of 12 plutonium samples of various compositions were oscillated in CESAR in 1973. Comparisons were made to the oscillated reactivity effect of a known specimen of U-235 and boron where the detector signals were corrected against a background signal based on comparison to the motion of a control rod in the central location of critical assembly. An equivalent sample method was tested first for various samples of U-235 and boron to establish a means of correction in the detector response. Inferred plutonium reaction rates in the experiments were compared to transport theory calculations using the APOLLO code. Addition effort is needed to reconcile differences in measured and calculated results requiring both chemical analyses of the plutonium isotopes in the samples and improved cross sections for the plutonium isotopes.

  12. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  13. Very high temperature ultrasonic thermometer

    International Nuclear Information System (INIS)

    Jorzik, E.

    1983-01-01

    An ultrasonic thermometer comprises an electric pulse transducer head, a pulse transmission line, a notched sensor wire attached to and extending along the axis of said transmission line and a sheath enclosing the transmission line and the sensor wire, a portion of the interior face of the sheath being covered by a stuffing material along at least the length of the notched part of the sensor wire, such that contact between the sensor wire and the stuffing material does not substantially give rise to reflection of an ultrasonic pulse at the point of contact. (author)

  14. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  15. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  16. Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications

    Science.gov (United States)

    Bhardwaj, Mahesh C.

    2009-03-01

    Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.

  17. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  18. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per

    2005-07-01

    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  19. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  20. A study on the performance of piezoelectric composite materials for designing embedded transducers for concrete assessment

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2018-03-01

    Ultrasonic measurements of concrete can provide crucial information about its state of health. The most common practice in the construction industry consists in using external probes which strongly limits the use of the method since large parts of the in-service structures are difficult to access. It is also possible to assess in real time the setting process of the concrete using ultrasonic measurements. In practice, the field measurement of the concrete hardening is limited by the formworks. As an alternative, some research teams have studied the possibility to directly embed the transducers into the concrete structures. The current embedded ultrasonic transducers are of two categories: bulk piezoelectric elements surrounded by several coating and matching layers and composites piezoelectric elements. Both technologies aim at optimizing the wave energy transmitted to the tested medium. The performances of the transducers of the first kind have been studied in a previous study. A fair amount of recent research has been focused on the development of novel cement-based piezoelectric composites. In this study, we first compare the effective properties of such cement-based materials with more widespread composites made with matrices of epoxy resins or polyurethane. The study only concerns the 1-3 fiber arrangement composites. The effective properties are computed using both an analytical mixing rule method and a finite element based homogenization method using representative volume elements (RVEs) which allows for considering more realistic fiber arrangements, leading yet to very similar results. The effective piezoelectric properties of cement-based composites appear to be very low compared to composites made of epoxy or polyurethane. This result is underlined by looking at the acoustic response and the electric input impedance of different piezoelectric disks where we compare performances of such transducers with a low-cost bulk piezoelectric disc element. The first

  1. Ultrasonic studies of aluminium-substituted Bi(Pb)-2223 superconductors

    Science.gov (United States)

    Solunke, M. B.; Sharma, P. U.; Pandya, M. P.; Lakhani, V. K.; Modi, K. B.; Venugopal Reddy, P.; Shah, S. S.

    2005-09-01

    The compositional dependence of elastic properties of Al^{3+}-substitu- ted Bi(Pb)-2223 superconducting system with the general formula Bi_{1.7-x}Al_xPb_{0.3}Sr_2Ca_2- Cu_3O_y (x = 0.0, 0.1, 0.2 and 0.3) have been studied by means of ultrasonic pulse transmission (UPT) technique at 1 MHz (300 K). The elastic moduli of the specimens are computed and corrected to zero porosity. The observed variation of elastic constants with aluminium substitution has been explained on the basis of the strength of interatomic bonding. The applicability of heterogeneous metal mixture rule for estimating elastic constants and transition temperature has been tested.

  2. Multi-criteria optimization for ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae using response surface methodology, an activity-based approach.

    Science.gov (United States)

    Zeng, Shanshan; Wang, Lu; Zhang, Lei; Qu, Haibin; Gong, Xingchu

    2013-06-01

    An activity-based approach to optimize the ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae (Chenpi in Chinese) was developed. Response surface optimization based on a quantitative composition-activity relationship model showed the relationships among product chemical composition, antioxidant activity of extract, and parameters of extraction process. Three parameters of ultrasonic-assisted extraction, including the ethanol/water ratio, Chenpi amount, and alkaline amount, were investigated to give optimum extraction conditions for antioxidants of Chenpi: ethanol/water 70:30 v/v, Chenpi amount of 10 g, and alkaline amount of 28 mg. The experimental antioxidant yield under the optimum conditions was found to be 196.5 mg/g Chenpi, and the antioxidant activity was 2023.8 μmol Trolox equivalents/g of the Chenpi powder. The results agreed well with the second-order polynomial regression model. This presented approach promised great application potentials in both food and pharmaceutical industries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Simulation of the Two-Phase Liquid – Gas Flow through Ultrasonic Transceivers Application in Ultrasonic Tomography

    Directory of Open Access Journals (Sweden)

    Zulkarnay Zakaria

    2010-01-01

    Full Text Available In this paper, ultrasonic transmission mode tomography was used to visualize the two phase liquid/gas flow in a pipe/vessel. The sensing element consists of 8, 16 and 32 units ultrasonic transceivers were used to cover the pipe cross-section at different time. The motivation of this paper is to analyze the optimum numbers of transceivers which can give the best performance in providing better image of the two phase liquid/gas flow. This paper also details the development of the system including the ultrasonic transduction circuits, the electronic measurement circuits, the data acquisition system and the image reconstruction techniques. Ten conditions of liquid-gas flow have been simulated. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases while the 32 transceivers has provided the best image for the ten conditions applied.

  4. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  5. Experiences in using ultrasonic holography with numerical and optical reconstruction

    International Nuclear Information System (INIS)

    Schmitz, V.; Wosnitza, M.

    1978-01-01

    At present, ultrasonic holography can resolve and image faults of 1 mm and more and with distances of one ultrasonic wavelength. The main field of application is for thick-walled structural components. Depending on the expected orientation, test probe arrangements as in standard ultrasonic testing are chosen. (orig./RW) [de

  6. Improvement of solar ethanol distillation using ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Jaruwat Jareanjit

    2016-08-01

    Full Text Available This report presents a study on the use of ultrasonic waves in solar ethanol distillation to investigate the performance of ultrasonic waves at a frequency of 30 kHz and at 100 Watts that were installed in the inlet area of a 10-litre distillation tank. Based on the non-continuous distillation process (batch distillation, the experiment demonstrated that using ultrasonic waves in solar ethanol distillation caused the average concentration of hourly distilled ethanol to be higher than that of a normal system (solar ethanol distillation without ultrasonic wave at the same or higher distillation rate and hourly distillation volume. The ultrasonic wave was able to enhance the separation of ethanol from the solution (water-ethanol mixture through solar distillation. The amount of pure ethanol product from each distilled batch was clearly larger than the amount of product obtained from a normal system when the initial concentration of ethanol was lower than 50%v/v (% by volume, where an average of approximately 40% and 20% are obtained for an initial ethanol concentration of 10%v/v and 30%v/v, respectively. Furthermore, the distillation rate varied based on the solar radiation value.

  7. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  8. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    International Nuclear Information System (INIS)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob

    2015-01-01

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  9. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob [Dept. of Medical Biotechnology, Dongguk University Biomedi Campus, Goyang (Korea, Republic of)

    2015-04-15

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  10. Detection of thermal fatigue in composites by second harmonic Lamb waves

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Achenbach, Jan D

    2012-01-01

    Composite materials which are widely used in the aerospace industry, are usually subjected to frequent variation of temperature. Thermal cyclic loading may induce material degradation. Considering the long-term service of aircraft composites and the importance of safety in the aircraft industry, even a little damage that may be accumulative via thermal fatigue is often of great concern. Therefore, there is a demand to develop non-destructive approaches to evaluate thermal fatigue damage in an early stage. Due to the sensitivity of acoustic nonlinearity to micro-damage, the nonlinear ultrasonic technique has been explored as a promising tool for early detection of micro-damage. This paper investigates an experimental scheme for characterizing thermal fatigue damage in composite laminates using second harmonic Lamb waves. The present results show a monotonic increase of acoustic nonlinearity with respect to thermal fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and thermal fatigue cycles in carbon/epoxy laminates verifies that nonlinear Lamb waves can be used to assess thermal fatigue damage rendering improved sensitivity over conventional linear feature based non-destructive evaluation techniques. Velocity and attenuation based ultrasonic studies are carried out for comparison with the nonlinear ultrasonic approach and it is found that nonlinear acoustic parameters are more promising indicators of thermal fatigue damage than linear ones. (paper)

  11. Failed fuel rod detection method by ultrasonic wave

    International Nuclear Information System (INIS)

    Takamatsu, Masatoshi; Muraoka, Shoichi; Ono, Yukio; Yasojima, Yujiro.

    1990-01-01

    Ultrasonic wave signals sent from an ultrasonic receiving element are supplied to an evaluation circuit by way of a gate. A table for gate opening and closing timings at the detecting position in each of the fuel rods in a fuel assembly is stored in a memory. A fuel rod is placed between an ultrasonic transmitting element and the receiving element to determine the positions of the transmitting element and the receiving element by positional sensors. The opening and closing timings at the positions corresponding to the result of the detection are read out from the table, and the gates are opened and closed by the timing. This can introduce the ultrasonic wave signals transmitted through a control rod always to the evaluation circuit passing through the gate. Accordingly, the state of failure of the fuel rod can be detected accurately. (I.N.)

  12. Ultrasonic weld testing.

    Science.gov (United States)

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  13. Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling

    Directory of Open Access Journals (Sweden)

    Naď Milan

    2016-12-01

    Full Text Available Rotary ultrasonic machining (RUM is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.

  14. System and technique for ultrasonic determination of degree of cooking

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J [Richland, WA; Diaz, Aaron A [W. Richland, WA; Judd, Kayte M [Richland, WA; Pappas, Richard A [Richland, WA; Cliff, William C [Richland, WA; Pfund, David M [Richland, WA; Morgen, Gerald P [Kennewick, WA

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  15. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    Science.gov (United States)

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  17. An ultrasonic waveguide for nuclear power plants

    International Nuclear Information System (INIS)

    Watkins, R.D.; Gillespie, A.B.; Deighton, M.O.; Pike, R.B.

    1983-01-01

    The value of ultrasonic techniques in nuclear plants is well established. However, in most cases nuclear power plants present an extremely hostile environment for an ultrasonic transducer. The paper presents a novel technique for introducing an ultrasound into hostile liquid environments using a new form of ultrasonic waveguide. Using this approach, a standard transducer arrangement is sited in a hospitable area and conveys the ultrasound along the guide to the required beam-emission collection position. The design of a single-mode ultrasonic waveguide is described. The ultrasound is conveyed along a stainless steel strip of rectangular cross-section. The transference of energy between the strip and the liquid is achieved through a highly efficient mode-conversion process. This process overcomes the usual problems of mis-match of acoustic impedances of stainless steel and liquids, and also produces a highly collimated beam of ultrasound. Tests of a 10-m-long waveguide using these techniques are described, achieving signal-to-noise ratios in the region of 40 dB. (author)

  18. Energy-Based Analysis of Ultrasonically Assisted Turning

    Directory of Open Access Journals (Sweden)

    G.A. Volkov

    2011-01-01

    Full Text Available The process of ultrasonically-assisted turning (UAT is a superposition of vibration of a cutting tool on its standard movement in conventional turning (CT. The former technique has several advantages compared with the latter, one of the main being a significant decrease in the level of cutting forces. In this paper the effects observed in UAT are analysed employing ideas of dynamic fracture mechanics. The active stage of loading duration depends heavily on ultrasonic frequency and the cutting speed; he application of the fracture criterion based on the notion of incubation time makes it possible to calculate a dependence of this duration on its threshold amplitude. An estimation of energy, necessary to create a threshold pulse in the material, is made by solving the contact Hertz problem. The obtained time dependence of energy has a marked minimum. Thus, the existence of energy-efficient loading duration is demonstrated. This explains the decrease in the cutting force resulting from superimposed ultrasonic vibration. The obtained results are in agreement with experiments on ultrasonic assisted machining of aluminium and Inconel 718 alloy.

  19. Wear reduction through piezoelectrically-assisted ultrasonic lubrication

    International Nuclear Information System (INIS)

    Dong, Sheng; J Dapino, Marcelo

    2014-01-01

    Traditional lubricants are undesirable in harsh aerospace environments and certain automotive applications. Ultrasonic vibrations can be used to reduce and modulate the effective friction coefficient between two sliding surfaces. This paper investigates the relationship between friction force reduction and wear reduction in ultrasonically lubricated surfaces. A pin-on-disc tribometer is modified through the addition of a piezoelectric transducer which vibrates the pin at 22 kHz in the direction perpendicular to the rotating disc surface. Friction and wear metrics including volume loss, surface roughness, friction forces and apparent stick-slip effects are measured without and with ultrasonic vibrations at three different sliding velocities. SEM imaging and 3D profilometry are used to characterize the wear surfaces and guide model development. Over the range of speeds considered, ultrasonic vibrations reduce the effective friction force up to 62% along with a wear reduction of up to 49%. A simple cube model previously developed to quantify friction force reduction is implemented which describes wear reduction within 15% of the experimental data. (paper)

  20. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating