WorldWideScience

Sample records for ultrashort electromagnetic pulses

  1. Scattering of ultrashort electromagnetic pulses on metal clusters

    International Nuclear Information System (INIS)

    Astapenko, V. A.; Sakhno, S. V.

    2016-01-01

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  2. Absorption of Ultrashort Electromagnetic Pulses on Broadened Dipole Transitions

    International Nuclear Information System (INIS)

    Svita, S Yu; Astapenko, V A

    2014-01-01

    The study is devoted to the theoretical analysis of ultrashort electromagnetic pulses (USP) absorption on broadened dipole transitions. Calculations are made in the frame of perturbation theory with the use of the basic formula for energy absorbed during all time of the action of USP on dipole transition. Dependences of absorbed energy upon pulse duration and carrier frequency are obtained and analyzed for different types of spectral line shape and USP parameters

  3. Scattering of ultrashort electromagnetic pulses on metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Astapenko, V. A., E-mail: astval@mail.ru; Sakhno, S. V. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2016-12-15

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  4. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan

    2007-01-01

    A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models

  5. Scattering of an ultrashort electromagnetic pulse in a plasma

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    An analytic approach is developed to describing how ultrashort electromagnetic pulses with a duration of one period or less at the carrier frequency are scattered in a plasma. Formulas are derived to calculate and analyze the angular and spectral probabilities of radiation scattering via two possible mechanisms-Compton and transition radiation channels-throughout the entire pulse. Numerical simulations were carried out for a Gaussian pulse. The effect of the phase of the carrier frequency relative to the pulse envelope on the scattering parameters is investigated.

  6. Measurement of Ultra-Short Solitary Electromagnetic Pulses

    Directory of Open Access Journals (Sweden)

    Eva Gescheidtova

    2004-01-01

    Full Text Available In connection with the events of the last few years and with the increased number of terrorist activities, the problem of identification and measurement of electromagnetic weapons or other systems impact occurred. Among these are also microwave sources, which can reach extensive peak power of up to Pmax = 100 MW. Solitary, in some cases several times repeated, impulses lasting from tp E <1, 60>ns, cause the destruction of semiconductor junctions. These days we can find scarcely no human activity, where semiconductor structures are not used. The problem of security support of the air traffic, transportation, computer nets, banks, national strategic data canter’s, and other applications crops up. Several types of system protection from the ultra-short electromagnetic pulses present itself, passive and active protection. The analysis of the possible measuring methods, convenient for the identification and measurement of the ultra-short solitary electromagnetic pulses in presented in this paper; some of the methods were chosen and used for practical measurement. This work is part of Research object MSM262200022 "Research of microelectronic systems".

  7. Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems

    Science.gov (United States)

    Belenov, E.; Isakov, V.; Nazarkin, A.

    1994-01-01

    Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.

  8. Emission and electron transitions in an atom interacting with an ultrashort electromagnetic pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2003-01-01

    Electron transitions and emission of an atom interacting with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. The excitation and ionization probabilities are obtained as well as the spectra and cross sections of the reemission of such a pulse by atoms. By way of an example, one- and two-electron inelastic processes accompanying the interaction of ultrashort pulses with hydrogen- and helium-like atoms are considered. The developed technique makes it possible to take into account exactly the spatial nonuniformity of the ultrashort pulse field and photon momenta in the course of reemission

  9. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  10. Propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an inhomogeneous array of carbon nanotubes

    Science.gov (United States)

    Fedorov, Eduard G.; Zhukov, Alexander V.; Bouffanais, Roland; Timashkov, Alexander P.; Malomed, Boris A.; Leblond, Hervé; Mihalache, Dumitru; Rosanov, Nikolay N.; Belonenko, Mikhail B.

    2018-04-01

    We study the propagation of three-dimensional (3D) bipolar ultrashort electromagnetic pulses in an inhomogeneous array of semiconductor carbon nanotubes. The heterogeneity is represented by a planar region with an increased concentration of conduction electrons. The evolution of the electromagnetic field and electron concentration in the sample are governed by the Maxwell's equations and continuity equation. In particular, nonuniformity of the electromagnetic field along the axis of the nanotubes is taken into account. We demonstrate that depending on values of the parameters of the electromagnetic pulse approaching the region with the higher electron concentration, the pulse is either reflected from the region or passes it. Specifically, our simulations demonstrate that after interacting with the higher-concentration area, the pulse can propagate steadily, without significant spreading. The possibility of such ultrashort electromagnetic pulses propagating in arrays of carbon nanotubes over distances significantly exceeding characteristic dimensions of the pulses makes it possible to consider them as 3D solitons.

  11. Inelastic processes and interference effects during the interaction of positronium with ultrashort electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Eseev, M. K., E-mail: m_eseev@mail.ru; Matveev, V. I., E-mail: matveev.victor@pomorsu.ru [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2013-11-15

    The excitation, breakup, and reradiation during the interaction of a positronium atom with ultrashort electromagnetic pulses are considered. The probabilities of inelastic processes and reradiation spectra have been obtained. The interference between the amplitudes of the photon emission by the electron and positron is shown to contribute noticeably to the reradiation spectra. The developed approach is applicable for describing the interaction of positronium with ultrashort pulses of attosecond or shorter duration.

  12. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  13. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  14. Inelastic Processes in the Interaction of an Atom with an Ultrashort Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.

    2005-01-01

    Electron transitions occurring during the interaction of a heavy relativistic atom with a spatially inhomogeneous ultrashort electromagnetic pulse are considered by solving the Dirac equation. The corresponding transition probabilities are expressed in terms of known inelastic atomic form factors, which are widely used in the theory of relativistic collisions between charged particles and atoms. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into account exactly not only the spatial inhomogeneity of an ultrashort electromagnetic pulse, but also the magnetic interaction

  15. Inelastic processes in interaction of an atom with ultrashort pulse of an electromagnetic field

    International Nuclear Information System (INIS)

    Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.

    2005-01-01

    Electron transitions occurring when a heavy relativistic atom interacts with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. Transition probabilities are expressed in terms of the known inelastic atomic form factors. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into exact account magnetic interaction besides spatial inhomogeneity of an ultrashort electromagnetic pulse [ru

  16. Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source

    Science.gov (United States)

    2016-11-29

    AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...Wavelength Electromagnetic Light Bullets Generated by a 10 µm CO2 Ultrashort Pulsed Source Grant/Contract Number AFOSR assigned control number. It must

  17. Autler-Townes doublet and electromagnetically induced transparency resonance probed by an ultrashort pulse train

    International Nuclear Information System (INIS)

    Soares, A A; De Araujo, Luis E E

    2010-01-01

    We study theoretically the interaction between an ultrashort pulse train and a three-level atom driven by a cw laser. We show that the pulse train can be employed to observe spectra of Autler-Townes doublet and electromagnetically induced transparency resonance that are time and frequency resolved. The observation of subnatural linewidth features associated with the electromagnetically induced transparency resonance is described. The temporal evolution of electromagnetically induced transparency of the pulse train is shown to exhibit new and different features compared to that of the related phenomenon of coherent population trapping. By matching the tooth separation of the frequency comb associated with the pulse train to that of the Autler-Townes doublet, quantum beats between the doublet components can be induced. We show that coherent accumulation of excitation plays a major role in the two studied phenomena.

  18. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  19. Interference effects during the reradiation of ultrashort electromagnetic pulses by polyatomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, D. N.; Matveev, V. I., E-mail: mezon98@mail.ru [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2013-11-15

    A theory of the reradiation of ultrashort electromagnetic pulses by arbitrary polyatomic systems of isolated complex atoms has been developed. The technique used allows the spatial inhomogeneity of the field of an ultrashort pulse and photon momenta in reradiation processes to be accurately taken into account. The angular distributions of the reradiation spectra have been obtained for an arbitrary number of atoms in the system. The processes of interference between the photon emission amplitudes are shown to give rise to characteristic “diffraction” maxima. We consider one-dimensional, two-dimensional, and three-dimensional rectangular lattices as examples as well as planar and cylindrical structures as models of planar nanosystems and nanotubes.

  20. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  1. Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses

    International Nuclear Information System (INIS)

    Acuna, M. A.; Gravielle, M. S.

    2011-01-01

    Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, while the influence of the crystal orientation was found to be negligible.

  2. Dynamics of ultra-short electromagnetic pulses in the system of chiral carbon nanotube waveguides in the presence of external alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2014-04-01

    The paper addresses the propagation of ultra-short optical pulses in chiral carbon nanotubes in the presence of external alternating electric field. Following the assumption that the considered optical pulses are represented in the form of discrete solitons, we analyze the wave equation for the electromagnetic field and consider the dynamics of pulses in external field, their initial amplitudes and frequencies.

  3. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-01-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam

  4. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.; Hanton, F.; Naughton, K.; Lewis, C. L. S.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Brauckmann, S.; Giesecke, A. L.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany)

    2016-05-15

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  5. Emission of ultrashort electromagnetic pulses from electron bunches formed and accelerated by laser beams with tilted amplitude fronts

    International Nuclear Information System (INIS)

    Galkin, A.L.; Korobkin, V.V.; Romanovsky, M.Yu.; Shiryaev, O.B.; Trofimov, V.A.

    2013-01-01

    The dynamics of an electron in a standing wave generated by a pair of counterpropagating linearly polarized relativistically intense laser pulses and the emission of electromagnetic radiation by the electron are analyzed. The pulses are assumed to have tilted amplitude fronts and asymmetric focal spots. The analysis of the dynamics is performed by solving numerically the Newton equation with the corresponding Lorentz force, and the emission of radiation is simulated based on the Lienard-Wiechert potentials. The electrons are accelerated by the direct action of the standing wave field and are shown to form a small short bunch. For relativistic intensities, the energies gained by the electrons reach several GeV. It is demonstrated that the radiation emitted by the electrons in the bunch is a single electromagnetic pulse confined to a narrow solid angle and having an attosecond duration. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. H{sup +}{sub 2} ionization by ultra-short electromagnetic pulses investigated through a non-perturbative Coulomb-Volkov approach

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez, V D [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Macri, P [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones CientIficas y Tecnicas, 1428 Buenos Aires (Argentina); Gayet, R [CELIA, Centre Lasers Intenses et Applications, UMR 5107, Unite Mixte de Recherche CNRS-CEA-Universite Bordeaux 1, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France)

    2005-08-14

    The sudden Coulomb-Volkov theoretical approximation has been shown to well describe atomic ionization by intense and ultra-short electromagnetic pulses, such as pulses generated by very fast highly-charged ions. This approach is extended here to investigate single ionization of homonuclear diatomic molecules by such pulses in the framework of one-active electron. Under particular conditions, a Young-like interference formula can approximately be factored out. Present calculations show interference effects originating from the molecular two-centre structure. Fivefold differential angular distributions of the ejected electron are studied as a function of the molecular orientation and internuclear distance. Both non-perturbative and perturbative regimes are examined. In the non-perturbative case, an interference pattern is visible but a main lobe, opposite to the electric field polarization direction, dominates the angular distribution. In contrast, in perturbation conditions the structure of interferences shows analogies to the Young-like interference pattern obtained in ionization of molecules by fast electron impacts. Finally, the strong dependence of these Young-like angular distributions on the internuclear distance is addressed.

  7. Magnetic Field Effect on Ultrashort Two-dimensional Optical Pulse Propagation in Silicon Nanotubes

    Science.gov (United States)

    Konobeeva, N. N.; Evdokimov, R. A.; Belonenko, M. B.

    2018-05-01

    The paper deals with the magnetic field effect which provides a stable propagation of ultrashort pulses in silicon nanotubes from the viewpoint of their waveform. The equation is derived for the electromagnetic field observed in silicon nanotubes with a glance to the magnetic field for two-dimensional optical pulses. The analysis is given to the dependence between the waveform of ultrashort optical pulses and the magnetic flux passing through the cross-sectional area of the nanotube.

  8. Superfocusing of an ultrashort plasmon pulse by a conducting cone

    Energy Technology Data Exchange (ETDEWEB)

    Manuilovich, E S; Astapenko, V A [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Golovinskii, P A [Voronezh State University of Architecture and Civil Engineering, Voronezh (Russian Federation)

    2016-01-31

    We have shown theoretically the possibility of controlling nanoscale superfocusing of plasmons in a metal conical tip by modulating the carrier frequency of the pulse. The propagation of an ultrashort plasmon pulse in a metal nanoneedle is simulated numerically. The calculation is based on an asymptotic analytical solution of Maxwell's equations for electromagnetic wave propagation in a conical conductor in the vicinity of its apex, obtained by the approximate separation of variables in spherical coordinates. The dependence the field superfocusing on the conductor material, pulse chirp and propagation length is studied. (nanooptics)

  9. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  10. Ultrashort X-ray pulse science

    International Nuclear Information System (INIS)

    Chin, A.H.; Lawrence Berkeley National Lab., CA

    1998-01-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90 o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ∼ 300 fs, 30 keV (0.4 (angstrom)) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been

  11. Simple formula for photoprocesses in ultrashort electromagnetic field

    International Nuclear Information System (INIS)

    Astapenko, V.A.

    2010-01-01

    Within the framework of the perturbation theory, a simple formula for the probability of a photoprocess for the whole time of action of an ultrashort electromagnetic pulse has been derived, when the concept of spectral intensity of radiation and probability per unit time is inapplicable. In the obtained formula the total probability is expressed in terms of the cross-section of a photoprocess in a monochromatic field and the Fourier transform of electric field strength. The advanced approach is applied for the analysis of photoabsorption of an atom and a metal nanosphere under the action of a subcycle laser pulse with a changeable value of the carrier-envelope phase. The expressions for probability and energy of photoabsorption in the limit of a zero pulse duration have been obtained.

  12. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  13. Metal processing with ultrashort laser pulses

    Science.gov (United States)

    Banks, Paul S.; Felt, M. D.; Komashko, Aleksey M.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    2000-08-01

    Femtosecond laser ablation has been shown to produce well-defined cuts and holes in metals with minimal heat effect to the remaining material. Ultrashort laser pulse processing shows promise as an important technique for materials processing. We will discuss the physical effects associated with processing based experimental and modeling results. Intense ultra-short laser pulse (USLP) generates high pressures and temperatures in a subsurface layer during the pulse, which can strongly modify the absorption. We carried out simulations of USLP absorption versus material and pulse parameters. The ablation rate as function of the laser parameters has been estimated. Since every laser pulse removes only a small amount of material, a practical laser processing system must have high repetition rate. We will demonstrate that planar ablation is unstable and the initially smooth crater bottom develops a corrugated pattern after many tens of shots. The corrugation growth rate, angle of incidence and the polarization of laser electric field dependence will be discussed. In the nonlinear stage, the formation of coherent structures with scales much larger than the laser wavelength was observed. Also, there appears to be a threshold fluence above which a narrow, nearly perfectly circular channel forms after a few hundred shots. Subsequent shots deepen this channel without significantly increasing its diameter. The role of light absorption in the hole walls will be discussed.

  14. Ultra-short laser pulses. Petawatt and femtosecond

    International Nuclear Information System (INIS)

    Lemoine, P.

    1999-01-01

    This book deals with a series of new results obtained thanks to the use of ultra-short laser pulses. This branch of physics has made incredible progresses during the last 25 years. Ultra-short laser pulses offer the opportunity to explore the domain of ultra-high energies and of ultra-short duration events. Applications are various, from controlled nuclear fusion to eye surgery and to more familiar industrial applications such as electronics. (J.S.)

  15. Spectral coherent combination of ultrashort pulses

    International Nuclear Information System (INIS)

    Ursescu, D.; Banici, R.; Ionel, L.; Rusen, L.; Sandel, S.; Blanaru, C.

    2010-01-01

    Complete text of publication follows. The coherent beam combination was chosen in several laser systems, including ELI, as a solution to increase the final attainable intensity. However, the coherent beam combination it is also a difficult technique while it has to combine coherently in space and in time several beams amplified in different laser chains. That means in particular that the beams should be in phase in every point of the amplified beam so the spatial beam profiling techniques have to be mastered with high accuracy for all the combined beams. Here it is proposed an alternative coherent beam combination than the use of identical ultrashort pulses. The idea is to spectrally combine laser pulses with complementary spectra. Collinear and non-collinear approaches have been modelled. Ongoing experimental development, including the demonstration of the rephasing for two spectrally complementary ultrashort pulses will be presented. Acknowledgements. The research leading to these results has received funding from the EC's Seventh Framework Programme (LASERLAB-EUROPE, grant agreement no. 228334).

  16. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  17. Optical reprogramming with ultrashort femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  18. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  19. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  20. Cubic phase control of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Mecseki, K.; Erdelyi, M.; Kovacs, A.P.; Szabo, G.

    2006-01-01

    Complete test of publication follows. The temporal shape of an ultrashort laser pulse may change upon propagating through a linear dispersive medium having a phase shift ψω. The change can be characterized by the Taylor-coefficients of the phase shift which are calculated around the central frequency ω 0 of the pulse. Measurements and independent control of the group delay dispersion (GDD, ψ'(ω 0 )) and the third order dispersion (TOD, ψ'(ω 0 )) are important in several research fields, particularly in the generation of ultrashort laser pulses by chirped pulse amplification (CPA) and pulse shaping for molecular control. The GDD and the TOD of an ideal pulse compressor are equal to the negative of the corresponding dispersion coefficients of the medium. However, in the case of prism-pair and grating-pair compressor is different from the ratio of the coefficients of the medium to be compensated for. Therefore it is necessary to develop so-called cubic compressors that are able to control the TOD of the pulse, yet, do not affect the GDD. In this paper a new cubic compressor setup is investigated theoretically and experimentally, which resembles the set-up proposed by White, however, we control the GDD and the TOD by the position of a birefringent, semi-cylinder crystal place around the focal point of an achromatic lens. For the evaluation of the phase shift introduced by the proposed cubic compressor, a ray tracing program was written. The program allows optimizing the compressor parameters, such as the radius of the crystal, magnification of the lens etc. Calcite was applied because it is a strong birefringent material. Calculations showed that there is a trajectory, along which shifting the crystal the TOD can be tuned independently of the GDD. The value of the TOD changed in a relatively wide range between -3.15 x 10 5 fs 3 and -1.67 x 10 5 fs 3 . Although the defocus also affects the angular dispersion of the pulse leaving the compressor, if does not exceed

  1. Ultrashort pulse energy distribution for propulsion in space

    Science.gov (United States)

    Bergstue, Grant Jared

    This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.

  2. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  3. Interaction of ultrashort pulses with molecules and solids: Physics ...

    Indian Academy of Sciences (India)

    2014-07-26

    energy materials. Abstract. The interaction of ultrashort laser pulses with molecules and solids is an extremely complex area of science research encompassing the fields of physics, chemistry, and materials science. The physics ...

  4. Generation of high harmonics and attosecond pulses with ultrashort ...

    Indian Academy of Sciences (India)

    2014-07-11

    Jul 11, 2014 ... Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes ...

  5. Acousto-optic replication of ultrashort laser pulses

    Science.gov (United States)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  6. Mid-infrared beam splitter for ultrashort pulses.

    Science.gov (United States)

    Somma, Carmine; Reimann, Klaus; Woerner, Michael; Kiel, Thomas; Busch, Kurt; Braun, Andreas; Matalla, Mathias; Ickert, Karina; Krüger, Olaf

    2017-08-01

    A design is presented for a beam splitter suitable for ultrashort pulses in the mid-infrared and terahertz spectral range consisting of a structured metal layer on a diamond substrate. Both the theory and experiment show that this beam splitter does not distort the temporal pulse shape.

  7. Thin film surface processing by ultrashort laser pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Romer, G.R.B.E.; Huis in 't Veld, A.J.; Workum, M.J.; Theelen, M.J.; Zeman, M.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed

  8. Fragmentation dynamics of molecular hydrogen in strong ultrashort laser pulses

    International Nuclear Information System (INIS)

    Rudenko, A; Feuerstein, B; Zrost, K; Jesus, V L B de; Ergler, T; Dimopoulou, C; Schroeter, C D; Moshammer, R; Ullrich, J

    2005-01-01

    We present the results of a systematic experimental study of dissociation and Coulomb explosion of molecular hydrogen induced by intense ultrashort (7-25 fs) laser pulses. Using coincident recoil-ion momentum spectroscopy we can distinguish the contributions from dissociation and double ionization even if they result in the same kinetic energies of the fragments. The dynamics of all fragmentation channels drastically depends on the pulse duration, and for 7 fs pulses becomes extremely sensitive to the pulse shape

  9. Post-filament self-trapping of ultrashort laser pulses.

    Science.gov (United States)

    Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Andriukaitis, G; Flöry, T; Pugžlys, A; Fedotov, A B; Mikhailova, J M; Panchenko, V Ya; Baltuška, A; Zheltikov, A M

    2014-08-15

    Laser filamentation is understood to be self-channeling of intense ultrashort laser pulses achieved when the self-focusing because of the Kerr nonlinearity is balanced by ionization-induced defocusing. Here, we show that, right behind the ionized region of a laser filament, ultrashort laser pulses can couple into a much longer light channel, where a stable self-guiding spatial mode is sustained by the saturable self-focusing nonlinearity. In the limiting regime of negligibly low ionization, this post-filamentation beam dynamics converges to a large-scale beam self-trapping scenario known since the pioneering work on saturable self-focusing nonlinearities.

  10. Nonlinear shaping of a two-dimensional ultrashort ionizing pulse

    International Nuclear Information System (INIS)

    Sergeev, A.; Vanin, E.; Stenflo, L.; Anderson, D.; Lisak, M.; Quiroga-Teixeiro, M.L.

    1992-01-01

    A theoretical description of ultrashort ionizing wave pulses is presented by means of two different models where the ionization rate increases or decreases, respectively, as a function of the electric field amplitude. We show that the pulse evolves either into a horse-shoe or a horn-type structure in the time-space domain. In some parameter regions the intensity of the pulse can also increase. (au)

  11. Theory and simulation of ultra-short pulse laser interactions

    Energy Technology Data Exchange (ETDEWEB)

    More, R; Walling, R; Price, D; Guethlein, G; Stewart, R; Libby, S; Graziani, F; Levatin, J [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-03-01

    This paper describes recent Livermore work aimed at building computational tools to describe ultra-short pulse laser plasmas. We discuss calculations of laser absorption, atomic data for high-charge ions, and a new idea for linear-response treatment of non-equilibrium phenomena near LTE. (author)

  12. Dynamics of interaction of ultrashort laser pulses with solid targets

    International Nuclear Information System (INIS)

    Cang Yu; Wang Wei; Zhang Jie

    2001-01-01

    Using Saha equation, a simple model is proposed for the dynamics of interaction between ultrashort laser pulses and solid targets. An adiabatic expansion model is adopted to study the expansion phase after the heating phase. Temporal evolvement of the dynamics of the interaction is obtained, from which the electron temperature, density, ionization balances can be determined

  13. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter

    2015-01-01

    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...

  14. New methods of generation of ultrashort laser pulses for ranging

    Science.gov (United States)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  15. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    Science.gov (United States)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  16. Ultrashort electromagnetic clusters formation by two-stream superheterodyne free electron lasers

    DEFF Research Database (Denmark)

    Kulish, Viktor V.; Lysenko, Alexander V.; Volk, Iurii I.

    2016-01-01

    A cubic nonlinear self-consistent theory of multiharmonic two-stream superheterodyne free electron lasers (TSFEL) of a klystron type, intended to form powerful ultrashort clusters of an electromagnetic field is constructed. Plural three-wave parametric resonant interactions of wave harmonics have...... been taken into account. An amplitude, phase and spectral analyses of the processes occurring in such devices have been carried out. The conditions necessary for the forming of the ultrashort clusters of an electromagnetic field have been found out. The possibility of the ultrashort electromagnetic...

  17. Particle acceleration by electromagnetic pulses

    International Nuclear Information System (INIS)

    Lai, H.M.

    1982-01-01

    Particle interaction with plane electromagnetic pulses is studied. It is shown that particle acceleration by a wavy pulse, depending on the shape of the pulse, may not be small. Further, a diffusive-type particle acceleration by multiple weak pulses is described and discussed. (author)

  18. Ultrashort pulsed laser technology development program

    Science.gov (United States)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  19. Multi-Chromatic Ultrashort Pulse Filamentation and Bulk Modification in Dielectrics

    Science.gov (United States)

    2016-05-05

    AFRL-AFOSR-VA-TR-2016-0194 Multi- Chromatic Ultrashort Pulse Filamentation and Bulk Modification in Dielectrics Jeremy Gulley KENNESAW STATE...Jan 2016 4. TITLE AND SUBTITLE Multi- chromatic Ultrashort Pulse Filamentation and Bulk Modification in Dielectrics 5a. CONTRACT NUMBER 5b. GRANT...in, and modification of, dielectric solids by multi- chromatic ultrashort laser pulses. It was a theoretical effort to develop models of multi

  20. Electron in the ultrashort laser pulse

    Czech Academy of Sciences Publication Activity Database

    Pardy, Miroslav

    2003-01-01

    Roč. 42, č. 1 (2003), s. 99-110 ISSN 0020-7748 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : laser pulse, Volkov solution, compton effect Subject RIV: BE - The oretical Physics Impact factor: 0.476, year: 2003

  1. Optical soliton communication using ultra-short pulses

    CERN Document Server

    Sadegh Amiri, Iraj

    2015-01-01

    This brief analyzes the characteristics of a microring resonator (MRR) to perform communication using ultra-short soliton pulses. The raising of nonlinear refractive indices, coupling coefficients and radius of the single microring resonator leads to decrease in input power and round trips wherein the bifurcation occurs. As a result, bifurcation or chaos behaviors are seen at lower input power of 44 W, where the nonlinear refractive index is n2=3.2×10−20 m2/W. Using a decimal convertor system, these ultra-short signals can be converted into quantum information. Results show that multi solitons with FWHM and FSR of 10 pm and 600 pm can be generated respectively. The multi optical soliton with FWHM and FSR of 325 pm and 880 nm can be incorporated with a time division multiple access (TDMA) system wherein the transportation of quantum information is performed.

  2. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-15

    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  3. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-09-15

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.

  4. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    International Nuclear Information System (INIS)

    Makarov, D.N.; Matveev, V.I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  5. Ultrashort pulse laser deposition of thin films

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  6. Nonlinear propagation of ultrashort laser pulses in transparent media

    International Nuclear Information System (INIS)

    Vincotte, A.

    2006-10-01

    We present different aspects of the propagation of ultrashort laser pulses in transparent media. First, we derive the propagation equations starting from the Maxwell equations. We remind of the main physical phenomena undergone by ultrashort and powerful laser pulses. First self-focusing occurs, owing to the Kerr response of the medium. This self-focusing is stopped by plasma generation from the laser-induced ionization of the ambient atoms. The propagation of the wave generates a super-continuum through self-phase modulation. We recall the main results concerning the simple and multiple filamentation of an intense wave, induced by the beam inhomogeneities and which take place as soon as the beam power is above critical. In a second part, we investigate the influence of high-order nonlinearities on the propagation of the beam and especially on its filamentation pattern. To control the multi-filamentation process, we investigate in a third part the propagation of beams with special designs, namely; Gradient- and vortex-shaped beams. We justify the robustness of this latter kind of optical objects. Eventually, we investigate multi-filamentation patterns of femtosecond pulses in a fog tube and in cells of ethanol doped with coumarin, for different beam configurations. (author)

  7. Black phosphorus saturable absorber for ultrashort pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370 (Poland); Macherzynski, W.; Paletko, P. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wroclaw 50-372 (Poland)

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  8. Plasma lenses for ultrashort multi-petawatt laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Palastro, J. P.; Gordon, D.; Hafizi, B.; Johnson, L. A.; Peñano, J.; Hubbard, R. F.; Helle, M.; Kaganovich, D. [Naval Research Laboratory, Washington DC 20375-5346 (United States)

    2015-12-15

    An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here, we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ∼1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ∼10 PW.

  9. NEMP (Nuclear Electromagnetic Pulse)

    International Nuclear Information System (INIS)

    Grunow, H.K.

    The variety of measures discussed in this contribution can be used to achieve with minimum effort a damping of 10 6 :1 (120 dB) between the interfering pulses in the networks and lines outside the buildings and the lines leading to the semiconductors. Expert knowledge, experience, and insight into the systems are required to solve this task optimally. The procedure to be adopted for NEMP protection differs only slightly from that used for achieving electromagnetic compatibility and lightning protection. Industry has developed the equipment for overvoltage protection and offers graded protection systems, experienced experts and systems engineers are available. This potential of the industry could be used to sponsor a pilot project, e.g. by public research funds. One of the goals of such a project could be to work out reliable data for cost estimated for large projects. Even if one would not accept the hypothetical probability of a nuclear war as a reason good anough to start such a project, it would not be justified to deny the necessity of additional expenditure for setting up a ''NEMP emergency system'' for protection waterborne traffic on purely financial grounds. (orig./RW) [de

  10. Interaction of Rydberg atoms with two contrapropagating ultrashort laser pulses

    International Nuclear Information System (INIS)

    Lugovskoy, A. V.; Bray, I.

    2006-01-01

    In this paper we investigate how Rydberg atoms respond to perturbation by two contrapropagating ultrashort laser pulses. We consider the case where the durations of both pulses τ 1 and τ 2 are shorter than the inverse of the initial-state energy ε i -1 . When acting alone such a pulse passes through the atom without noticeable alteration in the atomic state. The situation is different if two such pulses interfere in the region of atom localization. In this case the atomic response is significantly enhanced. This is due to the nonzero momentum transferred to the electron by the interplay of the electric field of one pulse and the magnetic field of the other. The sudden perturbation approximation is used to evaluate the transition probabilities. They are shown to depend on the atom position with respect to the pulse interference region. This dependence is determined by the relationship between the atomic diameter d i and the interference-region size l=c(τ 1 +τ 2 ) (c is the speed of light). If d i i >>l the transition probabilities are sensitive to the electron density distribution along the propagation direction. The probabilities of the initial-state destruction and atom ionization drop as l/d i irrespective of the characteristics of the pulses

  11. Imaging Electron Dynamics with Ultrashort Light Pulses: A Theory Perspective

    Directory of Open Access Journals (Sweden)

    Daria Popova-Gorelova

    2018-02-01

    Full Text Available A wide range of ultrafast phenomena in various atomic, molecular and condense matter systems is governed by electron dynamics. Therefore, the ability to image electronic motion in real space and real time would provide a deeper understanding of such processes and guide developments of tools to control them. Ultrashort light pulses, which can provide unprecedented time resolution approaching subfemtosecond time scale, are perspective to achieve real-time imaging of electron dynamics. This task is challenging not only from an experimental view, but also from a theory perspective, since standard theories describing light-matter interaction in a stationary regime can provide erroneous results in an ultrafast case as demonstrated by several theoretical studies. We review the theoretical framework based on quantum electrodynamics, which has been shown to be necessary for an accurate description of time-resolved imaging of electron dynamics with ultrashort light pulses. We compare the results of theoretical studies of time-resolved nonresonant and resonant X-ray scattering, and time- and angle-resolved photoelectron spectroscopy and show that the corresponding time-resolved signals encode analogous information about electron dynamics. Thereby, the information about an electronic system provided by these time-resolved techniques is different from the information provided by their time-independent analogues.

  12. Nonlinear scattering in hard tissue studied with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Eichler, J.; Kim, B.M.

    2002-01-01

    The back-scattered spectrum of ultrashort laser pulses (800 nm, 0.2 ps) was studied in human dental and other hard tissues in vitro below the ablation threshold. Frequency doubled radiation (SHG), frequency tripled radiation and two-photon fluorescence were detected. The relative yield for these processes was measured for various pulse energies. The dependence of the SHG signal on probe thickness was determined in forward and back scattering geometry. SHG is sensitive to linear polarization of the incident laser radiation. SHG in human teeth was studied in vitro showing larger signals in dentin than in cementum and enamel. In carious areas no SHG signal could be detected. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed. (orig.)

  13. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.

    2010-03-18

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  14. Ionization of molecular hydrogen in ultrashort intense laser pulses

    International Nuclear Information System (INIS)

    Vanne, Yulian V.

    2010-01-01

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H 2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H 2 and D 2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  15. Application of the ultrashort pulses in bovine dental enamel

    International Nuclear Information System (INIS)

    Todescan, Carla de Rago

    2003-01-01

    The interaction of lasers with the hard structures of the teeth, has found the excess of heat as a problem for its utilization. This study analyzes, in vitro, the interaction of the ultrashort pulse laser of Ti:safire (830 nm) with the bovine dental enamel. The system consisted in one main oscillator integrated with an amplifier (CPA). The pulses extracted before the temporal compression inside the amplifier had 30 ps, 1000 Hz and ∼1 mJ. The pulses extracted after the compression had 60 fs, 1000 Hz and ∼0,7 mJ. The M 2 was 1,3, the focal lens 2,5 cm, the focal distance 29,7 and a computerized translation stage x,y,z. We evaluated the amount of tissue removed per pulse,the resulting cavities and the surrounding tissues not irradiated, under OM and SEM. The fluency was the major factor for differentiating the two regimens studied, therefore, the intensity was not so important as we expected in this process. We found: one ablation region in 'cat tongue', one ablation length, one fluency ∼0,7 J/cm 2 for 30 ps and ∼0,5 J/cm 2 for 60 fs (50% of high speed burr), smooth edge for 30 ps and high precision of the sharp edge cut of submicrometric order for 60 fs. (author)

  16. Ultrashort pulse shaping by optical parametric chirped amplification

    International Nuclear Information System (INIS)

    Nelet, Ambre

    2007-01-01

    The aim of this work is to propose new laser architectures based on optical parametric chirped pulse amplification (OPCPA). Common goals of OPCPA pre-amplifiers are to reach high energy level while maintaining the spectrum width and to adapt geometry of the amplified beam to the high power laser chain optics. We consider OPCPA as a way to control and to sculpt ultrashort pulses. Our first set-up aims at thwarting possible time recovery default between pump and signal pulses, which lower the energy extraction. A regenerative OPCPA, idler resonant, is a way to produce a high-intensity and high-repetition rate train of amplified signal replicas. Our second laser system pre-compensates the spectral gain narrowing by sculpting pulses directly within the OPCPA section, where a temporal shaping of the pump beam permits a spectro-spectral shaping of the amplified signal. Finally, we propose an OPCPA based on spatial coding and uniform amplification of spectral signal components by using a fan-out periodically poled crystal and a zero dispersion line. (author) [fr

  17. Steering population transfer of the Na2 molecule by an ultrashort pulse train

    Science.gov (United States)

    Niu, Dong-Hua; Wang, Shuo; Zhan, Wei-Shen; Tao, Hong-Cai; Wang, Si-Qi

    2018-05-01

    We theoretically investigate the complete population transfer among quantum states of the Na2 molecule using ultrashort pulse trains using the time-dependent wave packet method. The population accumulation of the target state can be steered by controlling the laser parameters, such as the variable pulse pairs, the different pulse widths, the time delays and the repetition period between two contiguous pulses; in particular, the pulse pairs and the pulse widths have a great effect on the population transfer. The calculations show that the ultrashort pulse train is a feasible solution, which can steer the population transfer from the initial state to the target state efficiently with lower peak intensities.

  18. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.

    2000-12-01

    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  19. Optical third-harmonic generation using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Stoker, D.; Keto, J.W.; Becker, M.F.

    2005-01-01

    To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal

  20. Interaction of intense ultrashort pulse lasers with clusters

    International Nuclear Information System (INIS)

    Petrov, G. M.; Davis, J.

    2008-01-01

    The dynamics of clusters composed of different material irradiated by a high-intensity ultrashort pulse laser was studied using a fully relativistic three-dimensional molecular dynamics model. Key parameters of the cluster evolution such as particle positions, energy absorption, and cluster explosion were simulated. By a direct comparison of these parameters for clusters of equal initial radius but made of different material (deuterium, neon, argon, and xenon), the main stages and attributes of cluster evolution were elucidated. The simulations showed that clusters made of different material act alike, especially those of heavy elements. Clusters made of heavy elements (neon, argon, and xenon) differentiate from clusters made of light elements (deuterium) by the magnitude of the absorbed energy per cluster and the final mean energy of exploding ions. What most distinguishes clusters composed of different material is the amount of emitted radiation and its spectral range

  1. Scattering of electromagnetic pulses by metal nanospheres in the vicinity of a Fano-like resonance

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Svita, S.Yu.

    2015-01-01

    In the work, radiation scattering by metal nanospheres in a dielectric matrix in case of ultrashort and long electromagnetic pulses is studied theoretically. Spectral efficiencies of backward and forward scattering by silver nanospheres in glass are calculated with the use of experimental data on the dielectric permittivity of silver. The presence of Fano-like resonances in spectral dependences of scattering efficiency caused by interference of dipole and quadrupole scatterings is shown. Backward and forward scattering of ultrashort pulses is calculated and analyzed. The obtained dependences of the total probability of scattering (during all time of the action of a pulse) on pulse duration demonstrate an essential distinction between an ultrashort case and a long pulse limit

  2. Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Trebino, R.

    1994-01-01

    We report on significant improvements in the pulse-retrieval algorithm used to reconstruct the amplitude and the phase of ultrashort optical pulses from the experimental frequency-resolved optical gating trace data in the polarization-gate geometry. These improvements involve the use of an intensity constraint, an overcorrection technique, and a multidimensional minimization scheme. While the previously published, basic algorithm converged for most common ultrashort pulses, it failed to retrieve pulses with significant intensity substructure. The improved composite algorithm successfully converges for such pulses. It can now retrieve essentially all pulses of practical interest. We present examples of complex waveforms that were retrieved by the improved algorithm

  3. Electromagnetic Pulse Coupling Analysis of Electronic Equipment

    OpenAIRE

    Hong Lei; Qingying LI

    2017-01-01

    High-intensity nuclear explosion caused by high-altitude nuclear electromagnetic pulse through the antenna, metal cables, holes and other channels, coupled with very high energy into the electronic device, and cause serious threats. In this paper, the mechanism, waveform, coupling path and damage effect of nuclear electromagnetic pulse is analyzed, and the coupling mechanism of nuclear electromagnetic pulse is studied.

  4. Surface Texturing of CVD Diamond Assisted by Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Daniele M. Trucchi

    2017-11-01

    Full Text Available Diamond is a wide bandgap semiconductor with excellent physical properties which allow it to operate under extreme conditions. However, the technological use of diamond was mostly conceived for the fabrication of ultraviolet, ionizing radiation and nuclear detectors, of electron emitters, and of power electronic devices. The use of nanosecond pulse excimer lasers enabled the microstructuring of diamond surfaces, and refined techniques such as controlled ablation through graphitization and etching by two-photon surface excitation are being exploited for the nanostructuring of diamond. On the other hand, ultrashort pulse lasers paved the way for a more accurate diamond microstructuring, due to reduced thermal effects, as well as an effective surface nanostructuring, based on the formation of periodic structures at the nanoscale. It resulted in drastic modifications of the optical and electronic properties of diamond, of which “black diamond” films are an example for future high-temperature solar cells as well as for advanced optoelectronic platforms. Although experiments on diamond nanostructuring started almost 20 years ago, real applications are only today under implementation.

  5. Investigation of ultrashort-pulsed laser on dental hard tissue

    Science.gov (United States)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2007-02-01

    Ultrashort-pulsed laser (USPL) can ablate various materials with precious less thermal effect. In laser dentistry, to solve the problem that were the generation of crack and carbonized layer by irradiating with conventional laser such as Er:YAG and CO II laser, USPL has been studied to ablate dental hard tissues by several researchers. We investigated the effectiveness of ablation on dental hard tissues by USPL. In this study, Ti:sapphire laser as USPL was used. The laser parameter had the pulse duration of 130 fsec, 800nm wavelength, 1KHz of repetition rate and the average power density of 90~360W/cm2. Bovine root dentin plates and crown enamel plates were irradiated with USPL at 1mm/sec using moving stage. The irradiated samples were analyzed by SEM, EDX, FTIR and roughness meter. In all irradiated samples, the cavity margin and wall were sharp and steep, extremely. In irradiated dentin samples, the surface showed the opened dentin tubules and no smear layer. The Ca/P ratio by EDX measurement and the optical spectrum by FTIR measurement had no change on comparison irradiated samples and non-irradiated samples. These results confirmed that USPL could ablate dental hard tissue, precisely and non-thermally. In addition, the ablation depths of samples were 10μm, 20μm, and 60μm at 90 W/cm2, 180 W/cm2, and 360 W/cm2, approximately. Therefore, ablation depth by USPL depends on the average power density. USPL has the possibility that can control the precision and non-thermal ablation with depth direction by adjusting the irradiated average power density.

  6. Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Römer, G.R.B.E.; Bor, T.; Ogieglo, W.; Klein Gunnewiek, M.; Lenferink, A.; Otto, C.; Skolski, J.Z.P.; Grob, F.; Lange, D.F. de; Huis in 't Veld, A.J.

    2013-01-01

    Ultra-short pulsed laser sources, with pulse durations in the ps and fs regime, are commonly exploited for cold ablation. However, operating ultra-short pulsed laser sources at fluence levels well below the ablation threshold allows for fast and selective thermal processing. The latter is especially

  7. Study of laser pulses propagation through an ultrashort pulse amplifying systems for the development of an Offner temporal stretcher

    International Nuclear Information System (INIS)

    Cordeiro, Thiago da Silva

    2009-01-01

    The study of laser pulses propagation through an ultrashort pulses amplifying system containing dispersive and spectral modifying media was performed. The study emphasis was the development of an ultrashort pulse stretcher to replace the one inside a hybrid Ti:Sapphire/Cr:LiSAF CPA system operating at the Center for Lasers and Applications at IPEN/CNEN-SP. A spherical aberration free Offner stretcher was theoretically studied, aiming to obtain a stretching ratio larger than the one available in our system. The influence of the phase components in the amplified pulse final duration was also studied, and the bandwidth limiting elements of the system in operation were mapped, with the purpose of determining the conditions under which a new stretcher should be implemented. Based on the actual measurements, computing routines were implemented in order to determine the consequences of an ultrashort pulse travelling through a bandwidth limiting component. (author)

  8. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    CERN Document Server

    Tang Xiu Zhang; Gong Kun; Ma Wei Yi; Shan Yu Sheng; Wang Nai Yan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 sup 1 sup 9 W/cm sup 2 in recently years

  9. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    International Nuclear Information System (INIS)

    Tang Xiuzhang; Zhang Haifeng; Gong Kun; Ma Weiyi; Shan Yusheng; Wang Naiyan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 19 W/cm 2 in recently years

  10. Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Andrey S., E-mail: andrey.moskalenko@uni-konstanz.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz (Germany); Zhu, Zhen-Gang, E-mail: zgzhu@ucas.ac.cn [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Berakdar, Jamal, E-mail: jamal.berakdar@physik.uni-halle.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany)

    2017-02-17

    This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver

  11. Thin film surface processing by UltraShort Laser Pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Römer, G.R.B.E.; Huis in 't Veld, A.J.; Workum, M.; Theelen, M.J.; Zeman, M.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed

  12. Signatures of collective electron dynamics in the angular distributions of electrons ejected during ultrashort laser pulse interactions with C+

    International Nuclear Information System (INIS)

    Lysaght, M A; Hutchinson, S; Van der Hart, H W

    2009-01-01

    We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C + driven by the repulsion of two equivalent p electrons. By studying the two-dimensional momentum distributions of the ejected electron as a function of the time-delay between an ultrashort pump pulse and an ionizing ultrashort probe pulse it is possible to track the collective dynamics inside the C + ion in the time domain.

  13. Ultrarelativistic electromagnetic pulses in plasmas

    Science.gov (United States)

    Ashour-Abdalla, M.; Leboeuf, J. N.; Tajima, T.; Dawson, J. M.; Kennel, C. F.

    1981-01-01

    The physical processes of a linearly polarized electromagnetic pulse of highly relativistic amplitude in an underdense plasma accelerating particles to very high energies are studied through computer simulation. An electron-positron plasma is considered first. The maximum momenta achieved scale as the square of the wave amplitude. This acceleration stops when the bulk of the wave energy is converted to particle energy. The pulse leaves behind as a wake a vacuum region whose length scales as the amplitude of the wave. The results can be explained in terms of a snow plow or piston-like action of the radiation on the plasma. When a mass ratio other than unity is chosen and electrostatic effects begin to play a role, first the ion energy increases faster than the electron energy and then the electron energy catches up later, eventually reaching the same value.

  14. Formation of plasma channels in air under filamentation of focused ultrashort laser pulses

    International Nuclear Information System (INIS)

    Ionin, A A; Seleznev, L V; Sunchugasheva, E S

    2015-01-01

    The formation of plasma channels in air under filamentation of focused ultrashort laser pulses was experimentally and theoretically studied together with theoreticians of the Moscow State University and the Institute of Atmospheric Optics. The influence of various characteristics of ultrashort laser pulses on these plasma channels is discussed. Plasma channels formed under filamentation of focused laser beams with a wavefront distorted by spherical aberration (introduced by adaptive optics) and by astigmatism, with cross-section spatially formed by various diaphragms and with different UV and IR wavelengths, were experimentally and numerically studied. The influence of plasma channels created by a filament of a focused UV or IR femtosecond laser pulse (λ = 248 nm or 740 nm) on characteristics of other plasma channels formed by a femtosecond pulse at the same wavelength following the first one with varied nanosecond time delay was also experimentally studied. An application of plasma channels formed due to the filamentation of focused UV ultrashort laser pulses including a train of such pulses and a combination of ultrashort and long (∼100 ns) laser pulses for triggering and guiding long (∼1 m) electric discharges is discussed. (topical review)

  15. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-01-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms

  16. Control of the hyperbolic dispersion of dielectrics by an ultrashort laser pulse

    Science.gov (United States)

    Zhang, Xiaoqin; Wang, Feng; Zhang, Fengshou; Yao, Yugui

    2018-01-01

    An idea of controlling hyperbolic dispersion of dielectric materials by an ultrashort laser pulse is proposed. Taking the diamond as a concrete example and using time-dependent density functional theory calculations, we show that the permittivity tensor of the material can be effectively tuned by an ultrashort laser pulse, serving as a transient hyperbolic medium with wide working frequency window. With easily tunable laser parameters, the material can even be switched by reversal of both elliptic and hyperbolic for a particular light frequency. Our result points out a route toward transient hyperbolic materials, and it offers methods to achieve tunable hyperbolic dispersion with great potential for ultrafast device applications.

  17. Heat wave propagation in a thin film irradiated by ultra-short laser pulses

    International Nuclear Information System (INIS)

    Yoo, Jae Gwon; Kim, Cheol Jung; Lim, C. H.

    2004-01-01

    A thermal wave solution of a hyperbolic heat conduction equation in a thin film is developed on the basis of the Green's function formalism. Numerical computations are carried out to investigate the temperature response and the propagation of the thermal wave inside a thin film due to a heat pulse generated by ultra-short laser pulses with various laser pulse durations and thickness of the film

  18. Printed organic smart devices characterized by ultra-short laser pulses

    DEFF Research Database (Denmark)

    Pastorelli, Francesco

    Resume: In this study, we demonstrate that nonlinear optical microscopy is a promising technique to characterize organic printed electronics. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced...

  19. Plasma-enhanced chemical vapor deposition of aluminum oxide using ultrashort precursor injection pulses

    NARCIS (Netherlands)

    Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the

  20. Ultra-short laser pulses: review of the 3. physics talks, September 17-18, 1998

    International Nuclear Information System (INIS)

    Lemoine, P.

    1999-01-01

    This book deals with the operation of lasers with ultra-short pulses and with the laser beam-matter interaction. The applications in concern are: the acceleration of particles, the production of X-ray or photon sources, the micro-machining, the fast ignition in thermonuclear fusion, the production of thin films and the surgery of cornea. (J.S.)

  1. Annealing of SnO2 thin films by ultra-short laser pulses

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, T.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; Lange, D.F. de; Huis In't Veld, A.J.

    2014-01-01

    Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance

  2. On the surface topography of ultrashort laser pulse treated steel surfaces

    NARCIS (Netherlands)

    Obona, J. Vincenc; Ocelik, V.; Skolski, J. Z. P.; Mitko, V. S.; Romer, G. R. B. E.; in't Veld, A. J. Huis; De Hosson, J. Th M.; Römer, G.R.B.E.; Huis in’t Veld, A.J.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the

  3. On the surface topography of ultrashort laser pulse treated steel surface

    NARCIS (Netherlands)

    Vincenc Obona, J.; Ocelik, V.; Skolski, J.Z.P.; Mitko, V.S.; Mitko, S.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; de Hosson, J.Th.M.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the

  4. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    Science.gov (United States)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Gold, David M.; Darrow, Christopher B.; Marion, John E., II; Da Silva, Luiz B.

    1998-05-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using an ultrashort pulse laser. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so bone tissue is selectively ablated while preserving the spinal cord.

  5. Prepulse suppression using a self-induced, ultrashort pulse plasma mirror

    International Nuclear Information System (INIS)

    Gold, D.M.; Nathel, H.; Bolton, P.R.; White, W.E.; Van Woerkom, L.D.

    1991-01-01

    The plasma mirror is a self-induced, plasm-based optical element which can be inserted into existing experiments to reduce repulse energy without significant degradation of ultrashort pulse laser light. The authors have characteristics of the reflected pulse. The initial measurements indicate that the incident pulse reflects specularly from a high density, highly reflective plasma. The reflected pulse has a smoothed spatial profile and reduced pulsewidth. This paper outlines future work to characterize both the plasm mirror technique of repulse suppression and its reflected pulse

  6. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  7. Integrability Aspects and Soliton Solutions for a System Describing Ultrashort Pulse Propagation in an Inhomogeneous Multi-Component Medium

    International Nuclear Information System (INIS)

    Guo Rui; Tian Bo; Lue Xing; Zhang Haiqiang; Xu Tao

    2010-01-01

    For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painleve analysis shows that this system admits the Painleve property under some constraints. By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pair of this system is derived, and the Darboux transformation (DT) is constructed with the help of the obtained Lax pair. With symbolic computation, the soliton solutions are obtained by virtue of the DT algorithm. Figures are plotted to illustrate the dynamical features of the soliton solutions. Characteristics of the solitons propagating in an inhomogeneous multi-component nonlinear medium are discussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlap phenomenon between two solitons; (iv) Collision of two head-on solitons and two head-on two-peak solitons; (v) Two different types of interactions of the three solitons; (vi) Decomposition phenomenon of one soliton into two solitons. The results might be useful in the study on the ultrashort-pulse propagation in the inhomogeneous multi-component nonlinear media. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses

    Science.gov (United States)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.

    2017-12-01

    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  9. Graphics-processing-unit-accelerated finite-difference time-domain simulation of the interaction between ultrashort laser pulses and metal nanoparticles

    Science.gov (United States)

    Nikolskiy, V. P.; Stegailov, V. V.

    2018-01-01

    Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.

  10. Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.; Hohl-Ebinger, J.; Warta, W. [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg (Germany)

    2015-02-28

    Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensive theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.

  11. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field.

  12. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    OpenAIRE

    de Araujo, LEE

    2010-01-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emi...

  13. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    International Nuclear Information System (INIS)

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field

  14. Effect of group velocity mismatch on acousto-optic interaction of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Yushkov, K B; Molchanov, V Ya

    2011-01-01

    Equations describing acousto-optic diffraction of ultrashort laser pulses in an anisotropic medium are derived, taking into account the group velocity mismatch of optical eigenmodes. It is shown that the solution of the modified coupled-mode equations taking into account the group delay is characterised by an increase in the pulse duration, a decrease in diffraction efficiency, a change in the shape of the wave packet envelope, as well as by an increase in the width of the transmission function.

  15. Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing

    OpenAIRE

    Scorticati, D.; Illiberi, A.; Römer, G.R.B.E.; Bor, T.; Ogieglo, W.; Klein Gunnewiek, M.; Lenferink, A.; Otto, C.; Skolski, J.Z.P.; Grob, F.; Lange, D.F. de; Huis in 't Veld, A.J.

    2013-01-01

    Ultra-short pulsed laser sources, with pulse durations in the ps and fs regime, are commonly exploited for cold ablation. However, operating ultra-short pulsed laser sources at fluence levels well below the ablation threshold allows for fast and selective thermal processing. The latter is especially advantageous for the processing of thin films. A precise control of the heat affected zone, as small as tens of nanometers, depending on the material and laser conditions, can be achieved. It enab...

  16. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    International Nuclear Information System (INIS)

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-01-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale

  17. Correction of echo shift in reconstruction processing for ultra-short TE pulse sequence

    International Nuclear Information System (INIS)

    Takizawa, Masahiro; Ootsuka, Takehiro; Abe, Takayuki; Takahashi, Tetsuhiko

    2010-01-01

    An ultra-short echo time (TE) pulse sequence is composed of a radial sampling that acquires echo signals radially in the K-space and a half-echo acquisition that acquires only half of the echo signal. The shift in the position of the echo signal (echo shift) caused by the timing errors in the gradient magnetic field pulses affects the image quality in the radial sampling with the half-echo acquisition. To improve image quality, we have developed a signal correction algorithm that detects and eliminates this echo shift during reconstruction by performing a pre-scan within 10 seconds. The results showed that image quality is improved under oblique and/or off-centering conditions that frequently cause image distortion due to hardware error. In conclusion, we have developed a robust ultra-short TE pulse sequence that allows wide latitude in the scan parameters, including oblique and off-centering conditions. (author)

  18. Protecting the Power Grid From Electromagnetic Pulses

    Science.gov (United States)

    Simpson, Sarah

    2004-10-01

    A nuclear explosion high in the Earth's atmosphere does no immediate known harm to living things, but the resulting electromagnetic pulse (EMP) from a single detonation could degrade 70 percent or more of the country's electrical service in an instant, warns the Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack, which presented its findings to the U.S. Congress in July.

  19. Combine material against electromagnetic pulse disturbance

    International Nuclear Information System (INIS)

    Liu Yan

    2004-01-01

    A novel combined material is introduced, which is hard against electromagnetic pulse disturbance, The attenuation characteristics and the penetration probability of the combine material is discussed in detail. The penetration probability of electromagnetic wave is calculated approximately and the characteristic curve is measured for this material. (authors)

  20. Generation and application of ultrashort coherent mid-infrared electromagnetic radiation

    Science.gov (United States)

    Wandel, Scott

    Particle accelerators are useful instruments that help address critical issues for the future development of nuclear energy. Current state-of-the-art accelerators based on conventional radio-frequency (rf) cavities are too large and expensive for widespread commercial use, and alternative designs must be considered for supplying relativistic beams to small-scale applications, including medical imaging, secu- rity screening, and scientific research in a university-scale laboratory. Laser-driven acceleration using micro-fabricated dielectric photonic structures is an attractive approach because such photonic microstructures can support accelerating fields that are 10 to 100 times higher than that of rf cavity-based accelerators. Dielectric laser accelerators (DLAs) use commercial lasers as a driving source, which are smaller and less expensive than the klystrons used to drive current rf-based accelerators. Despite the apparent need for compact and economical laser sources for laser-driven acceleration, the availability of suitable high-peak-power lasers that cover a broad spectral range is currently limited. To address the needs of several innovative acceleration mechanisms like DLA, it is proposed to develop a coherent source of mid-infrared (IR) electromagnetic radiation that can be implemented as a driving source of laser accelerators. The use of ultrashort mid-IR high peak power laser systems in various laser-driven acceleration schemes has shown the potential to greatly reduce the optical pump intensities needed to realize high acceleration gradients. The optical intensity needed to achieve a given ponderomotive potential is 25 times less when using a 5-mum mid-IR laser as compared to using a 1-mum near-IR solid-state laser. In addition, dielectric structure breakdown caused by multiphoton ionization can be avoided by using longer-wavelength driving lasers. Current mid-IR laser sources do not produce sufficiently short pulse durations, broad spectral bandwidths

  1. Quenching H2 autoionization interferences with ultrashort xuv laser pulses

    International Nuclear Information System (INIS)

    González-Castrillo, Alberto; Palacios, Alicia; Martín, Fernando; Bachau, Henri

    2012-01-01

    In contrast with atomic photoionization or molecular direct photoionization, in the autoionization region, electron and proton kinetic-energy differential probabilities resulting from a short pulse cannot be reconstructed by the incoherent superposition of those resulting from long pulses.

  2. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    Science.gov (United States)

    de Araujo, Luís E. E.

    2010-09-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.

  3. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073, Novosibirsk (Russian Federation); Sonina, Svetlana V. [Novosibirsk State University, 1 Koptuga Ave., 630090 Novosibirsk (Russian Federation); Meshcheryakov, Yuri P. [Design and Technology Branch of Lavrentyev Institute of Hydrodynamics SB RAS, Tereshkovoi street 29, 630090 Novosibirsk (Russian Federation)

    2015-12-21

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  4. Axisymmetric modeling of ultrashort-pulse laser interactions with thin metal film

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2011-10-01

    Full Text Available The hyperbolic two-temperature model is used in order to describe the heat propagation in metal film subjected to an ultrashort-pulse laser heating. An axisymmetric heat soureceewith Gaussian temporeal and spatial distributions has been taken into account. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

  5. Electron emission from insulator surfaces by ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Acuna, M; Gravielle, M S, E-mail: mario@iafe.uba.a, E-mail: msilvia@iafe.uba.a [Institutes de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2009-11-01

    Photoelectron emission from insulator surfaces induced by ultra-short laser pulses is studied within a time-dependent distorted wave method. The proposed approach combines the Volkov phase, which takes into account the laser interaction, with a simple representation of the unperturbed surface states, given by the Tight-binding method. The model is applied to evaluate the photoelectron emission from a LiF(001) surface, finding effects of interference produced by the crystal lattice.

  6. Ultrashort laser-pulse diagnostics for detection of ordering within an ion beam

    International Nuclear Information System (INIS)

    Calabrese, R.; Guidi, V.; Lenisa, P.; Mariotti, E.

    1996-01-01

    A novel diagnostic method to detect ordering within one-dimensional ion beams in a storage ring is presented. The ions are simultaneously excited by a ultrashort pulsed laser (≅1 ps) at two different locations along the beam and fluorescence is detected by a group of four photomultipliers. Correlation in fluorescence signals is a firm indication that the ion beam has an ordered structure. (orig.)

  7. Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse

    Science.gov (United States)

    Nie, Jianye; Liu, Guodong; Zhang, Rongzhu

    2018-05-01

    Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.

  8. Generation of high harmonics and attosecond pulses with ultrashort ...

    Indian Academy of Sciences (India)

    input Gaussian pulse into a non-diffractive and non-dispersive conical wavepacket [4,5], source of secondary radiation [6], and remote actions to mention a few. ... gas before propagation of the ionizing pulse: NAr(t → −∞) = N0. e and me ...

  9. Optimization And Single-Shot Characterization Of Ultrashort Thz Pulses From A Laser Wakefield Accelerator

    International Nuclear Information System (INIS)

    Plateau, G.R.; Matlis, N.H.; van Tilborg, J.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Leemans, W.P.

    2009-01-01

    We present spatiotemporal characterization of μJ-class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons, resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments, also provide a non-invasive bunch-length diagnostic and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of ∼ 5 μJ, with peak fields of 100's of kV/cm and ∼ 0.4 ps rms duration.

  10. International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses. Book of abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses was held in Hungary in 2006. This conference which joined the ULTRA COST activity ('Laser-matter interactions with ultra-short pulses, high-frequency pulses and ultra-intense pulses. From attophysics to petawatt physics') and the XTRA ('Ultrashort XUV Pulses for Time-Resolved and Non-Linear Applications') Marie-Curie Research Training Network, intends to offer a possibility to the members of both of these activities to exchange ideas on recent theoretical and experimental results on the interaction of ultrashort laser pulses with matter giving a broad view from theoretical models to practical and technical applications. Ultrashort laser pulses reaching extra high intensities open new windows to obtain information about molecular and atomic processes. These pulses are even able to penetrate into atomic scalelengths not only by generating particles of ultrahigh energy but also inside the spatial and temporal atomic scalelengths. New regimes of laser-matter interaction were opened in the last decade with an increasing number of laboratories and researchers in these fields. (S.I.)

  11. Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses

    International Nuclear Information System (INIS)

    Hergenroeder, R; Miclea, M; Hommes, V

    2006-01-01

    The laser generation of size-controlled semiconductor nanoparticle formation under gas phase conditions is investigated. It is shown that the size distribution can be changed if picosecond pulse sequences of tailored ultra short laser pulses (<200 fs) are employed. By delivering the laser energy in small packages, a temporal energy flux control at the target surface is achieved, which results in the control of the thermodynamic pathway the material takes. The concept is tested with silicon and germanium, both materials with a predictable response to double pulse sequences, which allows deduction of the materials' response to complicated pulse sequences. An automatic, adaptive learning algorithm was employed to demonstrate a future strategy that enables the definition of more complex optimization targets such as particle size on materials less predictable than semiconductors

  12. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    Science.gov (United States)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  13. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.

    Science.gov (United States)

    Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C

    2010-02-26

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  14. Multiphoton Photoemission from a Copper Cathode Illuminated by Ultrashort Laser Pulses in an rf Photoinjector

    International Nuclear Information System (INIS)

    Musumeci, P.; Gutierrez, M. S.; Moody, J. T.; Moore, N.; Rosenzweig, J. B.; Scoby, C. M.; Travish, G.; Cultrera, L.; Ferrario, M.; Filippetto, D.; Gatti, G.; Vicario, C.

    2010-01-01

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 μJ, 800 nm pulse focused to a 140 μm rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  15. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  16. Analytic description of Raman-induced frequency shift in the case of non-soliton ultrashort pulses

    International Nuclear Information System (INIS)

    Bugay, Aleksandr N.; Khalyapin, Vyacheslav A.

    2017-01-01

    Raman-induced frequency shift of ultrashort pulses have been studied extensively for the soliton propagation regime. Here we derive explicit analytic expressions for the evolution of Raman-induced frequency shift in much less studied case of non-soliton ultrashort pulses. Pulse spectra may belong to any region of group velocity dispersion including zero group dispersion point. The analysis is based on the moment method. Obtained expressions fit well to the numerical solution of the nonlinear wave equation. - Highlights: • Explicit analytic formulas for the evolution of Raman-induced frequency shift are derived in the case of non-soliton pulses. • Dynamics of non-soliton ultrashort pulses in the cases of positive and zero group dispersion is considered. • The deceleration and the saturation of Raman-induced frequency shift are analyzed. • The calculation relies on the moment method and fit well to the numerical solution of the nonlinear wave equation.

  17. Analytic description of Raman-induced frequency shift in the case of non-soliton ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bugay, Aleksandr N., E-mail: bugay_aleksandr@mail.ru [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Moscow Region (Russian Federation); Khalyapin, Vyacheslav A., E-mail: slavasxi@gmail.com [Immanuel Kant Baltic Federal University, Kaliningrad, 236041 (Russian Federation); Kaliningrad State Technical University, Kaliningrad, 236000 (Russian Federation)

    2017-01-30

    Raman-induced frequency shift of ultrashort pulses have been studied extensively for the soliton propagation regime. Here we derive explicit analytic expressions for the evolution of Raman-induced frequency shift in much less studied case of non-soliton ultrashort pulses. Pulse spectra may belong to any region of group velocity dispersion including zero group dispersion point. The analysis is based on the moment method. Obtained expressions fit well to the numerical solution of the nonlinear wave equation. - Highlights: • Explicit analytic formulas for the evolution of Raman-induced frequency shift are derived in the case of non-soliton pulses. • Dynamics of non-soliton ultrashort pulses in the cases of positive and zero group dispersion is considered. • The deceleration and the saturation of Raman-induced frequency shift are analyzed. • The calculation relies on the moment method and fit well to the numerical solution of the nonlinear wave equation.

  18. Electromagnetic pulses, localized and causal

    Science.gov (United States)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  19. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    International Nuclear Information System (INIS)

    Dantus, Marcos

    2008-01-01

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10 16 W/cm 2 . In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  20. Ionization of a multilevel atom by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Andreev, A. V.; Stremoukhov, S. Yu.; Shutova, O. A.

    2010-01-01

    Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths λ = 800 nm (Ti:Sapphire) and λ = 1.064 μm (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.

  1. Electromagnetic or other directed energy pulse launcher

    Science.gov (United States)

    Ziolkowski, Richard W.

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  2. Photoelectron emission from metal surfaces by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Faraggi, M. N.; Gravielle, M. S.; Silkin, V. M.

    2006-01-01

    Electron emission from metal surfaces produced by short laser pulses is studied within the framework of the distorted-wave formulation. The proposed approach, named surface-Volkov (SV) approximation, makes use of the band-structure based (BSB) model and the Volkov phase to describe the interaction of the emitted electron with the surface and the external electric field, respectively. The BSB model provides a realistic representation of the surface, based on a model potential that includes the main features of the surface band structure. The SV method is applied to evaluate the photoelectron emission from the valence band of Al(111). Angular and energy distributions are investigated for different parameters of the laser pulse, keeping in all cases the carrier frequency larger than the plasmon one

  3. Ultrashort-pulse laser machining system employing a parametric amplifier

    Science.gov (United States)

    Perry, Michael D.

    2004-04-27

    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  4. Electromagnetic coupling of high-altitude, nuclear electromagnetic pulses

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    We have used scale models to measure the predicted coupling of electromagnetic fields simulating the effects of high-altitude nuclear electromagnetic pulses (HEMP) on the interior surfaces of electronic components. Predictive tools for exterior coupling are adequate. For interior coupling, however, such tools are in their infancy. Our methodological approach combines analytical, computational, and laboratory techniques in a complementary way to take advantage of their separate strengths. Computer models are a promising tool, as they can be used to treat complex objects with arbitrary shapes, dielectrics, and cables, and multiple apertures. Laboratory tests can expand the domain of investigation even further

  5. A broadly tunable autocorrelator for ultra-short, ultra-high power infrared optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Szarmes, E.B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)

    1995-12-31

    We describe the design of a crossed-beam, optical autocorrelator that uses an uncoated, birefringent beamsplitter to split a linearly polarized incident pulse into two orthogonally polarized pulses, and a Type II, SHG crystal to generate the intensity autocorrelation function. The uncoated beamsplitter accommodates extremely broad tunability while precluding any temporal distortion of ultrashort optical pulses at the dielectric interface, and the specific design provides efficient operation between 1 {mu}m and 4 {mu}m. Furthermore, the use of Type II SHG completely eliminates any single-beam doubling, so the autocorrelator can be operated at very shallow crossed-beam angles without generating a background pedestal. The autocorrelator has been constructed and installed in the Mark III laboratory at Duke University as a broadband diagnostic for ongoing compression experiments on the chirped-pulse FEL.

  6. Chromium carbide thin films deposited by ultra-short pulse laser deposition

    International Nuclear Information System (INIS)

    Teghil, R.; Santagata, A.; De Bonis, A.; Galasso, A.; Villani, P.

    2009-01-01

    Pulsed laser deposition performed by a laser with a pulse duration of 250 fs has been used to deposit films from a Cr 3 C 2 target. Due to the different processes involved in the laser ablation when it is performed by an ultra-short pulse source instead of a conventional short pulse one, it has been possible to obtain in vacuum films containing only one type of carbide, Cr 3 C 2 , as shown by X-ray photoelectron spectroscopy. On the other hand, Cr 3 C 2 is not the only component of the films, since a large amount of amorphous carbon is also present. The films, deposited at room temperature, are amorphous and seem to be formed by the coalescence of a large number of particles with nanometric size. The film composition can be explained in terms of thermal evaporation from particles ejected from the target.

  7. Electromagnetically induced transparency with broadband laser pulses

    International Nuclear Information System (INIS)

    Yavuz, D. D.

    2007-01-01

    We suggest a scheme to slow and stop broadband laser pulses inside an atomic medium using electromagnetically induced transparency. Extending the suggestion of Harris et al. [Phys. Rev. Lett. 70, 552 (1993)], the key idea is to use matched Fourier components for the probe and coupling laser beams

  8. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms

    Science.gov (United States)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.

    2017-12-01

    Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.

  9. Ultrashort pulse laser machining of metals and alloys

    Science.gov (United States)

    Perry, Michael D.; Stuart, Brent C.

    2003-09-16

    The invention consists of a method for high precision machining (cutting, drilling, sculpting) of metals and alloys. By using pulses of a duration in the range of 10 femtoseconds to 100 picoseconds, extremely precise machining can be achieved with essentially no heat or shock affected zone. Because the pulses are so short, there is negligible thermal conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond approximately 0.1-1 micron (dependent upon the particular material) from the laser machined surface. Due to the short duration, the high intensity (>10.sup.12 W/cm.sup.2) associated with the interaction converts the material directly from the solid-state into an ionized plasma. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces with negligible redeposition either within the kerf or on the surface. Since there is negligible heating beyond the depth of material removed, the composition of the remaining material is unaffected by the laser machining process. This enables high precision machining of alloys and even pure metals with no change in grain structure.

  10. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  11. A broadband Soleil-Babinet compensator for ultrashort light pulses

    Science.gov (United States)

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-12-01

    This letter reports a novel design for a broadband Soleil-Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil-Babinet compensator based on a MgF2/ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths.

  12. A broadband Soleil–Babinet compensator for ultrashort light pulses

    International Nuclear Information System (INIS)

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-01-01

    This letter reports a novel design for a broadband Soleil–Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil–Babinet compensator based on a MgF 2 /ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths. (letter)

  13. Atomic and Molecular Systems in Intense Ultrashort Laser Pulses

    Science.gov (United States)

    Saenz, A.

    2008-07-01

    The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some

  14. Depolarization of an Ultrashort Pulse in a Disordered Ensemble of Mie Particles

    Science.gov (United States)

    Gorodnichev, E. E.; Ivliev, S. V.; Kuzovlev, A. I.; Rogozkin, D. B.

    2017-12-01

    We study propagation of an ultrashort pulse of polarized light through a turbid medium with the Reynolds-McCormick phase function. Within the basic mode approach to the vector radiative transfer equation, the temporal profile of the degree of polarization is calculated analytically with the use of the small-angle approximation. The degree of polarization is shown to be described by the self-similar dependence on some combination of the transport scattering coefficient, the temporal delay and the sample thickness. Our results are in excellent agreement with the data of numerical simulations carried out previously for aqueous suspension of polystyrene microspheres.

  15. Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2012-07-01

    Full Text Available Abstract The threat of emerging pathogens and microbial drug resistance has spurred tremendous efforts to develop new and more effective antimicrobial strategies. Recently, a novel ultrashort pulsed (USP laser technology has been developed that enables efficient and chemical-free inactivation of a wide spectrum of viral and bacterial pathogens. Such a technology circumvents the need to introduce potentially toxic chemicals and could permit safe and environmentally friendly pathogen reduction, with a multitude of possible applications including the sterilization of pharmaceuticals and blood products, and the generation of attenuated or inactivated vaccines.

  16. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Wada, Naoya

    2007-06-11

    We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.

  17. Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Weickhardt, C.; Grun, C.; Grotemeyer, J.

    1998-01-01

    Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent

  18. Variational analysis of self-focusing of intense ultrashort pulses in gases

    International Nuclear Information System (INIS)

    Arevalo, E.; Becker, A.

    2005-01-01

    By using perturbation theory we derive an expression for the electrical field of a Gaussian laser beam propagating in a gas medium. This expression is used as a trial solution in a variational method to get quasianalytical solutions for the width, intensity, and self-focusing distance. The approximation gives a better agreement with results of numerical simulations for a broad range of values of the input power than previous analytical results available in the literature. The results apply in the case of ultrashort pulses too

  19. Electron Hole Plasma in Solids Induced by Ultrashort XUV Laser Pulses

    International Nuclear Information System (INIS)

    Rethfeld, B.; Medvedev, N.

    2013-01-01

    Irradiation of solids with ultrashort XUV laser pulses leads to an excitation of electrons from the valence band and deeper shells to the conduction band leading to a nonequilibrium highly energetic electron hole plasma. We investigate the transient electron dynamics in a solid semiconductor and metal (silicon and aluminum, respectively) under irradiation with a femtosecond VUV to XUV laser pulse as used in experiments with the Free Electron Laser FLASH at DESY in Hamburg, Germany. Applying the Asymptotical Trajectory Monte-Carlo technique, we obtain the transient energy distribution of the excited and ionized electrons within the solid. Photon absorption by electrons in different bands and secondary excitation and ionization processes are simulated event by event. The method was extended in order to take into account the electronic band structure and Pauli's principle for electrons in the conduction band. In this talk we review our results on the dynamics of the transient electron-hole plasma, in particular its transient density and energy distribution in dependence on laser and material parameters. For semiconductors we introduce the concept of an ''effective energy gap'' for collective electronic excitation, which can be applied to estimate the free electron density after high-intensity ultrashort XUV laser pulse irradiation. For aluminum we demonstrate that the electronic spectra depend on the relaxation kinetics of the excited electronic subsystem. Experimentally observed spectra of emitted photons from irradiated aluminum can be explained well with our results. (author)

  20. Optical imaging of objects in turbid medium with ultrashort pulses

    Science.gov (United States)

    Wang, Chih-Yu; Sun, Chia-Wei; Yang, Chih Chung; Kiang, Yean-Woei; Lin, Chii-Wann

    2000-07-01

    Photons are seriously scattered when entering turbid medium; this the images of objects hidden in turbid medium can not be obtained by just collecting the transmitted photons. Early-arriving photons, which are also called ballistic or snake protons, are much less scattered when passing through turbid medium, and contains more image information than the late-arriving ones. Therefore, objects embedded in turbid medium can be imaged by gathering the ballistic and snake photons. In the present research we try to recover images of objects in turbid medium by simultaneously time-gate and polarization-gate to obtain the snake photons. An Argon-pumped Ti-Sapphire laser with 100fs pulses was employed as a light source. A streak camera with a 2ps temporal resolution was used to extract the ballistic and snake photons. Two pieces of lean swine meat, measured 4mmX3mm and 5xxX4mm, respectively, were placed in a 10cmX10cmX3cm acrylic tank, which was full of diluted milk. A pair of polarizer and an analyzer was used to extract the light that keeps polarization unchanged. The combination of time gating and polarization gating resulted in good images of objects hidden in turbid medium.

  1. Nonlinear Dynamics of Ultrashort Long-Range Surface Plasmon Polariton Pulses in Gold Strip Waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Olivier, Nicolas

    2016-01-01

    We study experimentally and theoretically nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The nonlinear absorption of the plasmonic modes in the waveguides is measured with femtosecond pulses revealing a strong dependence of the third......-order nonlinear susceptibility of the gold core on the pulse duration and layer thickness. A comprehensive model for the pulse duration dependence of the third-order nonlinear susceptibility is developed on the basis of the nonlinear Schrödinger equation for plasmonic mode propagation in the waveguides....... The model accounts for the intrinsic delayed (noninstantaneous) nonlinearity of free electrons of gold as well as the thickness of the gold film and is experimentally verified. The obtained results are important for the development of active plasmonic and nanophotonic components....

  2. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  3. X-ray emission as a potential hazard during ultrashort pulse laser material processing

    Science.gov (United States)

    Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg

    2018-06-01

    In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.

  4. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    Science.gov (United States)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  5. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses

    International Nuclear Information System (INIS)

    Degert, J.

    2002-12-01

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  6. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    International Nuclear Information System (INIS)

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-01

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  7. Self-oscillations in cw solid-state ultrashort-pulse-generating lasers with mode locking by self-focusing

    International Nuclear Information System (INIS)

    Kalashnikov, V L; Krimer, D O; Mejid, F; Poloiko, I G; Mikhailov, V P

    1999-01-01

    Steady-state and transient regimes of ultrashort pulse generation are studied for cw solid-state lasers with mode locking by self-focusing. It is shown that the control parameter, which governs the nature of lasing, is the relationship between self-phase-modulation and the saturation intensity of an efficient shutter, induced by the Kerr self-focusing. Numerical modelling based on mapping the parameters of a quasi-soliton ultrashort pulse, considered in the aberration-free approximation, yields results in good agreement with experiments. (control of laser radiation parameters)

  8. Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter

    International Nuclear Information System (INIS)

    Hinschberger Schreiber, Yannick

    2012-01-01

    This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac's formalism. By means of the Foldy-Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin-field electronic Hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit Hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulomb interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined. (author) [fr

  9. Pulse generation scheme for flying electromagnetic doughnuts

    Science.gov (United States)

    Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.

    2018-05-01

    Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.

  10. Yb3+:Sr3Y2(BO3)4: A potential ultrashort pulse laser crystal

    International Nuclear Information System (INIS)

    Sun, Shijia; Xu, Jinlong; Wei, Qi; Lou, Fei; Huang, Yisheng; Yuan, Feifei; Zhang, Lizhen; Lin, Zhoubin; He, Jingliang; Wang, Guofu

    2015-01-01

    Highlights: • A Yb 3+ :Sr 3 Y 2 (BO 3 ) 4 crystal was grown successfully by Czochralski method. • The crystal has wide absorption and emission bandwidth. • 3.47 W continuous wave laser output with a slope efficiency of 29% was obtained. • The results show that the crystal is a promising ultrashort pulse laser material. - Abstract: A Yb 3+ :Sr 3 Y 2 (BO 3 ) 4 crystal was grown successfully by the Czochralski method. The polarized spectral properties and continuous wave laser output of this crystal were investigated in detail. The crystal has larger absorption and emission cross sections compared with many mature Yb 3+ -doped borate crystals. The full width at half maximum of the emission bands around 1023 nm are 69 nm (E//a), 61 nm (E//b) and 65 nm (E//c). 3.47 W continuous wave laser output with a slope efficiency of 29% and an optical conversion efficiency of 24% was obtained. The results reveal that Yb 3+ :Sr 3 Y 2 (BO 3 ) 4 crystal is an excellent candidate for ultrashort pulse laser crystal

  11. Fabrication of Nb/Pb structures through ultrashort pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, Francisco; Lorusso, Antonella, E-mail: antonella.lorusso@le.infn.it; Perrone, Alessio [Dipartimento di Matematica e Fisica “E. De Giorgi,” Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Klini, Argyro; Fotakis, Costas [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 100 N. Plastira St., GR 70013 Heraklion, Crete (Greece); Broitman, Esteban [Thin Film Physics Division, IFM, Linköping University, 581-83 Linköping (Sweden)

    2016-07-15

    This work reports the fabrication of Nb/Pb structures with an application as photocathode devices. The use of relatively low energy densities for the ablation of Nb with ultrashort pulses favors the reduction of droplets during the growth of the film. However, the use of laser fluences in this ablation regime results in a consequent reduction in the average deposition rate. On the other hand, despite the low deposition rate, the films present a superior adherence to the substrate and an excellent coverage of the irregular substrate surface, avoiding the appearance of voids or discontinuities on the film surface. Moreover, the low energy densities used for the ablation favor the growth of nanocrystalline films with a similar crystalline structure to the bulk material. Therefore, the use of low ablation energy densities with ultrashort pulses for the deposition of the Nb thin films allows the growth of very adherent and nanocrystalline films with adequate properties for the fabrication of Nb/Pb structures to be included in superconducting radiofrequency cavities.

  12. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Science.gov (United States)

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  13. Fast Prototyping of Sensorized Cell Culture Chips and Microfluidic Systems with Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-03-01

    Full Text Available We developed a confined microfluidic cell culture system with a bottom plate made of a microscopic slide with planar platinum sensors for the measurement of acidification, oxygen consumption, and cell adhesion. The slides were commercial slides with indium tin oxide (ITO plating or were prepared from platinum sputtering (100 nm onto a 10-nm titanium adhesion layer. Direct processing of the sensor structures (approximately three minutes per chip by an ultrashort pulse laser facilitated the production of the prototypes. pH-sensitive areas were produced by the sputtering of 60-nm Si3N4 through a simple mask made from a circuit board material. The system body and polydimethylsiloxane (PDMS molding forms for the microfluidic structures were manufactured by micromilling using a printed circuit board (PCB milling machine for circuit boards. The microfluidic structure was finally imprinted in PDMS. Our approach avoided the use of photolithographic techniques and enabled fast and cost-efficient prototyping of the systems. Alternatively, the direct production of metallic, ceramic or polymeric molding tools was tested. The use of ultrashort pulse lasers improved the precision of the structures and avoided any contact of the final structures with toxic chemicals and possible adverse effects for the cell culture in lab-on-a-chip systems.

  14. Charged particle interaction with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  15. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    Science.gov (United States)

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  16. Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma

    Science.gov (United States)

    Salamin, Yousef I.

    2017-10-01

    Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.

  17. On the surface topography of ultrashort laser pulse treated steel surfaces

    International Nuclear Information System (INIS)

    Vincenc Obona, J.; Ocelík, V.; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis in’t Veld, A.J.; De Hosson, J.Th.M.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the fluence applied. It is shown that these features appear due to solid-liquid and liquid-gas transitions within surface layer irradiated by intense laser light. The observations are confronted to the theory of short-pulsed laser light-matter interactions, including interference, excitation of electrons, electron-phonon coupling as well as subsequent ablation. It is shown that the orientation of small ripples does not always depend on the direction of the polarization of laser light.

  18. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  19. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  20. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    Science.gov (United States)

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  1. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  2. Applications of ultrashort shaped pulses in microscopy and for controlling chemical reactions

    International Nuclear Information System (INIS)

    Lozovoy, Vadim V.; Andegeko, Yair; Zhu Xin; Dantus, Marcos

    2008-01-01

    This article presents a new perspective on laser control based on insights into the effect of spectral phase on nonlinear optical processes. Gaining this understanding requires the systematic evaluation of the molecular response as a function of a series of pre-defined accurately shaped laser pulses. The effort required is rewarded with robust, highly reproducible, results. This approach is illustrated by results on selective two-photon excitation microscopy of biological samples, where higher signal and less photobleaching damage are achieved by accurate phase measurement and elimination of high-order phase distortions from the ultrashort laser pulses. A similar systematic approach applied to laser control of gas phase chemical reactions reveals surprising general trends. Molecular fragmentation pattern is found to be dependent on phase shaping. Differently shaped pulses with similar pulse duration have been found to produce similar fragmentation patterns. This implies that any single parameter that is proportional to the pulse duration, such as second harmonic generation intensity, allows us to predict the molecular fragmentation pattern within the experimental noise. This finding, is illustrated here for a series of isomers. Bond selectivity, coherent photochemistry and their applications are discussed in light of results from these systematic studies

  3. Allowable propagation of short pulse laser beam in a plasma channel and electromagnetic solitary waves

    International Nuclear Information System (INIS)

    Zhang, Shan; Hong, Xue-Ren; Wang, Hong-Yu; Xie, Bai-Song

    2011-01-01

    Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.

  4. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  5. Theoretical analysis of supercontinuum and coloured conical emission produced during ultrashort laser pulse interaction with gases

    International Nuclear Information System (INIS)

    Semak, V V; Shneider, M N

    2014-01-01

    We use a conceptually new approach to theoretical modelling of self-focusing in which we integrated diffractive and geometrical optics in order to explain and predict emission of white light and coloured rings observed in ultrashort laser pulse interaction. In our approach, laser beam propagation is described by blending the solution of the linear Maxwell's equation and a correction term that represents nonlinear field perturbation expressed in terms of paraxial ray-optics (eikonal) equation. No attempt is made to create an appearance of exhaustive treatment via use of complex mathematical models. Rather, emphasis is placed on elegance of the formulations leading to fundamental understanding of the underlying physics and, eventually, to an accurate practical numerical model capable of simulating white light generation and conical emission of coloured rings produced around the filament. (paper)

  6. Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments

    International Nuclear Information System (INIS)

    Morikami, Hidetoshi; Yoneda, Hitoki; Ueda, Ken-ichi; More, Richard M.

    2004-01-01

    In ultrashort-pulse laser interaction with solid target materials, the target rapidly heats, melts, evaporates, and begins to expand as a vapor or plasma. The onset of hydrodynamic expansion following surface evaporation is a switching point, where the dominant physics changes from temperature dependence of the solid dielectric function to refraction by the dense vapor cloud. We propose and demonstrate a method to analyze reflection data to identify this onset of target expansion. We use two of the Stokes parameters obtained from ellipsometric pump-probe measurements to determine a dielectric function with an assumption of no expansion. We use this dielectric function to predict the full set of reflectivity measurements. If there is a sharply defined target interface, this method reproduces the experimental data. When the plasma expansion is no longer negligible, the prediction deviates from the experimental measurements. This comparison shows when the plasma expansion is no longer negligible

  7. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: bulgakova@fzu.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., Novosibirsk 630090 (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073 Novosibirsk (Russian Federation); Collins, Adam R. [NCLA, NUI Galway, Galway (Ireland); Rostohar, Danijela; Derrien, Thibault J.-Y.; Mocek, Tomáš [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic)

    2015-05-01

    Highlights: • The factors influencing laser micromachining of transparent materials are analyzed. • Important role of ambient gas in laser processing is shown by numerical simulations. • The large potential of bi-wavelength laser processing is demonstrated. - Abstract: The interaction of short and ultrashort pulse laser radiation with glass materials is addressed. Particular attention is paid to regimes which are important in industrial applications such as laser cutting, drilling, functionalization of material surfaces, etc. Different factors influencing the ablation efficiency and quality are summarized and their importance is illustrated experimentally. The effects of ambient gas ionization in front of the irradiated target are also analyzed. A possibility to enhance laser coupling with transparent solids by bi-wavelength irradiation is discussed.

  8. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    Science.gov (United States)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  9. Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    F. Liu

    2012-07-01

    Full Text Available The nonlinear Thomson scattering of a relativistic electron with an intense laser pulse is calculated numerically. The results show that an ultrashort x-ray pulse can be generated by an electron with an initial energy of 5 MeV propagating across a circularly polarized laser pulse with a duration of 8 femtosecond and an intensity of about 1.1×10^{21}  W/cm^{2}, when the detection direction is perpendicular to the propagation directions of both the electron and the laser beam. The optimal values of the carrier-envelop phase and the intensity of the laser pulse for the generation of a single ultrashort x-ray pulse are obtained and verified by our calculations of the radiation characteristics.

  10. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  11. Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

    Science.gov (United States)

    Eisfeld, Eugen; Roth, Johannes

    2018-05-01

    Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  12. Influence of dispersion stretching of ultrashort UV laser pulse on the critical power for self-focusing

    Science.gov (United States)

    Ionin, A. A.; Mokrousova, D. V.; Piterimov, D. A.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2018-04-01

    The critical power for self-focusing in air for ultrashort ultraviolet laser pulses, stretched due to dispersion from 90 to 730 fs, was experimentally measured. It was shown that the pulse duration enhancement due to its propagation in condensed media leads to an almost linear decrease in the critical power for self-focusing. It was also observed that when the pulse peak power exceeds the critical one, the maximum of linear plasma distribution along the ultraviolet laser filament does not shift in the direction opposite to the laser pulse propagation, as observed for infrared laser filaments, but remains at the geometrical focus.

  13. Characterization of ultrashort laser pulses employing self-phase modulation dispersion-scan technique

    Science.gov (United States)

    Sharba, A. B.; Chekhlov, O.; Wyatt, A. S.; Pattathil, R.; Borghesi, M.; Sarri, G.

    2018-03-01

    We present a new phase characterization technique for ultrashort laser pulses that employs self-phase modulation (SPM) in the dispersion scan approach. The method can be implemented by recording a set of nonlinearly modulated spectra generated with a set of known chirp values. The unknown phase of the pulse is retrieved by linking the recorded spectra to the initial spectrum of the pulse via a phase function guessed by a function minimization iterative algorithm. This technique has many advantages over the dispersion scan techniques that use frequency conversion processes. Mainly, the use of SPM cancels out the phase and group velocity mismatch errors and dramatically widens the spectral acceptance of the nonlinear medium and the range of working wavelength. The robustness of the technique is demonstrated with smooth and complex phase retrievals using numerical examples. The method is shown to be not affected by the spatial distribution of the beam or the presence of nonlinear absorption process. In addition, we present an efficient method for phase representation based on a summation of a set of Gaussian functions. The independence of the functions from each other prevents phase coupling of any kind and facilitates a flexible phase representation.

  14. Texturing in titanium grade 2 surface irradiate with ultrashort pulse laser

    International Nuclear Information System (INIS)

    Nogueira, Alessandro Francelino

    2015-01-01

    The texturing laser micromachining is an important alternative to improve the bonding adhesion between composites and titanium, which are applied to structural components in the aerospace industry. The texturing running on titanium plates is due to the fact that the preferred joining technique for many composite materials is the adhesive bonding. In this work, titanium plates were texturized using laser ultrashort pulses temporal widths of femtoseconds. This process resulted in minimal heat transfer to the material, avoiding deformation of the titanium plate surface as well as the formation of resolidified material in the ablated region. These drawbacks have occurred with the use of nanoseconds pulses. Were performed three types of texturing using laser with femtosecond pulses, with variations in the distances between the machined lines. The analysis of the obtained surfaces found that the wettability increases when there is the increased distance between the texturing lines. Advancing in the analysis by optical profilometry of textured surfaces was observed that there is substantial increase in the volume available for penetration of structural adhesive when the distances between the textured lines are diminished. In tensile tests conducted it was observed that there is an increase in shear strength of the adhesive joint by reducing the distance between the textured lines. (author)

  15. Excitation of hydrogen atom by ultrashort laser pulses in optically dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Calisti, A. [Aix Marseille Universite, CNRS, PIIM, Marseille (France); Astapenko, V.A. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Lisitsa, V.S. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Russian Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)

    2017-10-15

    The features of excitation of a hydrogen atom by ultrashort laser pulses (USP) with a Gaussian envelope in optically dense plasma at a Lyman-beta transition are studied theoretically. The problem is of interest for diagnostics of optically dense media. USP have two doubtless advantages over conventional laser excitation: (a) the USP carrier frequency is shifted to the region of short wavelengths allowing exciting atoms from the ground state and (b) the wide spectrum of USP allows them to penetrate into optically dense media to much longer distances as compared with monochromatic radiation. As actual realistic cases, two examples are considered: hot rarefied plasma (the coronal limit) and dense cold plasma (the Boltzmann equilibrium). Universal expressions for the total probability of excitation of the transition under consideration are obtained in view of absorption of radiation in a medium. As initial data for the spectral form of a line, the results of calculations by methods of molecular dynamics are used. The probability of excitation of an atom is analysed for different values of problem parameters: the pulse duration, the optical thickness of a medium, and the detuning of the pulse carrier frequency from the eigenfrequency of an electron transition. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Electromagnetic field, excited by monodirected X-radiation pulse

    International Nuclear Information System (INIS)

    Zhemerov, A.V.; Metelkin, E.V.

    1994-01-01

    Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface

  17. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    Science.gov (United States)

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  18. Selective ablation of a titanium nitride film on tungsten carbide substrate using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Oliveira, Eduardo Spinelli

    2017-01-01

    Surface coatings are applied to many cutting tools in the metallurgical industry in order to improve cutting efficiency and extend its useful life. In this work, tests were performed to remove the coating of titanium aluminum nitride (TiAlN) on tungsten carbide (WC-Co) pellets, using an ultrashort laser pulses beam. After determination of the damage thresholds of the film and the substrate, were ablated on the surface of the coating lines using two ablation conditions, it was initially operated on the low fluence regime for the film, and later on the low fluence regime of the substrate, far below the threshold of the film, applying high overlapping pulses. A laser induced breakdown spectroscopy (LIBS) system was set up to monitor the materials present in the plasma generated by the laser, but the system did not present sufficient sensitivity to read the low intensity of the plasma generated in the process and was not used. After the analysis of the traces by electron microscopy, optical profilometer and X-ray fluorescence spectroscopy, it was not possible to determine a safe process to carry out the selective removal of the film in question, however, due to the data obtained and observations of the results in some traces, new possibilities were raised, opening the discussion for future work. (author)

  19. Performance of a nonlinear receiver for the ultrashort-pulse optical CDMA system

    Science.gov (United States)

    Ni, Bin; Lehnert, James S.

    2005-09-01

    At the receiver of an ultrashort-pulse optical code-division multiple-access (OCDMA) system, a nonlinear thresholder is needed to discriminate between the correctly decoded short pulse and the interference that appears to be a pseudorandom signal. It has been demonstrated that the self phase modulation (SPM) effect can be used to realize this nonlinear thresholder. The performance of a system that exploits this phenomenon is analyzed in this paper. If the spreading code is random, the electrical field of the interfering signal from the multiple users can be shown to be a complex Gaussian random process. The broadened power spectral density (PSD) function caused by the SPM effect can be calculated. When "1" is transmitted, the correctly decoded signal from the desired user, which is a deterministic waveform, is added to the Gaussian random process. Beating between the two signals causes random fluctuations in the power. Since the strength of the SPM effect is proportional to the variation rate of power, the broadened signal spectrum will appear random. The Monte Carlo method is used to obtain the properties of the decision statistic. Finally, the bit-error rate (BER) is calculated, and the simulation results are presented. The result reveals that the performance of the SPM-based nonlinear receiver can outperform the ideal linear receiver in some circumstances.

  20. Ultra-short laser interactions with nanoparticles in different media: from electromagnetic to thermal and electrostatic effects

    Science.gov (United States)

    Itina, Tatiana E.

    2017-02-01

    Key issues of the controlled synthesis of nanoparticles and nanostructures, as well as laser-particle interactions are considered in the context of the latest applications appearing in many fields such as photonics, medicine, 3D printing, etc. The results of a multi-physics numerical study of laser interaction with nanoparticles will be presented in the presence of several environments. In particular, attention will be paid to the numerical study of laser interactions with heterogeneous materials (eg. colloidal liquids and/or nanoparticles in a dielectric medium) and the aggregation/sintering/fragmentation processes induced by ultra-short laser pulses.

  1. Simulation methods of nuclear electromagnetic pulse effects in integrated circuits

    International Nuclear Information System (INIS)

    Cheng Jili; Liu Yuan; En Yunfei; Fang Wenxiao; Wei Aixiang; Yang Yuanzhen

    2013-01-01

    In the paper the ways to compute the response of transmission line (TL) illuminated by electromagnetic pulse (EMP) were introduced firstly, which include finite-difference time-domain (FDTD) and trans-mission line matrix (TLM); then the feasibility of electromagnetic topology (EMT) in ICs nuclear electromagnetic pulse (NEMP) effect simulation was discussed; in the end, combined with the methods computing the response of TL, a new method of simulate the transmission line in IC illuminated by NEMP was put forward. (authors)

  2. Characteristics of Electromagnetic Pulse Propagation in Metal

    Science.gov (United States)

    Namkung, M.; Wincheski, B.; Nath, S.; Fulton, J. P.

    2004-01-01

    It is well known that the solution of the diffusion equation for an electromagnetic field with a time harmonic term, e(sup iwt), is in the form of a traveling wave whose amplitude attenuates over distance into a conducting medium. As the attenuation is an increasing function of frequency, the high frequency components attenuate more rapidly than those of low ones upon entering a well conducting object. At the same time, the phase velocity of an individual component is also an increasing function of frequency causing a broadening of the pulse traveling inside a conductor. In the results of our previous study of numerical simulations, the problem of using a gaussian input pulse was immediately clear. First, having the dominant frequency components distributed around zero, the movement of the peak was not well defined. Second, with the amplitude of fourier components varying slowly over a wide range, the dispersion-induced blurring of the peak position was seen to be severe. For the present study, we have used a gaussian modulated single frequency sinusoidal wave, i. e., the carrier, as an input pulse in an effort to improve the issues related to the unclear movement of peak and dispersion as described above. This was based on the following two anticipated advantages: First, the packet moves in a conductor at the group velocity calculated at the carrier frequency, which means it is well controllable. Second, the amplitude of frequency components other than that of the carrier can be almost negligible, such that the effect of dispersion can be significantly reduced. A series of experiments of transmitting electromagnetic pulses through aluminum plates of various thickness was performed to test the validity of the above points. The results of numerical simulation based on wave propagation are discussed with respect to the experimental results. Finally, a simple simulation was performed based on diffusion of a continuous sine wave input and the results are compared with

  3. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  4. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L.

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs

  5. New techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Laubereau, A.

    1986-01-01

    Considerable progress has been made in recent years in the field of spectroscopic applications of ultrashort laser pulses. This paper examines two approaches toward studying ultrafast relaxation processes in condensed matter: an IR technique which complements coherent Raman scattering; and a Fourier Raman method with high frequency resolution. The time domain IR spectroscopy technique has been applied to various vibration-rotation transitions of pure HCl gas and in mixtures with Ar buffer gas. The advantage of the time domain measurements instead of frequency spectroscopy is readily visualized when one recalls that a frequency resolution of 10 -3 cm -1 corresponds to time observations over 10 -8 , which are readily feasible. As a first demonstration of the FT-Raman technique the author presents experimental data on the Q-branch of the v 1 -vibrational mode of methane. An example for the experimental data obtained approximately 2 mm behind the nozzle is presented; the coherent anti-Stokes Raman signal is plotted versus delay time. A complicated beating structure and the decay of the signal envelope are readily seen. The desired spectroscopic information is obtained by numerical Fourier transformation of the experimental points presented

  6. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    Science.gov (United States)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  7. Statistical Analysis of Coherent Ultrashort Light Pulse CDMA With Multiple Optical Amplifiers Using Additive Noise Model

    Science.gov (United States)

    Jamshidi, Kambiz; Salehi, Jawad A.

    2005-05-01

    This paper describes a study of the performance of various configurations for placing multiple optical amplifiers in a typical coherent ultrashort light pulse code-division multiple access (CULP-CDMA) communication system using the additive noise model. For this study, a comprehensive performance analysis was developed that takes into account multiple-access noise, noise due to optical amplifiers, and thermal noise using the saddle-point approximation technique. Prior to obtaining the overall system performance, the input/output statistical models for different elements of the system such as encoders/decoders,star coupler, and optical amplifiers were obtained. Performance comparisons between an ideal and lossless quantum-limited case and a typical CULP-CDMA with various losses exhibit more than 30 dB more power requirement to obtain the same bit-error rate (BER). Considering the saturation effect of optical amplifiers, this paper discusses an algorithm for amplifiers' gain setting in various stages of the network in order to overcome the nonlinear effects on signal modulation in optical amplifiers. Finally, using this algorithm,various configurations of multiple optical amplifiers in CULP-CDMA are discussed and the rules for the required optimum number of amplifiers are shown with their corresponding optimum locations to be implemented along the CULP-CDMA system.

  8. The interaction of super-intense ultra-short laser pulse and micro-clusters with large atomic clusters

    International Nuclear Information System (INIS)

    Miao Jingwei; Yang Chaowen; An Zhu; Yuan Xuedong; Sun Weiguo; Luo Xiaobing; Wang Hu; Bai Lixing; Shi Miangong; Miao Lei; Zhen Zhijian; Gu Yuqin; Liu Hongjie; Zhu Zhouseng; Sun Liwei; Liao Xuehua

    2007-01-01

    The fusion mechanism of large deuterium clusters (100-1000 Atoms/per cluster) in super-intense ultra-short laser pulse field, Coulomb explosions of micro-cluster in solids, gases and Large-size clusters have been studied using the interaction of a high-intensity femtosecond laser pulses with large deuterium clusters, collision of high-quality beam of micro-cluster from 2.5 MV van de Graaff accelerator with solids, gases and large clusters. The experimental advance of the project is reported. (authors)

  9. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  10. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  11. On-the-fly depth profiling during ablation with ultrashort laser pulses: A tool for accurate micromachining and laser surgery

    International Nuclear Information System (INIS)

    Lausten, Rune; Balling, Peter

    2001-01-01

    A method for accurate depth profiling of a region subjected to ablation with ultrashort laser pulses is demonstrated. Time-gated imaging of the backscattered radiation from the ablation region is performed in a geometry, which allows the depth along a chosen axis on the sample to be determined with a single measurement. The profiling system has a spatial resolution of a few micrometers and applications are promoted by the fact that the measurement is performed with the same pulse that undertakes ablation. This also indicates that the method is inherently suited for in situ on-the-fly measurements. Copyright 2001 American Institute of Physics

  12. Electromagnetic pulses at the boundary of a nonlinear plasma

    International Nuclear Information System (INIS)

    Satorius, E.H.

    1975-01-01

    An investigation was made of the behavior of strong electromagnetic pulses at the boundary of a nonlinear, cold, collisionless, and uniform plasma. The nonlinearity considered here is due to the nonlinear terms in the fluid equation which is used to describe the plasma. Two cases are studied. First, the case where there is a voltage pulse applied across the plane boundary of a semi-infinite, nonlinear plasma. Two different voltage pulses are considered, i.e., a delta function pulse and a suddenly turned-on sinusoidal pulse. The resulting electromagnetic fields propagating in the nonlinear plasma are found in this case. In the second case, the reflection of incident E-polarized and H-polarized, electromagnetic pulses at various angles of incidence from a nonlinear, semi-infinite plasma are considered. Again, two forms of incident pulses are considered: a delta function pulse and a suddenly turned-on sinusoidal pulse. In case two, the reflected electromagnetic fields are found. In both cases, the method used for finding the fields is to first solve the fluid equation (which describes the plasma) for the nonlinear conduction current in terms of the electric field using a perturbation method (since the nonlinear effects are assumed to be small). Next, this current is substituted into Maxwell's equations, and finally the electromagnetic fields which satisfy the boundary conditions are found. (U.S.)

  13. Pulsed Electromagnetic Acceleration of Plasma: A Review

    Science.gov (United States)

    Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.

  14. Electromagnetic pulsed thermography for natural cracks inspection

    Science.gov (United States)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  15. Inductive-pulsed power supplying system for a betatron electromagnet

    International Nuclear Information System (INIS)

    Otrubyannikov, Yu.A.; Safronov, A.S.

    1984-01-01

    Circuit of producing quasitriangular current pulses designed for the pulsed power supply system of betatron electromagnet is described. Introduction of additional winding into electromagnet provides circuit galvanic isolation, artificial commutation of basic circuit thyristors and inductive power input to the winding during thyristor commutation. The considered system is used for excitation of betatron electromagnet up to 18 MeV. Magnetic field energy equals 1100 Y. The maximal voltage in energy storage capacitor - 4.8 kV. Current amplitude in basic winding - 335 A. The number of loops in basic winding equals 80, in additional one - 32. Current pulse duration in electromagnet-3.8 ms. The system provides operation with controlled current pulse frequency from 0 up to 150 Hz. The maximal consumption power - 18 kW

  16. Rydberg atoms ionization by microwave field and electromagnetic pulses

    International Nuclear Information System (INIS)

    Kaulakys, B.; Vilutis, G.

    1995-01-01

    A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory

  17. Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries

    Science.gov (United States)

    Hördemann, C.; Anand, H.; Gillner, A.

    2017-08-01

    Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.

  18. Interaction of free charged particles with a chirped electromagnetic pulse

    International Nuclear Information System (INIS)

    Khachatryan, A.G.; Goor, F.A. van; Boller, K.-J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM chirped pulse. Different types of chirp and pulse envelopes are considered. In the case of small chirp, an analytical expression is found for arbitrary temporal profiles of the chirp and the pulse envelope. In the 3D case, the interaction with a chirped pulse results in a polarization-dependent scattering of charged particles

  19. Magnetic resonance imaging of the normal pituitary gland using ultrashort TE (UTE) pulse sequences (REV 1.0)

    International Nuclear Information System (INIS)

    Portman, Olivia; Flemming, Stephen; Cox, Jeremy P.D.; Johnston, Desmond G.; Bydder, Graeme M.

    2008-01-01

    The purpose of this study was to examine the normal pituitary gland in male subjects with ultrashort echo time (TE) pulse sequences, describe its appearance and measure its signal intensity before and after contrast enhancement. Eleven male volunteers (mean age 57.1 years; range 36-81 years) were examined with a fat-suppressed ultrashort TE (= 0.08 ms) pulse sequence. The studies were repeated after the administration of intravenous gadodiamide. The MR scans were examined for gland morphology and signal intensity before and after enhancement. Endocrinological evaluation included baseline pituitary function tests and a glucagon stimulatory test to assess pituitary cortisol and growth hormone reserve. High signal intensity was observed in the anterior pituitary relative to the brain in nine of the 11 subjects. These regions involved the whole of the anterior pituitary in three subjects, were localised to one side in two examples and were seen inferiorly in three subjects. Signal intensities relative to the brain increased with age, with a peak around the sixth or seventh decade and decreasing thereafter. Overall, the pituitary function tests were considered to be within normal limits and did not correlate with pituitary gland signal intensity. The anterior pituitary shows increased signal intensity in normal subjects when examined with T 1 -weighted ultrashort TE pulse sequences. The cause of this increased intensity is unknown, but fibrosis and iron deposition are possible candidates. The variation in signal intensity with age followed the temporal pattern of iron content observed at post mortem. No relationship with endocrine status was observed. (orig.)

  20. Magnetic resonance imaging of the normal pituitary gland using ultrashort TE (UTE) pulse sequences (REV 1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Portman, Olivia; Flemming, Stephen; Cox, Jeremy P.D.; Johnston, Desmond G. [Imperial College Faculty of Medicine, St Mary' s Hospital, Endocrinology and Metabolic Medicine, London (United Kingdom); Bydder, Graeme M. [University of California, San Diego, Department of Radiology, San Diego, CA (United States)

    2008-03-15

    The purpose of this study was to examine the normal pituitary gland in male subjects with ultrashort echo time (TE) pulse sequences, describe its appearance and measure its signal intensity before and after contrast enhancement. Eleven male volunteers (mean age 57.1 years; range 36-81 years) were examined with a fat-suppressed ultrashort TE (= 0.08 ms) pulse sequence. The studies were repeated after the administration of intravenous gadodiamide. The MR scans were examined for gland morphology and signal intensity before and after enhancement. Endocrinological evaluation included baseline pituitary function tests and a glucagon stimulatory test to assess pituitary cortisol and growth hormone reserve. High signal intensity was observed in the anterior pituitary relative to the brain in nine of the 11 subjects. These regions involved the whole of the anterior pituitary in three subjects, were localised to one side in two examples and were seen inferiorly in three subjects. Signal intensities relative to the brain increased with age, with a peak around the sixth or seventh decade and decreasing thereafter. Overall, the pituitary function tests were considered to be within normal limits and did not correlate with pituitary gland signal intensity. The anterior pituitary shows increased signal intensity in normal subjects when examined with T{sub 1}-weighted ultrashort TE pulse sequences. The cause of this increased intensity is unknown, but fibrosis and iron deposition are possible candidates. The variation in signal intensity with age followed the temporal pattern of iron content observed at post mortem. No relationship with endocrine status was observed. (orig.)

  1. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    Science.gov (United States)

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  2. Interaction of free charged particles with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM

  3. On e(+)e(-) pair production by colliding electromagnetic pulses

    NARCIS (Netherlands)

    Narozhny, NB; Bulanov, SS; Mur, VD; Popov, VS

    2004-01-01

    Electron-positron pair production from vacuum in an electromagnetic field created by two counterpropagating focused laser pulses interacting with each other is analyzed. The dependence of the number of produced pairs on the intensity of a laser pulse and the focusing parameter is studied with a

  4. Electromagnetic pulses in a strongly magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Yu, M.Y.; Rao, N.N.

    1985-01-01

    The conditions for the existence of large-amplitude localized electromagnetic wave pulses in an electron-positron plasma penetrated by a very strong ambient magnetic field are obtained. It is shown that such pulses can exist in pulsar polar magnetospheres. 12 references

  5. Investigation of Temperature Change under Influence of Ultrashort Laser Pulses Taking into Account Relaxation Properties of Materials

    Science.gov (United States)

    Eremin, A. V.; Kudinov, V. A.; Stefanyuk, E. V.; Kudinov, I. V.

    2018-03-01

    By using the modified Fourier law’s formula considering the relaxation of heat flow and temperature gradient, a mathematical model of the local non-equilibrium process of plate heating with ultrashort laser pulses was developed. The research showed that consideration of non-locality results in the delayed plate heat up irrespective of the laser radiation flow intensity. It was also shown that in consideration of the relaxation phenomena, the boundary conditions may not be fulfilled immediately – they may be set only within a definite range of the initial time.

  6. Birefringence profile adjustment by spatial overlap of nanogratings induced by ultra-short laser pulses inside fused silica

    Science.gov (United States)

    Arabanian, Atoosa Sadat; Najafi, Somayeh; Ajami, Aliasghar; Husinsky, Wolfgang; Massudi, Reza

    2018-02-01

    We have succeeded in realizing a method to control the spatial distribution of optical retardation as a result of nanogratings in bulk-fused silica induced by ultrashort laser pulses. A colorimetry-based retardation measurement (CBRM) based on the Michel-Levy interference color chart using a polarization microscope is used to determine the profiles of the optical retardation. Effects of the spatial overlap of written regions as well as the energy and polarization of the writing pulses on the induced retardations are studied. It has been found that the spatial overlap of lines written by pulse trains with different energies and polarizations can result in an adjustment of the induced birefringence in the overlap region. This approach offers the possibility of designing polarization-sensitive components with a desired birefringence profile.

  7. Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses

    International Nuclear Information System (INIS)

    Pepin, H.; Comtois, D.; Vidal, F.; Chien, C.Y.; Desparois, A.; Johnston, T.W.; Kieffer, J.C.; La Fontaine, B.; Martin, F.; Rizk, F.A.M.; Potvin, C.; Couture, P.; Mercure, H.P.; Bondiou-Clergerie, A.; Lalande, P.; Gallimberti, I.

    2001-01-01

    The triggering and guiding of leader discharges using a plasma channel created by a sub-joule ultrashort laser pulse have been studied in a megavolt large-scale electrode configuration (3-7 m rod-plane air gap). By focusing the laser close to the positive rod electrode it has been possible, with a 400 mJ pulse, to trigger and guide leaders over distances of 3 m, to lower the leader inception voltage by 50%, and to increase the leader velocity by a factor of 10. The dynamics of the breakdown discharges with and without the laser pulse have been analyzed by means of a streak camera and of electric field and current probes. Numerical simulations have successfully reproduced many of the experimental results obtained with and without the presence of the laser plasma channel

  8. Analytical performances of laser-induced micro-plasma of Al samples with single and double ultrashort pulses in air and with Ar-jet: A comparative study

    International Nuclear Information System (INIS)

    Semerok, A.; Dutouquet, C.

    2014-01-01

    Ultrashort pulse laser microablation coupled with optical emission spectroscopy was under study to obtain several micro-LIBS analytical features (shot-to-shot reproducibility, spectral line intensity and lifetime, calibration curves, detection limits). Laser microablation of Al matrix samples with known Cu- and Mg-concentrations was performed by single and double pulses of 50 fs and 1 ps pulse duration in air and with Ar-jet. The micro-LIBS analytical features obtained under different experimental conditions were characterized and compared. The highest shot-to-shot reproducibility and gain in plasma spectral line intensity were obtained with double pulses with Ar-jet for both 50 fs and 1 ps pulse durations. The best calibration curves were obtained with 1 ps pulse duration with Ar-jet. Micro-LIBS with ultrashort double pulses may find its effective application for surface elemental microcartography. - Highlights: • Analytical performances of micro-LIBS with ultrashort double pulses were studied. • The maximal line intensity gain of 20 was obtained with double pulses and Ar-jet. • LIBS gain was obtained without additional ablation of a sample by the second pulse. • LIBS properties were almost the same for both 50 fs and 1 ps pulses. • The micro-LIBS detection limit was around 35 ppm

  9. Faraday tarotion: new parameter for electromagnetic pulse propagation in magnetoplasma

    International Nuclear Information System (INIS)

    Bloch, S.C.; Lyons, P.W.

    1976-01-01

    Extreme distortion and time-dependent Faraday rotation occur for propagation of short electromagnetic pulses in magnetoplasma, for some ranges of plasma parameters. In order to relate pulse and monochromatic waves for propagation-path diagnostic purposes, a new parameter is introduced for the transmitted pulse train which has properties that correspond very accurately to results that would be expected for Faraday rotation of a continuous wave having the central frequency of the incident pulse spectrum. Results for 5-ns pulses (10 GHz) are presented for varying propagating length, static magnetic field, electron density, and collisional absorption

  10. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  11. ANALYSIS OF PERIODIC NANOSTRUCTURES FORMATION ON A GOLD SURFACE UNDER EXPOSURE TO ULTRASHORT LASER PULSES NEAR THE MELTING THRESHOLD

    Directory of Open Access Journals (Sweden)

    D. S. Ivanov

    2015-11-01

    Full Text Available Subject of Study. The mechanism of surface restructuring by ultrashort laser pulses involves a lot of fast, non-equilibrium, and interrelated processes while the solid is in a transient state. As a result, the analysis of the experimental data cannot cover all the mechanisms of nanostructuring. We present a direct comparison of a simulation and experimental results of surface nanomodification induced by a single laser pulse. Method. The experimental results were obtained by using a mask projection setup with a laser wavelength equal to 248 nm and a pulse length equal to 1.6 ps. This setup is used to produce an intensity grating on a gold surface with a sinusoidal shape and a period of 500 nm. The formed structures were analyzed by a scanning and transmission electron microscope, respectively. Then a hybrid atomistic-continuum model capable of capturing the essential mechanisms responsible for the nanostructuring process was used for modeling the interaction of the laser pulse with a thick gold target. Main Results. A good agreement between simulation and experimental data justifies the proposed approach as a powerful tool revealing the physics behind the nanostructuring process at a gold surface and providing a microscopic insight into the dynamics of the structuring processes of metals in general. The presented model, therefore, is an important step towards a new computational tool in predicting materials response to an ultrashort laser pulse on the atomic scale and properties of the modified surfaces. Practical Relevance. This detailed understanding of the dynamics of the process will pave the way towards pre-designed topologies for functionalized surfaces on the nano- and micro-scales.

  12. Current pulse generator of an induction accelerator electromagnet

    International Nuclear Information System (INIS)

    Baginskij, B.A.; Makarevich, V.N.; Shtejn, M.M.

    1987-01-01

    Thyristor generator forming in betatron electromagnet coil sinusoidal and quasisinusoidal current unipolar pulses, the field being deforced at the beginning of acceleration cycle, and with the pulse flat top in the cycle end, is described. The current amplitude is controlled by pulse-phase method. The current pulse time shift permitted to decrease the loss rate in the accumulating capacitor. The generator is used in systems with 1-10 ms pulse duration, electromagnet magnetic field maximal energy - 45-450 J, the voltage amplitude in the coil 960-1500 V and amplitude of the current passing the coil 100-500 A, the repetition frequency being 50-200 Hz. In particular, the generator is used to supply betatrons designed for defectoscopy in nonstationary conditions, the accelerated electron energy being 4, 6, 8 and 15 MeV

  13. Studies of exposure of rabbits to electromagnetic pulsed fields

    International Nuclear Information System (INIS)

    Cleary, S.F.; Nickless, F.; Liu, L.M.; Hoffman, R.

    1980-01-01

    Dutch rabbits were acutely exposed to electromagnetic pulsed (EMP) fields (pulse duration 0.4 mus, field strengths of 1--2 kV/cm and pulse repetition rates in the range of 10 to 38 Hz) for periods of up to two hours. The dependent variables investigated were pentobarbital-induced sleeping time and serum chemistry (including serum triglycerides, creatine phosphokinase (CPK) isoenzymes, and sodium and potassium). Core temperature measured immediately pre-exposure and postexposure revealed no exposure-related alterations. Over the range of field strengths and pulse durations investigated no consistent, statistically significant alterations were found in the end-points investigated

  14. Photoionization of atoms and molecules by intense EUV-FEL pulses and FEL seeded by high-order harmonic of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Iwasaki, Atsushi; Owada, Shigeki; Yamanouchi, Kaoru; Sato, Takahiro; Nagasono, Mitsuru; Yabashi, Makina; Ishikawa, Tetsuya; Togashi, Tadashi; Takahashi, Eiji J.; Midorikawa, Katsumi; Aoyama, Makoto; Yamakawa, Koichi; Kannari, Fumihiko; Yagishita, Akira

    2012-01-01

    The advantages of SPring-8 Compact SASE Source as a light source for spectroscopic measurements in the extreme ultraviolet (EUV) wavelength region are introduced by referring to our recent study of non-linear photoionization processes of He, in which the absolute two-photon ionization cross sections of He at four different wavelengths in the 54 - 62 nm region were determined using intense pulses of the free-election laser (FEL). In addition, our recent effort to generate intense full-coherent EUV light pulses are introduced, in which significant amplification of the 13th harmonic of ultrashort laser pulses at 800 nm was achieved by FEL seeded with the 13th harmonic. (author)

  15. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    International Nuclear Information System (INIS)

    Pabst, Stefan Ulf

    2013-04-01

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO 2 is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  16. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Energy Technology Data Exchange (ETDEWEB)

    Pabst, Stefan Ulf

    2013-04-15

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO{sub 2} is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  17. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Pakter, R.; Rizzato, F.B. [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Rio Grande do Sul (Brazil)

    2004-07-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  18. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    International Nuclear Information System (INIS)

    Peer, J.; Kendl, A.

    2010-01-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  19. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Peer, J. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Kendl, A., E-mail: alexander.kendl@uibk.ac.a [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria)

    2010-06-28

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  20. High-altitude electromagnetic pulse environment over the lossy ground

    International Nuclear Information System (INIS)

    Xie Yanzhao; Wang Zanji

    2003-01-01

    The electromagnetic field above ground produced by an incident high-altitude electromagnetic pulse plane wave striking the ground plane was described in this paper in terms of the Fresnel reflection coefficients and the numerical FFT. The pulse reflected from the ground plane always cancel the incident field for the horizontal field component, but the reflected field adds to the incident for the vertical field component. The results of several cases for variations in the observation height, angle of incidence and lossy ground electrical parameters were also presented showing different e-field components above the earth

  1. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    International Nuclear Information System (INIS)

    Bonatto, A.; Pakter, R.; Rizzato, F.B.

    2004-01-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  2. Electromagnetic pulse distortion in living tissue

    NARCIS (Netherlands)

    Lepelaars, E.S.A.M.

    1996-01-01

    Insight into the distortion of electromagnetic (EM) signals in living tissue is important for optimising medical applications. To obtain this insight, field calculations have been carried out for a plane-stratified configuration of air, skin, fat, muscle and bone tissue. In this configuration, an EM

  3. Interference and protection of electromagnetic pulse to digital signal processor

    International Nuclear Information System (INIS)

    Wang Yan; Jiao Hongling; He Shanhong; Pan Chao; Feng Deren; Che Wenquan; Xiong Ying

    2013-01-01

    The effective electromagnetic pulse protection is studied in this paper, first the interference of electromagnetic pulse simulator path is analyzed, including the digital signal processor (DSP) and the discharge circuit of coupling interference and net electricity coupling interference. Using the structure optimization design, the hardware block reinforcement measurement and the setting of open software trap, and the watchdog anti-jamming measures, the interference test is completed such as the central processor core voltage of DSP, input/output (I/O) ports of DSP and the display screen. The experimental results show that the combination of hardware and software protection reinforcement technology is effective, and the interference pulse amplitude of DSP board I/O port and the kernel work voltage are reduced, and the interference duration is reduced from 2 μs to 400 ns. The interference pulse is effectively restrained. (authors)

  4. Effect of gas heating on the generation of an ultrashort avalanche electron beam in the pulse-periodic regime

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.

    2015-07-01

    The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.

  5. Polarized spectral properties of Yb3+ : Li2Gd4(MoO4)7 crystal: a candidate for tunable and ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Zhu Haomiao; Chen Yujin; Lin Yanfu; Gong Xinghong; Liao Jinsheng; Chen Xueyuan; Luo Zundu; Huang Yidong

    2007-01-01

    Detailed polarized spectral properties of a 3.2 at.% Yb 3+ : Li 2 Gd 4 (MoO 4 ) 7 crystal, including absorption cross-section, emission cross-section, up-conversion spectrum and intrinsic fluorescence lifetime, were investigated. The laser potentiality was also evaluated and the results show that this crystal is a good candidate for tunable and ultrashort pulse lasers

  6. Emission and formation of electromagnetic pulses in cylindrical systems

    International Nuclear Information System (INIS)

    Lomize, L.G.; Sveshnikova, N.N.; Kuz'min, V.A.

    1983-01-01

    During the passage of a charged particle bunch through a cylindrical resonator after the process of field formation has been over the radiation, having separated from the intrinsic field, freely propagates over the resonator volume while undergoing multiple reflections from the resonator walls. As the numerical experiments have shown not only localized reflections from the resonator walls but the distributed reflections from the near-axial region take place; they result in the formation of a short intense pulse of the accelerating field along the resonator axis. The pulse runs in the direction of the bunch motion and is responsible for the process of particle autoacceleration. Transformations of the electromagnetic pUlse shape at subsequent reflections are rather of a regular character and repeated almost periodically in a certain period of time during which the light in the vacuum covers eight radii of the resonator. Conservation of the pulse shape from a period to another proceeds the more precisely, the shorter the range of the electromagnetic pulse is as compared with the resonator radius. If the resonator is permeated by successive bunches, then at a pulse frequency, for which the wave length is equal to eight radii of the resonator, a pulse resonance should arise, while at the wave length eqUal to four resonator radii a pulse antiresonance should arise

  7. Electromagnetically induced transparency with matched pulses

    International Nuclear Information System (INIS)

    Harris, S.E.

    1993-01-01

    In the last several years there have been studies and experiments showing how, by applying an additional laser beam, optically-thick transitions may be rendered nearly transparent to probing radiation. This transparency results from a quantum interference, very much like a Fano interference, which is established by the additional laser. This talk describes the difference between the quantum interference as exhibited by an independent atom and by an optically-thick ensemble of atoms. We find that an ensemble of atoms establishes transparency through a strong nonlinear interaction which, for a lambda system, tends to generate a matching temporal envelope on the complementary transition. For a ladder system, phase conjugate pulses are generated and, after a characteristic distance, establish transparency. The transparency of an optically-thick medium is therefore not a Beer's law superposition of the independent atom response. To transmit a pulse through an otherwise opaque media, the front edge of the complementary pulse should lead, in the manner of open-quotes counter-intuitiveclose quotes adiabatic transfer, the front edge of the pulse which is to be rendered transparent. Thereafter the pulses should be matched or, for a ladder system, phase-conjugately matched

  8. Design of a bounded wave EMP (Electromagnetic Pulse) simulator

    Science.gov (United States)

    Sevat, P. A. A.

    1989-06-01

    Electromagnetic Pulse (EMP) simulators are used to simulate the EMP generated by a nuclear weapon and to harden equipment against the effects of EMP. At present, DREO has a 1 m EMP simulator for testing computer terminal size equipment. To develop the R and D capability for testing larger objects, such as a helicopter, a much bigger threat level facility is required. This report concerns the design of a bounded wave EMP simulator suitable for testing large size equipment. Different types of simulators are described and their pros and cons are discussed. A bounded wave parallel plate type simulator is chosen for it's efficiency and the least environmental impact. Detailed designs are given for 6 m and 10 m parallel plate type wire grid simulators. Electromagnetic fields inside and outside the simulators are computed. Preliminary specifications for a pulse generator required for the simulator are also given. Finally, the electromagnetic fields radiated from the simulator are computed and discussed.

  9. Application of the ultrashort pulses in bovine dental enamel; Aplicacao de pulsos ultracurtos em esmalte dental bovino

    Energy Technology Data Exchange (ETDEWEB)

    Todescan, Carla de Rago

    2003-07-01

    The interaction of lasers with the hard structures of the teeth, has found the excess of heat as a problem for its utilization. This study analyzes, in vitro, the interaction of the ultrashort pulse laser of Ti:safire (830 nm) with the bovine dental enamel. The system consisted in one main oscillator integrated with an amplifier (CPA). The pulses extracted before the temporal compression inside the amplifier had 30 ps, 1000 Hz and {approx}1 mJ. The pulses extracted after the compression had 60 fs, 1000 Hz and {approx}0,7 mJ. The M{sup 2} was 1,3, the focal lens 2,5 cm, the focal distance 29,7 and a computerized translation stage x,y,z. We evaluated the amount of tissue removed per pulse,the resulting cavities and the surrounding tissues not irradiated, under OM and SEM. The fluency was the major factor for differentiating the two regimens studied, therefore, the intensity was not so important as we expected in this process. We found: one ablation region in 'cat tongue', one ablation length, one fluency {approx}0,7 J/cm{sup 2} for 30 ps and {approx}0,5 J/cm{sup 2} for 60 fs (50% of high speed burr), smooth edge for 30 ps and high precision of the sharp edge cut of submicrometric order for 60 fs. (author)

  10. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  11. Application of the ultrashort pulses in bovine dental enamel; Aplicacao de pulsos ultracurtos em esmalte dental bovino

    Energy Technology Data Exchange (ETDEWEB)

    Todescan, Carla de Rago

    2003-07-01

    The interaction of lasers with the hard structures of the teeth, has found the excess of heat as a problem for its utilization. This study analyzes, in vitro, the interaction of the ultrashort pulse laser of Ti:safire (830 nm) with the bovine dental enamel. The system consisted in one main oscillator integrated with an amplifier (CPA). The pulses extracted before the temporal compression inside the amplifier had 30 ps, 1000 Hz and {approx}1 mJ. The pulses extracted after the compression had 60 fs, 1000 Hz and {approx}0,7 mJ. The M{sup 2} was 1,3, the focal lens 2,5 cm, the focal distance 29,7 and a computerized translation stage x,y,z. We evaluated the amount of tissue removed per pulse,the resulting cavities and the surrounding tissues not irradiated, under OM and SEM. The fluency was the major factor for differentiating the two regimens studied, therefore, the intensity was not so important as we expected in this process. We found: one ablation region in 'cat tongue', one ablation length, one fluency {approx}0,7 J/cm{sup 2} for 30 ps and {approx}0,5 J/cm{sup 2} for 60 fs (50% of high speed burr), smooth edge for 30 ps and high precision of the sharp edge cut of submicrometric order for 60 fs. (author)

  12. A 16 MJ compact pulsed power system for electromagnetic launch

    Science.gov (United States)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  13. Two-temperature hydrodynamic expansion and coupling of strong elastic shock with supersonic melting front produced by ultrashort laser pulse

    International Nuclear Information System (INIS)

    Inogamov, Nail A; Khokhlov, Viktor A; Zhakhovsky, Vasily V; Khishchenko, Konstantin V; Demaske, Brian J; Oleynik, Ivan I

    2014-01-01

    Ultrafast processes, including nonmonotonic expansion of material into vacuum, supersonic melting and generation of super-elastic shock wave, in a surface layer of metal irradiated by an ultrashort laser pulse are discussed. In addition to the well-established two-temperature (2T) evolution of heated layer a new effect of electron pressure gradient on early stage of material expansion is studied. It is shown that the expanding material experiences an unexpected jump in flow velocity in a place where stress exceeds the effective tensile strength provided by used EoS of material. Another 2T effect is that supersonic propagation of homogeneous melting front results in distortion of spatial profile of ion temperature, which later imprints on ion pressure profile transforming in a super-elastic shock wave with time.

  14. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  15. Experimental Testing of a Van De Graaff Generator as an Electromagnetic Pulse Generator

    Science.gov (United States)

    2016-07-01

    EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR THESIS...protection in the United States AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR

  16. Assessment and mitigation of electromagnetic pulse (EMP) impacts at short-pulse laser facilities

    International Nuclear Information System (INIS)

    Brown, C G Jr; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-01-01

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  17. A method for ultrashort electron pulse-shape measurement using coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Geloni, G.; Yurkov, M.V.

    2003-03-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers (XFELs). The method is based on the detection of the coherent synchrotron radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose applicability limits are often forgotten: here we present a systematic discussion about these assumptions. Properties of coherent synchrotron radiation from an electron moving along an arc of a circle are then derived and discussed. We describe also an effective and practical diagnostic technique based on the utilization of an electromagnetic undulator to record the energy of the coherent radiation pulse into the central cone. This measurement must be repeated many times with different undulator resonant frequencies in order to reconstruct the modulus of the bunch form-factor. The retrieval of the bunch profile function from these data is performed by means of deconvolution techniques: for the present work we take advantage of a constrained deconvolution method. We illustrate with numerical examples the potential of the proposed method for electron beam diagnostics at the TESLA test facility (TTF) accelerator. Here we choose, for emphasis, experiments aimed at the measure of the strongly non-Gaussian electron bunch profile in the TTF femtosecond-mode operation. We demonstrate that a tandem combination of a picosecond streak camera and a CSR spectrometer can be used to extract shape information from electron bunches with a narrow leading peak and a long tail. (orig.)

  18. Time-dependent H-like and He-like Al lines produced by ultra-short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Kato, Masatoshi [National Inst. for Fusion Science, Nagoya (Japan); Shepherd, R; Young, B; More, R; Osterheld, Al

    1998-03-01

    We have performed numerical modeling of time-resolved x-ray spectra from thin foil targets heated by the LLNL Ultra-short pulse (USP) laser. The targets were aluminum foils of thickness ranging from 250 A to 1250 A, heated with 120 fsec pulses of 400 nm light from the USP laser. The laser energy was approximately 0.2 Joules, focused to a 3 micron spot size for a peak intensity near 2 x 10{sup 19} W/cm{sup 2}. Ly{alpha} and He{alpha} lines were recorded using a 900 fsec x-ray streak camera. We calculate the effective ionization, recombination and emission rate coefficients including density effects for H-like and He-like aluminum ions using a collisional radiative model. We calculate time-dependent ion abundances using these effective ionization and recombination rate coefficients. The time-dependent electron temperature and density used in the calculation are based on an analytical model for the hydrodynamic expansion of the target foils. During the laser pulse the target is ionized. After the laser heating stops, the plasma begins to recombine. Using the calculated time dependent ion abundances and the effective emission rate coefficients, we calculate the time dependent Ly{alpha} and He{alpha} lines. The calculations reproduce the main qualitative features of the experimental spectra. (author)

  19. A high-order corrected description of ultra-short and tightly focused laser pulses, and their electron acceleration in vacuum

    International Nuclear Information System (INIS)

    Zhang, J.T.; Wang, P.X.; Kong, Q.; Chen, Z.; Ho, Y.K.

    2007-01-01

    Field expressions are derived for ultra-short, tightly focused laser pulses up to the second-order temporal correction and seventh-order spatial correction. To evaluate the importance of these corrections, we simulate these fields and investigate the final energy of the accelerated electrons. We vary the order of the corrected expressions, the pulse duration, and the beam waist. We find that electron capture is still an important and generic phenomenon in ultra-short, tightly focused laser pulses. While small differences in the electron acceleration are obtained for various orders of the corrected field equations relative to the paraxial field equations, there is no qualitative difference in the behavior of the electron. Furthermore, the temporal and spatial corrections are found to be correlated

  20. Experimental study of pulsed heating of electromagnetic cavities

    International Nuclear Information System (INIS)

    Pritzkau, D.P.; Menegat, A.; Siemann, R.H.

    1997-01-01

    An experiment to study the effects of pulsed heating in electromagnetic cavities will be performed. Pulsed heating is believed to be the limiting mechanism of high acceleration gradients at short wavelengths. A cylindrical cavity operated in the TE 011 mode at a frequency of 11.424 GHz will be used. A klystron will be used to supply a peak input power of 20 MW with a pulse length of 1.5 μs. The temperature response of the cavity will be measured by a second waveguide designed to excite a TE 012 mode in the cavity with a low-power CW signal at a frequency of 17.8 GHz. The relevant theory of pulsed heating will be discussed and the results from cold-testing the structure will be presented

  1. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  2. Controllable delay of ultrashort pulses in a quantum dot optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optical and electrical tuning of the propagation time of 170 fs pulses in a quantum dot semiconductor amplifier at room temperature is demonstrated. Both pulse slowdown and advancement is possible and we achieve fractional delays (delay divided with pulse duration) of up to 40%. The results...

  3. Effects of nuclear electromagnetic pulse (EMP) on nuclear power plants

    International Nuclear Information System (INIS)

    Barnes, P.R.; Manweiler, R.W.; Davis, R.R.

    1977-09-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation consists of a transient pulse of high intensity electromagnetic fields. These intense fields induce current and voltage transients in electrical conductors. Although most nuclear power plant cables are not directly exposed to these fields, the attenuated EMP fields that propagate into the plant will couple some EMP energy to these cables. The report predicts the probable effects of the EMP transients that could be induced in critical circuits of safety-related systems. It was found that the most likely consequence of EMP for nuclear plants is an unscheduled shutdown. EMP could prolong the shutdown period by the unnecessary actuation of certain safety systems. In general, EMP could be a nuisance to nuclear power plants, but it is not considered a serious threat to plant safety

  4. Electromagnetic-implosion generation of pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.

    1983-01-01

    This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source

  5. Principles and techniques of radiation hardening. Volume 3. Electromagnetic pulse (EMP) and system generated EMP

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 3 deals with the following topics: selected fundamentals of electromagnetic theory; EMP induced currents on antennas and cables; the EMP response of electronics; EMP hardening; EMP testing; injection currents; internal electromagnetic pulse (IEMP); replacement currents; and system generated electromagnetic pulse (SGEMP) hardening

  6. The electromagnetic pulse (EMP) as a danger for the world of electronics

    International Nuclear Information System (INIS)

    Horak, O.

    1984-01-01

    After discussing the characteristics and formation of a nuclear electromagnetic pulse, the author considers the effects such a pulse would have on various types of electronic systems. Finally he discusses what protection there is against such pulses. (Auth.)

  7. Force-free electromagnetic pulses in a laboratory plasma

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    1990-01-01

    A short, intense current pulse is drawn from an electrode immersed in a magnetized afterglow plasma. The induced magnetic field B(r,t) assumes the shape of a helical double vortex which propagates along B(0) through the uniform plasma as a whistler mode. The observations support a prediction of force-free (J x B + neE = 0) electromagnetic fields and solitary waves. Energy and helicity are approximately conserved.

  8. A Delay Line for Compression of Electromagnetic Pulses

    International Nuclear Information System (INIS)

    Pchelnikov, Yuriy N.; Nyce, David S.

    2003-01-01

    A novel method to obtain an electromagnetic signal delay is described. It is shown that the positive magnetic and electric coupling between impedance conductors produces an increase in the time delay. It is also shown that the increase in delay time is obtained without additional attenuation. This allows a reduction in electromagnetic losses, by a factor of several times, for a delay time. An approximate analysis of electromagnetic delay lines based on coupled impedance conductors with 'spiral' and 'meander' patterns allowed obtaining very simple expressions for the wave deceleration factor, wave impedance, and attenuation factor. The results of the analysis are confirmed by the results of measurements. It is shown that a delay line based on counter-wound radial spirals can be successfully used for compression of electromagnetic pulses. Although the offered delay line was designed to operate with a relatively small signal, the analysis of the 'coupling effect', taking place in this delay line, might be useful in devices for compression of high-power microwave pulses

  9. Discrimination of nuclear-explosion and lightning electromagnetic pulse

    International Nuclear Information System (INIS)

    Qi Shufeng; Li Ximei; Han Shaoqing; Niu Chao; Feng Jun; Liu Daizhi

    2012-01-01

    The discrimination of nuclear-explosion and lightning electromagnetic pulses was studied using empirical mode decomposition and the fractal analytical method. The box dimensions of nuclear-explosion and lightning electromagnetic pulses' original signals were calculated, and the box dimensions of the intrinsic mode functions (IMFs) of nuclear-explosion and lightning electromagnetic pulses' original signals after empirical mode decomposition were also obtained. The discrimination of nuclear explosion and lightning was studied using the nearest neighbor classification. The experimental results show that, the discrimination rate of the box dimension based on the first and second IMF after the original signal empirical mode decomposition is higher than that based on the third and forth IMF; the discrimination rate of the box dimension based on the original signal is higher than that based on any IMF; and the discrimination rate based on two-dimensional and three-dimensional characters is higher and more stable than that based on one-dimensional character, besides, the discrimination rate based on three-dimensional character is over 90%. (authors)

  10. K-shell spectra from hot dense aluminum layers buried in carbon and heated by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Eidmann, K.; Andiel, U.; Pisani, F.; Hakel, P.; Mancini, R.C.; Junkel-Vives, G.C.; Abdallah, J.; Witte, K.

    2003-01-01

    Ultrashort laser pulses allow for the generation of hot plasmas near solid state densities. For this purpose a Ti:Sapphire laser was used, which delivers after frequency doubling, pulses of high contrast with an energy of about 60 mJ and a duration of 150 fs at 395 nm. The typical intensity on the target was a few 10 17 W/cm 2 . To achieve a high degree of uniformity we used targets consisting of a 25 nm thin Al tracer layer buried at different depths up to 400 nm in solid carbon. Time-integrated Al K-shell spectra are presented. Characteristic features of the spectra are significant high-order satellite line emission, strong line broadening and a center-of-mass line shift to the red, which was observed in transitions from principal quantum number n=2 or 3 to 1. Accurate measurement of the shift was made possible by using the cold Si K α line as an absolute wavelength calibration. In addition to time-integrated measurements, we used an ultrafast X-ray streak camera to obtain time and spectrally resolved spectra. Typical durations of the Ly α and He α lines are in the range 2-4 ps. The experimental results are compared with a time-dependent model, which combines hydrodynamic simulations, time-dependent atomic kinetics, detailed spectral line shapes including line shifts, and radiation transport

  11. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration

    Science.gov (United States)

    Gibbs, Holly C.; Dodson, Colin R.; Bai, Yuqiang; Lekven, Arne C.; Yeh, Alvin T.

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  12. Development of high current electron source using photoemission from metals with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Tsang, T.; Srinivasan-Rao, T.; Fischer, J.

    1990-10-01

    We summarize the studies of photoemission from metal photocathodes using picosecond pulses in the UV (4.66 eV) wavelength and femtosecond laser pulses in the visible (2 eV) wavelengths. To achieve high current density yield from metal photocathodes, multiphoton photoemission using femtosecond laser pulses are suggested. Electron yield improvement incorporating surface photoemission and surface plasmon resonance in metals and metal films are demonstrated. We examine the possibility of the nonlinear photoemission process overtaking the linear process, and identity some possible complexity. To extract the large amount of electrons free of space charge, a pulsed high voltage is designed; the results of the preliminary test are presented. Finally, for the first time, the width of the electron temporal profiles are measured, utilizing the nonlinear photoelectric effect, to below 100 fsec time regime. The results indicated that the electron pulse duration follows the laser pulses and are not limited by the material. 8 refs., 15 figs

  13. Ultrashort pulse-propagation effects in a semiconductor optical amplifier: Microscopic theory and experiment

    DEFF Research Database (Denmark)

    Hughes, S.; Borri, P.; Knorr, A.

    2001-01-01

    We present microscopic modeling and experimental measurements of femtosecond-pulse interactions in a semiconductor optical amplifier. Two novel nonlinear propagation effects are demonstrated: pulse breakup in the gain regime and pulse compression in the transparency regime. These propagation phen...... phenomena highlight the microscopic origin and important role of adiabatic following in semiconductor optical amplifiers. Fundamental light-matter interactions are discussed in detail and possible applications are highlighted....

  14. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica Catalunya, Terrassa 08222 (Spain); Sola, I. [Grupo de Investigación en Óptica Extrema (GIOE), Departamento de Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Krolikowski, W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Science Program, Texas A and M University at Qatar, Doha (Qatar); Sheng, Y. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  15. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    International Nuclear Information System (INIS)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Krolikowski, W.; Sheng, Y.

    2015-01-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system

  16. Proceedings of the first JAERI-Kansai international workshop on ultrashort-pulse ultrahigh-power lasers and simulation for laser-plasma interactions

    International Nuclear Information System (INIS)

    1998-03-01

    Records of the First JAERI-Kansai International Workshop, which focused on the subject of 'Ultrashort-Pulse Ultrahigh-Power Lasers and Simulation for Laser-Plasma Interactions', are contained in this issue. The First JAERI-Kansai International Workshop was held as Joint ICFA/JAERI-Kansai International Workshop '97 with International Committee for Future Accelerators (ICFA). This report consists of 24 contributed papers. (J.P.N.)

  17. Proceedings of the first JAERI-Kansai international workshop on ultrashort-pulse ultrahigh-power lasers and simulation for laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Records of the First JAERI-Kansai International Workshop, which focused on the subject of `Ultrashort-Pulse Ultrahigh-Power Lasers and Simulation for Laser-Plasma Interactions`, are contained in this issue. The First JAERI-Kansai International Workshop was held as Joint ICFA/JAERI-Kansai International Workshop `97 with International Committee for Future Accelerators (ICFA). This report consists of 24 contributed papers. (J.P.N.)

  18. Generalized bipolariton model. propagation of a ultrashort laser pulse through a thin semiconductor film in the conditions of two-photon generation of biexcitons

    International Nuclear Information System (INIS)

    Igor Beloussov

    2013-01-01

    A generalized bipolariton model is proposed. Bipolaritons is formed from virtual excitons of four kinds. There exists both attractive and repulsive interaction between these excitons, though only excitons of a specific type can interact with light. A substantial difference between conventional and our models is shown for the case of nonlinear transmission/reflection of ultrashort laser pulses by a thin semiconductor film under two-photon generation of biexcitons. (author)

  19. Electromagnetic pulse compression and energy localization in quantum plasmas

    International Nuclear Information System (INIS)

    Hefferon, Gareth; Sharma, Ashutosh; Kourakis, Ioannis

    2010-01-01

    The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of ∼1.35 attosecond and a spatial size of ∼1.08.10 -3 cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of ∼0.6 attosecond and a spatial size of ∼2.4.10 -3 cm.

  20. Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation.

    Science.gov (United States)

    Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W

    2010-01-20

    We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.

  1. Superintense fields from multiple ultrashort laser pulses retroreflected in circular geometry

    Science.gov (United States)

    Ooi, C. H. Raymond

    2010-02-01

    Laser field with superintensity beyond 1029 W/cm2 can be generated by coherent superposition of multiple 100 fs laser pulses in circular geometry setup upon retroreflection by a ring mirror. We have found the criteria for attaining such intensities using broadband ring mirror within the practical damage threshold and paraxial focusing regime. Simple expressions for the intensity enhancement factor are obtained, providing insight for achieving unlimited laser intensity. Higher intensities can be achieved by using few-cycle laser pulses.

  2. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  3. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    Science.gov (United States)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration 59 dB) and relative intensity noise <-101 dBc / Hz.

  4. Clinical update of pulsed electromagnetic fields on osteoporosis

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-qun; HE Hong-chen; HE Cheng-qi; CHEN Jian; YANG Lin

    2008-01-01

    Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain,bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis.Data sources Using the key words "pulsed electromagnetic fields" and "osteoporosis", we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3)case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English.Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial.

  5. Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser

    Science.gov (United States)

    Zhao, Wanqin; Yu, Zhishui

    2018-06-01

    Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.

  6. Ultrashort and coherent single-electron pulses for diffraction at ultimate resolutions

    International Nuclear Information System (INIS)

    Kirchner, Friedrich Oscar

    2013-01-01

    Ultrafast electron diffraction is a powerful tool for studying structural dynamics with femtosecond temporal and sub-aangstroem spatial resolutions. It benefits from the high scattering cross-sections of electrons compared X-rays and allows the examination of thin samples, surfaces and gases. One of the main challenges in ultrafast electron diffraction is the generation of electron pulses with a short duration and a large transverse coherence. The former limits the temporal resolution of the experiment while the latter determines the maximum size of the scattering structures that can be studied. In this work, we strive to push the limits of electron diffraction towards higher temporal and spatial resolutions. The decisive step in our approach is to eliminate all detrimental effects caused by Coulomb repulsion between the electrons by reducing the number of electrons per pulse to one. In this situation, the electrons' longitudinal and transverse velocity distributions are determined solely by the photoemission process. By reducing the electron source size on the photocathode, we make use of the small transverse velocity spread to produce electron pulses with a transverse coherence length of 20 nm, which is about an order of magnitude larger than the reported values for comparable experiments. The energy distribution of an ensemble of single-electron pulses from a photoemission source is directly linked to the mismatch between the photon energy and the cathode's work function. This excess energy can be reduced by using a photon energy close to the material's work function. Using a tunable source of ultraviolet pulses, we demonstrate the reduction of the velocity spread of the electrons, resulting in a shorter duration of the electron pulses. The reduced electron pulse durations achieved by a tunable excitation or by other approaches require new characterization techniques for electron pulses. We developed a novel method for the characterization of electron pulses at

  7. Temporary acceleration of electrons while inside an intense electromagnetic pulse

    Directory of Open Access Journals (Sweden)

    Kirk T. McDonald

    1999-12-01

    Full Text Available A free electron can temporarily gain a very significant amount of energy if it is overrun by an intense electromagnetic wave. In principle, this process would permit large enhancements in the center-of-mass energy of electron-electron, electron-positron, and electron-photon interactions if these take place in the presence of an intense laser beam. Practical considerations severely limit the utility of this concept for contemporary lasers incident on relativistic electrons. A more accessible laboratory phenomenon is electron-positron production via an intense laser beam incident on a gas. Intense electromagnetic pulses of astrophysical origin can lead to very energetic photons via bremsstrahlung of temporarily accelerated electrons.

  8. Ab-initio validation of a simple heuristic expression for the sequential-double-ionization contribution to the double ionization of helium by ultrashort XUV pulses

    International Nuclear Information System (INIS)

    Liu, Aihua; Thumm, Uwe

    2015-01-01

    We study two-photon double ionization of helium by short XUV pulses by numerically solving the time-dependent Schrodinger equation in full dimensionality within a finite-element discrete-variable-representation scheme. Based on the emission asymmetries in joint photoelectron angular distributions, we identify sequential and non-sequential contributions to two-photon double ionization for ultrashort pulses whose spectrum overlaps the sequential (ħω > 54.4 eV) and non-sequential (39.5 eV < ħω < 54.4 eV) double-ionization regimes. (paper)

  9. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.

    2016-01-01

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only the level of steady-state generation but also, in the optimal case, the power of the driving electron beam.

  10. Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Daskalova, A.; Nathala, Chandra S.R.; Bliznakova, I.; Stoyanova, E.; Zhelyazkova, A.; Ganz, T.; Lueftenegger, S.; Husinsky, W.

    2014-01-01

    We report on the structural investigation of self-organized micropores generated in thin gelatin, collagen, and collagen–elastin films after single and multishot irradiation with pulse durations ranging from 30–100 fs at 800 nm. We systematically studied the effect of laser parameters: laser energy, number of pulses, and pulse duration on the development of the micropores. This work showed that applying laser pulses at different rates significantly modified the thin film surface. The results clearly revealed that femtosecond laser treatment of thin films of biomaterials: gelatin, collagen and collagen–elastin, results in creation of micro/nanopores with different size of cavity formations. Experimentally, it is demonstrated that it is possible to influence the dimensions of the pore sizes, ranging from 100 nm to 2 μm by tuning the laser parameters. We are currently further exploring the possibility of structuring these biomaterials by applying a time delay between separate pulses. First results from cell culture experiments on laser created surface foam of collagen–elastin were successfully obtained, showing the potential of the method to cultivate cells on superficial porous substrates and the preferable selectivity of the cells to proliferate on the laser modified parts of the biopolymer substrate.

  11. Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Daskalova, A., E-mail: a_daskalova@code.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Nathala, Chandra S.R. [IAP, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria); Femtolasers Productions GmbH, Fernkorngasse10, 1100 Vienna (Austria); Bliznakova, I. [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Stoyanova, E. [IBIR, Department of Molecular Immunology, Bulgarian Academy of Sciences, 73, Tzarigradsko Chaussee blvd., 1113 Sofia (Bulgaria); Zhelyazkova, A. [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Ganz, T. [Femtolasers Productions GmbH, Fernkorngasse10, 1100 Vienna (Austria); Lueftenegger, S.; Husinsky, W. [IAP, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)

    2014-02-15

    We report on the structural investigation of self-organized micropores generated in thin gelatin, collagen, and collagen–elastin films after single and multishot irradiation with pulse durations ranging from 30–100 fs at 800 nm. We systematically studied the effect of laser parameters: laser energy, number of pulses, and pulse duration on the development of the micropores. This work showed that applying laser pulses at different rates significantly modified the thin film surface. The results clearly revealed that femtosecond laser treatment of thin films of biomaterials: gelatin, collagen and collagen–elastin, results in creation of micro/nanopores with different size of cavity formations. Experimentally, it is demonstrated that it is possible to influence the dimensions of the pore sizes, ranging from 100 nm to 2 μm by tuning the laser parameters. We are currently further exploring the possibility of structuring these biomaterials by applying a time delay between separate pulses. First results from cell culture experiments on laser created surface foam of collagen–elastin were successfully obtained, showing the potential of the method to cultivate cells on superficial porous substrates and the preferable selectivity of the cells to proliferate on the laser modified parts of the biopolymer substrate.

  12. An ultrashort-pulse reconstruction software: GROG, applied to the FLAME laser system

    Science.gov (United States)

    Galletti, Mario

    2016-03-01

    The GRENOUILLE traces of FLAME Probe line pulses (60mJ, 10mJ after compression, 70fs, 1cm FWHM, 10Hz) were acquired in the FLAME Front End Area (FFEA) at the Laboratori Nazionali di Frascati (LNF), Instituto Nazionale di Fisica Nucleare (INFN). The complete characterization of the laser pulse parameters was made using a new algorithm: GRenouille/FrOG (GROG). A characterization with a commercial algorithm, QUICKFrog, was also made. The temporal and spectral parameters came out to be in great agreement for the two kinds of algorithms. In this experimental campaign the Probe line of FLAME has been completely characterized and it has been showed how GROG, the developed algorithm, works as well as QuickFrog algorithm with this type of pulse class.

  13. Zero photon dissociation of CS2+ in intense ultrashort laser pulses

    Science.gov (United States)

    Severt, Travis; Betsch, K. J.; Zohrabi, M.; Ablikim, U.; Jochim, Bethany; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2013-05-01

    We measured the dissociation of a CS2+ molecular ion beam in intense laser pulses ( C+ + S+. We speculate that a pump-dump process occurs whereby the vibrational wavepacket in the electronic ground state of CS2+ is pumped into the electronic first excited state's continuum by a single photon during the laser pulse. Once this continuum vibrational wavepacket passes the potential barrier in the ground electronic potential, the emission of a second photon is stimulated by the same laser pulse, most likely when the wavepacket moves through the internuclear distance where the two electronic states are in resonance with the driving field. A comparison is made to ZPD and ATD in the isovalent CO2+ species. Curiously, ATD is the favored mechanism in CO2+. The underlying molecular structure and dynamics determining this preference will be discussed. Supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  14. Electron Acceleration and the Propagation of Ultrashort High-Intensity Laser Pulses in Plasmas

    International Nuclear Information System (INIS)

    Wang, Xiaofang; Krishnan, Mohan; Saleh, Ned; Wang, Haiwen; Umstadter, Donald

    2000-01-01

    Reported are interactions of high-intensity laser pulses (λ=810 nm and I≤3x10 18 W /cm 2 ) with plasmas in a new parameter regime, in which the pulse duration (τ=29 fs ) corresponds to 0.6-2.6 plasma periods. Relativistic filamentation is observed to cause laser-beam breakup and scattering of the beam out of the vacuum propagation angle. A beam of megaelectronvolt electrons with divergence angle as small as 1 degree sign is generated in the forward direction, which is correlated to the growth of the relativistic filamentation. Raman scattering, however, is found to be much less than previous long-pulse results. (c) 2000 The American Physical Society

  15. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  16. Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams

    International Nuclear Information System (INIS)

    Ding Chaoliang; Lue Baida; Pan Liuzhan

    2009-01-01

    The unified theory of coherence and polarization proposed by Wolf is extended from stochastic stationary electromagnetic beams to stochastic spatially and spectrally partially coherent electromagnetic pulsed beams. Taking the stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beam as a typical example of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams, the expressions for the spectral density, spectral degree of polarization and spectral degree of coherence of stochastic electromagnetic GSMP beams propagating in free space are derived. Some special cases are analyzed. The illustrative examples are given and the results are interpreted physically.

  17. Development of high resolution Michelson interferometer for stable phase-locked ultrashort pulse pair generation.

    Science.gov (United States)

    Okada, Takumi; Komori, Kazuhiro; Goshima, Keishiro; Yamauchi, Shohgo; Morohashi, Isao; Sugaya, Takeyoshi; Ogura, Mutsuo; Tsurumachi, Noriaki

    2008-10-01

    We developed a high resolution Michelson interferometer with a two-frequency He-Ne laser positioning system in order to stabilize the relative phase of a pulse pair. The control resolution corresponded to a 12 as time resolution or a phase of 1.5 degrees at 900 nm. This high resolution Michelson interferometer can generate a phase-locked pulse pair either with a specific relative phase such as 0 or pi radians or with an arbitrary phase. Coherent control of an InAs self-assembled quantum dot was demonstrated using the high resolution Michelson interferometer with a microspectroscopy system.

  18. Limitations of the strong field approximation in ionization of the hydrogen atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Arbo, D.G.; Toekesi, K.; Miraglia, J.E.; FCEN, University of Buenos Aires

    2008-01-01

    Complete text of publication follows. We presented a theoretical study of the ionization of hydrogen atoms as a result of the interaction with an ultrashort external electric field. Doubly-differential momentum distributions and angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov and strong field approximations, as well as classical calculations are compared with the exact solution of the time dependent Schroedinger equation. We have shown that the Coulomb-Volkov approximation (CVA) describes the quantum atomic ionization probabilities exactly when the external field is described by a sudden momentum transfer [1]. The velocity distribution of emitted electrons right after ionization by a sudden momentum transfer is given through the strong field approximation (SFA) within both the CVA and CTMC methods. In this case, the classical and quantum time dependent evolutions of an atom subject to a sudden momentum transfer are identical. The difference between the classical and quantum final momentum distributions resides in the time evolution of the escaping electron under the subsequent action of the Coulomb field. Furthermore, classical mechanics is incapable of reproducing the quantum angular momentum distribution due to the improper initial radial distribution used in the CTMC calculations, i.e., the microcanonical ensemble. We find that in the limit of high momentum transfer, based on the SFA, there is a direct relation between the cylindrical radial distribution dP/dρ and the final angular momentum distribution dP/dL. This leads to a close analytical expression for the partial wave populations (dP/dL) SFA-Q given by dP SFA-Q / dL = 4Z 3 L 2 / (Δp) 3 K 1 (2ZL/Δp) which, together with the prescription L = l + 1/2, reproduces quite accurately the quantum (CVA) results. Considering the inverse problem, knowing the final angular momentum distribution can lead to the inference of the initial probability distribution

  19. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S; Andrianov, A V; Muravyev, S V; Kim, A V [Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation); Bobkov, K K; Likhachev, M E; Levchenko, A E; Aleshkina, S S; Semjonov, S L; Denisov, A N; Bubnov, M M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Laptev, A Yu; Gur' yanov, A N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm range and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)

  20. Quantum interference metrology at deep-UV wavelengths using phase-controlled ultrashort laser pulses

    NARCIS (Netherlands)

    Zinkstok, R. Th; Witte, S.; Ubachs, W.; Hogervorst, W.; Eikema, K. S E

    2005-01-01

    High-resolution metrology at wavelengths shorter than ultraviolet is in general hampered by a limited availability of appropriate laser sources. It is demonstrated that this limitation can be overcome by quantum-interference metrology with frequency up-converted ultrafast laser pulses. The required

  1. Examination of vocal fold movement by ultra-short pulse X radiography

    International Nuclear Information System (INIS)

    Noscoe, N.J.; Berry, R.J.; Brown, N.J.

    1983-01-01

    Antero-posterior radiographs of the larynx lack spatial and temporal resolution, due to the movement of the vocal folds during phonation. By utilising the electrolaryngograph to monitor vocal fold movement, single X-ray pulses of 30 nanoseconds duration have been triggered at pre-determined points during the cycle of vocal fold movement to visualise these in normal phonation. (author)

  2. Controlled modification of biomolecules by ultrashort laser pulses in polar liquids

    DEFF Research Database (Denmark)

    Gruzdev, Vitaly; Korkin, Dmitry; Mooney, Brian P.

    2017-01-01

    Targeted chemical modification of peptides and proteins by laser pulses in a biologically relevant environment, i.e. aqueous solvent at room temperature, allows for accurate control of biological processes. However, the traditional laser methods of control of chemical reactions are applicable onl...

  3. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  4. Time-resolved measurements with intense ultrashort laser pulses: a 'molecular movie' in real time

    International Nuclear Information System (INIS)

    Rudenko, A; Ergler, Th; Feuerstein, B; Zrost, K; Schroeter, C D; Moshammer, R; Ullrich, J

    2007-01-01

    We report on the high-resolution multidimensional real-time mapping of H 2 + and D 2 + nuclear wave packets performed employing time-resolved three-dimensional Coulomb explosion imaging with intense laser pulses. Exploiting a combination of a 'reaction microscope' spectrometer and a pump-probe setup with two intense 6-7 fs laser pulses, we simultaneously visualize both vibrational and rotational motion of the molecule, and obtain a sequence of snapshots of the squared ro-vibrational wave function with time-step resolution of ∼ 0.3 fs, allowing us to reconstruct a real-time movie of the ultrafast molecular motion. We observe fast dephasing, or 'collapse' of the vibrational wave packet and its subsequent revival, as well as signatures of rotational excitation. For D 2 + we resolve also the fractional revivals resulting from the interference between the counter-propagating parts of the wave packet

  5. Plasma heating by ultrashort laser pulse in the regime of anomalous skin-effect

    International Nuclear Information System (INIS)

    Gamaly, E.G.; Kiselev, A.E.; Tikhonchuk, V.T.

    1991-01-01

    The problem of interaction of short laser pulse (light frequency ω 0 pulse duration, τ s /V Ti ; 1 s , skin depth, V Ti , ion velocity) with dense (ω 0 much-lt ω pe ) semi-infinite plasm was solved. The authors formulated the self-consistent problem of obtaining the electron distribution function and space dependence of electric field in skin layer, and solved the problem for the case of absence of the energy losses from the skin layer. The authors found self-similar nonstationary electron distribution function and space dependence of electric field in this case, and basing on these solutions, have calculated mean electron energy, absorption coefficient, bremsstrahlung radiation, time dependent skin depth. This paper discusses the limitations of our theory

  6. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast

    International Nuclear Information System (INIS)

    Julien, A.

    2006-03-01

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  7. Technical advantages of disk laser technology in short and ultrashort pulse processes

    Science.gov (United States)

    Graham, P.; Stollhof, J.; Weiler, S.; Massa, S.; Faisst, B.; Denney, P.; Gounaris, E.

    2011-03-01

    This paper demonstrates that disk-laser technology introduces advantages that increase efficiency and allows for high productivity in micro-processing in both the nanosecond (ns) and picosecond (ps) regimes. Some technical advantages of disk technology include not requiring good pump beam quality or special wavelengths for pumping of the disk, high optical efficiencies, no thermal lensing effects and a possible scaling of output power without an increase of pump beam quality. With cavity-dumping, the pulse duration of the disk laser can be specified between 30 and hundreds of nanoseconds, but is independent of frequency, thus maintaining process stability. TRUMPF uses this technology in the 750 watts average power laser TruMicro 7050. High intensity, along with fluency, is important for high ablation rates in thinfilm removal. Thus, these ns lasers show high removal rates, above 60 cm2/s, in thin-film solar cell production. In addition, recent results in paint-stripping of aerospace material prove the green credentials and high processing rates inherent with this technology as it can potentially replace toxic chemical processes. The ps disk technology meanwhile is used in, for example, scribing of solar cells, wafer dicing and drilling injector nozzles, as the pulse duration is short enough to minimize heat input in the laser-matter interaction. In the TruMicro Series 5000, the multi-pass regenerative amplifier stage combines high optical-optical efficiencies together with excellent output beam quality for pulse durations of only 6 ps and high pulse energies of up to 0.25 mJ.

  8. Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining

    Science.gov (United States)

    Stuart, Brent C.; Nguyen, Hoang T.; Perry, Michael D.

    2001-01-01

    A method and apparatus for improving the quality and efficiency of machining of materials with laser pulse durations shorter than 100 picoseconds by orienting and maintaining the polarization of the laser light such that the electric field vector is perpendicular relative to the edges of the material being processed. Its use is any machining operation requiring remote delivery and/or high precision with minimal collateral dames.

  9. Effects of ultrashort laser pulses on angular distributions of photoionization spectra.

    Science.gov (United States)

    Ooi, C H Raymond; Ho, W L; Bandrauk, A D

    2017-07-27

    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.

  10. The wavelength dependence of gold nanorod-mediated optical breakdown during infrared ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Davletshin, Yevgeniy R.; Kumaradas, J. Carl [Department of Physics, Ryerson University, Toronto, ON (Canada)

    2017-04-15

    This paper investigates the wavelength dependence of the threshold of gold nanorod-mediated optical breakdown during picosecond and femtosecond near infrared optical pulses. It was found that the wavelength dependence in the picosecond regime is governed solely by the changes of a nanorod's optical properties. On the other hand, the optical breakdown threshold during femtosecond pulse exposure falls within one of two regimes. When the ratio of the maximum electric field from the outside to the inside of the nanorod is less then 7 (the absorption regime) the seed electrons are initiated by photo-thermal emission, and the wavelength dependence in the threshold of optical breakdown is the result of optical properties of the nanoparticle. When the ratio is greater than 7 (the near-field regime) more seed electrons are initiated by multiphoton ionization, and the wavelength dependence of the threshold of optical breakdown results from a combination of nanorod's optical properties and transitions in the order of multiphoton ionization. The findings of this study can guide the design of nanoparticle based optical breakdown applications. This analysis also deepens the understanding of nanoparticle-mediated laser induced breakdown for picosecond and femtosecond pulses at near infrared wavelengths. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Two-photon double ionization of the helium atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Palacios, Alicia; Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2010-01-01

    Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate ab initio calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-color pump probe experiments with short pulses whose central frequencies require that the sequential ionization process necessarily dominates, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom.

  12. Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?

    Czech Academy of Sciences Publication Activity Database

    Bulgakova, Nadezhda M.; Zhukov, V.P.; Sonina, S.V.; Meshcheryakov, Y.P.

    2015-01-01

    Roč. 118, č. 23 (2015), 1-17, č. článku 233108. ISSN 0021-8979 R&D Projects: GA MŠk ED2.1.00/01.0027 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027 Institutional support: RVO:68378271 Keywords : bulk fused-silica * femtosecond-laser * wave-guides * structural modifications * induced nanogratings * repetition rate * amorphous sio2 * light-pulses * glass Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.101, year: 2015

  13. Impacts of ambient and ablation plasmas on short- and ultrashort-pulse laser processing of surfaces

    Czech Academy of Sciences Publication Activity Database

    Bulgakova, Nadezhda M.; Panchenko, A.N.; Zhukov, V.P.; Kudryashov, S.I.; Pereira, A.; Marine, W.; Mocek, Tomáš; Bulgakov, A.V.

    2014-01-01

    Roč. 5, č. 4 (2014), s. 1344-1372 ISSN 2072-666X R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : pulsed laser ablation * laser material processing * laser plasma * ambient gas breakdown * material redeposition * plasma pipe formation * microstructures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.269, year: 2014

  14. Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition

    Science.gov (United States)

    Gontad, F.; Caricato, A. P.; Cesaria, M.; Resta, V.; Taurino, A.; Colombelli, A.; Leo, C.; Klini, A.; Manousaki, A.; Convertino, A.; Rella, R.; Martino, M.; Perrone, A.

    2017-10-01

    The ablation of a metal target at laser energy densities in the range of 1-10 TW/cm2 leads to the generation of nanoparticles (NP) of the ablated material. This aspect is of particular interest if the immobilization of NPs on three-dimensional (3D) substrates is necessary as for example in sensing applications. In this work the deposition of Au NP by irradiation of a Au bulk target with a sub-picosecond laser beam (500 fs; 248 nm; 10 Hz) on 2D (silica and Si(100)) and 3D substrates (silica nanowire forests) is reported for different number of laser pulses (500, 1000, 1500, 2000, 2500). A uniform coverage of small Au NPs (with a diameter of few nm) on both kinds of substrates has been obtained using a suitable number of laser pulses. The presence of spherical droplets, with a diameter ranging from tens of nm up to few μm was also detected on the substrate surface and their presence can be explained by the weak electron-phonon coupling of Au. The optical characterization of the samples on 2D and 3D substrates evidenced the surface plasmon resonance peak characteristic of the Au NPs although further improvements of the size-distribution are necessary for future applications in sensing devices.

  15. Measurement techniques using ultrashort optical pulses. Final report, February 9-September 30, 1983

    International Nuclear Information System (INIS)

    Siegman, A.E.

    1983-12-01

    The very great potential contactless, very high speed, very flexible, on-chip testing, diagnostics and measurement of very fast semiconductor circuits and devices has led us to initiate a small program to investigate such applications, using our own familiarity with picosecond pulse techniques, in conjunction with the integrated circuits skills present in Stanford's Integrated Circuit Laboratory (ICL), Solid State Laboratory (SSL), and the newly established Center for Integrated Systems. We plan to carry out first a rather straightforward set of picosecond pulse measurements on polysilicon photodetectors or photoswitches, such as can be very conveniently fabricated onto silicon integrated circuits using standard IC techniques, to serve as on-chip, optically addressable test or diagnostic points. (Such test points may in fact be fabricated directly into the active portion of the IC, or as test points in the disposable Kerr region between chips, for access during initial fabrication only). We are therefore assembling the necessary laser system for these measurements, and in addition beginning the fabrication of silicon test devices in collaboration with Professor Robert Dutton of the Integrated Circuit Laboratory and CIS. While making these preparations we have also carried out a literature review of the current state-of-the-art in such electrooptic devices. Some of the results of this study are summarized

  16. Interaction of attosecond electromagnetic pulses with atoms: The exactly solvable model

    International Nuclear Information System (INIS)

    Popov, Yu. V.; Kouzakov, K. A.; Vinitsky, S. I.; Gusev, A. A.

    2007-01-01

    We consider the exactly solvable model of interaction of zero-duration electromagnetic pulses with an atom. The model has a number of peculiar properties which are outlined in the cases of a single pulse and two opposite pulses. In perspective, it can be useful in different fields of physics involving interaction of attosecond laser pulses with quantum systems

  17. Enhanced proton acceleration by ultrashort laser pulse interaction with nanostructured thin films

    International Nuclear Information System (INIS)

    Mondal, Angana; Dalui, Malay; Tata, Sheroy; Sarkar, Subhrangshu; Jha, Jagannath; Lad, Amit; Krishnamurthy, M.; Ayyub, P.; Wang, W m; Sheng, Z m

    2015-01-01

    Enhancement of local electromagnetic field in nanostructured targets as opposed to plain polished targets has been experimentally observed and studied. This increase in field strength leads to enhanced hot electron generation, which gives rise to highly energetic ions through Target Normal Sheath Acceleration. As the laser energy coupled to the electrons increases, the sheath magnitude is expected to increase, leading to an enhancement in ion acceleration. We investigate energy enhancements in ions generated as a result of intense femtosecond laser interaction with nanostructured thin film targets, comprising 2 μm Ta foil coated with 100-200 nm diameter Ta clusters. The optimum nanoparticle size of 100 nm corresponding to maximum laser energy absorption has been predetermined through PIC simulations. The accelerated ions have been studied using Thompson parabola spectrometer at a laser intensity of 15 x 10 19 W/cm 2 at the TIFR high contrast 100 TW Ti:Sapphire laser facility. The proton cut-off energy is observed to increase rapidly with increasing cluster density till a saturation is reached. The enhancement in the proton cut-off energy is observed to be three-fold as compared to the proton cut-off energy for unstructured foils. (author)

  18. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    Science.gov (United States)

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  19. Spin Flips versus Spin Transport in Nonthermal Electrons Excited by Ultrashort Optical Pulses in Transition Metals

    Science.gov (United States)

    Shokeen, V.; Sanchez Piaia, M.; Bigot, J.-Y.; Müller, T.; Elliott, P.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.

    2017-09-01

    A joint theoretical and experimental investigation is performed to understand the underlying physics of laser-induced demagnetization in Ni and Co films with varying thicknesses excited by 10 fs optical pulses. Experimentally, the dynamics of spins is studied by determining the time-dependent amplitude of the Voigt vector, retrieved from a full set of magnetic and nonmagnetic quantities performed on both sides of films, with absolute time reference. Theoretically, ab initio calculations are performed using time-dependent density functional theory. Overall, we demonstrate that spin-orbit induced spin flips are the most significant contributors with superdiffusive spin transport, which assumes only that the transport of majority spins without spin flips induced by scattering does not apply in Ni. In Co it plays a significant role during the first ˜20 fs only. Our study highlights the material dependent nature of the demagnetization during the process of thermalization of nonequilibrium spins.

  20. Optical transmission control in graphene oxide and its organic composites with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Bala Murali Krishna, M; Narayana Rao, D; Venkatramaiah, N

    2014-01-01

    Nonlinear optical transmission of graphene oxide–(Cu, Zn, Sn, H 2 ) porphyrin composites was investigated using the Z-scan technique at 532 nm with picosecond (ps) and 800 nm with femtosecond laser pulses. Pure porphyrins show saturable absorption (SA) in reverse saturable absorption (RSA) behaviour and graphene oxide shows complete RSA behaviour, observed in an open aperture Z-scan curve. Interestingly, composites have shown a switch-over from reverse RSA to SA and back to RSA behaviour, observed with variation of intensity towards the focus, due to strong two-photon absorption as well as excited state absorption in the ps regime. This switching behaviour was interpreted as due to long lifetimes and saturation of the excited states. This may find application in optical switching. (paper)

  1. Studies on widely tunable ultra-short laser pulses using energy transfer distributed feedback dye laser

    International Nuclear Information System (INIS)

    Ahamed, M.B.; Ramalingam, A.; Palanisamy, P.K.

    2003-01-01

    This paper presents both theoretical and experimental study of the characteristics of Nd: YAG laser pumped energy transfer distributed feedback dye laser (ETDFDL). Using theoretical model proposed, the behavior of ETDFDL such as the characteristics of donor DFDL, the acceptor DFDL, the dependence of their pulse width and output power on donor-acceptor concentrations and pump power are studied for dye mixture Rhodamine 6G and Cresyl Violet in detail. Experimentally using prism-dye cell configuration, the ETDFDL output is obtained and the output energy of DFDL is measured at the emission peaks of donor and acceptor dyes for different pump powers and donor-acceptor concentrations. In addition, the DFDL linewidth measurement has been carried out at the lasing wavelengths of the donor and acceptor dyes using Fabry-Perot etalon and the tunability of DFDL is measured to be in the wavelength range of 545-680 nm

  2. Advances in high-power, Ultrashort pulse DPSSL technologies at HiLASE

    Czech Academy of Sciences Publication Activity Database

    Smrž, Martin; Novák, Ondřej; Mužík, Jiří; Turčičová, Hana; Chyla, Michal; Nagisetty, Siva S.; Vyvlečka, Michal; Roškot, Lukáš; Miura, Taisuke; Černohorská, Jitka; Sikocinski, Pawel; Chen, Liyuan; Huynh, Jaroslav; Severová, Patricie; Pranovich, Alina; Endo, Akira; Mocek, Tomáš

    2017-01-01

    Roč. 7, č. 10 (2017), s. 1-12, č. článku 1016. ISSN 2076-3417 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S; GA MŠk LM2015086; GA TA ČR(CZ) TG02010056 EU Projects: European Commission(XE) 739573 Grant - others:OP VVV - HiLASE-CoE(XE) CZ.02.1.01/0.0/0.0/15_006/0000674 Institutional support: RVO:68378271 Keywords : diode-pumped solid- state lasers (DPSSL) * high average power lasers * higher harmonic generation * Yb:YAG * mid-infrared radiation * thin-disk laser * picosecond pulses Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.679, year: 2016

  3. Quasi-monoenergetic proton acceleration from cryogenic hydrogen microjet by ultrashort ultraintense laser pulses

    Science.gov (United States)

    Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.

    2018-03-01

    Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.

  4. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T. V.; Komlenok, M. S.; Konov, V. I. [Natural Sciences Center, General Physics Institute, Vavilov str. 38, 119991 Moscow (Russian Federation); National Research Nuclear University, “MEPhI,” Kashirskoye shosse 31, 115409 Moscow (Russian Federation); Freitag, C. [Universität Stuttgart, Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany); GSaME Graduate School of Excellence Advanced Manufacturing Engineering, Nobelstrasse 12, 70569 Stuttgart (Germany); Onuseit, V.; Weber, R.; Graf, T. [Universität Stuttgart, Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-14

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres.

  5. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    International Nuclear Information System (INIS)

    Kononenko, T. V.; Komlenok, M. S.; Konov, V. I.; Freitag, C.; Onuseit, V.; Weber, R.; Graf, T.

    2014-01-01

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres

  6. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  7. Ultrashort Pulsed Laser Ablation of Magnesium Diboride: Plasma Characterization and Thin Films Deposition

    Directory of Open Access Journals (Sweden)

    Angela De Bonis

    2015-01-01

    Full Text Available A MgB2 target has been ablated by Nd:glass laser with a pulse duration of 250 fs. The plasma produced by the laser-target interaction, showing two temporal separated emissions, has been characterized by time and space resolved optical emission spectroscopy and ICCD fast imaging. The films, deposited on silicon substrates and formed by the coalescence of particles with nanometric size, have been analyzed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The first steps of the films growth have been studied by Transmission Electron Microscopy. The films deposition has been studied by varying the substrate temperature from 25 to 500°C and the best results have been obtained at room temperature.

  8. Histological observation on dental hard tissue irradiated by ultrashort-pulsed laser

    Science.gov (United States)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2006-04-01

    In the field of dentistry, effectiveness of USPL irradiation is researched because USPL has less thermal side effect to dental hard tissue. In this paper, we observed morphological change and optical change of dental hard tissue irradiated by USPL for discussing the safety and effectiveness of USPL irradiation to dental hard tissues. Irradiated samples were crown enamel and root dentin of bovine teeth. Lasers were Ti:sapphire laser, which had pulse duration (P d)of 130 fsec and pulse repetition rate (f) of 1kHz and wavelength (l) of 800nm, free electron laser (FEL), which had P d of 15 μsec and f of 10Hz and wavelength of 9.6μm, and Er:YAG laser, which had P d of 250 μsec and f of 10Hz and wavelength of 2.94μm. After laser irradiation, the sample surfaces and cross sections were examined with SEM and EDX. The optical change of samples was observed using FTIR. In SEM, the samples irradiated by USPL had sharp and accurate ablation with no crack and no carbonization. But, in FEL and Er:YAG laser, the samples has rough ablation with crack and carbonization. It was cleared that the P/Ca ratio of samples irradiated by USPL had same value as non-irradiated samples. There was no change in the IR absorption spectrum between samples irradiated by USPL and non-irradiated sample. But, they of samples irradiated by FEL and Er:YAG laser, however, had difference value as non-irradiated samples. These results showed that USPL might be effective to ablate dental hard tissue without thermal damage.

  9. Study on irradiation effects of nucleus electromagnetic pulse on single chip computer system

    International Nuclear Information System (INIS)

    Hou Minsheng; Liu Shanghe; Wang Shuping

    2001-01-01

    Intense electromagnetic pulse, namely nucleus electromagnetic pulse (NEMP), lightning electromagnetic pulse (LEMP) and high power microwave (HPM), can disturb and destroy the single chip computer system. To study this issue, the authors made irradiation experiments by NEMPs generated by gigahertz transversal electromagnetic (GTEM) Cell. The experiments show that shutdown, restarting, communication errors of the single chip microcomputer system would occur when it was irradiated by the NEMPs. Based on the experiments, the cause on the effects on the single chip microcomputer system is discussed

  10. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    Directory of Open Access Journals (Sweden)

    Elisa eFerrando-May

    2013-07-01

    Full Text Available Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly nonlinear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to nonlinear photoperturbation experiments.

  11. Modeling of finite systems irradiated by intense ultrashort hard X-ray pulses

    Energy Technology Data Exchange (ETDEWEB)

    Jurek, Zoltan [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Ziaja, Beata [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland); Santra, Robin [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2013-07-01

    Large number of experiments have already been carried out at the existing hard X-Ray Free-Electron Laser facilities (LCLS, SACLA) during the recent years. Their great success generates even higher anticipation for the forthcoming X-ray sources (European XFEL). Single molecule imaging and nanoplasma formation are the challenging projects with XFELs that investigate the interaction of finite, small objects, e.g. single molecules, atomic clusters with intense X-ray radiation. Accurate modelling of the time evolution of such irradiated systems is required in order to understand the current experiments and to inspire new directions of experimental investigation. In this presentation we report on our theoretical molecular-dynamics tool able to follow non-equilibrium dynamics within finite systems irradiated by intense X-ray pulses. We introduce the relevant physical processes, present computational methods used, discuss their limitations and also the specific constraints on calculations imposed by experimental conditions. Finally, we conclude with a few simulation examples.

  12. Dynamics of laser ablation at the early stage during and after ultrashort pulse

    International Nuclear Information System (INIS)

    Ilnitsky, D K; Zhakhovsky, V V; Migdal, K P; Inogamov, N A; Khokhlov, V A; Petrov, Yu V

    2016-01-01

    Study of material flow in two-temperature states is needed for a fundamental understanding the physics of femtosecond laser ablation. To explore phenomena at a very early stage of laser action on a metallic target our in-house two-temperature hydrodynamics code is used here. The early stage covers duration of laser pulse with next first few picoseconds. We draw attention to the difference in behavior at this stage between the cases: (i) of an ultrathin film (thickness of order of skin depth d skin or less), (ii) thin films (thickness of a film is 4-7 of d skin for gold), and (iii) bulk targets (more than 10 d skin for gold). We demonstrate that these differences follow from a competition among conductive cooling of laser excited electrons in a skin layer, electron-ion coupling, and hydrodynamics of unloading caused by excess of pressure of excited free electrons. Conductive cooling of the skin needs a heat sink, which is performed by the cold material outside the skin. Such sink is unavailable in the ultrathin films. (paper)

  13. Dynamics of the spectral behaviour of an ultrashort laser pulse in an argon-gas-filled capillary discharge-preformed plasma channel

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-11-01

    Full Text Available We have reported the argon plasma waveguide produced in an alumina (Al2O3 capillary discharge and used to guide ultrashort laser pulses at intensities of the order of 1016  W/cm2. A one-dimensional magnetohydrodynamic (MHD code was used to evaluate the average degree of ionization of Ar in the preformed plasma channel. The spectrum of the propagated laser pulse in the Ar plasma waveguide was not modified and was well reproduced by a particle-in-cell (PIC simulation under initial ion charge state of Ar3+ in the preformed plasma waveguide. The optimum timing for the laser pulse injection was around 150 ns after initiation of a discharge with a peak current of 200 A.

  14. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    Science.gov (United States)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  15. Soft x-ray generation in gases with an ultrashort pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd Raymond [Univ. of California, Davis, CA (United States)

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF6 (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 1015 to 1017 W/cm2 is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  16. Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire

    International Nuclear Information System (INIS)

    Miller, E.K.; Deadrick, F.J.; Landt, J.A.

    1975-01-01

    Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire is examined. Energy collected by the wire, load energy, peak load currents, and peak load voltages are found for a wide range of parameters, with particular emphasis on nuclear electromagnetic pulse (EMP) phenomena. A series of time-sequenced plots is used to illustrate pulse propagation on wires when loads and wire ends are encountered

  17. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses; Manipulation coherente d'atomes et de molecules diatomiques avec des impulsions mises en forme

    Energy Technology Data Exchange (ETDEWEB)

    Degert, J

    2002-12-15

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  18. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli.

    Science.gov (United States)

    Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng

    2013-01-01

    Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

  19. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation.

    Science.gov (United States)

    Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela

    2015-03-12

    Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1+MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (∼1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.

  20. High-density optical data storage based on grey level recording in photobleaching polymers using two-photon excitation under ultrashort pulse and continuous wave illumination

    International Nuclear Information System (INIS)

    Ganic, D.; Day, D.; Gu, M.

    1999-01-01

    Full text: Two-photon excitation has been employed in three-dimensional optical data storage by many researchers in an attempt to increase the storage density of a given material. The probability of two-photon excitation is proportional to the squared intensity of the incident light; this effect produces excitation only within a small region of the focus spot. Another advantage of two-photon excitation is the use of infrared illumination, which results in the reduction of scattering and enables the recording of layers at a deep depth in a thick material. The storage density thus obtained using multi-layered bit optical recording can be as high as Tbit/cm 3 . To increase this storage density even further, grey level recording can be employed. This method utilises variable exposure times of a laser beam focused into a photobleaching sample. As a result, the bleached area possesses a certain pixel value which depends upon the exposure time; this can increase the storage density many times depending upon the number of grey levels used. Our experiment shows that it is possible to attain grey level recording using both ultrashort pulsed and continuous-wave illumination. Although continuous wave illumination requires an average power of approximately 2 orders of magnitude higher than that for ultrashort pulsed illumination, it is a preferred method of recording due to its relatively low system cost and compactness. Copyright (1999) Australian Optical Society

  1. PERCEPTION LEVEL EVALUATION OF RADIO ELECTRONIC MEANS TO A PULSE OF ELECTROMAGNETIC RADIATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The method for evaluating the perception level of electronic means to pulsed electromagnetic radiation is consid- ered in this article. The electromagnetic wave penetration mechanism towards the elements of electronic systems and the impact on them are determined by the intensity of the radiation field on the elements of electronic systems. The impact of electromagnetic radiation pulses to the electronic systems refers to physical and analytical parameters of the relationship between exposure to pulses of electromagnetic radiation and the sample parameters of electronic systems. A physical and mathematical model of evaluating the perception level of electronic means to pulsed electromagnetic radiation is given. The developed model was based on the physics of electronics means failure which represents the description of electro- magnetic, electric and thermal processes that lead to the degradation of the original structure of the apparatus elements. The conditions that lead to the total equation electronic systems functional destruction when exposed to electromagnetic radia- tion pulses are described. The internal characteristics of the component elements that respond to the damaging effects are considered. The ratio for the power failure is determined. A thermal breakdown temperature versus pulse duration of expo- sure at various power levels is obtained. The way of evaluation the reliability of electronic systems when exposed to pulses of electromagnetic radiation as a destructive factor is obtained.

  2. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  3. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; van Kooten, Theo G.; Grijpma, Dirk W.; Kuijer, Roelof

    PURPOSE: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. METHODS: Explants of porcine

  4. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Tan, Lijun; Ren, Yijin; van Kooten, Theo G.; Grijpma, Dirk W.; Kuijer, Roel

    2015-01-01

    Purpose: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. Methods: Explants of porcine

  5. Thyristor current-pulse generator for betatron electromagnet with independent low-voltage supply

    International Nuclear Information System (INIS)

    Baginskii, B.A.; Makarevich, V.N.; Shtein, M.M.

    1989-01-01

    A thyristor generator is described that produces unipolar current pulses in the winding of a betatron electromagnet. The voltage on the electro-magnet is increased and the shape of the current pulses is improved by use of an intermediate inductive storage device. The current pulses have a duration of 11 msec, an amplitude of 190 A, and a repetition frequency of 50 Hz. The maximum magnetic-field energy is 450 J, the voltage on the electromagnet winding is 1.5 kV, and the supply voltage is 27 V

  6. Electromagnetic excitation of a generic cavity with a variable e-beam pulse

    International Nuclear Information System (INIS)

    Fleetwood, R.; Kerris, K.; Merkel, G.; Roberts, H.; Smith, M.

    1987-01-01

    Relativistic electron-beam nose-erosion techniques have been employed to produce an electron beam with variable pulse shape and bremsstrahlung capability (''dial a pulse''). This capability has been employed to excite a large number of electromagnetic fields inside a canonical cavity. Electron-beam and bremsstrahlung pulse-shape parameters have been varied to produce changes in the electromagnetic cavity response. For example, generic cavity test parameters such as displacement currents or conduction currents can be emphasized or de-emphasized. A theoretical interpretation of these electromagnetic excitations is presented

  7. THE INFLUENCE OF NANOSECOND ELECTROMAGNETIC PULSES TO OBTAIN TIN AND THE PROPERTIES OF ITS ALLOYS

    Directory of Open Access Journals (Sweden)

    V. G. Komkov

    2012-01-01

    Full Text Available Experimentally found that the effect of nanosecond electromagnetic pulses to melt the charge, while the carbon thermal recovery of the tin ore, accelerates the formation of the metallic phase.

  8. Use of Pulsing Electromagnetic Fields for the Treatment of Pelvic Stress Fractures Among Female Soldiers

    National Research Council Canada - National Science Library

    Jones, D

    1995-01-01

    .... Pulsing electromagnetic fields (PEMFs)have been shown to speed the healing of non-union fractures and we have used them successfully to treat stress fractures in the lower limbs. All women at Ft...

  9. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2006-01-01

    Electromagnetic Pulse (EMP) is an instantaneous, intense energy field that can disrupt at a distance numerous electrical systems and high technology microcircuits that are especially sensitive to power surges...

  10. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2008-01-01

    Electromagnetic Pulse (EMP) is an instantaneous, intense energy field that can overload or disrupt at a distance numerous electrical systems and high technology microcircuits, which are especially sensitive to power surges...

  11. Magnetohydrodynamic Electromagnetic Pulse (MHD-EMP) Interaction with Power Transmission and Distribution Systems

    National Research Council Canada - National Science Library

    Tesche, F. M; Barnes, P. R; Meliopoulos, A. P

    1992-01-01

    .... This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP , is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm...

  12. Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Milant'ev, V.P.; Turikov, V.A.

    2006-01-01

    In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done

  13. Simulation study of a pulsed neutron focusing using a pulsed electromagnetic lens coupled with a permanent magnet

    International Nuclear Information System (INIS)

    Iwashita, H.; Iwasa, H.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Suzuki, J.; Shinohara, T.; Oku, T.; Shimizu, H.M.

    2009-01-01

    A pulsed sextupole electromagnetic lens with suitably controlled time-dependent magnetic field can in principle focus pulsed neutrons at the same focal point over a wide range of wavelength as the lens removes aberrations. However, in fact, it is difficult to focus neutrons over a wide range of wavelength because attenuation of a practical pulsed sextupole electromagnet is faster than an ideal case. We have devised a method of canceling the difference between the practical pulsed sextupole magnetic field and the ideal magnetic field with the use of a permanent sextupole magnet. We performed simulation calculations to investigate the feasibility of this method, and it was shown that focusing wavelength range spread compared with the case using a pulsed magnetic lens only. This result indicates the usefulness of the method.

  14. Experimental research for γ-ray interference threshold effect of high electromagnetic pulse sensor

    International Nuclear Information System (INIS)

    Meng Cui; Chen Xiangyue; Nie Xin; Xiang Hui; Guo Xiaoqiang; Mao Congguang; Cheng Jianping; Ni Jianping

    2007-01-01

    The high electromagnetic pulse (EMP) sensor using optical-fiber to transmit signal can restrain electromagnetic interference. The Compton electrons scattered by γ-ray irradiated from nuclear explosion or nuclear explosion simulator can generate high EMP, γ-ray can penetrate the shielding box and irradiate the integrated circuit directly. The γ-ray irradiation effect includes interference, latch up and burn out, these will make the measurement result unbelievable. In this paper, the experimental method researching the γ-ray irradiation effect of high electromagnetic pulse sensor on Qiangguang-I accelerator is introduced. The γ-ray dose rate interference threshold is 2 x 10 6 Gy/s. (authors)

  15. Detection of fast burst of neutrons in the background of intense electromagnetic pulse

    International Nuclear Information System (INIS)

    Shyam, Anurag

    1999-01-01

    There are many experiments, in which fast neutron burst is emitted along with strong electromagnetic pulse. This pulse has frequency spectrum starting from few tens of khz to hard x-rays. Detecting these neutrons bursts require special measurement techniques, which are described. (author)

  16. Pulsed electromagnetic field radiation from a narrow slot antenna with a dielectric layer

    NARCIS (Netherlands)

    Štumpf, M.; De Hoop, A.T.; Lager, I.E.

    2010-01-01

    Analytic time domain expressions are derived for the pulsed electromagnetic field radiated by a narrow slot antenna with a dielectric layer in a two?dimensional model configuration. In any finite time window of observation, exact pulse shapes for the propagated, reflected, and refracted wave

  17. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  18. The Effects of Transcranial Pulsed Electromagnetic Field stimulation on quality of life in Parkinson's Disease

    DEFF Research Database (Denmark)

    Morberg, Bo Mohr; Malling, Anne Sofie; Jensen, Bente Rona

    2018-01-01

    BACKGROUND: Pulsed electromagnetic fields induce a protective and anti-inflammatory effect in the nervous system primarily due to growth factor up regulation that possibly abates neurodegeneration in Parkinson's disease. This study investigated treatment effects of transcranial pulsed......:3 to either active (n=49) or placebo treatment (n=48). Treatment with transcranial pulsed electromagnetic fields entailed one daily 30-minute home treatment for eight consecutive weeks. The 39-item Parkinson's Disease Questionnaire was assessed at baseline and at endpoint. Profiling adverse events a special...... PDQ-39 dimensions no between group differences were found. There were no between group difference in adverse events. Treatment compliance was 97.9%. CONCLUSION: Treatment with transcranial pulsed electromagnetic fields improved mobility and ADL scores for clinical effect size only in the active group...

  19. Influence of Turbulent Atmosphere on Polarization Properties of Stochastic Electromagnetic Pulsed Beams

    International Nuclear Information System (INIS)

    Ding Chao-Liang; Zhao Zhi-Guo; Li Xiao-Feng; Pan Liu-Zhan; Yuan Xiao

    2011-01-01

    Using the coherence theory of non-stationary fields and the characterization of stochastic electromagnetic pulsed beams, the analytical expression for the spectral degree of polarization of stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beams in turbulent atmosphere is derived and is used to study the polarization properties of stochastic electromagnetic GSMP beams propagating through turbulent atmosphere. The results of numerical calculation are given to illustrate the dependence of spectral degree of polarization on the pulse frequency, refraction index structure constant and spatial correlation length. It is shown that, compared with free-space case, in turbulent atmosphere propagation there are two positions at which the on-axis spectral degree of polarization P is equal to zero. The position change depends on the pulse frequency, refraction index structure constant and spatial correlation length. (fundamental areas of phenomenology(including applications))

  20. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  1. Texturing in titanium grade 2 surface irradiate with ultrashort pulse laser; Texturizacao em superficies de titanio grau 2 irradiadas com laser com pulsos ultracurtos

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Alessandro Francelino

    2015-07-01

    The texturing laser micromachining is an important alternative to improve the bonding adhesion between composites and titanium, which are applied to structural components in the aerospace industry. The texturing running on titanium plates is due to the fact that the preferred joining technique for many composite materials is the adhesive bonding. In this work, titanium plates were texturized using laser ultrashort pulses temporal widths of femtoseconds. This process resulted in minimal heat transfer to the material, avoiding deformation of the titanium plate surface as well as the formation of resolidified material in the ablated region. These drawbacks have occurred with the use of nanoseconds pulses. Were performed three types of texturing using laser with femtosecond pulses, with variations in the distances between the machined lines. The analysis of the obtained surfaces found that the wettability increases when there is the increased distance between the texturing lines. Advancing in the analysis by optical profilometry of textured surfaces was observed that there is substantial increase in the volume available for penetration of structural adhesive when the distances between the textured lines are diminished. In tensile tests conducted it was observed that there is an increase in shear strength of the adhesive joint by reducing the distance between the textured lines. (author)

  2. Dynamic behavior of superconducting flux qubit excited by a series of electromagnetic pulses

    International Nuclear Information System (INIS)

    Kiyko, A.S.; Omelyanchouk, A.N.; Shevchenko, S.N.

    2007-01-01

    We study theoretically the behavior of the superconducting flux qubit subjected to a series of electromagnetic pulses. The possibility of controlling system state via changing the parameters of the pulse is studied. We calculated the phase shift in a tank circuit weakly coupled to the qubit which can be measured by the impedance measurement technique. For the flux qubit we consider the possibility of estimating the relaxation rate from the impedance measurements by varying the delay time between the pulses

  3. Nonstationary propagation of a gaussian electromagnetic pulse in a decaying/growth plasma

    International Nuclear Information System (INIS)

    Kaushik, S.C.; Sen, R.

    1975-01-01

    The propagation of a gaussian electromagnetic pulse in a growing/decaying (time-dependent) plasma has been studied when the duration of the pulse is comparable with the decay/growing time of the plasma. Because of the different group velocities of the front and tail portions of the pulse, the pulse is compressed/broadened in a time-dependent plasma. The effect of absorption on the compression/broadening is found to be negligible. However, the peak value of the pulse is suppressed by attenuation. (author)

  4. Single-pass, efficient type-I phase-matched frequency doubling of high-power ultrashort-pulse Yb-fiber laser using LiB_3O_5

    Science.gov (United States)

    Shukla, Mukesh Kumar; Kumar, Samir; Das, Ritwick

    2016-05-01

    We report 48 % efficient single-pass second harmonic generation of high-power ultrashort-pulse ({≈ }250 fs) Yb-fiber laser by utilizing type-I phase matching in LiB_3O_5 (LBO) crystal. The choice of LBO among other borate crystals for high-power frequency doubling is essentially motivated by large thermal conductivity, low birefringence and weak group velocity dispersion. By optimally focussing the beam in a 4-mm-long LBO crystal, we have generated about 2.3 W of average power at 532 nm using 4.8 W of available pump power at 1064 nm. The ultrashort green pulses were found out to be near-transform limited sech^2 pulses with a pulse width of Δ τ ≈ 150 fs and being delivered at 78 MHz repetition rate. Due to appreciably low spatial walk-off angle for LBO ({≈ }0.4°), we obtain M^2beam which signifies marginal distortion in comparison with the pump beam (M^2<1.15). We also discuss the impact of third-order optical nonlinearity of the LBO crystal on the generated ultrashort SH pulses.

  5. Study and realisation of a femtosecond dye laser operating at different wavelengths. Ultrashort pulses compression and amplification

    International Nuclear Information System (INIS)

    Georges, Patrick

    1989-01-01

    We present the study and the realization of a passively mode-locked dye laser producing pulses shorter than 100 femto-seconds (10 -13 s). In a ring cavity with an amplifier medium (Rhodamine 60) and a saturable absorber (DODCI), a sequence of four prisms controls the group velocity dispersion and allows the generation of very short pulses. Then we have studied the production of femtosecond pulses at other wavelengths directly from the femtosecond dye laser. For the first rime, 60 fs pulses at 685 nm and pulses shorter than 50 fs between 775 nm and 800 nm have been produced by passive mode locking. These near infrared pulses have been used to study the absorption saturation kinetics in semiconductors multiple quantum wells GaAs/GaAlAs. We have observed a singular behavior of the laser operating at 685 nm and analyzed the produced pulses in terms of optical solitons. To perform time resolved spectroscopy with shortest pulses, we have studied a pulse compressor and a multipass amplifier to increase the pulses energy. Pulses of 20 fs and 10 micro-joules (peak power: 0.5 GW) have been obtained at low repetition rate (10 Hz) and pulses of 16 fs and 0.6 micro-joules pulses have been generated at high repetition rate (11 kHz) using a copper vapor laser. These pulses have been used to study the absorption saturation kinetics of an organic dye (the Malachite Green). (author) [fr

  6. A Research Program on the Asymptotic Description of Electromagnetic Pulse Propagation in Spatially Inhomogeneous, Temporally Dispersive, Attenuative Media

    National Research Council Canada - National Science Library

    Oughstun, Kurt E; Cartwright, Natalie A

    2007-01-01

    .... Indeed, previous studies of ultrawideband electromagnetic pulse propagation through dispersive, nonconducting media has shown the existence of a so-called Brillouin precursor whose peak amplitude...

  7. Retrieving molecular structural information and tracking HNC/HCN isomerization process with high harmonic generation by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Nguyen Ngoc Ty; Le Van Hoang; Vu Ngoc Tuoc; Le Anh Thu

    2010-01-01

    We investigate the possibility of applying the iterative method, suggested in our previous work, for HCN molecule and its HNC isomer. We found that the high-order harmonic generation (HHG) spectra are quite insensitive to the change of H-C (or H-N) bond length so that only the inter-nuclear C-N distance can be retrieved from the high-order harmonic spectra using ultrashort intense lasers. Furthermore, by analyzing the HHG spectra emitted by HCN during the chemical reaction path of isomerization we identify the intensity peaks nearby the stable, metastable and transition states. this finding can be useful for tracking the HNC/HNC isomerization process. (author)

  8. Applications of ultrashort laser pulses in science and technology; Proceedings of the Meeting, The Hague, Netherlands, Mar. 12, 13, 1990

    Science.gov (United States)

    Antonetti, Andre (Editor)

    1990-01-01

    Topics discussed are on the generation of high-intensity femtosecond lasers, the high-repetition and infrared femtosecond pulses, and physics of semiconductors and applications. Papers are presented on the femtosecond pulse generation at 193 nm; the generation of intense subpicosecond and femtosecond pulses; intense tunable subpicosecond and femtosecond pulses in the visible and infrared, generated by optical parametric oscillators; a high-efficiency high-energy optical amplifier for femtosecond pulses; and the generation of solitons, periodic pulsing, and nonlinearities in GaAs. Other papers are on ultrafast relaxation dynamics of photoexcited carriers in GaAs, high-order optical nonlinear susceptibilities of transparent glasses, subnanosecond risetime high-power pulse generation using photoconductive bulk GaAs devices, femtosecond studies of plasma formation in crystalline and amorphous silicon, and subpicosecond dynamics of hot carrier relaxation in InP and GaAs.

  9. Effects of dispersion on electromagnetic parameters of tape-helix Blumlein pulse forming line of accelerator

    International Nuclear Information System (INIS)

    Zhang, Y.; Liu, J.L.; Feng, J.H.

    2012-01-01

    In this paper, the tape-helix model is introduced in the field of intense electron beam accelerator to analyze the dispersion effects on the electromagnetic parameters of helical Blumlein pulse forming line (PFL). Work band and dispersion relation of the PFL are analyzed, and the normalized coefficients of spatial harmonics are calculated. Dispersion effects on the important electromagnetic parameters of PFL, such as phase velocity, slow-wave coefficient, electric length and pulse duration, are analyzed as the central topic. In the PFL, electromagnetic waves with different frequencies in the work band of PFL have almost the same phase velocity. When de-ionized water, transformer oil and air are used as the PFL filling dielectric, respectively, the pulse duration of the helical Blumlein PFL is calculated as 479.6 ns, 81.1 ns and 53.1 ns in order. Electromagnetic wave simulation and experiments are carried out to demonstrate the theoretical calculations of the electric length and pulse duration which directly describe the phase velocity and dispersion of the PFL. Simulation results prove the theoretical analysis and calculation on pulse duration. Experiment is carried out based on the tape-helix Blumlein PFL and magnetic switch system. Experimental results show that the pulse durations are tested as 460 ns, 79 ns and 49 ns in order when de-ionized water, transformer oil and air are used respectively. Experimental results basically demonstrate the theoretical calculations and the analyses of dispersion. (authors)

  10. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States)], E-mail: neven@phys.latech.edu

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  11. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    Science.gov (United States)

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  12. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    International Nuclear Information System (INIS)

    Simicevic, Neven

    2008-01-01

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW

  13. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...

  14. Nonlinear interaction of powerful short electromagnetic pulses with an electron plasma

    International Nuclear Information System (INIS)

    Rao, N.N.; Yu, M.Y.; Shukla, P.K.

    1990-01-01

    The nonlinear interaction of powerful short electromagnetic pulses with a plasma consisting of two groups of electrons and immobile ions has been studied. It is shown that the interaction is governed by a nonlinear equation for the electromagnetic wave envelope and a driven nonlinear equation for the low-frequency electron fluctuations. The driver for the latter depends explicitly on the spatio-temporal evolution of the electromagnetic wave flux. It is found that, depending on the cold-to-hot electron density ratio, the localized pulse can propagate with sub- as well as supersonic velocities accompanied by compressional or rarefactional density perturbations. The conditions of existence for the different types of solitary pulses are obtained. The present investigation may be relevant to the study of wave-plasma interaction devices such as inertial fusion confinement as well as to ionospheric modification experiments. (author)

  15. Fractional Calculus Based FDTD Modeling of Layered Biological Media Exposure to Wideband Electromagnetic Pulses

    Directory of Open Access Journals (Sweden)

    Luciano Mescia

    2017-11-01

    Full Text Available Electromagnetic fields are involved in several therapeutic and diagnostic applications such as hyperthermia and electroporation. For these applications, pulsed electric fields (PEFs and transient phenomena are playing a key role for understanding the biological response due to the exposure to non-ionizing wideband pulses. To this end, the PEF propagation in the six-layered planar structure modeling the human head has been studied. The electromagnetic field and the specific absorption rate (SAR have been calculated through an accurate finite-difference time-domain (FDTD dispersive modeling based on the fractional derivative operator. The temperature rise inside the tissues due to the electromagnetic field exposure has been evaluated using both the non-thermoregulated and thermoregulated Gagge’s two-node models. Moreover, additional parametric studies have been carried out with the aim to investigate the thermal response by changing the amplitude and duration of the electric pulses.

  16. Nucleation and Grain Refinement of 7A04 Aluminum Alloy Under a Low-Power Electromagnetic Pulse

    Science.gov (United States)

    Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Bao, Xinyu; Feng, Yanfei; Kang, Xiaolan

    2018-02-01

    The effects of a low-power electromagnetic pulse on the grain size and cooling curve of high-strength aluminum alloy 7A04 were investigated for various pulse duty cycles. This electromagnetic pulse treatment was found to effectively produce fine grains with globular crystals and a uniform microstructure for pulse duty cycles between 20 and 40%. The key factors that affected grain refinement under the electromagnetic pulse included the electromagnetic energy and the conversion frequency between \\varvec{B} and \\varvec{E} . The nucleation rate increased as the nucleation period was extended. A new kinetic condition of magnetic nucleation was explored by decreasing the critical Gibbs free energy in the electromagnetic pulse, which was more sensitive under low undercooling. In addition, the crystal orientation was controlled in such a solidification environment.

  17. Linear and non-linear carrier-envelope phase difference effects in interactions of ultra-short laser pulses with a metal nano-layer

    International Nuclear Information System (INIS)

    Varro, S.

    2006-01-01

    Complete test of publication follows. On the basis of classical electrodynamics the reflection and transmission of an ultra-short laser pulse impinging on a metal nano-layer have been analysed. The thickness of the layer was assumed to be of the order of 2-10 nm, and the metallic electrons were represented by a surface current density at the plane boundary of a dielectric substrate. It has been shown that in the scattered fields a non-oscillatory wake-field appears following the main pulse with an exponential decay and with a definite sign of the electric and magnetic fields. The characteristic time of these wake-fields is inversely proportional to the square of the plasma frequency and to the thickness of the metal nano-layer, and can be of order or larger then the original pulse duration. The magnitude of these wake-fields is proportional with the incoming field strength - so this is a linear effect - and the definite sign of them is governed by the cosine of the carrier-envelope phase difference of the incoming ultrashort laser pulse. As a consequence, when we let such a wake-field excite the electrons of a secondary target - say a plasma, a metal surface or a gas - we obtain 100 percent modulation depth in the electron signal in a given direction. This scheme can perhaps serve as a basis for the construction of a robust linear carrier-envelope phase difference mater. At relativistic laser intensities the target becomes a plasma layer generated, e.g. by the rising part of the incoming laser pulse. An approximate analytic solution has been given for the system of the coupled Maxwell-Lorentz equations describing the dynamics of the surface current (representing the plasma electrons) and the composite radiation field. With the help of these solutions the Fourier components of the reflected and transmitted radiation have been calculated. The nonlinearities stemming from the relativistic kinematics lead to the appearance of higher-order harmonics in the scattered

  18. Application of CPML to two-dimension numerical simulation of nuclear electromagnetic pulse from air explosions

    International Nuclear Information System (INIS)

    Gao Chunxia; Wang Lianghou

    2005-01-01

    The characteristics of different types of PML were analyzed and the convolutional PML was chosen to truncate the open boundaries in numerical simulation of nuclear electromagnetic pulse from air explosions. On the basis of the split-field PML and the plane-wave solution of electromagnetic field in free space, the unsplit-field PML was constructed. By applying the convolutional theorem of Fourier transform, the discrete iterative equations of electromagnetic field components were presented in the CPML media under the two-dimension prolate-spheroidal coordinate system. The numerical results indicate that the method of CPML can largely decrease calculation errors of boundary fields. (authors)

  19. A Model for Microcontroller Functionality Upset Induced by External Pulsed Electromagnetic Irradiation

    Science.gov (United States)

    2016-11-21

    AFRL-RD-PS- AFRL-RD-PS- TN-2016-0003 TN-2016-0003 A Model for Microcontroller Functionality Upset Induced by External Pulsed Electromagnetic...TYPE Technical Note 3. DATES COVERED (From - To) 22-11-2015 – 21-11-2016 4. TITLE AND SUBTITLE A Model for Microcontroller Functionality Upset Induced by... microcontroller (µC) subjected to external irradiation by a narrowband electromagnetic (EM) pulse. In our model, the state of a µC is completely specified by

  20. Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium

    International Nuclear Information System (INIS)

    Maimistov, Andrei I

    2000-01-01

    Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)

  1. Interactions of Low-Frequency, Pulsed Electromagnetic Fields with Living Tissue: Biochemical Responses and Clinical Results

    DEFF Research Database (Denmark)

    Rahbek, Ulrik L.; Tritsaris, Katerina; Dissing, Steen

    2005-01-01

    In recent years many studies have demonstrated stimulatory effects of pulsed electromagnetic fields (PEMF) on biological tissue. However, controversies have also surrounded the research often due to the lack of knowledge of the different physical consequences of static versus pulsed electromagnetic......, are still lacking. Despite the apparent success of the PEMF technology very little is known regarding the coupling between pulsed electrical fields and biochemical events leading to cellular responses. Insight into this research area is therefore of great importance. In this review we describe the physical...... properties of PEMF-induced electrical fields and explain the typical set up for coils and pulse patterns. Furthermore, we discuss possible models that can account for mechanisms by which induced electric fields are able to enhance cellular signaling. We have emphasized the currently well-documented effects...

  2. Electromagnetic soliton production during interaction of relativistically strong laser pulses with plasma

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Kamenets, F.F.; Naumova, N.M.

    1995-01-01

    The paper presents the results of a numeric modelling of the propagation of ultra short relativistically strong laser pulses in a rarefied plasma by the 'particle in cell'. Primary attention is paid to the process of the formation of electromagnetic solitons which can not be described in the approximation of envelopes. It is found that under certain conditions a significant portion of pulse energy can transform is solitons. The soliton excitation mechanism is related to a decrease of local frequency of electromagnetic radiation due to the generation of wave plasma waves. From one soliton to a stub of solitons can be generated in the wake of a relatively long pulse depending on the parameters of laser pulse in plasma. Particles are effectively accelerated forwards radiation propagation in the electric field of wake plasma waves. 22 refs., 7 figs

  3. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles.

    Science.gov (United States)

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.

  4. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-05

    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  5. FY 1999 report on the results of the R and D of femtosecond technology. Development of ultra-short pulse optoelectronics technology; 1999 nendo femutobyo technology no kenkyu kaihatsu seika hokokusho. Chotan pulse hikari electronics gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the FY 1999 results of the R and D of femtosecond technology. For the purpose of creating new industrial basement technology which supports the highly information-oriented society in the 21st century, the ultra-high speed electronics technology is indispensable which is beyond speed limits of the existing electronics technology and has new functionality. The ultra-high speed electronics basement technology is established through the R and D of the technology to control the state of light and electronics in the femtosecond time domain (10{sup -15} - 10{sup -12} second). Themes of the R and D are technology to generate/transmit femtosecond optical pulse, technology for control/distribution, and ultra-short pulse optoelectronics common basement technology. In FY 1999, a lot of results were obtained in the following: generation of the pulse train highly repeated at 500GHz in semiconductor laser; 139km transmission of 250fs optical pulse; switching movement at ultra-high speed of 150fs-1.2ps in transition among subbands of GaN base and Sb base materials; DEMUXA movement toward 160-10Gb/s in Mach-Zehnder type optical switch. (NEDO)

  6. Diffraction properties study of reflection volume holographic grating in dispersive photorefractive material under ultra-short pulse readout

    Energy Technology Data Exchange (ETDEWEB)

    Yi Yingyan; Liu Deming; Liu Hairong, E-mail: yiyingyan0410@163.com [Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2011-02-01

    Based on the modified Kogelnik diffraction efficiency equation, we study the diffraction intensity spectrum and the total diffraction efficiency of reflection volume holographic gratings in photorefractive media. Taking photorefractive LiNbO{sub 3} crystal as an example, the effect of the grating parameters and the pulse width on the diffraction properties is presented under the influence of crystal material dispersion. Under the combined effects, the diffraction pulse profiles and the total diffraction efficiency are compared with and without crystal material dispersion. The results show that the dispersion will decrease the diffraction intensity. Moreover, when pulse width is smaller or the grating spacing and the grating thickness are larger, the influence of dispersion on diffraction is large. The results of our paper can be used in pulse shaping applications.

  7. Studies of Effect Analysis of Electromagnetic Pulses (EMP) in Operating Nuclear Power Plants (NPP)

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Song Hae; Ryu, Ho Sun; Kim, Min Yi; Lee, Eui Jong [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    The effect analysis of electromagnetic pulses (EMPs) has been studied for the past year by the Central Research Institute of Korea Hydro Nuclear Power Co. (KHNP) in order to better establish safety measures in operating nuclear power plants. What is an electromagnetic pulse (EMP)? As a general term for high-power electromagnetic radiation, it refers to strong electromagnetic pulses that destroy only electronic equipment devices in a short period without loss of life. The effect analysis of EMPs in operating NPPs and their corresponding safety measures in terms of selecting target devices against EMP impact have been examined in this paper. In general, domestic nuclear power plants do apply the design of fail-safe concepts. For example, if key instruments of a system fail because of EMPs, the control rods of a nuclear reactor are dropped automatically in order to maintain safe conditions of the NPP. Reactor cooling presents no problem because the diesel generator will adopt the analog starting circuit least affected by the electromagnetic waves.

  8. Ultra-short pulse, ultra-high intensity laser improvement techniques for laser-driven quantum beam science

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Kando, Masaki

    2014-01-01

    Recent development activities of the Quantum Beam Research Team in JAEA are reported. The downsized, petawatt and femtosecond pulse laser is described at first. The process of the system development and utilization effort of so-called J-KAREN is explained with its time and space control system. For high contrast, OPCPA (Optical Parametric Chirped Pulse Amplification) preamplifier is adopted by using the titanium-sapphire laser system in which only the seed light pulses can be amplified. In addition, high contrast is obtained by adopting the high energy seed light to the amplifier. The system configuration of J-KAREN laser is illustrated. Typical spectra with and without OPCPA, as well as the spectra with OPCPA adjustment and without one are shown. The result of the recompressed pulses is shown in which the pulse width of 29.5 femtoseconds is close to the theoretical limit. Considering the throughput of the pulse compressor is 64 percent it is possible to generate high power laser beam of about 600 terawatts. In the supplementary budget of 2012, it has been approved to cope with the aging or obsoleteness of the system and at the same time to further sophisticate the laser using system. The upgraded laser system is named as J-KAREN-P in which the repetition rate is improved and another booster amplifier is added to increase the power. The system configuration of J-KAREN-P after the upgrading is illustrated. (S. Funahashi)

  9. Electromagnetic Fields, Pulsed Radiofrequency Radiation, and Epigenetics: How Wireless Technologies May Affect Childhood Development

    Science.gov (United States)

    Sage, Cindy; Burgio, Ernesto

    2018-01-01

    Mobile phones and other wireless devices that produce electromagnetic fields (EMF) and pulsed radiofrequency radiation (RFR) are widely documented to cause potentially harmful health impacts that can be detrimental to young people. New epigenetic studies are profiled in this review to account for some neurodevelopmental and neurobehavioral changes…

  10. Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene

    Science.gov (United States)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2018-05-01

    Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.

  11. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    International Nuclear Information System (INIS)

    Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper

  12. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    Science.gov (United States)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  13. Possible application of transient electromagnetic pulses to high brightness e-guns

    International Nuclear Information System (INIS)

    Kurnit, N.A.; Benicewicz, P.K.; Taylor, A.J.

    1992-01-01

    A number of groups have recently demonstrated the production of freely propagating, focusable pulses of terahertz radiation, consisting of essentially a single subpicosecond cycle of a baseband electromagnetic field. We discuss the possible application of these techniques to the production of strong fields at photocathode surfaces, in a manner analogous to radial-line switched-power concepts. Experimental status in production of these pulses in our laboratory and elsewhere is reviewed, and recent progress in development of short-pulse solid-state lasers useful for this technology is summarized

  14. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum.

    Science.gov (United States)

    Zhang, Nan; Wang, Wentao; Zhu, Xiaonong; Liu, Jiansheng; Xu, Kuanhong; Huang, Peng; Zhao, Jiefeng; Li, Ruxin; Wang, Mingwei

    2011-04-25

    50 fs - 12 ps laser pulses are employed to ablate aluminum, copper, iron, and graphite targets. The ablation-generated momentum is measured with a torsion pendulum. Corresponding time-resolved shadowgraphic measurements show that the ablation process at the optimal laser fluence achieving the maximal momentum is primarily dominated by the photomechanical mechanism. When laser pulses with specific laser fluence are used and the pulse duration is tuned from 50 fs to 12 ps, the generated momentum firstly increases and then remains almost constant, which could be attributed to the change of the ablation mechanism involved from atomization to phase explosion. The investigation of the ablation-generated momentum also reveals a nonlinear momentum-energy conversion scaling law, namely, as the pulse energy increases, the momentum obtained by the target increases nonlinearly. This may be caused by the effective reduction of the dissipated energy into the surrounding of the ablation zone as the pulse energy increases, which indicates that for femtosecond laser the dissipated energy into the surrounding target is still significant.

  15. Fiscal 1998 R and D report on femtosecond technology (ultra-short pulse optoelectronics technology); 1998 nendo femuto byo technology no kenkyu kaihatsu (chotan pulse hikari electronics gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report reports the result of the fiscal 1998 R and D on femtosecond technology supported by NEDO. For creation of industrial basic technologies supporting the advanced information society in the 21st century, ultra-high speed electronics technology including new functions beyond the speed limit of conventional electronics technologies is indispensable. From such viewpoint, this R and D aims at establishment of the basic technology necessary for ultra- high speed electronics technology through R and D of technology controlling conditions of beams and electrons in a femtosecond (10{sup -15}-10{sup -12} seconds) region. In fiscal 1998, this project first succeeded in fabrication of a prototype pulse compressor by using semiconductors, and developed a new pulse compressing method by using fibers to generate ultra-short pulse of 38fs. By developing new materials for intersubband transition where ultra-high speed responses can be expected, optical absorption by intersubband transition was first confirmed at optical communication wavelength. The main result for every theme is reported and explained. (NEDO)

  16. Prediction of electromagnetic pulse generation by picosecond avalanches in high-pressure air

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Yee, J.H.

    1993-01-01

    The gas avalanche switch is a laser-activated, high-voltage switch, consisting of a set of pulse-charged electrodes in a high-pressure gas. Induced electrons from a picosecond-scale laser pulse initiate an avalanche discharge between high-voltage and grounded electrodes. If the voltage, pressure, and dimensions are correct, the rapid avalanche, fueled by the immense number of electrons available in the gas, collapses the applied voltage in picoseconds and generates electromagnetic pulses with widths as short as 1-10 ps and 3 dB bandwidths of 20-120 GHz. With proper voltage or pressure detuning, wider pulses and lower bandwidths occur. In addition to picosecond electromagnetic pulse generation, application of this switch should result in ultra-fast Marx bank pulsers. A number of versions of the switch are possible. The simplest is a parallel plate capacitor, consisting of a gas between two parallel plate conductors. High voltage is applied across the two plates. A parallel plate, Blumlein geometry features a center electrode between two grounded parallel plates. This geometry emits a single pulse in each direction along the parallel plates. A frozen wave geometry with multiple, oppositely charged center electrodes will emit AC pulses. Series switches consisting of gas gaps between two electrodes are also possible

  17. Semi-classical description of Rydberg atoms in strong, single-cycle electromagnetic pulses

    International Nuclear Information System (INIS)

    Jensen, R.V.; Sanders, M.M.

    1993-01-01

    Recent experimental measurements of the excitation and ionization of Rydberg atoms by single-cycle, electromagnetic pulses have revealed a variety of novel features. Because many quantum states are strongly coupled by the broadband radiation in the short pulse, the traditional methods of quantum mechanics are inadequate to account for the experimental results. We have therefore developed a semi-classical description of the interaction of both hydrogenic and non-hydrogenic atoms with single-cycle pulses of intense, electromagnetic radiation which is based on the strong correspondence theory of Percival and Richards. This theory, which was originally introduced for the description of strong atomic collisions, accounts for some of the surprising features of the experimental measurements and provides new predictions for future experimental studies

  18. Transient field behavior in an electromagnetic pulse from neutral-beam reflection

    International Nuclear Information System (INIS)

    Strobel, G.L.

    1990-01-01

    A neutral beam of electrons and positrons catches up to an electromagnetic pulse moving in a medium with refractive index n. The neutral beam is reflected and deposits some of its energy in a current region in the tail of the pulse. The location, size, and shape of the transient-induced electric fields in the current region are modeled using current densities from uniform averaged fields. The electric field in the current region is predicted to rise linearly with time, with a doubling time determined by the beam parameters and the initial local electromagnetic field. A coordinate frame comoving with the pulse is used to determine the extent of and conditions within the current region. In this comoving frame the Lorentz-transformed electric field is zero, but there is an enhanced Lorentz-transformed magnetic field. The extent of the current region is found from the radius of the semicircular charged-particle orbits in the comoving frame

  19. The Use of Ultrashort Picosecond Laser Pulses to Generate Quantum Optical Properties of Single Molecules in Biophysics

    Science.gov (United States)

    Ly, Sonny

    Generation of quantum optical states from ultrashort laser-molecule interactions have led to fascinating discoveries in physics and chemistry. In recent years, these interactions have been extended to probe phenomena in single molecule biophysics. Photons emitted from a single fluorescent molecule contains important properties about how the molecule behave and function in that particular environment. Analysis of the second order coherence function through fluorescence correlation spectroscopy plays a pivotal role in quantum optics. At very short nanosecond timescales, the coherence function predicts photon antibunching, a purely quantum optical phenomena which states that a single molecule can only emit one photon at a time. Photon antibunching is the only direct proof of single molecule emission. From the nanosecond to microsecond timescale, the coherence function gives information about rotational diffusion coefficients, and at longer millisecond timescales, gives information regarding the translational diffusion coefficients. In addition, energy transfer between molecules from dipole-dipole interaction results in FRET, a highly sensitive method to probe conformational dynamics at nanometer distances. Here I apply the quantum optical techniques of photon antibunching, fluorescence correlation spectroscopy and FRET to probe how lipid nanodiscs form and function at the single molecule level. Lipid nanodiscs are particles that contain two apolipoprotein (apo) A-I circumventing a lipid bilayer in a belt conformation. From a technological point of view, nanodiscs mimics a patch of cell membrane that have recently been used to reconstitute a variety of membrane proteins including cytochrome P450 and bacteriorhodopsin. They are also potential drug transport vehicles due to its small and stable 10nm diameter size. Biologically, nanodiscs resemble to high degree, high density lipoproteins (HDL) in our body and provides a model platform to study lipid-protein interactions

  20. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    Science.gov (United States)

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  1. Resonant multiphoton ionization of caesium atoms by ultra-short laser pulses at 1.06 μm

    International Nuclear Information System (INIS)

    Lompre, L.A.; Mainfray, G.; Manus, C.; Thebault, J.

    1978-01-01

    This paper reports the four-photon ionization of caesium atoms when the laser frequency is tuned through the resonant three-photon transition 6S → 6F. This experiment was performed by using a tunable-wavelength bandwidth-limited subnanosecond laser pulse at 1.06 μm, in the 10 8 -10 9 W.cm -2 laser intensity range. Pulse widths of 1.5 ns, 50 ps, and 15 ps were used. The resonant character of the multiphoton ionization process was observed, even with the shortest pulse of 15 ps. Nevertheless the influence of a temporal effect is demonstrated according to theoretical predictions. The resonance shift ΔE of the 6S → 6F transition energy was found to be linear with the laser intensity I within the range 10 8 -10 9 W.cm -2 . ΔE = αI, with α = 2 cm -1 /GW.cm -2 . This results confirms previous measurements performed with single-mode 35 ns laser pulses and is in very good agreement with calculated resonance shifts

  2. Electromagnetic influences and pulsing hardness of integrated circuits

    Directory of Open Access Journals (Sweden)

    Petr Konstantinovich Skorobogatov

    2016-10-01

    Full Text Available The results of the single pulsing electrical overstress (EOS series with energy below the threshold of failure for modern submicron IC’s design are presented. The study was conducted on two types of modern sub-micron VLSI. The obtained results confirm the possibility of accumulation of the effects of damage from repeated exposure EOS in modern IC’s and allow you to get the dependence describing the additive nature of damage the IC’s during exposure to subthreshold EOS. The obtained dependence agrees well with the Arrhenius equation, which indicates the thermal nature of the damage when exposed to a series of subthreshold EOS.The method of the IC’s testing is proposed to determine the level of the IC’s EOS hardness to the effects of multiple different pulsing voltages.

  3. Interaction with the lower ionosphere of electromagnetic pulses from lightning: Heating, attachment, and ionization

    International Nuclear Information System (INIS)

    Taranenko, Y.N.; Inan, U.S.; Bell, T.F.

    1993-01-01

    The authors model the interaction of lightning flashes with the lower ionosphere. They use a Boltzmann formulation of the electron distribution function, and use Maxwells equations for the electromagnetic fields. Electromagnetic pulses from lightning have pulse lengths of 50 to 150 μs and produce peak fields of 50 V/m at distances of 100 km from the discharges. Fields greater than 16 V/m can cause avalanche ionization of neutrals at elevations of 100 km, where typical mean free paths for electrons are at least a meter. Modeling the lightning flash as a 100 μs pulse of 10 kHz radiation emitted at 70km altitude, they find that in nighttime skies the pulse can affect the electron density in the range of 1 to 30%. A sequence of pulses can lead to substantial impact on the electron density. The propagation characteristics of the pulses are such as to result in a steepening of the boundary of the lower ionosphere

  4. Dynamical equations and transport coefficients for the metals at high pulse electromagnetic fields

    International Nuclear Information System (INIS)

    Volkov, N B; Chingina, E A; Yalovets, A P

    2016-01-01

    We offer a metal model suitable for the description of fast electrophysical processes in conductors under influence of powerful electronic and laser radiation of femto- and picosecond duration, and also high-voltage electromagnetic pulses with picosecond front and duration less than 1 ns. The obtained dynamic equations for metal in approximation of one quasineutral liquid are in agreement with the equations received by other authors formerly. New wide-range expressions for the electronic conduction in strong electromagnetic fields are obtained and analyzed. (paper)

  5. Effect of electromagnetic and phonon pulses on a photon echo in LaF3: Pr3+

    International Nuclear Information System (INIS)

    Shegeda, A.M.; Khabibullin, B.M.; Lisin, V.N.

    1995-01-01

    The effect of electromagnetic-field pulses of the nanosecond duration on the inverted two-pulse, three-pulse, and long-lived three-pulse photon echoes in LaF 3 :Pr 3+ is studied. The eletromagnetic pulses were produced by a current pulse flowing through a thin metal film evaporated on the sample surface parallel to the C 3- axis. A strong decrease in echo signals is observed, even if the eletromagnetic pulses were switched on prior to laser pulses. The experimental results can be qualitatively interpreted under the assumption that during the flowing of current through the metal film, the generation of transverse acoustic and electromagnetic fields occurs that induces the pseudo-Stark splitting of energy levels of Pr 3+ ions and, as a consequence, the decrease in echo signals, if the current was switched on prior to or, correspondingly, at the instant of the action of the laser pulses. 12 refs., 5 figs

  6. Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2010-01-01

    Full Text Available A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel et al., in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002, p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator’s intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.

  7. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  8. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    Science.gov (United States)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  9. Inverse Bremsstrahlung Stabilization of Noise in the Generation of Ultra-short Intense Pulses by Backward Raman Amplification

    International Nuclear Information System (INIS)

    Berger, Richard L.; Clark, Daniel S.; Solodov, Andrei; Valeo, Ernest J.; Fisch, Nathaniel J.

    2003-01-01

    Inverse bremsstrahlung absorption of the pump laser beam in a backward Raman amplifier over the round-trip light transit time through the sub-critical density plasma can more than double the electron temperature of the plasma and produce time-varying axial temperature gradients. The resulting increased Landau damping of the plasma wave and detuning of the resonance can act to stabilize the pump against unwanted amplification of Langmuir noise without disrupting nonlinear amplification of the femtosecond seed pulse. Because the heating rate increases with the charge state Z, only low-Z plasmas (hydrogen, helium, or helium-hydrogen mixtures) will maintain a low enough temperature for efficient operation

  10. Ultra-fast Movies Resolve Ultra-short Pulse Laser Ablation and Bump Formation on Thin Molybdenum Films

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Huber, Heinz

    For the monolithic serial interconnection of CIS thin film solar cells, 470 nm molybdenum films on glass substrates must be separated galvanically. The single pulse ablation with a 660 fs laser at a wavelength of 1053 nm is investigated in a fluence regime from 0.5 to 5.0 J/cm2. At fluences above 2.0 J/cm2 bump and jet formation can be observed that could be used for creating microstructures. For the investigation of the underlying mechanisms of the laser ablation process itself as well as of the bump or jet formation, pump probe microscopy is utilized to resolve the transient ablation behavior.

  11. D region disturbances caused by electromagnetic pulses from lightning

    Science.gov (United States)

    Rodriguez, Juan V.; Inan, Umran S.; Bell, Timothy F.

    1992-01-01

    Attention is given to a simple formulation of the propagation and absorption in a magnetized collisional plasma of EM pulses from lightning which describes the effect of discharge orientation and radiated electric field on the structure and magnitude of heating and secondary ionization in the D region. Radiation from most lightning discharges can heat substantially, but only the most intense (not less than 20 V/m) are likely to cause ionization enhancements not less than 10 percent of the ambient in a single ionization cycle. This dependence on the radiated electric field is modified by the discharge radiation pattern: a horizontal cloud discharge tends to cause larger heating and ionizaton maxima while a vertical return stroke causes disturbances of a larger horizontal extent.

  12. [Low-frequency pulsed electromagnetic fields promotes rat osteoblast differentiation in vitro through cAMP/PKA signal pathway].

    Science.gov (United States)

    Fang, Qing-Qing; Li, Zhi-Zhong; Zhou, Jian; Shi, Wen-Gui; Yan, Juan-Li; Xie, Yan-Fang; Chen, Ke-Ming

    2016-11-20

    To study whether low-frequency pulsed electromagnetic fields promotes the differentiation of cultured rat osteoblasts through the cAMP/PKA signal pathway. Rat calvarial osteoblasts isolated by enzyme digestion were exposed to 50 Hz 0.6 mT low-frequency pulsed electromagnetic field for varying lengths of time, and the concentration of cAMP and levels of phosphorylated PKA in the cells were assayed. In cells treated with DDA to inhibit the activity of adenylate cyclase, the changes of ALP activity and transcription of osteogenic gene were detected after exposure to low-frequency pulsed electromagnetic field. The changes of osteogenic gene transcription and protein expression were tested in the osteoblasts pretreated with KT5720 in response to low-frequency pulsed electromagnetic field exposure. The intracellular cAMP concentration in the cells increased significantly at 20 min during exposure to low-frequency pulsed electromagnetic field, began to decrease at 40 min during the exposure, and increased again after a 2-h exposure; the same pattern of variation was also observed in p-PKA level. Application of DDA and KT5720 pretreatment both suppressed the increase in ALP activity and osteogenic gene transcription induced by electromagnetic field exposure. Low- frequency pulsed electromagnetic field exposure improves the differentiation of cultured rat osteoblasts by activating cAMP/PKA signal pathway.

  13. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    Science.gov (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  14. Analog modeling of splitting the envelope of an electromagnetic pulse reflected from a plasma layer

    International Nuclear Information System (INIS)

    Bakunov, M.I.; Rogozhin, I.Yu.

    1997-01-01

    By means of a simple radio engineering model, an experimental study is carried out of the effect of the strong deformation of the envelope of a quasimonochromatic electromagnetic pulse reflected from a thin plasma layer placed on the surface of an ideal conductor. This deformation is considered under the conditions of the plasma resonance in the plasma layer and when the thickness of the layer is less then the wavelength of the incident radiation. It is shown that the pulse whose initial profile is Gaussian, after the reflection, is separated (entirely of partially) into two pulses with amplitudes that can be controlled by means of varying the parameters of the incident pulse and plasma layer

  15. A comparison of lightning and nuclear electromagnetic pulse response of tactical shelters

    Science.gov (United States)

    Perala, R. A.; Rudolph, T. H.; Mckenna, P. M.

    1984-01-01

    The internal response (electromagnetic fields and cable responses) of tactical shelters is addressed. Tactical shelters are usually well-shielded systems. Apart from penetrations by signal and power lines, the main leakage paths to the interior are via seams and the environment control unit (ECU) honeycomb filter. The time domain in three-dimensional finite-difference technique is employed to determine the external and internal coupling to a shelter excited by nuclear electromagnetic pulses (NEMP) and attached lightning. The responses of interest are the internal electromagnetic fields and the voltage, current, power, and energy coupled to internal cables. Leakage through the seams and ECU filter is accomplished by their transfer impedances which relate internal electric fields to external current densities. Transfer impedances which were experimentally measured are used in the analysis. The internal numerical results are favorably compared to actual shelter test data under simulated NEMP illumination.

  16. Description of an aircraft lightning and simulated nuclear electromagnetic pulse (NEMP) threat based on experimental data

    Science.gov (United States)

    Rustan, Pedro L., Jr.

    1987-01-01

    Lightning data obtained by measuring the surface electromagnetic fields on a CV-580 research aircraft during 48 lightning strikes between 1500 and 18,000 feet in central Florida during the summers of 1984 and 1985, and nuclear electromagnetic pulse (NEMP) data obtained by surface electromagnetic field measurements using a 1:74 CV-580 scale model, are presented. From one lightning event, maximum values of 3750 T/s for the time rate of change of the surface magnetic flux density, and 4.7 kA for the peak current, were obtained. From the simulated NEMP test, maximum values of 40,000 T/s for the time rate of change of the surface magnetic flux density, and 90 A/sq m for the total normal current density, were found. The data have application to the development of a military aircraft lightning/NEMP standard.

  17. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  18. The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers

    Directory of Open Access Journals (Sweden)

    David C. Brown

    2016-01-01

    Full Text Available Ultrafast laser physics continues to advance at a rapid pace, driven primarily by the development of more powerful and sophisticated diode-pumping sources, the development of new laser materials, and new laser and amplification approaches such as optical parametric chirped-pulse amplification. The rapid development of high average power cryogenic laser sources seems likely to play a crucial role in realizing the long-sought goal of powerful ultrafast sources that offer concomitant high peak and average powers. In this paper, we review the optical, thermal, thermo-optic and laser parameters important to cryogenic laser technology, recently achieved laser and laser materials progress, the progression of cryogenic laser technology, discuss the importance of cryogenic laser technology in ultrafast laser science, and what advances are likely to be achieved in the near-future.

  19. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Wilke, M; Al-Obaidi, R; Moguilevski, A; Kothe, A; Engel, N; Metje, J; Kiyan, I Yu; Aziz, E F

    2014-01-01

    We report on strong-field ionization of dense water gas in a short infrared laser pulse. By employing a unique combination of photoelectron spectroscopy with a liquid micro-jet technique, we observe how the character of electron emission at high kinetic energies changes with the increase of the medium density. This change is associated with the process of laser-assisted electron scattering (LAES) on neighboring particles, which becomes a dominant mechanism of hot electron emission at higher medium densities. The manifestation of this mechanism is found to require densities that are orders of magnitude lower than those considered for heating the laser-generated plasmas via the LAES process. The experimental results are supported by simulations of the LAES yield with the use of the Kroll–Watson theory. (paper)

  20. Heating of a dense plasma by an ultrashort laser pulse in the anomalous skin-effect regime

    International Nuclear Information System (INIS)

    Andreev, A.A.; Gamalii, E.G.; Novikov, V.N.; Semakhin, A.N.; Tikhonchuk, V.T.

    1992-01-01

    The absorption of laser light in an overdense plasma with a sharp boundary and the heating of the plasma under conditions corresponding to the anomalous skin effect are studied. Heat transfer from the absorption region near the surface into the interior of the plasma is studied in the kinetic approximation. At high intensities of the laser pulse, the electron distribution function is deformed, and the plasma is heated at a rate tens of times that predicted by classical heat-transfer theory, because of the severe limitation on thermal conductivity. The anisotropy of the electron distribution function in the skin layer leads to an increase in the absorption coefficient. The angular distribution and the polarization dependence of the absorption coefficient are discussed

  1. Methodology to assess the effects of magnetohydrodynamic electromagnetic pulse (MHD-EMP) on power systems

    International Nuclear Information System (INIS)

    Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.

    1985-01-01

    This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig

  2. Internal electromagnetic pulse produced by the prompt-γ photons in the rectanglar cavity

    International Nuclear Information System (INIS)

    Wang Taichun; Wang Yuzhi

    1986-01-01

    The internal electromagnetic pulses produced by the prompt-γ photons were calculated by self-consistent and non-self-consistent method respectively in the rectanglar cavity of the matel. The computational results were analyzed. Under the condition that the electric field is weak and the cavity is small, the results obtained by the self-consistent method is in agreement with the results by the non-self-consistent

  3. On the electromagnetic pulse generated by exo-atmospheric nuclear detonations

    International Nuclear Information System (INIS)

    Leuthaeuser, K.D.

    1983-01-01

    When gamma rays produced by high altitude nuclear weapons explosions interact with the atmosphere they generate an electromagnetic pulse (EMP) propagating towards the earth's surface. The EMP covers large areas of millions of km 2 and reaches peak electric fields of more than 50 kV/m which may couple into all kinds of conducting systems. The present paper deals with a simple model to calculate EMP fields basing on Maxwell's equations. (orig.)

  4. Electromagnetic pulse coupling through an aperture into a two-parallel-plate region

    Science.gov (United States)

    Rahmat-Samii, Y.

    1978-01-01

    Analysis of electromagnetic-pulse (EMP) penetration via apertures into cavities is an important study in designing hardened systems. In this paper, an integral equation procedure is developed for determining the frequency and consequently the time behavior of the field inside a two-parallel-plate region excited through an aperture by an EMP. Some discussion of the numerical results is also included in the paper for completeness.

  5. A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas

    Science.gov (United States)

    Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.

  6. Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures

    National Research Council Canada - National Science Library

    Foster, Jr., John S; Gjelde, Earl; Graham, William R; Hermann, Robert J; Kluepfel, Henry M; Lawson, Richard L; Soper, Gordon K; Wood, Lowell L; Woodard, Joan B

    2008-01-01

    ...) attack on our critical national infrastructures. An earlier report, Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP), Volume 1: Executive Report (2004...

  7. Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS

    International Nuclear Information System (INIS)

    De Marco, M; Pfeifer, M; Krousky, E; Krasa, J; Cikhardt, J; Klir, D; Nassisi, V

    2014-01-01

    We describe the radiofrequency emission taking place when 300 ps laser pulses irradiate various solid targets with an intensity of 10 16 W/cm 2 . The emission of intense electromagnetic pulses was observed outside the laser target chamber by two loop antennas up to 1 GHz. Electromagnetic pulses can be 800 MHz transients, which decay from a peak electromagnetic field of E 0 ≊ 7 kV/m and H 0 ≊ 15 A/m. The occurrence of these electromagnetic pulses is associated with generation of hard x-rays with photon energies extending beyond 1 MeV. This contribution reports the first observation of this effect at the PALS facility.

  8. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  9. Molecular isomerization induced by ultrashort infrared pulses. II. Pump-dump isomerization using pairs of time-delayed half-cycle pulses.

    Science.gov (United States)

    Uiberacker, Christoph; Jakubetz, Werner

    2004-06-22

    We investigate population transfer across the barrier in a double-well potential, induced by a pair of time-delayed single-lobe half-cycle pulses. We apply this setup both to a one-dimensional (1D) quartic model potential and to a three-dimensional potential representing HCN-->HNC isomerization. Overall the results for the two systems are similar, although in the 3D system some additional features appear not seen in the 1D case. The generic mechanism of population transfer is the preparation by the pump pulse of a wave packet involving delocalized states above the barrier, followed by the essentially 1D motion of the delocalized part of wave packet across the barrier, and the eventual de-excitation by the dump pulse to localized states in the other well. The correct timing is given by the well-to-well passage time of the wave packet and its recurrence properties, and by the signs of the field lobes which determine the direction and acceleration or deceleration of the wave packet motion. In the 3D system an additional pump-pump-dump mechanism linked to wave packet motion in the reagent well can mediate isomerization. Since the transfer time and the pulse durations are of the same order of magnitude, there is also a marked dependence of the dynamics and the transfer yield on the pulse duration. Our analysis also sheds light on the pronounced carrier envelope phase dependence previously observed for isomerization and molecular dissociation with one-cycle and sub-one-cycle pulses. (c) 2004 American Institute of Physics.

  10. Ablation of burned skin with ultra-short pulses laser to promote healing: evaluation by optical coherence tomography, histology, μATR-FTIR and Nonlinear Microscopy

    International Nuclear Information System (INIS)

    Santos, Moises Oliveira dos

    2012-01-01

    Burns cause changes in the anatomical structure of the skin associated with trauma. The severity of the burn injury is divided into first, second and third-degree burns. The third-degree burns have been a major focus of research in search of more conservative treatments and faster results in repair for a functional and cosmetically acceptable. The conventional treatment is the use of topical natural or synthetic skin graft. An alternative therapy is the laser ablation process for burned tissue necrosis removal due to the no mechanical contact, fast application and access to difficult areas. The purpose of this study is to evaluate the feasibility of using high intensity femtosecond lasers as an adjunct treatment of burned patients. For this study, 65 Wistar rats were divided into groups of five animals: healthy skin, burned skin, two types of treatment (surgical debridement or femtosecond laser ablation) and four different times in the healing process monitoring. Three regions of the back of the animals were exposed to steam source causing third-degree burn. On the third day after the burn, one of the regions was ablated with high intensity ultrashort laser pulses (λ = 785 nm, 90 fs, 2 kHz and 10 μJ/ pulse), the other received surgical debridement, and the last was considered the burn control. The regions were analyzed by optical coherence tomography (OCT), histology, attenuated total reflectance infrared spectroscopy using Fourier transform (μ-ATR-FTIR), two-photon excitation fluorescence microscopy (TPEFM) and second harmonic generation technique (SHG) on days 3, 5, 7 and 14 pos-treatments. The results showed that with the laser irradiation conditions used it was possible to remove debris from third degree burn. The techniques used to characterize the tissue allowed to verify that all treatments promoted wound healing. On the fourteenth day, the regeneration curve showed that the attenuation coefficient of laser ablated tissue converges to the values of

  11. Innovation: study of 'ultra-short' time reactions

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    This short article presents the new Elyse facility of Orsay-Paris 11 university for the study of ultra-short chemical and biochemical phenomena. Elyse uses the 'pump-probe' technique which consists in two perfectly synchronized electron and photon pulses. It comprises a 3 to 9 MeV electron accelerator with a HF gun photo-triggered with a laser. Elyse can initiate reactions using ultra-short electron pulses (radiolysis) or ultra-short photon pulses (photolysis). (J.S.)

  12. Detection of calculus by laser-induced breakdown spectroscopy (LIBS) using an ultra-short pulse laser system (USPL)

    Science.gov (United States)

    Schelle, F.; Brede, O.; Krueger, S.; Oehme, B.; Dehn, C.; Frentzen, M.; Braun, A.

    2011-03-01

    The aim of this study was to assess the detection of calculus by Laser Induced Breakdown Spectroscopy (LIBS). The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz at an average power of 5 W was used. Employing a focusing lense, intensities of the order of 1011 W/cm2 were reached on the tooth surface. These high intensities led to the generation of a plasma. The light emitted by the plasma was collimated into a fibre and then analyzed by an echelle spectroscope in the wavelength region from 220 nm - 900 nm. A total number of 15 freshly extracted teeth was used for this study. For each tooth the spectra of calculus and cementum were assessed separately. Comprising all single measurements median values were calculated for the whole spectrum, leading to two specific spectra, one for calculus and one for cementum. For further statistical analysis 28 areas of interest were defined as wavelength regions, in which the signal strength differed regarding the material. In 7 areas the intensity of the calculus spectrum differed statistically significant from the intensity of the cementum spectrum (p calculus. Further studies are necessary to verify that LIBS is a minimally invasive method allowing a safe application in laser-guided dentistry.

  13. X-ray emission spectra of the plasma produced by an ultrashort laser pulse in cluster targets

    International Nuclear Information System (INIS)

    Stenz, C; Bagnoud, V; Blasco, F; Roche, J R; Salin, F; Faenov, A Ya; Skobelev, I Yu; Magunov, A I; Pikuz, T A

    2000-01-01

    The first observation of x-ray emission spectra of multiply charged ions in the plasma produced by a 35-fs laser pulse with an intensity up to 10 17 W cm -2 in CO 2 and Kr gas jet targets is reported. The emission in the wavelength ranges of the 1snp-1s 2 (n=3-6) transitions of O VII ions and the Ly α line of O VIII ions, as well as of the (2s 1/2 2p 6 3p 3/2 ) 1 -2s 2 2p 6 1 S 0 and (2s 1/2 2p 6 3p 1/2 ) 1 -2s 2 2p 6 1 S 0 lines of Ne-like KrXXVII ions testifies that the highly ionised plasma is formed by collision processes in clusters. Modelling the shape of the spectral lines of oxygen ions by including the principal mechanisms of broadening and absorption in optically dense plasmas reveals that the main contribution to the time-integrated intensity is made by the plasma with the parameters N e =(2-20)x10 20 cm -3 and T e =100 - 115 eV. (interaction of laser radiation with matter. laser plasma)

  14. A method for ultra-short pulse-shape measurements using far infrared coherent radiation from an undulator

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2004-01-01

    In this paper, we discuss a method for non-destructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers. The method is based on the detection of the coherent synchrotron radiation (CSR) produced by a bunch passing through an undulator. Coherent radiation energy within a central cone turns out to be proportional, per pulse, to the square modulus of the bunch form-factor at the resonant frequency of the fundamental harmonic. An attractive feature of the proposed technique is the absence of any apparent limitation which would distort measurements. Indeed, the radiation process takes place in vacuum and is described by analytical formulae. CSR propagates to the detector placed in vacuum. Since CSR energy is in the range up to a fraction of mJ, a simple bolometer is used to measure the energy with a high accuracy. The proposed technique is very sensitive and it is capable of probing the electron bunches with a resolution down to a few microns

  15. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells

    NARCIS (Netherlands)

    Borsje, Manon A.; Ren, Yijin; de Haan-Visser, H. Willy; Kuijer, Roel

    OBJECTIVE: To compare two clinically applied treatments to stimulate bone healing-low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF)-for their effects on RANKL and OPG expression in osteoblast-like cells in vitro. MATERIALS AND METHODS: LIPUS or PEMF was applied to

  16. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    Science.gov (United States)

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  17. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    International Nuclear Information System (INIS)

    De Marco, M.; Krása, J.; Margarone, D.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Korn, G.; Weber, S.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Ullschmied, J.; Ahmed, H.; Borghesi, M.; Kar, S.; Limpouch, J.; Velardi, L.; Side, D. Delle; Nassisi, V.

    2016-01-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  18. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    Science.gov (United States)

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  19. Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.

    Science.gov (United States)

    Zhu, Zhen-Gang; Berakdar, Jamal

    2009-04-08

    We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.

  20. Time-domain simulation and waveform reconstruction for shielding effectiveness of materials against electromagnetic pulse

    International Nuclear Information System (INIS)

    Hu, Xiao-feng; Chen, Xiang; Wei, Ming

    2013-01-01

    Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.

  1. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  2. Changes in some Hematological Parameters and Thyroid Hormones in Rats Exposed to Pulsed Electromagnetic Field

    International Nuclear Information System (INIS)

    EL-Abiad, N.M.; Marzook, E.A.; EI-Aragi, G.M.

    2007-01-01

    In the present study pulsed electromagnetic spectrum was used to evaluate the effect of exposure on some biochemical and hematological parameters in male albino rats. Three groups of rats (10 each) were exposed to 10, 15, 20 pulses of electromagnetic spectrum 3 times per week for 3 weeks, the unexposed group was considered as the control group. At the end of experiment, serum levels of thyroid hormones triiodothryronine and thyroxine (T 3 ,T 4 ) and some hematological parameters were estimated. The hematological studies revealed that exposure to electromagnetic spectrum induced significant reduction in red blood cell count(RBC),and also in hemoglobin concentration(Hb), while reticulocytic count(Ret.) was elevated in the three exposed groups, platelets count was increased only on the second exposed group, while leukocytic count (WBC's), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MGH), mean corpuscular hemoglobin concentration (MCHC) were not affected, lymphocytic count was decreased only on the second exposed group, the impairment of thyroid functions was noticed by elevation of T 3 and T 4 in the three exposed groups

  3. Effect of pulsed electromagnetic field on some biochemical and hematological parameters of female rats

    International Nuclear Information System (INIS)

    Marzook, E.A.

    2006-01-01

    The present study was designed to investigate the effect of exposure to pulsed electromagnetic spectrum on some biochemical and hematological parameters in female albino rats. A group of mature female rats was exposed to 10 pulses of electromagnetic spectrum (frequency 8-12 GHz) 3 times/week for 3 weeks. The untreated group was considered as the control group. At the end of the experiment, serum levels of malondialdehyde, thyroid triiodothyronine and thyroxine (T3, T4), α-feto protein, estradiol, calcium, urea, creatinine and other hematological parameters were estimated. The present data revealed that serum levels of estradiol, malondialdehyde, urea, creatinine, triiodothyronine and thyroxine were elevated in the exposed group while serum calcium was significantly decreased. Non-significant difference was found in the value of α-feto protein between the two groups. The hematological studies revealed that exposure of rats to electromagnetic spectrum induced significant reduction in red blood cells (RBCs), hemoglobin concentration (Hb) and in hematocrit percent (Hct%), while reticulocyte count (Ret %) was elevated in the treated group. Non-significant changes were observed in platelets, leukocyte (WBCs) and lymphocytic counts in the exposed group as compared to the control group

  4. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1.

    Science.gov (United States)

    Mikami, Risako; Mizutani, Koji; Aoki, Akira; Tamura, Yukihiko; Aoki, Kazuhiro; Izumi, Yuichi

    2018-04-01

    Low-level laser irradiation (LLLI) exerts various biostimulative effects, including promotion of wound healing and bone formation; however, few studies have examined biostimulation using blue lasers. The purpose of this study was to investigate the effects of low-level ultrahigh-frequency (UHF) and ultrashort-pulse (USP) blue laser irradiation on osteoblasts. The MC3T3-E1 osteoblast cell line was used in this study. Following LLLI with a 405 nm newly developed UHF-USP blue laser (80 MHz, 100 fs), osteoblast proliferation, and alkaline phosphatase (ALP) activity were assessed. In addition, mRNA levels of the osteoblast differentiation markers, runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), and osteopontin (Opn) was evaluated, and extracellular calcification was quantified. To clarify the involvement of transient receptor potential (TRP) channels in LLLI-induced biostimulation, cells were treated prior to LLLI with capsazepine (CPZ), a selective inhibitor of TRP vanilloid 1 (TRPV1), and subsequent proliferation and ALP activity were measured. LLLI with the 405 nm UHF-USP blue laser significantly enhanced cell proliferation and ALP activity, compared with the non-irradiated control and LLLI using continuous-wave mode, without significant temperature elevation. LLLI promoted osteoblast proliferation in a dose-dependent manner up to 9.4 J/cm 2 and significantly accelerated cell proliferation in in vitro wound healing assay. ALP activity was significantly enhanced at doses up to 5.6 J/cm 2 , and expression of Osx and Alp mRNAs was significantly increased compared to that of the control on days 3 and 7 following LLLI at 5.6 J/cm 2 . The extent of extracellular calcification was also significantly higher as a result of LLLI 3 weeks after the treatment. Measurement of TRPV1 protein expression on 0, 3, and 7 days post-irradiation revealed no differences between the LLLI and control groups; however, promotion of cell

  5. Converting Existing Copper Wire Firing System to a Fiber Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

    Science.gov (United States)

    2017-12-19

    Pulsed Power Experiments by Robert Borys Jr Weapons and Materials Research Directorate, ARL Colby Adams Bowhead Total Enterprise Solutions...ARL-TN-0863 ● DEC 2017 US Army Research Laboratory Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled...Firing System for Electromagnetic Pulsed Power Experiments by Robert Borys Jr and Colby Adams Approved for public release

  6. Multiple Colliding Electromagnetic Pulses: A Way to Lower the Threshold of e+e- Pair Production from Vacuum

    International Nuclear Information System (INIS)

    Bulanov, S. S.; Mur, V. D.; Narozhny, N. B.; Nees, J.; Popov, V. S.

    2010-01-01

    The scheme of a simultaneous multiple pulse focusing on one spot naturally arises from the structural features of projected new laser systems, such as the Extreme Light Infrastructure (ELI) and High Power laser Energy Research (HiPER). It is shown that the multiple pulse configuration is beneficial for observing e + e - pair production from a vacuum under the action of sufficiently strong electromagnetic fields. The field of focused pulses is described using a realistic three-dimensional model based on an exact solution of the Maxwell equations. The e + e - pair production threshold in terms of electromagnetic field energy can be substantially lowered if, instead of one or even two colliding pulses, multiple pulses are focused on one spot. The multiple pulse interaction geometry gives rise to subwavelength field features in the focal region. These features result in the production of extremely short e + e - bunches.

  7. Healing of damaged metal by a pulsed high-energy electromagnetic field

    Science.gov (United States)

    Kukudzhanov, K. V.; Levitin, A. L.

    2018-04-01

    The processes of defect (intergranular micro-cracks) transformation are investigated for metal samples in a high-energy short-pulsed electromagnetic field. This investigation is based on a numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elastic-plastic material with defects. The model takes into account the melting and evaporation of the metal and the dependence of its physical and mechanical properties on the temperature. The system of equations is solved numerically by finite element method with an adaptive mesh using the arbitrary Euler–Lagrange method. The calculations show that the welding of the crack and the healing of micro-defects under treatment by short pulses of the current takes place. For the macroscopic description of the healing process, the healing and damage parameters of the material are introduced. The healing of micro-cracks improves the material healing parameter and reduces its damage. The micro-crack shapes practically do not affect the time-dependence of the healing and damage under the treatment by the current pulses. These changes are affected only by the value of the initial damage of the material and the initial length of the micro-crack. The time-dependence of the healing and the damage is practically the same for all different shapes of micro-defects, provided that the initial lengths of micro-cracks and the initial damages are the same for these different shapes of defects.

  8. [Apoptosis of human lung carcinoma cell line GLC-82 induced by high power electromagnetic pulse].

    Science.gov (United States)

    Cao, Xiao-zhe; Zhao, Mei-lan; Wang, De-wen; Dong, Bo

    2002-09-01

    Electromagnetic pulse (EMP) could be used for sterilization of food and the efficiency is higher than 2450 MHz continuous microwave done. This study was designed to evaluate the effect of electromagnetic pulse (EMP) on apoptosis of human lung carcinoma cell line GLC-82, so that to explore and develop therapeutic means for cancer. The injury changes in GLC-82 cells after irradiated with EMP (electric field intensity was 60 kV/m, 5 pulses/2 min) were analyzed by cytometry, MTT chronometry, and flow cytometry. The immunohistochemical SP staining was used to determine the expressions of bcl-2 protein and p53 protein. The stained positive cells were analyzed by CMIAS-II image analysis system at a magnification 400. All data were analyzed by SPSS8.0 software. EMP could obviously inhibited proliferation and activity of lung carcinoma cell line GLC-82. The absorbance value (A570) of MTT decreased immediately, at 0 h, 1 h, and 6 h after the GLC-82 cells irradiated by EMP as compared with control group. The highest apoptosis rate was found to reach 13.38% by flow cytometry at 6 h after EMP irradiation. Down-regulation of bcl-2 expression and up-regulation of p53 expression were induced by EMP. EMP promotes apoptosis of GLC-82 cells. At same time, EMP can down-regulate bcl-2 expression and up-regulate p53 expression in GLC-82 cells. The bcl-2 and the p53 protein may involve the apoptotic process.

  9. Remote detection of radioactive material using high-power pulsed electromagnetic radiation.

    Science.gov (United States)

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi

    2017-05-09

    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.

  10. A comparison of lightning and nuclear electromagnetic pulse response of a helicopter

    Science.gov (United States)

    Easterbrook, C. C.; Perala, R. A.

    1984-01-01

    A numerical modeling technique is utilized to investigate the response of a UH-60A helicopter to both lightning and nuclear electromagnetic pulses (NEMP). The analytical approach involves the three-dimensional time domain finite-difference solutions of Maxwell's equations. Both the external currents and charges as well as the internal electromagnetic fields and cable responses are computed. Results of the analysis indicate that, in general, the short circuit current on internal cables is larger for lightning, whereas the open-circuit voltages are slightly higher for NEMP. The lightning response is highly dependent upon the rise time of the injected current as was expected. The analysis shows that a coupling levels to cables in a helicopter are 20 to 30 dB larger than those observed in fixed-wing aircraft.

  11. Electromagnetic Pulse of a Vertical Electric Dipole in the Presence of Three-Layered Region

    Directory of Open Access Journals (Sweden)

    D. Cheng

    2015-01-01

    Full Text Available Approximate formulas are obtained for the electromagnetic pulses due to a delta-function current in a vertical electric dipole on the planar surface of a perfect conductor coated by a dielectric layer. The new approximated formulas for the electromagnetic field in time domain are retreated analytically and some new results are obtained. Computations and discussions are carried out for the time-domain field components radiated by a vertical electric dipole in the presence of three-layered region. It is shown that the trapped-surface-wave terms should be included in the total transient field when both the vertical electric dipole and the observation point are on or near the planar surface of the dielectric-coated earth.

  12. Self-referencing, spectrally, or spatially encoded spectral interferometry for the complete characterization of attosecond electromagnetic pulses

    International Nuclear Information System (INIS)

    Cormier, Eric; Walmsley, Ian A.; Wyatt, Adam S.; Corner, Laura; Kosik, Ellen M.; DiMauro, Louis F.

    2005-01-01

    We propose a method for the complete characterization of attosecond duration electromagnetic pulses produced by high harmonic generation in an atomic gas. Our method is based on self-referencing spectral interferometry of two spectrally sheared extreme ultraviolet pulses, which is achieved by pumping the harmonic source with two sheared optical driving pulses. The resulting interferogram contains sufficient information to completely reconstruct the temporal behavior of the electric field. We demonstrate that such a method is feasible, and outline two possible experimental configurations

  13. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas; Interaction d'impulsions laser ultra-courtes et ultra-intenses avec des plasmas sous denses

    Energy Technology Data Exchange (ETDEWEB)

    Solodov, A

    2000-12-15

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  14. Electromagnetic pulse research on electric power systems: Program summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Vance, E.F. (Vance (E.F.), Fort Worth, TX (United States))

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation's power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation's electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  15. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  16. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  17. Field test and theoretical analysis of electromagnetic pulse propagation velocity on crossbonded cable systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Bak, Claus Leth; Gudmundsdottir, Unnur Stella

    2014-01-01

    In this paper, the electromagnetic pulse propagation velocity on a three-phase cable system, consisting of three single core (SC) cables in flat formation with an earth continuity conductor is under study. The propagation velocity is an important parameter for most travelling wave off- and online...... fault location methods and needs to be exactly known for optimal performance of these algorithm types. Field measurements are carried out on a 6.9 km and a 31.4 km 245 kV crossbonded cable system, and the results are analysed using the modal decomposition theory. Several ways for determining...

  18. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants

  19. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; De Marco, Massimo; Cikhardt, Jakub; Pfeifer, Miroslav; Velyhan, Andriy; Klír, Daniel; Řezáč, Karel; Limpouch, J.; Krouský, Eduard; Dostál, Jan; Ullschmied, Jiří; Dudžák, Roman

    2017-01-01

    Roč. 59, č. 6 (2017), 1-8, č. článku 065007. ISSN 0741-3335 R&D Projects: GA MŠk EF15_008/0000162; GA ČR GA16-07036S EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * target current * electromagnetic pulse Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016

  20. Numerical simulation of narrow bipolar electromagnetic pulses generated by thunderstorm discharges

    Science.gov (United States)

    Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.

    2013-07-01

    Using the concept of avalanche relativistic runaway electrons (REs), we perform numerical simulations of compact intracloud discharge (CID) as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-VHF range, called narrow bipolar pulses (NBPs). For several values of the field overvoltage and altitude at which the discharge develops, the numbers of seed electrons initiating the avalanche are evaluated, with which the calculated EMP characteristics are consistent with the measured NBP parameters. We note shortcomings in the hypothesis assuming participation of cosmic ray air showers in avalanche initiation. The discharge capable of generating NBPs produces REs in numbers close to those in the source of terrestrial γ-ray flashes (TGFs), which can be an argument in favor of a unified NBP and TGF source.

  1. Numerical simulation of narrow bipolar electromagnetic pulses generated by thunderstorm discharges

    International Nuclear Information System (INIS)

    Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.

    2013-01-01

    Using the concept of avalanche relativistic runaway electrons (REs), we perform numerical simulations of compact intracloud discharge (CID) as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-VHF range, called narrow bipolar pulses (NBPs). For several values of the field overvoltage and altitude at which the discharge develops, the numbers of seed electrons initiating the avalanche are evaluated, with which the calculated EMP characteristics are consistent with the measured NBP parameters. We note shortcomings in the hypothesis assuming participation of cosmic ray air showers in avalanche initiation. The discharge capable of generating NBPs produces REs in numbers close to those in the source of terrestrial γ-ray flashes (TGFs), which can be an argument in favor of a unified NBP and TGF source

  2. Electromagnetic pulse from supernovae. [model for old low-mass stars

    Science.gov (United States)

    Colgate, S. A.

    1975-01-01

    Upper and lower limits to the radiated electromagnetic pulse from a supernova are calculated assuming that the mass fraction of the matter expanding inside the dipole magnetic field shares energy and maintains the pressure balance in the process. A supernova model is described in which the explosion occurs in old low-mass stars containing less than 10% hydrogen in their ejecta and a remnant neutron star is produced. The analysis indicates that although the surface layer of a star of 1 g/cu thickness may be shock-accelerated to an energy factor of about 100 and may expand into the vacuum with an energy factor approaching 10,000, the equatorial magnetic field will retard this expansion so that the inner, more massive ejecta layers will effectively accelerate the presumed canonical dipole magnetic field to greater velocities than would the surface layer alone. A pulse of 10 to the 46th power ergs in a width of about 150 cm will result which will not be affected by circumstellar matter or electron self-radiation effects. It is shown that interstellar matter will attenuate the pulse, but that charge separation may reduce the attenuation and allow a larger pulse to escape.

  3. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    Science.gov (United States)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  4. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Vitalij Novickij

    2018-01-01

    Full Text Available Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs (11–13 nm capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm-1 electric field pulses (100 μs × 8 separately and in combination with two pulsed magnetic field protocols: (1 high dB/dt 3.3 T × 50 and (2 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections.

  5. An Approach for Effect Analysis of Electromagnetic Pulse in Operating NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Sun; Ye, Song Hae; Kim, Minyi; Lee, Euijong [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Recently, there is a growing Electromagnetic Pulse (EMP) threat caused by North Korea’s nuclear weapons and unmanned aerial vehicles (UAVs). KHNP CRI is currently conducting a research project that will evaluate the safety of domestic nuclear power plants (NPPs) against EMP effects and prepare safety measures to counter vulnerable points. We will instead use simulation tools to evaluate the electromagnetic shielding ability and the conductivity of cables through vulnerable points in NPPs. Through a study of electromagnetic simulation techniques and tools, this paper suggests a simulation method for analysis of EMP effects in operating NPPs. Although 3D tools are relatively accurate, is difficult to use only 3D tools to simulate EMP effects for huge and complex structures such as NPPs. It is more efficient in terms of cost and time to use a 3D tool and an EMT tool for the simulation of such structures. We have compared the advantages and disadvantages of various methods and have selected the most appropriate tools; we will proceed in our next paper with the simulation of EMP effects.

  6. An Approach for Effect Analysis of Electromagnetic Pulse in Operating NPPs

    International Nuclear Information System (INIS)

    Ryu, Ho Sun; Ye, Song Hae; Kim, Minyi; Lee, Euijong

    2016-01-01

    Recently, there is a growing Electromagnetic Pulse (EMP) threat caused by North Korea’s nuclear weapons and unmanned aerial vehicles (UAVs). KHNP CRI is currently conducting a research project that will evaluate the safety of domestic nuclear power plants (NPPs) against EMP effects and prepare safety measures to counter vulnerable points. We will instead use simulation tools to evaluate the electromagnetic shielding ability and the conductivity of cables through vulnerable points in NPPs. Through a study of electromagnetic simulation techniques and tools, this paper suggests a simulation method for analysis of EMP effects in operating NPPs. Although 3D tools are relatively accurate, is difficult to use only 3D tools to simulate EMP effects for huge and complex structures such as NPPs. It is more efficient in terms of cost and time to use a 3D tool and an EMT tool for the simulation of such structures. We have compared the advantages and disadvantages of various methods and have selected the most appropriate tools; we will proceed in our next paper with the simulation of EMP effects

  7. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    Directory of Open Access Journals (Sweden)

    Aspasia Efthimiadou

    2014-01-01

    Full Text Available The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences.

  8. Development of Design Information Template for Nuclear Power Plants for Electromagnetic Pulse (EMP) Effect Analysis

    International Nuclear Information System (INIS)

    Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong

    2016-01-01

    An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template

  9. Development of Design Information Template for Nuclear Power Plants for Electromagnetic Pulse (EMP) Effect Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong [KNHP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template.

  10. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.

    Science.gov (United States)

    Zhou, Huihui; Liu, Bingfeng; Wang, Qisong; Sun, Jianmin; Xie, Guojun; Ren, Nanqi; Ren, Zhiyong Jason; Xing, Defeng

    2017-01-01

    Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe 3 O 4 ) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behavior of current generation and EET in a state-of-the-art pulse electromagnetic field (PEMF)-assisted magnetic BES (PEMF-MBES), which was equipped with magnetic carbon particle (Fe 3 O 4 @N-mC)-coated electrodes. Illumina Miseq sequencing of 16S rRNA gene amplicons was also conducted to reveal the changes of microbial communities and interactions on the anode in response to magnetic field. PEMF had significant influences on current generation. When reactors were operated in microbial fuel cell (MFC) mode with pulse electromagnetic field (PEMF-MMFCs), power densities increased by 25.3-36.0% compared with no PEMF control MFCs (PEMF-OFF-MMFCs). More interestingly, when PEMF was removed, the power density dropped by 25.7%, while when PEMF was reintroduced, the value was restored to the previous level. Illumina sequencing of 16S rRNA gene amplicon and principal component analysis (PCA) based on operational taxonomic units (OTUs) indicate that PEMFs led to the shifts in microbial community and changes in species evenness that decreased biofilm microbial diversity. Geobacter spp. were found dominant in all anode biofilms, but the relative abundance in PEMF-MMFCs (86.1-90.0%) was higher than in PEMF-OFF-MMFCs (82.5-82.7%), indicating that the magnetic field enriched Geobacter on the anode. The current generation of Geobacter -inoculated microbial electrolysis cells (MECs) presented the same change regularity, the accordingly increase or decrease corresponding with switch of PEMF, which confirmed the reversible stimulation of PEMFs on microbial electron transfer. The pulse electromagnetic

  11. Study of 2ω and 3/2ω harmonics in ultrashort high-intensity laser ...

    Indian Academy of Sciences (India)

    Intense laser pulses from such laser systems may have many pre-pulses like picosecond ... ultrashort laser–matter interaction, as well as to control the source parameters. In situ monitoring of ultrashort ... central wavelength of 790 nm with a bandwidth of 16 ± 2 nm after the compressor. The picosecond intensity contrast ...

  12. Strategies, Protections and Mitigations for Electric Grid from Electromagnetic Pulse Effects

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Rita Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); Frickey, Steven Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due to its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.

  13. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  14. Pulsed-induced electromagnetically induced transparency in the acetylene-filled hollow-core fibers

    Science.gov (United States)

    Rodríguez, Nayeli Casillas; Stepanov, Serguei; Miramontes, Manuel Ocegueda; Hernández, Eliseo Hernández

    2017-06-01

    Experimental results on pulsed excitation of electromagnetically induced transparency (EIT) in the acetylene-filled hollow-core photonic crystal fiber (HC-PCF) at pressures 0.1-0.4 Torr are reported. The EIT was observed both in Λ and V interaction configurations with the continuous probe wave tuned to R9 (1520.08 nm) acetylene absorption line and with the control pulses tuned to P11 (1531.58 nm) and P9 (1530.37 nm) lines, respectively. The utilized control pulses were of up to 40 ns duration with EIT was up to 40 and 15% for the co- and counter-propagation of the probe and control waves, respectively, and importance of the waves polarization matching was demonstrated. For a qualitative explanation of reduction in the counter-propagation EIT efficiency a simple model of the accelerated mismatch of the two-frequency EIT resonance with deviation of the molecule thermal velocity from the resonance value was utilized. It was shown experimentally that the EIT efficiencies in both configurations do not depend on the longitudinal velocity of the molecules. The characteristic relaxation time of the of the EIT response was found to be about 9 ns, i.e., is close to the relaxation times T 1,2 of the acetylene molecules under the utilized experimental conditions.

  15. On the application of a new principle and new class of materials for protection of the IC systems against high power electromagnetic pulses (HPEMP)

    International Nuclear Information System (INIS)

    Vuchkov, L.

    2008-01-01

    The aim of the present work is to make a survey of a new principle and the possibilities for scientific investigations, testing and industrial incorporation of a new shielding material and technology for protection of the IC systems against high energy electromagnetic pulses and ion irradiation. The main result of the implementation of the new- principle, material and technology is to increase the safety of the critical military and civilian infrastructures, land-based and space techniques, apparatuses, devices and their components against high energy electromagnetic pulses and ion irradiation, including electromagnetic weapon arsenal of the international terrorist groups. Key words: electromagnetic pulses, ion irradiation, IC electronic equipment degradation, shielding protection

  16. On the application of a new principle and new class of materials for protection of the IC systems against high power electromagnetic pulses (HPEMP)

    Energy Technology Data Exchange (ETDEWEB)

    Vuchkov, L. [Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Scinces, Sofia (Bulgaria)

    2008-07-01

    The aim of the present work is to make a survey of a new principle and the possibilities for scientific investigations, testing and industrial incorporation of a new shielding material and technology for protection of the IC systems against high energy electromagnetic pulses and ion irradiation. The main result of the implementation of the new- principle, material and technology is to increase the safety of the critical military and civilian infrastructures, land-based and space techniques, apparatuses, devices and their components against high energy electromagnetic pulses and ion irradiation, including electromagnetic weapon arsenal of the international terrorist groups. Key words: electromagnetic pulses, ion irradiation, IC electronic equipment degradation, shielding protection.

  17. Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression

    DEFF Research Database (Denmark)

    Martiny, Klaus Per Juul; Lunde, Marianne; Bech, Per

    2010-01-01

    BACKGROUND: Approximately 30% of patients with depression are resistant to antidepressant drugs. Repetitive transcranial magnetic stimulation (rTMS) has been found effective in combination with antidepressants in this patient group. The aim of this study was to evaluate the antidepressant effect...... of a new principle using low-intensity transcranially applied pulsed electromagnetic fields (T-PEMF) in combination with antidepressants in patients with treatment-resistant depression. METHODS: This was a sham-controlled double-blind study comparing 5 weeks of active or sham T-PEMF in patients...... with treatment-resistant major depression. The antidepressant treatment, to which patients had been resistant, was unchanged 4 weeks before and during the study period. Weekly assessments were performed using both clinician-rated and patient-rated scales. The T-PEMF equipment was designed as a helmet containing...

  18. The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions

    Science.gov (United States)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A self consistent and fully kinetic simulation of the interaction of lightning radiated electromagnetic (EM) pulses with the nighttime lower ionosphere indicates that optical emissions observable with conventional instruments would be excited. For example, emissions of the 1st and 2nd positive bands of N2 occur at rates reaching 7 x 10(exp 7) and 10(exp 7) cu cm/s respectively at 92 km altitude for a lightning discharge with an electric field E(sub 100) = 20 V/m (normalized to a 100 km distance). The maximum height integrated intensities of these emissions are 4 x 10(exp 7) and 6 x 10(exp 6) R respectively, lasting for approx. 50 micrometers.

  19. Time-domain modeling for shielding effectiveness of materials against electromagnetic pulse based on system identification

    International Nuclear Information System (INIS)

    Chen, Xiang; Chen, Yong Guang; Wei, Ming; Hu, Xiao Feng

    2013-01-01

    Shielding effectiveness (SE) of materials against electromagnetic pulse (EMP) cannot be well estimated by traditional test method of SE of materials which only consider the amplitude-frequency characteristic of materials, but ignore the phase-frequency ones. In order to solve this problem, the model of SE of materials against EMP was established based on system identification (SI) method with time-domain linear cosine frequency sweep signal. The feasibility of the method in this paper was examined depending on infinite planar material and the simulation research of coaxial test method and windowed semi-anechoic box of materials. The results show that the amplitude-frequency and phase-frequency information of each frequency can be fully extracted with this method. SE of materials against strong EMP can be evaluated with time-domain low field strength (voltage) of cosine frequency sweep signal. And SE of materials against a variety EMP will be predicted by the model.

  20. Electromagnetic pulse (EMP) radiation by laser interaction with a solid H.sub.2./sub. ribbon

    Czech Academy of Sciences Publication Activity Database

    De Marco, Massimo; Krása, Josef; Cikhardt, J.; Velyhan, Andriy; Pfeifer, Miroslav; Dudžák, Roman; Dostál, Jan; Krouský, Eduard; Limpouch, J.; Pisarczyk, T.; Kalinowska, Z.; Chodukowski, T.; Ullschmied, Jiří; Giuffrida, Lorenzo; Chatain, D.; Perin, J.P.; Margarone, Daniele

    2017-01-01

    Roč. 24, č. 8 (2017), s. 1-6, č. článku 083103. ISSN 1070-664X R&D Projects: GA MŠk EF15_008/0000162; GA ČR GA16-07036S; GA MŠk(CZ) LD14089; GA MŠk LQ1606 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * electromagnetic pulse * solid hydrogen ribbon Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016

  1. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  2. Influence of Pulsed Electromagnetic Field on Plant Growth, Nutrient Absorption and Yield of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Nikolaos KATSENIOS

    2015-12-01

    Full Text Available Researchers have adopted the use of magnetic field as a new pre-sowing, environmental friendly technique. Enhancements on plant characteristics with economic impact on producer’s income could be the future of a modern, organic and sustainable agriculture. A field experiment was established at Soil Science Institute of Athens, Lycovrissi, Greece, in the winter of 2014. Two durum wheat cultivars were used. It was a pot experiment with 6 treatments (2 cultivars with 3 magnetic field time exposure. The seeds were treated using a PAPIMI electromagnetic field generator for 0, 30 and 45 minutes one day before planting. The experiment followed a completely randomized design with six treatments and 30 replications. The aim of this study was to evaluate the positive effect of magnetic field pre-sowing treatment in a wide range of plant measurements, including yield. The influence of pulsed electromagnetic field on two varieties of durum wheat seeds showed some statistically significant differences at the 0.05 level in growth measurements, physiological measurements and root growth measurements. Plant tissue analysis showed that magnetic field treatments had higher values than control in total nitrogen, phosphorus, potassium, magnesium, copper (only MF-45, zinc (only MF-30 and boron content, although values showed statistically significant differences only in total nitrogen. The results indicate that this innovative technique can increase the yield of durum wheat, through enhanced absorption of nutrients. Pre-sowing treatment of the seeds leads to vigorous plant growth that are more productive.

  3. 2nd International Conference on Ultra-Wideband, Short-Pulse Electromagnetics

    CERN Document Server

    Felsen, Leopold

    1995-01-01

    The papers published in this volume were presented at the Second International Conference on Ultra-WidebandiShort-Pulse (UWB/SP) Electromagnetics, ApriIS-7, 1994. To place this second international conference in proper perspective with respect to the first conference held during October 8-10, 1992, at Polytechnic University, some background information is necessary. As we had hoped, the first conference struck a responsive cord, both in timeliness and relevance, among the electromagnetic community 1. Participants at the first conference already inquired whether and when a follow-up meeting was under consideration. The first concrete proposal in this direction was made a few months after the first conference by Prof. A. Terzuoli of the Air Force Institute of Technology (AFIT), Dayton, Ohio, who has been a strong advocate of time-domain methods and technologies. He initially proposed a follow-up time-domain workshop under AFIT auspices. Realizing that interest in this subject is lodged also at other Air Force i...

  4. Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell

    Science.gov (United States)

    Funk, Richard HW

    2018-01-01

    In this review we compile results cited in reliable journals that show a ratio for the use of pulsed electromagnetic fields (PEMF) in therapy, indeed. This is true especially for chronically inflamed joints. Furthermore, we try to link this therapeutic approach to the molecular background of chronic inflammation and arthritis. At first we start with the clinical outcome of PEMF therapy. Then, we look for possible triggers and an electromagnetic counterpart that is endogenously inherent in cell biology and in the tissues of interest. Finally, we want to investigate causal molecular and cellular mechanisms of possible PEMF actions. It shows that there are endogenous mechanisms, indeed, which can act as triggers for PEMF like the resting membrane potential as well as resonance mechanisms in charged moieties like membrane transporters. Especially voltage-gated calcium channels can be triggered. These may lead into specific signaling pathways and also may elicit nitric oxide as well as moderate radical reactions, which can ultimately lead to e.g. NFκB-like reactions. Concerted in the right way, these reactions can cause a kind of cell protection and ultimately lead to a dampening of inflammatory signals like interleukins.

  5. Influence of electromagnetic pulse on the offspring sex ratio of male BALB/c mice.

    Science.gov (United States)

    Li, Jin-Hui; Jiang, Da-Peng; Wang, Ya-Feng; Yan, Jia-Jia; Guo, Qi-Yan; Miao, Xia; Lang, Hai-Yang; Xu, Sheng-Long; Liu, Jun-Ye; Guo, Guo-Zhen

    2017-09-01

    Public concern is growing about the exposure to electromagnetic fields (EMF) and its effect on male reproductive health. Detrimental effect of EMF exposure on sex hormones, reproductive performance and sex-ratio was reported. The present study was designed to clarify whether paternal exposure to electromagnetic pulse (EMP) affects offspring sex ratio in mice. 50 male BALB/c mice aged 5-6 weeks were exposed to EMP daily for 2 weeks before mated with non-exposed females at 0d, 7d, 14d, 21d and 28d after exposure. Sex hormones including total testosterone, LH, FSH, and GnRH were detected using radioimmunoassay. The sex ratio was examined by PCR and agarose gel electrophoresis. The results of D0, D21 and D28 showed significant increases compared with sham-exposed groups. The serum testosterone increased significantly in D0, D14, D21, and D28 compared with sham-exposed groups (p<0.05). Overall, this study suggested that EMP exposure may lead to the disturbance of reproductive hormone levels and affect the offspring sex ratio. Copyright © 2017. Published by Elsevier B.V.

  6. Taking in account the electromagnetic pulses in study of a material or system

    International Nuclear Information System (INIS)

    Jeannolle, J.

    1985-01-01

    High altitude nuclear bursts generate extremely short and large magnitude electromagnetic pulses (EMP). Electronic circuits which are commonly used nowadays are directly threatened by such an effect. This effect is so important that it has the characteristic to cover large areas, as large as a whole country. For an equipment or a system to stand against such an electromagnetic threat without being considerably disturbed, it is advised to take into account particular protections from the outset of the design phase and during the production phase, that is to say to ensure its hardening. Taking into account and ensuring the EMP protection of an equipment or a system, the Telecommunications Division (DTC) of Thomson-CSF has been devoting to for a number of years. The experience acquired through various studies and production work has allowed a thorough definition of the main steps required in an EMP hardening task: - hardening goal definition; - hardening study and design; - hardening carrying out; - design and production of EMP environment simulators; - hardening validation; - maintenance. This paper describes for each one of these steps: - which approach is undertaken; - which questions are raised; - which documents to constitute [fr

  7. Treatment of knee osteoarthritis with pulsed electromagnetic fields: a randomized, double-blind, placebo-controlled study

    DEFF Research Database (Denmark)

    Thamsborg, G; Florescu, A; Oturai, P

    2005-01-01

    OBJECTIVE: The investigation aimed at determining the effectiveness of pulsed electromagnetic fields (PEMF) in the treatment of osteoarthritis (OA) of the knee by conducting a randomized, double-blind, placebo-controlled clinical trial. DESIGN: The trial consisted of 2h daily treatment 5 days per...

  8. Propagation of a probe pulse inside a Bose–Einstein condensate under conditions of electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Barberis-Blostein, Pablo; Aguilar-Loreto, Omar

    2015-01-01

    We obtain a partial differential equation for a pulse travelling inside a Bose–Einstein condensate under conditions of electromagnetically induced transparency. The equation is valid for a weak probe pulse. We solve the equation for the case of a three-level BEC in Λ configuration with one of its ground state spatial profiles initially constant. The solution characterizes, in detail, the effect that the evolution of the condensate wave function has on pulse propagation, including the process of stopping and releasing it. (invited comment)

  9. Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses

    Science.gov (United States)

    Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen

    1991-01-01

    The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.

  10. Study on ultrastructural changes in thyroid gland of rats exposed to pulsed electromagnetic wave

    International Nuclear Information System (INIS)

    Zhou Xiaoguang; Zeng Guiying; Ren Dongqing; Fang Henghu; Su Xiaoming; Huang Xiaofeng

    2006-01-01

    The work is to observe effects of PEMW (pulse electromagnetic wave) exposure on function and morphology of thyroid gland of rats. At different time points (24, 48, 96 and 192 h) after exposure to PEMW (E=115 kV m -1 , 12000 pulses), radioimmunoassay was performed to observe the levels of thyroid-stimulating hormone (TSH), thyroxine (T 4 ) and triiodo- thyronine (T 3 ) in sera of the male Sparague-Dawley rats. Optic microscopy and transmission electron microscopy (TEM) were used to observe structural changes of the thyroid gland at the time points. The T 3 , T 4 and TSH in sera increased significantly, reaching a peak at 24 h and decreasing gradually then. Although no obvious changes in the thyroid gland were observed under the optic microscope, some ultrastructural changes in the thyroid gland were found under the TEM. The ultrastructures were obviously changed at 12 h and aggravated until 48 h. In the experimented rats, dilatated endoplasmic reticulum gathered with lots of protein excretion, lipid droplet and heterochromatin gathered under the nucleus membranes were observed in follicular epithelial cells. These changes were palliated at 96 h but not recovered. PEMW can affect levels of hormones in sera and the hazard ultrastructural changes of thyroid gland. Endoplasmic reticulum is the main injured organelle. (authors)

  11. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    International Nuclear Information System (INIS)

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.; Hadas, Y.; Schamiloglu, E.

    2015-01-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed

  12. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    Science.gov (United States)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  13. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    Science.gov (United States)

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2017-04-01

    Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a

  14. The effects of lightning and high altitude electromagnetic pulse on power distribution lines

    Energy Technology Data Exchange (ETDEWEB)

    Uman, M.A.; Rubinstein, M.; Yacoub, Z. [Florida Univ., Gainesville, FL (United States)

    1995-01-01

    We simultaneously recorded the voltages induced by lightning on both ends of an unenergized 448-meter long unenergized electric power line and the lightning vertical electric and horizontal magnetic fields at ground level near the line. The lightning data studied and presented here were due both to cloud lightning and to very close (about 20 m from the line) artificially initiated lightning. For cloud sources, a frequency-domain computer program called EMPLIN was used to calculate induced line voltages as a function of source elevation, angle of incidence, and wave polarization of the radiated cloud discharge pulses in order to compare with the measurements. For very-close lightning, the measured line voltages could be grouped into two categories, those in which multiple, similarly shaped, evenly spaced pulses were observed, which we call oscillatory, and those dominated by a principal pulse with subsidiary oscillations of much smaller amplitude, which we call impulsive. The amplitude of the induced voltage ranged from tens of kilovolts for oscillatory voltages to hundreds of kilovolts for impulsive voltages. A new technique is derived for the calculation of the electromagnetic fields from nearby lightning to ground above an imperfectly conducting ground. This technique was used in conjunction with an existing time domain coupling theory and lightning return stroke model to calculate voltages at either end of the line. The results show fair agreement with the measured oscillatory voltage waveforms if corona is ignored and improved results when corona effects are modeled. The modeling of the impulsive voltage, for which local flashover probably successful. In an attempt to understand better the sources of the line voltages for very close lightning, measurements of the horizontal and vertical electric fields 30 m from triggered lightning were obtained.

  15. Effects of electromagnetic pulse exposure on gelatinase of blood-brain barrier in vitro.

    Science.gov (United States)

    Zhou, Yan; Qiu, Lian-Bo; An, Guang-Zhou; Zhou, Jia-Xing; Du, Le; Ma, Ya-Hong; Guo, Guo-Zhen; Ding, Gui-Rong

    2017-01-01

    The biological effects of electromagnetic pulse (EMP) on the brain have been focused on for years. It was reported that gelatinase played an important role in maintaining brain function through regulating permeability in the blood-brain barrier (BBB). To investigate the effects of EMP on gelatinase of BBB, an in vitro BBB model was established using primary cultured rat brain microvascular endothelial cells (BMVEC), astrocytes and half-contact culture of these cells in a transwell chamber. Cultured supernatant and cells were collected at different time points after exposure to EMP (peak intensity 400 kV/m, rise time 10 ns, pulse width 350 ns, 0.5 pps and 200 pulses). Protein levels of cellular gelatinase MMP-2 and MMP-9, and endogenous inhibitor TIMP-1 and TIMP-2 were detected by Western blot. The activity of gelatinase in culture supernatant was detected by gelatin zymography. It was found that compared with the sham-exposed group, the protein level of MMP-2 was significantly increased at 6 h (p < 0.05), and the protein level of its endogenous inhibitor TIMP-2 did not change after EMP exposure. In addition, the protein levels of MMP-9 and its endogenous inhibitor TIMP-1 did not change after EMP exposure. Gelatin zymography results showed that the activity of MMP-2 in the inner pool and the outer pool of the transwell chamber was significantly increased at 6 h after EMP exposure compared with that of the sham group. These results suggested that EMP exposure could affect the expression and activity of MMP-2 in the BBB model.

  16. First Electromagnetic Pulse Associated with a Gravitational-wave Event: Profile, Duration, and Delay

    Science.gov (United States)

    Lin, Da-Bin; Liu, Tong; Lin, Jie; Wang, Xiang-Gao; Gu, Wei-Min; Liang, En-Wei

    2018-04-01

    We study the first electromagnetic (EM) pulse after the gravitational-wave (GW) chirp signal, focusing on its profile and duration. It is found that the light curve, especially the steep decay (SD) phase, can be very different by adopting different viewing angles θ view of the jet shell. For an on-axis jet with a power-law radiation spectrum, the observed flux in the SD is proportional to {t}obs}-2-β with β being the spectral index and t obs being the observer time. Here, t obs = 0 is set at the time we observe the jet being ejected from the central engine. The SD may become steep by increasing θ view. We also study the bolometric luminosity L from a jet shell with a non-power-law radiation spectrum. For an on-axis jet, L ∝ t obs ‑3 is found in the SD. However, the SD is steeper than L\\propto {t}obs}-3 for radiation from an off-axis jet. The higher value of the θ view is, the steeper SD would be. Then, we suggest that the SD phase can be used to discriminate an off-axis jet from an on-axis jet. The reason for the above behaviors is discussed. In addition, we find that the duration of first EM pulse is close to its peak time, especially for θ view ∼ 20°. This result is consistent with that found in GW 170817/GRB 170817A. Thus, the jet corresponding to the prompt emission of GRB 170817A should be ejected immediately after the merger. Our results also reveal that the duration of the first EM pulse can provide information on the time to search for GWs.

  17. A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer

    Science.gov (United States)

    Coffey, Aaron M.; Shchepin, Roman V.; Feng, Bibo; Colon, Raul D.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2017-11-01

    Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events. Described here is a PHIP instrument interfaced to a portable NMR console operating with a static field electromagnet in the milliTesla regime. In addition to providing comprehensive control over chemistry and RF events, this setup condenses the PHIP protocol into a pulse-program that in turn can be readily shared in the manner of traditional pulse sequences. In this device, a TTL multiplexer was constructed to convert spectrometer TTL outputs into 24 VDC signals. These signals then activated solenoid valves to control chemical shuttling and reactivity in PHIP experiments. Consolidating these steps in a pulse-programming environment speeded calibration and improved quality assurance by enabling the B0/B1 fields to be tuned based on the direct acquisition of thermally polarized and hyperpolarized NMR signals. Performance was tested on the parahydrogen addition product of 2-hydroxyethyl propionate-1-13C-d3, where the 13C polarization was estimated to be P13C = 20 ± 2.5% corresponding to 13C signal enhancement approximately 25 million-fold at 9.1 mT or approximately 77,000-fold 13C enhancement at 3 T with respect to thermally induced polarization at room temperature.

  18. Reflection of an electromagnetic pulse from a subcritical waveguide taper and from a supercritical-density plasma in a waveguide

    International Nuclear Information System (INIS)

    Rukhadze, Anri A; Tarakanov, V P

    2006-01-01

    Two related problems are studied by numerical simulations using the KARAT code: the reflection of the TM 01 mode of an electromagnetic pulse from the subcritical taper of the section of a circular waveguide and the reflection of the same pulse from a 'cold' collisionless plasma with a density increasing up to a supercritical value along the waveguide axis. It is shown that in the former case the pulse is totally reflected with an insignificant distortion of its shape, in accordance with the linear theory. In the latter case, the character of reflection depends substantially on the plasma density increase length, the pulse duration, and the wave field amplitude, a significant field deceleration and amplitude growth occurring near the critical point; the pulse absorption in the plasma far exceeds the absorption due to the linear transformation of the incident transverse wave to the longitudinal plasma oscillations. (laser applications and other topics in quantum electronics)

  19. Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu

    2010-01-01

    We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.

  20. Preventing Electromagnetic Pulse Irradiation Damage on Testis Using Selenium-rich Cordyceps Fungi. A Preclinical Study in Young Male Mice.

    Science.gov (United States)

    Miao, Xia; Wang, Yafeng; Lang, Haiyang; Lin, Yanyun; Guo, Qiyan; Yang, Mingjuan; Guo, Juan; Zhang, Yanjun; Zhang, Jie; Liu, Junye; Liu, Yaning; Zeng, Lihua; Guo, Guozhen

    2017-02-01

    Networked 21st century society, globalization, and communications technologies are paralleled by the rise of electromagnetic energy intensity in our environments and the growing pressure of the environtome on human biology and health. The latter is the entire complement of environmental factors, including the electromagnetic energy and the technologies that generate them, enacting on the digital citizen in the new century. Electromagnetic pulse (EMP) irradiation might have serious damaging effects not only on electronic equipment but also in the whole organism and reproductive health, through nonthermal effects and oxidative stress. We sought to determine whether EMP exposure (1) induces biological damage on reproductive health and (2) the extent to which selenium-rich Cordyceps fungi (daily coadministration) offer protection on the testicles and spermatozoa. In a preclinical randomized study, 3-week-old male BALB/c mice were repeatedly exposed to EMP (peak intensity 200 kV/m, pulse edge 3.5 ns, pulse width 15 ns, 0.1 Hz, and 400 pulses/day) 5 days per week for four consecutive weeks, with or without coadministration of daily selenium-rich Cordyceps fungi (100 mg/kg). Testicular index and spermatozoa formation were measured at baseline and 1, 7, 14, 28, and 60 day time points after EMP exposure. The group without Cordyceps cotreatment displayed decreased spermatozoa formation, shrunk seminiferous tubule diameters, and diminished antioxidative capacity at 28 and 60 days after exposure (p digital citizenship.