WorldWideScience

Sample records for ultralow energy ions

  1. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  2. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  3. Ultra-low energy electrons from fast heavy-ion helium collisions: the `target Cusp`

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, W. [Freiburg Univ. (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Moshammer, R.; Kollmus, H.; Ullrich, J. [Freiburg Univ. (Germany); O`Rourke, F.S.C. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom); Sarkadi, L. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Mann, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hagmann, S. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.; Olson, R.E. [Missouri Univ., Rolla, MO (United States). Dept. of Physics

    1998-09-01

    Doubly differential cross sections d{sup 2}{sigma}/dv {sub parallel} dv {sub perpendicular} {sub to} have been obtained by mapping the 3-dimensional velocity space of ultra-low and low-energy electrons (1.5 meV{<=} E{sub e}{<=}100 eV) emitted in singly ionizing 3.6 MeV/u Au{sup 53+} on helium collisions. A sharp ({Delta}E{sub e} {sub perpendicular} {sub to} {sup FWHM} {<=} 22 meV) asymmetric peak centered at vertical stroke anti {nu} vertical stroke =0 is observed to emerge at ultra-low energies from the strongly forward shifted low-energy electron velocity distribution. The shape of this ``target cusp``, which is very sensitive on the details of the two-center potential, is in excellent accord with theoretical CTMC and CDW-EIS predictions. (orig.)

  4. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    Energy Technology Data Exchange (ETDEWEB)

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  5. Physics with ultra-low energy antiprotons

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Holzscheiter, M.H.; Hughes, R.J.

    1989-01-01

    The experimental observation that all forms of matter experience the same gravitational acceleration is embodied in the weak equivalence principle of gravitational physics. However no experiment has tested this principle for particles of antimatter such as the antiproton or the antihydrogen atom. Clearly the question of whether antimatter is in compliance with weak equivalence is a fundamental experimental issue, which can best be addressed at an ultra-low energy antiproton facility. This paper addresses the issue. 20 refs

  6. Ultra-low energy storage ring at FLAIR

    International Nuclear Information System (INIS)

    Welsch, Carsten P.; Papash, A. I.; Gorda, O.; Harasimowicz, J.; Karamyshev, O.; Karamysheva, G.; Newton, D.; Panniello, M.; Putignano, M.; Siggel-King, M. R. F.; Smirnov, A.

    2012-01-01

    The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV and possibly less. The USR has been completely redesigned over the past three years. The ring structure is based on a “split achromat” lattice that allows in-ring experiments with internal gas jet target. Beam parameters might be adjusted in a wide range: from very short pulses in the nanosecond regime to a Coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Detailed investigations of the USR, including studies into the ring’s long term beam dynamics, life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. New tools and beam handling techniques for diagnostics of ultra-low energy ions at beam intensities less than 10 6 were developed by the QUASAR Group. In this paper, progress on the USR project will be presented with an emphasis on the expected beam parameters available to the experiments at FLAIR.

  7. Aerosol nucleation in an ultra-low ion density environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean M.

    2012-01-01

    Ion-induced nucleation has been studied in a deep underground ultra-low background radiation environment where the role of ions can be distinguished from alternative neutral aerosol nucleation mechanisms. Our results demonstrate that ions have a significant effect on the production of small...... sulfuric acid–water clusters over a range of sulfuric acid concentrations although neutral nucleation mechanisms remain evident at low ionization levels. The effect of ions is found both to enhance the nucleation rate of stable clusters and the initial growth rate. The effects of possible contaminations...

  8. Collisional quenching at ultralow energies: controlling efficiency with internal state selection.

    Science.gov (United States)

    Bovino, S; Bodo, E; Gianturco, F A

    2007-12-14

    Calculations have been carried out for the vibrational quenching of excited H(2) molecules which collide with Li(+) ions at ultralow energies. The dynamics has been treated exactly using the well-known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier by our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g., the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made such that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies.

  9. Hydrogen ion induced ultralow wear of PEEK under extreme load

    Science.gov (United States)

    Yan, Shuai; Wang, Anying; Fei, Jixiong; Wang, Zhenyang; Zhang, Xiaofeng; Lin, Bin

    2018-03-01

    As a high-performance engineering polymer, poly(ether ether ketone) (PEEK) is a perfect candidate material for applications under extreme working conditions. However, its high wear rate greatly shortens its service life. In this study, ultralow friction and wear between PEEK and silicon nitride (Si3N4) under extreme-load conditions (with a mean contact pressure above 100 MPa) are found in acid lubricating solutions. Both friction and wear decrease sharply with decreasing pH. At pH = 1, the friction coefficient decreases by an order of magnitude and the wear rate of the PEEK decreases by two orders of magnitude compared to the results with water lubrication. These reductions in friction and wear occur for different speed, load, and surface roughness conditions. The underlying mechanism can be attributed to the formation of hydrogen-ion-induced electrical double layers on the surfaces of PEEK and Si3N4. The combined effect of the resulting repulsive force, electro-viscosity, and low shear strength of the water layer dramatically reduces both friction and wear.

  10. Ultra-low energy Ar+ beam applied for SIMS depth profile analysis of layered nanostructures

    International Nuclear Information System (INIS)

    Konarski, P.; Mierzejewska, A.; Iwanejko, I.

    2001-01-01

    Secondary ion mass spectrometry (SIMS) depth profile analyses of flat layered nanostructures: 10 nm Ta 2 O 3 /Ta and 20 nm (10 x B 4 C/Mo)/Si as well as microparticles of core (illite) - shell (rutile) structure, performed with the use of ultra-low energy ion beam (180-880 eV, Ar + ), are presented. The profiles were obtained using 'mesa' scanning technique and also sample rotation. Depth profile resolution below 1 nanometer was obtained for flat nanostructures. Presented experimental results are compared with Monte Carlo sputtering simulations of analysed structures. A method of finding beam energy, optimal for the best resolution SIMS depth profile analysis, is suggested. (author)

  11. Ultralow temperature helium compressor for Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Asakura, Hiroshi

    1988-01-01

    Ishikawajima Harima Heavy Industries Co., Ltd. started the development of an ultralow temperature helium compressor for helium liquefaction in 1984 jointly with Japan Atomic Energy Research Institute, and has delivered the first practical machine to the Superconductive Magnet Laboratory of JAERI. For a large superconductive magnet to be used in the stable state for a fusion reactor, conventional superconductive materials (NbTi, NbTi 3 Sn, etc.) must be used, being cooled forcibly with supercritical helium. The supercritical helium which is compressed above the critical pressure of 228 kPa has a stable cooling effect since the thermal conductivity does not change due to the evaporation of liquid helium. In order to maintain the temperature of the supercritical helium below 4 K before it enters a magnet, a heat exchanger is used. The compressor that IHI has developed has the ability to reduce the vapor pressure of liquid helium from atmospheric pressure to 50.7 kPa, and can attain the temperature of 3.5 K. The specification of this single stage centrifugal compressor is: mass flow rate 25 - 64 g/s, speed 80,000 rpm, adiabatic efficiency 62 - 69 %. The structure and the performance are reported. (K.I.)

  12. Exploring Sub-Femtosecond Correlated Dynamics with an Ultra-low Energy Electrostatic Storage Ring

    International Nuclear Information System (INIS)

    Welsch, C.P.; Grieser, M.; Dorn, A.; Moshammer, R.; Ullrich, J.

    2005-01-01

    Whereas the three-body Coulomb problem for single excitation and ionization was claimed to be solved in a mathematically correct way during 1999 until 2004 for electron impact on hydrogen and helium, ion-impact ionization still represents a major challenge for theory. Troubling discrepancies have been observed recently in fully differential cross sections (FDCS) for helium single ionization by fast ion impact and even experimental total cross sections are in striking disagreement with the predictions of all state-of-the-art theories for low-energy antiproton collisions. Therefore, within the future Facility for Low-energy Antiproton and Ion Research (FLAIR), it has been proposed to combine state-of-the-art many-particle imaging methods with a novel electrostatic storage ring for slow antiprotons in order to realize single and multiple ionization cross section measurements for antiprotons colliding with atoms, molecules and clusters. Total, as well as any differential cross sections up to FDCS including ionization-excitation reactions are envisaged to become available, serving as benchmark data for theory. Here, the present status of experiments in comparison with theory is presented and the layout of an Ultra-low energy Storage Ring (USR) with its integrated reaction microscope at FLAIR is described

  13. Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

    Directory of Open Access Journals (Sweden)

    Eun-Hwa Kim

    2015-12-01

    Full Text Available By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

  14. The PS 200 catching trap: A new tool for ultra-low energy antiproton physics

    International Nuclear Information System (INIS)

    Holzscheiter, M.H.; Dyer, P.L.; King, N.S.P.; Lizon, D.C.; Morgan, G.L.; Schauer, M.M.; Schecker, J.A.; Hoibraten, S.; Lewis, R.A.; Otto, T.

    1994-01-01

    Approximately one million antiprotons have been trapped and electron cooled in the PS200 catching trap from a single fast extracted pulse from LEAR. The system is described in detail, different extraction schemes are discussed, and possible applications of this instrument to ultra-low energy atomic and nuclear physics with antiprotons are mentioned

  15. CMOS circuits for electromagnetic vibration transducers interfaces for ultra-low voltage energy harvesting

    CERN Document Server

    Maurath, Dominic

    2015-01-01

    Chip-integrated power management solutions are a must for ultra-low power systems. This enables not only the optimization of innovative sensor applications. It is also essential for integration and miniaturization of energy harvesting supply strategies of portable and autonomous monitoring systems. The book particularly addresses interfaces for energy harvesting, which are the key element to connect micro transducers to energy storage elements. Main features of the book are: - A comprehensive technology and application review, basics on transducer mechanics, fundamental circuit and control design, prototyping and testing, up to sensor system supply and applications. - Novel interfacing concepts - including active rectifiers, MPPT methods for efficient tracking of DC as well as AC sources, and a fully-integrated charge pump for efficient maximum AC power tracking at sub-100µW ultra-low power levels. The chips achieve one of widest presented operational voltage range in standard CMOS technology: 0.44V to over...

  16. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    International Nuclear Information System (INIS)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-01-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm 2 (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 μA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 π mm mrad at 15 kV (1σ) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams

  17. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    Energy Technology Data Exchange (ETDEWEB)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T. [Laboratoire de Physique Subatomique et de Cosmologie de Grenoble, UJF-CNRS/IN2P3 - INPG, 53, rue des Martyrs, 38026 Grenoble Cedex (France)

    2010-02-15

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm{sup 2} (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 {mu}A extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 {pi} mm mrad at 15 kV (1{sigma}) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon

  18. Applications of energy harvesting for ultralow power technology

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.

    2015-06-01

    Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.

  19. Energy scavenging sensors for ultra-low power sensor networks

    Science.gov (United States)

    O'Brien, Dominic C.; Liu, Jing Jing; Faulkner, Grahame E.; Vachiramon, Pithawat; Collins, Steve; Elston, Steven J.

    2010-08-01

    The 'internet of things' will require very low power wireless communications, preferably using sensors that scavenge power from their environment. Free space optics allows communications over long ranges, with simple transceivers at each end, offering the possibility of low energy consumption. In addition there can be sufficient energy in the communications beam to power simple terminals. In this paper we report experimental results from an architecture that achieves this. A base station that tracks sensors in its coverage area and communicates with them using low divergence optical beams is presented. Sensor nodes use modulated retro-reflectors to communicate with the base station, and the nodes are powered by the illuminating beam. The paper presents design and implementation details, as well as future directions for this work.

  20. The astrophysical S factor for dd reaction at ultralow energies

    International Nuclear Information System (INIS)

    Bystritskii, Vit.M.; Bystritsky, V.M.; Grebenyuk, V.M.

    2001-01-01

    The experimental results of measurements of the astrophysical S factor for dd reaction at very low deuteron collision energies using liner plasma technique are presented. The experiment was fulfilled at the high-current generator of the High-Current Electronics Institute (Tomsk, Russia). The measured values of S factors for the deuteron collision energies 1.80, 2.06, and 2.27 keV are S dd = 114 ± 68, 64 ± 30, and 53 ± 16 keV b, respectively. The corresponding cross sections for dd reaction, described as a product of the barrier factor and measured astrophysical S factor are: σ dd n (E col = 1.80 keV) = (4.3 ± 2.6) x 10 -33 cm 2 ; σ dd n (E col = 2.06 keV) = (9.8 ± 4.6) x 10 -33 cm 2 ; σ dd n (E col = 2.27 keV) = (2.1 ± 0.6) x 10 -32 cm 2 [ru

  1. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-05-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  2. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Thongkumkoon, P.; Prakrajang, K.; Suwannakachorn, D.; Yu, L.D.

    2014-01-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms

  3. Partial-wave analysis for positronium-xenon collisions in the ultralow-energy region

    Science.gov (United States)

    Shibuya, Kengo; Saito, Haruo

    2018-05-01

    We propose a method to convert measured positronium annihilation rates in gaseous xenon into total and differential cross sections of positronium-xenon collisions in an ultralow-energy region of less than 80 meV where their experimental determinations as functions of the positronium kinetic energy are extremely difficult. This method makes it possible to determine not only the s -wave collisional parameters but also the p -wave and d -wave parameters. We have found a small positive value of the scattering length, A0=2.06 ±0.10 a0 , which indicates that the positronium-xenon interaction in this energy region is repulsive and suggests that it is dominated by the scattering amplitude of the positron rather than that of the electron. An extrapolation of the analytical result into the experimentally inaccessible energy regions from 80 meV to 1.0 eV indicates that there should not be a Ramsauer-Townsend minimum but rather a peak in the total cross section at an energy of approximately 0.4 eV.

  4. Ultralow-Energy Wireless Smart-Scales System with Micropower Generator

    Science.gov (United States)

    Kitamura, Kazuma; Yano, Hironori; Mochizuki, Misako; Takano, Tomoaki; Yamauchi, Hironori; Douseki, Takakuni

    A wireless smart-scales system with a face recognition function has been developed as an application for wireless sensor networks. The face recognition employs a wireless camera; and the system automatically identifies a person and stores the weights of all the people that use the system on a server. Two key ultralow-energy circuit techniques were devised for the smart scales. One is a nearly-zero-standby-current circuit that combines a mechanical switch and an electrical CPU-controlled power switch; it reduces the standby power dissipation of the CPU from 1.5 mW to less than 0.1 μW. The other is a super-intermittently-operating circuit with a power-switch transistor and a small resistance; it suppresses the energy dissipation of the wireless camera to just 1/4 of the total energy dissipation. Furthermore, an electromechanical micropower generator with electromagnetic induction further reduces the energy dissipation. It is located under the scales and supplies a power of 75 mW during one second.

  5. An electron cyclotron resonance ion source based low energy ion beam platform

    International Nuclear Information System (INIS)

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-01-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed

  6. An electron cyclotron resonance ion source based low energy ion beam platform.

    Science.gov (United States)

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  7. Effect of radical species density and ion bombardment during ashing of extreme ultralow-κ interlevel dielectric materials

    International Nuclear Information System (INIS)

    Worsley, M. A.; Bent, S. F.; Fuller, N. C. M.; Tai, T. L.; Doyle, J.; Rothwell, M.; Dalton, T.

    2007-01-01

    The significance of ion impact and radical species density on ash-induced modification of an extreme ultralow-κ interlevel dielectric (ILD) material (κ 2 and Ar/N 2 dual frequency capacitive discharges is determined by combining plasma diagnostics, modeling of the ion angular distribution function, and material characterization such as angle resolved x-ray photoelectron spectroscopy. Radical species density was determined by optical emission actinometry under the same conditions and in the same reactor in a previous study by the present authors. ILD modification is observed and correlated with changes in the plasma for a range of pressures (5-60 mTorr), bias powers (0-350 W), and percent Ar in the source gas (0%, 85%). For the Ar/O 2 discharge, extensive modification of the ILD sidewall was observed for significant ion scattering conditions, whereas minimal modification of the ILD sidewall was observed under conditions of minimal or no ion scattering. Further, for an identical increase in the O-radical density (∼ an order of magnitude), a different degree of modification was induced at the ILD trench bottom surface depending on whether pressure or percent Ar was used to increase the radical density. The different degrees of modification seemingly correlated with the relative changes in the ion current for increasing pressure or percent Ar. For the Ar/N 2 discharge, reduced damage of the ILD sidewall and trench bottom surfaces was observed for increasing pressure (increasing N-radical density) and decreasing ion current to both surfaces. It is, thus, proposed that the mechanism for modification of the porous ILD is dominated by the creation of reactive sites by ion impact under the present conditions. A detailed discussion of the results which support this proposal is presented

  8. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  9. Advanced 65 nm CMOS devices fabricated using ultra-low energy plasma doping

    International Nuclear Information System (INIS)

    Walther, S.; Lenoble, D.; Lallement, F.; Grouillet, A.; Erokhin, Y.; Singh, V.; Testoni, A.

    2005-01-01

    For leading edge CMOS and DRAM technologies, plasma doping (PLAD) offers several unique advantages over conventional beamline implantation. For ultra-low energy source and drain extensions (SDE), source drain contact and high dose poly doping implants PLAD delivers 2-5x higher throughput compared to beamline implanters. In this work we demonstrate process performance and process integration benefits enabled by plasma doping for advanced 65 nm CMOS devices. Specifically, p + /n ultra-shallow junctions formed with BF 3 plasma doping have superior X j /R s characteristics to beamline implants and yield up to 30% lower R s for 20 nm X j while using standard spike anneal with ramp-up rate of 75 deg. C/s. These results indicate that PLAD could extend applicability of standard spike anneal by at least one technology node past 65 nm. A CMOS split lot has been run to investigate process integration advantages unique to plasma doping and to determine CMOS device characteristics. Device data measured on 65 nm transistors fabricated with offset spacers indicate that devices with SDE formed by plasma doping have superior V t roll-off characteristics arguably due to improved lateral gate-overlap of PLAD SDE junctions. Furthermore, offset spacers could be eliminated in 65 nm devices with PLAD SDE implants while still achieving V t roll-off and I on -I off performance at least equivalent to control devices with offset spacers and SDE formed by beamline implantation. Thus, another advantage of PLAD is simplified 65 nm CMOS manufacturing process flow due to elimination of offset spacers. Finally, we present process transfer from beamline implants to PLAD for several applications, including SDE and gate poly doping with very high productivity

  10. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-03-01

    Full Text Available An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT-based power management system (PMS is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  11. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    Science.gov (United States)

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  12. Positive ion mobilities in normal liquid 3He at ultralow temperatures

    International Nuclear Information System (INIS)

    Alexander, P.W.

    1978-11-01

    The mobility has been measured of positive ions in liquid 3 he in the range 2.5 mK 3 sub(m)/sup(V) 5 sub(m)/sup(V). The effects of 500 p.p.m. 4 He in the 3 He were investigated. It was found that, at low temperatures, several stable ion species could be produced for 3 He pressures of 23 bar and above and, between 25 mK and 60 mK, time dependent conversion from one species of ion to another was observed at all pressures. The creation mechanism, mobility and stability of multiple positive ions were studied. Possible explanations of the phenomena are discussed. The measured drift field dependence of mobility is used to test the quasiparticle scattering model assumed for the liquid. (U.K.)

  13. Binding energies of cluster ions

    International Nuclear Information System (INIS)

    Parajuli, R.; Matt, S.; Scheier, P.; Echt, O.; Stamatovic, A.; Maerk, T.D.

    2002-01-01

    The binding energy of charged clusters may be measured by analyzing the kinetic energy released in the metastable decay of mass selected parent ions. Using finite heat bath theory to determine the binding energies of argon, neon, krypton, oxygen and nitrogen from their respective average kinetic energy released were carried out. A high-resolution double focussing two-sector mass spectrometer of reversed Nier-Johnson type geometry was used. MIKE ( mass-analysed ion kinetic energy) were measured to investigate decay reactions of mass-selected ions. For the inert gases neon (Ne n + ), argon (Ar n + ) and krypton (Kr n + ), it is found that the binding energies initially decrease with increasing size n and then level off at a value above the enthalpy of vaporization of the condensed phase. Oxygen cluster ions shown a characteristic dependence on cluster size (U-shape) indicating a change in the metastable fragmentation mechanism when going from the dimer to the decamer ion. (nevyjel)

  14. The use of low energy ion beams for the growth and processing of solid materials

    International Nuclear Information System (INIS)

    Armour, D.G.; Al-Bayati, A.H.; Gordon, J.S.

    1992-01-01

    Low energy ion bombardment forms the basis of ion assisted etching and growth of materials in plasma and ion beam systems. The growing demands for low temperature, highly controlled processing has led a rapid increase in both the application of low energy beams and the study of the fundamental ion surface interactions involved. The growth in the practical applications of ion beams in the few eV to a few hundred eV range has presented new problems in the production and transport of ion beams and has led to the development of highly specialised, ultra-low energy systems. These technological developments, in conjunction with the improvements in understanding of fundamental processes have widened the range of applications of low energy beams. (author) 52 refs

  15. An Ultra-Low Energy Subthreshold SRAM Bitcell for Energy Constrained Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Arijit Banerjee

    2014-05-01

    Full Text Available Energy consumption is a key issue in portable biomedical devices that require uninterrupted biomedical data processing. As the battery life is critical for the user, these devices impose stringent energy constraints on SRAMs and other system on chip (SoC components. Prior work shows that operating CMOS circuits at subthreshold supply voltages minimizes energy per operation. However, at subthreshold voltages, SRAM bitcells are sensitive to device variations, and conventional 6T SRAM bitcell is highly vulnerable to readability related errors in subthreshold operation due to lower read static noise margin (RSNM and half-select issue problems. There are many robust subthreshold bitcells proposed in the literature that have some improvements in RSNM, write static noise margin (WSNM, leakage current, dynamic energy, and other metrics. In this paper, we compare our proposed bitcell with the state of the art subthreshold bitcells across various SRAM design knobs and show their trade-offs in a column mux scenario from the energy and delay metrics and the energy per operation metric standpoint. Our 9T half-select-free subthreshold bitcell has 2.05× lower mean read energy, 1.12× lower mean write energy, and 1.28× lower mean leakage current than conventional 8T bitcells at the TT_0.4V_27C corner. Our bitcell also supports the bitline interleaving technique that can cope with soft errors.

  16. Medium energy ion scattering (MEIS)

    International Nuclear Information System (INIS)

    Dittmann, K.; Markwitz, A.

    2009-01-01

    This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A

  17. Emittance measurements in low energy ion storage rings

    Science.gov (United States)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  18. Quantum mechanical study of molecular collisions at ultra-low energy: applications to alkali and alkaline-earth systems

    International Nuclear Information System (INIS)

    Quemener, G.

    2006-10-01

    In order to investigate the collisional processes which occur during the formation of molecular Bose-Einstein condensates, a time-independent quantum mechanical formalism, based on hyperspherical coordinates, has been applied to the study of atom-diatom dynamics at ultra-low energies. We present theoretical results for three alkali systems, each composed of lithium, sodium or potassium atoms, and for an alkaline-earth system composed of calcium atoms. We also study dynamics at large and positive atom-atom scattering length. Evidence for the suppression of inelastic processes in a fermionic system is given, as well as a linear relation between the atom-diatom scattering length and the atom-atom scattering length. (author)

  19. Experimental investigation of dd reaction in range of ultralow energies using Z-pinch

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Grebenyuk, V.M.; Parzhitskij, S.S.

    1998-01-01

    Results of the experiments to measure the dd reaction cross section in the range of deuteron collision energies from 0.1 keV to 1.5 keV using Z-pinch technique are presented. The experiment was performed at the Pulsed Ion Beam Accelerator of the High-Current Electronics Institute in Tomsk. The dd fusion neutrons were registered by scintillation detectors using time-of-flight method and BF 3 detectors of thermal neutrons. At 90% confidence level, the upper limits of the neutron producing dd reaction cross sections are obtained for average deuteron collision energies of 0.11, 0.34, 0.37 and 1.46 keV. The results demonstrate that high-intensity pulsed accelerators with a generator current of 2-3 MA allow the dd reaction cross sections to be measured in the range of deuteron collision energies from 0.8 keV to 3 keV

  20. Planar waveguide structure formed on Nd:YVO{sub 4} by Kr{sup 8+} ion irradiation at ultralow fluences

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lian; Liu, Peng; Liu, Tao; Zhou, Yu-Fan [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Sun, Jian-Rong; Wang, Zhi-Guang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China)

    2013-11-15

    We report on the fabrication of a planar waveguide structure on Nd:YVO{sub 4} laser crystal. The waveguide structure was formed by Kr{sup 8+} ion irradiation with energy of 30 MeV at fluences of 2 × 10{sup 12} cm{sup −2}. The guiding modes of the planar waveguide were measured by the prism-coupling method at wavelengths of 633 nm and 1539 nm. The reflectivity calculation method (RCM) was used to reconstruct the refractive index profiles. Relatively large positive changes in the ordinary refractive index occur in the waveguide region. The refractive index profile of the planar waveguide was a typical “well” + “barrier” distribution, and we used the finite-difference beam propagation method (FD-BPM) to simulate light propagation in the waveguide. Using the Stopping and Range of Ions in Matter (SRIM 2008) software, the energy loss during ion irradiation was simulated to obtain a better understanding of the formation of the waveguide structure. The investigation of the absorption bands demonstrated that the transmission properties of the bulk Nd:YVO{sub 4} crystal have been preserved after ion irradiation.

  1. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  2. Improved performance of Ta2O5-x resistive switching memory by Gd-doping: Ultralow power operation, good data retention, and multilevel storage

    Science.gov (United States)

    Shi, K. X.; Xu, H. Y.; Wang, Z. Q.; Zhao, X. N.; Liu, W. Z.; Ma, J. G.; Liu, Y. C.

    2017-11-01

    Resistive-switching memory with ultralow-power consumption is very promising technology for next-generation data storage and high-energy-efficiency neurosynaptic chips. Herein, Ta2O5-x-based multilevel memories with ultralow-power consumption and good data retention were achieved by simple Gd-doping. The introduction of a Gd ion, as an oxygen trapper, not only suppresses the generation of oxygen vacancy defects and greatly increases the Ta2O5-x resistance but also increases the oxygen-ion migration barrier. As a result, the memory cells can operate at an ultralow current of 1 μA with the extrapolated retention time of >10 years at 85 °C and the high switching speeds of 10 ns/40 ns for SET/RESET processes. The energy consumption of the device is as low as 60 fJ/bit, which is comparable to emerging ultralow-energy consumption (memory devices.

  3. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  4. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  5. Vibrational cooling of spin-stretched dimer states by He buffer gas: quantum calculations for Li2(a 3Sigma(u)+) at ultralow energies.

    Science.gov (United States)

    Bovino, S; Bodo, E; Yurtsever, E; Gianturco, F A

    2008-06-14

    The interaction between the triplet state of the lithium dimer, (7)Li(2), with (4)He is obtained from accurate ab initio calculations where the vibrational dependence of the potential is newly computed. Vibrational quenching dynamics within a coupled-channel quantum treatment is carried out at ultralow energies, and large differences in efficiency as a function of the initial vibrational state of the targets are found as one compares the triplet results with those of the singlet state of the same target.

  6. Electrical activation of solid-phase epitaxially regrown ultra-low energy boron implants in Ge preamorphised silicon and SOI

    International Nuclear Information System (INIS)

    Hamilton, J.J.; Collart, E.J.H.; Colombeau, B.; Jeynes, C.; Bersani, M.; Giubertoni, D.; Sharp, J.A.; Cowern, N.E.B.; Kirkby, K.J.

    2005-01-01

    The formation of highly activated ultra-shallow junctions (USJ) is one of the key requirements for the next generation of CMOS devices. One promising method for achieving this is the use of Ge preamorphising implants (PAI) prior to ultra-low energy B implantation. In future technology nodes, bulk silicon wafers may be supplanted by Silicon-on-Insulator (SOI), and an understanding of the Solid Phase Epitaxial (SPE) regrowth process and its correlation to dopant electrical activation in both bulk silicon and SOI is essential in order to understand the impact of this potential technology change. This kind of understanding will also enable tests of fundamental models for defect evolution and point-defect reactions at silicon/oxide interfaces. In the present work, B is implanted into Ge PAI silicon and SOI wafers with different PAI conditions and B doses, and resulting samples are annealed at various temperatures and times. Glancing-exit Rutherford Backscattering Spectrometry (RBS) is used to monitor the regrowth of the amorphous silicon, and the resulting redistribution and electrical activity of B are monitored by SIMS and Hall measurements. The results confirm the expected enhancement of regrowth velocity by B doping, and show that this velocity is otherwise independent of the substrate type and the Ge implant distribution within the amorphised layer. Hall measurements on isochronally annealed samples show that B deactivates less in SOI material than in bulk silicon, in cases where the Ge PAI end-of-range defects are close to the SOI back interface

  7. Experimental verification of a novel MEMS multi-modal vibration energy harvester for ultra-low power remote sensing nodes

    Science.gov (United States)

    Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.

    2015-05-01

    In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.

  8. Scanning ion microscopy with low energy lithium ions

    International Nuclear Information System (INIS)

    Twedt, Kevin A.; Chen, Lei; McClelland, Jabez J.

    2014-01-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography

  9. ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Šimon, Vojtěch; Hudec, L.; Hudcová, Věra

    2012-01-01

    Roč. 83, č. 1 (2012), s. 342-346 ISSN 0037-8720. [Workshop on multifrequency behaviour of high energy cosmic sources. Vulcano, 23.05.2011-28.05.2011] R&D Projects: GA ČR GA205/08/1207 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-rays * high-energy sources * satellites Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  10. The Mean Excitation Energy of Atomic Ions

    DEFF Research Database (Denmark)

    Sauer, Stephan; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  11. Ultralow energy calibration of LUX detector using Xe 127 electron capture

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2017-12-01

    We report an absolute calibration of the ionization yields (Qy ) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V /cm . The data are obtained using low energy Xe 127 electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of weakly interacting massive particles. The sequence of gamma-ray and x-ray cascades associated with I 127 deexcitations produces clearly identified two-vertex events in the LUX detector. We observe the K-(binding energy, 33.2 keV), L-(5.2 keV), M-(1.1 keV), and N-(186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ measurements that have been explored in liquid xenon.

  12. Ultra-low temperature process by ion shower doping technique for poly-Si TFTs on plastics

    International Nuclear Information System (INIS)

    Kim, Jong-Man; Lim, Huck; Kim, Do-Young; Jung, Ji-Sim; Kwon, Jang-Yeon; Hong, Wan-Shick; Noguchi, Takashi

    2006-01-01

    An ion doping process was performed by using a basic ion shower system. After ion doping and subsequent activation of the dopants in the Si film by excimer laser annealing (ELA), we studied the crystallinity of the Si surface using UV-reflectance spectroscopy and the sheet resistance by using 4-point probe measurements. To prevent excessive temperature increase on the plastic substrate during ion shower doping, the plasma shower was applied in a series of short pulses. As a result, dopant ions were efficiently incorporated and were activated into the a-Si film on plastic substrate after ELA. The sheet resistance decreased with increase of actual doping time, which corresponds to the incorporated dose. Also, we confirmed a distinct relationship between the crystallinity and the sheet resistance. This work shows that pulsed ion shower doping is a promising technique for ultra-low-temperature poly-Si TFTs on plastic substrates.

  13. Study of multi-layered graphene by ultra-low energy SEM/STEM

    Czech Academy of Sciences Publication Activity Database

    Mikmeková, Eliška; Frank, Luděk; Müllerová, Ilona; Li, B. W.; Ruoff, R. S.; Lejeune, M.

    2016-01-01

    Roč. 63, March 2016 (2016), s. 136-142 ISSN 0925-9635 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212 EU Projects: European Commission(XE) 606988 - SIMDALEE2 Institutional support: RVO:68081731 Keywords : scanning ultra low energy electron microscopy * graphene * contamination * CVD Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.561, year: 2016

  14. Forward-biased nanophotonic detector for ultralow-energy dissipation receiver

    Science.gov (United States)

    Nozaki, Kengo; Matsuo, Shinji; Fujii, Takuro; Takeda, Koji; Shinya, Akihiko; Kuramochi, Eiichi; Notomi, Masaya

    2018-04-01

    Generally, reverse-biased photodetectors (PDs) are used for high-speed optical receivers. The forward voltage region is only utilized in solar-cells, and this photovoltaic operation would not be concurrently obtained with high efficiency and high speed operation. Here we report that photonic-crystal waveguide PDs enable forward-biased high-speed operation at 40 Gbit/s with keeping high responsivity (0.88 A/W). Within our knowledge, this is the first demonstration of the forward-biased PDs with high responsivity. This achievement is attributed to the ultracompactness of our PD and the strong light confinement within the absorber and depleted regions, thereby enabling efficient photo-carrier generation and fast extraction. This result indicates that it is possible to construct a high-speed and ultracompact photo-receiver without an electrical amplifier nor an external bias circuit. Since there is no electrical energy required, our estimation shows that the consumption energy is just the optical energy of the injected signal pulse which is about 1 fJ/bit. Hence, it will lead to an ultimately efficient and highly integrable optical-to-electrical converter in a chip, which will be a key ingredient for dense nanophotonic communication and processors.

  15. Forward-biased nanophotonic detector for ultralow-energy dissipation receiver

    Directory of Open Access Journals (Sweden)

    Kengo Nozaki

    2018-04-01

    Full Text Available Generally, reverse-biased photodetectors (PDs are used for high-speed optical receivers. The forward voltage region is only utilized in solar-cells, and this photovoltaic operation would not be concurrently obtained with high efficiency and high speed operation. Here we report that photonic-crystal waveguide PDs enable forward-biased high-speed operation at 40 Gbit/s with keeping high responsivity (0.88 A/W. Within our knowledge, this is the first demonstration of the forward-biased PDs with high responsivity. This achievement is attributed to the ultracompactness of our PD and the strong light confinement within the absorber and depleted regions, thereby enabling efficient photo-carrier generation and fast extraction. This result indicates that it is possible to construct a high-speed and ultracompact photo-receiver without an electrical amplifier nor an external bias circuit. Since there is no electrical energy required, our estimation shows that the consumption energy is just the optical energy of the injected signal pulse which is about 1 fJ/bit. Hence, it will lead to an ultimately efficient and highly integrable optical-to-electrical converter in a chip, which will be a key ingredient for dense nanophotonic communication and processors.

  16. Inverse Resistance Change Cr2Ge2Te6-Based PCRAM Enabling Ultralow-Energy Amorphization.

    Science.gov (United States)

    Hatayama, Shogo; Sutou, Yuji; Shindo, Satoshi; Saito, Yuta; Song, Yun-Heub; Ando, Daisuke; Koike, Junichi

    2018-01-24

    Phase-change random access memory (PCRAM) has attracted much attention for next-generation nonvolatile memory that can replace flash memory and can be used for storage-class memory. Generally, PCRAM relies on the change in the electrical resistance of a phase-change material between high-resistance amorphous (reset) and low-resistance crystalline (set) states. Herein, we present an inverse resistance change PCRAM with Cr 2 Ge 2 Te 6 (CrGT) that shows a high-resistance crystalline reset state and a low-resistance amorphous set state. The inverse resistance change was found to be due to a drastic decrease in the carrier density upon crystallization, which causes a large increase in contact resistivity between CrGT and the electrode. The CrGT memory cell was demonstrated to show fast reversible resistance switching with a much lower operating energy for amorphization than a Ge 2 Sb 2 Te 5 memory cell. This low operating energy in CrGT should be due to a small programmed amorphous volume, which can be realized by a high-resistance crystalline matrix and a dominant contact resistance. Simultaneously, CrGT can break the trade-off relationship between the crystallization temperature and operating speed.

  17. The astrophysical S-factor for the dd-reaction at ultralow energies

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Grebenyuk, V.M.; Parzhitskij, S.S.

    1999-01-01

    The experimental results for measurements of the astrophysical S-factor for dd-reaction at very low deuteron collision energies using liner plasma technique are presented. The experiment was fulfilled at the high current generator of the High-Current Electronics Institute, Tomsk, Russia. The measured values of S-factor for the deuteron collision energies: 2.27, 2.06, and 1.8 keV are: S dd = (53 ± 16), (64 ± 30), (114 ±68)b · keV, respectively. The corresponding dd cross sections described as a product of the barrier factor and measured astrophysical S-factor are: σ dd n (E col = 1.8 keV) = (4.3 ± 2.6) · 10 -33 cm 2 ; σ dd n (E col = 2.06 keV) = (9.8 ± 4.6) · 10 -33 cm 2 ; σ dd n (E col = 2.27 keV) = (2.1 ±0.6) · 10 -32 cm 2

  18. Theoretical motivation for gravitation experiments on ultra-low energy antiprotons and antihydrogen

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1995-01-01

    It is known that the generally accepted theories of gravity and quantum mechanics are fundamentally incompatible. Thus, when one tries to combine these theories, one must beware of physical pitfalls. Modern theories of quantum gravity are trying to overcome these problems. Any ideas must confront the present agreement with general relativity, but yet be free to wonder about not understood phenomena, such as the dark matter problem. This all has led some open-quotes intrepidclose quotes theorists to consider a new gravitational regime, that of antimatter. Even more open-quotes daringclose quotes experimentalists are attempting, or considering attempting, the measurement of the gravitational force on antimatter, including low-energy antiprotons and, perhaps most enticing, antihydrogen

  19. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH: Reactive ion etching and dielectric recovery

    Science.gov (United States)

    Myers, John N.; Zhang, Xiaoxian; Huang, Huai; Shobha, Hosadurga; Grill, Alfred; Chen, Zhan

    2017-05-01

    Molecular structures at the surface and buried interface of an amorphous ultralow-k pSiCOH dielectric film were quantitatively characterized before and after reactive ion etching (RIE) and subsequent dielectric repair using sum frequency generation (SFG) vibrational spectroscopy and Auger electron spectroscopy. SFG results indicated that RIE treatment of the pSiCOH film resulted in a depletion of ˜66% of the surface methyl groups and changed the orientation of surface methyl groups from ˜47° to ˜40°. After a dielectric recovery process that followed the RIE treatment, the surface molecular structure was dominated by methyl groups with an orientation of ˜55° and the methyl surface coverage at the repaired surface was 271% relative to the pristine surface. Auger depth profiling indicated that the RIE treatment altered the top ˜25 nm of the film and that the dielectric recovery treatment repaired the top ˜9 nm of the film. Both SFG and Auger profiling results indicated that the buried SiCNH/pSiCOH interface was not affected by the RIE or the dielectric recovery process. Beyond characterizing low-k materials, the developed methodology is general and can be used to distinguish and characterize different molecular structures and elemental compositions at the surface, in the bulk, and at the buried interface of many different polymer or organic thin films.

  20. Collisions of low-energy multicharged ions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Crandall, D.H.

    1981-01-01

    Experimental measurements of cross sections for collisions of multiply charged ions with atoms at the lowest attainable collision energies are reported. Emphasis is on electron capture from hydrogen atoms by multiply charged ions at energies below 1 keV/amu. The principal effort is the development of a merged-ion-atom-beams apparatus for studies down to 1 eV/amu relative energy

  1. ECR ion source for variable energy cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bose, D K; Taki, G S; Nabhiraj, P Y; Pal, G; Dasgupta, B; Mallik, C; Das, S K; Bandopadhaya, D K; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1995-09-01

    Some performance characteristics of 6.4 GHz two stage ECR ion source which was under development at this centre is presented. The present ion source will facilitate acceleration of light heavy ions with the existing k=130 variable energy cyclotron. Multiply charged heavy ion (MCHI) beam from the source will also be utilized for atomic physics studies. Oxygen beam has already been used for ion implantation studies. The external injection system under development is nearing completion. Heavy ion beam from cyclotron is expected by end of 1995. (author).

  2. Medium-energy ion reflection from solids

    CERN Document Server

    Mashkova, ES

    1985-01-01

    ``Medium-Energy Ion Reflection from Solids'' analyses the results of experimental, theoretical and computer investigations on the process of scattering of ions by solid surfaces. Surface scattering is a relatively young and rapidly developing branch of the physics of atomic collisions and the literature on this subject has rapidly grown.As the first monograph devoted specifically to surface scattering of ions, this book is directed at scientists involved in ion-solid interaction studies.

  3. Cold chemistry with ionic partners: quantum features of HeH+(1Σ) with H(1S) at ultralow energies.

    Science.gov (United States)

    Bovino, S; Tacconi, M; Gianturco, F A

    2011-07-28

    Quantum reactive calculations are presented for an ion-atom reaction involving the HeH(+)cation and its destruction via a barrierless interaction with H atoms. The range of collision energies considered is that of a cold trap regime (around and below millikelvin) where the ionic partner could be spatially confined. Specific resonant features caused by the interplay of the strong ionic interaction with the very slow partners' dynamics are found and analyzed. Indications are also given on the consequences of the abstraction mechanism that acts for this reaction at low energies. © 2011 American Chemical Society

  4. Energy straggling of heavy ions in solids

    International Nuclear Information System (INIS)

    Cowern, N.E.B.

    1979-08-01

    The energy-loss straggling of heavy ions has been studied, principally in the Born Approximation region v > zv 0 . Measurements were made with 5.486 MeV α particles, 5 - 48 MeV 16 0 ions, and 3 - 36 MeV 12 C ions, incident on thin uniform Al foils. The thickness uniformity of the foils was studied with a proton microbeam and a surface profiler, and their homogeneity, purity and isotropy were investigated by electron microscope, proton backscattering, and X-ray diffraction studies. Using the Bethe theory of energy loss the charge-exchange model of energy straggling for heavy ions is confirmed. (author)

  5. Energy dependence and temporal evolution of the 3He/4He ratios in heavy-ion-rich energetic particle events

    International Nuclear Information System (INIS)

    Moebius, E.; Hovestadt, D.; Klecker, B.; Gloeckler, G.

    1980-01-01

    The energy dependence of the 3 He/ 4 He ratio between 0.44 and 4.1 MeV per nucleon has been studied for six heavy-ion--rich events observed in 1974 and 1976 using the low-energy dE/dx versus E Ultralow-Energy Particle telescope (ULET) on IMP 8. We find that all selected heavy-ion--rich events are also enriched in 3 He, that the 3 He/ 4 He He ratio decreases with decreasing energies, and that a rapid temporal evolution of the 3 He/ 4 He and the Fe/(H+He) ratios is strongly correlated during one event with the maximum value at the onset. These results are discussed in terms of a model which is based on preferential injection of 3 He and Fe resulting from turbulent ion heating and subsequent Fermi acceleration

  6. High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition

    International Nuclear Information System (INIS)

    Saha, Madhu Sudan; Gulla, Andrea F.; Allen, Robert J.; Mukerjee, Sanjeev

    2006-01-01

    Ultra-low pure Pt-based electrodes (0.04-0.12 mg Pt /cm 2 ) were prepared by dual ion-beam assisted deposition (dual IBAD) method on the surface of a non-catalyzed gas diffusion layer (GDL) substrate. Film thicknesses ranged between 250 and 750 A, these are compared with a control, a conventional Pt/C (1.0 mg Pt(MEA) /cm 2 , E-TEK). The IBAD electrode constituted a significantly different morphology, where low density Pt deposits (largely amorphous) were formed with varying depths of penetration into the gas diffusion layer, exhibiting a gradual change towards increasing crystalline character (from 250 to 750 A). Mass specific power density of 0.297 g Pt /kW is reported with 250 A IBAD deposit (0.04 mg Pt /cm 2 for a total MEA loading of 0.08 mg Pt /cm 2 ) at 0.65 V. This is contrasted with the commercial MEA with a loading of 1 mg Pt(MEA) /cm 2 where mass specific power density obtained was 1.18 g Pt /kW (at 0.65 V), a value typical of current state of the art commercial electrodes containing Pt/C. The principal shortcoming in this effort is the area specific power density which was in the range of 0.27-0.43 W/cm 2 (for 250-750 A IBAD) at 0.65 V, hence much below the automotive target value of 0.8-0.9 W/cm 2 (at 0.65 V). An attempt to mitigate these losses is reported with the use of patterning. In this context a series of patterns ranging from 45 to 80% Pt coverage were used in conjunction with a hexagonal hole geometry. Up to 30% lowering of mass transport losses were realized

  7. Tailored ion energy distributions on plasma electrodes

    International Nuclear Information System (INIS)

    Economou, Demetre J.

    2013-01-01

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas

  8. Multicavity SCRF calculation of ion hydration energies

    International Nuclear Information System (INIS)

    Diercksen, B.H.F.; Karelson, M.; Tamm, T.

    1994-01-01

    The hydration energies of the proton, hydroxyl ion, and several inorganic ions were calculated using the multicavity self-consistent reaction field (MCa SCRF) method developed for the quantum-mechanical modeling of rotationally or flexible systems in dielectric media. The ionic complexes H 3 O + (H2O) 4 , OH - (H2O) 4 , NH + 4 (H2O) 4 , and Hal - (H2O) 4 , where Hal = F, Cl, or Br, have been studied. Each complex was divided between five spheres, corresponding to the central ion and four water molecules in their first coordination sphere, respectively. Each cavity was surrounded by a polarizable medium with the dielectric permittivity of water at room temperature (80). The ionic hydration energies of ions were divided into specific and nonspecific parts. After accounting for the cavity-formation energy using scaled particle theory, good agreement between the total calculated and experimental hydration energies was obtained for all ions studied

  9. Dopant redistribution and electrical activation in silicon following ultra-low energy boron implantation and excimer laser annealing

    International Nuclear Information System (INIS)

    Whelan, S.; La Magna, A.; Privitera, V.; Mannino, G.; Italia, M.; Bongiorno, C.; Fortunato, G.; Mariucci, L.

    2003-01-01

    Excimer laser annealing (ELA) of ultra-low-energy (ULE) B-ion implanted Si has been performed. High-resolution transmission electron microscopy has been used to assess the as-implanted damage and the crystal recovery following ELA. The electrical activation and redistribution of B in Si during ELA has been investigated as a function of the laser energy density (melted depth), the implant dose, and the number of laser pulses (melt time). The activated and retained dose has been evaluated with spreading resistance profiling and secondary ion mass spectrometry. A significant amount of the implanted dopant was lost from the sample during ELA. However, the dopant that was retained in crystal material was fully activated following rapid resolidification. At an atomic concentration below the thermodynamic limit, the activation efficiency (dose activated/dose implanted into Si material) was a constant for a fixed melt depth, irrespective of the dose implanted and hence the total activated dose was raised as the implant dose was increased. The electrical activation was increased for high laser energy density annealing when the dopant was redistributed over a deeper range

  10. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  11. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    Energy Technology Data Exchange (ETDEWEB)

    Grezes, C.; Alzate, J. G.; Cai, X.; Wang, K. L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Ebrahimi, F.; Khalili Amiri, P. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Inston, Inc., Los Angeles, California 90024 (United States); Katine, J. A. [HGST, Inc., San Jose, California 95135 (United States); Langer, J.; Ocker, B. [Singulus Technologies AG, Kahl am Main 63796 (Germany)

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits.

  12. Measurements of low energy auroral ions

    International Nuclear Information System (INIS)

    Urban, A.

    1981-01-01

    This paper summarizes ion measurements in the energy range 0.1 to 30 keV observed during the campaigns 'Substorm Phenomena' and 'Porcupine'. For a clear survey of the physical processes during extraordinary events, sometimes ion measurements of higher energies are also taken into account. Generally, the pitch angle distributions were isotropic during all flights except some remarkable events. In general the ion and electron flux intensities correlated, but sometimes revealed a spectral anti-correlation. Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field could be identified accompanied by intense electron precipitation. On the other hand deceleration of the ions was observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations pointed to energy dispersion and to the location of the source region at 9 Rsub(E). Furthermore, ion fluxes higher than those of the electrons were measured at pitch angles parallel to the magnetic field. The integral down-going number and energy flux of the ions contributed to the total particle or energy influx between 65% and less than 7% and did not clearly characterize the geophysical launch conditions or auroral activities. (author)

  13. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  14. Heavy ion reactions at high energies

    International Nuclear Information System (INIS)

    Jakobsson, Bo.

    1977-01-01

    A review on heavy ion experiments at energies >0.1GeV/nucleon is presented. Reaction cross-sections, isotope production cross-sections and pion production in nucleus-nucleus collisions are discussed. Some recent models for heavy ion reactions like the abrasion-ablation model, the fireball model and the different shock-wave models are also presented

  15. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W.K.; Sauer, Stephan P.A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...

  16. N-type nano-silicon powders with ultra-low electrical resistivity as anode materials in lithium ion batteries

    Science.gov (United States)

    Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren

    2017-06-01

    N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.

  17. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  18. Experiments on very high energy heavy ions

    International Nuclear Information System (INIS)

    Willis, W.J.

    1981-01-01

    In this paper I describe experimental techniques which could be used to investigate central collision of very high energy heavy ions. For my purposes, the energy range is defined by the number of pions produced, Nsub(π) >> 100, and consequently Nsub(π) >> Nsub(nucleon). In this regime we may expect that new phenomena will appear. (orig.)

  19. High-energy ion tail formation due to ion acoustic turbulence in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1982-02-01

    The two-component ion energy spectra observed in the TRIAM-1 tokamak are explained as a result of the high-energy ion tail formation due to ion acoustic turbulence driven by a toroidal current pulse for turbulent heating.

  20. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  1. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  2. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    International Nuclear Information System (INIS)

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm 4+ and Bk 4+ in CeF 4 are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab

  3. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  4. An online low energy gaseous ion source

    International Nuclear Information System (INIS)

    Jin Shuoxue; Guo Liping; Peng Guoliang; Zhang Jiaolong; Yang Zheng; Li Ming; Liu Chuansheng; Ju Xin; Liu Shi

    2010-01-01

    The accumulation of helium and/or hydrogen in nuclear materials may cause performance deterioration of the materials. In order to provide a unique tool to investigate the He-and/or H-caused problems, such as interaction of helium with hydrogen and defects, formation of gas bubbles and its evolution, and the related effects, we designed a low energy (≤ 20 keV) cold cathode Penning ion source, which will be interfaced to a 200 kV transmission electron microscope (TEM), for monitoring continuously the evolution of micro-structure during the He + or H + ion implantation. Studies on discharge voltage-current characteristics of the ion source, and extraction and focusing of the ion beam were performed. The ion source works stably with 15-60 mA of the discharge current.Under the gas pressure of 5 x 10 -3 Pa and 1.5 x 10 -2 Pa, the discharge voltage are about 380 V and 320 V, respectively. The extracted ion current under lower gas pressure is greater than that under higher gas pressure, and it increases with the discharge current and extraction voltage. The ion lens consisting of three equal-diameter metal cylinder focus the ion beam effectively, so that the beam density at the 150 cm away from the lens exit increases by a over one order of magnitude. For ion beams of around 10 keV, the measured beam density is about 200 nA · cm -2 , which is applicable for ion implantation and in situ TEM observation for many kinds of nuclear materials. (authors)

  5. Mixed ion beams near transition energy

    International Nuclear Information System (INIS)

    Hancock, S.

    1991-01-01

    The standard derivations of the energy and phase of the synchronous particle in a proton accelerator assume, as if by definition, that said synchronous particle lies on the central orbit of the machine. This is manifestly unjustified in the particular case of the acceleration near transition of a mixture of ions, when a small difference in charge-to-mass ratio can produce a large radial separation of the different ion species. The development of a simple derivation of the parameters of the synchronous particle that involves no such a priori constraint has yielded some surprises; not, least, a belated explanation for an apparent anomaly encountered in 1987, when a mixture of oxygen and sulphur ions was accelerated in the CERN Proton Synchrotron for the first time. These ideas are supported by measurements performed in 1990 during a second ion run

  6. Low energy ion-molecule reactions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, J.M. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  7. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  8. Heavy ion fragmentation in high energy

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  9. Heavy ion reactions at low energies

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    Some general features of the heavy ion reactions at low energies are presented. Some kinds of processes are studied, such as: elastic scattering, peripherical reactions, deep inelastic collisions and fusion. Both, theoretical and experimental perspectives on this field are discussed. (L.C.) [pt

  10. High energy ion implantation for IC processing

    International Nuclear Information System (INIS)

    Oosterhoff, S.

    1986-01-01

    In this thesis the results of fundamental research on high energy ion implantation in silicon are presented and discussed. The implantations have been carried out with the 500 kV HVEE ion implantation machine, that was acquired in 1981 by the IC technology and Electronics group at Twente University of Technology. The damage and anneal behaviour of 1 MeV boron implantations to a dose of 10 13 /cm 2 have been investigated as a function of anneal temperature by sheet resistance, Hall and noise measurements. (Auth.)

  11. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... (TZVP) level. Agreement with experimental data for monovalent and divalent ions is good and shows no significant systematic errors. Predictions are noticeably better than with standard COSMO. The agreement with experimental data for trivalent and tetravalent ions is slightly worse and shows systematic...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...

  12. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  13. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S P; Jamieson, D N; Nugent, K W; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  14. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  15. Energy dependence of ion guiding through nanocapillaries

    International Nuclear Information System (INIS)

    Schiessl, K.; Lemell, C.; Burgdoerfer, J.; Toekesi, K.

    2008-01-01

    Complete text of publication follows. In this work, we model the transmission of Ne 7+ ions with varying kinetic energies ranging from 2 to 9 keV through Polyethyleneterephthalate (PET) nanocapillaries with a diameter of 200 nm (see Fig. 1). We have simulated the ion transmission through insulating nanocapillaries using a mean-field classical-transport theory (see Fig. 2.). Ion trajectories are propagated in the combined fields of charges deposited on the capillary wall, their polarization charges, the projectile image charge, and the macroscopic field from neighboring capillaries. The simulation avoids any freely adjustable parameters in order to be predictive and to provide qualitative insights into underlying mechanisms. We have varied projectile energy and angle of incidence and have tested different models of dielectric shielding. Best agreement with experimental data is found for dielectrically screened surfaces charges. Response and transport employs linear response only. Reasonable agreement with data could be found employing only macroscopic material parameters of PET like dielectric constant, surface and bulk conductivity

  16. Energy spread in ion beam analysis

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2000-01-01

    In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures

  17. Energy spread in ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E. E-mail: szilagyi@rmki.kkfki.hu

    2000-03-01

    In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures.

  18. Review of high energy heavy ion experiments

    International Nuclear Information System (INIS)

    Miake, Yasuo

    2000-01-01

    It has been proposed that in high energy heavy ion collisions a physical conditions similar to the early stage of the Universe can be established in the laboratory. New phase of matter expected to be created is called the quark gluon plasma (QGP). Based on the motivation to create the QGP in the laboratory, heavy ion beams have been accelerated at AGS of Brookhaven National Laboratory and also at CERN-SPS. Several interesting features of the data have been reported, among which are: the suppression of J/ψ production in Pb+Pb collisions, the enhancement of low mass lepton pairs, and the collective behavior of hadron production. These features are reviewed under the key words of Deconfinement, Chiral Restoration and Collectivity in the lecture. (author)

  19. High energy ion microbeams and their applications

    International Nuclear Information System (INIS)

    Bakhru, H.; Nickles, E.; Haberl, A.; Morris, W.G.

    1992-01-01

    In recent years there has been rapid growth for the development of equipment for forming a focussed beam (0.5 - 2μm) with high energy ions. The State University of New York at Albany ion scanning microprobe has been used for several applications especially in the fields of materials and biological studies. Rutherford backscattering spectroscopy (RBS) and particle-induced x-ray emission (PIXE) analysis have been performed on microelectronic circuits with a spatial resolution of approximately 2 μm. Studies on films of superconductors (YBa CuO) will be presented. Applications of microbeams for the biological studies and analytical techniques will be presented. Current and future role of microbeams and their limitations will be discussed. (author)

  20. Quantum mechanical study of molecular collisions at ultra-low energy: applications to alkali and alkaline-earth systems; Etude quantique de collisions moleculaires a ultra-basse energie: applications aux alcalins et alcalino-terreux

    Energy Technology Data Exchange (ETDEWEB)

    Quemener, G

    2006-10-15

    In order to investigate the collisional processes which occur during the formation of molecular Bose-Einstein condensates, a time-independent quantum mechanical formalism, based on hyperspherical coordinates, has been applied to the study of atom-diatom dynamics at ultra-low energies. We present theoretical results for three alkali systems, each composed of lithium, sodium or potassium atoms, and for an alkaline-earth system composed of calcium atoms. We also study dynamics at large and positive atom-atom scattering length. Evidence for the suppression of inelastic processes in a fermionic system is given, as well as a linear relation between the atom-diatom scattering length and the atom-atom scattering length. (author)

  1. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As ... Solid electrolytes; bond valence analysis; ion transport in glasses. 1. .... clusters are considered to contribute only to a.c. conduc-.

  2. Energy Harvesting for Self-Powered, Ultra-Low Power Microsystems With a Focus on Vibration-Based Electromechanical Conversion

    Science.gov (United States)

    2009-09-01

    capacitor responsible for charge. Figure 25. Half Bridge Power Harvester with Leakage Resistance [From 70] The resistor accounts for the voltage...REV PAP, 1996. [63] M. Umeda, K. Nakamura, and S. Ueha, “Energy storage characteristics of a piezo - generator using impact induced vibration...Japanese journal of applied physics, vol. 36, pp. 3146–3151, 1997. [64] M. Kimura, “ Piezo -electricity generation device,” U.S. Patent 812070, September

  3. Energy transfer and quenching processes of excited uranyl ion and lanthanide ions in solutions

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Tomiyasu, Hiroshi

    1995-01-01

    Deactivation processes of photoexcited uranyl ion by various lanthanide ions in aqueous solution were studied. Each lanthanide ions show different interaction with excited uranyl ion depending on its lowest excited energy level, the number of 4f electrons and the acid concentration of the solution. (author)

  4. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuldyuld@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  5. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells

  6. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  7. Ultra-low power sensor for autonomous non-invasive voltage measurement in IoT solutions for energy efficiency

    Science.gov (United States)

    Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca

    2015-05-01

    Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.

  8. Energy dependent modulation of the ulf ion flux oscillations observed at small pitch angles

    International Nuclear Information System (INIS)

    Su, S.; Konradi, A.; Fritz, T.A.

    1979-01-01

    The characteristics of the ultralow frequency oscillations in the ion fluxes observed at small pitch angles by the National Oceanic and Atmospheric Adminstration detector telescopes on board ATS 6 are again examined. The present report concentrates on the dramatic variation of the flux modulations detected in various energy channels during a single event which occurred on February 18, 1975. The wave amplitude is observed to be larger in a higher energy channel with energies from 100 keV to 150 keV and to decrease toward the lower energy channels. The lowest-energy protons (25--33 keV) in general are seldom seen to be oscillating, but in this event they display a low-amplitude oscillation which is 180 0 out of p ase with the adjacent channel. Such energy dependent modulation of the flux oscillation is thought to be a consequence of the wave particle resonant interaction. However, the prediction of the bounce resonant interaction is not consistent with the observations of both the energy dependent variation of the flux amplitudes and a 180 0 change in the oscillation phase in the adjacent low-energy channels that occurred in the February 18, 1975, event. Since the shape of the undisturned particle distribution can also determine the variation of the particle perturbation at various energies, the first-order particle distribution derived in a homogeneous plasma with a uniform magnetic field is examined without any specification of the wave mode. When the average particle distribution during the wave observation is used together with a parallel wave electric field that presumably causes the flux modulation at small pitch angles, a reasonable agreement is found between the variation of flux modulation derived from the slope of the average particle distribution and that from the experimental observation

  9. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    published in the internationally leading journal Physical Review Letters. We continued to progress this pionee 15.  SUBJECT TERMS ion therapy, heavy ion ...Thomson parabola spectrometer: To separate and provide a measurement of the charge -to-mass ratio and energy spectrum of the different ion species...AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE

  10. Performance Limitations in High-Energy Ion Colliders

    CERN Document Server

    Fischer, Wolfram

    2005-01-01

    High-energy ion colliders (hadron colliders operating with species other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. However, the experiments also expect flexibility with frequent changes in the collision energy, lattice configuration, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams, attention must be paid to space charge, charge exchange, and intra-beam scattering effects. The latter leads to luminosity lifetimes of only a few hours for heavy ions. Ultimately cooling at full energy is needed to overcome this effect. Currently, the Relativistic Heavy Ion Collider at BNL is the only operating high-energy ion collider. The Large Hadron Collider, under construction at CERN, will also run with heavy ions.

  11. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  12. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    International Nuclear Information System (INIS)

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-01-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV

  13. Energy-loss measurements with heavy ions at relativistic energies

    International Nuclear Information System (INIS)

    Blank, B.; Gaimard, J.J.; Geissel, H.; Muenzenberg, G.; Schmidt, K.H.; Stelzer, H.; Suemmerer; Clerc, H.G.; Hanelt, E.; Steiner, M.; Voss, B.

    1990-03-01

    Using the magnetic spectrometer SPES I at SATURNE, energy-loss measurements have been performed for projectiles of 40 Ar (401 MeV/u), 36 P (362 MeV/u), 15 N (149 MeV/u), 11 Li (131 MeV/u) and 8 Li, 9 Li (130 MeV/u) in carbon, aluminum and lead targets. The experimental results are compared to calculations based on a modified relativistic Bethe formula and to a semi-empirical formula using a Z 2 scaling law for the stopping power and an effective charge parametrization for the heavy ions. (orig.)

  14. Ionomers for Ion-Conducting Energy Materials

    Science.gov (United States)

    Colby, Ralph

    For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.

  15. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  16. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  17. The prospect for fusion energy with light ions

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Adams, R.G.; Bailey, J.E.

    1998-01-01

    Intense ion beams may be the best option for an Inertial Fusion Energy (IFE) driver. While light ions may be the long-term pulsed power approach to IFE, the current economic climate is such that there is no urgency in developing fusion energy sources. Research on light ion beams at Sandia will be suspended at the end of this fiscal year in favor of z-pinches studying ICF target physics, high yield fusion, and stewardship issues. The authors document the status of light ion research and the understanding of the feasibility of scaling light ions to IFE

  18. The interaction of low energy ion beams with surfaces

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1981-01-01

    Four of the most important physical processes which occur during ion plating and allied techniques (1) ion-induced (and energetic-atom-induced) desorption of adsorbed impurities from the substrate surface, (2) ion penetration and entrapment in the substrate and coating, (3) ion-induced sputtering of substrate and coating atoms and (4) recoil displacement of substrate and coating atoms leading to their intermixing. The ion and energetic atom energy range of importance is from thermal energies to the order of 1keV. Current understanding of these processes, supported by discussion of available experimental data, is reviewed. (Auth.)

  19. Ultralow denier polybenzimidazole (PBI) yarns

    Science.gov (United States)

    Tan, M.; Leal, J. R.

    1977-01-01

    A study to determine the feasibility of preparing ultralow denier polybenzimidazole (PBI) yarns was undertaken. Conditions that presently yield multifilament yarns with bundle deniers ranging from 75 to 15,000 were used as a baseline. From this starting point, process parameters were identified that give five filament yarns with yarn densiers as low as 0.80. Physical properties from such ultralow denier yarns were at levels that would permit subsequent fabrication into fabrics.

  20. Temporal evolution of ion energy in a plasma focus

    International Nuclear Information System (INIS)

    Rhee, M.J.; Weidman, D.J.

    1988-01-01

    For the first time, the temporal structure of ion energy in a plasma focus is revealed using a time-resolving Thomson spectrometer. The velocities and arrival times of ions are determined from the spectrogram. The resulting distribution of ions in velocity--time space at the source is found to be a line distribution, as if the ions were accelerated in a diode by a pulsed voltage

  1. Li-Ion, Ultra-capacitor Based Hybrid Energy Module

    National Research Council Canada - National Science Library

    Daboussi, Zaher; Paryani, Anil; Khalil, Gus; Catherino, Henry; Gargies, Sonya

    2007-01-01

    .... To determine the optimum utilization of ultra-capacitors in applications where high power density and high energy density are required, an optimized Li-Ion/Ultra-capacitor Hybrid Energy Module (HEM...

  2. Measurement of few-electron uranium ions on a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    The high-energy electron beam ion trap, dubbed Super-EBIT, was used to produce, trap, and excite uranium ions as highly charged as fully stripped U 92+ . The production of such highly charged ions was indicated by the x-ray emission observed with high-purity Ge detectors. Moreover, high-resolution Bragg crystal spectromters were used to analyze the x-ray emission, including a detailed measurement of both the 2s 1/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole transitions. Unlike in ion accelerators, where the uranium ions move at relativistic speeds, the ions in this trap are stationary. Thus very precise measurements of the transition energies could be made, and the QED contribution to the transition energies could be measured within less than 1 %. Details of the production of these highly charged ions and their measurement is given

  3. Importance of ion energy on SEU in CMOS SRAMs

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, P.E.; Shaneyfelt, M.R.; Sexton, F.W.; Hash, G.L.; Winokur, P.S. [Sandia National Labs., Albuquerque, NM (United States); Musseau, O.; Leray, J.L. [CEA-DAM, Bruyeres-le-Chatel (France)

    1998-03-01

    The single-event upset (SEU) responses of 16 Kbit to 1 Mbit SRAMs irradiated with low and high-energy heavy ions are reported. Standard low-energy heavy ion tests appear to be sufficiently conservative for technologies down to 0.5 {micro}m.

  4. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  5. Improvement of the Energy Stability of the Single Ion Microbeam

    International Nuclear Information System (INIS)

    Zhan Furu; Qi Xuehong; Xu Mingliang; Chen Lianyun; Yu Zengliang

    2008-01-01

    Energy instability strongly affects the state and the beam size of the single ion microbeam. A facility based on the Generating Voltmeter was developed to improve the energy stability of the CAS-LIBB (Chinese Academy of Sciences, key laboratory of ion beam bioengineering) single ion microbeam. This paper presents the analysis of the energy instability of the single ion microbeam. A simplified theoretical model is set up to calculate the relationship between the energy instability and the beam spot size. By using this technique, the energy instability is adjusted to about 1%. Stable run-time is over 6 hours. The radius of the single ion beam is reduced by 10% compared to the previous one.

  6. High energy iron ion implantation into sapphire

    International Nuclear Information System (INIS)

    Allen, W.R.; Pedraza, D.F.

    1990-01-01

    Sapphire specimens of c-axis orientation were implanted at room temperature with iron ions at energies of 1.2 and of 2 MeV to various fluences up to 8 x 10 16 cm -2 . The damage induced by the implantations was assessed by Rutherford backscattering spectroscopy in random and channeling geometries. Dechanneling in both sublattices was observed to saturate for all implantation conditions. Disorder in the aluminum sublattice was found to increase with depth at a significantly slower rate than in the oxygen sublattice. In the oxygen sublattice, a relative yield, χ, of 0.80 ± 0.11 was attained at a depth of 0.1 μm and remained constant up to the measured depth of 0.45 μm. In the aluminum sublattice, the disorder increased with depth and the dechanneling asymptotically approached χ =0.70 ± 0.04 at 0.45 μm. These results are discussed and compared with those for shallower Fe implantations obtained by other researchers

  7. Biomaterial imaging with MeV-energy heavy ion beams

    International Nuclear Information System (INIS)

    Seki, Toshio; Wakamatsu, Yoshinobu; Nakagawa, Shunichiro; Aoki, Takaaki; Ishihara, Akihiko; Matsuo, Jiro

    2014-01-01

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi 3 -keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi 3 ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis

  8. Ion trapping in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, Frank [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik

    2011-10-15

    The problem of ion trapping in the high-energy storage ring HESR is studied in the present report. Positive ions are trapped in the negative potential well of the antiproton beam. The ions are produced by the interaction between the antiproton beam and the residual gas. The adverse effects of ion trapping like tune shifts, tune spreads and coherent instabilities are reviewed. The ion production rate by ionization of the residual gas molecules is estimated. The negative potential well and the corresponding electric fields of the antiproton beam are evaluated in order to study the transverse and longitudinal motion of the ions and the accumulation in trapping pockets. The removal of ions can be achieved using clearing electrodes and under certain conditions resonant transverse beam shaking. Diagnostic tools and measurements of trapped ion effects are sketched. (orig.)

  9. Kinetic energy distributions of ions after surface collisions

    International Nuclear Information System (INIS)

    Short, R.T.; Todd, P.J.; Grimm, C.C.

    1991-01-01

    As a part of the development of an organic ion microprobe, to be used for imaging of particular organic compounds in biological tissue, various methods of quadrupole-based tandem mass spectroscopy (MS/MS) have been investigated. High transmission efficiency is essential for the success of the organic ion microprobe, due to expected low analyte concentrations in biological tissue and the potential for sample damage from prolonged exposure to the primary ion beam. MS/MS is necessary for organic ion imaging because of the complex nature of the biological matrices. The goal of these studies of was to optimize the efficiency of daughter ion production and transmission by first determining daughter ion properties and then designing ion optics based on those properties. The properties of main interest are daughter ion kinetic energy and angular distribution. 1 fig

  10. Channeling of molecular ions with relativistic energy

    International Nuclear Information System (INIS)

    Azuma, Toshiyuki; Muranaka, Tomoko; Kondo, Chikara; Hatakeyama, Atsushi; Komaki, Kenichiro; Yamazaki, Yasunori; Takabayashi, Yuichi; Murakami, Takeshi; Takada, Eiichi

    2003-01-01

    When energetic ions are injected into a single crystal parallel to a crystal axis or plane, they proceed in an open space guided by the crystal potential without colliding with atoms in the atomic plane or string, which is called channeling. We aimed to study dynamics of molecular ions, H 2 + , of 160 MeV/u and their fragment ions, H + ions in a Si crystal under the channeling condition. The molecular ions, H 2 + , are soon ionized, i.e. electron-stripped in the crystal, and a pair of bare nuclei, H + ions, travels in the crystal potential with mutual Coulomb repulsion. We developed a 2D position sensitive detector for the angular-distribution measurement of the H + ions transmitted through the crystal, and observed the detailed angular distribution. In addition we measured the case of H + on incidence for comparison. As a result, the channeled component and non-channeling were clearly separated. The incident angular divergence is critical to discuss the effect of Coulomb explosion of molecular H 2 + ions. (author)

  11. 7th high energy heavy ion study

    International Nuclear Information System (INIS)

    Bock, R.; Gutbrod, H.H.; Stock, R.

    1985-03-01

    These proceedings contain the articles presented at the named conference. They deal with relativistic heavy ion reactions, the expansion and freeze-out of nuclear matter, anomalon experiments, and multifragmentation and particle correlations in heavy ion reactions. See hints under the relevant topics. (HSI)

  12. Measurement of ion energy by a calorimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Bunak, Suwat

    1996-12-01

    In calorimetric method, ion energy is determined based on the temperature changes during radiation of an absorbing material, radiation current and heat capacity of the calorimeter. This method is convenient and its measuring procedures are simple as well as the measuring apparatus. Here, the temperature changes of the calorimeter during {sup 14}N ion beam radiation were determined. The temperature increased linearly when irradiated with {sup 14}N{sup 3+}, 8.3 MeV or {sup 14}N{sup 2+}, 6 MeV, but not linearly for {sup 14}N{sup 1+}, 3.6 MeV, resulting in a comparatively large error. Thus, the measurement of ion energy by calorimetric method was found available as a convenient method for an accelerator having an energy stability less than 10{sup -3}. Especially this method seems to be useful for low-energy ion accelerator or ion injecting apparatus. (M.N.)

  13. Luminescence model with quantum impact parameter for low energy ions

    CERN Document Server

    Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S

    2002-01-01

    We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.

  14. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  15. High energy heavy ions: techniques and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 μsec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab

  16. Fragmentation and reactivity of energy-selected ferrocenium ions

    International Nuclear Information System (INIS)

    Mestdagh, H.; Dutuit, O.; Heninger, M.; Thissen, R.; Alcaraz, C.

    2002-01-01

    In this study, results concerning the discussion of state-selected ferrocenium ions (c-C 5 H 5 ) 2 Fe + commonly called Cp 2 Fe + , as well as their reactions with methanol and ethanol are presented. Parent ions Cp 2 Fe + were produced by vacuumultraviolett (VUV) photoionization of neutral ferrocene using synchrotron radiation, and selected in internal energy by threshold photoelectron-photoion coincidences. The apparatus is divided into three differentially pumped regions: the source, the reaction and the detection zones. In source, state-selected parent ions are formed and can be selected in mass by a first quadrupole filter. State-selected ions are then injected in the second zone which is a RF octopole ion guide where reaction product ions are mass analyzed by a second quadrupole filter and detected by microchannelplates. In addition, the long flight time in the octopoles (several hundreds of microseconds) allows studying long-lived metastable ions. Total mass spectra were recorded at different photon energies, in addition to the main CpFe + and Fe + fragments, several minor fragments were detected such as C 10 H 10 + which reflects the formation of a C-C bond between the two Cp ligands. Losses of CH 3 , C 2 H 2 and C-4H 4 also indicate that important structure rearrangements take place before cleavage. The appearance energies of each mass-selected fragment ion were measured by recording fragment ion yields as a function of photon energy. Surprisingly, all fragments were found to have the same energy onset, i.e. 13.2 eV photon energy, except for C 3 H 3 Fe + (m/z 95). For Fe + ions, a sharp increase was observed at 17 eV, above the thermochemical onset of Fe + + 2 Cp. The 13.2 eV appearance energy of Fe + is thus assigned to the formation of Fe - + C 10 H 10 . The reactivity of ferrocenium ion with methanol and ethanol was investigated as a function of photon energy. While no reaction occurs at lower photon energies, several reaction products appear at 13.0 e

  17. Auger vs resonance neutralization in low energy He+ ion scattering

    International Nuclear Information System (INIS)

    Woodruff, D.P.

    1983-01-01

    He + ions incident on a metal surface can neutralize either by an Auger or resonant charge exchange. While the Auger process has always been thought to be dominant, recent theoretical interest in the simpler one-electron resonance process has led to suggestions that this alone can account for the neutralization seen in low energy He + ion scattering. In this paper this assertion is analysed by looking at the wider information available on charge exchange processes for He + ion scattering through comparison with Li + ion scattering, the importance of multiple scattering in both these scattering experiments and the results of ion neutralization spectroscopy. These lead to the conclusion that while resonance neutralization to produce metastable He* may well occur at a substantial rate in He + ion scattering, the dominant process leading to loss of ions from the final scattered signal is Auger neutralization as originally proposed. (author)

  18. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  19. Ion induced high energy electron emission from copper

    International Nuclear Information System (INIS)

    Ruano, G.; Ferron, J.

    2008-01-01

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He + , Ne + and Ar + ) and Li + ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  20. Negative ions as a source of low energy neutral beams

    International Nuclear Information System (INIS)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems

  1. Pattern formation on Ge by low energy ion beam erosion

    International Nuclear Information System (INIS)

    Teichmann, Marc; Lorbeer, Jan; Frost, Frank; Rauschenbach, Bernd; Ziberi, Bashkim

    2013-01-01

    Modification of nanoscale surface topography is inherent to low-energy ion beam erosion processes and is one of the most important fields of nanotechnology. In this report a comprehensive study of surface smoothing and self-organized pattern formation on Ge(100) by using different noble gases ion beam erosion is presented. The investigations focus on low ion energies (⩽ 2000 eV) and include the entire range of ion incidence angles. It is found that for ions (Ne, Ar) with masses lower than the mass of the Ge target atoms, no pattern formation occurs and surface smoothing is observed for all angles of ion incidence. In contrast, for erosion with higher mass ions (Kr, Xe), ripple formation starts at incidence angles of about 65° depending on ion energy. At smaller incident angles surface smoothing occurs again. Investigations of the surface dynamics for specific ion incidence angles by changing the ion fluence over two orders of magnitude gives a clear evidence for coarsening and faceting of the surface pattern. Both observations indicate that gradient-dependent sputtering and reflection of primary ions play crucial role in the pattern evolution, just at the lowest accessible fluences. The results are discussed in relation to recently proposed redistributive or stress-induced models for pattern formation. In addition, it is argued that a large angular variation of the sputter yield and reflected primary ions can significantly contribute to pattern formation and evolution as nonlinear and non-local processes as supported by simulation of sputtering and ion reflection. (paper)

  2. Elevating the triplet energy levels of dibenzofuran-based ambipolar phosphine oxide hosts for ultralow-voltage-driven efficient blue electrophosphorescence: from D-A to D-π-A systems.

    Science.gov (United States)

    Han, Chunmiao; Zhang, Zhensong; Xu, Hui; Li, Jing; Zhao, Yi; Yan, Pengfei; Liu, Shiyong

    2013-01-21

    A series of donor (D)-π-acceptor (A)-type phosphine-oxide hosts (DBF(x) POPhCz(n)), which were composed of phenylcarbazole, dibenzofuran (DBF), and diphenylphosphine-oxide (DPPO) moieties, were designed and synthesized. Phenyl π-spacer groups were inserted between the carbazolyl and DBF groups, which effectively weakened the charge transfer and triplet-excited-state extension. As the result, the first triplet energy levels (T(1)) of DBF(x)POPhCz(n) are elevated to about 3.0 eV, 0.1 eV higher than their D-A-type analogues. Nevertheless, the electrochemical analysis and DFT calculations demonstrated the ambipolar characteristics of DBF(x)POPhCz(n). The phenyl π spacers hardly influenced the frontier molecular orbital (FMO) energy levels and the carrier-transporting ability of the materials. Therefore, these D-π-A systems are endowed with higher T(1) states, as well as comparable electrical properties to D-A systems. Phosphorescent blue-light-emitting diodes (PHOLEDs) that were based on DBF(x)POPhCz(n) not only inherited the ultralow driving voltages (2.4 V for onset, about 2.8 V at 200 cd m(-2), and efficiencies, including about 26 cd A(-1) for current efficiency, 30 Lm W(-1) for power efficiency, and 13% for external quantum efficiency, which were more than twice the values of devices that are based on conventional unipolar host materials. This performance makes DBFDPOPhCz(n) among the best hosts for ultralow-voltage-driven blue PHOLEDs reported so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Composition and energy spectrum variations of auroral ions

    International Nuclear Information System (INIS)

    Lynch, J.; Leach, R.; Pulliam, D.; Scherb, F.

    1977-01-01

    We have detected H + ,O + , and He ++ ions with E/q up to 20 keV/charge in a hydrogen aurora over Churchill, Manitoba, during the flight of a Javelin sounding rocket on February 11, 1975, We observed several examples of different types of ion events. One type consisted of bursts of H + and O + ions which arrived simultaneously at all energies within the range of the E/q analyzer. These events were apparently of local origin (distance + ions (O + /H + approximately-greater-than30%). A second type of event consisted of bursts of enhanced H + counting rates but no O + ions. The dispersion in time of the energy spectrum was consistent with an injection and acceleration site located at about 20 R/sub E/ from the earth. An enhancement of the He ++ counting rates was associated with these events, but the He ++ data are of limited statistical significance. A third type of event, consisting of short bursts of H + ions with wide energy spreads, was observed in association with an event in which the energy of the H + ions showed time dispersion. We interpret these short H + bursts as due to ions trapped in traveling waves generated by an explosive injection of plasma in the earth's magnetotail

  4. Energy- and angled-resolved photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    Energy- and angle-resolved photoelectron detachment spectroscopy is currently being used to investigate the structure of negative ions and their interaction with radiation. Measurements of the electron affinity of the Ca atom and the partial cross sections for photodetachment of the metastable negative ion, He - (1s2s2p 4 P), are reported. 5 refs., 5 figs

  5. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  6. Damage of copper by low energy xenon ions

    International Nuclear Information System (INIS)

    Babad-Zakhryapin, A.A.; Popenko, V.A.

    1988-01-01

    Changes in the copper crystal structure bombarded by xenon ions with 30-150 eV energy are studied. Foils of MOb copper mark, 10 mm in diameter and 100 μm thickness, are irradiated. The initial specimens are annealed in vacuum during 1 h at 900 K temperature. The specimens are bombarded by xenon ions in a water-cooled holder. A TE-O type accelerator serves as a xenon ion source. The ion energy varies within 30 to 150 eV range. The ion flux density is 8x10 16 ion/(cm 2 xs). It is shown that crystal structure variations at deep depths are observed not only at high (>1 keV), but at low ion energies down to several dozens of electronvolt as well. The crystal structure variation on copper irradiation by xenon ions with 30-150 eV energy is followed by formation of defects like dislocation loops, point defects in the irradiated target bulk

  7. High energy structures in heavy ion collisions: a multiphonon description

    International Nuclear Information System (INIS)

    Chomaz, P.; Blumenfeld, Y.; Frascaria, N.

    1984-01-01

    Energy spectra of fragments from the 36 Ar + 208 Pb reaction at 11 MeV/n exhibit structures at high excitation energies. These structures are interpreted in terms of target multi-phonon excitations built from giant resonances. The importance of such processes for the kinetic energy dissipation in heavy ion collisions is emphasized

  8. Study of ion tracks by micro-probe ion energy loss spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Havránek, Vladimír; Hnatowicz, Vladimír; Horák, Pavel; Fink, Dietmar; Apel, P. Yu.

    2014-01-01

    Roč. 332, AUG (2014), s. 308-311 ISSN 0168-583X. [21st International Conference on Ion Beam Analysis (IBA). Seattle, 23.06.2013-28.06.2013] R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : ion energy loss spectrometry * single ion track * microprobe * tomography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.124, year: 2014

  9. Channeling effect for low energy ion implantation in Si

    International Nuclear Information System (INIS)

    Cho, K.; Allen, W.R.; Finstad, T.G.; Chu, W.K.; Liu, J.; Wortman, J.J.

    1985-01-01

    Ion implantation is one of the most important processes in semiconductor device fabrication. Due to the crystalline nature of Si, channeling of implanted ions occurs during this process. Modern devices become smaller and shallower and therefore require ion implantation at lower energies. The effect of channeling on ion implantation becomes a significant problem for low energy ion implantation. The critical angle for axial and planar channeling increases with decreasing energy. This corresponds to an increased probability for channeling with lowering of ion energy. The industry approach to avoid the channeling problem is to employ a tilt angle of 7 0 between the ion implantation direction and the surface normal. We approach the problem by mapping major crystalline axes and planes near the [100] surface normal. Our analysis indicates that a 7 0 tilt is not an optimum selection in channeling reduction. Tilt angles in the range 5 0 to 6 0 combined with 7 0 +- 0.5 0 rotation from the (100) plane are better selections for the reduction of the channeling effect. The range of suitable angles is a function of the implantation energy. Implantations of boron along well specified crystallographic directions have been carried out by careful alignment and the resulting boron profiles measured by SIMS. (orig.)

  10. Li-Ion, Ultra-capacitor Based Hybrid Energy Module

    National Research Council Canada - National Science Library

    Daboussi, Zaher; Paryani, Anil; Khalil, Gus; Catherino, Henry; Gargies, Sonya

    2007-01-01

    .... Combining their superb specific power of 2-5kW/kg, high efficiency and very long cycle life with the high energy density of Li-Ion batteries, practical solutions to a variety of applications can be foreseen...

  11. Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak

    Science.gov (United States)

    Pellish, Jonathan A.; Xapsos, M. A.; LaBel, K. A.; Marshall, P. W.; Heidel, D. F.; Rodbell, K. P.; Hakey, M. C.; Dodd, P. E.; Shaneyfelt, M. R.; Schwank, J. R.; hide

    2009-01-01

    A 1 GeV/u Fe-56 Ion beam allows for true 90 deg. tilt irradiations of various microelectronic components and reveals relevant upset trends for an abundant element at the galactic cosmic ray (GCR) flux-energy peak.

  12. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4 (Canada)

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  13. Generation of intense, high-energy ion pulses by magnetic compression of ion rings

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.

    1981-01-01

    A system based on the magnetic compression of ion rings, for generating intense (High-current), high-energy ion pulses that are guided to a target without a metallic wall or an applied external magnetic field includes a vacuum chamber; an inverse reflex tetrode for producing a hollow ion beam within the chamber; magnetic coils for producing a magnetic field, bo, along the axis of the chamber; a disc that sharpens a magnetic cusp for providing a rotational velocity to the beam and causing the beam to rotate; first and second gate coils for producing fast-rising magnetic field gates, the gates being spaced apart, each gate modifying a corresponding magnetic mirror peak (Near and far peaks) for trapping or extracting the ions from the magnetic mirror, the ions forming a ring or layer having rotational energy; a metal liner for generating by magnetic flux compression a high, time-varying magnetic field, the time-varying magnetic field progressively increasing the kinetic energy of the ions, the magnetic field from the second gate coil decreasing the far mirror peak at the end of the compression for extracting the trapped rotating ions from the confining mirror; and a disc that sharpens a magnetic half-cusp for increasing the translational velocity of the ion beam. The system utilizes the self-magnetic field of the rotating, propagating ion beam to prevent the beam from expanding radially upon extraction

  14. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  15. Equilibrium charge state distributions of high energy heavy ions

    International Nuclear Information System (INIS)

    Clark, R.B.; Grant, I.S.; King, R.; Eastham, D.A.; Joy, T.

    1976-01-01

    Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)

  16. High energy argon ion irradiations of polycrystalline iron

    International Nuclear Information System (INIS)

    Dunlop, A.; Lesueur, D.; Lorenzelli, N.; Boulanger, L.

    1986-09-01

    We present here the results of our recent irradiations of polycrystalline iron targets with very energetic (1.76 GeV) Ar ions. The targets consist of piles of thin iron samples, the total thickness of each target being somewhat greater than the theoretical range (450 μm) of the ions. We can thus separate the phenomena which occur at different average energies of the ions and study during the slowing-down process: the different types of induced nuclear reactions. They allow us to determine the experimental range of the ions, the defect profiles in the targets, the structure of the displacement cascades (electron microscopy) and their stability

  17. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  18. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  19. Ion energy recovery experiment based on magnetic electro suppression

    International Nuclear Information System (INIS)

    Kim, J.; Stirling, W.L.; Dagenhart, W.K.; Barber, G.C.; Ponte, N.S.

    1980-05-01

    A proof-of-principle experiment on direct recovery of residual hydrogen ions based on a magnetic electron suppression scheme is described. Ions extracted from a source plasma a few kilovolts above the ground potential (approx. 20 A) are accelerated to 40 keV by a negative potential maintained on a neutralizer gas cell. As the residual ions exit the gas cell, they are deflected from the neutral beam by a magnetic field that also suppresses gas cell electrons and then recovered on a ground-potential surface. Under optimum conditions, a recovery efficiency (the ratio of the net recovered current to the available full-energy ion current) of 80% +- 20% has been obtained. Magnetic suppression of the beam plasma electrons was rather easily achieved; however, handling the fractional-energy ions originating from molecular species (H 2 + and H 3 + ) proved to be extremely important to recovery efficiency

  20. Nonlinear energy loss of highly charged heavy ions

    International Nuclear Information System (INIS)

    Zwicknagel, G.Guenter.

    2000-01-01

    For slow, highly charged heavy ions strong coupling effects in the energy transfer from the projectile-ion to an electron target plasma become important. A theoretical description of this nonlinear ion stopping has to go beyond the standard approaches like the dielectric linear response or the binary collision model which are strictly valid only at weak ion-target coupling. Here we outline an improved treatment which is based on a suitable combination of binary collision and linear response contributions. As has been verified for isotropic, nonmagnetized electron plasmas by comparison with simulations, this approach well reproduces the essential features of nonlinear stopping up to moderate coupling strength. Its extension to anisotropic, magnetized electron plasmas basically involves the fully numerical determination of the momentum and energy transfer in binary ion-electron collisions in the presence of a magnetic field. First results of such calculations are presented and discussed

  1. A method for investigation of the D(4He, γ)6Li reaction in the Ultralow energy region under a high background

    Science.gov (United States)

    Bystritsky, V. M.; Dudkin, G. N.; Krylov, A. R.; Gazi, S.; Huran, J.; Nechaev, B. A.; Padalko, V. N.; Sadovsky, A. B.; Tuleushev, Yu. Zh.; Filipowicz, M.; Philippov, A. V.

    2016-07-01

    The cosmological lithium problem, that is, a noticeable discrepancy between the predicted and observed abundances of lithium, is in conflict with the Standard Big Bang Nucleosynthesis model. For example, the abundance of 7Li is 2-4 times smaller than predicted by the Standard Big Bang Nucleosynthesis. As to the abundance of 6Li, recent more accurate optical investigations have yielded only the upper limit on the 6Li/7Li ratio, which makes the problem of 6Li abundance and accordingly of disagreement with the Standard Big Bang Nucleosynthesis predictions less acute. However, experimental study of the D(4He, γ)6Li reaction cross section is still of current importance because there is a theoretical approach predicting its anomalously large value in the region of energies below the Standard Big Bang Nucleosynthesis energy. The work is dedicated to the measurement of the cross section for the D(4He, γ)6Li reaction proceeding in zirconium deuteride at the incident 4He+ion energy of 36 keV. The experiment is performed at a pulsed Hall plasma accelerator with an energy spread of 20% FWHM. A method for direct measurement of the background from the reaction chain D(4He, 4He)D→D(D, n)3He→(n, γ) and/or (n, n‧γ) ending with activation of the surrounding material by neutrons is proposed and implemented in the work. An upper limit on the D(4He, γ)6Li reaction cross section σ≤7·10-36 cm2 at the 90% confidence level is obtained.

  2. A method for investigation of the D("4He, γ)"6Li reaction in the Ultralow energy region under a high background

    International Nuclear Information System (INIS)

    Bystritsky, V.M.; Dudkin, G.N.; Krylov, A.R.; Gazi, S.; Huran, J.; Nechaev, B.A.; Padalko, V.N.; Sadovsky, A.B.; Tuleushev, Yu.Zh.; Filipowicz, M.; Philippov, A.V.

    2016-01-01

    The cosmological lithium problem, that is, a noticeable discrepancy between the predicted and observed abundances of lithium, is in conflict with the Standard Big Bang Nucleosynthesis model. For example, the abundance of "7Li is 2–4 times smaller than predicted by the Standard Big Bang Nucleosynthesis. As to the abundance of "6Li, recent more accurate optical investigations have yielded only the upper limit on the "6Li/"7Li ratio, which makes the problem of "6Li abundance and accordingly of disagreement with the Standard Big Bang Nucleosynthesis predictions less acute. However, experimental study of the D("4He, γ)"6Li reaction cross section is still of current importance because there is a theoretical approach predicting its anomalously large value in the region of energies below the Standard Big Bang Nucleosynthesis energy. The work is dedicated to the measurement of the cross section for the D("4He, γ)"6Li reaction proceeding in zirconium deuteride at the incident "4He"+ion energy of 36 keV. The experiment is performed at a pulsed Hall plasma accelerator with an energy spread of 20% FWHM. A method for direct measurement of the background from the reaction chain D("4He, "4He)D→D(D, n)"3He→(n, γ) and/or (n, n′γ) ending with activation of the surrounding material by neutrons is proposed and implemented in the work. An upper limit on the D("4He, γ)"6Li reaction cross section σ≤7·10"−"3"6 cm"2 at the 90% confidence level is obtained.

  3. A method for investigation of the D({sup 4}He, γ){sup 6}Li reaction in the Ultralow energy region under a high background

    Energy Technology Data Exchange (ETDEWEB)

    Bystritsky, V.M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Dudkin, G.N. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Krylov, A.R. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Gazi, S.; Huran, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava (Slovakia); Nechaev, B.A.; Padalko, V.N. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Sadovsky, A.B. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tuleushev, Yu.Zh. [Institute of Nuclear Physics, Ministry of Power Engineering, Almaty (Kazakhstan); Filipowicz, M. [Faculty of Energy and Fuels, University of Science and Technologies, Krakow (Poland); Philippov, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-07-21

    The cosmological lithium problem, that is, a noticeable discrepancy between the predicted and observed abundances of lithium, is in conflict with the Standard Big Bang Nucleosynthesis model. For example, the abundance of {sup 7}Li is 2–4 times smaller than predicted by the Standard Big Bang Nucleosynthesis. As to the abundance of {sup 6}Li, recent more accurate optical investigations have yielded only the upper limit on the {sup 6}Li/{sup 7}Li ratio, which makes the problem of {sup 6}Li abundance and accordingly of disagreement with the Standard Big Bang Nucleosynthesis predictions less acute. However, experimental study of the D({sup 4}He, γ){sup 6}Li reaction cross section is still of current importance because there is a theoretical approach predicting its anomalously large value in the region of energies below the Standard Big Bang Nucleosynthesis energy. The work is dedicated to the measurement of the cross section for the D({sup 4}He, γ){sup 6}Li reaction proceeding in zirconium deuteride at the incident {sup 4}He{sup +}ion energy of 36 keV. The experiment is performed at a pulsed Hall plasma accelerator with an energy spread of 20% FWHM. A method for direct measurement of the background from the reaction chain D({sup 4}He, {sup 4}He)D→D(D, n){sup 3}He→(n, γ) and/or (n, n′γ) ending with activation of the surrounding material by neutrons is proposed and implemented in the work. An upper limit on the D({sup 4}He, γ){sup 6}Li reaction cross section σ≤7·10{sup −36} cm{sup 2} at the 90% confidence level is obtained.

  4. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Rostoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1992-06-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  5. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Restoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1993-01-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  6. A high-flux low-energy hydrogen ion beam using an end-Hall ion source

    NARCIS (Netherlands)

    Veldhoven, J. van; Sligte, E. te; Janssen, J.P.B.

    2016-01-01

    Most ion sources that produce high-flux hydrogen ion beams perform best in the high energy range (keV). Alternatively, some plasma sources produce very-lowenergy ions (<< 10 eV). However, in an intermediate energy range of 10-200 eV, no hydrogen ion sources were found that produce high-flux beams.

  7. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  8. Biomaterial imaging with MeV-energy heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Toshio, E-mail: seki@sakura.nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Wakamatsu, Yoshinobu; Nakagawa, Shunichiro [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); Aoki, Takaaki [Department of Electronic Science and Engineering, Kyoto Univ., Nishikyo, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Ishihara, Akihiko [Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto Univ., Sakyo, Kyoto 606-8501 (Japan); Matsuo, Jiro [Quantum Science and Engineering Center, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan)

    2014-08-01

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi{sub 3}-keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi{sub 3} ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis.

  9. Study of energy deposition in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.

    1993-01-01

    An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs

  10. Ion-induced particle desorption in time-of-flight medium energy ion scattering

    Science.gov (United States)

    Lohmann, S.; Primetzhofer, D.

    2018-05-01

    Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.

  11. Electrostatic ion cyclotron waves and ion energy diffusion in a mirror machine

    International Nuclear Information System (INIS)

    Turner, W.C.

    1977-01-01

    Measurements of ion cyclotron fluctuations and ion energy diffusion in the neutral beam injected 2XIIB mirror machine are presented. A narrow band single mode spectrum is always observed. When the plasma is de-stabilized by turning off axially injected streaming plasma, the wave amplitude increases and a simultaneous increase in ion-energy diffusion is observed. The spectral properties of the wave do not change. The data are in accord with a wave particle saturation of the drift cyclotron loss cone (DCLC) mode

  12. Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels

    Science.gov (United States)

    Mills, R.; Lotoski, J.; Lu, Y.

    2017-09-01

    EUV continuum radiation (10-30 nm) arising only from very low energy pulsed pinch gas discharges comprising some hydrogen was first observed at BlackLight Power, Inc. and reproduced at the Harvard Center for Astrophysics (CfA). The source was determined to be due to the transition of H to the lower-energy hydrogen or hydrino state H(1/4) whose emission matches that observed wherein alternative sources were eliminated. The identity of the catalyst that accepts 3 · 27.2 eV from the H to cause the H to H(1/4) transition was determined to HOH versus 3H. The mechanism was elucidated using different oxide-coated electrodes that were selective in forming HOH versus plasma forming metal atoms as well as from the intensity profile that was a mismatch for the multi-body reaction required during 3H catalysis. The HOH catalyst was further shown to give EUV radiation of the same nature by igniting a solid fuel comprising a source of H and HOH catalyst by passing a low voltage, high current through the fuel to produce explosive plasma. No chemical reaction can release such high-energy light. No high field existed to form highly ionized ions that could give radiation in this EUV region that persisted even without power input. This plasma source serves as strong evidence for the existence of the transition of H to hydrino H(1/4) by HOH as the catalyst and a corresponding new power source wherein initial extraordinarily brilliant light-emitting prototypes are already producing photovoltaic generated electrical power. The hydrino product of a catalyst reaction of atomic hydrogen was analyzed by multiple spectroscopic techniques. Moreover, the mH catalyst was identified to be active in astronomical sources such as the Sun, stars and interstellar medium wherein the characteristics of hydrino match those of the dark matter of the Universe.

  13. Relationship between wave energy and free energy from pickup ions in the Comet Halley environment

    Science.gov (United States)

    Huddleston, D. E.; Johnstone, A. D.

    1992-01-01

    The free energy available from the implanted heavy ion population at Comet Halley is calculated by assuming that the initial unstable velocity space ring distribution of the ions evolves toward a bispherical shell. Ultimately this free energy adds to the turbulence in the solar wind. Upstream and downstream free energies are obtained separately for the conditions observed along the Giotto spacecraft trajectory. The results indicate that the waves are mostly upstream propagating in the solar wind frame. The total free energy density always exceeds the measured wave energy density because, as expected in the nonlinear process of ion scattering, the available energy is not all immediately released. An estimate of the amount which has been released can be obtained from the measured oxygen ion distributions and again it exceeds that observed. The theoretical analysis is extended to calculate the k spectrum of the cometary-ion-generated turbulence.

  14. Analysis of surface with low energy ions

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  15. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    Science.gov (United States)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and

  16. Range energy for heavy ions in CR-39

    International Nuclear Information System (INIS)

    Gil, L.R.; Marques, A.

    1987-01-01

    Range-energy relations in CR-39, for ions from He to Ar, are obtained after their effective nuclear charge. Comparison with earlier calculations and numerical results in the energy range 0,1 to 200 Mev/ Nucleon are also given. (M.W.O.)

  17. New aspects of high energy heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1975-03-01

    New aspects of heavy ion reactions at incident energies in the region of 10 MeV/nucleon are discussed with an emphasis on the peripheral nature of the collisions, which leads to simplicities in the differential cross sections. The distortion of the peripheral distribution through the interference of direct and multistep processes is used to illustrate aspects of high energy reactions unique to heavy ions. The simplicities of the distributions for reactions on lighter nuclei are exploited to give new information about nuclear structure from direct and compound reactions at high energy. (16 figures, 32 references) (U.S.)

  18. Fragmentation of acetic acid ions with selected internal energies

    Science.gov (United States)

    Zha, Qingmei; Nishimura, Toshihide; Bertrand, Michel J.; Meisels, G. G.

    1991-08-01

    The unimolecular dissociation of acetic acid ion in the photon energy range 10.5-17.0 eV was studied using threshold photoelectron photoion coincidence mass spectrometry. The detailed breakdown graph was obtained and the fragmentation pathways were elucidated. The breakdown graph calculated using statistical theories was found to be consistent with the experimental data up to a photon energy of about 12.5 eV. The average kinetic energy release observed is higher than that calculated on the basis of quasi-equilibrium theory for the formation of COOH+ while it seems to be statistical for the formation of CH3CO+. The origin of kinetic energy release accompanying the formation of these two ions is discussed. The structure of [COH3]+ ion (m/z 31) is determined to be hydroxymethyl cation, CH2OH+, which could be formed by a two-step rearrangement prior to dissociation.

  19. Electron capture by multicharged ions at eV energies

    International Nuclear Information System (INIS)

    Havener, C.C.; Huq, M.S.; Meyer, F.W.; Phaneuf, R.A.

    1988-01-01

    A multicharged ion-atom merged-beams apparatus has been used in conjunction with the ORNL-ECR ion source to measure accurate absolute electron-capture cross sections in the energy range from below 1 eV/amu to 1500 eV/amu. Measurements for N/sup 3+,4+,5+/ /plus/ H(D) collisions indicate good agreement with available theoretical calculations. However, measurements with O 5+ /plus/ H(D) show an unexpected low-energy behavior which may be attributable to the ion-induced-dipole attraction between the reactants. Scaled Landau-Zener calculations presented here identify a transfer plus excitation channel which has the correct energy dependence at low energies. This finding suggest the need for a comprehensive coupled channel calculation which would include such product states. 25 refs., 8 figs

  20. Energy Loss of Coasting Gold Ions and Deuterons in RHIC

    CERN Document Server

    Abreu, N P; Brown, K; Burkhardt, H; Butler, J; Fischer, W; Harvey, M; Tepikian, S

    2008-01-01

    The total energy loss of coasting gold ion beams at two different energies and deuterons at one energy were measured at RHIC, corresponding to a gamma of 75.2, 107.4 and 108.7 respectively. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  1. Smart materials for energy storage in Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Ashraf E Abdel-Ghany

    2016-01-01

    Full Text Available Advanced lithium-ion batteries contain smart materials having the function of insertion electrodes in the form of powders with specific and optimized electrochemical properties. Different classes can be considered: the surface modified active particles at either positive or negative electrodes, the nano-composite electrodes and the blended materials. In this paper, various systems are described, which illustrate the improvement of lithium-ion batteries in term of specific energy and power, thermal stability and life cycling.

  2. Surface modifications of polypropylene by high energy carbon ions

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2000-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies using 3 MV tandem accelerator. The surface modification was investigated by Scanning Electron Microscopy (SEM). Optical changes were monitored by UV-VIS and FTIR spectroscopy. At the lowest ion fluence, only blister formation of various sizes (1-6 μm) was observed. Polymer when irradiated at a fluence of 1x10 14 ions/cm 2 exhibited a network structure. A comparative study on dose dependence of surface and bulk modification has been described. (author)

  3. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  4. Ion induced high energy electron emission from copper

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)], E-mail: gdruano@ceride.gov.ar; Ferron, J. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina); Departamento de Ingenieria de Materiales, Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)

    2008-11-15

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He{sup +}, Ne{sup +} and Ar{sup +}) and Li{sup +} ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  5. Low energy implantation of boron with decaborane ions

    Science.gov (United States)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  6. Heavy ion scattering: High energy limits of RBS and ERD

    International Nuclear Information System (INIS)

    Rauhala, E.

    1994-01-01

    Elastic scattering of 7 Li ions by oxygen and 12 C, 14 N and 16 O ions by aluminum, silicon, titanium and sulfur have been studied below the Coulomb barrier energies 3-30 MeV in the angular range of 78 degrees - 170 degrees. By kinematically reversing the reactions, the recoiling of carbon, nitrogen and oxygen by 40-100 MeV 27 Al, 28 Si, 32S and 48 Ti ions into recoil angles of 20 degrees, 25 degrees, 30 degrees and 40 degrees has also been investigated. Excitation functions and angular distributions are presented. Contrary to the case of light H and He ions, the heavy ion scattering cross sections fall off rapidly above the non-Rutherford threshold energy, rendering heavy ion RBS and ERD spectrometry worthless. Both classical and wave mechanical calculations have been attempted for predicting the RBS threshold energies. Simple calculations give moderate accuracy, while the more extensive nuclear potential perturbation approach relies on parameters fitted for the particular experiment. The authors present a general classical semi-empirical model for both direct scattering (RBS) and the kinematically reversed reactions (ERD), accurately reproducing the experimental data. The model is based on parameters fitted from the present scattering experiments and from an extensive literature survey

  7. A simple model for low energy ion-solid interactions

    International Nuclear Information System (INIS)

    Mohajerzadeh, S.; Selvakumar, C.R.

    1997-01-01

    A simple analytical model for ion-solid interactions, suitable for low energy beam depositions, is reported. An approximation for the nuclear stopping power is used to obtain the analytic solution for the deposited energy in the solid. The ratio of the deposited energy in the bulk to the energy deposited in the surface yields a ceiling for the beam energy above which more defects are generated in the bulk resulting in defective films. The numerical evaluations agree with the existing results in the literature. copyright 1997 American Institute of Physics

  8. Fully stripped heavy ion yield vs energy for Xe and Au ions

    International Nuclear Information System (INIS)

    Thieberger, P.; Wegner, H.E.; Alonzo, J.; Gould, H.; Anholt, R.E.; Meyerhof, W.E.

    1985-01-01

    The Bevalac is now capable of accelerating U-238 ions to approximately 1 GeV/amu and measurements have shown that fully stripped U-238 ions are produced with good yield at these energies. However, knowing the stripping yields at different energies for U-238 does not allow an accurate prediction for other, lower Z projectiles. Consequently, extensive stripping yield measurements were made for Au-197 and Xe-139 ions. In addition to the stripping measurements from the direct Bevalac beam, pickup measurements were also made with specially prepared bare, one electron, and two electron ions. Since many research groups are considering heavy ion storage rings and/or synchrotrons, the pickup cross section for bare ions is important to estimate beam lifetime in terms of the average machine vacuum. Since the Mylar target provides a pickup probability similar to air, a preliminary analysis of the Xe 54+ and U 92+ data are presented along with predictions for other ions ranging down to Fe 26+ . 11 refs., 3 figs., 1 tab

  9. Fully stripped heavy ion yield vs energy for Xe and Au ions

    Energy Technology Data Exchange (ETDEWEB)

    Thieberger, P.; Wegner, H.E.; Alonzo, J.; Gould, H.; Anholt, R.E.; Meyerhof, W.E.

    1985-01-01

    The Bevalac is now capable of accelerating U-238 ions to approximately 1 GeV/amu and measurements have shown that fully stripped U-238 ions are produced with good yield at these energies. However, knowing the stripping yields at different energies for U-238 does not allow an accurate prediction for other, lower Z projectiles. Consequently, extensive stripping yield measurements were made for Au-197 and Xe-139 ions. In addition to the stripping measurements from the direct Bevalac beam, pickup measurements were also made with specially prepared bare, one electron, and two electron ions. Since many research groups are considering heavy ion storage rings and/or synchrotrons, the pickup cross section for bare ions is important to estimate beam lifetime in terms of the average machine vacuum. Since the Mylar target provides a pickup probability similar to air, a preliminary analysis of the Xe/sup 54 +/ and U/sup 92 +/ data are presented along with predictions for other ions ranging down to Fe/sup 26 +/. 11 refs., 3 figs., 1 tab.

  10. Development of a CMOS process using high energy ion implantation

    International Nuclear Information System (INIS)

    Stolmeijer, A.

    1986-01-01

    The main interest of this thesis is the use of complementary metal oxide semiconductors (CMOS) in electronic technology. Problems in developing a CMOS process are mostly related to the isolation well of p-n junctions. It is shown that by using high energy ion implantation, it is possible to reduce lateral dimensions to obtain a rather high packing density. High energy ion implantation is also presented as a means of simplifying CMOS processing, since extended processing steps at elevated temperatures are superfluous. Process development is also simplified. (Auth.)

  11. High energy heavy ion beam lithography in silicon

    International Nuclear Information System (INIS)

    Rout, Bibhudutta; Dymnikov, Alexander D.; Zachry, Daniel P.; Eschenazi, Elia V.; Wang, Yongqiang Q.; Greco, Richard R.; Glass, Gary A.

    2007-01-01

    As high energy ions travel through a crystalline semiconductor materials they produce damage along the path which results in resistance to some of the wet chemical etching. A series of preliminary experiments have been performed at the Louisiana Accelerator Center (LAC) to examine the feasibility of irradiating high energy (keV-MeV) ions such as protons, xenon and gold through microscale masked structures on crystalline (n-type) Si substrates followed by wet chemical etch with KOH for attaining deep micromachining in Si. The results of these experiments are reported

  12. Track structure for low energy ions including charge exchange processes

    International Nuclear Information System (INIS)

    Uehara, S.; Nikjoo, H.

    2002-01-01

    The model and development is described of a new generation of Monte Carlo track structure codes. The code LEAHIST simulates full slowing down of low-energy proton history tracks in the range 1 keV-1 MeV and the code LEAHIST simulates low-energy alpha particle history tracks in the range 1 keV-8 MeV in water. All primary ion interactions are followed down to 1 keV and all electrons to 1 eV. Tracks of secondary electrons ejected by ions were traced using the electron code KURBUC. Microdosimetric parameters derived by analysis of generated tracks are presented. (author)

  13. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  14. Review of intense-ion-beam propagation with a view toward measuring ion energy

    International Nuclear Information System (INIS)

    Garcia, M.

    1982-01-01

    The subject of this review is intense ion beam propagation and the possibilities of measuring time dependent ion energy in the beam. Propagation effects discussed include charge separation, charge and current autoneutralization, electron thermalization and current neutralization decay. The interaction of a plasma beam with material obstacles, like collimators, and with transverse magnetic fields is also described. Depending on beam energy, density and pulse length, these interactions can include material ablation with plasmadynamic flow and undeflected propagation across transverse magnetic fields by a polarization drift. On the basis of this review I conclude that three diagnostics: a single floating potential probe, net current probes (Faraday cups) and a Rutherford scattering spectrometer appear capable of giving prompt, time dependent ion energy measurements

  15. Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices

    International Nuclear Information System (INIS)

    Boyle, P C; Ellingboe, A R; Turner, M M

    2004-01-01

    Dual frequency capacitive discharges are designed to offer independent control of the flux and energy of ions impacting on an object immersed in a plasma. This is desirable in applications such as the processing of silicon wafers for microelectronics manufacturing. In such discharges, a low frequency component couples predominantly to the ions, while a high frequency component couples predominantly to electrons. Thus, the low frequency component controls the ion energy, while the high frequency component controls the plasma density. Clearly, this desired behaviour is not achieved for arbitrary configurations of the discharge, and in general one expects some unwanted coupling of ion flux and energy. In this paper we use computer simulations with the particle-in-cell method to show that the most important governing parameter is the ratio of the driving frequencies. If the ratio of the high and low frequencies is great enough, essentially independent control of the ion energy and flux is possible by manipulation of the high and low frequency power sources. Other operating parameters, such as pressure, discharge geometry, and absolute power, are of much less significance

  16. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  17. Development of high current low energy H+ ion source

    International Nuclear Information System (INIS)

    Forrester, A.T.; Crow, J.T.; Goebel, D.M.

    1978-01-01

    The ultimate goal of this work is the development of an ion source suitable for double charge exchange of D + ions to D - ions in cesium or other vapor. Since the fraction of the D + which changes to D - may be as high as 0.35 in the energy below one keV, the process appears very favorable. What is desired is a source of several hundred cm 2 area, with a D + current density greater than, say 0.2A/cm 2 . Small angular spread is essential with up to about 0.1 radian being acceptable. A simple approach to this problem appears to be through fine mesh extraction electrodes. In this system a single grid facing the ion source plasma constitutes the entire extraction electrode system. If the potential difference between the grid and the source plasma is large compared to the ion energy at the plasma boundary, then the distance s 0 is just the Child-Langmuir distance corresponding to the ion current density J and the potential difference V 0 between the plasma and the grid

  18. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  19. Interaction of low-energy highly charged ions with matter

    International Nuclear Information System (INIS)

    Ginzel, Rainer

    2010-01-01

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  20. Heavy ion collisions at energies near the Coulomb barrier 1990

    International Nuclear Information System (INIS)

    Nagarajan, M.A.

    1991-01-01

    During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)

  1. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  2. Heavy ion collisions at relativistic energies

    International Nuclear Information System (INIS)

    Huefner, J.

    These lectures cover only a few aspects of the field. The emphasis is pedagogical. 1) Elastic and total inelastic cross sections: their geometric properties and the energy dependence. 2) Physics of the spectator nuclei: their momentum distribution and the relation to Fermi motion. The production cross sections for a particular nucleus are discussed in the frame work of the excitation-evaporation model. 3) Physics of the participant particles. The number of the participants and their degree of thermalization are discussed. As well as, how can one derive a classical theory, like intra-nuclear cascade, from a quantum theory. The properties of the composite particles and the pions are presented [fr

  3. Utilization of ion source 'SUPERSHYPIE' in the study of low energy ion-atom and ion-molecule collisions

    International Nuclear Information System (INIS)

    Bazin, V.; Boduch, P.; Chesnel, J.Y.; Fremont, F.; Lecler, D.; Pacquet, J. Y.; Gaubert, G.; Leroy, R.

    1999-01-01

    Modifications in the ECR 4M ion source are described, which conducted to realization of the advanced source 'SUPERSHYPIE'. The Ar 8+ ion collision with Cs(6s,6p) were studied by photon spectroscopy at low energy, where the process is dominated by simple electron capture. Results obtained with 'SUPERSHYPIE' source are presented. The source was utilized also in ion-molecule collisions (CO, H 2 ) to study the spectra of recoil ions and Auger electron spectra in the Ar 17+ He collisions. The excellent performances of 'SUPERSHYPIE' in high charge production and concerning its accurate and fine control and stability are illustrated and underlined as compared with those of ECR 4M source

  4. Measurements of sputtering yields for low-energy plasma ions

    International Nuclear Information System (INIS)

    Nishi, M.; Yamada, M.; Suckewer, S.; Rosengaus, E.

    1979-04-01

    Sputtering yields of various wall/limiter materials of fusion devices have been extensively measured in the relevant plasma environment for low-energy light ions (E 14 cm -3 and electron temperature up to 10eV. Target materials used were C (graphite), Ti, Mo, Ta, W, and Fe (stainless steel). In order to study the dependence of the sputtering yields on the incident energy of ions, the target samples were held at negative bias voltage up to 300V. The sputtering yields were determined by a weight-loss method and by spectral line intensity measurements. The data obtained in the present experiment agree well with those previously obtained at the higher energies (E greater than or equal to 200eV) by other authors using different schemes; the present data also extend to substantially lower energies (E approx. > 30eV) than hitherto

  5. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  6. Surface studies with high-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stensgaard, Ivan [Aarhus Univ. (Denmark). Inst. of Physics

    1992-07-01

    High-energy ion scattering is an extremely useful technique for surface studies. Three methods for surface composition analysis (Rutherford backscattering, nuclear-reaction analysis and elastic recoil detection) are discussed. Directional effects in ion-beam surface interactions (shadowing and blocking) form the basis for surface structure analysis with high-energy ion beams and these phenomena are addressed in some detail. It is shown how surface relaxation and reconstruction, as well as positions of adsorbed atoms, can be determined by comparison with computer simulations. A special technique called transmission channelling is introduced and shown to be particularly well suited for studies of adsorption positions, even of hydrogen. Recent developments in the field are demonstrated by discussing a large number of important (experimental) applications which also include surface dynamics and melting, as well as epitaxy and interface structure. (author).

  7. A model for high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Myers, W.D.

    1978-01-01

    A model is developed for high-energy heavy-ion collisions that treats the variation across the overlap region of the target and projectile in the amount of energy and momentum that is deposited. The expression for calculating any observable takes the form of a sum over a series of terms, each one of which consists of a geometric, a kinematic, and a statistical factor. The geometrical factors for a number of target projectile systems are tabulated. (Auth.)

  8. Some general scaling rules in high energy heavy ion reactions

    International Nuclear Information System (INIS)

    Andersson, B.; Idh, J.; Otterlund, I.; Stenlund, E.

    1988-09-01

    We show, using the Fritiof model scenario that the wide variation in the number of participating nucleons tend to drown other dynamical variations in the measurables of high energy ion collisions. We propose a set if general scaling laws for inclusive distributions in which it is the mean multiplicity and the mean transverse energy from each source which are the measurables in the interactions. (authors)

  9. Corrosion behavior of low energy, high temperature nitrogen ion ...

    Indian Academy of Sciences (India)

    Corrosion behavior of low energy, high temperature nitrogen ion-implanted AISI 304 stainless steel. M GHORANNEVISS1, A SHOKOUHY1,∗, M M LARIJANI1,2,. S H HAJI HOSSEINI 1, M YARI1, A ANVARI4, M GHOLIPUR SHAHRAKI1,3,. A H SARI1 and M R HANTEHZADEH1. 1Plasma Physics Research Center, Science ...

  10. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  11. Structure and potential energy function for Pu22+ ion

    International Nuclear Information System (INIS)

    Li Quan; Huang Hui; Li Daohua

    2003-01-01

    The theoretical study on Pu 2 2+ using density functional method shows that the molecular ion is metastable. Ground electronic state is 13 Σ g for Pu 2 2+ , the analytic potential energy function is in well agreement with the Z-W function, and the force constants and spectroscopic data have been worked out for the first time

  12. Heavy ion physics challenges at Bevalac/SIS energies

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M.

    1987-11-01

    This paper discusses where the future of higher energy heavy ion acceleration may lead in terms of understanding the nucleus. The discussion concerns obstacles to formulating an equation of state for nuclear matter at high temperature and density. Implications of this research for astrophysical problems is also presented. (LSP)

  13. Energy spectrum of neutrals formed in an ion accelerator

    International Nuclear Information System (INIS)

    Fink, J.H.

    1982-01-01

    This work presents an estimate of the energy distribution of the neutrals formed in the ion beam accelerator. However it does not determine the fraction of those neutrals which leave the neutral beam injector and go on into the reactor. To do that, more details of the beam line performance are needed

  14. Electron emission in collisions of intermediate energy ions with atoms

    International Nuclear Information System (INIS)

    Garibotti, C.R.

    1988-01-01

    The aim of this work, is the analysis of the processes of electronic emission produced in the collisions of small ions (H + , He ++ ) of intermediate energy (50 a 200 KeV/amu) with light gaseous targets. (A.C.A.G.) [pt

  15. SIS: an accelerator installation for heavy ions of high energy

    International Nuclear Information System (INIS)

    The two major sections of the report cover the scientific experimental program and the accelerator installation. Topics covered in the first include: heavy ion physics in the medium energy region; nuclear physics at relativistic energies; atomic physics loss and capture cross sections for electrons; spectroscopy of few-electron systems; atomic collision processes; biological experiments; nuclear track techniques in biology; and experiments with protons and secondary radiation. The second includes: concept for the total installation; technical description of the SIS 12; technical description of the SIS 100; status of the UNILAC injector; development options for the SIS installations; properties of the heavy ion beam; and structural work and technical supply provisions. In this SIS project proposal, an accelerator installation based on two synchrotrons is described with which atomic nuclei up to uranium can be accelerated to energies of more than 10 GeV/μ. With the SIS 12, which is the name of the first stage, heavy ion physics at intermediate energies can be pursued up to 500 MeV/μ. The second stage, a larger synchrotron, the SIS 100, has a diameter of 250 m. With this device, it is proposed to open up the domain of relativistic heavy ion physics up to 14 GeV/μ (for intermediate mass particles) and 10 GeV/μ (for uranium)

  16. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  17. Multifragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.; Britt, H.C.; Claesson, G.

    1986-01-01

    There has been considerable recent interest in the production of intermediate mass fragments (A > 4) in intermediate and high energy nucleus-nucleus collisions. The mechanism for production of these fragments is not well understood and has been described by models employing a variety of assumptions. Some examples are: disassembly of a system in thermal equilibrium into nucleons and nuclear fragments, liquid-vapor phase transitions in nuclear matter, final state coalescence of nucleons and dynamical correlations between nucleons at breakup. Previous studies of fragment production, with one exception, have been single particle inclusive measurements; the observed fragment mass (or charge) distributions can be described by all of the models above. To gain insight into the fragment production mechanism, the authors used the GSI/LBL Plastic Ball detector system to get full azimuthal coverage for intermediate mass fragments in the forward hemisphere in the center of mass system while measuring all the light particles in each event. The authors studied the systems 200 MeV/nucleon Au + Au and Au + Fe

  18. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  19. Low energy ion-molecule reactions

    International Nuclear Information System (INIS)

    Farrar, J.M.

    1986-01-01

    The authors work during the past year has focused on several problems in the condensation reactions of C + and CH 3 + with small molecules, particularly hydrocarbons. Their emphasis has been on understanding the dynamics of collision complex formation and isomerization of transient intermediates along the reaction coordinate. In many ionic reactions, intermediates having non-classical valence structures may be nearly as stable as their classical analogs, in contrast with neutral systems where the non-classical structures are much less stable. The C + + NH 3 system shows this behavior, indicating that the non-classical HCNH 2 + structure formed by insertion of C + into the N-H bond serves as a precursor to the products. N-H bond cleavage in this intermediate to form HCNH + occurs over a large barrier and occurs more readily than the 1,2 hydrogen atom shift to form the classical H 2 C = NH + intermediate. Their experimental kinetic energy distribution for this channel is consistent with the presence of a large exit channel barrier. Their recently published work on C + + H 2 O also demonstrates this phenomenon. The CHOH + hydroxycarbene cation serves as the initial intermediate and isomerization to the classical H 2 CO + cation is competitive with O-H or C-H cleavage to yield the formyl, HCO + , or isoformyl, COH + , cations. They have also completed studies on the reactions of C + with O 2 , CH 3 OH, HCN, and the two-carbon containing hydrocarbons ethane, ethylene, and acetylene

  20. Kinetic energy budget for electroconvective flows near ion selective membranes

    Science.gov (United States)

    Wang, Karen; Mani, Ali

    2017-11-01

    Electroconvection occurs when ions are driven from a bulk fluid through an ion-selective surface. When the driving voltage is beyond a threshold, this process undergoes a hydrodynamic instability called electroconvection, which can become chaotic due to nonlinear coupling between ion-transport, fluid flow, and electrostatic forces. Electroconvection significantly enhances ion transport and plays an important role in a wide range of electrochemical applications. We investigate this phenomenon by considering a canonical geometry consisting of a symmetric binary electrolyte between an ion-selective membrane and a reservoir using 2D direct numerical simulation (DNS). Our simulations reveal that for most practical regimes, DNS of electroconvection is expensive. Thus, a plan towards development of reduced-order models is necessary to facilitate the adoption of analysis of this phenomenon in industry. Here we use DNS to analyze the kinetic energy budget to shed light into the mechanisms sustaining flow and mixing in electroconvective flows. Our analysis reveals the relative dominance of kinetic energy sources, dissipation, and transport mechanisms sustaining electroconvection at different distances from the interface and over a wide range of input parameters. Karen Wang was supported by the National Defense Science & Engineering Graduate Fellowship (NDSEG). Ali Mani was supported by the National Science Foundation Award.

  1. Low-energy ion outflow modulated by the solar wind energy input

    Science.gov (United States)

    Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas

    2017-04-01

    Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.

  2. DC and RF ion accelerators for MeV energies

    International Nuclear Information System (INIS)

    Urbanus, W.H.

    1990-01-01

    This thesis deals with the transport and acceleration of intense ion beams in single-ended Van de Graaff accelerators and the multiple beam rf accelerator MEQALAC (Multiple Electrostatic Quadrupole Array Linear Accelerator). Ch. 2 discusses several beam-envelope calculation techniques and describes the ion-optical components of a 1 MV, high-current, heavy-ion implantation facility and a 2 MV facility for analyzing purposes. The X-ray level of these accelerators is kept low, such that no shielding is needed, by keeping the energy of the secondary electrons sufficiently low, which is accomplished by a suppression system of small permanent magnets built in the acceleration tubes (ch. 3). Ch.'s 4,5 and 6 cover various aspects of stage II of the MEQALAC project. This stage deals with the parallel acceleration of four high-current N + beams from 40 keV to 1 MeV. Acceleration takes place in 32 rf gaps which are part of a modified interdigital H-resonator. In between the accelerating gaps, small electrostatic quadrupoles are mounted, which oppose the space charge forces of the intense ion beams. The lenses are arranged in a periodic focusing structure. A bucket-type plasma ion source is used, which produces both N + and N 2 + ions. In between the ion source and the MEQALAC section, a Low Energy Beam Transport (LEBT) section is mounted which provides for the drift space for a buncher. The latter device transforms the extracted dc beams into bunched beams which are accepted by the MEQALAC section. In ch. 4 the transport of ion beams that contain both N + and N 2 + ions, so-called mixed beams, through the LEBT section is discussed and equations for the current limit of a mixed beam are derived. Bunching of mixed N + , N 2 + beams is discussed in ch. 5. Multichannel acceleration of N + ions with the MEQALAC is discussed in ch. 6. (author). 122 refs.; 67 figs.; 1 tab

  3. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Bulanov, S. V. [KPSI, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 (Japan); A. M. Prokhorov Institute of General Physics RAS, Moscow 119991 (Russian Federation); Esirkepov, T. Zh.; Kando, M. [KPSI, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 (Japan); Pegoraro, F. [Physics Department, University of Pisa and Istituto Nazionale di Ottica, CNR, Pisa 56127 (Italy); Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California, Berkeley, California 94720 (United States)

    2016-05-15

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.

  4. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  5. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Berenyi, D.

    1984-01-01

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)

  6. Measurements of actinometry and ions energy in a microwave discharge

    International Nuclear Information System (INIS)

    Becerril, F.; Camps, E.; Villagran, M.; Muhl, S.

    1998-01-01

    In the present work it is showed the implementation of the plasma diagnostic technique through actinometry which allows to determine the absolute density of excited species. It is showed the range of the technique application, for the case of N 2 -H 2 mixtures plasmas used for the metals nitridation. The effects of magnetic field and the work pressure over ions energy were determined, using a Faraday cup type energy analyser. The results showed that in our device it is possible to vary such energy in a range between 10-45 eV, which amplify the range of applications perceptibly in comparison with another type of discharges. (Author)

  7. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  8. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  9. Spin effects in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu Jun; Li Baoan; Xia Yin; Shen Wenqing

    2014-01-01

    In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)

  10. Sputtering mechanisms of polycrystalline platinum by low energy ions

    International Nuclear Information System (INIS)

    Chernysh, V.S.; Eckstein, W.; Haidarov, A.A.; Kulikauskas, V.S.; Mashkova, E.S.; Molchanov, V.A.

    1999-01-01

    The results of an experimental study and a computer simulation with the TRIM.SP code of the angular distributions of atoms sputtered from polycrystalline platinum under 1.5-9 keV He + bombardment at the normal ion incidence are presented. It has been found that angular distributions of sputtered atoms are overcosine and that their shape is practically independent of the bombarding ion species and ion energy. Good agreement between experimental results and computer simulation data was found. Computer simulations of the partial angular distributions of Pt atoms ejected due to various sputtering mechanisms for He and Ar bombardments were performed. The role of different mechanisms in the formation of angular distributions of sputtered atoms has been analyzed

  11. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K + beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  12. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  13. Energy reflection coefficient for H+ ions at energies between 10 and 80 keV

    International Nuclear Information System (INIS)

    Chen, C.K.; Bohdansky, J.; Eckstein, W.; Robinson, M.T.

    1984-04-01

    The energy reflection coefficient for H + ions at energies between 10 keV and 80 keV was determined by experiments and by computer calculations. Measurements were made with graphite, Al, Cu, Mo and W. targets. The angle of ion incidence was restricted to 85 0 , 78 0 and 70 0 measured from the surface normal. Calculated data were obtained by two different Monte Carlo computer programs (MARLOWE, TRIM). It was found that both the calculated and the measured data scale with the parameter epsilon cos 2 α, where epsilon is Lindhard's reduced energy and α the angle of incidence for the ions. The measured values are smaller than those calculated. This can be explained by surface roughness which developed during the ion irradiation

  14. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  15. Unlimited Energy Gain in the Laser-Driven Radiation Pressure Dominant Acceleration of Ions

    OpenAIRE

    Bulanov, S. V.; Echkina, E. Yu.; Esirkepov, T. Zh.; Inovenkov, I. N.; Kando, M.; Pegoraro, F.; Korn, G.

    2009-01-01

    The energy of the ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region increasing the energy and the longitudinal velocity of remaining ions. In the relativistic limit, the ions become phase-locked with respect to the electromagnetic wave resulting in the unlimited ion energy gain. This effect and the ...

  16. A few aspects of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Guet, C.

    1982-10-01

    Some aspects of reactions induced by intermediate energy heavy ions, with a special emphasis of 85 MeV/nucleon 12 C data, are discussed and compared to low energy and relativistic energy features. Transition from mean field to independant nucleon picture is advocated by an increase of nuclear transparency illuminated by reaction cross section estimations. Projectile-like fragment distributions, while demonstrating a typical high energy fragmentation behaviour, exhibit low energy regime distortions. Light fragments, associated to large parallel momentum transfer may result from total explosion. Proton emission is investigated and discussed in terms of opposite models such as thermal equilibrium and nucleon-nucleon scattering. First pion production data are well explained by single nucleon-nucleon inelastic scattering

  17. Light Ion Beams for Energy Production in ADS

    Directory of Open Access Journals (Sweden)

    Paraipan Mihaela

    2018-01-01

    Full Text Available A comparative study of the energy efficiency of proton beams with an energy from 0.5 GeV to 4 GeV and light ion beams (7Li, 9Be, 11B, and 12C with energies from 0.25 AGeV to 1 AGeV in natural and enriched quasi-infinite U target is presented. The numerical results on the particle transport and interaction are obtained using the code Geant4. The following target optimization issues are addressed: the beam window dimensions, and the possibility to use a core from low Z materials. The best solution for ADS from the point of view of the energy gain and miniaturization is obtained for 7Li or 9Be beam with an energy of 0.3–0.4 AGeV and a target with Be core.

  18. Acceleration of heavy ions to relativistic energies and their use in physics and biomedicine

    International Nuclear Information System (INIS)

    White, M.G.

    1977-01-01

    The uses of accelerated heavy ions in physics and biomedicine are listed. The special properties of high energy heavy ions and their fields of applications, the desirable ions and energies, requirements for a relativistic heavy ion accelerator, and AGS and Bevalac parameters are discussed. 26 references

  19. Chemical modification of polypropylene induced by high energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.; Chakraborty, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-06-01

    Polypropylene was irradiated with {sup 12}C{sup +} ions of 3.6 and 5.4 MeV energy using 3 MV Pelletron. The spectral changes owing to ion bombardment were investigated by UV-VIS and Fourier-transform infrared (FTIR) spectroscopy. A gradual increase in absorbance was observed around visible and near visible region with increase in fluence of bombarding ions. The difference absorption spectra show formation of chromophoric groups with wavelength maximum near 380 nm at lower fluence, but at high fluence a shift in peak is observed. The chromophoric groups are likely to be the extended conjugated polyene system and the red shift in peak position at high fluence may be attributed to the greater degree of conjugation. The formation of unsaturated linkage is confirmed by the FTIR spectra with observed stretching band around 1650 cm{sup -1} and its intensity was found to increase with increase in ion fluence studied. The gases (in the range 2-80 amu) which were evolved due to interaction of polypropylene with {sup 12}C{sup +} ions were measured with Residual Gas Analyzer (RGA). A large number of gaseous components were detected. This shows that polymer chains break into some smaller fragments which concomitantly leads to extended conjugation.

  20. Design of ultra-low power impulse radios

    CERN Document Server

    Apsel, Alyssa; Dokania, Rajeev

    2014-01-01

    This book covers the fundamental principles behind the design of ultra-low power radios and how they can form networks to facilitate a variety of applications within healthcare and environmental monitoring, since they may operate for years off a small battery or even harvest energy from the environment. These radios are distinct from conventional radios in that they must operate with very constrained resources and low overhead.  This book provides a thorough discussion of the challenges associated with designing radios with such constrained resources, as well as fundamental design concepts and practical approaches to implementing working designs.  Coverage includes integrated circuit design, timing and control considerations, fundamental theory behind low power and time domain operation, and network/communication protocol considerations.   • Enables detailed understanding of the design space for ultra-low power radio; • Provides detailed discussion and examples of the design of a practical low power ...

  1. Isospin effects in intermediate energy heavy ion collision

    International Nuclear Information System (INIS)

    Liu Jianye; Zuo Wei; Yang Yanfang; Zhao Qiang; Guo Wenjun

    2001-01-01

    Based on the achievements for the intermediate energy heavy ion collision in authors' recent work and the progresses in the world, the isospin effects and the dependence of the entrance channel conditions on them in the intermediate energy heavy ion collisions were introduced, analysed and commended. From the calculation results by using isospin dependence quantum molecular dynamics, it is clear to see that the nuclear stopping power strongly depends on the in-medium isospin dependence nucleon-nucleon cross section and weakly on the symmetry potential in the energy region from about Fermi energy to 150 MeV/u and the intermediate mass fragment multiplicity also sensitively depends on the in-medium isospin dependent nucleon-nucleon cross section and weakly on the symmetry potential in a selected energy region. But the preequilibrium emission neutron-proton ratio is quite contrary, it sensitively depends on the symmetry potential and weakly on the in-medium isospin dependent nucleon-nucleon cross section. In addition to the nuclear stopping sensitively depending on the beam energy, impact parameter and the mass of colliding system and weakly on the neutron-proton ratio of the colliding systems with about the same mass, the preequilibrium emission neutron-neutron ratio sensitively depends on the beam energy and the neutron-proton ratio of colliding system, but weakly on the impact parameter. From above results it is proposed that the nuclear stopping is a new probe to extract the information on the in-medium isospin dependence nucleon-nucleon cross section in energy region from about Fermi energy to 150 MeV/u and the preequilibrium emission neutron-proton ratio is a good probe for extracting the information about the symmetry potential from the lower energy to about 150 MeV/u

  2. Precise calculation of the energies of heavy hydrogenlike ions

    International Nuclear Information System (INIS)

    Driker, M.N.; Ivanova, E.P.; Ivanov, L.N.

    1983-01-01

    Energies of the 1s, 2s, and 2p states are calculated for hydrogenlike ions with z = 30--170. The calculation is based on Dirac's equation taking into account radiation effects and the finiteness of the nucleus. The hyperfine splitting constants are calculated taking the finiteness of the nucleus into account, and derivatives are taken with respect to the volume of the nucleus for all S-state characteristics

  3. Microscopic descriptions of high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1977-01-01

    The essentials of the equation-of-motion (EOM) approach are given and some of its significant and interesting results are described. A framework for the theoretical description of high-energy heavy-ion (HE-HI) collisions is presented; specifically included are a critical assessment of various approaches--EOM calculations, Boltzmann equations/cascade calculations, and hydrodynamics--their relationships and their respective domains of applicability, if any, to HE-HI collisions. 11 figures, 3 tables

  4. Comparison of models of high energy heavy ion collision

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1977-01-01

    Some of the main theoretical developments on heavy ion collisions at energies (0.1 to 2.0) GeV/nuc are reviewed. The fireball, firestreak, hydrodynamic (1-fluid, 2-fluids), ''row on row'', hard sphere and intranuclear cascades, and classical equations of motion models are discussed in detail. Results are compared to each other and to measured Ne + U → p + X reactions

  5. Intermediate energy heavy ion reactions. A program for CELSIUS

    International Nuclear Information System (INIS)

    Jakobsson, B.

    1986-02-01

    The accelerator system under construction in Uppsala with the ECR-source + the K equals 200 synchrocyclotron + the CELSIUS synchrotron ring for storage, cooling and acceleration opens up possibilities for a very fruitful heavy ion physics program. Some recently obtained results and some recent ideas on intermediate energy reactions are discussed and speculations are made about some experiments where the unconventional qualities of CELSIUS beams could be utilized. (author)

  6. High energy metal ion implantation using 'Magis', a novel, broad-beam, Marx-generator-based ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion energy of the beam formed by an ion source is proportional to extractor voltage and ion charge state. Increasing the voltage is difficult and costly for extraction voltage over 100 kV. Here we explore the possibility of increasing the charge states of metal ions to facilitate high-energy, broad beam ion implantation at a moderate voltage level. Strategies to enhance the ion charge state include operating in the regimes of high-current vacuum sparks and short pulses. Using a time-of-flight technique we have measured charge states as high as 7+ (73 kA vacuum spark discharge) and 4+ (14 kA short pulse arc discharge), both for copper, with the mean ion charge states about 6.0 and 2.5, respectively. Pulsed discharges can conveniently be driven by a modified Marx generator, allowing operation of ''Magis'' with a single power supply (at ground potential) for both plasma production and ion extraction

  7. Monitoring Ion Implantation Energy Using Non-contact Characterization Methods

    Science.gov (United States)

    Tallian, M.; Pap, A.; Mocsar, K.; Somogyi, A.; Nadudvari, Gy.; Kosztka, D.; Pavelka, T.

    2011-01-01

    State-of-the-art ultra-shallow junctions are produced using extremely low ion implant energies, down to the range of 1-3 keV. This can be achieved by a variety of production techniques; however there is a significant risk that the actual implantation energy differs from the desired value. To detect this, sensitive measurement methods need to be utilized. Experiments show that both Photomodulated Reflection measurements before anneal and Junction Photovoltage-based sheet resistance measurements after anneal are suitable for this purpose.

  8. Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+

    Science.gov (United States)

    Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi

    2018-06-01

    Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.

  9. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  10. Energy and Pitch Distribution of Spontaneously-generated High-energy Bulk Ions in the RFP

    Science.gov (United States)

    Kim, Jungha; Anderson, Jay; Reusch, Joshua; Eilerman, Scott; Capecchi, William

    2014-10-01

    Magnetic reconnection events in the reversed field pinch (RFP) are known to heat bulk and impurity ions. Runaway due to a parallel electric field has recently been confirmed as an important acceleration mechanism for high energy test ions supplied by a neutral beam. This effect does not, however, explain the change in distribution of nearly Maxwellian bulk ions at a reconnection event. By operating MST near maximum current and low electron density, significant fusion neutron flux can be generated without neutral beam injection. The bulk ion distribution created in these plasmas is well-confined, non-Maxwellian, and can be measured by the Advanced Neutral Particle Analyzer (ANPA) placed at a radial or tangential porthole. Data show a high energy tail up to 25 keV with a relatively higher signal in the low energy channels (8-15 keV) at the radial port following a reconnection event. Analysis of the energy dependence of trapped orbits sampled by the ANPA at the radial view implies an abundance of lower energy particles in regions of higher neutral density. This mandates a careful deconvolution of the measured ANPA signal to compute the fast ion distribution. This work is supported by the US DOE and NSF.

  11. s-wave threshold in electron attachment - Results in 2-C4F6 and CFCl3 at ultra-low electron energies

    Science.gov (United States)

    Chutjian, A.; Alajajian, S. H.; Ajello, J. M.; Orient, O. J.

    1984-01-01

    Electron attachment lineshapes and cross sections are reported for the processes 2-C4F6(-)/2-C4F6 and Cl(-)/CFCl3 at electron energies of 0-120 and 0-140 meV, and at resolutions of 6 and 7 meV (FWHM), respectively. As in previous measurements in CCl4 and SF6, the results show resolution-limited narrow structure in the cross section at electron energies below 15 meV. This structure arises from the divergence of the s-wave cross section in the limit of zero electron energy. Comparisons are given with swarm-measured results, and with collisional ionization (high-Rydberg attachment) data in this energy range.

  12. Ion range estimation by using dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huenemohr, Nora; Greilich, Steffen [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Krauss, Bernhard [Siemens AG, Forchheim (Germany). Imaging and Therapy; Dinkel, Julien [German Cancer Research Center (DKFZ), Heidelberg (Germany). Radiology; Massachusetts General Hospital, Boston, MA (United States). Radiology; Gillmann, Clarissa [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; University Hospital Heidelberg (Germany). Radiation Oncology; Ackermann, Benjamin [Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Jaekel, Oliver [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg (Germany). Radiation Oncology

    2013-07-01

    Inaccurate conversion of CT data to water-equivalent path length (WEPL) is one of the most important uncertainty sources in ion treatment planning. Dual energy CT (DECT) imaging might help to reduce CT number ambiguities with the additional information. In our study we scanned a series of materials (tissue substitutes, aluminum, PMMA, and other polymers) in the dual source scanner (Siemens Somatom Definition Flash). Based on the 80 kVp/140Sn kVp dual energy images, the electron densities Q{sub e} and effective atomic numbers Z{sub eff} were calculated. We introduced a new lookup table that translates the Q{sub e} to the WEPL. The WEPL residuals from the calibration were significantly reduced for the investigated tissue surrogates compared to the empirical Hounsfield-look-up table (single energy CT imaging) from (-1.0 {+-} 1.8)% to (0.1 {+-} 0.7)% and for non-tissue equivalent PMMA from -7.8% to -1.0%. To assess the benefit of the new DECT calibration, we conducted a treatment planning study for three different idealized cases based on tissue surrogates and PMMA. The DECT calibration yielded a significantly higher target coverage in tissue surrogates and phantom material (i.e. PMMA cylinder, mean target coverage improved from 62% to 98%). To verify the DECT calibration for real tissue, ion ranges through a frozen pig head were measured and compared to predictions calculated by the standard single energy CT calibration and the novel DECT calibration. By using this method, an improvement of ion range estimation from -2.1% water-equivalent thickness deviation (single energy CT) to 0.3% (DECT) was achieved. If one excludes raypaths located on the edge of the sample accompanied with high uncertainties, no significant difference could be observed. (orig.)

  13. Energy deposition and ion production from thermal oxygen ion precipitation during Cassini's T57 flyby

    Science.gov (United States)

    Snowden, Darci; Smith, Michael; Jimson, Theodore; Higgins, Alex

    2018-05-01

    Cassini's Radio Science Investigation (RSS) and Langmuir Probe observed abnormally high electron densities in Titan's ionosphere during Cassini's T57 flyby. We have developed a three-dimensional model to investigate how the precipitation of thermal magnetospheric O+ may have contributed to enhanced ion production in Titan's ionosphere. The three-dimensional model builds on previous work because it calculates both the flux of oxygen through Titan's exobase and the energy deposition and ion production rates in Titan's atmosphere. We find that energy deposition rates and ion production rates due to thermal O+ precipitation have a similar magnitude to the rates from magnetospheric electron precipitation and that the simulated ionization rates are sufficient to explain the abnormally high electron densities observed by RSS and Cassini's Langmuir Probe. Globally, thermal O+ deposits less energy in Titan's atmosphere than solar EUV, suggesting it has a smaller impact on the thermal structure of Titan's neutral atmosphere. However, our results indicate that thermal O+ precipitation can have a significant impact on Titan's ionosphere.

  14. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  15. PHELIX - Petawatt high-energy laser for heavy ion experiments

    International Nuclear Information System (INIS)

    Backe, H.; Bock, R.; Caird, J.

    1998-12-01

    A high-power laser facility will be installed at the GSI heavy-ion accelerator. It will deliver laser pulses up to one kilojoule (with an option of a later upgrade to several kJ) at a pulse length of 1 - 10 nanoseconds (high-energy mode). In a high-intensity mode, laser pulses with a power of one petawatt (10 15 Watt) will be generated by chirped pulse amplification at a pulse length of typically 500 femtoseconds. Details of the laser system as well as time schedule and costs are given in Section B. In combination with the heavy-ion beams available at GSI - which will be further improved in intensity by the presently on-going upgrade program - a large number of unique experiments will become possible by the high-power laser facility described in this report. As outlined in Section A, novel research opportunities are expected in a wide range of basic-research topics spanning from the study of ion-matter interaction, through challenging new experiments in atomic, nuclear, and astrophysics, into the virgin field of relativistic plasma physics. Foreseeable topics in applied science are the development of new sources for highly charged ions and of X-ray lasers, new concepts for laser-based particle acceleration and the research in the field of inertial confinement fusion. (orig.)

  16. Damage of plasmid DNA by high energy ions

    International Nuclear Information System (INIS)

    Michaelidesova, A.; Pachnerova Brabcova, K.; Davidkova, M.

    2018-01-01

    The aim of the study was to determine the degree of direct DNA damage by high-energy ions, which are one of the components of cosmic rays, and therefore the knowledge of the biological effects of these ions is key to long-term space missions with human crew. The pBR322 plasmid containing 4361 base pairs was used in this study. The aqueous solution of plasmid pBR322 was transferred on ice to Japan to the Heavy Ion Medical Accelerator in Chiba, the Research Center for Charged Particle Therapy. Just before the experiment, the droplets of solution of known concentration were applied to the slides and the water was allowed to evaporate to produce dry DNA samples. Half of the slides were irradiated with 290 MeV/u of carbon ions and a dose rate of 20 Gy/min. The other half of the slides were irradiated with helium nuclei of 150 MeV/hr and a dose rate of 12.6 Gy/min. Both sets of slides were irradiated with doses of 0-1,400 Gy with a 200 Gy step. After irradiation, the samples were re-dissolved in distilled water, frozen and transported on ice to the Czech Republic for processing. Samples were analyzed by agarose gel electrophoresis. The plasmid was evaluated separately to determine the degree of radiation induced lesions and further to incubation with enzymes recognizing basal damage. (authors)

  17. Discovery of hydrodynamic behavior in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Hamagaki, Hideki

    2010-01-01

    The objective of high energy heavy ion collision experiments is creating high temperature and high density states to investigate hadron matter properties in such extreme conditions. Since the start of heavy ion collision experiments with BEVALAC, knowledge of the space-time evolution of collision has become indispensable for understanding the hadronic matter properties. This problem is reviewed here from the hydrodynamics view point. Although its importance has been generally recognized since the time of BEVALAC, the hydrodynamic description has not been successful because the hydrodynamic model assuming non-viscous or small fluid had not been considered to be enough to properly describe the space-time evolution of hadron-hadron collisions until the RHIC experiments. Items of the following titles are picked up and reviewed here: Development of heavy ion accelerations; Space-time evolution of hadron collision process and hydrodynamic model; Chemical freezing and kinematical freezing, including transverse momentum spectra at proton-proton collisions and particle spectra in heavy ion collisions; Elliptical azimuthal angle anisotropy; Discovery of hydrodynamic flow at BEVALAC; Problems of incident beam dependence of v2; Elliptic azimuthal angle anisotropy at RHIC; What is it that carries the elliptic anisotropy? Discussion of attainment of thermodynamical equilibrium state at RHIC; and finally investigations of fluid properties other than azimuthal anisotropy, such as, Fluid properties probed by heavy quarks and Observing QCD fluid responses. (S. Funahashi)

  18. s-wave threshold in electron attachment - Observations and cross sections in CCl4 and SF6 at ultralow electron energies

    Science.gov (United States)

    Chutjian, A.; Alajajian, S. H.

    1985-01-01

    The threshold photoionization method was used to study low-energy electron attachment phenomena in and cross sections of CCl4 and SF6 compounds, which have applications in the design of gaseous dielectrics and diffuse discharge opening switches. Measurements were made at electron energies from below threshold to 140 meV at resolutions of 6 and 8 meV. A narrow resolution-limited structure was observed in electron attachment to CCl4 and SF6 at electron energies below 10 meV, which is attributed to the divergence of the attachment cross section in the limit epsilon, l approaches zero. The results are compared with experimental collisional-ionization results, electron-swarm unfolded cross sections, and earlier threshold photoionization data.

  19. Energy analysis of the ion beam from plasma focus

    International Nuclear Information System (INIS)

    Kilic, H.; Nardi, V.; Prior, W.

    1984-01-01

    The authors have experimentally determined the energy spectrum of a deuteron beam in the energy interval 100 KeV ≤ E ≤ 10 MeV, with typical beam current I ≥ 1-2 A. A 5 kJ (15 kV, 49 μF) plasma focus machine is used to generate the ion beam at relatively low pressure 3-4 Torr D/sub 2/ (beam anode) and at higher pressure 6-8 Torr D/sub 2/ (high-neutron-yield mode). The spectrum is obtained from two different methods, i.e. from ion time of flight - by using time delays of Faraday cup signals with respect to hard x-ray signals - and from ion filtering, (mylar filter with different thickness from 2.5 μm up to 500 μm are used to cover the Faraday cup). The Faraday cup is located in a differentially pumed chamber (10/sup -4/ - 10/sup -5/ Torr) which is separated from the plasma focus chamber (8-3 Torr) by a 150 μm diam. pinhole (12.5 μm thick tungsten foil). The pinhole and Faraday cup are positioned on the gun axis at a distance of 15 cm and 25 cm from the end of the anode respectively

  20. Fabrication and demonstration of high energy density lithium ion microbatteries

    Science.gov (United States)

    Sun, Ke

    Since their commercialization by Sony two decades ago, Li-ion batteries have only experienced mild improvement in energy and power performance, which remains one of the main hurdles for their widespread implementation in applications outside of powering compact portable devices, such as in electric vehicles. Li-ion batteries must be advanced through a disruptive technological development or a series of incremental improvements in chemistry and design in order to be competitive enough for advanced applications. As it will be introduced in this work, achieving this goal by new chemistries and chemical modifications does not seem to be promising in the short term, so efforts to fully optimize existing systems must be pursued at in parallel. This optimization must be mainly relying on the modification and optimizations of micro and macro structures of current battery systems. This kind of battery architecture study will be even more important when small energy storage devices are desired to power miniaturized and autonomous gadgets, such as MEMs, micro-robots, biomedical sensors, etc. In this regime, the limited space available makes requirements on electrode architecture more stringent and the assembly process more challenging. Therefore, the study of battery assembly strategies for Li-ion microbatteries will benefit not only micro-devices but also the development of more powerful and energetic large scale battery systems based on available chemistries. In chapter 2, preliminary research related to the mechanism for the improved rate capability of cathodes by amorphous lithium phosphate surficial films will be used to motivate the potential for structural optimization of existing commercial lithium ion battery electrode. In the following chapters, novel battery assembly techniques will be explored to achieve new battery architectures. In chapter 3, direct ink writing will be used to fabricate 3D interdigitated microbattery structures that have superior areal energy

  1. The steering and manipulation of ion beams for low-energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Beanland, D.G.; Freeman, J.H.

    1976-01-01

    Both electrostatic and magnetic fields are used in low-energy accelerators. Electrostatic fields are essential in the acceleration stages and they are commonly used for ion beam scanning and focussing. Magnetic fields are only infrequently used as lenses, but they are essential for mass analysis and are sometimes employed for beam steering. The electrostatic mirror is a versatile and compact lens which has hitherto received little attention for the controlled manipulation of heavy ions. In addition to energy analysis it can be used to steer, focus and scan such beams and its flexibility and usefulness can be further increased by shaping the electrostatic field in the mirror space. The use of a computer programme to model the focussing behaviour of a variety of lens shapes is described and it is shown that the focal properties of the mirror can be controlled to produce a parallel, convergent or divergent output beam. The use of mirrors for two-dimensional beam focusing is also outlined. To permit the use of the mirror system with heavy ions an apertured front plate, without field-defining gauzes, was utilized. In consequence an additional electrode was incorporated in the lens structure to prevent penetration of the positive electric field along the beam axes outside the mirror space. This factor and the compact design of the mirror, contributed to the minimisation of space-charge defocussing effects which normally militate against the use of such electrostatic lenses with high intensity ion beams. The results of experiments confirming the computer predictions are briefly described and, in conclusion some possible applications of electrostatic mirrors in electromagnetic isotope separators and low energy accelerators are outlined. (Auth.)

  2. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  3. Electron cooling of PB$^{54+}$ ions in the low energy ion ring (LEIR)

    CERN Document Server

    Bosser, Jacques; Chanel, M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Tranquille, G

    1998-01-01

    For the preparation of dense bunches of lead ions for the LHC, electron cooling will be essential for accumula tion in a storage ring at 4.2 MeV/u. Tests have been carried out on the LEAR ring (renamed LEIR for Low Energy Ion Ring) in order to determine the optimum parameters for a future state-of-the-art electron cooling device which would be able to cool linac pulses of lead ions in less than 100 ms. The experiments focused on the generation of a stable high intensity electron beam that is needed to free space in both longitudinal and transverse phase space for incoming pulses. Investigations on the ion beam lifetime in the presence of the electron beam and on the dependency of the cooling times on the optical settings of the storage ring will also be discussed. This paper concentrates on the cooling aspects with the multiturn injection, vacuum, and high intensity aspects discussed in a companion paper at this conference.

  4. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  5. Energy loss of heavy ion beams in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T; Hotta, T [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1997-12-31

    The energy loss of heavy-ion beams (HIB) is studied by means of Vlasov theory and Particle-in-Cell (PIC) simulations in a plasma. The interaction of HIB with a plasma is of central importance for inertial confinement fusion (ICF). A number of studies on the HIB interaction with target plasma have been published. It is important for heavy-ion stopping that the effects of the non-linear interaction of HIB within the Vlasov theory are included. Reported are results of a numerical study of nonlinear effects to the stopping power for HIB in plasma. It is shown that the PIC simulations of collective effects of the stopping power are in a good agreement with the Vlasov theory. (author). 2 tabs., 1 fig., 5 refs.

  6. Imprint reduction in rotating heavy ions beam energy deposition

    International Nuclear Information System (INIS)

    Bret, A.; Piriz, A.R.; Tahir, N.A.

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω

  7. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    International Nuclear Information System (INIS)

    Holland, O.W.; El-Ghor, M.K.; White, C.W.

    1989-01-01

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ion fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 times 10 14 cm -2 ) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs

  8. Energy density, stopping and flow in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Sorge, H.; von Keitz, A.; Mattiello, R.; Stoecker, H.; Greiner, W.

    1990-01-01

    The Lorentz invariant molecular dynamics approach (RQMD) is employed to investigate the space-time evolution of heavy ion collisions at energies (E kin = 10AGeV hor-ellipsis 200AGeV). The calculations for various nucleus nucleus reactions show a high degree of stopping power. The importance of secondary rescattering at these beam energies is demonstrated. The computed nucleon rapidity distributions are compared to available experimental data. It is demonstrated that nonlinear, collective effects like full stopping of target and projectile and matter flow could be expected for heavy projectiles only. For nuclear collisions in the Booster era at BNL and for the lead beam at CERN SPS the authors predict a stimulating future: then a nearly equilibrated, long lived (8 fm/c) macroscopic volume of very high energy density (> 1 GeV/fm 3 ) and baryon density (> 5 times ground state density) is produced

  9. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  10. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  11. On the neutralization of noble gas ions in low energy ion scattering

    International Nuclear Information System (INIS)

    Draxler, M.

    2003-04-01

    The set-up ACOLISSA has been set to operation. It was thoroughly tested and found to completely fulfill the requirements for the measurement of charge integrated and of ion TOF-LEIS spectra. Charge integrated scattering spectra in LEIS exhibit a surface peak in many experimental conditions. It was shown that the appearance of this peak is due to a reduced energy width of the contribution from the surface layer and partly due to a reduced energy loss in the surface layer as compared to deeper layers. In the regime of strong multiple scattering, both reasons reflect the fact, that scattering from surface atoms occurs practically exclusively by single binary collisions, while plural and multiple scattering set in in the subsurface layers. As a consequence, only the surface layer and to some extent also the second layer will contribute to the surface peak. Experiment as well as simulation show this behavior, so that other possible reasons for the appearance of a surface peak (e.g. channeling) can safely be ruled out. At high energies, when the multiple scattering half width angle is small, surface effects are mainly caused by electronic stopping and become small, as observed in both, experiment and simulation. In this regime, the energy spectrum is well described by the single scattering spectrum. From the present thesis one can draw the following conclusions concerning the neutralization of noble gas ions at metal surfaces: below the threshold for collision induced processes (CIN, CIR) Ε Εth), P+ is governed by local processes (collision induced neutralization and collision induced reionization) and by a non-local process (Auger neutralization), and thus depends on the energy as well as on vperp. From experiments like the one presented here, where the ion energy as well as the scattering geometry are varied, the process parameters of the neutralization can uniquely be determined for any system. These findings are generally valid and reveal the relevance of different

  12. Energy Properties of Ion Acoustic Waves in Stable and Unstable Plasmas

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Lynov, Jens-Peter

    1979-01-01

    Energy exchange between potential energy and ion kinetic energy in an ion acoustic wave is considered. In order to investigate the linear Landau damping or growth, the energy is calculated by use of first‐order quantities only so that nonlinear effects are not involved. It is found that for ion...... acoustic waves that are growing or damped in space the time average of the sum of the potential and the kinetic energy density is independent of position. Energy absorption spectra in particle velocity space are calculated; they are relatively broad and complicated functions. This shows that plasma ions...... of all velocities exchange energy with the wave....

  13. Ultralow Parasitic Energy for Postcombustion CO 2 Capture Realized in a Nickel Isonicotinate Metal–Organic Framework with Excellent Moisture Stability

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Shyamapada; Collins, Sean [Centre; amp, Department of Chemistry; Chakraborty, Debanjan; Banerjee, Debasis [Physical; Thallapally, Praveen K. [Physical; Woo, Tom K. [Centre; amp, Department of Chemistry; Vaidhyanathan, Ramanathan

    2017-01-25

    Metal-organic frameworks (MOFs) have attracted significant attention as solid sorbents in gas separation processes for low-energy postcombustion CO2 capture. The parasitic energy (PE) has been put forward as a holistic parameter that measures how energy efficient (and therefore cost-effective) the CO2 capture process will be using the material. In this work, we present a nickel isonicotinate based ultramicroporous MOF, 1 [Ni-(4PyC)(2)center dot DMF], that has the lowest PE for postcombustion CO, capture reported to date. We calculate a PE of 655 kJ/kg CO2, which is lower than that of the best performing material previously reported, Mg-MOF-74. Further, 1 exhibits exceptional hydrolytic stability with the CO2 adsorption isotherm being unchanged following 7 days of steam-treatment (>85% RH) or 6 months of exposure to the atmosphere. The diffusion coefficient of CO2 in 1 is also 2 orders of magnitude higher than in zeolites currently used in industrial scrubbers. Breakthrough experiments show that 1 only loses 7% of its maximum CO2 capacity under humid conditions.

  14. Conceptual design of a heavy ion fusion energy center

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A Heavy Ion Accelerator system is described which is based upon existing technology, and which is capable of producing 150 MW of average beam power in 10 MJ, 200 TW bursts, 15 times per second. It consists of an rf linac which accelerates doubly ionized uranium ions to an energy of 20 GeV. Then by utilizing the well known procedure of multiturn injection, a 6.6 ms long burst of linac current is stored in 8 separate ''accumulator'' rings. At the conclusion of the filling process, a pulsed rf system bunches the beam in each of the 8 rings simultaneously. As the bunches decrease in length, they are then extracted from the rings and transported for about 1 km to one of 5 ''boilers'', in which the thermonuclear pellet has been placed. The 8 beams (2 opposing clusters of 4 beams each) are then focused simultaneously onto the pellet, resulting in a release of thermonuclear energy about 80 times larger than the input beam energy

  15. Dependence of wavelength of Xe ion-induced rippled structures on the fluence in the medium ion energy range

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Antje; Grenzer, Joerg [Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Biermanns, Andreas; Pietsch, Ullrich [Institute of Physics, University of Siegen (Germany)

    2010-07-01

    Ion-beam eroded self-organized nanostructures on semiconductors offer new ways for the fabrication of high density memory and optoelectronic devices. It is known that wavelength and amplitude of noble gas ion-induced rippled structures tune with the ion energy and the fluence depending on the energy range, ion type and substrate. The linear theory by Makeev predicts a linear dependence of the ion energy on the wavelength for low temperatures. For Ar{sup +} and O{sub 2}{sup +} it was observed by different groups that the wavelength grows with increasing fluence after being constant up to an onset fluence and before saturation. In this coarsening regime power-law or exponential behavior of the wavelength with the fluence was monitored. So far, investigations for Xe ions on silicon surfaces mainly concentrated on energies below 1 keV. We found a linear dependence of both the ion energy and the fluence on the wavelength and amplitude of rippled structures over a wide range of the Xe{sup +} ion energy between 5 and 70 keV. Moreover, we estimated the ratio of wavelength to amplitude to be constant meaning a shape stability when a threshold fluence of 2.10{sup 17} cm{sup -2} was exceeded.

  16. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  17. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  18. Measurement of energy deposition near heavy ion tracks

    International Nuclear Information System (INIS)

    Metting, N.F.; Brady, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Wong, M.; Schimmerling, W.; Rapkin, M.

    1985-01-01

    In November of 1982 work was begun in collaboration with Columbia University and Lawrence Berkeley Laboratory to use microdosimetric methods to measure energy deposition of heavy ions produced at LBL's Bevalac Biomedical Facility. Last year the authors reported preliminary results indicating that secondary charged particle equilibrium was probably obtained using this experimental setup, but that there seemed to be poor spatial resolution in the solid state position-sensitive detector. Further analysis of the measurements taken in August 1983 shows that because of this electronic noise in the position-sensitive detector, only the 56 Fe data yielded useful microdosimetric spectra

  19. Scaling of anisotropy flows in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Ma, Y.G.; Yan, T.Z.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.

    2007-01-01

    Anisotropic flows (v 1 , v 2 and v 4 ) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v 1 ) and elliptic flow (v 2 ) are demonstrated for light nuclear clusters. Moreover, the ratios of v 4 /v 2 2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments

  20. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    Energy Technology Data Exchange (ETDEWEB)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs.

  1. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs

  2. Heavy ion mutagenesis: linear energy transfer effects and genetic linkage

    Science.gov (United States)

    Kronenberg, A.; Gauny, S.; Criddle, K.; Vannais, D.; Ueno, A.; Kraemer, S.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We have characterized a series of 69 independent mutants at the endogenous hprt locus of human TK6 lymphoblasts and over 200 independent S1-deficient mutants of the human x hamster hybrid cell line AL arising spontaneously or following low-fluence exposures to densely ionizing Fe ions (600 MeV/amu, linear energy transfer = 190 keV/microns). We find that large deletions are common. The entire hprt gene (> 44 kb) was missing in 19/39 Fe-induced mutants, while only 2/30 spontaneous mutants lost the entire hprt coding sequence. When the gene of interest (S1 locus = M1C1 gene) is located on a nonessential human chromosome 11, multilocus deletions of several million base pairs are observed frequently. The S1 mutation frequency is more than 50-fold greater than the frequency of hprt mutants in the same cells. Taken together, these results suggest that low-fluence exposures to Fe ions are often cytotoxic due to their ability to create multilocus deletions that may often include the loss of essential genes. In addition, the tumorigenic potential of these HZE heavy ions may be due to the high potential for loss of tumor suppressor genes. The relative insensitivity of the hprt locus to mutation is likely due to tight linkage to a gene that is required for viability.

  3. Emittance scanner for intense low-energy ion beams

    International Nuclear Information System (INIS)

    Allison, P.W.; Sherman, J.D.; Holtkamp, D.B.

    1983-01-01

    An emittance scanner has been developed for use with low-energy H - ion beams to satisfy the following requirements: (1) angular resolution of +-1/2 mrad, (2) small errors from beam space charge, and (3) compact and simple design. The scanner consists of a 10-cm-long analyzer containing two slits and a pair of electric deflection plates driven by a +-500-V linear ramp generator. As the analyzer is mechanically driven across the beam, the front slit passes a thin ribbon of beam through the plates. The ion transit time is short compared with the ramp speed; therefore, the initial angle of the ions that pass through the rear slit is proportional to the instantaneous ramp voltage. The current through the rear slit then is proportional to the phase-space density d 2 i/dxdx'. The data are computer-analyzed to give, for example, rms emittance and phase-space density contours. Comparison of measured data with those calculated from a prepared (collimated) phase space is in good agreement

  4. High Energy Ion Bombardment Simulation Facility at the University of Pittsburgh

    International Nuclear Information System (INIS)

    McGruer, J.N.; Choyke, W.J.; Doyle, N.J.; Spitznagel, J.A.

    1975-01-01

    The High Energy Ion Bombardment Simulation (HEIBS) Facility located at the University of Pittsburgh is now operational. The E-22 tandem accelerator of the Nuclear Physics Laboratory, fitted with a UNIS source, provides the heavy high energy ions. An auxiliary Van de Graaff accelerator is used for the simultaneous production of He ions. Special features of the simulation laboratory are reported

  5. Relaxation of ion energy spectrum just after turbulent heating pulse in TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1982-07-01

    The temporal evolution and spatial profile of the ion energy spectrum just after the application of a toroidal current pulse for turbulent heating are investigated experimentally in the TRIAM-1 tokamak and also numerically using the Fokker-Planck equation. The two-component ion energy spectrum formed by turbulent heating relaxes to a single one within tausub(i) (the ion collision time).

  6. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    International Nuclear Information System (INIS)

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-01-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy

  7. Modelling of low energy ion sputtering from oxide surfaces

    International Nuclear Information System (INIS)

    Kubart, T; Nyberg, T; Berg, S

    2010-01-01

    The main aim of this work is to present a way to estimate the values of surface binding energy for oxides. This is done by fitting results from the binary collisions approximation code Tridyn with data from the reactive sputtering processing curves, as well as the elemental composition obtained from x-ray photoelectron spectroscopy (XPS). Oxide targets of Al, Ti, V, Nb and Ta are studied. The obtained surface binding energies are then used to predict the partial sputtering yields. Anomalously high sputtering yield is observed for the TiO 2 target. This is attributed to the high sputtering yield of Ti lower oxides. Such an effect is not observed for the other studied metals. XPS measurement of the oxide targets confirms the formation of suboxides during ion bombardment as well as an oxygen deficient surface in the steady state. These effects are confirmed from the processing curves from the oxide targets showing an elevated sputtering rate in pure argon.

  8. Dynamical and statistical aspects of intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Knoll, J.

    1987-01-01

    The lectures presented deal with three different topics relevant for the discussion of nuclear collisions at medium to high energies. The first lecture concerns a subject of general interest, the description of statistical systems and their dynamics by the concept of missing information. If presents an excellent scope to formulate statistical theories in such a way that they carefully keep track of the known (relevant) information while maximizing the ignorance about the irrelevant, unknown information. The last two lectures deal with quite actual questions of intermediate energy heavy-ion collisions. These are the multi-fragmentation dynamics of highly excited nuclear systems, and the so called subthreshold particle production. All three subjects are self-contained, and can be read without the knowledge about the other ones. (orig.)

  9. Search for nuclei in heavy ion collisions at ultrarelativistic energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle $(>10^{\\circ}-15^{\\circ})$ they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm$^{2}$ Au target bombarded by an $^{16}$O or $^{32}$S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from $^{16}$O incident on Au have been taken last year. The experiment is presently taking data with $^{...

  10. Ion induced fragmentation of biomolecular systems at low collision energies

    International Nuclear Information System (INIS)

    Bernigaud, V; Adoui, L; Chesnel, J Y; Rangama, J; Huber, B A; Manil, B; Alvarado, F; Bari, S; Hoekstra, R; Postma, J; Schlathoelter, T

    2009-01-01

    In this paper, we present results of different collision experiments between multiply charged ions at low collision energies (in the keV-region) and biomolecular systems. This kind of interaction allows to remove electrons form the biomolecule without transferring a large amount of vibrational excitation energy. Nevertheless, following the ionization of the target, fragmentation of biomolecular species may occur. It is the main objective of this work to study the physical processes involved in the dissociation of highly electronically excited systems. In order to elucidate the intrinsic properties of certain biomolecules (porphyrins and amino acids) we have performed experiments in the gas phase with isolated systems. The obtained results demonstrate the high stability of porphyrins after electron removal. Furthermore, a dependence of the fragmentation pattern produced by multiply charged ions on the isomeric structure of the alanine molecule has been shown. By considering the presence of other surrounding biomolecules (clusters of nucleobases), a strong influence of the environment of the biomolecule on the fragmentation channels and their modification, has been clearly proven. This result is explained, in the thymine and uracil case, by the formation of hydrogen bonds between O and H atoms, which is known to favor planar cluster geometries.

  11. Nuclear structure studies with low-energy light ions: fundamental and applied

    International Nuclear Information System (INIS)

    Mazumdar, I.

    2016-01-01

    Studies in low and medium energy nuclear physics have been dominated by heavy-ion induced reactions for last five decades. Heavy-ion induced nuclear reactions have enriched our knowledge of the structural evolutions and intricacies of reaction dynamics of the nuclear many-body systems. However, the emergence and rise of heavy-ion physics have seen a general decline in studies with low- and medium-energy light-ion beams. The harsh reality of dwindling number of low-energy light ion facilities adversely affect research in nuclear physics. Very low-energy and high current light-ion facilities immediately conjures up in our minds the studies in nuclear astrophysics. Measurements of light-ion capture cross sections and astrophysical S factors are the major themes of research at most of the light-ion facilities. However, the importance low energy light-ion beams is multifarious. A variety of measurements providing vital support and inputs to heavy-ion research can only be carried out at the low-energy, light-ion facilities. Light-ion beams are also useful for generation of mono-energetic neutron beams. In this talk I will draw from some of our recent measurements to show the importance of light-ion beams in nuclear astrophysics and also in applied nuclear physics. (author)

  12. Heavy-ion reactions at energies near the Coulomb barrier

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1991-01-01

    The title covers a very broad area of both experimental and theoretical studies. The common characteristic of heavy-ion collisions at these energies, compared to what is usually seen at higher energies, is the important interplay between different reaction channels or internal degrees of freedom. The couplings between the various channels can result in important multistep contributions to a given channel. These often have to be treated explicitly, for example by solving the appropriate set of coupled equations. In contrast, at higher energies the effects of these couplings frequently can be represented in a simple, average way, as is done when one introduces an imaginary part to the optical potential for elastic scattering. At first, it might be thought that the possible importance of multistep transitions would be a strong disadvantage of working at these energies. However, although the analysis of the data becomes more complicate, the study of these terms and their interferences can be a rich source of information. In particular, it can tell us, indirectly, something about transitions between two excited states. Overviews of some of these phenomena have been presented elsewhere; here I have selected two topics as representative. Even then I cannot go into much detail, so perhaps this paper is best regarded as providing some references as the stating point for a literature search exclamation point

  13. Geometric and electronic structures of molecular ions from high energy collisions

    International Nuclear Information System (INIS)

    Groeneveld, K.O.

    1983-01-01

    This chapter examines the characteristics of heavy ion collision and of beam foil spectroscopy. It discusses the kinematic consequences of the high energies and presents results from ''Coulomb explosion'' and structure determination of molecular ions. It demonstrates that studies of molecular ions with accelerators can provide electronic and geometric structure information of molecules or molecular ions and points out that the understanding of the microscopic processes at such high energies is incomplete and needs further experimental and theoretical efforts

  14. The stopping power and energy straggling of the energetic C and O ions in polyimide

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Slepička, P.

    2016-01-01

    Roč. 371, MAR (2016), s. 81-85 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : ion energy loss * ion energy straggling * ion irradiated polymers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  15. New 2-stage ion microprobes and a move to higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Legge, G.J.F.; Dymnikov, A.; Moloney, G.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Cohen, D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Recent moves in Ion Beam Microanalysis towards the use of a rapidly growing number of very high resolution, low current and single ion techniques has led to the need for high demagnification and greatly improved beam quality. There is also a move to apply Microbeams at higher energies and with heavier ions. This also puts demands on the focusing system and beam control. This paper describes the recent development of 2-stage lens systems to be applied here and overseas, both at very high resolution and at high energies with heavy ions. It looks at new ion beam analysis applications of such ion microprobes. 8 refs., 1 tab., 1 fig.

  16. New 2-stage ion microprobes and a move to higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Legge, G J.F.; Dymnikov, A; Moloney, G; Saint, A [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Cohen, D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Recent moves in Ion Beam Microanalysis towards the use of a rapidly growing number of very high resolution, low current and single ion techniques has led to the need for high demagnification and greatly improved beam quality. There is also a move to apply Microbeams at higher energies and with heavier ions. This also puts demands on the focusing system and beam control. This paper describes the recent development of 2-stage lens systems to be applied here and overseas, both at very high resolution and at high energies with heavy ions. It looks at new ion beam analysis applications of such ion microprobes. 8 refs., 1 tab., 1 fig.

  17. Oxidation potentials, Gibbs energies, enthalpies and entropies of actinide ions in aqueous solutions

    International Nuclear Information System (INIS)

    1977-01-01

    The values of the Gibbs energy, enthalpy, and entropy of different actinide ions, thermodynamic characteristics of the processes of hydration of these ions, and the presently known ionization potentials of actinides are given. The enthalpy and entropy components of the oxidation potentials of actinide elements are considered. The curves of the dependence of the Gibbs energy of ion formation on the atomic number of the element and the Frost diagrams are analyzed. The diagram proposed by Frost represents the graphical dependence of the Gibbs energy of hydrated ions on the degree of oxidation of the element. Using the Frost diagram it is easy to establish whether a given ion is stable to disproportioning

  18. Trajectory bending and energy spreading of charged ions in time-of-flight telescopes used for ion beam analysis

    International Nuclear Information System (INIS)

    Laitinen, Mikko; Sajavaara, Timo

    2014-01-01

    Carbon foil time pick-up detectors are widely used in pairs in ion beam applications as time-of-flight detectors. These detectors are suitable for a wide energy range and for all ions but at the lowest energies the tandem effect limits the achievable time of flight and therefore the energy resolution. Tandem effect occurs when an ion passes the first carbon foil of the timing detector and its charge state is changed. As the carbon foil of the first timing detector has often a non-zero voltage the ion can accelerate or decelerate before and after the timing detector. The combination of different charge state properties before and after the carbon foil now induces spread to the measured times of flight. We have simulated different time pick-up detector orientations, voltages, ions and ion energies to examine the tandem effect in detail and found out that the individual timing detector orientation and the average ion charge state have a very small influence to the magnitude of the tandem effect. On the other hand, the width of the charge state distribution for particular ion and energy in the first carbon foil, and the carbon foil voltage contributes linearly to the magnitude of the tandem effect. In the simulations low energy light ion trajectories were observed to bend in the electric fields of the first timing gate, and the magnitude of this bending was studied. It was found out that 50–150 keV proton trajectories can even bend outside the second timing gate

  19. Application of heavy-ion microbeam system at Kyoto University: Energy response for imaging plate by single ion irradiation

    International Nuclear Information System (INIS)

    Tosaki, M.; Nakamura, M.; Hirose, M.; Matsumoto, H.

    2011-01-01

    A heavy-ion microbeam system for cell irradiation has been developed using an accelerator at Kyoto University. We have successfully developed proton-, carbon-, fluorine- and silicon-beams in order to irradiate a micro-meter sized area with ion counting, especially single ion irradiation. In the heavy-ion microbeam system, an imaging plate (IP) was utilized for beam diagnostics on the irradiation. The IP is widely used for radiography studies in biology. However, there are a few studies on the low linear energy transfer (LET) by single ions, i.e., low-intensity exposure. Thus we have investigated the energy response for the IP, which can be utilized for microbeam diagnostics.

  20. Spatial profile measurements of ion-confining potentials using novel position-sensitive ion-energy spectrometer arrays

    International Nuclear Information System (INIS)

    Yoshida, M.; Cho, T.; Hirata, M.; Ito, H.; Kohagura, J.; Yatsu, K.; Miyoshi, S.

    2003-01-01

    The first experimental demonstration of simultaneous measurements of temporally and spatially resolved ion-confining potentials phi c and end-loss-ion fluxes I ELA has been carried out during a single plasma discharge alone by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of the GAMMA 10 tandem mirror. This position-sensitive ion-detector structure is proposed to obtain precise ion-energy spectra without any perturbations from simultaneously incident energetic electrons into the arrays. The relation between phi c and I ELA is physically interpreted in terms of Pastukhov's potential confinement theory. In particular, the importance of axisymmetric phi c formation is found for the plasma confinement

  1. Examining ion channel properties using free-energy methods.

    Science.gov (United States)

    Domene, Carmen; Furini, Simone

    2009-01-01

    Recent advances in structural biology have revealed the architecture of a number of transmembrane channels, allowing for these complex biological systems to be understood in atomistic detail. Computational simulations are a powerful tool by which the dynamic and energetic properties, and thereby the function of these protein architectures, can be investigated. The experimentally observable properties of a system are often determined more by energetic than dynamics, and therefore understanding the underlying free energy (FE) of biophysical processes is of crucial importance. Critical to the accurate evaluation of FE values are the problems of obtaining accurate sampling of complex biological energy landscapes, and of obtaining accurate representations of the potential energy of a system, this latter problem having been addressed through the development of molecular force fields. While these challenges are common to all FE methods, depending on the system under study, and the questions being asked of it, one technique for FE calculation may be preferable to another, the choice of method and simulation protocol being crucial to achieve efficiency. Applied in a correct manner, FE calculations represent a predictive and affordable computational tool with which to make relevant contact with experiments. This chapter, therefore, aims to give an overview of the most widely implemented computational methods used to calculate the FE associated with particular biochemical or biophysical events, and to highlight their recent applications to ion channels. Copyright © 2009 Elsevier Inc. All rights reserved.

  2. Fifth high-energy heavy-ion study

    International Nuclear Information System (INIS)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base

  3. Calorimetric energy-dispersive detectors for ion beam analysis

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1985-01-01

    Energy-dispersive detectors for photons and alpha particles have recently been built. They are based on designs for infrared bolometric detectors working at liquid helium temperatures. For 5.5 Mev alpha particles the energy resolution (FWHM) has been published to be better than 35 keV in preliminary experiments, but thermodynamic limits to the resolution were calculated to be of the order of a few tens of eV. In the present paper limitations to the resolution caused by fluctuations in the processes converting particle energy to heat in the detectors will be calculated. It appears that an FWHM of a few hundred eV for MeV alphas may realistically be hoped for. As these detectors are windowless and may at the same time extend solid angles as large as surface-barrier detectors, be built in any desired geometrical shape, and work with count rates well above 10 3 Hz, exiting possibilities for ion beam analysis will open up through their realization. (orig.)

  4. Heavy ion interactions in the TeV energy domain

    International Nuclear Information System (INIS)

    Persson, Stefan.

    1989-01-01

    Heavy-ion interactions at 60 and 200 A GeV have been studied at the CERN SPS. The energy flow in the pseudo-rapidity region >2.4 is studied with two sampling calorimeters in the WA80 experiment. It is concluded that the nuclear geometry plays an important role for energy flow in nucleus-nucleus collisions at these energies. The laser system for the gain control of the sampling calorimeters is described as well. A new emulsion technique for accurate angular measurements in the pseudo-rapidity region >1.3 used in the EMU01 experiment is described. With this technique the pseudo-rapidity distributions of relativistic singly charged particles are studied. The conclusion is that the geometry together with the fluctuations in participating nucleons, break-up of strings and decay of resonances can describe the obtained results. The standard emulsion technique is used to study the target fragmentation in nucleus-nucleus collisions at 200 A GeV. It is found that a first order cascade correction alone is unable to explain the observed emulsion results on target related fragments. (author)

  5. Fifth high-energy heavy-ion study

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base. (GHT)

  6. Magnetic effects in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Ou Li; Li Baoan

    2011-01-01

    The time evolution and space distribution of internal electromagnetic fields in heavy-ion reactions at beam energies between 200 and 2000 MeV/nucleon are studied within an isospin-dependent Boltzmann-Uhling-Uhlenbeck transport model (ibuu11). While the magnetic field can reach about 7x10 16 G, which is significantly higher than the estimated surface magnetic field (∼1x10 15 G) of magnetars, it has almost no effect on nucleon observables because the Lorentz force is normally much weaker than the nuclear force. Very interestingly, however, the magnetic field generated by the projectilelike (targetlike) spectator has a strong focusing and defocusing effect on positive and negative pions at forward (backward) rapidities. Consequently, the differential π - /π + ratio as a function of rapidity is significantly altered by the magnetic field, whereas the total multiplicities of both positive and negative pions remain about the same. At beam energies above about 1 GeV/nucleon, while the integrated ratio of total π - to π + multiplicities is not, the differential π - /π + ratio is sensitive to the density dependence of nuclear symmetry energy E sym (ρ). Our findings suggest that magnetic effects should be carefully considered in future studies of using the differential π - /π + ratio as a probe of the E sym (ρ) at suprasaturation densities.

  7. The present state and perspectives of low-energy heavy ion biology

    International Nuclear Information System (INIS)

    Yuan Chengling; Yu Zengliang

    2004-01-01

    The interaction between low-energy ions and matter has been concerned rarely comparing to that of high-energy ions. It is even more unusual to find studies of the interaction of low-energy ions and complicated organisms. However, the discovery of bioeffects induced by ion beam implantation has opened a new branch in the field of ion beam applications in the life science--Low-energy Heavy Ion Biology. The mutagenic effect of low energy heavy ions was firstly reported in 1986 in rice. Since then, a damage mechanism involved in energy absorption, mass deposition, and charge exchange has been proposed. Accumulating evidence has indicated that these three factors are key determinants in the bioeffects induced by low energy heavy ions, which has opened new opportunities for mutational breeding, gene transferring, cell modification, and cell fusion. In recent years, the ion beam implantation technique has been widely applied in many fields, and increasing research interest in the field has been seen. The authors summarize recent advances in research on the role of low-energy ions in terms of the mechanisms and applications

  8. Modification of high density polyethylene by gold implantation using different ion energies

    Energy Technology Data Exchange (ETDEWEB)

    Nenadović, M.; Potočnik, J. [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia); Mitrić, M. [INS Vinca, Condensed Matter Physics Laboratory, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia); Štrbac, S. [ICTM Institute of Electrochemistry, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Rakočević, Z., E-mail: zlatkora@vinca.rs [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia)

    2013-11-01

    High density polyethylene (HDPE) samples were modified by Au{sup +} ion implantation at a dose of 5 × 10{sup 15} ions cm{sup −2}, using energies of 50, 100, 150 and 200 keV. The existence of implanted gold in the near-surface region of HDPE samples was confirmed by X-ray diffraction analysis. Surface roughness and Power Spectral Density analyses based on Atomic Force Microscopy (AFM) images of the surface topography revealed that the mechanism of HDPE modification during gold ion implantation depended on the energy of gold ions. Histograms obtained from phase AFM images indicated a qualitative change in the chemical composition of the surface during implantation with gold ions with different energies. Depth profiles obtained experimentally from cross-sectional Force Modulation Microscopy images and ones obtained from a theoretical simulation are in agreement for gold ions energies lower than 100 keV. The deviation that was observed for higher energies of the gold ions is explained by carbon precipitation in the near surface region of the HDPE, which prevented the penetration of gold ions further into the depth of the sample. - Highlights: • HDPE was implanted by Au{sup +} ions using energies of 50, 100, 150 and 200 keV. • Surface composition was analyzed from phase AFM images. • FMM depth profiles are in agreement with theoretical ones for energies up to 100 keV. • A deviation is observed for higher gold ion energies.

  9. Modification of high density polyethylene by gold implantation using different ion energies

    International Nuclear Information System (INIS)

    Nenadović, M.; Potočnik, J.; Mitrić, M.; Štrbac, S.; Rakočević, Z.

    2013-01-01

    High density polyethylene (HDPE) samples were modified by Au + ion implantation at a dose of 5 × 10 15 ions cm −2 , using energies of 50, 100, 150 and 200 keV. The existence of implanted gold in the near-surface region of HDPE samples was confirmed by X-ray diffraction analysis. Surface roughness and Power Spectral Density analyses based on Atomic Force Microscopy (AFM) images of the surface topography revealed that the mechanism of HDPE modification during gold ion implantation depended on the energy of gold ions. Histograms obtained from phase AFM images indicated a qualitative change in the chemical composition of the surface during implantation with gold ions with different energies. Depth profiles obtained experimentally from cross-sectional Force Modulation Microscopy images and ones obtained from a theoretical simulation are in agreement for gold ions energies lower than 100 keV. The deviation that was observed for higher energies of the gold ions is explained by carbon precipitation in the near surface region of the HDPE, which prevented the penetration of gold ions further into the depth of the sample. - Highlights: • HDPE was implanted by Au + ions using energies of 50, 100, 150 and 200 keV. • Surface composition was analyzed from phase AFM images. • FMM depth profiles are in agreement with theoretical ones for energies up to 100 keV. • A deviation is observed for higher gold ion energies

  10. Modelling heavy-ion energy deposition in extended media

    International Nuclear Information System (INIS)

    Mishustin, I.; Pshenichnov, I.; Greiner, W.; Mishustin, I.; Pshenichnov, I.

    2010-01-01

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  11. Modelling heavy-ion energy deposition in extended media

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, I.; Pshenichnov, I.; Greiner, W. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, Frankfurt am Main (Germany); Mishustin, I. [Kurchatov Institute, Russian Research Center, Moscow (Russian Federation); Pshenichnov, I. [Institute for Nuclear Research, Russian Academy of Science, Moscow (Russian Federation)

    2010-10-15

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  12. Vacancy supersaturations produced by high-energy ion implantation

    International Nuclear Information System (INIS)

    Venezia, V.C.; Eaglesham, D.J.; Jacobson, D.C.; Gossmann, H.J.

    1998-01-01

    A new technique for detecting the vacancy clusters produced by high-energy ion implantation into silicon is proposed and tested. This technique takes advantage of the fact that metal impurities, such as Au, are gettered near one-half of the projected range (1/2 R p ) of MeV implants. The vacancy clustered region produced by a 2 MeV Si + implant into silicon has been labeled with Au diffused in from the front surface. The trapped Au was detected by Rutherford backscattering spectrometry (RBS) to profile the vacancy clusters. Cross section transmission electron microscopy (XTEM) analysis shows that the Au in the region of vacancy clusters is in the form of precipitates. By annealing MeV implanted samples prior to introduction of the Au, changes in the defect concentration within the vacancy clustered region were monitored as a function of annealing conditions

  13. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  14. Kinetic energy and charge distributions of multiply charged ions produced by heavy ions and by synchrotron radiation

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Cederquist, H.; Liljeby, L.; Short, R.T.; Sellin, I.A.

    1989-01-01

    This paper contrasts two methods of production of multiply charged ions which may have application in future hot-atom chemistry experiments. Interest in extending the study of ion-atom collisions from MeV to keV to eV energies has grown rapidly in the last decade as previously inaccessible astrophysical, fusion, and spectroscopic problems have been addressed. One of these methods involves highly charged secondary beams formed from ions created in dilute gas samples irradiated by fast (MeV), high-charge-state, heavy ions. The measurements show, however, that such ions often have mean recoil energies two orders of magnitude higher than kinetic energies of ions in similar charge states resulting from vacancy cascades of atomic inner shells photoionized by synchrotron x rays. These results may be applicable to development of a cold source of highly charged ions featuring low energy spread and good angular definition. Results from other laboratories (Grandin et al at Ganil, Ullrich et al in Frankfurt, and Watson et al at Texas A ampersand M) will also be discussed

  15. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  16. Mechanism of long-range penetration of low-energy ions in botanic samples

    International Nuclear Information System (INIS)

    Liu Feng; Wang Yugang; Xue Jianming; Wang Sixue; Du Guanghua; Yan Sha; Zhao Weijiang

    2002-01-01

    The authors present experimental evidence to reveal the mechanism of long-range penetration of low-energy ions in botanic samples. In the 100 keV Ar + ion transmission measurement, the result confirmed that low-energy ions could penetrate at least 60 μm thick kidney bean slices with the probability of about 1.0 x 10 -5 . The energy spectrum of 1 MeV He + ions penetrating botanic samples has shown that there is a peak of the count of ions with little energy loss. The probability of the low-energy ions penetrating the botanic sample is almost the same as that of the high-energy ions penetrating the same samples with little energy loss. The results indicate that there are some micro-regions with mass thickness less than the projectile range of low-energy ions in the botanic samples and they result in the long-range penetration of low-energy ions in botanic samples

  17. High-Energy Electron-Ion and Photon-Ion Collisions: Status and Challenges

    Science.gov (United States)

    Kallman, Timothy R.

    2010-01-01

    Non-LTE plasmas are ubiquitous in objects studied in the UV and X-ray energy bands. Collisional and photoionization cross sections for atoms and ions are fundamental to our ability to model such plasmas. Modeling is key in the X-ray band, where detector properties and limited spectral resolution limit the ability to measure model-independent line strengths, or other spectral features. Much of the motivation for studying such collisions and many of the tools, are not new. However, the motivation for such studies and their applications, have been affected by the advent of X-ray spectroscopy with the gratings on Chandra and XMM-Newton. In this talk I will review this motivation and describe the tools currently in use for such studies. I will also describe some current unresolved problems and the likely future needs for such data.

  18. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  19. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  20. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  1. Low-energy radioactive ion beam production of 22Mg

    International Nuclear Information System (INIS)

    Duy, N.N.; Kubono, S.; Yamaguchi, H.; Kahl, D.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Kwon, Y.K.; Khiem, L.H.; Kim, Y.H.; Song, J.S.; Hu, J.; Ayyad, Y.

    2013-01-01

    The 22 Mg nucleus plays an important role in nuclear astrophysics, specially in the 22 Mg(α,p) 25 Al and proton capture 22 Mg(p,γ) 23 Al reactions. It is believed that 22 Mg is a waiting point in the αp-process of nucleosynthesis in novae. We proposed a direct measurement of the 22 Mg+α resonance reaction in inverse kinematics using a radioactive ion (RI) beam. A 22 Mg beam of 3.73 MeV/u was produced at CRIB (Center for Nuclear Study (CNS) low-energy RI Beam) facility of the University of Tokyo located at RIKEN (Japan) in 2011. In this paper we present the results about the production of the 22 Mg beam used for the direct measurement of the scattering reaction 22 Mg(α,α) 22 Mg, and the stellar reaction 22 Mg(α,p) 25 Al in the energy region concerning an astrophysical temperature of T 9 =1–3 GK

  2. Central collisions in intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1979-01-01

    The critical collisions in intermediate energy heavy-ion reactions are examined from both a microscopic and macroscopic viewpoint. In the microscopic description the proper tool is the extended TDHF approximation involving both the mean field and the particle collisions. To understand the underlying physics, the effect of the mean field and the effect of particle collisions are studied separately. It is found that th sudden increase in the density of the overlapping region can cause the volcano effect, leading to the complete disintegration of one of the nuclei. The self-consistent mean field also gives rise to the bunching instability when the two Fermi spheres of the colliding nucleons separate. The collision between nucleons, on the other hand, leads to irreversible dissipation, thermalization, and the possibility of a hydrodynamical description of the dynamics. Next is studied the dynamics of central collisions using the hydrodynamical description for many combinations of targets and projectiles at different energies. The formation of shock waves, sidesplash, and the complete disintegration of the whole nucleus are examined. Nuclear viscosity is found to affect the angular distribution of the reaction products and also the maximum compression ratio achieved during the collision. 28 references

  3. Ion channels in the central regulation of energy and glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Jong-Woo eSohn

    2013-05-01

    Full Text Available Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles for specific ion channels in the central pathways regulating food intake, energy expenditure, and glucose balance.

  4. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  5. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    Science.gov (United States)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  6. Radiation therapy using high-energy heavy-ion

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    1995-01-01

    The clinical trial of the heavy-ion radiotherapy was started at June 1994 after pre-clinical experiments using 290 MeV/u carbon beam. In this paper, an irradiation system for the heavy-ion radiotherapy installed at HIMAC (Heavy Ion Medical Accelerator in Chiba) and the physical characteristics of the therapeutic beam were discussed. (author)

  7. Corrosion behaviour of low energy, high temperature nitrogen ion ...

    Indian Academy of Sciences (India)

    primary ions were used and negative secondary ions were detected. A difference in the distribution of the CrN and the alleged N signal was observed and attributed to CrN acting as a diffusion barrier for nitrogen diffusion. It may be noted here that nitrogen does not form stable elemental negative ions [2] and is thus.

  8. CR-39 nuclear track detector application for the diagnostics of low energy high power ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Opekounov, M S; Pechenkin, S A; Remnev, G E [Nuclear Physics Institute, Tomsk (Russian Federation); Ivonin, I V [Siberian Physical-Technical Institute, Tomsk (Russian Federation)

    1997-12-31

    The results of investigation of the spectral composition of ion beams generated by the magneto-insulated ion diode of the MUK-M and TEMP accelerators. The energy and mass characteristics of the accelerated ion beam were determined by a Thomson spectrometer with a CR-39 plate detector (MOM - Atomki Nuclear Track Detector, Type MA-ND/p). The accelerated ion energy was from 40 to 240 keV. The ion current density range was from 1 to 10 A/cm{sup 2}. The mass composition contained hydrogen, nitrogen, carbon and aluminum ions. The individual track analysis showed the track form, depth and diameter in dependence on the ion mass and energy. (author). 2 figs., 5 refs.

  9. Improving the signal-to-noise ratio in mass and ion kinetic energy spectrometers

    International Nuclear Information System (INIS)

    Brenton, A.G.; Beynon, J.H.; Morgan, R.P.

    1979-01-01

    The signal-to-noise ratio in mass and ion kinetic energy spectrometers is limited by noise generated from the presence of scattered ions and neutrals. Methods of eliminating this are illustrated with reference to the ZAB-2F instrument manufactured by VG-Micromass Ltd. It is estimated that after the modifications the instrument is capable, on a routine basis, of measuring peaks corresponding to the arrival of ions at a rate of the order of 1 ion s -1 . (Auth.)

  10. Energy spectra of gold and silver ions jointly expanding in multielement laser plasma

    International Nuclear Information System (INIS)

    Bedilov, M.R.; Kuramatov, D.; Tsoj, T.G.; Kholbaev, A.; Khaitbaev, K.

    1986-01-01

    The results of the investigations on energy distribution of Au and Ag ions jointly expanding in multielement paser plasma are presented. It is denonstrated, that on the stages of formation and expanding of multielement plasma multucharged ions considerable contribution is made by collision processes between electrons and ions and between ions of light and heavy elements. The results are discussed on the basis of existing theoretical models

  11. Ion channels in the central regulation of energy and glucose homeostasis

    OpenAIRE

    Sohn, Jong-Woo

    2013-01-01

    Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles fo...

  12. Flow direction variations of low energy ions as measured by the ion electron sensor (IES) flying on board of Rosetta

    Science.gov (United States)

    Szegö, Karoly; Nemeth, Zoltan; Foldy, Lajos; Burch, James L.; Goldstein, Raymond; Mandt, Kathleen; Mokashi, Prachet; Broiles, Tom

    2015-04-01

    The Ion Electron Sensor (IES) simultaneously measures ions and electrons with two separate electrostatic plasma analyzers in the energy range of 4 eV- 22 keV for ions. The field of view is 90ox360o, with angular resolution 5ox45o for ions, with a sector containing the solar wind being further segmented to 5o × 5o. IES has operated continuously since early 2014. In the ion data a low energy (energy ions. Here we analyze the arrival direction of this low energy component. The origin of these low energy ions is certainly the ionized component of the neutral gas emitted due to solar activity from comet 67P/Churiumov-Gerasimenko. The low energy component in general shows a 6h periodicity due to cometary rotation. The data show, however, that the arrival direction of the low energy ions is smeared both in azimuth and elevation, due possibly to the diverse mechanisms affecting these ions. One of these effects is the spacecraft potential (~-10V), which accelerates the ions towards the spacecraft omnidirectionally. To characterize the flow direction in azimuth-elevation, we have integrated over the lowest 8 energy channels using weighted energy: sum(counts * energy)/sum(counts); and considered only cases when the counts are above 30. When we apply higher cut for counts, the flow direction became more definite. For this analysis we use data files where the two neighbouring energy values and elevation values are collapsed; and the azimuthal resolution is 45o, that is the solar wind azimuthal segmentation is also collapsed. Here we use day 2014.09.11. as illustration. On that day a solar wind shock reached the spacecraft at about ~10 UT. After the shock transition the energy of the solar wind became higher, and after ~12 UT the flow direction of the solar wind fluctuated, sometimes by 35o. On this day Rosetta flew at about 29.3-29.6 km from the nucleus. In the azimuth-elevation plots summed over "weighted energy" (as defined above) we were able to identify two flow directions

  13. Coherent production of high-energy photons and π mesons in heavy ion reactions

    International Nuclear Information System (INIS)

    Batkin, I.S.; Kopytin, I.V.

    1986-01-01

    A microscopic model of high-energy photon and pion production processes in collision of multicharged ions with kinetic energy of relative motion from 40 to 100 MeV per nucleon was constructed not using fitting parameters

  14. Variations of Low-energy Ion Distributions Measured in the Heliosheath

    International Nuclear Information System (INIS)

    Decker, R. B.; Roelof, E. C.; Hill, M. E.; Krimigis, S. M.

    2010-01-01

    This report is an update of low-energy ion intensities and angular distributions measured recently by the Low Energy Charged Particle instruments on the Voyager 1 and 2 spacecraft in the inner heliosheath.

  15. The chemistry of ultra-low concentrations

    International Nuclear Information System (INIS)

    Vertes, Attila; Kiss, Istvan

    1987-01-01

    Methods for the separation and enrichment of radionuclides in the ultra-low concentration range (coprecipitation, adsorption of radioactive substances on crystals) are disscussed in this chapter of the textbook. The properties and behaviour of ultra-dilute solutions, radiocolloids and the electrochemistry of ultra-dilute solution are also overviewed

  16. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1993-01-01

    The US Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF programs at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy

  17. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1994-01-01

    The U.S. Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF program at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy. (author)

  18. The Marshall Space Flight Center Low-Energy Ion Facility: a preliminary report

    International Nuclear Information System (INIS)

    Biddle, A.P.; Reynolds, J.W.; Chisholm, W.L. Jr.; Hunt, R.D.

    1983-10-01

    The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. The current status of this evolving resource is described. It also provides necessary information to allow users to utilize it most efficiently

  19. An experimental study of the ion energy balance of a magnetized plasma

    International Nuclear Information System (INIS)

    Pots, B.F.M.; Hooff, P. van; Schram, D.C.; Sijde, B. van der

    1981-01-01

    A report is given on an experimental study of the ion energy balance of the magnetized and current-driven plasma f a hollow cathode discharge. The balance appears to be classical. At the axis of the plasma column the electron-ion Coulomb interaction is in equilibrium with the ion-neutral interaction. No significant influence on the energy balance by the spontaneously appearing plasma turbulence is formed. (author)

  20. Relaxation of ion energy spectrum just after turbulent heating pulse in TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1982-01-01

    The temporal evolution and spatial profile of the ion energy spectrum just after the application of a toroidal current pulse for turbulent heating are investigated experimentally in the TRIAM-1 tokamak and also numerically using the Fokker-Planck equation. The two-component ion energy spectrum formed by turbulent heating relaxes to a single one within tausub(i) (the ion collision time). (author)

  1. New method of ionization energy calculation for two-electron ions

    International Nuclear Information System (INIS)

    Ershov, D.K.

    1997-01-01

    A new method for calculation of the ionization energy of two-electron ions is proposed. The method is based on the calculation of the energy of second electron interaction with the field of an one-electron ion the potential of which is well known

  2. Analysis of retarding field energy analyzer transmission by simulation of ion trajectories

    Science.gov (United States)

    van de Ven, T. H. M.; de Meijere, C. A.; van der Horst, R. M.; van Kampen, M.; Banine, V. Y.; Beckers, J.

    2018-04-01

    Retarding field energy analyzers (RFEAs) are used routinely for the measurement of ion energy distribution functions. By contrast, their ability to measure ion flux densities has been considered unreliable because of lack of knowledge about the effective transmission of the RFEA grids. In this work, we simulate the ion trajectories through a three-gridded RFEA using the simulation software SIMION. Using idealized test cases, it is shown that at high ion energy (i.e., >100 eV) the transmission is equal to the optical transmission rather than the product of the individual grid transparencies. Below 20 eV, ion trajectories are strongly influenced by the electric fields in between the grids. In this region, grid alignment and ion focusing effects contribute to fluctuations in transmission with ion energy. Subsequently the model has been used to simulate the transmission and energy resolution of an experimental RFEA probe. Grid misalignments reduce the transmission fluctuations at low energy. The model predicts the minimum energy resolution, which has been confirmed experimentally by irradiating the probe with a beam of ions with a small energy bandwidth.

  3. Effects of low-energy ion beam bombardment on metal oxides

    International Nuclear Information System (INIS)

    Sullivan, J.L.; Saied, S.O.; Choudhury, T.

    1993-01-01

    This paper describes a study of Ar ion bombardment damage in metal oxides. In the energy range 1 to 5 keV, preferential oxygen removal and reduction of the oxides was found to depend on ion current density, but to be independent of beam energy. (author)

  4. Brookhaven four-stage accel-decel production of low-energy highly stripped heavy ions

    International Nuclear Information System (INIS)

    Barrette, J.; Thieberger, P.

    1981-01-01

    The dual MP tandem facility at Brookhaven has been used in a four-stage accel-decel mode to produce highly stripped S ion beams (Q = 10-16 + ). Fully stripped S ions were obtained at energies down to 8 MeV. The low energy limit is presently due to the inclined field configuration of the last acceleration tube

  5. Operation of low-energy ion implanters for Si, N, C ion implantation into silicon and glassy carbon

    International Nuclear Information System (INIS)

    Carder, D.A.; Markwitz, A.

    2009-01-01

    This report details the operation of the low-energy ion implanters at GNS Science for C, N and Si implantations. Two implanters are presented, from a description of the components through to instructions for operation. Historically the implanters have been identified with the labels 'industrial' and 'experimental'. However, the machines only differ significantly in the species of ions available for implantation and sample temperature during implantation. Both machines have been custom designed for research purposes, with a wide range of ion species available for ion implantation and the ability to implant two ions into the same sample at the same time from two different ion sources. A fast sample transfer capability and homogenous scanning profiles are featured in both cases. Samples up to 13 mm 2 can be implanted, with the ability to implant at temperatures down to liquid nitrogen temperatures. The implanters have been used to implant 28 Si + , 14 N + and 12 C + into silicon and glassy carbon substrates. Rutherford backscattering spectroscopy has been used to analyse the implanted material. From the data a Si 30 C 61 N 9 layer was measured extending from the surface to a depth of about 77 ± 2 nm for (100) silicon implanted with 12 C + and 14 N + at multiple energies. Silicon and nitrogen ion implantation into glassy carbon produced a Si (40.5 %), C (38 %), N (19.5 %) and O (2%) layer centred around a depth of 50 ± 2 nm from the surface. (author). 8 refs., 20 figs

  6. Stopping power for heavy ions in low energy region

    International Nuclear Information System (INIS)

    Kitagawa, Mitsuo

    1983-01-01

    Review is made for the study on the power for stopping heavy ions. The studies on the power for stopping heavy ions passing through materials have been developed in the last twenty years due to the accuracy improvement in the data analysis of the power for stopping light ions, the requirement of data establishment on the power for stopping heavy ions from fusion research and the development of the experimental studies by heavy-ion accelerators. The relation between the analysis of the power for stopping heavy ions and the power for stopping light ions is described from the standpoint that the results on the power for stopping light ions serve as the guide for the study on the power for stopping heavy ions. Both at present and in future. The analysis of stopping power data with the accuracy from +-10 to 20 % is possible from the theoretical analysis of effective electric charge and its systematic table of the numerical data. The outline of the scaling rule on effective electric charge is discussed. The deviation of the experimental data from the scaling rule is discussed by comparing with the measured values of effective electric charge ratio. Various analyses of the power for stopping heavy ions are summarized. (Asami, T.)

  7. Enhancements to the Low-Energy Ion Facility at SUNY Geneseo

    Science.gov (United States)

    Barfield, Zachariah; Kostick, Steven; Nagasing, Ethan; Fletcher, Kurt; Padalino, Stephen

    2017-10-01

    The Low Energy Ion Facility at SUNY Geneseo is used for detector development and characterization for inertial confinement fusion diagnostics. The system has been upgraded to improve the ion beam quality by reducing contaminant ions. In the new configuration, ions produced by the Peabody Scientific duoplasmatron ion source are accelerated through a potential, focused into a new NEC analyzing magnet and directed to an angle of 30°. A new einzel lens on the output of the magnet chamber focuses the beam into a scattering chamber with a water-cooled target mount and rotatable detector mount plates. The analyzing magnet has been calibrated for deuteron, 4He+, and 4He2+ ion beams at a range of energies, and no significant hysteresis has been observed. The system can accelerate deuterons to energies up to 25 keV to initiate d-d fusion using a deuterated polymer target. Charged particle spectra with protons, tritons, and 3He ions from d-d fusion have been measured at scattering angles ranging from 55° to 135°. A time-of-flight beamline has been designed to measure the energies of ions elastically scattered at 135°. CEM detectors initiate start and stop signals from secondary electrons produced when low energy ions pass through very thin carbon foils. Funded in part by the U.S. Department of Energy through the Laboratory for Laser Energetics.

  8. Dependence of energy per molecule on sputtering yields with reactive gas cluster ions

    International Nuclear Information System (INIS)

    Toyoda, Noriaki; Yamada, Isao

    2010-01-01

    Gas cluster ions show dense energy deposition on a target surface, which result in the enhancement of chemical reactions. In reactive sputtering with gas cluster ions, the energy per atom or molecule plays an important role. In this study, the average cluster size (N, the number of atoms or molecules in a cluster ion) was controlled; thereby the dependences of the energy per molecule on the sputtering yields of carbon by CO 2 cluster ions and that of Si by SF 6 /Ar mixed gas cluster ions were investigated. Large CO 2 cluster ions with energy per molecule of 1 eV showed high reactive sputtering yield of an amorphous carbon film. However, these ions did not cause the formation of large craters on a graphite surface. It is possible to achieve very low damage etching by controlling the energy per molecule of reactive cluster ions. Further, in the case of SF 6 /Ar mixed cluster ions, it was found that reactive sputtering was enhanced when a small amount of SF 6 gas (∼10%) was mixed with Ar. The reactive sputtering yield of Si by one SF 6 molecule linearly increased with the energy per molecule.

  9. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    Science.gov (United States)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  10. High energy ion hit technique to local area using microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ryuichi; Kamiya, Tomihiro; Suda, Tamotsu; Sakai, Takuro; Hirao, Toshio; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Single energetic ion hit technique has been developed as an application of ion microbeam technique, in order to study the effect of local damage or injury to materials and living organisms. The overall performance is basically defined by those of separate techniques: microbeam formation, microbeam positioning, single ion detection, detection signal processing, hit timing control, and hit verification. Recent progress on the developments of these techniques at JAERI-TIARA facility are reviewed. (author)

  11. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    Science.gov (United States)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  12. Remedial pulse programme for the production of monoenergetic ion beams of low energy

    International Nuclear Information System (INIS)

    Olubuyide, O.A.

    1975-01-01

    The technique involves an extension of sequential pulse techniques. An ion swarm is produced in a conventional mass-spectrometer ion source by a short electron beam pulse. Immediately, this swarm is accelerated impulsively by a short high voltage pulse on the repeller. The principal disadvantage of impulsive acceleration is that the final energy distribution of the ion swarm is broad especially at the lowest energies. At some instant during the passage of the ion swarm across the chamber second pulse is applied to the repeller--a ''remedial'' pulse which will accelerate the ions throughout the remainder of their passage and whose amplitude will be time-dependent. Slower ions must travel a greater distance in this ''remedial'' field than faster ions and will experience a proportionately greater increase in velocity from it. In this way, the remedial pulse can cause all the ions to acquire the same velocity at the exit slit. A limited experimental investigation has been made to examine the application of the proposed remedial pulse technique to existing ion sources. Application of the remedial pulse to impulsively-accelerated ion swarms reduced the energy distribution in the manner predicted by the theory but the quantitative reduction measured experimentally--a factor of approximately 2--was substantially less than the theoretical prediction of a factor of approximately 4. The limitations were characterized and a means of overcoming them was suggested in a new ion source of improved design. (Diss. Abstr. Int., B)

  13. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1986-05-01

    In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)

  14. Time resolved energy spectrum of the axial ion beam generated in plasma focus discharges

    International Nuclear Information System (INIS)

    Bostick, W.H.; Kilic, H.; Nardi, V.; Powell, C.W.

    1993-01-01

    The energy spectrum of the deuteron beam along the electrode axis (0 (degree) ) in a plasma focus discharge has been determined with a time of flight (TOF) method and with a differential filter method in the ion energy interval E = 0.3-9 MeV. The ion TOF method is applied to single-ion pulse events with an ion emission time t(E) that is only weakly dependent on the ion energy E for E > 0.3 MeV. The correlation of the ion beam intensity with the filling pressure, the neutron yield and the hard X-ray intensity is also reported. (author). 11 refs, 10 figs

  15. Experimental apparatus to investigate interactions of low energy ions with solid surfaces, 1

    International Nuclear Information System (INIS)

    Tsukakoshi, Osamu; Narusawa, Tadashi; Mizuno, Masayasu; Sone, Kazuho; Ohtsuka, Hidewo.

    1975-12-01

    Experimental apparatus to study the surface phenomena has been designed, which is intended to solve the vacuum wall problems in future thermonuclear fusion reactors and large experimental tokamak devices. An ion source and the beam transport optics are provided for bombarding solid target surface with an ion beam of energy from 0.1 to 6 keV. Measuring instruments include an ion energy analyser, a quadrupole mass spectrometer, an Auger electron spectrometer, an electro-micro-balance, a neutral particle energy spectrometer and its calibration system. Pumping system consists of oil-free ultrahigh vacuum pumps. Various kinds of experiments will be carried out by using the apparatus: 1) sputtering by low energy ion bombardment, 2) re-emission of the incident particles during and after ion bombardment, 3) release of adsorbed and occluded gases in the solids by ion bombardment, and 4) backscattering of fast ions. The combinations of measuring instruments for each experiment and their relative positions in the vacuum chamber are described through detailed drawings. The fundamental aspect in design of the ion beam transport optics for a low energy ion beam which can no longer neglect the space charge effect is also discussed. (auth.)

  16. Descriptors for ions and ion-pairs for use in linear free energy relationships.

    Science.gov (United States)

    Abraham, Michael H; Acree, William E

    2016-01-22

    The determination of Abraham descriptors for single ions is reviewed, and equations are given for the partition of single ions from water to a number of solvents. These ions include permanent anions and cations and ionic species such as carboxylic acid anions, phenoxide anions and protonated base cations. Descriptors for a large number of ions and ionic species are listed, and equations for the prediction of Abraham descriptors for ionic species are given. The application of descriptors for ions and ionic species to physicochemical processes is given; these are to water-solvent partitions, HPLC retention data, immobilised artificial membranes, the Finkelstein reaction and diffusion in water. Applications to biological processes include brain permeation, microsomal degradation of drugs, skin permeation and human intestinal absorption. The review concludes with a section on the determination of descriptors for ion-pairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Science.gov (United States)

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  18. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-06-01

    ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using the results based on Monte Carlo simulations. The global energy confinement time including energetic ion effect can be expressed in terms of ICRF heating power, plasma density, and magnetic field strength in heliotrons. Our results in the CHS plasma show the systematic decrement of the global energy confinement time due to the energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. Also we apply our model to the ICRF minority heating in the LHD plasma in two cases of typical magnetic configurations. The clear increment of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while the decrement is observed in the 'standard' configuration. (author)

  19. Dynamic processes in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Prendergast, E. P.

    1999-03-01

    This thesis describes the study of the reaction dynamics in heavy-ion collisions of small nuclear systems at intermediate energies. For this, experiments were performed of 24Mg+27A1 at 45 and 95 AMeV. The experiments described in this thesis were performed at the GANIL accelerator facility in Caeri (France) using the Huygens detectors in conjunction with the ‘MUR’. The Huygens detectors consist of the CsI(Tl)-Wall (CIW) covering the backward hemisphere and, located at mid-rapidity, the central trigger detector (CTD), a gas chamber with microstrip read-out backed by 48 plastic scintillators. The forward region is covered by 16 of the plastic scintillators of the CTD and by the MUR, a time-of-flight wall consisting of 96 plastic scintillator sheets. In earlier experiments only fragments with atomic number, Z, greater then two could be identifled in the CTD. Therefore, an investigation was done into the properties of different drift gases. The use of freon (CF4) in the drift chamber, combined with an increase of the gas pressure to 150 mbar, makes it possible to identify all particles with Z ≥ 2. Under these conditions particles with Z = 1 can only be identifled to approximately 25 AMeV. The Isospin Quantum Molecular Dynamics (IQMD) model has been used, to interpret the measured data. This model gives a microscopical description of heavy-ion collisions and simulates collisions on an event by event basis. In IQMD all protons and neutrons are represented as individual Gaussian wave packets. After initialisation the path of each nucleon is calculated for 200 fm/c, after which the simulation is stopped. At this time, nucleons which are close in space are clustered into fragments. The events generated by IQMD can then be processed by a GEANT detector simulation. This calculation takes into account the effects of the detector on the incoming particles. By using the GEANT simulation it is possible to give a direct comparison between the results of IQMD and the

  20. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  1. Comparison of biomolecule desorption yields for low and high energy primary ions

    International Nuclear Information System (INIS)

    Kamensky, I.; Hakansson, P.; Sundqvist, B.; McNeal, C.J.; MacFarlane, R.

    1982-01-01

    Ion induced desorption yields of molecular ions from samples of cesium iodide, glycylglycine, ergosterol, bleomycin and a trinucleoside diphosphate have been studied using primary beams of 54 MeV 63 Cu 9+ and 3 keV 133 Cs + . Mass analysis was performed with a time-of-flight technique. Each sample was studied with the same spectrometer for both low and high energy primary ions and without opening of the vacuum chamber in between the measurements. The results show that fast heavy ions give larger yields for all samples studied and that the yield ratios for high to low energy desorption increase with the mass of the sample molecule. (orig.)

  2. Low energy ion beam systems for surface analytical and structural studies

    International Nuclear Information System (INIS)

    Nelson, G.C.

    1980-01-01

    This paper reviews the use of low energy ion beam systems for surface analytical and structural studies. Areas where analytical methods which utilize ion beams can provide a unique insight into materials problems are discussed. The design criteria of ion beam systems for performing materials studies are described and the systems now being used by a number of laboratories are reviewed. Finally, several specific problems are described where the solution was provided at least in part by information provided by low energy ion analysis techniques

  3. Mass and energy deposition effects of implanted ions on solid sodium formate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiangqin E-mail: clshao@mail.ipp.ac.cn; Shao Chunlin; Yao Jianming; Yu Zengliang

    2000-07-01

    Solid sodium formate was implanted by low energy N{sup +}, H{sup +}, and Ar{sup +} ions. Measured with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FT-IR), it was observed that new -CH{sub 2}-, -CH{sub 3}- groups and COO{sup -} radical ion were produced in the implanted sodium formate. Analyzing with the highly sensitive ninhydrin reaction, it was found that a new -NH{sub 2} functional group was formed upon N{sup +} ion implantation, and its yield increased along with implantation dose but decreased with the ion's energy.

  4. Cascade-probabilistic function with taking unto account energy losses of ions. Chapter 3

    International Nuclear Information System (INIS)

    1998-01-01

    Mathematical simulation of cascade-probabilistic functions (CPF) for ions with taking into account of energy losses is carried out. Recommendations for CPF calculation on computer are given. Influence of both the interaction number on CPF domain and the interaction depth on CPF domain are determined. Contribution of energy losses into simplest CPF is estimated. Algorithm of radiation defects concentration calculation under ion irradiation with taking into consideration energy losses is cited

  5. A Hierarchy of Transport Approximations for High Energy Heavy (HZE) Ions

    Science.gov (United States)

    Wilson, John W.; Lamkin, Stanley L.; Hamidullah, Farhat; Ganapol, Barry D.; Townsend, Lawrence W.

    1989-01-01

    The transport of high energy heavy (HZE) ions through bulk materials is studied neglecting energy dependence of the nuclear cross sections. A three term perturbation expansion appears to be adequate for most practical applications for which penetration depths are less than 30 g per sq cm of material. The differential energy flux is found for monoenergetic beams and for realistic ion beam spectral distributions. An approximate formalism is given to estimate higher-order terms.

  6. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  7. Cluster ion-surface interactions: from meV to MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Kai; Meinander, Kristoffer; Jaervi, Tommi T.; Peltola, Jarkko; Samela, Juha [Accelerator Laboratory, University of Helsinki (Finland)

    2008-07-01

    The nature of cluster ion-surface interactions changes dramatically with the kinetic energy of the incoming cluster species. In this talk I review some of our recent work on the nature of cluster-surface interactions spanning an energy range from a few MeV/cluster to about 1 MeV/cluster and cluster sizes in the range of 10 - 1000 atoms/cluster. In the energy range of a few MeV/cluster ion, the kinetic energy of the incoming ion is insignificant compared to the energy gained when the surface potential energy at the cluster-surface interface is released and partly translated into kinetic energy. Even in this energy regime I show that surprisingly drastic effects can occur. When the energy of the incoming cluster is raised to a few eV/atom, the kinetic energy of the incoming cluster starts to affect the deposition. It will cause the cluster to entirely reform on impact. When the energy is raised to the range of keV's/cluster, the clusters start to penetrate the sample, fairly similar to conventional ion implantation. However, in dense targets the cluster ions may stick close to each other long enough to cause a significant enhancement of the heat spike in the material. Finally, I show that at kinetic energies around 1 MeV/cluster the cluster enhancement of the heat spike may lead to dramatic surface effects.

  8. Probing thin over layers with variable energy/cluster ion beams

    International Nuclear Information System (INIS)

    Spool, A.; White, R.

    2006-01-01

    A series of carbon-coated magnetic recording disks proved ideal for exploring sampling depth and ion formation trends as a function of variations in energy and cluster size (Au x ) of the primary ion beam, and variations in over coat thickness and type. Ion yield from the underlying metal layer increased with increasing energy and decreasing cluster size of the primary ions. The yields varied nearly linearly with over layer thickness. In contrast, M x Cs y depth profiles were unaffected by changes in the primary ion. The samples were fortuitously dosed with dinonyl phthalate, allowing a study similar to prior GSIMS work [I.S. Gilmore, M.P. Seah, J.E. Johnstone, in: A. Benninghoven, P. Bertrand, H.-N. Migeon, H.W. Werner (Eds.), Proceedings of the 12th International Conference on SIMS, Elsevier, Brussels, 2000, p. 801]. Ions prominent in the EI mass spectrum, including even electron ions, were more consistently enhanced at lower energies and higher cluster sizes than the primary (M + H) + ion. The total secondary ion count was inversely proportional to the film thickness. Secondary electrons, largely originating in the buried metal layer, may be inducing organic ion formation [A.M. Spool, Surf. Interface Anal. 36 (2004) 264

  9. Energy loss and straggling of MeV ions through biological samples

    International Nuclear Information System (INIS)

    Ma Lei; Wang Yugang; Xue Jianming; Chen Qizhong; Zhang Weiming; Zhang Yanwen

    2007-01-01

    Energy loss and energy straggling of energetic ions through natural dehydrated biological samples were investigated using transmission technique. Biological samples (onion membrane, egg coat, and tomato coat) with different mass thickness were studied, together with Mylar for comparison. The energy loss and energy straggling of MeV H and He ions after penetrating the biological and Mylar samples were measured. The experimental results show that the average energy losses of MeV ions through the biological samples are consistent with SRIM predictions; however, large deviation in energy straggling is observed between the measured results and the SRIM predictions. Taking into account inhomogeneity in mass density and structure of the biological sample, an energy straggling formula is suggested, and the experimental energy straggling values are well predicted by the proposed formula

  10. International Atomic Energy Agency intercomparison of ion beam analysis software

    Energy Technology Data Exchange (ETDEWEB)

    Barradas, N.P. [Instituto Tecnologico e Nuclear, Estrada Nacional No. 10, Apartado 21, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Avenida do Professor Gama Pinto 2, 1649-003 Lisboa (Portugal)], E-mail: nunoni@itn.pt; Arstila, K. [K.U. Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Battistig, G. [MFA Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest (Hungary); Bianconi, M. [CNR-IMM-Sezione di Bologna, Via P. Gobetti, 101, I-40129 Bologna (Italy); Dytlewski, N. [International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria); Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Lulli, G. [CNR-IMM-Sezione di Bologna, Via P. Gobetti, 101, I-40129 Bologna (Italy); Mayer, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Rauhala, E. [Accelerator Laboratory, Department of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Thompson, M. [Department of MS and E/Bard Hall 328, Cornell University, Ithaca, NY 14853 (United States)

    2007-09-15

    Ion beam analysis (IBA) includes a group of techniques for the determination of elemental concentration depth profiles of thin film materials. Often the final results rely on simulations, fits and calculations, made by dedicated codes written for specific techniques. Here we evaluate numerical codes dedicated to the analysis of Rutherford backscattering spectrometry, non-Rutherford elastic backscattering spectrometry, elastic recoil detection analysis and non-resonant nuclear reaction analysis data. Several software packages have been presented and made available to the community. New codes regularly appear, and old codes continue to be used and occasionally updated and expanded. However, those codes have to date not been validated, or even compared to each other. Consequently, IBA practitioners use codes whose validity, correctness and accuracy have never been validated beyond the authors' efforts. In this work, we present the results of an IBA software intercomparison exercise, where seven different packages participated. These were DEPTH, GISA, DataFurnace (NDF), RBX, RUMP, SIMNRA (all analytical codes) and MCERD (a Monte Carlo code). In a first step, a series of simulations were defined, testing different capabilities of the codes, for fixed conditions. In a second step, a set of real experimental data were analysed. The main conclusion is that the codes perform well within the limits of their design, and that the largest differences in the results obtained are due to differences in the fundamental databases used (stopping power and scattering cross section). In particular, spectra can be calculated including Rutherford cross sections with screening, energy resolution convolutions including energy straggling, and pileup effects, with agreement between the codes available at the 0.1% level. This same agreement is also available for the non-RBS techniques. This agreement is not limited to calculation of spectra from particular structures with predetermined

  11. Effect of energy selection on quantitative analysis in secondary ion microanalysis

    International Nuclear Information System (INIS)

    Steele, I.M.; Solberg, T.N.; Smith, J.V.; Clayton, R.N.; Hutcheon, I.D.

    1977-01-01

    Systematic change of voltage on the components of the secondary ion (SI) extraction system of our AEI-IM20 ion microprobe produced major changes of relative intensities of secondary ions passing through the mass spectrometer. The repeller, which bends the SI beam through about 60 0 , has the greatest effect, and can be used to plot the energy distribution. The extractor and the deflecting and focusing components have smaller but significant effects. Because low-energy secondary ions have a near-symmetrical distribution, whereas high-energy ones have an assymetric distribution favoring high energies, tuning of the acceptance band to higher energy reduces interference from low-energy ions, which tend to be unwanted molecular ions, at the expense of reduced transmission. Tuning to lower energy increases interference but gives higher transmission. The former condition is desirable for instruments restricted to low mass resolution, whereas both conditions are valuable for instruments adjustable for both high and low mass resolution. Other important factors are (a) sensitivity to surface irregularities which perturb SI energy collection, and (b) change in derived 'temperatures' from thermodynamic sputtering models merely from tuning the energy acceptance band. Careful attention to the above factors yielded reproducible SI ratios for the binary series of plagioclase feldspars. (Auth.)

  12. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  13. Ion beam studies. Part 1. The retardation of ion beams to very low energies in an implantation accelerator

    International Nuclear Information System (INIS)

    Freeman, J.H.; Temple, W.; Beanland, D.; Gard, G.A.

    1976-02-01

    The design and operation of a compact electrostatic lens for the retardation and focussing of high intensity beams of heavy ions down to energies in the range 10 to 1,000 eV is described. The use of such beams for low-energy ion implantation and for the production of uniform ion-deposited layers is outlined. The practical behaviour of the lens is shown to be in agreement with computer calculations and the theoretical model is used to delineate and explain the boundary conditions under which the focussing behaviour becomes anomalous. The calculated and measured effects of space-charge repulsion on the quality of focussing are compared and it is demonstrated that a simple retardation lens design can be effectively employed at high flux. (author)

  14. Effect of gas filling pressure and operation energy on ion and neutron emission in a medium energy plasma focus device

    Science.gov (United States)

    Niranjan, Ram; Rout, R. K.; Srivastava, Rohit; Kaushik, T. C.

    2018-03-01

    The effects of gas filling pressure and operation energy on deuterium ions and neutrons have been studied in a medium energy plasma focus device, MEPF-12. The deuterium gas filling pressure was varied from 1 to 10 mbar at an operation energy of 9.7 kJ. Also, the operation energy was varied from 3.9 to 9.7 kJ at a deuterium gas filling pressure of 4 mbar. Time resolved emission of deuterium ions was measured using a Faraday cup. Simultaneously, time integrated and time resolved emissions of neutrons were measured using a silver activation detector and plastic scintillator detector, respectively. Various characteristics (fluence, peak density, and most probable energy) of deuterium ions were estimated using the Faraday cup signal. The fluence was found to be nearly independent of the gas filling pressure and operation energy, but the peak density and most probable energy of deuterium ions were found to be varying. The neutron yield was observed to be varying with the gas filling pressure and operation energy. The effect of ions on neutrons emission was observed at each operation condition.

  15. Modified Thomson spectrometer design for high energy, multi-species ion sources

    International Nuclear Information System (INIS)

    Gwynne, D.; Kar, S.; Doria, D.; Ahmed, H.; Hanton, F.; Cerchez, M.; Swantusch, M.; Willi, O.; Fernandez, J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Green, J. S.; Neely, D.; Najmudin, Z.; Streeter, M.; Ruiz, J. A.; Schiavi, A.; Zepf, M.; Borghesi, M.

    2014-01-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection

  16. Evaluation of laser-driven ion energies for fusion fast-ignition research

    Science.gov (United States)

    Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.

    2017-10-01

    We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.

  17. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  18. The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

    International Nuclear Information System (INIS)

    Zhao, H.; University of Colorado, Boulder, CO; Li, X.; University of Colorado, Boulder, CO; Baker, D. N.

    2015-01-01

    Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute more significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O + . This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.

  19. The cascade probabilistic functions with taking into account energy losses for ions. Chapter 3

    International Nuclear Information System (INIS)

    2003-01-01

    In the Chapter 3 the cascade probabilistic functions mathematical simulation with taking into account energy losses for ions are considered. The calculation of the CPF on the computer is carried out. The influence of both the interaction number and the penetration depth on the CPF determination field for ions are revealed. The estimation of energy losses contribution in the simplest CPF is made. Calculation algorithm for radiation defects concentration at ion irradiation with use of the CPF with taking into account of energy losses is given

  20. Computer-controlled system for plasma ion energy auto-analyzer

    International Nuclear Information System (INIS)

    Wu Xianqiu; Chen Junfang; Jiang Zhenmei; Zhong Qinghua; Xiong Yuying; Wu Kaihua

    2003-01-01

    A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by LabVIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provide important parameters of plasma process techniques based on semiconductor devices and microelectronics

  1. Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR

    Science.gov (United States)

    Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.

    2018-04-01

    The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.

  2. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  3. Heavy ion scattering; a fixed energy inverse problem

    International Nuclear Information System (INIS)

    Amos, K.

    1993-01-01

    Heavy ion scattering has been studied quite intensively in the last decade and central in most analyses of data from such experiments be they on fusion, particle transfer or internal state excitations of the colliding pair, is the inter-ion interaction affecting their relative motion. It is customary to use the elastic scattering data to constrain solutions of the (nonrelativistic) Schroedinger equation to ascertain the character of that (central and complex) heavy ion potential. These matters for projectiles ranging from the lightest 'heavy' ion, a proton, to Oxygen nuclei are considered in brief herein. The targets range from 12 C to 208 Pb. The central entity in the analyses to be discussed will be the S-function, and so for completeness, the simple potential scattering theory details are presented that specify the S-function and relate it to measured cross-sections. 20 refs., 18 figs

  4. Effects of high-energy (MeV) ion implantation of polyester films

    International Nuclear Information System (INIS)

    Ueno, Keiji; Matsumoto, Yasuyo; Nishimiya, Nobuyuki; Noshiro, Mitsuru; Satou, Mamoru

    1991-01-01

    The effects of high-energy ion beam irradiation on polyester (PET) films using a 3 MeV tandem-type ion beam accelerator were studied. O, Ni, Pt, and Au as ion species were irradiated at 10 14 -10 15 ions/cm 2 on 50 μm thick PET films. Physical properties and molecular structure changes were studied by the surface resistivity measurements and RBS. The surface resistivity decreases with an increase in irradiation dose. At 10 15 ions/cm 2 irradiation, the surface resistivity is 10 8 Ω/□. According to RBS and XPS analyses, some carbon and oxygen atoms in the PET are replaced by implanted ions and the -C=O bonds are destroyed easily by the ion beam. (orig.)

  5. Mass and energy analysis of the ions in a plasma flood system

    International Nuclear Information System (INIS)

    Wooding, A.C.; Armour, D.G.; Berg, J.A. van den; Holmes, A.J.T.; Burgess, C.; Goldberg, R.D.

    2005-01-01

    Plasma flood systems, capable of providing a copious supply of electrons are used in ion implanters to control wafer charging and provide effective space charge neutralisation of the ion beam in the post-analysis/post-deceleration section of the beamline. Under appropriate conditions the plasma from the flood system interacts with the ion beam and this bridging leads to an enhanced beam transport efficiency in the final critical stage of the beamline. The effectiveness of this process depends on the properties of the plasma emanating from the system. In this study, a plasma analyser comprising a double hemi-spherical electrostatic energy analyser and a quadrupole mass spectrometer, was used to measure the energy distributions of all the ion species leaving a magnetically confined argon plasma, generated in the discharge chamber of a conventional flood neutraliser. The energy distributions extended to surprisingly high energies and the peak structures depended strongly on discharge voltage, discharge current and gas pressure. The nature of these dependencies was complex with both the pressure and arc current affecting the way in which the ion energy distributions depended on arc voltage. In all cases, multiply charged ions played a significant role in determining the nature of the ion energy distributions

  6. Mass and energy analysis of the ions in a plasma flood system

    Energy Technology Data Exchange (ETDEWEB)

    Wooding, A.C. [Institute of Materials Research, University of Salford, Salford M54WT (United Kingdom); Armour, D.G. [Institute of Materials Research, University of Salford, Salford M54WT (United Kingdom); Berg, J.A. van den [Institute of Materials Research, University of Salford, Salford M54WT (United Kingdom)]. E-mail: j.a.vandenberg@salford.ac.uk; Holmes, A.J.T. [Marcham Scientific, Hungerford, Berks RG17 0LH (United Kingdom); Burgess, C. [Applied Materials UK Ltd., Foundry Lane, Horsham, West Sussex RH13 5PX (United Kingdom); Goldberg, R.D. [Applied Materials UK Ltd., Foundry Lane, Horsham, West Sussex RH13 5PX (United Kingdom)

    2005-08-01

    Plasma flood systems, capable of providing a copious supply of electrons are used in ion implanters to control wafer charging and provide effective space charge neutralisation of the ion beam in the post-analysis/post-deceleration section of the beamline. Under appropriate conditions the plasma from the flood system interacts with the ion beam and this bridging leads to an enhanced beam transport efficiency in the final critical stage of the beamline. The effectiveness of this process depends on the properties of the plasma emanating from the system. In this study, a plasma analyser comprising a double hemi-spherical electrostatic energy analyser and a quadrupole mass spectrometer, was used to measure the energy distributions of all the ion species leaving a magnetically confined argon plasma, generated in the discharge chamber of a conventional flood neutraliser. The energy distributions extended to surprisingly high energies and the peak structures depended strongly on discharge voltage, discharge current and gas pressure. The nature of these dependencies was complex with both the pressure and arc current affecting the way in which the ion energy distributions depended on arc voltage. In all cases, multiply charged ions played a significant role in determining the nature of the ion energy distributions.

  7. Defect production and subsequent effects induced by electronic energy loss of swift heavy ion

    International Nuclear Information System (INIS)

    Hou Mingdong; Liu Jie; Sun Youmei; Yin Jingmin; Yao Huijun; Duan Jinglai; Mo Dan; Zhang Ling; Chen Yanfeng; Chinese Academy of Sciences, Beijing

    2008-01-01

    Swift heavy ion in matter is one of forfront fields of nuclear physics in the world. A series of new phenomena were discovered in recent years. The history and sta- tus on the development of this field were reviewed. Electronic energy loss effects induced by swift heavy ion irradiation, such as defect production and evolution, ion latent track formation, phase transformation and anisotropy plastic deformation were introduced emphatically. A trend of future investigation was explored. (authors)

  8. Effects of energy variations of ions influencing a target on implantation

    International Nuclear Information System (INIS)

    Astakhov, V.P.; Rubtsov, V.A.; Aranovich, R.M.; Pavlov, P.V.

    1981-01-01

    In cases of phosphorus and boron ion implantation into silicon the dependence of electrophysical properties of ion-doped layers and target material near the layer boundaries on energy variation conditions of influencing ions is observed. A physical model explaining the dependence is proposed. It is found that for the target, being at room temperature, after successive annealing the qualitative characteristics of conditions (i.e. energy increase and decrease) on implantation of phosphorus ions into p-silicon and boron ions into n-silicon, as well as the value of energy stages, define rhosub(l) ion-doped layer resistivity and tausub(mc) nonequilibrium minority carrier lifetime in the base of p-n transitions. The essence of the effects observed is that for equal sets of Esub(i) ion energy values and PHIsub(i) corresponding phases at maximum energy used exceeding 30 keV, successive energy increase during implantation, when E 1 2 1 mode), leads to smaller rhosub(e) values and greater tausub(mc) than in case of successive energy decrease, when E 1 >E 2 >...E(E 2 mode) for any fixed annealing temperature. In cases when the maximum energy does not exceed 30 KeV, the E 1 and E 2 modes lead to analogous rhosub(e) and tausub(mc) values. The E 2 mode leads to enrichment of the ion-implanted layer with associations and complexes on the basis of interstitial atoms in comparison with the E 1 mode. The associations and complexes on thermal treatment are reformed into the higher-temperature interstitial complexes increasing rhosub(e) and decreasing tausub(mc). Supposition about the effect of these complexes and processes of structural transformations on annealing, hampering-improvement of structural properties of the ion-implanted layer and a crystal region bordered on it [ru

  9. Study on rice transformation mediated by low energy ion beam implantation

    International Nuclear Information System (INIS)

    Li Hong; Wu Lifang; Yu Zengliang

    2001-01-01

    Delivery of foreign DNA into rice via ion beam was first reported in 1994. In recent years we have aimed to set up efficient transformation system mediated by low energy ion beam. The factors that influence the transformation including type of ion, parameters of ion energy, dose and dose rate, plant genotype, composition of media, concentration of hormones and antibiotics were carefully investigated. Treated with 25ke V Ar + , the transformation efficiencies of the mature embryos of rice variety 02428, Hua pei94-jian-09 and Minghui63 reached 11%, 11.4% and 7.1% measured by produced antibiotic resistant callus and l.52%, 1.87% and l.13% measured by regenerated plants respectively. PCR detection and Southern blot analysis showed that GUS report gene had inserted in rice genome. Low energy ion beam mediated gene transfer will be extended to other cereal recalcitrant to Agrobacterium tumefaciens as soon as methodological parameters were optimized. (authors)

  10. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich, I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose, D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  11. U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  12. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    Andelkovic, Z.; Herfurth, F.; Kotovskiy, N.; König, K.; Maaß, B.; Murböck, T.; Neidherr, D.; Schmidt, S.; Steinmann, J.; Vogel, M.; Vorobjev, G.

    2015-01-01

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  13. Collisional effects on ion energy and angular distributions incident on RF-biased electrodes

    International Nuclear Information System (INIS)

    Qiu Huatan; Wang Younian; Ma Tengcai

    2002-01-01

    Taking into account elastic collisions and charge-exchange collisions between ions and neutral particles, the authors established a self-consistent model describing the dynamics of radio-frequency (RF) sheath driven by a sinusoidal current source, and also, using the Monte-Carlo Method, simulated energy and angle distributions of ions bombarding on RF-biased substrates. It has been shown from numerical results that as increasing the discharge pressure, bimodal-peaks distributions for the ion energy become gradually a single-peak distribution, and low-energy ions increase. The authors also found that the angle distribution of ions is narrow and almost do not change with increasing the discharge pressure

  14. High-energy xenon ion irradiation effects on the electrical properties of yttrium iron garnet

    International Nuclear Information System (INIS)

    Costantini, J.M.; Flament, J.L.; Sinopoli, L.; Trochon, J.; Uzureau, J.L.; Groult, D.; Studer, F.; Toulemonde, M.

    1989-01-01

    Thin monocristalline samples of yttrium iron garnet Y 3 Fe 5 O 12 (YIG) were irradiated at room temperature with 27 MeV/A 132 Xe ions at varying fluences up to 3.5 x 10 12 ions cm -2 . Sample thickness (100 μm) was smaller than the mean projected range of ions (170 μm) so that we were able to study the effects of irradiation damage solely. At such a high ion energy the nuclear energy loss is negligible and damage is mainly due to electronic excitation energy loss. YIG d.c conductivity is found to rise by a factor 40 for the highest dose while the permittivity increases only slightly after irradiation (40% max.). The dielectric losses are also enhanced as the ion fluence increases especially at lower frequencies (by a factor 6 at 10 KHz). No dielectric relaxation peak is observed in the frequency range explored here (10 KHz - 10 MHz)

  15. Transmitted ion energy loss distributions to detect cluster formation in silicon

    International Nuclear Information System (INIS)

    Selen, L.J.M.; Loon, A. van; IJzendoorn, L.J. van; Voigt, M.J.A. de

    2002-01-01

    The energy loss distribution of ions transmitted through a 5.7±0.2 μm thick Si crystal was measured and simulated with the Monte Carlo channeling simulation code FLUX. A general resemblance between the measured and simulated energy loss distributions was obtained after incorporation of an energy dependent energy loss in the simulation program. The energy loss calculations are used to investigate the feasibility to detect the presence of light element dopant clusters in a host crystal from the shape of the energy loss distribution, with transmission ion channeling. A curved crystal structure is used as a model for a region in the host crystal with clusters. The presence of the curvature does have a large influence on the transmitted energy distribution, which offers the possibility to determine the presence of dopant clusters in a host crystal with transmission ion channeling

  16. New improvements on the Kansas State University cryogenic electron beam ion source, a user facility for low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M. P.; Carnes, K.; Cocke, C. L.; DePaola, B. D.; Ehrenreich, T.; Fehrenbach, C.; Fry, D.; Gibson, P. E.; Kelly, S.; Lehnert, U.

    2000-01-01

    The Kansas State University cryogenic electron beam ion source supplies low energy ion beams to users of the Department of Energy user facility for highly charged ions. The ions escape the source with an initial energy between 1.6 and 5 kV per charge and are analyzed in a 90 degree sign dipole magnet located on the high voltage platform. When leaving the platform the ions can be accelerated by up to 160 kV per charge or can be decelerated to about 20% of their initial energy, covering 2.5 orders of magnitude. We are in the process of adding another order of magnitude to the range of available ion energies as a newly installed lens allows for deceleration down to a very few percent of the initial energy. In addition we present the current microbunching and chopping system which has been substantially improved over the past 2 yr. (c) 2000 American Institute of Physics

  17. Comparison of magnetosonic wave and water group ion energy densities at Comet Giacobini-Zinner

    Science.gov (United States)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Forster, P. M. De F.; Hynds, R. J.; Yates, T. S.; Sanderson, T. R.; Wenzel, K.-P.; Tsurutani, B. T.

    1991-01-01

    Measurements of the Comet Giacobini-Zinner (GZ) are presented to determine to what extent wave-particle scattering redistributed the initial pick-up energy of the ion population. Also examined is the difference between the ion thermal energy and the energy in the magnetic fields of the waves. In spite of uncertainty of about a factor of 2 noted in the pick-up and mass-loaded regions, it is shown that less than approximately 50 percent of the pick-up energy is converted into wave magnetic energy in the inbound pick-up region.

  18. Analysis of the ion energy transport in ohmic discharges in the ASDEX tokamak

    International Nuclear Information System (INIS)

    Simmet, E.E.; Fahrbach, H.U.; Herrmann, W.; Stroth, U.

    1996-10-01

    An analysis of the local ion energy transport is performed for more than one hundred well documented ohmic ASDEX discharges. These are characterized by three different confinement regimes: the linear ohmic confinement (LOC), the saturated ohmic confinement (SOC) and the improved ohmic confinement (IOC). All three are covered by this study. To identify the most important local transport mechanism of the ion heat, the ion power balance equation is analyzed. Two methods are used: straightforward calculation with experimental data only, and a comparison of measured and calculated profiles of the ion temperature and the ion heat conductivity, respectively. A discussion of the power balance shows that conductive losses dominate the ion energy transport in all ohmic discharges of ASDEX. Only inside the q=1-surface losses due to sawtooth activity play a role, while at the edge convective fluxes and CX-losses influence the ion energy transport. Both methods lead to the result that both the ion temperature and the ion heat conductivity are consistent with predictions of the neoclassical theory. Enhanced heat losses as suggested by theories eg. on the basis of η i modes can be excluded. (orig.)

  19. Effect of silver ions on the energy transfer from host defects to Tb ions in sol–gel silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbass, Abd Ellateef [Department of Physics, University of the Free State, Bloemfontein (South Africa); Department of Physics, Sudan University of Science and Technology (Sudan); Swart, H.C. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa)

    2015-04-15

    Plasmonic metal structures have been suggested to enhance the luminescence from rare-earth (RE) ions, but this enhancement is not yet well understood or applied to phosphor materials. Although some reports using Ag nanoparticles (NPs) in glass have attributed enhancement of RE emission to the strong electric fields associated with Ag NPs, it has also been proposed that the enhancement is instead due to energy transfer from Ag ions to RE ions. Our work using sol–gel silica shows a third possibility, namely that enhancement of the RE (e.g. Tb) emission is due to energy transfer from defects of the host material to the Tb ions, where the addition of Ag influences the silica host defects. The oxidation state of Ag as a function of annealing temperature was investigated by x-ray diffraction, transmission electron microscopy, UV–vis measurements and x-ray photoelectron spectroscopy, while optical properties were investigated using a Cary Eclipse fluorescence spectrophotometer or by exciting samples with a 325 nm He–Cd laser. The results showed that Ag ions have a significant effect on the silica host defects, which resulted in enhancement of the green Tb emission at 544 nm for non-resonant excitation using a wavelength of 325 nm. - Highlights: • Conversion of Ag ions to metallic nanoparticles after annealing of sol–gel silica. • Addition of Ag resulted in enhanced green luminescence from Tb ions in silica. • Enhancement is attributed to the effect of added Ag on the host defects of silica.

  20. High-energy heavy ion testing of VLSI devices for single event ...

    Indian Academy of Sciences (India)

    Unknown

    per describes the high-energy heavy ion radiation testing of VLSI devices for single event upset (SEU) ... The experimental set up employed to produce low flux of heavy ions viz. silicon ... through which they pass, leaving behind a wake of elec- ... for use in Bus Management Unit (BMU) and bulk CMOS ... was scheduled.

  1. Scattering of low energy noble gas ions from a metal surface

    International Nuclear Information System (INIS)

    Luitjens, S.B.

    1980-01-01

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)

  2. Modified-surface-energy methods for deriving heavy-ion potentials

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1977-01-01

    The use of a modified-surface-energy approach for the calculation of heavy-ion interaction potentials is discussed. It is not possible to simultaneously fit elastic scattering, ion interaction barriers, and fission barriers with the same set of constants in this model. Possible explanations of this deficiency are discussed

  3. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  4. Macroscopic damping model for zero degree energy distribution in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gao Chongshou; Wang Chengshing

    1993-01-01

    A macroscopic damping model is proposed to calculate the zero degree energy distribution in ultra-relativistic heavy ion collisions. The main features of the measured distributions are reproduced, good agreement is obtained in the middle energy region while overestimation results on the high energy side. The average energy loss coefficient of incident nucleons, varying in the reasonable region 0.2-0.6, depends on beam energy and target size

  5. Mass-spectrometric study of ion clustering in alkali-metal hydroxide vapor: cluster-ion energy and structural characteristics

    International Nuclear Information System (INIS)

    Kudin, L.S.; Butman, M.F.; Krasnov, K.S.

    1986-01-01

    Various positive and negative ions have been recorded in the equilibrium vapors from alkali-metal hydroxides: M/sup +/-/, OH - , O - , MO - , MOH - , and X/sup +/-/ (MOH)/sub n/, where X = M/sup +/-/, OH - , n = 1-6. The equilibrium constants have been measured for X/sup +/-/(MOH)/sub n/ = x/sup +/-/ + nMOH(k), n = 1-3, and the enthalpies of reaction have been determined, from which the enthalpies of formation and dissociation energies of X/sup +/-/ (MOH)/sub n/ have been calculated. The relative stabilities of the ions in the series from Na to Cs are examined

  6. Production of low axial energy spread ion beams with multicusp sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung -Hee Y. [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution.

  7. Production of low axial energy spread ion beams with multicusp sources

    International Nuclear Information System (INIS)

    Lee, Y.H.Y.

    1998-05-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution

  8. Ion energy and angular distributions in inductively coupled Argon RF discharges

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Riley, M.E.; Meister, D.C.

    1996-03-01

    We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10 12 /cm 3 electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased

  9. Nanomaterials Enabled High Energy and Power Density Li-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for high energy (~ 200 Wh/kg) and high power (> 500 W/kg) density rechargeable Li-ion batteries that are safe and reliable for several space and...

  10. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  11. High Energy Density Li-Ion Batteries Designed for Low Temperature Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The state-of-the-art Li-ion batteries do not fully meet the energy density, power density and safety requirements specified by NASA for future exploration missions....

  12. Lithium-ion Energy Storage at Very Low Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Li-ion batteries with specific energy >180 Wh/kg, calendar life (>15years), and a wide operating temperature range (-60oC to 60oC) are crucial for the...

  13. High Energy Density Solid State Li-ion Battery with Enhanced Safety, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...

  14. Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/

    Science.gov (United States)

    Singh, N.; Raitt, W. J.; Yasuhara, F.

    1982-01-01

    Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.

  15. The synthesis of nucleotide in the aqueous solution induced by low energy ions

    International Nuclear Information System (INIS)

    Shi Huaibin; Shao Chunlin; Wang Xiangqin; Yu Zengliang

    2000-08-01

    A new apparatus was designed to induce reactions in aqueous solution by introducing low energy ions into the aqueous solution, this apparatus overcome the defaults of the old ones which demanded vacuum and made it possible to study the action among solutions, it also expanded the ion implantation biology. The role of low energy ions was introduced into the study of the origin of life, primitive earth conditions were imitated to study prior-life synthesis of nucleotide by introducing low energy ions into aqueous solution, low energy N + was implanted into adenine supersaturation solution including D-ribose and NH 4 H 2 PO 4 , it was confirmed that 5'-AMP was gained by HPLC analysis of the products. In comparison with other methods in this field, this one is simpler and nearer to the primitive earth conditions, thus it provided a new try for the studying of the origin of life

  16. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  17. Influence of ion beam energy on SEGR failure thresholds of vertical power MOSFETs

    International Nuclear Information System (INIS)

    Titus, J.L.; Wheatley, C.F.; Allenspach, M.; Schrimpf, R.D.; Brews, J.R.; Galloway, K.F.; Burton, D.I.; Pease, R.L.

    1996-01-01

    For the first time, experimental observations and numerical simulations show that the impact energy of the test ion influences the single-event gate rupture (SEGR) failure thresholds of vertical power MOSFETs. Current testing methodology may produce false hardness assurance

  18. Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers (Preprint)

    National Research Council Canada - National Science Library

    Fellner, Joseph P; Miller, Ryan M; Shanmugasundaram, Venkatrama

    2006-01-01

    ...). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at > 1.0 kW/kg...

  19. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon; Yao, Yan; Cui, Yi; Cho, Jaephil

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si

  20. Angular and mass resolved energy distribution measurements with a gallium liquid metal ion source

    International Nuclear Information System (INIS)

    Marriott, Philip

    1987-06-01

    Ionisation and energy broadening mechanisms relevant to liquid metal ion sources are discussed. A review of experimental results giving a picture of source operation and a discussion of the emission mechanisms thought to occur for the ionic species and droplets emitted is presented. Further work is suggested by this review and an analysis system for angular and mass resolved energy distribution measurements of liquid metal ion source beams has been constructed. The energy analyser has been calibrated and a series of measurements, both on and off the beam axis, of 69 Ga + , Ga ++ and Ga 2 + ions emitted at various currents from a gallium source has been performed. A comparison is made between these results and published work where possible, and the results are discussed with the aim of determining the emission and energy spread mechanisms operating in the gallium liquid metal ion source. (author)

  1. Ion mass dependence for low energy channeling in single-wall nanotubes

    International Nuclear Information System (INIS)

    Zheng Liping; Zhu Zhiyuan; Li Yong; Zhu Dezhang; Xia Huihao

    2008-01-01

    An Monte Carlo (MC) simulation program has been used to study ion mass dependence for the low energy channeling of natural- and pseudo-Ar ions in single-wall nanotubes. The MC simulations show that the channeling critical angle Ψ C obeys the (E) -1/2 and the (M 1 ) -1/2 rules, where E is the incident energy and M 1 is the ion mass. The reason for this may be that the motion of the channeled (or de-channeled) ions should be correlated with both the incident energy E and the incident momentum (2M 1 E) 1/2 , in order to obey the conservation of energy and momentum

  2. Studies on low energy ion-atom collisions by means of electron-spectroscopy

    International Nuclear Information System (INIS)

    Hirosi Suzuki

    1991-01-01

    The typical results of studies on autoionization processes produced by low energy ion-atom collisions are given by means of the ejected electron spectroscopy, which have been performed by Atomic Physics Group of Sophia University

  3. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  4. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  5. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  6. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  7. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  8. Direct observation and theory of trajectory-dependent electronic energy losses in medium-energy ion scattering.

    Science.gov (United States)

    Hentz, A; Parkinson, G S; Quinn, P D; Muñoz-Márquez, M A; Woodruff, D P; Grande, P L; Schiwietz, G; Bailey, P; Noakes, T C Q

    2009-03-06

    The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

  9. Review of high excitation energy structures in heavy ion collisions: target excitations and three body processes

    International Nuclear Information System (INIS)

    Frascaria, N.

    1987-09-01

    A review of experimental results on high excitation energy structures in heavy ion inelastic scattering is presented. The contribution to the spectra of the pick-up break-up mechanism is discussed in the light of the data obtained with light heavy ion projectiles. Recent results obtained with 40 Ar beams at various energies will show that target excitations contribute strongly to the measured cross section

  10. Relativistic configuration-interaction calculation of the correlation energies of heliumlike ions. Revision 1

    International Nuclear Information System (INIS)

    Cheng, K.T.; Chen, M.H.; Johnson, W.R.

    1994-04-01

    A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table

  11. The stopping power and energy straggling of light ions in graphene oxide foils

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Malinský, Petr; Sofer, Z.

    2017-01-01

    Roč. 406, SEP (2017), s. 173-178 ISSN 0168-583X R&D Projects: GA MŠk LM2015056; GA ČR GA16-05167S Institutional support: RVO:61389005 Keywords : ion energy loss * ion energy straggling * graphene oxide Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.109, year: 2016

  12. Study of high energy ion loss during hydrogen minority heating in TFTR

    International Nuclear Information System (INIS)

    Park, J.; Zweben, S.J.

    1994-03-01

    High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45 degrees below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described

  13. Dissociative recombination of the CH+ molecular ion at low energy

    Science.gov (United States)

    Chakrabarti, K.; Mezei, J. Zs; Motapon, O.; Faure, A.; Dulieu, O.; Hassouni, K.; Schneider, I. F.

    2018-05-01

    The reactive collision of the CH+ molecular ion with an electron is studied in the framework of the multichannel quantum defect theory, taking into account the contribution of the core-excited Rydberg states. In addition to the X 1Σ+ ground state of the ion, we also consider the contribution to the dynamics of the a 3Π and A 1Π excited states of CH+. Our results—in the case of the dissociative recombination in good agreement with the storage ring measurements—rely on decisive improvements—complete account of the ionisation channels and accurate evaluation of the reaction matrix—of a previously used model.

  14. A radio frequency ring electrode cooler for low-energy ion beams

    International Nuclear Information System (INIS)

    Heinz, S.; Aeystoe, J.; Habs, D.; Hegewisch, S.; Huikari, J.; Nieminen, A.; Rinta-Antila, S.; Schumann, M.; Szerypo, J.

    2004-01-01

    We are investigating a new concept for ion confinement while buffer-gas-cooling low-energy ion beams. Instead of applying the well-established technique of Radio Frequency Quadrupoles (RFQs) where the ions are transversely confined by a quadratic-pseudo potential we are using a stack of thin ring electrodes supplied by an RF field (RF funnel) which creates a box-shaped potential well. In Monte Carlo simulations we have investigated the transmission behavior and cooling performance of the RF funnel. First experimental investigations with ion currents up to 20 nA revealed a promising transmission characteristic which qualifies the RF funnel as high-current cooler

  15. Energy dependence of ion-induced sputtering yields from monoatomic solids at normal incidence

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Tawara, Hiro.

    1995-03-01

    The yields of the ion-induced sputtering from monoatomic solids at normal incidence for various ion-target combinations are presented graphically as a function of the incident ion energy. In order to fill the lack of the experimental data, the sputtering yields are also calculated by the Monte Carlo simulation code ACAT for some ion-target combinations. Each graph shows available experimental data points and the ACAT data, together with the sputtering yields calculated by the present empirical formula, whose parameters are determined by the best-fit to available data. (author)

  16. High-energy-ion depletion in the charge exchange spectrum of Alcator C

    International Nuclear Information System (INIS)

    Schissel, D.P.

    1982-01-01

    A three-dimensional, guiding center, Monte Carlo code is developed to study ion orbits in Alcator C. The highly peaked ripple of the magnetic field of Alcator is represented by an analytical expression for the vector potential. The analytical ripple field is compared to the resulting magnetic field generated by a current model of the toroidal plates; agreement is excellent. Ion-Ion scattering is simulated by a pitch angle and an energy scattering operator. The equations of motion are integrated with a variable time step, extrapolating integrator. The code produces collisionless banana and ripple trapped loss cones which agree well with present theory. Global energy distributions have been calculated and show a slight depletion above 8.5 keV. Particles which are ripple trapped and lost are at energies below where depletion is observed. It is found that ions pitch angle scatter less as energy is increased. The result is that, when viewed in velocity space, ions form probability lobes the shape of mouse ears which are fat near the thermal energy. Therefore, particles enter the loss cone at low energies near the bottom of the core. Recommendations for future work include improving the analytic model of the ripple field, testing the effect of del . B not equal to 0 on ion orbits, and improving the efficiency of the code by either using a spline fit for the magnetic fields or by creating a vectorized Monte Carlo code

  17. Systematic investigations of low energy Ar ion beam sputtering of Si and Ag

    Energy Technology Data Exchange (ETDEWEB)

    Feder, R., E-mail: rene.feder@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig (Germany); Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B. [Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig (Germany)

    2013-12-15

    Ion beam sputter deposition (IBD) delivers some intrinsic features influencing the growing film properties, because ion properties and geometrical process conditions generate different energy and spatial distributions of the sputtered and scattered particles. Even though IBD has been used for decades, the full capabilities are not investigated systematically and specifically used yet. Therefore, a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the generated secondary particles and backscattered ions and the deposited films needs to be done. A vacuum deposition chamber has been set up which allows ion beam sputtering of different targets under variation of geometrical parameters (ion incidence angle, position of substrates and analytics in respect to the target) and of ion beam parameters (ion species, ion energy) to perform a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the properties of the sputtered and scattered particles, and the properties of the deposited films. A set of samples was prepared and characterized with respect to selected film properties, such as thickness and surface topography. The experiments indicate a systematic influence of the deposition parameters on the film properties as hypothesized before. Because of this influence, the energy distribution of secondary particles was measured using an energy-selective mass spectrometer. Among others, experiments revealed a high-energetic maximum for backscattered primary ions, which shifts with increasing emission angle to higher energies. Experimental data are compared with Monte Carlo simulations done with the well-known Transport and Range of Ions in Matter, Sputtering version (TRIM.SP) code [J.P. Biersack, W. Eckstein, Appl. Phys. A: Mater. Sci. Process. 34 (1984) 73]. The thicknesses of the films are in good agreement with those calculated from simulated particle fluxes. For the positions of the

  18. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  19. Hydrogen microscopy and analysis of DNA repair using focused high energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Dollinger, G. [Universitaet der Bundeswehr Muenchen, LRT 2, Werner Heisenberg Weg 39, D-85579 Neubiberg (Germany)]. E-mail: guenther.dollinger@unibw.de; Bergmaier, A. [Universitaet der Bundeswehr Muenchen, LRT 2, Werner Heisenberg Weg 39, D-85579 Neubiberg (Germany); Hauptner, A. [Physik Department E 12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Dietzel, S. [Department Biologie II, Ludwigs-Maximilians-Universitaet Muenchen, Grosshaderner Str. 2, 82152 Planegg-Martinsried (Germany); Drexler, G.A. [Strahlenbiologisches Institut, LMU Muenchen, Schillerstr. 42, D-80336 Muenchen und Institut fuer Strahlenbiologie, GSF-Forschungszentrum, D-85764 Neuherberg (Germany); Greubel, C. [Physik Department E 12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Hable, V. [Universitaet der Bundeswehr Muenchen, LRT 2, Werner Heisenberg Weg 39, D-85579 Neubiberg (Germany); Reichart, P. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Kruecken, R. [Physik Department E 12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Cremer, T. [Department Biologie II, Ludwigs-Maximilians-Universitaet Muenchen, Grosshaderner Str. 2, 82152 Planegg-Martinsried (Germany); Friedl, A.A. [Strahlenbiologisches Institut, LMU Muenchen, Schillerstr. 42, D-80336 Muenchen und Institut fuer Strahlenbiologie, GSF-Forschungszentrum, D-85764 Neuherberg (Germany)

    2006-08-15

    The ion microprobe SNAKE (Supraleitendes Nanoskop fuer Angewandte Kernphysikalische Experimente) at the Munich 14 MV tandem accelerator achieves beam focussing by a superconducting quadrupole doublet and can make use of a broad range of ions and ion energies, i.e. 4-28 MeV protons or up to 250 MeV gold ions. Due to these ion beams, SNAKE is particularly attractive for ion beam analyses in various fields. Here we describe two main applications of SNAKE. One is the unique possibility to perform three-dimensional hydrogen microscopy by elastic proton-proton scattering utilizing high energy proton beams. The high proton energies allow the analysis of samples with a thickness in the 100 {mu}m range with micrometer resolution and a sensitivity better than 1 ppm. In a second application, SNAKE is used to analyse protein dynamics in cells by irradiating live cells with single focussed ions. Fluorescence from immunostained protein 53BP1 is used as biological track detector after irradiation of HeLa cells. It is used to examine the irradiated region in comparison with the targeted region. Observed patterns of fluorescence foci agree reasonably well with irradiation patterns, indicating an overall targeting accuracy of about 2 {mu}m while the beam spot size is less than 0.5 {mu}m in diameter. This performance shows successful adaptation of SNAKE for biological experiments where cells are targeted on a sub-cellular level by energetic ions.

  20. Lens effect of unipolar electrostatic steerers on low-energy ion beams and its effective reduction

    International Nuclear Information System (INIS)

    Asozu, Takuhiro; Matsuda, Makoto; Kutsukake, Kenichi

    2010-08-01

    The JAEA-Tokai tandem accelerator has two ion injectors, one is the negative ion injector placed on the ground and the other is the positive ion injector in the high voltage terminal. The electrostatic steerers in the high voltage terminal are used for ion beams from the both injectors. Because the beams from the negative ion injector gain high energy at the 20MV terminal, the electrodes of the electrostatic steerers are designed to be supplied several ten kV. The high voltages are supplied by two unipolar DC power supplies and they are controlled as the sum of the voltages keeps constant. The high electric potential between the electrodes affects the beam trajectory as an electrostatic lens. The potential must be too high for the low energy ion beams from the positive ion injector on the 100kV deck. We simulated the beam trajectory by calculation and evaluated the strength of the lens effects. The results showed that the focal distances were too short to control the beam form positive ion injector using optical devices in the downstream. If we reduce the voltages to one tenth in simulation, then the focusing effects were much less significant. We installed a multiplying factor circuit to make the voltages variable and much lower. The results of beam-handling tests using the circuit actually showed significant increase of the ion beam current. (author)

  1. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions (1)could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion-ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component--positive ions, negative ions, and electrons--can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed

  2. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  3. Safe, High Specific Energy & Power Li-ion Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — Today’s best, safe commercial Li-ion cell designs achieve ~180 Wh/kg, ~500 Wh/L, and 400 W/kg. When accounting for the lightest (1.35) parasitic mass and smallest...

  4. Electrolyte penetration into high energy ion irradiated polymers

    Czech Academy of Sciences Publication Activity Database

    Fink, D.; Petrov, A.; Müller, M.; Asmus, T.; Hnatowicz, Vladimír; Vacík, Jiří; Červená, Jarmila

    158/159 (2002), s. 228-233 ISSN 0257-8972 R&D Projects: GA AV ČR KSK1010104; GA ČR GA102/01/1324 Keywords : polymers * ion bombardment * defects * diffusion * nanostructrure Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.267, year: 2002

  5. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Yoshida, Tadashi; Takeuchi, Suehiro

    2003-10-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to advancing heavy ion science researches in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking advantage of its prominent performances in providing various heavy ions. This meeting, as well as the previous ones held twice, offered scientists from the fields of heavy ion science, including nuclear physics, solid-state physics and cross-field physics, an opportunity to have active discussions among them, as well as to review their research accomplishments in the last two years. Oral presentations were selected from a wider scope of prospective fields, expecting a new step of advancing in heavy ion science. Main topics of the meeting were the status of the JAERI-KEK joint project of developing a radioactive nuclear beam (RNB) facility and research programs related to the RNB. This meeting was held at Advanced Science Research Center in JAERI-Tokai on January 8th and 9th in 2003, and successfully carried out with as many as 190 participants and a lot of sincere discussions. The proceedings are presented in this report. The 51 of the presented papers are indexed individually. (J.P.N.)

  6. Pion production in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Wolf, K.L.; Bock, R.; Brockmann, R.

    1984-01-01

    Experimental data for heavy ion pion production reactions are compared with the predictions of a number of versions of cascade models. Pion suppression effects observed in the experimental data are fit by introducing refinements into cascade theory. Impact parameter adjustment, off-shell effects on the potential and perturbations due to nuclear matter are considered

  7. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zimanyi, J.

    1981-01-01

    With the aim to clarify somewhat the question of equilibration in the following we investigate the approach to equilibrium of particle composition and momentum distribution of the particles within the firecloud formed in the central collision of energetic heavy ions. (orig.)

  8. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    Science.gov (United States)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  9. Procedure and apparatus for controlling the ion energy in a mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Fies, W J; Reeher, J R; Story, M S; Smith, R D

    1977-03-03

    The invention relates to a process and apparatus for adjusting the energy of ions of different masses in a mass spectrometer. Specifically, it concerns a mass spectrometer having a gas inlet and ionisation space. A multipole mass filter includes several electrodes. A focusing system connects the ionisation space and the mass filter. Provision is made for applying to the electrodes a mass adjusting voltage combining a high frequency voltage and a d.c. voltage of increasing amplitude, so that the ions of a pre-determined mass can be selected. This system also includes a device connected to the electrodes, sensitive to the mass adjusting voltage and enabling the energy of the ions to be adjusted to that of the selected ions, depending on the mass of the ions, by modifying the difference in potential between the ionisation volume and the mean potential of the electrodes .

  10. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  11. Magnesium aluminate planar waveguides fabricated by C-ion implantation with different energies and fluences

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Lian; Yu, Xiao-Fei; Zhang, Lian; Wang, Tie-Jun; Qiao, Mei; Zhang, Jing; Liu, Peng; Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn

    2015-11-01

    We report on MgAl{sub 2}O{sub 4} planar waveguides produced using different energies and fluences of C-ion implantation at room temperature. Based on the prism coupling method and end-face coupling measurements, light could propagate in the C-ion-implanted samples. The Raman spectra results indicate that the MgAl{sub 2}O{sub 4} crystal lattice was damaged during the multi-energy C implantation process, whereas the absorption spectra were hardly affected by the C-ion implantation in the visible and infrared bands.

  12. Mean range and energy of 28Si ions some Makrofol track detectors

    International Nuclear Information System (INIS)

    Shyam, S.; Mishra, R.; Tripathy, S.P.; Mawar, A.K.; Dwivedi, K.K.; Khathing, D.T.; Srivastava, A.; Avasthi, D.K.

    2000-01-01

    The rate of energy loss of the impinging ion as it passes through succeeding layers of the target material gives information regarding the nature of material and helps to calculate the range of the ions in a thick target in which the ions are stopped. Here the range, energy loss of 118 MeV 28 Si were measured in Makrofol-N, Makrofol-G and Makrofol-KG, using nuclear track technique. The experimental range data are compared with the theoretical values obtained from different computer codes. (author)

  13. Electronic stopping power of polymers for heavy ions in the ion energy domain of LSS theory

    Energy Technology Data Exchange (ETDEWEB)

    Neetu [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India)], E-mail: neetuphy@gmail.com; Pratibha [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India); Sharma, V. [Department of Physics, Lovely Professional University, Phagwara 144 402 (India); Diwan, P.K. [Department of Physics, U.I.E.T., Kurukshetra University, Kurukshetra 136119, Haryana (India); Kumar, Shyam [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India)

    2009-04-15

    LSS based computed electronic stopping power values have been compared with the corresponding measured values in polymers for heavy ions with Z = 5-29, in the reduced ion velocity region, v{sub red} {<=} 1. Except for limited v{sub red} {approx} 0.6-0.85, the formulation generally shows significantly large deviations with the measured values. The {zeta} factor, which was approximated to be {approx}Z{sub 1}{sup 1/6}, involved in LSS theory has been suitably modified in the light of the available experimental stopping power data. The calculated stopping power values after incorporating modified {zeta} in LSS formula have been found to be in close agreement with measured values in various polymers in the reduced ion velocity range 0.35 {<=} v{sub red} {<=} 1.0.

  14. Electronic stopping power of polymers for heavy ions in the ion energy domain of LSS theory

    International Nuclear Information System (INIS)

    Neetu; Pratibha; Sharma, V.; Diwan, P.K.; Kumar, Shyam

    2009-01-01

    LSS based computed electronic stopping power values have been compared with the corresponding measured values in polymers for heavy ions with Z = 5-29, in the reduced ion velocity region, v red ≤ 1. Except for limited v red ∼ 0.6-0.85, the formulation generally shows significantly large deviations with the measured values. The ζ factor, which was approximated to be ∼Z 1 1/6 , involved in LSS theory has been suitably modified in the light of the available experimental stopping power data. The calculated stopping power values after incorporating modified ζ in LSS formula have been found to be in close agreement with measured values in various polymers in the reduced ion velocity range 0.35 ≤ v red ≤ 1.0.

  15. DYNAMICS OF HIGH ENERGY IONS AT A STRUCTURED COLLISIONLESS SHOCK FRONT

    Energy Technology Data Exchange (ETDEWEB)

    Gedalin, M. [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Dröge, W.; Kartavykh, Y. Y., E-mail: gedalin@bgu.ac.il [Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg (Germany)

    2016-07-10

    Ions undergoing first-order Fermi acceleration at a shock are scattered in the upstream and downstream regions by magnetic inhomogeneities. For high energy ions this scattering is efficient at spatial scales substantially larger than the gyroradius of the ions. The transition from one diffusive region to the other occurs via crossing the shock, and the ion dynamics during this crossing is mainly affected by the global magnetic field change between the upstream and downstream region. We study the effects of the fine structure of the shock front, such as the foot-ramp-overshoot profile and the phase-standing upstream and downstream magnetic oscillations. We also consider time dependent features, including reformation and large amplitude coherent waves. We show that the influence of the spatial and temporal structure of the shock front on the dependence of the transition and reflection on the pitch angle of the ions is already weak at ion speeds five times the speed of the upstream flow.

  16. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...... systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  17. STIM with energy loss contrast: An imaging modality unique to MeV ions

    International Nuclear Information System (INIS)

    Lefevre, H.W.; Schofield, R.M.S.; Bench, G.S.; Legge, G.J.F.

    1991-01-01

    Scanning transmission ion microscopy (STIM) through measurement of energy loss of individual ions is a quantitative imaging technique with several unique capabilities. The uniqueness derives conjointly from the large penetration with small scattering of MeV ions in low-Z specimens, from the simple relationship between energy loss and projected or areal density, and from the almost 100% efficiency with which one obtains pixel data from individual ions. Since contrast is in energy loss and not in numbers of events, the statistics of energy loss straggling affects the image but the statistics of counting does not. Small scattering makes it possible to observe details within transparent specimens. High efficiency makes it possible to collect large data sets for computed tomography, stereo, or high-definition imaging with a small radiation dose. High efficiency allows one to minimize aberrations by use of small apertures, to achieve good precision in the determination of areal density, or even to image live biological specimens in air since only one or a few ions per pixel are required. This paper includes a bibliography on STIM with MeV ions, it discusses the accuracy that one can achieve in the areal density coloring of a pixel with data from one or a few ions, and it supplements that review with recent examples from the Melbourne and the Eugene microprobes. (orig.)

  18. A Summary of Recent Experimental Research on Ion Energy and Charge States of Pulsed Vacuum Arcs

    International Nuclear Information System (INIS)

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2008-01-01

    The paper reviews the results of vacuum arc experimental investigations made collaboratively by research groups from Berkeley and Tomsk over the last two years, i.e. since the last ISDEIV in 2006. Vacuum arc plasma of various metals was produced in pulses of a few hundred microseconds duration, and the research focused on three topics: (i) the energy distribution functions for different ion charge states, (ii) the temporal development of the ion charge state distribution, and (iii) the evolution of the mean directed ion velocities during plasma expansion. A combined quadruple mass-to-charge and energy analyzer (EQP by HIDEN Ltd) and a time-of-flight spectrometer were employed. Cross-checking data by those complimentary techniques helped to avoid possible pitfalls in interpretation. It was found that the ion energy distribution functions in the plasma were independent of the ion charge state, which implies that the energy distribution on a substrate are not equal to due to acceleration in the substrate's sheath. In pulsed arc mode, the individual ion charge states fractions showed changes leading to a decrease of the mean charge state toward a steady-state value. This decrease can be reduced by lower arc current, higher pulse repetition rate and reduced length of the discharge gap. It was also found that the directed ion velocity slightly decreased as the plasma expanded into vacuum

  19. Construction, characterization and applications of a compact mass-resolved low-energy ion beam system

    International Nuclear Information System (INIS)

    Lau, W.M.; Feng, X.; Bello, I.; Sant, S.; Foo, K.K.; Lawson, R.P.W.

    1991-01-01

    A compact mass-resolved low-energy ion beam system has been constructed in which ions are extracted from a Colutron ion source, focused by an einzel lens, mass-selected by a Wien filter, refocused by a second einzel lens into an ultrahigh vacuum target chamber, and finally decelerated with a five-electrode lens. The design of the deceleration lens was assisted by computer simulation including space-charge effects with an ion trajectory software (CHDEN). The system performance has been characterized with a quadrupole mass spectrometer and an energy analyzer along the beam axis. For example, argon ions can be transported at keV and decelerated to 10 eV with an energy spread of ±0.5 eV. The total current measured by a Faraday cage at the exit of the deceleration lens in the energy range of 10-200 eV is about 1-5 μA. The ion current density was higher than 100 μA/cm 2 at 50 eV but decreased to 10-20 μA/cm 2 at 10 eV. The mass resolution was estimated to be 40 under the present operation configuration. The system has been used to produce interesting results in both ion beam etching and deposition. (orig.)

  20. Measurement of astrophysical S-factors and electron screening potentials for d(d,n){sup 3}He reaction in ZrD{sub 2}, TiD{sub 2} and TaD{sub 0.5} targets in the ultralow energy region using plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bystritsky, V.M., E-mail: bystvm@jinr.ru [Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation); Bystritskii, Vit.M. [Department of Physics and Astronomy, University of California, Irvine (United States); Dudkin, G.N. [National Scientific Research Tomsk Polytechnical University, Tomsk (Russian Federation); Filipowicz, M. [Faculty of Energy and Fuels, AGH, University of Science and Technology, Cracow (Poland); Gazi, S.; Huran, J. [Institute of Electrical Engineering, SAS, Bratislava (Slovakia); Kobzev, A.P. [Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation); Mesyats, G.A. [Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Nechaev, B.A.; Padalko, V.N. [National Scientific Research Tomsk Polytechnical University, Tomsk (Russian Federation); Parzhitskii, S.S. [Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation); Pen' kov, F.M. [Institute of Nuclear Physics, NNC, Almaty (Kazakhstan); Philippov, A.V. [Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation); Kaminskii, V.L. [National Scientific Research Tomsk Polytechnical University, Tomsk (Russian Federation); Tuleushev, Yu.Zh. [Institute of Nuclear Physics, NNC, Almaty (Kazakhstan); Wozniak, J. [Faculty of Physics and Applied Computer Sciences, AGH, University of Science and Technology, Cracow (Poland)

    2012-09-01

    The present paper is devoted to the study of the electron screening effect influence on the rate of d(d,n){sup 3}He reaction in the ultralow deuteron collision energy range in the deuterated metals (ZrD{sub 2}, TiD{sub 2} and TaD{sub 0.5}). The ZrD{sub 2}, TiD{sub 2} and TaD0.5 targets were fabricated via magnetron sputtering of titanium, zirconium and tantalum in gas (deuterium) environment. The experiments have been carried out using the high-current pulsed Hall plasma accelerator (NSR TPU, Russia). The detection of neutrons with energy of 2.5 MeV from the dd reaction was done with plastic scintillation spectrometers. As a result of the experiments, the energy dependences of the astrophysical S-factor for the dd reaction in the deuteron collision energy range of 2-7 keV and the values of the electron screening potential U{sub e} of the interacting deuterons have been measured for the above targets: U{sub e}(ZrD{sub 2})=(205{+-}35) eV; U{sub e}(TiD{sub 2})=(125{+-}34) eV; U{sub e}(TaD{sub 0.5})=(313{+-}58) eV. Our results are compared with the other published experimental and calculated data.

  1. Measurement of astrophysical S-factors and electron screening potentials for d(d,n)3He reaction in ZrD2, TiD2 and TaD0.5 targets in the ultralow energy region using plasma accelerator

    International Nuclear Information System (INIS)

    Bystritsky, V.M.; Bystritskii, Vit.M.; Dudkin, G.N.; Filipowicz, M.; Gazi, S.; Huran, J.; Kobzev, A.P.; Mesyats, G.A.; Nechaev, B.A.; Padalko, V.N.; Parzhitskii, S.S.; Pen'kov, F.M.; Philippov, A.V.; Kaminskii, V.L.; Tuleushev, Yu.Zh.; Wozniak, J.

    2012-01-01

    The present paper is devoted to the study of the electron screening effect influence on the rate of d(d,n) 3 He reaction in the ultralow deuteron collision energy range in the deuterated metals (ZrD 2 , TiD 2 and TaD 0.5 ). The ZrD 2 , TiD 2 and TaD0.5 targets were fabricated via magnetron sputtering of titanium, zirconium and tantalum in gas (deuterium) environment. The experiments have been carried out using the high-current pulsed Hall plasma accelerator (NSR TPU, Russia). The detection of neutrons with energy of 2.5 MeV from the dd reaction was done with plastic scintillation spectrometers. As a result of the experiments, the energy dependences of the astrophysical S-factor for the dd reaction in the deuteron collision energy range of 2-7 keV and the values of the electron screening potential U e of the interacting deuterons have been measured for the above targets: U e (ZrD 2 )=(205±35) eV; U e (TiD 2 )=(125±34) eV; U e (TaD 0.5 )=(313±58) eV. Our results are compared with the other published experimental and calculated data.

  2. Ion thermal conductivity and convective energy transport in JET hot-ion regimes and H-modes

    International Nuclear Information System (INIS)

    Tibone, F.; Balet, B.; Cordey, J.G.

    1989-01-01

    Local transport in a recent series of JET experiments has been studied using interpretive codes. Auxiliary heating, mainly via neutral beam injection, was applied on low-density target plasmas confined in the double-null X-point configuration. This has produced two-component plasmas with high ion temperature and neutron yield and, above a threshold density, H-modes characterised by peak density and power deposition profiles. H-mode confinement was also obtained for the first time with 25 MW auxiliary power, of which 10 MW was from ion cyclotron resonance heating. We have used profile measurements of electron temperature T e from electron cyclotron emission and LIDAR Thomson scattering, ion temperature T i from charge-exchange recombination spectroscopy (during NBI), electron density n e from LIDAR and Abel-inverted interferometer measurements. Only sparse information is, however, available to date concerning radial profiles of effective ionic charge and radiation losses. Deuterium depletion due to high impurity levels is an important effect in these discharges, and our interpretation of thermal ion energy content, neutron yield and ion particle fluxes needs to be confirmed using measured Z eff -profiles. (author) 4 refs., 4 figs

  3. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.; Lee, M [UNIV OF NEW HAMPSHIRE

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  4. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  5. Low-energy heavy-ion reactions: Some recent developments

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1989-01-01

    We address three areas: behavior of the optical model at low energies and associated phenomena, fusion at near- and sub-barrier energies; where does fusion occur?, and recent examples of explicit coupled-channels effects at low energies. 74 refs., 18 figs

  6. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  7. Sputtering of carbon using hydrogen ion beams with energies of 60–800 eV

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, Dmitry S., E-mail: dmitrisidoroff@rambler.ru [Nizhny Novgorod State University, 23 Gagarina Avenue, Nizhny Novgorod, Nizhny Novgorod Region 603950 (Russian Federation); Chkhalo, Nikolay I., E-mail: chkhalo@ipm.sci-nnov.ru [Institute for Physics of Microstructures RAS, Academicheskaya Str. 7, Afonino, Nizhny Novgorod Region, Kstovsky District, Kstovo Region 603087 (Russian Federation); Mikhailenko, Mikhail S.; Pestov, Alexey E.; Polkovnikov, Vladimir N. [Institute for Physics of Microstructures RAS, Academicheskaya Str. 7, Afonino, Nizhny Novgorod Region, Kstovsky District, Kstovo Region 603087 (Russian Federation)

    2016-11-15

    This article presents the result of a study on the sputtering of carbon films by low-energy hydrogen ions. In particular, the etching rate and surface roughness were measured. The range of energies where the sputtering switches from pure chemical to a combination of chemical and physical mechanisms was determined. It is shown that Sigmund’s theory for ion etching does not work well for fields of energy less than 150 eV and that it accurately describes the dependence of a sputtering coefficient on ion energy for energies greater than 300 eV. A strong smoothing effect for the surface of carbon film was also found. This result is interesting in itself and for its significance for the manufacture of super-smooth surfaces for X-ray applications.

  8. Energy measurement of fast ions trapped in the toroidal field ripple of Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Becoulet, A.; Hutter, T.; Martin, G.; Pecquet, A.L.; Saoutic, B.

    1993-09-01

    During additional heating in Tore Supra (ICRF or NBI) fast ion losses due to the toroidal field ripple were clearly measured by a set of graphite probes. This diagnostic collects the flow of fast ions entering a vertical port and usually shows a maximum flux for ions originating from the vicinity of surface δ * = 0. During the monster sawteeth regime, achieved with ICRF, a remarkable phenomenon was observed: the ejection of fast ions, not correlated with any measured MHD activity. The radial distribution of these ions is quite different from that usually observed exhibiting a peak located in the central section of the plasma. In order to measure the energy distribution of these ions, from 80 keV (energy of the neutral beam injected in Tore Supra) up to 1 MeV (expected during ICRF), a new diagnostic is under construction. The principle of the diagnostic is to discriminate the ions in energy using their Larmor radius (p = 1.3 cm for 100 keV → p = 3.6 cm for 700 keV, B = 4T). The detector is made of a hollow graphite cylinder with a small entrance slot, located in a vertical port on the ion drift side. An array of six metallic collectors placed inside the graphite cylinder intercepts the ions. The current on each collector was estimated at 10 → 100 nA, during ICRF heating. The energy resolution of this diagnostic is expected to be about 20 keV for the lowest energy range and 100 keV for the highest. This type of ruggedized detector might be extrapolated for the measurements of alpha particle losses in future DT experiments. It should also be suitable for the studies of stochastic ripple diffusion. (authors). 3 refs., 9 figs

  9. Free energy for protonation reaction in lithium-ion battery cathode materials

    International Nuclear Information System (INIS)

    Benedek, R.; Thackeray, M. M.; van de Walle, A.

    2008-01-01

    Calculations are performed of free energies for proton-for-lithium-ion exchange reactions in lithium-ion battery cathode materials. First-principles calculations are employed for the solid phases and tabulated ionization potential and hydration energy data for aqueous ions. Layered structures, spinel LiMn 2 O 4 , and olivine LiFePO 4 are considered. Protonation is most favorable energetically in layered systems, such as Li 2 MnO 3 and LiCoO 2 . Less favorable are ion-exchange in spinel LiMn 2 O 4 and LiV 3 O 8 . Unfavorable is the substitution of protons for Li in olivine LiFePO 4 , because of the large distortion of the Fe and P coordination polyhedra. The reaction free energy scales roughly linearly with the volume change in the reaction

  10. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  11. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2015-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  12. Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy

    International Nuclear Information System (INIS)

    Huang, M.; Chen, Z.; Kowalski, S.; Ma, Y. G.; Wada, R.; Hagel, K.; Barbui, M.; Bottosso, C.; Materna, T.; Natowitz, J. B.; Qin, L.; Rodrigues, M. R. D.; Sahu, P. K.; Keutgen, T.; Bonasera, A.; Wang, J.

    2010-01-01

    The relative isobaric yields of fragments produced in a series of heavy-ion-induced multifragmentation reactions have been analyzed in the framework of a modified Fisher model, primarily to determine the ratio of the symmetry energy coefficient to the temperature, a sym /T, as a function of fragment mass A. The extracted values increase from 5 to ∼16 as A increases from 9 to 37. These values have been compared to the results of calculations using the antisymmetrized molecular dynamics (AMD) model together with the statistical decay code gemini. The calculated ratios are in good agreement with those extracted from the experiment. In contrast, the values extracted from the ratios of the primary isobars from the AMD model calculation are ∼4 to 5 and show little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from final fragment observables may be significantly different than the actual value at the time of fragment formation. The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient is also discussed.

  13. Radiation blistering of niobium in sequence irradiated by helium ions with different energy

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminskij, M.S.; Guseva, M.I.; Gusev, V.M.; Krasulin, Yu.L.; Martynenko, Yu.V.; Rozina, I.A.

    1977-01-01

    The results of the investigation of the blistering of the surface of polycrystalline niobium foils subjected to successive irradiation by helium ions of energies of 3 to 50 keV are reported. The critical doses of irradiation, the types of blisters and the rate of erosion were determined. A comparative analysis of the formation of blisters on cold-rolled and annealed niobium has been made. On cold-rolled niobium the blistering is mainly due to ions with energies of 3 to 80 keV, on annealed niobium of 100 to 500 keV. The erosion of cold-rolled niobium takes place through blisters formed by the action of helium ions with energies of the order of 45 keV, and that of annealed niobium, through helium ions with energies of 100 to 500 keV. The observed differences in the formation of blisters on niobium irradiated with helium ions of a wide range of energies are explained by the change in the diffusion kinetics of implanted ions having a uniform distribution across the thickness of the target

  14. Pion production - a probe for coherence in medium energy heavy ion collisions

    International Nuclear Information System (INIS)

    Stachel, J.

    1985-01-01

    Neutral pion production is observed in heavy ion collisions at beam energies as low as 25 MeV/u, where this process is consumming the major portion of the total center of mass energy available. At these low beam energies single nucleon nucleon collision models and also models that incorporate the cooperative sharing of the beam energy of several nucleons do not reproduce the data. Rather, the data presented here call for a fully coherent production mechanism. (orig.)

  15. Stability of uranium silicides during high energy ion irradiation

    International Nuclear Information System (INIS)

    Birtcher, R.C; Wang, L.M.

    1991-11-01

    Changes induced by 1.5 MeV Kr ion irradiation of both U 3 Si and U 3 Si 2 have been followed by in situ transmission electron microscopy. When irradiated at sufficiently low temperatures, both alloys transform from the crystalline to the amorphous state. When irradiated at temperatures above the temperature limit for ion beam amorphization, both compounds disorder with the Martensite twin structure in U 3 Si disappearing from view in TEM. Prolonged irradiation of the disordered crystalline phases results in nucleation of small crystallites within the initially large crystal grains. The new crystallites increase in number during continued irradiation until a fine grain structure is formed. Electron diffraction yields a powder-like diffraction pattern that indicates a random alignment of the small crystallites. During a second irradiation at lower temperatures, the small crystallizes retard amorphization. After 2 dpa at high temperatures, the amorphization dose is increased by over twenty times compared to that of initially unirradiated material

  16. Ion energy spectrum just after the application of current pulse for turbulent heating in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Nakamura, Yukio; Hiraki, Naoji; Itoh, Satoshi

    1981-01-01

    Temporal evolution and spatial profile of ion energy spectrum just after the application of current pulse for turbulent heating are investigated experimentally in TRIAM-1 and numerically with a Fokker-Planck equation. Two-component ion energy spectrum formed by turbulent heating relaxes to single one within tau sub(i) (ion collision time). (author)

  17. Ion energy spectrum just after the application of current pulse for turbulent heating in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Nakamura, Y; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-07-01

    Temporal evolution and spatial profile of ion energy spectrum just after the application of current pulse for turbulent heating are investigated experimentally in TRIAM-1 and numerically with a Fokker-Planck equation. Two-component ion energy spectrum formed by turbulent heating relaxes to single one within tau sub(i) (ion collision time).

  18. Martensitic transformation of type 304 stainless steel by high-energy ion implantation

    International Nuclear Information System (INIS)

    Chayahara, A.; Satou, M.; Nakashima, S.; Hashimoto, M.; Sasaki, T.; Kurokawa, M.; Kiyama, S.

    1991-01-01

    The effect of high-energy ion implantation on the structural changes of type 304 stainless steel were investigated. Gold, copper and silicon ions with an energy of 1.5 MeV was implanted into stainless steel. The fluences were in the range from 5x10 15 to 10 17 ions/cm 2 . It was found that the structure of stainless steel was transformed form the austenitic to the martensitic structure by these ion implantations. This structural change was investigated by means of X-ray diffraction and transmission electron microscopy (TEM). The depth profile of the irradiated ions was also analyzed by secondary ion mass spectroscopy (SIMS) and glow discharge spectroscopy (GDS). The degree of martensitic transformation was found to be strongly dependent on the surface pretreatment, either mechanical or electrolytic polishing. When the surface damages or strains by mechanical polishing were present, the martensitic transformation was greatly accelerated presumably due to the combined action of ion irradiation and strain-enhanced transformation. Heavier ions exhibit a high efficiency for the transformation. (orig.)

  19. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  20. Very low-energy and low-fluence ion beam bombardment of naked plasmid DNA

    International Nuclear Information System (INIS)

    Norarat, R.; Semsang, N.; Anuntalabhochai, S.; Yu, L.D.

    2009-01-01

    Ion beam bombardment of biological organisms has been recently applied to mutation breeding of both agricultural and horticultural plants. In order to explore relevant mechanisms, this study employed low-energy ion beams to bombard naked plasmid DNA. The study aimed at simulation of the final stage of the process of the ion beam bombardment of real cells to check whether and how very low-energy and low-fluence of ions can induce mutation. Argon and nitrogen ions at 5 keV and 2.5 keV respectively bombarded naked plasmid DNA pGFP to very low-fluences, an order of 10 13 ions/cm 2 . Subsequently, DNA states were analyzed using electrophoresis. Results provided evidences that the very low-energy and low-fluence ion bombardment indeed altered the DNA structure from supercoil to short linear fragments through multiple double strand breaks and thus induced mutation, which was confirmed by transfer of the bombarded DNA into bacteria Escherichia coli and subsequent expression of the marker gene.

  1. Time of Flight based diagnostics for high energy laser driven ion beams

    Science.gov (United States)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  2. Time of Flight based diagnostics for high energy laser driven ion beams

    International Nuclear Information System (INIS)

    Scuderi, V.; Margarone, D.; Schillaci, F.; Milluzzo, G.; Amico, A.G.; Cirrone, G.A.P.; Larosa, G.; Leanza, R.; Petringa, G.; Pipek, J.; Romano, F.; Alejo, A.; Doria, D.; Kar, S.; Borghesi, M.; Booth, N.; Green, J.; McKenna, P.; Padda, H.; Romagnani, L.

    2017-01-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  3. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Inverted end-Hall-type low-energy high-current gaseous ion source

    International Nuclear Information System (INIS)

    Oks, E. M.; Vizir, A. V.; Shandrikov, M. V.; Yushkov, G. Yu.; Grishin, D. M.; Anders, A.; Baldwin, D. A.

    2008-01-01

    A novel approach to low-energy, high-current, gaseous ion beam generation was explored and an ion source based on this technique has been developed. The source utilizes a dc high-current (up to 20 A) gaseous discharge with electron injection into the region of ion generation. Compared to the conventional end-Hall ion source, the locations of the discharge anode and cathode are inverted: the cathode is placed inside the source and the anode outside, and correspondingly, the discharge current is in the opposite direction. The discharge operates in a diverging axial magnetic field, similar to the end-Hall source. Electron generation and injection is accomplished by using an additional arc discharge with a ''cold'' (filamentless) hollow cathode. Low plasma contamination is achieved by using a low discharge voltage (avoidance of sputtering), as well as by a special geometric configuration of the emitter discharge electrodes, thereby filtering (removing) the erosion products stemming from the emitter cathode. The device produces a dc ion flow with energy below 20 eV and current up to 2.5 A onto a collector of 500 cm 2 at 25 cm from the source edge, at a pressure ≥0.02 Pa and gas flow rate ≥14 SCCM. The ion energy spread is 2 to 3 eV (rms). The source is characterized by high reliability, low maintenance, and long lifetime. The beam contains less than 0.1% of metallic ions. The specific electric energy consumption is 400 eV per ion registered at the collector. The source operates with noble gases, nitrogen, oxygen, and hydrocarbons. Utilizing biasing, it can be used for plasma sputtering, etching, and other ion technologies

  5. Low-energy ion beam extraction and transport: Experiment--computer comparison

    International Nuclear Information System (INIS)

    Spaedtke, P.; Brown, I.; Fojas, P.

    1994-01-01

    Ion beam formation at low energy (∼1 keV or so) is more difficult to accomplish than at high energy because of beam blowup by space-charge forces in the uncompensated region within the extractor, an effect which is yet more pronounced for heavy ions and for high beam current density. For the same reasons, the extracted ion beam is more strongly subject to space charge blowup than higher energy beams if it is not space-charge neutralized to a high degree. A version of vacuum arc ion source with an extractor that produces low-energy metal ion beams at relatively high current (∼0.5--10 kV at up to ∼100 mA) using a multi-aperture, accel--decel extractor configuration has been created. The experimentally observed beam extraction characteristics of this source is compared with those predicted using the AXCEL-INP code, and the implied downstream beam transport with theoretical expectations. It is concluded that the low-energy extractor performance is in reasonable agreement with the code, and that good downstream space charge neutralization is obtained. Here, the code and the experimental results are described, and the features that contribute to good low-energy performance are discussed

  6. The stopping power and energy straggling of heavy ions in silicon nitride and polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Mikšová, R., E-mail: miksova@ujf.cas.cz [Nuclear Physics Institute of the Academy of Science of the Czech Republic v.v. i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J. E. Purkinje University, Ceske Mladeze 8, 400 96 Usti nad Labem (Czech Republic); Hnatowicz, V. [Nuclear Physics Institute of the Academy of Science of the Czech Republic v.v. i., 250 68 Rez (Czech Republic); Macková, A.; Malinský, P. [Nuclear Physics Institute of the Academy of Science of the Czech Republic v.v. i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J. E. Purkinje University, Ceske Mladeze 8, 400 96 Usti nad Labem (Czech Republic); Slepička, P. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2015-07-01

    The stopping power and energy straggling of {sup 12}C{sup 3+} and {sup 16}O{sup 3+} ions with energies between 4.5 and 7.8 MeV in a 0.166-μm-thin silicon nitride and in 4-μm-thin polypropylene foils were measured by means of an indirect transmission method using a half-covered PIPS detector. Ions scattered from a thin gold layer under a scattering angle of 150° were used. The energy spectra of back-scattered and decelerated ions were registered and evaluated simultaneously. The measured stopping powers were compared with the theoretical predictions simulated by SRIM-2008 and MSTAR codes. SRIM prediction of energy stopping is reasonably close to the experimentally obtained values comparing to MSTAR values. Better agreement between experimental and predicted data was observed for C{sup 3+} ion energy losses comparing to O{sup 3+} ions. The experimental data from Paul’s database and our previous experimental data were also discussed. The obtained experimental energy-straggling data were compared to those calculated by using Bohr’s, Yang’s models etc. The predictions by Yang are in good agreement with our experiment within a frame of uncertainty of 25%.

  7. The stopping power and energy straggling of heavy ions in silicon nitride and polypropylene

    International Nuclear Information System (INIS)

    Mikšová, R.; Hnatowicz, V.; Macková, A.; Malinský, P.; Slepička, P.

    2015-01-01

    The stopping power and energy straggling of 12 C 3+ and 16 O 3+ ions with energies between 4.5 and 7.8 MeV in a 0.166-μm-thin silicon nitride and in 4-μm-thin polypropylene foils were measured by means of an indirect transmission method using a half-covered PIPS detector. Ions scattered from a thin gold layer under a scattering angle of 150° were used. The energy spectra of back-scattered and decelerated ions were registered and evaluated simultaneously. The measured stopping powers were compared with the theoretical predictions simulated by SRIM-2008 and MSTAR codes. SRIM prediction of energy stopping is reasonably close to the experimentally obtained values comparing to MSTAR values. Better agreement between experimental and predicted data was observed for C 3+ ion energy losses comparing to O 3+ ions. The experimental data from Paul’s database and our previous experimental data were also discussed. The obtained experimental energy-straggling data were compared to those calculated by using Bohr’s, Yang’s models etc. The predictions by Yang are in good agreement with our experiment within a frame of uncertainty of 25%

  8. Testing electric field models using ring current ion energy spectra from the Equator-S ion composition (ESIC instrument

    Directory of Open Access Journals (Sweden)

    L. M. Kistler

    Full Text Available During the main and early recovery phase of a geomagnetic storm on February 18, 1998, the Equator-S ion composition instrument (ESIC observed spectral features which typically represent the differences in loss along the drift path in the energy range (5–15 keV/e where the drift changes from being E × B dominated to being gradient and curvature drift dominated. We compare the expected energy spectra modeled using a Volland-Stern electric field and a Weimer electric field, assuming charge exchange along the drift path, with the observed energy spectra for H+ and O+. We find that using the Weimer electric field gives much better agreement with the spectral features, and with the observed losses. Neither model, however, accurately predicts the energies of the observed minima.

    Key words. Magnetospheric physics (energetic particles trapped; plasma convection; storms and substorms

  9. Ultra-low magnetic damping in metallic and half-metallic systems

    Science.gov (United States)

    Shaw, Justin

    The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.

  10. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  11. Z-dependence of Mean Excitation Energies for Second and Third Row Atoms and Their Ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Sabin, John R.; Oddershede, Jens

    2018-01-01

    All mean excitations energies for second and third row atoms and their ions are calculated in the random‐phase approximation using large basis sets. To a very good approximation it turns out that mean excitation energies within an isoelectronic series is a quadratic function of the nuclear charge...

  12. Low-energy-spread ion bunches from a trapped atomic gas

    NARCIS (Netherlands)

    Reijnders, M.P.; Kruisbergen, van P.A.; Taban, G.; Geer, van der S.B.; Mutsaers, P.H.A.; Vredenbregt, E.J.D.; Luiten, O.J.

    2009-01-01

    We present time-of-flight measurements of the longitudinal energy spread of pulsed ultracold ion beams, produced by near-threshold ionization of rubidium atoms captured in a magneto-optical atom trap. Well-defined pulsed beams have been produced with energies of only 1 eV and a root-mean-square

  13. Theoretical study of cylindrical energy analyzers for MeV range heavy ion beam probes

    International Nuclear Information System (INIS)

    Fujisawa, A.; Hamada, Y.

    1993-07-01

    A cylindrical energy analyzer with drift spaces is shown to have a second order focusing for beam incident angle when the deflection angle is properly chosen. The analyzer has a possibility to be applied to MeV range heavy ion beam probes, and will be also available for accurate particle energy measurements in many other fields. (author)

  14. Field Experience from Li-Ion BESS Delivering Primary Frequency Regulation in the Danish Energy Market

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Lærke, Rasmus

    2014-01-01

    In this paper it is presented the practical experience from operating a 1.6 MW/ 0.4 MWh lithium ion battery energy storage system, which is providing primary frequency regulation service on the Danish energy market. Aspects of the battery system requirements and the used control strategy...

  15. Incorporating the effect of ionic strength in free energy calculations using explicit ions

    NARCIS (Netherlands)

    Donnini, S; Mark, AE; Juffer, AH; Villa, Alessandra

    2005-01-01

    The incorporation of explicit ions to mimic the effect of ionic strength or to neutralize the overall charge on a system in free energy calculations using molecular dynamics simulations is investigated. The difference in the free energy of hydration between two triosephosphate isomerase inhibitors

  16. Jet and Leading Hadron Production in High-energy Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian

    2005-01-01

    Jet tomography has become a powerful tool for the study of properties of dense matter in high-energy heavy-ion collisions. I will discuss recent progresses in the phenomenological study of jet quenching, including momentum, colliding energy and nuclear size dependence of single hadron suppression, modification of dihadron correlations and the soft hadron distribution associated with a quenched jet

  17. Hot nuclei and search for multifragmentation in medium-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Doubre, H.

    1988-01-01

    Some recent determinations of the excitation energies and temperatures of composite systems formed in intermediate-energy heavy-ion collisions are described and the issue of a limiting temperature is discussed. Several examples of experimental investigations of an eventual occurrence of a multifragmentation process are also described

  18. L X-ray energy shifts and intensity ratios in tantalum with C and N ions

    Indian Academy of Sciences (India)

    charged particles. Study of atomic ... authors [1–10] have observed that the X-ray energy shifts in heavy ion collision process are relative to the ... and observed the L X-ray energy shifts of different L X-ray components in some high Z elements.

  19. Advanced Space Power Systems (ASPS): High Specific Energy Li-ion Battery Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project element is to increase the specific energy of Li-ion battery cells to 265 Wh/kg and the energy density to 500 Wh/L at 10oC while maintaining...

  20. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)