WorldWideScience

Sample records for ultralight porous metals

  1. Ultralight metallic microlattices.

    Science.gov (United States)

    Schaedler, T A; Jacobsen, A J; Torrents, A; Sorensen, A E; Lian, J; Greer, J R; Valdevit, L; Carter, W B

    2011-11-18

    Ultralight (nickel plating, and subsequently etching away the template. The resulting metallic microlattices exhibit densities ρ ≥ 0.9 milligram per cubic centimeter, complete recovery after compression exceeding 50% strain, and energy absorption similar to elastomers. Young's modulus E scales with density as E ~ ρ(2), in contrast to the E ~ ρ(3) scaling observed for ultralight aerogels and carbon nanotube foams with stochastic architecture. We attribute these properties to structural hierarchy at the nanometer, micrometer, and millimeter scales.

  2. Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology

    Science.gov (United States)

    Zhang, Dongxing; Xiao, Junfeng; Moorlag, Carolyn; Guo, Qiuquan; Yang, Jun

    2017-11-01

    Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.

  3. Ultralight, Flexible, and Semi-Transparent Metal Oxide Papers for Photoelectrochemical Water Splitting

    DEFF Research Database (Denmark)

    Zhang, Minwei; Hou, Chengyi; Halder, Arnab

    2017-01-01

    nanostructure and macroscopic morphology of MOs that aims to enhance their performances, but the design and controlled synthesis of ultrafine nanostructured MOs in a cost-effective and facile way remains a challenge. In this work, we have exploited the advantages of intrinsic structures of graphene oxide (GO......) papers, serving as a sacrificial template, to design and synthesize two-dimensional (2D) layered and free-standing MO papers with ultrafine nanostructures. Physicochemical characterizations showed that these MO materials are nanostructured, porous, flexible, and ultralight. The as-synthesized materials...

  4. Ultralight porous metals: From fundamentals to applications

    Science.gov (United States)

    Lu, Tianjian

    2002-10-01

    Over the past few years a number of low cost metallic foams have been produced and used as the core of sandwich panels and net shaped parts. The main aim is to develop lightweight structures which are stiff, strong, able to absorb large amount of energy and cheap for application in the transport and construction industries. For example, the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength, good energy and sound absorbing properties, and adequate fire retardance. Metal foams provide all of these features, and are under serious consideration for this applications by a number of automobile manufacturers (e.g., BMW and Audi). Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles, from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft, from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers. But there is a problem. Before metallic foams can find a widespread application, their basic properties must be measured, and ideally modeled as a function of microstructural details, in order to be included in a design. This work aims at reviewing the recent progress and presenting some new results on fundamental research regarding the micromechanical origins of the mechanical, thermal, and acoustic properties of metallic foams.

  5. Ultralight porous metals. From fundamentals to applications

    International Nuclear Information System (INIS)

    Lu, T.

    2002-01-01

    Over the past few years a number of low cost metallic foams for application as the core of sandwich panels and net shaped parts have been produced. The main aim is to develop lightweight structures which are stiff, strong, absorb large amount of energy and are cheap, for application in the transport and construction industries. For example, the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength, good energy and sound absorbing properties, and adequate fire retardance. Metal foams provide all of these features, and are under serious scrutiny for this applications by a number of automobile manufacturers (e.g., BMW and Audi). Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles, from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft, from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers. But there is a problem. Before metallic foams can find widespread application, their basic properties must be measured, and ideally modeled as a function of microstructural details, in order to give a design capability. This work aims at reviewing recent progress and present some new results on fundamental research regarding the micromechanical origins of the mechanical, thermal, and acoustic properties of metallic foams. (author)

  6. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Rodriguez-Abreu, Carlos, E-mail: carlos.rodriguez@inl.int [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)

    2011-10-17

    Highlights: {yields} Polystyrene-divinylbenzene-iron oxide nanocomposites. {yields} Porous magnetic nanocomposites from highly concentrated emulsions. {yields} Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m{sup -3}, which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  7. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    International Nuclear Information System (INIS)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita; Rodriguez-Abreu, Carlos

    2011-01-01

    Highlights: → Polystyrene-divinylbenzene-iron oxide nanocomposites. → Porous magnetic nanocomposites from highly concentrated emulsions. → Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m -3 , which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  8. Porous metal for orthopedics implants

    OpenAIRE

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery.

  9. Ultralight mesoporous magnetic frameworks by interfacial assembly of Prussian blue nanocubes.

    Science.gov (United States)

    Kong, Biao; Tang, Jing; Wu, Zhangxiong; Wei, Jing; Wu, Hao; Wang, Yongcheng; Zheng, Gengfeng; Zhao, Dongyuan

    2014-03-10

    A facile approach for the synthesis of ultralight iron oxide hierarchical structures with tailorable macro- and mesoporosity is reported. This method entails the growth of porous Prussian blue (PB) single crystals on the surface of a polyurethane sponge, followed by in situ thermal conversion of PB crystals into three-dimensional mesoporous iron oxide (3DMI) architectures. Compared to previously reported ultralight materials, the 3DMI architectures possess hierarchical macro- and mesoporous frameworks with multiple advantageous features, including high surface area (ca. 117 m(2) g(-1)) and ultralow density (6-11 mg cm(-3)). Furthermore, they can be synthesized on a kilogram scale. More importantly, these 3DMI structures exhibit superparamagnetism and tunable hydrophilicity/hydrophobicity, thus allowing for efficient multiphase interfacial adsorption and fast multiphase catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Additive manufacturing technologies of porous metal implants

    Directory of Open Access Journals (Sweden)

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  11. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites

    Science.gov (United States)

    He, Shuijian; Chen, Wei

    2014-09-01

    The syntheses and capacitance performances of ultralight and flexible MnO2/carbon foam (MnO2/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm-3 and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO2 nanosheets are grown through in situ redox reaction between KMnO4 and carbon foam. The three-dimensional (3D) MnO2/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO2/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO2 nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO2/CF composite with 3.4% weight percent of MnO2 shows a high specific capacitance of 1270.5 F g-1 (92.7% of the theoretical specific capacitance of MnO2) and high energy density of 86.2 Wh kg-1. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.

  12. Prospect of ultralight airplanes development

    Directory of Open Access Journals (Sweden)

    Adam KONICZEK

    2015-09-01

    Full Text Available The article presents characteristic of ultralight airplanes, rules and current interest of them. The purpose is to determine prospect of ultralight airplanes development on the basis of Civil Aviation Authority statistics analysis and trend of aviation market.

  13. Evaluation of aluminum ultralight rigid wheelchairs versus other ultralight wheelchairs using ANSI/RESNA standards.

    Science.gov (United States)

    Liu, Hsin-yi; Pearlman, Jonathan; Cooper, Rosemarie; Hong, Eun-kyoung; Wang, Hongwu; Salatin, Benjamin; Cooper, Rory A

    2010-01-01

    Previous studies found that select titanium ultralight rigid wheelchairs (TURWs) had fewer equivalent cycles and less value than select aluminum ultralight folding wheelchairs (AUFWs). The causes of premature failure of TURWs were not clear because the TURWs had different frame material and design than the AUFWs. We tested 12 aluminum ultralight rigid wheelchairs (AURWs) with similar frame designs and dimensions as the TURWs using the American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America and International Organization for Standardization wheelchair standards and hypothesized that the AURWs would be more durable than the TURWs. Across wheelchair models, no significant differences were found in the test results between the AURWs and TURWs, except in their overall length. Tire pressure, tube-wall thickness, and tube manufacturing were proposed to be the factors affecting wheelchair durability through comparison of the failure modes, frames, and components. The frame material did not directly affect the performance of AURWs and TURWs, but proper wheelchair manufacture and design based on mechanical properties are important.

  14. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a device...

  15. 3D Microstructure Modeling of Porous Metal Filters

    Czech Academy of Sciences Publication Activity Database

    Hejtmánek, Vladimír; Čapek, M.

    2012-01-01

    Roč. 2, č. 3 (2012), s. 344-352 ISSN 2075-4701. [International Conference on Porous Metals and Metallic Foams /7./. Busan, 18.09.2011-21.09.2011] R&D Projects: GA ČR(CZ) GAP204/11/1206; GA ČR GA203/09/1353 Institutional support: RVO:67985858 Keywords : porous metal filter * stochastic reconstruction * microstructural descriptors Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  17. Additively manufactured metallic porous biomaterials based on minimal surfaces

    DEFF Research Database (Denmark)

    Bobbert, F. S. L.; Lietaert, K.; Eftekhari, Ali Akbar

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different...... of bone properties is feasible, biomaterials that could simultaneously mimic all or most of the relevant bone properties are rare. We used rational design and additive manufacturing to develop porous metallic biomaterials that exhibit an interesting combination of topological, mechanical, and mass...

  18. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  19. Size-effects in porous metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    The intrinsic size-effect for porous metals is investigated. The analyses are carried out numerically using a finite strain generalization of a higher order strain gradient plasticity model. Results for plane strain growth of cylindrical voids are presented in terms of response curves and curves...

  20. Size-effects in porous metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2007-01-01

    The intrinsic size-effect for porous metals is investigated. The analyses are carried out numerically using a finite strain generalization of a higher order strain gradient plasticity model. Results for plane strain growth of cylindrical voids are presented in terms of response curves and curves...

  1. Thermally stable sintered porous metal articles

    International Nuclear Information System (INIS)

    Gombach, A.L.; Thellmann, E.L.

    1980-01-01

    A sintered porous metal article is provided which is essentially thermally stable at elevated temperatures. In addition, a method for producing such an article is also provided which method comprises preparing a blend of base metal particles and active dispersoid particles, forming the mixture into an article of the desired shape, and heating the so-formed article at sintering temperatures

  2. Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon

    Science.gov (United States)

    2015-11-01

    Platinum Electrodes for Metal Assisted Etching of Porous Silicon by Matthew H Ervin and Brian Isaacson Sensors and Electron Devices Directorate...SUBTITLE Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  3. Production of sintered porous metal fluoride pellets

    Science.gov (United States)

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  4. Porous metal oxide particles and their methods of synthesis

    Science.gov (United States)

    Chen, Fanglin; Liu, Qiang

    2013-03-12

    Methods are generally disclosed for synthesis of porous particles from a solution formed from a leaving agent, a surfactant, and a soluble metal salt in a solvent. The surfactant congregates to form a nanoparticle core such that the metal salt forms about the nanoparticle core to form a plurality of nanoparticles. The solution is heated such that the leaving agent forms gas bubbles in the solution, and the plurality of nanoparticles congregate about the gas bubbles to form a porous particle. The porous particles are also generally disclosed and can include a particle shell formed about a core to define an average diameter from about 0.5 .mu.m to about 50 .mu.m. The particle shell can be formed from a plurality of nanoparticles having an average diameter of from about 1 nm to about 50 nm and defined by a metal salt formed about a surfactant core.

  5. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon.

    Science.gov (United States)

    Bandarenka, Hanna V; Girel, Kseniya V; Zavatski, Sergey A; Panarin, Andrei; Terekhov, Sergei N

    2018-05-21

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  6. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Hanna V. Bandarenka

    2018-05-01

    Full Text Available The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs, and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  7. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a device...

  8. Characterization of the porous anodic alumina nanostructures with a metal interlayer on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chia-Hui; Chen, Hung-Ing; Hsiao, Jui-Ju; Wang, Jen-Cheng; Nee, Tzer-En, E-mail: neete@mail.cgu.edu.tw

    2014-04-15

    Porous anodic alumina (PAA) films produced by the anodization technique have made possible the mass production of porous nano-scale structures where the pore height and diameter are controllable. A metal interlayer is observed to have a significant influence on the characteristics of these PAA nanostructures. In this study, we investigate in-depth the effect of the current density on the properties of porous anodic alumina nanostructures with a metal interlayer. A thin film layer of tungsten (W) and titanium (Ti) was sandwiched between a porous anodic alumina film and a silicon (Si) substrate to form PAA/W/Si and PAA/Ti/Si structures. The material and optical characteristics of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates were studied using the scanning electron microscopy, X-ray diffraction (XRD), and temperature-dependent photoluminescence (PL) measurements. The current densities of the porous anodic alumina nanostructures with the metal interlayer are higher than for the PAA/Si, resulting in an increase of the growth rate of the oxide layer. It can be observed from the X-ray diffraction curves that there is more aluminum oxide inside the structure with the metal interlayer. Furthermore, it has been found that there is a reduction in the photoluminescence intensity of the oxygen vacancy with only one electron due to the formation of oxygen vacancies inside the aluminum oxide during the re-crystallization process. This leads to competition between the two kinds of different oxygen-deficient defect centers (F+ and F centers) in the carrier recombination mechanism from the PL spectra of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates. -- Highlights: • Study of porous anodic alumina (PAA) films with metal interlayers on silicon. • The highly ordered PAA film with a fairly regular nano-porous structure. • The luminescence properties of PAA films were

  9. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.

    Science.gov (United States)

    Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia

    2017-08-02

    The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g -1 at 2 A g -1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g -1 at 1 A g -1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.

  10. Enhanced Stability of Li Metal Anode by using a 3D Porous Nickel Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lu; Canfield, Nathan L.; Chen, Shuru; Lee, Hongkyung; Ren, Xiaodi; Engelhard, Mark H.; Li, Qiuyan; Liu, Jun; Xu, Wu; Zhang, Jiguang

    2018-03-02

    Lithium (Li) metal is considered the “holy grail” anode for high energy density batteries, but its applications in rechargeable Li metal batteries are still hindered by the formation of Li dendrites and low Coulombic efficiency for Li plating/stripping. An effective strategy to stabilize Li metal is by embedding Li metal anode in a three-dimensional (3D) current collector. Here, a highly porous 3D Ni substrate is reported to effectively stabilize Li metal anode. Using galvanostatic intermittent titration technique combined with scanning electron microscopy, the underlying mechanism on the improved stability of Li metal anode is revealed. It is clearly demonstrated that the use of porous 3D Ni substrate can effectively suppress the formation of “dead” Li and forms a dense surface layer, whereas a porous “dead” Li layer is accumulated on the 2D Li metal which eventually leads to mass transport limitations. X-ray photoelectron spectroscopy results further revealed the compositional differences in the solid-electrolyte interphase layer formed on the Li metal embedded in porous 3D Ni substrate and the 2D copper substrate.

  11. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    International Nuclear Information System (INIS)

    Song, Jinliang; Sun, Quansheng; Yang, Zhenning; Luo, Shengmin; Xiao, Xianghui; Arwade, Sanjay R.; Zhang, Guoping

    2017-01-01

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  12. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jinliang [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Sun, Quansheng [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Yang, Zhenning; Luo, Shengmin [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Xiao, Xianghui [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Arwade, Sanjay R. [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Zhang, Guoping, E-mail: zhangg@umass.edu [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States)

    2017-03-14

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  13. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer porous-coated...

  14. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  15. The structure of steady shock waves in porous metals

    Science.gov (United States)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  16. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Hao Pengcheng; Dong Yinfeng; Wei Xijun; Zhu Jianshi

    2012-01-01

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  17. Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries

    KAUST Repository

    Choi, Jang Wook

    2010-12-15

    Although current collectors take up more weight than active materials in most lithium ion battery cells, so far research has been focused mainly on improving gravimetric capacities of active materials. To address this issue of improving gravimetric capacities based on overall cell components, we develop freestanding nanocomposites made of carbon nanofibers (CNFs) and silicon nanowires (SiNWs) as metal current collector-free anode platforms. Intrinsically large capacities of SiNWs as active materials in conjunction with the light nature of freestanding CNF films allow the nanocomposites to achieve 3-5 times improved gravimetric capacities compared to what have been reported in the literature. Moreover, three-dimensional porous structures in the CNF films facilitate increased mass loadings of SiNWs when compared to flat substrates and result in good cycle lives over 40 cycles. This type of nanocomposite cell suggests that 3D porous platforms consisting of light nanomaterials can provide for higher gravimetric and areal capacities when compared to conventional battery cells based on flat, heavy metal substrates. © 2010 Elsevier B.V. All rights reserved.

  18. A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set

    International Nuclear Information System (INIS)

    Guan, Dong; Wu, Jiu Hui; Jing, Li

    2015-01-01

    Highlights: • A random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. • Effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. • This method could be utilized to guide the design and fabrication of the sound-absorption porous metal materials. - Abstract: In this paper, a statistical method for predicting sound absorption properties of porous metal materials is presented. To reflect the stochastic distribution characteristics of the porous metal materials, a random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. Then by using the transfer-function approach along with the QSGS tool, we investigate the sound absorbing performance of porous metal materials with complex stochastic geometries. The statistical method has been validated by the good agreement among the numerical results for metal rubber from this method and a previous empirical model and the corresponding experimental data. Furthermore, the effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. Therefore, the present method is a reliable and robust method for predicting the sound absorption performance of porous metal materials, and could be utilized to guide the design and fabrication of the sound-absorption porous metal materials

  19. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  20. Porous silicon based anode material formed using metal reduction

    Science.gov (United States)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  1. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.

    Science.gov (United States)

    Wang, Xiaojian; Xu, Shanqing; Zhou, Shiwei; Xu, Wei; Leary, Martin; Choong, Peter; Qian, M; Brandt, Milan; Xie, Yi Min

    2016-03-01

    One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ultralight Nanolattices with Co-Optimized Mechanical, Thermal, and Optical Properties

    Data.gov (United States)

    National Aeronautics and Space Administration — This research aims to develop ultralight nanostructured materials with optimized properties in multiple physical domains. The proposed approach is based on...

  3. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.

    Science.gov (United States)

    An, Jihyun; Farha, Omar K; Hupp, Joseph T; Pohl, Ehmke; Yeh, Joanne I; Rosi, Nathaniel L

    2012-01-03

    Metal-organic frameworks comprising metal-carboxylate cluster vertices and long, branched organic linkers are the most porous materials known, and therefore have attracted tremendous attention for many applications, including gas storage, separations, catalysis and drug delivery. To increase metal-organic framework porosity, the size and complexity of linkers has increased. Here we present a promising alternative strategy for constructing mesoporous metal-organic frameworks that addresses the size of the vertex rather than the length of the organic linker. This approach uses large metal-biomolecule clusters, in particular zinc-adeninate building units, as vertices to construct bio-MOF-100, an exclusively mesoporous metal-organic framework. Bio-MOF-100 exhibits a high surface area (4,300 m(2) g(-1)), one of the lowest crystal densities (0.302 g cm(-3)) and the largest metal-organic framework pore volume reported to date (4.3 cm(3) g(-1)).

  4. From metal-organic squares to porous zeolite-like supramolecular assemblies

    KAUST Repository

    Wang, Shuang; Zhao, Tingting; Li, Guanghua; Wojtas, Łukasz; Huo, Qisheng; Eddaoudi, Mohamed; Liu, Yunling

    2010-01-01

    We report the synthesis, structure, and characterization of two novel porous zeolite-like supramolecular assemblies, ZSA-1 and ZSA-2, having zeolite gis and rho topologies, respectively. The two compounds were assembled from functional metal

  5. Superior microwave absorption properties of ultralight reduced graphene oxide/black phosphorus aerogel

    Science.gov (United States)

    Hao, Chunxue; Wang, Bochong; Wen, Fusheng; Mu, Congpu; Xiang, Jianyong; Li, Lei; Liu, Zhongyuan

    2018-06-01

    Through a facile self-assembled process, an ultralight reduced graphene oxide/black phosphorus (rGO/BP) composite aerogel was successfully fabricated. The BP nanosheets were homogeneously distributed throughout the rGO 3D framework, and the interfaces between rGO and BP possessed four kinds of interconnections, such as wrapping, wearing, bridging and weak linking. As an ultralight composite, the rGO/BP aerogel could easily stand on the stamen of a flower. Compared with pure rGO aerogel, the rGO/BP composite aerogel exhibited enhanced microwave absorption ability. The minimum reflection loss value of ‑46.9 dB with a thickness of 2.53 mm was obtained, and a wide absorption band of 6.1 GHz (RL < ‑10 dB) was achieved. The superior microwave absorption property was demonstrated to stem from the interfacial polarization loss mechanism in which the multiform interface interactions between the rGO skeleton and BP nanosheets played critical roles. The rGO/BP aerogel has great potential to be used as an ultralight microwave absorber.

  6. Positron annihilation lifetime spectroscopy (PALS) application in metal barrier layer integrity for porous low- k materials

    CERN Document Server

    Simon, Lin; Gidley, D W; Wetzel, J T; Monnig, K A; Ryan, E T; Simon, Jang; Douglas, Yu; Liang, M S; En, W G; Jones, E C; Sturm, J C; Chan, M J; Tiwari, S C; Hirose, M

    2002-01-01

    Positron Annihilation Lifetime Spectroscopy (PALS) is a useful tool to pre-screen metal barrier integrity for Si-based porous low-k dielectrics. Pore size of low-k, thickness of metal barrier Ta, positronium (Ps) leakage from PALS, trench sidewall morphology, electrical test from one level metal (1LM) pattern wafer and Cu diffusion analysis were all correlated. Macro-porous low-k (pore size >=200 AA) and large scale meso-porous low-k (>50~200 AA) encounter both Ps leakage and Cu diffusion into low-k dielectric in the 0.25 mu mL/0.3 mu mS structures when using SEMATECH in-house PVD Ta 250 AA as barrier layer. For small scale meso-porous (>20~50 AA) and micro- porous (<=20 AA) low-k, no Ps leakage and no Cu diffusion into low-k were observed even with PVD Ta 50 AA, which is proved also owing to sidewall densification to seal all sidewall pores due to plasma etch and ash. For future technology, smaller pore size of porous Si-based low-k (=<50 AA) will be preferential for dense low-k like trench sidewall to...

  7. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting.

    Science.gov (United States)

    Van Hooreweder, Brecht; Apers, Yanni; Lietaert, Karel; Kruth, Jean-Pierre

    2017-01-01

    This paper provides new insights into the fatigue properties of porous metallic biomaterials produced by additive manufacturing. Cylindrical porous samples with diamond unit cells were produced from Ti6Al4V powder using Selective Laser Melting (SLM). After measuring all morphological and quasi-static properties, compression-compression fatigue tests were performed to determine fatigue strength and to identify important fatigue influencing factors. In a next step, post-SLM treatments were used to improve the fatigue life of these biomaterials by changing the microstructure and by reducing stress concentrators and surface roughness. In particular, the influence of stress relieving, hot isostatic pressing and chemical etching was studied. Analytical and numerical techniques were developed to calculate the maximum local tensile stress in the struts as function of the strut diameter and load. With this method, the variability in the relative density between all samples was taken into account. The local stress in the struts was then used to quantify the exact influence of the applied post-SLM treatments on the fatigue life. A significant improvement of the fatigue life was achieved. Also, the post-SLM treatments, procedures and calculation methods can be applied to different types of porous metallic structures and hence this paper provides useful tools for improving fatigue performance of metallic biomaterials. Additive Manufacturing (AM) techniques such as Selective Laser Melting (SLM) are increasingly being used for producing customized porous metallic biomaterials. These biomaterials are regularly used for biomedical implants and hence a long lifetime is required. In this paper, a set of post-built surface and heat treatments is presented that can be used to significantly improve the fatigue life of porous SLM-Ti6Al4V samples. In addition, a novel and efficient analytical local stress method was developed to accurately quantify the influence of the post

  8. Osteoinduction on acid and heat treated porous Ti metal samples in canine muscle.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kawai

    Full Text Available Samples of porous Ti metal were subjected to different acid and heat treatments. Ectopic bone formation on specimens embedded in dog muscle was compared with the surface characteristics of the specimen. Treatment of the specimens by H2SO4/HCl and heating at 600 °C produced micrometer-scale roughness with surface layers composed of rutile phase of titanium dioxide. The acid- and heat-treated specimens induced ectopic bone formation within 6 months of implantation. A specimen treated using NaOH followed by HCl acid and then heat treatment produced nanometer-scale surface roughness with a surface layer composed of both rutile and anatase phases of titanium dioxide. These specimens also induced bone formation after 6 months of implantation. Both these specimens featured positive surface charge and good apatite-forming abilities in a simulated body fluid. The amount of the bone induced in the porous structure increased with apatite-forming ability and higher positive surface charge. Untreated porous Ti metal samples showed no bone formation even after 12 months. Specimens that were only heat treated featured a smooth surface composed of rutile. A mixed acid treatment produced specimens with micrometer-scale rough surfaces composed of titanium hydride. Both of them also showed no bone formation after 12 months. The specimens that showed no bone formation also featured almost zero surface charge and no apatite-forming ability. These results indicate that osteoinduction of these porous Ti metal samples is directly related to positive surface charge that facilitates formation of apatite on the metal surfaces in vitro.

  9. Ultralight particle dark matter

    International Nuclear Information System (INIS)

    Ringwald, A.

    2013-10-01

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  10. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  11. Determination of the Darcy permeability of porous media including sintered metal plugs

    Science.gov (United States)

    Frederking, T. H. K.; Hepler, W. A.; Yuan, S. W. K.; Feng, W. F.

    1986-01-01

    Sintered-metal porous plugs with a normal size of the order of 1-10 microns are used to evaluate the Darcy permeability of laminar flow at very small velocities in laminar fluids. Porous media experiment results and data adduced from the literature are noted to support the Darcy law analog for normal fluid convection in the laminar regime. Low temperature results suggest the importance of collecting room temperature data prior to runs at liquid He(4) temperatures. The characteristic length diagram gives a useful picture of the tolerance range encountered with a particular class of porous media.

  12. Metal-assisted chemical etch porous silicon formation method

    Science.gov (United States)

    Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.

    2004-09-14

    A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.

  13. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  14. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  15. Teaching migration routes to canada geese and trumpeter swans using ultralight aircraft, 1990-2001

    Science.gov (United States)

    Sladen, William J. L.; Lishman, W.A.; Ellis, D.H.; Shire, G.G.; Rininger, D.L.; Rees, Eileen C.; Earnst, Susan L.; Coulson, John C.

    2002-01-01

    This paper summarizes eleven years (1990-2001) of experiments to teach Canada Geese (Branta canadensis) and Trumpeter Swans (Cygnus buccinator) pre-selected migration routes using ultralight aircraft. When Canada Geese were trained to follow an ultralight aircraft for southward autumn migrations of 680 or 1,320 km, 81% (83/103) returned on their own in the next spring to near their place of training. In contrast, none returned of 21 similarly raised geese that were transported south in a closed truck over a route of 680 km. Trumpeter Swans have proven more difficult to train. However, in two experiments in which Trumpeter Swans followed an ultralight for the entire pre-selected route, one of three and two of four returned close to their training area. A stage-by-stage method, in which swans were transported in trucks between stops, flown in the vicinity and penned with a view of the night sky, has shown some promise. So far an established migration route (north and south twice) has been confirmed in only two geese

  16. Manufacturing And High Temperature Oxidation Properties Of Electro-Sprayed Fe-24.5% Cr-5%Al Powder Porous Metal

    Directory of Open Access Journals (Sweden)

    Lee Kee-Ahn

    2015-06-01

    Full Text Available Fe-Cr-Al based Powder porous metals were manufactured using a new electro-spray process, and the microstructures and high-temperature oxidation properties were examined. The porous materials were obtained at different sintering temperatures (1350°C, 1400°C, 1450°C, and 1500°C and with different pore sizes (500 μm, 450 μm, and 200 μm. High-temperature oxidation experiments (TGA, Thermal Gravimetry Analysis were conducted for 24 hours at 1000°C in a 79% N2+ 21% O2, 100 mL/min. atmosphere. The Fe-Cr-Al powder porous metals manufactured through the electro-spray process showed more-excellent oxidation resistance as sintering temperature and pore size increased. In addition, the fact that the densities and surface areas of the abovementioned powder porous metals had the largest effects on the metal’s oxidation properties could be identified.

  17. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff.

    Science.gov (United States)

    Harada, Shigeki; Yanbe, Miyu

    2018-04-01

    This report describes the use of porous concrete at the bottom of a sewage trap to prevent runoff of non-point heavy metals into receiving waters, and, secondarily, to reduce total runoff volume during heavy rains in urbanized areas while simultaneously increasing the recharge volume of heavy-metal-free water into underground aquifers. This idea has the advantage of preventing clogging, which is fundamentally very important when using pervious materials. During actual field experiments, two important parameters were identified: maximum adsorption weight of lead and zinc by the volume of porous concrete, and heavy metal recovery rate by artificial acidification after adsorption. To understand the effect of ambient heavy metal concentration, a simple mixing system was used to adjust the concentrations of lead and zinc solutions. The concrete blocks used had been prepared for a previous study by Harada & Komuro (2010). The results showed that maximum adsorption depended on the ambient concentration, expressed as the linear isothermal theory, and that recovery depended on the final pH value (0.5 or 0.0). The dependence on pH is very important for recycling the porous concrete. A pH of 0.5 is important for recycling both heavy metals, especially zinc, (8.0-22.1% of lead and 42-74% of zinc) and porous concrete because porous concrete has not been heavily damaged by acid. However, at a pH of 0.0, the heavy metals could be recovered: 30-60% of the lead and 75-125% of the zinc. At a higher pH, such as 2.0, no release of heavy metals occurred, indicating the safety to the environment of using porous concrete, because the lowest recorded pH of rainfall in Japan is. 4.0. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Cumulative effects in inflation with ultra-light entropy modes

    Energy Technology Data Exchange (ETDEWEB)

    Achúcarro, Ana; Atal, Vicente [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands); Germani, Cristiano [Institut de Ciéncies del Cosmos, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona (Spain); Palma, Gonzalo A., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: vicente.atal@icc.ub.edu, E-mail: germani@icc.ub.edu, E-mail: gpalmaquilod@ing.uchile.cl [Grupo de Cosmología y Astrofísica Teórica, Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)

    2017-02-01

    In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless (''ultralight') while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressing the isocurvature component. We identify a Stückelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e -folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.

  19. Development of membrane filters with nanostructured porous layer by coating of metal nanoparticles sintered onto a micro-filter

    International Nuclear Information System (INIS)

    Park, Seok Joo; Park, Young Ok; Lee, Dong Geun; Ryu, Jeong In

    2008-01-01

    The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 KPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%

  20. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity.

    Science.gov (United States)

    Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin

    2018-04-01

    Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.

  1. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  2. Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C.Y., E-mail: c.y.zhao@warwick.ac.u [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Dai, L.N.; Tang, G.H.; Qu, Z.G.; Li, Z.Y. [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2010-10-15

    A thermal lattice BGK model with doubled populations is proposed to simulate the two-dimensional natural convection flow in porous media (porous metals). The accuracy of this method is validated by the benchmark solutions. The detailed flow and heat transfer at the pore level are revealed. The effects of pore density (cell size) and porosity on the natural convection are examined. Also the effect of porous media configuration (shape) on natural convection is investigated. The results showed that the overall heat transfer will be enhanced by lowering the porosity and cell size. The square porous medium can have a higher heat transfer performance than spheres due to the strong flow mixing and more surface area.

  3. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun [Dongguk University, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications.

  4. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    International Nuclear Information System (INIS)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun

    2016-01-01

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications

  5. From metal-organic squares to porous zeolite-like supramolecular assemblies

    KAUST Repository

    Wang, Shuang

    2010-12-29

    We report the synthesis, structure, and characterization of two novel porous zeolite-like supramolecular assemblies, ZSA-1 and ZSA-2, having zeolite gis and rho topologies, respectively. The two compounds were assembled from functional metal-organic squares (MOSs) via directional hydrogen-bonding interactions and exhibited permanent microporosity and thermal stability up to 300 °C. © 2010 American Chemical Society.

  6. Test results from a helium gas-cooled porous metal heat exchanger

    International Nuclear Information System (INIS)

    North, M.T.; Rosenfeld, J.H.; Youchison, D.L.

    1996-01-01

    A helium-cooled porous metal heat exchanger was built and tested, which successfully absorbed heat fluxes exceeding all previously tested gas-cooled designs. Helium-cooled plasma-facing components are being evaluated for fusion applications. Helium is a favorable coolant for fusion devices because it is not a plasma contaminant, it is not easily activated, and it is easily removed from the device in the event of a leak. The main drawback of gas coolants is their relatively poor thermal transport properties. This limitation can be removed through use of a highly efficient heat exchanger design. A low flow resistance porous metal heat exchanger design was developed, based on the requirements for the Faraday shield for the International Thermonuclear Experimental Reactor (ITER) device. High heat flux tests were conducted on two representative test articles at the Plasma Materials Test Facility (PMTF) at Sandia National Laboratories. Absorbed heat fluxes as high as 40 MW/m 2 were successfully removed during these tests without failure of the devices. Commercial applications for electronics cooling and other high heat flux applications are being identified

  7. NUMERICAL SIMULATION OF METAL MELT FLOWS IN MOLD CAVITY WITH CERAMIC POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Changchun Dong

    2016-05-01

    Full Text Available Process modeling of metal melt flow in porous media plays an important role in casting of metal matrix composites. In this work, a mathematical model of the metal melt flow in preform ceramic particles was used to simulate the flow behavior in a mold cavity. The effects of fluid viscosity and permeability (mainly affected by porosity of ceramic preforms on the flow behavior were analyzed. The results indicate that ceramic porous media have a significant effect on the flow behavior by contributing to a low filling velocity and sharp pressure drop in the cavity. The pressure drop has a linear relationship with the fluid velocity, and a nonlinear relationship with porosity. When the porosity is relatively small, the pressure drop is extremely large. When porosity exceeds a certain value, the pressure drop is independent of porosity. The relationship between viscosity and porosity is described, and it is shown that the critical porosity changes when the viscosity of the melt changes. However, due to the limited viscosity change, the critical porosity changes by less than 0.043.

  8. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    Science.gov (United States)

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. An Efficient, Versatile, and Safe Access to Supported Metallic Nanoparticles on Porous Silicon with Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Walid Darwich

    2016-06-01

    Full Text Available The metallization of porous silicon (PSi is generally realized through physical vapor deposition (PVD or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM precursors in ionic liquid (IL, we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi, the safety and the cost of the process are improved.

  10. An Efficient, Versatile, and Safe Access to Supported Metallic Nanoparticles on Porous Silicon with Ionic Liquids.

    Science.gov (United States)

    Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C; Gaillard, Frédéric

    2016-06-03

    The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved.

  11. Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals.

    Science.gov (United States)

    Syshchyk, Olga; Skryshevsky, Valeriy A; Soldatkin, Oleksandr O; Soldatkin, Alexey P

    2015-04-15

    A phenomenon of changes in photoluminescence of porous silicon at variations in medium pH is proposed to be used as a basis for the biosensor system development. The method of conversion of a biochemical signal into an optical one is applied for direct determination of glucose and urea as well as for inhibitory analysis of heavy metal ions. Changes in the quantum yield of porous silicon photoluminescence occur at varying pH of the tested solution due to the enzyme-substrate reaction. When creating the biosensor systems, the enzymes urease and glucose oxidase (GOD) were used as a bioselective material; their optimal concentrations were experimentally determined. It was shown that the photoluminescence intensity of porous silicon increased by 1.7 times when increasing glucose concentration in the GOD-containing reaction medium from 0 to 3.0mM, and decreased by 1.45 times at the same increase in the urea concentration in the urease-containing reaction medium. The calibration curves of dependence of the biosensor system responses on the substrate concentrations are presented. It is shown that the presence of heavy metal ions (Cu(2+), Pb(2+), and Cd(2+)) in the tested solution causes an inhibition of the enzymatic reactions catalyzed by glucose oxidase and urease, which results in a restoration of the photoluminescence quantum yield of porous silicon. It is proposed to use this effect for the inhibitory analysis of heavy metal ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Current-voltage characteristics of porous-silicon structures

    International Nuclear Information System (INIS)

    Diligenti, A.; Nannini, A.; Pennelli, G.; Pieri, F.; Fuso, F.; Allegrini, M.

    1996-01-01

    I-V DC characteristics have been measured on metal/porous-silicon structures. In particular, the measurements on metal/free-standing porous-silicon film/metal devices confirmed the result, already obtained, that the metal/porous-silicon interface plays a crucial role in the transport of any device. Four-contacts measurements on free-standing layers showed that the current linearly depends on the voltage and that the conduction process is thermally activated, the activation energy depending on the porous silicon film production parameters. Finally, annealing experiments performed in order to improve the conduction of rectifying contacts, are described

  13. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol

    DEFF Research Database (Denmark)

    Warner, Genoa; Hansen, Thomas Søndergaard; Riisager, Anders

    2014-01-01

    conversion to methanol-soluble products, without char formation, were based on copper in combination with other dopants based on relatively earth-abundant metals. Nearly complete conversion of lignin to bio-oil composed of monomers and low-mass oligomers with high aromatic content was obtained in 6. h at 310......An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin...

  14. 41 CFR 302-7.20 - If my HHG shipment includes an item (e.g., boat, trailer, ultralight vehicle) for which a weight...

    Science.gov (United States)

    2010-07-01

    ... includes an item (e.g., boat, trailer, ultralight vehicle) for which a weight additive is assessed by the...) General Rules § 302-7.20 If my HHG shipment includes an item (e.g., boat, trailer, ultralight vehicle) for which a weight additive is assessed by the HHG carrier, am I responsible for payment? If your HHG...

  15. Expanded Organic Building Units for the Construction of Highly Porous Metal-Organic Frameworks

    NARCIS (Netherlands)

    Kong, G.Q.; Han, Z.D.; He, Y.; Qu, S.; Zhou, W.; Yildirim, T.; Krishna, R.; Zou, C.; Chen, B.; Wu, C.D.

    2013-01-01

    wo new organic building units that contain dicarboxylate sites for their self-assembly with paddlewheel [Cu2(CO2)4] units have been successfully developed to construct two isoreticular porous metal-organic frameworks (MOFs), ZJU-35 and ZJU-36, which have the same tbo topologies (Reticular Chemistry

  16. Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological, mechanical, and mass transport properties

    NARCIS (Netherlands)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different

  17. Biological Strategies for Improved Osseointegration and Osteoinduction of Porous Metal Orthopedic Implants

    Science.gov (United States)

    Riester, Scott M.; Bonin, Carolina A.; Kremers, Hilal Maradit; Dudakovic, Amel; Kakar, Sanjeev; Cohen, Robert C.; Westendorf, Jennifer J.

    2015-01-01

    The biological interface between an orthopedic implant and the surrounding host tissue may have a dramatic effect upon clinical outcome. Desired effects include bony ingrowth (osseointegration), stimulation of osteogenesis (osteoinduction), increased vascularization, and improved mechanical stability. Implant loosening, fibrous encapsulation, corrosion, infection, and inflammation, as well as physical mismatch may have deleterious clinical effects. This is particularly true of implants used in the reconstruction of load-bearing synovial joints such as the knee, hip, and the shoulder. The surfaces of orthopedic implants have evolved from solid-smooth to roughened-coarse and most recently, to porous in an effort to create a three-dimensional architecture for bone apposition and osseointegration. Total joint surgeries are increasingly performed in younger individuals with a longer life expectancy, and therefore, the postimplantation lifespan of devices must increase commensurately. This review discusses advancements in biomaterials science and cell-based therapies that may further improve orthopedic success rates. We focus on material and biological properties of orthopedic implants fabricated from porous metal and highlight some relevant developments in stem-cell research. We posit that the ideal primary and revision orthopedic load-bearing metal implants are highly porous and may be chemically modified to induce stem cell growth and osteogenic differentiation, while minimizing inflammation and infection. We conclude that integration of new biological, chemical, and mechanical methods is likely to yield more effective strategies to control and modify the implant–bone interface and thereby improve long-term clinical outcomes. PMID:25348836

  18. Porous Hydrogen-Bonded Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Yi-Fei Han

    2017-02-01

    Full Text Available Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  19. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    Science.gov (United States)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  20. The Hydrolytic Stability and Degradation Mechanism of a Hierarchically Porous Metal Alkylphosphonate Framework

    Directory of Open Access Journals (Sweden)

    Kai Lv

    2018-03-01

    Full Text Available To aid the design of a hierarchically porous unconventional metal-phosphonate framework (HP-UMPF for practical radioanalytical separation, a systematic investigation of the hydrolytic stability of bulk phase against acidic corrosion has been carried out for an archetypical HP-UMPF. Bulk dissolution results suggest that aqueous acidity has a more paramount effect on incongruent leaching than the temperature, and the kinetic stability reaches equilibrium by way of an accumulation of a partial leached species on the corrosion conduits. A variation of particle morphology, hierarchical porosity and backbone composition upon corrosion reveals that they are hydrolytically resilient without suffering any great degradation of porous texture, although large aggregates crack into sporadic fractures while the nucleophilic attack of inorganic layers cause the leaching of tin and phosphorus. The remaining selectivity of these HP-UMPFs is dictated by a balance between the elimination of free phosphonate and the exposure of confined phosphonates, thus allowing a real-time tailor of radionuclide sequestration. Moreover, a plausible degradation mechanism has been proposed for the triple progressive dissolution of three-level hierarchical porous structures to elucidate resultant reactivity. These HP-UMPFs are compared with benchmark metal-organic frameworks (MOFs to obtain a rough grading of hydrolytic stability and two feasible approaches are suggested for enhancing their hydrolytic stability that are intended for real-life separation protocols.

  1. 14 CFR 61.52 - Use of aeronautical experience obtained in ultralight vehicles.

    Science.gov (United States)

    2010-01-01

    ... ratings issued under this part: (1) A sport pilot certificate. (2) A flight instructor certificate with a sport pilot rating; (3) A private pilot certificate with a weight-shift-control or powered parachute... provisions of §§ 61.69 and 61.415(e). (c) A person using aeronautical experience obtained in an ultralight...

  2. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  3. Metal Chloride Induced Formation of Porous Polyhydroxybutyrate (PHB) Films: Morphology, Thermal Properties and Crystallinity

    Science.gov (United States)

    Tan, W. L.; Yaakob, N. N.; Zainal Abidin, A.; Abu Bakar, M.; Abu Bakar, N. H. H.

    2016-06-01

    Polyhydroxybutyrate (PHB) films with highly porous structures were synthesized using a one phase system comprising of metal chloride/methanol/PHB/chloroform (MCl2/CH3OH/PHB/CHCl3). SEM analyses confirmed that the MCl2 (where M = Cu2+ or Ni2+) induced porous structures with pore sizes ranging from 0.3 - 2.0 μm. The average pore size increased with the increasing MCl2 content. There existed weak physical interactions between the PHB chains and MCl2 as revealed by FTIR and NMR spectroscopies. The residue of MCl2 in the porous PHB film does not exert significant influence on the thermal stability of PHB. Nevertheless, the crystallinity of the prepared film is enhanced, as MCl2 acts as the nucleation sites to promote the growth of spherullites.

  4. Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries

    International Nuclear Information System (INIS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2017-01-01

    Highlights: • 3D transient thermal analysis of a pouch Li-ion cell has been carried out. • Using pin fin heat sink improves the temperature reduction at low pumping powers. • Using pin fin heat sink enhances the temperature uniformity at low air flow rates. • Porous aluminum foam insertion with pin fins improves temperature reduction. • Porous aluminum foam insertion with pin fins enhances temperature uniformity. - Abstract: Three-dimensional transient thermal analysis of an air-cooled module was carried out to investigate cumulative effects of using pin fin heat sink and porous metal foam on thermal management of a Li-ion (lithium-ion) battery pack. Five different cases were designed as Case 1: flow channel without any pin fin or porous metal foam insertion, Case 2: flow channel with aluminum pin fins, Case 3: flow channel with porous aluminum foam pin fins, Case 4: fully inserted flow channel with porous aluminum foam, and Case 5: fully inserted flow channel with porous aluminum foam and aluminum pin fins. The effects of porous aluminum insertions, pin fin types, air flow inlet temperature, and air flow inlet velocity on the temperature uniformity and maximum temperature inside the battery pack were systematically investigated. The results showed that using pin fin heat sink (Case 2) is appropriate only for low air flow velocities. In addition, the use of porous aluminum pin fins or embedding porous aluminum foam inside the air flow channel (Cases 3 and 4) are not beneficial for thermal management improvement. The combination of aluminum pin fins and porous aluminum foam insertion inside the air flow channel (Case 5) is a proper option that improves both temperature reduction and temperature uniformity inside the battery cell.

  5. Experimental Study of Ultralight (<300 kg/m3 Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Xianjun Tan

    2014-01-01

    Full Text Available A type of ultralight (<300 kg/m3 foamed concrete (FC, which can be used as a new energy-conservation and environmental-protection building material and is particularly suitable for the thermal-insulation engineering of building external walls, was produced. The influences of different mixing amounts of fly ash, fly ash activator, WC (WC ratio, and foaming agent (FA on the compressive strength of FC were reported. The experimental study indicated that (1 the addition of fly ash reduced the strength of the FC and that the appropriate mixing amount of fly ash in this ultralight FC system should not exceed 45%; (2 with the increasing of fly ash activator, the strength of the FC sample is notably enhanced and the appropriate mixing amount of fly ash activator is 2.5%; (3 the optimized proportion of WC ratio is 0.45, and the FC that was produced according to this proportion has relatively high compressive strength; (4 by increasing the mixing amount of FA, the compressive strength of the FC notably decreases, and the optimal mixing amount of FA in this experiment is 3.5%.

  6. Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media

    International Nuclear Information System (INIS)

    Tanno, Yusuke; Ito, Satoshi; Hashizume, Hidetoshi

    2014-01-01

    A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Ergun’s equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristic to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks

  7. Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach

    DEFF Research Database (Denmark)

    Esposito, L.; Boccaccini, D. N.; Pucillo, G. P.

    2017-01-01

    The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled...... as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram...... in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere....

  8. Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites

    Directory of Open Access Journals (Sweden)

    Panić Vladimir V.

    2013-01-01

    Full Text Available Porous electrochemical supercapacitive materials, as an important type of new-generation energy storage devices, require a detailed analysis and knowledge of their capacitive performances upon different charging/discharging regimes. The investigation of the responses to dynamic perturbations of typical representatives, noble metal oxides, carbonaceous materials and RuO2-impregnated carbon blacks, by electrochemical impedance spectroscopy (EIS is presented. This presentation follows a brief description of supercapacitive behavior and origin of pseudocapacitive response of noble metal oxides. For all investigated materials, the electrical charging/discharging equivalent of the EIS response was found to obey the transmission line model envisaged as so-called „resistor/capacitor (RC ladder“. The ladder features are correlated to material physicochemical properties, its composition and the composition of the electrolyte. Fitting of the EIS data of different supercapacitive materials to appropriate RC ladders enables the in-depth profiling of the capacitance and pore resistance of their porous thin-layers and finally the complete revelation of capacitive energy storage issues. [Projekat Ministarstva nauke Republike Srbije, br. 172060

  9. Does Increased Coefficient of Friction of Highly Porous Metal Increase Initial Stability at the Acetabular Interface?

    Science.gov (United States)

    Goldman, Ashton H; Armstrong, Lucas C; Owen, John R; Wayne, Jennifer S; Jiranek, William A

    2016-03-01

    Highly porous metal acetabular components illustrate a decreased rate of aseptic loosening in short-term follow-up compared with previous registry data. This study compared the effect of component surface roughness at the bone-implant interface and the quality of the bone on initial pressfit stability. The null hypothesis is that a standard porous coated acetabular cup would show no difference in initial stability as compared with a highly porous acetabular cup when subjected to a bending moment. Second, would bone mineral density (BMD) be a significant variable under these test conditions. In a cadaveric model, acetabular cup micromotion was measured during a 1-time cantilever bending moment applied to 2 generations of pressfit acetabular components. BMD data were also obtained from the femoral necks available for associated specimen. The mean bending moment at 150 μm was not found to be significantly different for Gription (24.6 ± 14.0 N m) cups vs Porocoat (25 ± 10.2 N m; P > .84). The peak bending moment tolerated by Gription cups (33.9 ± 20.3 N m) was not found to be significantly different from Porocoat (33.5 ± 12.2 N m; P > .92). No correlation between BMD and bending moment at 150 μm of displacement could be identified. The coefficient of friction provided by highly porous metal acetabular shells used in this study did not provide better resistance to migration under bending load when compared with a standard porous coated component. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Influencing Factors for the Microstructure and Mechanical Properties of Micro Porous Titanium Manufactured by Metal Injection Molding

    Directory of Open Access Journals (Sweden)

    Zhen Lu

    2016-04-01

    Full Text Available Porous titanium is a new structural and functional material. It is widely used in many fields since it integrates the properties of biomaterials with those of metallic foam. A new technology that combines both the preparation and forming of porous materials has been proposed in this paper. Moreover, a new solder was developed that could be employed in the joining of porous materials. Influencing factors for microstructure and mechanical properties of the parent material and joint interface are identified. Metal injection molding (MIM technology was used for fabricating porous materials. The feedstock for injection molding of porous titanium powders was prepared from titanium powders and a polymer-based binder system. In addition, the proportion of powder loading and binders was optimized. Through MIM technology, a porous titanium filter cartridge was prepared. For the purpose of investigating the thermal debinding technology of the filter cartridge, effects of the sintering temperature on the porosity, morphology of micropores and mechanical properties were analyzed. It could be found that when the sintering temperature increased, the relative density, bending and compression strength of the components also increased. Moreover, the porosity reached 32.28% when the sintering temperature was 1000 °C. The microstructure morphology indicated that micropores connected with each other. Meanwhile, the strength of the components was relatively high, i.e., the bending and compression strength was 65 and 60 MPa, respectively. By investigating the joining technology of porous filter cartridges, the ideal components of the solder and pressure were determined. Further research revealed that the micropore structure of the joint interface is the same as that of the parent material, and that the bending strength of the joint interface is 40 MPa.

  11. Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions

    DEFF Research Database (Denmark)

    Kwok, Kawai; Boccaccini, Dino; Persson, Åsa Helen

    2016-01-01

    The effective steady-state creep response of porous metals is studied by numerical homogenization and analytical modeling in this paper. The numerical homogenization is based on finite element models of three-dimensional microstructures directly reconstructed from tomographic images. The effects ...... model, and closely matched by the Gibson-Ashby compression and the Ramakrishnan-Arunchalam creep models. [All rights reserved Elsevier]....

  12. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    International Nuclear Information System (INIS)

    Geng, Xuewen; Grismer, Dane A; Bohn, Paul W; Duan, Barrett K; Zhao, Liancheng

    2013-01-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal–semiconductor interface. (paper)

  13. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    Science.gov (United States)

    Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  14. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.

    Science.gov (United States)

    Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, María

    2017-06-01

    Nanotechnology has provided new tools for addressing unmet clinical situations, especially in the oncology field. The development of smart nanocarriers able to deliver chemotherapeutic agents specifically to the diseased cells and to release them in a controlled way has offered a paramount advantage over conventional therapy. Areas covered: Among the different types of nanoparticle that can be employed for this purpose, inorganic porous materials have received significant attention in the last decade due to their unique properties such as high loading capacity, chemical and physical robustness, low toxicity and easy and cheap production in the laboratory. This review discuss the recent advances performed in the application of porous inorganic and metal-organic materials for antitumoral therapy, paying special attention to the application of mesoporous silica, porous silicon and metal-organic nanoparticles. Expert opinion: The use of porous inorganic nanoparticles as drug carriers for cancer therapy has the potential to improve the life expectancy of the patients affected by this disease. However, much work is needed to overcome their drawbacks, which are aggravated by their hard nature, exploiting the advantages offered by highly the ordered pore network of these materials.

  15. NMR studies of metallic tin confined within porous matrices

    International Nuclear Information System (INIS)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-01-01

    119 Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown

  16. Hydrazine reduction of metal ions to porous submicro-structures of Ag, Pd, Cu, Ni, and Bi

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue; Shi Yongfang; Chen Yubiao [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Wu Liming, E-mail: liming_wu@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2012-07-15

    Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. Phase purity, morphology, and specific surface area have been characterized. The reactions probably undergo three different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. The reductant hydrazine also plays an important role to the formation of the porous submicro-structure. The reaction temperature influences the size of the constituent particles and the overall architecture of the submicro-structure so as to influence the surface area value. The as-prepared porous metals have shown the second largest surface area ever reported, which are smaller than those made by the reduction of NaBH{sub 4}, but larger than those made by hard or soft template methods. - Graphical abstract: Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in the glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. The reactions undergo different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. Highlights: Black-Right-Pointing-Pointer Syntheses of porous Ag, Pd, Cu, Ni, and Bi with high surface area. Black-Right-Pointing-Pointer Ag and Pd undergo simple reduction. Black-Right-Pointing-Pointer Cu and Ni undergo coordination-then-reduction. Black-Right-Pointing-Pointer Bi undergoes hydrolysis-then-reduction. Black-Right-Pointing-Pointer The as-prepared metals have shown the second largest surface area ever reported.

  17. A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect-free Metal-Organic Framework Composite Membrane

    KAUST Repository

    Barankova, Eva

    2017-02-06

    Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating polythiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.

  18. Porous metal cones: gold standard for massive bone loss in complex revision knee arthroplasty? A systematic review of current literature.

    Science.gov (United States)

    Divano, Stefano; Cavagnaro, Luca; Zanirato, Andrea; Basso, Marco; Felli, Lamberto; Formica, Matteo

    2018-04-18

    Revision knee arthroplasty is increasing, and in that case, bone loss management is still a challenging problem. In the last years, the body of literature and interest surrounding porous metal cones has grown, but few systematic evaluations of the existing evidence have been performed. The aim of our systematic review is to collect and critically analyze the available evidence about metal cones in revision knee arthroplasty especially focusing our attention on indications, results, complications, and infection rate of these promising orthopaedic devices. We performed a systematic review of the available English literature, considering the outcomes and the complications of tantalum cones. The combinations of keyword were "porous metal cones", "knee revision", "bone loss", "knee arthroplasty", "periprosthetic joint infection", and "outcome". From the starting 312 papers available, 20 manuscripts were finally included. Only one included study has a control group. The main indication for metal cones is type IIb and III defects according AORI classification. Most of the papers show good clinical and radiological outcomes with low rate of complications. The examined studies provide encouraging clinical and radiological short-to-mid-term outcomes. Clinical studies have shown a low rate of aseptic loosening, intraoperative fractures, infection rate and a lower failure rate than the previous treatment methods. Higher quality papers are needed to draw definitive conclusions about porous metal cones.

  19. Construction of hierarchically porous metal-organic frameworks through linker labilization

    Science.gov (United States)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  20. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, N., E-mail: naderi.phd@gmail.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hashim, M.R. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2013-03-05

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  1. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    International Nuclear Information System (INIS)

    Naderi, N.; Hashim, M.R.

    2013-01-01

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  2. A charge-polarized porous metal-organic framework for gas chromatographic separation of alcohols from water.

    Science.gov (United States)

    Sun, Jian-Ke; Ji, Min; Chen, Cheng; Wang, Wu-Gen; Wang, Peng; Chen, Rui-Ping; Zhang, Jie

    2013-02-25

    A bipyridinium ligand with a charge separated skeleton has been introduced into a metal-organic framework to yield a porous material with charge-polarized pore space, which exhibits selective adsorption for polar guest molecules and can be further used in gas chromatography for the separation of alcohol-water mixtures.

  3. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  4. Manufacturing of metallic porous structures to be used in capillary pumping systems

    Directory of Open Access Journals (Sweden)

    Eduardo Gonçalves Reimbrecht

    2003-12-01

    Full Text Available Sintered metallic porous structures have an application as capillary structures in two-phase heat transfer loops. In this work the manufacturing procedure of tubular porous structures for capillary pump application is discussed. The application of porous structures on capillary pumping systems requires porosity higher than 40% and pore size diameter lower than 20 µm. Carbonyl nickel powder with particle diameter between 3 and 7 µm and stainless steel AISI316L powder with particle diameter between 1 and 22 µm were used as raw material. Sintering under hydrogen atmosphere was performed both in a resistive furnace and in a plasma reactor. Temperature and time were the modified parameters to obtain suitable porosity and roundness on the samples. The porosity was measured using the Arquimedes Principle (MPIF-42, the roundness was evaluated using a simplified measurement technique of the sample diameter and the pore size distribution was determined by image analysis techniques. Images obtained by Scanning Electronic Microscopy were employed on the image analysis. The sintering parameters selected to manufacture nickel samples were 700 °C and 30 min resulting in a porosity of about 44%. The sintering parameters selected to manufacture stainless steel samples were 1000 °C and 30 min resulting in a porosity of about 40%.

  5. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Su, Zhong-Min, E-mail: zmsu@nenu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Yuan, Gang; Wang, Xin-Long [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)

    2013-02-15

    Three metal-organic frameworks (MOFs), [Co{sub 2}(BPDC){sub 2}(4-BPH){center_dot}3DMF]{sub n} (1), [Cd{sub 2}(BPDC){sub 2}(4-BPH){sub 2}{center_dot}2DMF]{sub n} (2) and [Ni{sub 2}(BDC){sub 2}(3-BPH){sub 2} (H{sub 2}O){center_dot}4DMF]{sub n} (3) (H{sub 2}BPDC=biphenyl-4,4 Prime -dicarboxylic acid, H{sub 2}BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N Prime -dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has 'single-pillared' MOF-5-like motif with inner cage diameters of up to 18.6 A. Framework 2 has 'double pillared' MOF-5-like motif with cage diameters of 19.2 A while 3 has 'double pillared' 8-connected framework with channel diameters of 11.0 A. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework. - Graphical abstract: By insertion of flexible BPH pillars based on 'pillaring' strategy, three metal-organic frameworks are obtained showing that the porous frameworks can be constructed in a much greater variety. Highlights: Black-Right-Pointing-Pointer Frameworks 1 and 2 have MOF-5 like motif. Black-Right-Pointing-Pointer The cube-like cages in 1 and 2 are quite large, comparable to the IRMOF-10. Black-Right-Pointing-Pointer Framework 1 is 'single-pillared' mode while 2 is 'double-pillared' mode. Black-Right-Pointing-Pointer PXRD and gas adsorption analysis show that 3 is a dynamic porous framework.

  6. Metal deposition on porous silicon by immersion plating to improve photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Ikbel, E-mail: haded.ikbel@yahoo.fr; Amor, Sana Ben; Bousbih, Rabaa; Whibi, Seif El; Bardaoui, Afrah; Dimassi, Wissem; Ezzaouia, Hatem

    2016-05-15

    Metal deposition into porous silicon (PS) by immersion plating in aqueous solution during different times was investigated. The influence of immersion time on optical properties of porous silicon treated with Lithium (Li) was studied by photoluminescence (PL). From experimental results, we suggest that the treatment, for critical immersion time provides an easy way to achieve an improvement in the PL intensity. To identify surface modification, Fourier transmission infrared spectroscopy and atomic force microscopy were performed. The reflectivity spectra showed that the variation of light absorption can be probably due to the newly formed layer during the chemical deposition of Li. - Highlights: • We have varied the immersion time of PS in LiBr solution. • PL intensity shows significant variation as function of immersion time. • We observe reduction of Si–O–Li bands with increasing treatment time. • Concurrent with the loss of Li we observe a decrease of the PL.

  7. Metal deposition on porous silicon by immersion plating to improve photoluminescence properties

    International Nuclear Information System (INIS)

    Haddadi, Ikbel; Amor, Sana Ben; Bousbih, Rabaa; Whibi, Seif El; Bardaoui, Afrah; Dimassi, Wissem; Ezzaouia, Hatem

    2016-01-01

    Metal deposition into porous silicon (PS) by immersion plating in aqueous solution during different times was investigated. The influence of immersion time on optical properties of porous silicon treated with Lithium (Li) was studied by photoluminescence (PL). From experimental results, we suggest that the treatment, for critical immersion time provides an easy way to achieve an improvement in the PL intensity. To identify surface modification, Fourier transmission infrared spectroscopy and atomic force microscopy were performed. The reflectivity spectra showed that the variation of light absorption can be probably due to the newly formed layer during the chemical deposition of Li. - Highlights: • We have varied the immersion time of PS in LiBr solution. • PL intensity shows significant variation as function of immersion time. • We observe reduction of Si–O–Li bands with increasing treatment time. • Concurrent with the loss of Li we observe a decrease of the PL.

  8. Development of ultra-light pixelated ladders for an ILC vertex detector

    CERN Document Server

    Chon-Sen, N.; Claus, G.; De Masi, R.; Deveaux, M.; Dulinski, W.; Goffe, M.; Goldstein, J.; Gregor, I.-M.; Hu-Guo, Ch.; Imhoff, M.; Muntz, C.; Nomerotski, A.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Winter, M.

    2010-01-01

    The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided ladders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested.

  9. Applications of porous electrodes to metal-ion removal and the design of battery systems

    International Nuclear Information System (INIS)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 μg Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected

  10. Applications of porous electrodes to metal-ion removal and the design of battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 ..mu..g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.

  11. Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: column studies and modeling approaches

    Science.gov (United States)

    Li, X.; Xu, H.; Wu, J.

    2017-12-01

    For in situ biodegradation of organic contaminants in soil and groundwater, precise prediction and monitoring of the movement of the bio-agent is vital for the effectiveness of the subsurface bioremediation technologies. Therefore, the fate and transport of functional microorganisms in porous media has been extensively investigated in the literature, and the effects of a number of physical and chemical factors have been explored. During the bioremediation of contaminated sites, it is highly likely that functional bacteria and heavy metals would be simultaneously present for heavy metals often co-exist with organic contaminants like polycyclic aromatic hydrocarbons (PAHs) in polluted environment. To date, relevant studies on the interactions between heavy metals and functional agents such as PAHs-degrading bacteria are lacking and thus require investigation. In this study, the cotransport of bioremediation agents and heavy metals were evaluated through batch and column experiments. Herbaspirillum chlorophenolicum FA1, a pure bacterial strain capable of absorbing heavy metals and degrading polycyclic aromatic hydrocarbons (PAHs), was used as the model remediation agent, and metal ions of Pb(Ⅱ) and Cd(Ⅱ) were used as the representative heavy metals. Effects of metal species, the concentration of heavy metals, the sequence of entering the media, and the activity of biomass were investigated in detail. In addition, numerical simulations of breakthrough curves (BTC) data were also performed for information gathering. Results of this study could advance our understanding of interactions between functional bacteria and heavy metals during bioremediation process and help to develop successful bioremediation strategies.This work was financially supported by the National Natural Science Foundation of China -Xinjiang Project (U1503282), the National Natural Science Foundation of China (41030746, 41102148), and the Natural Science Foundation of Jiangsu Province (BK20151385

  12. A general strategy for the in situ decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts.

    Science.gov (United States)

    Cai, Sixiang; Liu, Jie; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong

    2017-05-04

    Owing to their advantages of strong mechanical stability, plasticity, thermal conductivity and mass transfer ability, metal foam or meshes are considered promising monolith supports for de-NO x application. In this work, we developed a facile method for the decoration of porous Mn-Co bi-metal oxides on Fe meshes. The block-like structure was derived from in situ coating, and simultaneous nucleation and growth of the Mn-Co hydroxide precursor, while the porous Mn-Co oxides were formed via the calcination process. Moreover, the decoration of the high-purity Co 2 MnO 4 spinel could lead to enhanced reducibility and adsorption behaviors, which are crucial to the catalytic process. Of note is the fact that the Fe mesh used in the synthesis procedure could be substituted by various metal supports including Ti mesh, Cu foam and Ni foam. Driven by the above motivations, metal supports decorated with Mn-Co oxides were evaluated as monolith de-NO x catalysts for the first time. Inspiringly, these catalysts demonstrate outstanding low-temperature catalytic activity, desirable stability and excellent H 2 O resistance. This work might open up a new path for the design and development of high performance de-NO x monolith catalysts.

  13. Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets

    Directory of Open Access Journals (Sweden)

    S. M. Khantimerov

    2013-01-01

    Full Text Available The preparation of carbon nanotube/metallic particle hybrids using pressed porous stainless steel pellets as a substrate is described. The catalytic growth of carbon nanotubes was carried out by CVD on a nickel catalyst obtained by impregnation of pellets with a highly dispersive colloidal solution of nickel acetate tetrahydrate in ethanol. Granular polyethylene was used as the carbon source. Metallic particles were deposited by thermal evaporation of Pt and Ag using pellets with grown carbon nanotubes as a base. The use of such composites as fuel cell electrodes is discussed.

  14. The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.; Bankston, C.P.; Thakoor, A.P.; Cole, T.

    1986-01-01

    The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/sub 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell

  15. Impact of ultralight axion self-interactions on the large scale structure of the Universe

    Science.gov (United States)

    Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2018-01-01

    Ultralight axions have sparked attention because their tiny mass m ˜10-22 eV , which leads to a kiloparsec-scale de Broglie wavelength comparable to the size of a dwarf galaxy, could alleviate the so-called small-scale crisis of massive cold dark matter (CDM) candidates. However, recent analyses of the Lyman-α forest power spectrum set a tight lower bound on their mass of m ≳10-21 eV which makes them much less relevant from an astrophysical point of view. An important caveat to these numerical studies is that they do not take into account self-interactions among ultralight axions. Furthermore, for axions which acquired a mass through nonperturbative effects, this self-interaction is attractive and, therefore, could counteract the quantum "pressure" induced by the strong delocalization of the particles. In this work, we show that even a tiny attractive interaction among ultralight axions can have a significant impact on the stability of cosmic structures at low redshift. After a brief review of known results about solitons in the absence of gravity, we discuss the stability of filamentary and pancakelike solutions when quantum pressure, attractive interactions and gravity are present. The analysis based on 1 degree of freedom, namely the breathing mode, reveals that pancakes are stable, while filaments are unstable if the mass per unit length is larger than a critical value. However, we show that pancakes are unstable against transverse perturbations. We expect this to be true for halos and filaments as well. Instabilities driven by the breathing mode will not be seen in the low column density Lyman-α forest unless the axion decay constant is extremely small, f ≲1013 GeV . Notwithstanding, axion solitonic cores could leave a detectable signature in the Lyman-α forest if the normalization of the unknown axion core—filament mass relation is ˜100 larger than it is for spherical halos. We hope our work motivates future numerical studies of the impact of axion

  16. THE COMPARATIVE ECONOMIC-MATHEMATICAL ANALYSIS OF EFFICIENCY OF APPLICATION ON THE ACW OF THE ULTRALIGHT X-32 "BEKAS" PLANE AND THE MOTOR HANG-GLIDER MD-50S

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available In this article the comparative economic-mathematical analysis of size of profit per a flight hour on use at the avia- tion-chemical works (ACW of two types of super light aircraft X-32 “Bekas” and a glider MD-50S which are widely used when cultivating farmland nowadays. The list of indicators which are used while carrying out the comparative technical and economic analysis of considered ultralights is given at the beginning of the article. Further their numerical values nec- essary for computations are given. The mathematical formula for calculation with use of the given data of profit on carrying out ACW with use of the considered models of the aircraft equipment is presented. Values of profit are calculated by means of the tabular Microsoft Excel editor for various values of cultivated farmland length and distance of approach from airfield to the cultivated plot. The applied values of cultivated farmland length lie in the range from 0.5 to 10 kilometers, and ap-proach distances vary from 0.5 to 2 kilometers respectively. Calculations are executed for each of two compared ultralights and results are given in a tabular form respectively. On the basis of the analysis of the obtained tabular data conclusions are drawn under what values of input and variables in the form of farmland length and distance of approach profit margin for each of two ultralights will be larger or smaller in comparison with each other. In the final part of article total conclusions about the most preferable ultralight of two compared for operation in fields of various configuration during ACW are drawn. At the end recommendations to the aviation enterprises about application of the most expedient option of ultralight for obtaining bigger profit margin on carrying out ACW.

  17. Confinement properties of 2D porous molecular networks on metal surfaces

    International Nuclear Information System (INIS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-01-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article

  18. A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta - Alumina/Alkali Metal Gas Three Phase Zone at 700-1300K

    Science.gov (United States)

    Williams, R. M.; Ryan, M. A.; Saipetch, C.; LeDuc, H. G.

    1996-01-01

    The exchange current observed at porous metal electrodes on sodium or potassium beta -alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results.

  19. Electrocatalysts using porous polymers and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2016-08-02

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  20. Electrocatalysts using porous polymers and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2015-04-21

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  1. Additively manufactured porous tantalum implants

    NARCIS (Netherlands)

    Wauthle, Ruben; Van Der Stok, Johan; Yavari, Saber Amin; Van Humbeeck, Jan; Kruth, Jean Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-01-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of

  2. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable

  3. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  4. Pulsar timing signal from ultralight scalar dark matter

    International Nuclear Information System (INIS)

    Khmelnitsky, Andrei; Rubakov, Valery

    2014-01-01

    An ultralight free scalar field with mass around 10 −23 −10 −22 eV is a viable dark mater candidate, which can help to resolve some of the issues of the cold dark matter on sub-galactic scales. We consider the gravitational field of the galactic halo composed out of such dark matter. The scalar field has oscillating in time pressure, which induces oscillations of gravitational potential with amplitude of the order of 10 −15 and frequency in the nanohertz range. This frequency is in the range of pulsar timing array observations. We estimate the magnitude of the pulse arrival time residuals induced by the oscillating gravitational potential. We find that for a range of dark matter masses, the scalar field dark matter signal is comparable to the stochastic gravitational wave signal and can be detected by the planned SKA pulsar timing array experiment

  5. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification.

    Science.gov (United States)

    Cao, Yu; Wu, Zhuofu; Wang, Tao; Xiao, Yu; Huo, Qisheng; Liu, Yunling

    2016-04-28

    Bacillus subtilis lipase (BSL2) has been successfully immobilized into a Cu-BTC based hierarchically porous metal-organic framework material for the first time. The Cu-BTC hierarchically porous MOF material with large mesopore apertures is prepared conveniently by using a template-free strategy under mild conditions. The immobilized BSL2 presents high enzymatic activity and perfect reusability during the esterification reaction. After 10 cycles, the immobilized BSL2 still exhibits 90.7% of its initial enzymatic activity and 99.6% of its initial conversion.

  6. Porous polymer coatings on metal microneedles for enhanced drug delivery

    Science.gov (United States)

    Ullah, Asad; Kim, Chul Min; Kim, Gyu Man

    2018-04-01

    We present a simple method to coat microneedles (MNs) uniformly with a porous polymer (PLGA) that can deliver drugs at high rates. Stainless steel (SS) MNs of high mechanical strength were coated with a thin porous polymer layer to enhance their delivery rates. Additionally, to improve the interfacial adhesion between the polymer and MNs, the MN surface was modified by plasma treatment followed by dip coating with polyethyleneimine, a polymer with repeating amine units. The average failure load (the minimum force sufficient for detaching the polymer layer from the surface of SS) recorded for the modified surface coating was 25 N, whereas it was 2.2 N for the non-modified surface. Calcein dye was successfully delivered into porcine skin to a depth of 750 µm by the porous polymer-coated MNs, demonstrating that the developed MNs can pierce skin easily without deformation of MNs; additional skin penetration tests confirmed this finding. For visual comparison, rhodamine B dye was delivered using porous-coated and non-coated MNs in gelatin gel which showed that delivery with porous-coated MNs penetrate deeper when compared with non-coated MNs. Finally, lidocaine and rhodamine B dye were delivered in phosphate-buffered saline (PBS) medium by porous polymer-coated and non-coated MNs. For rhodamine B, drug delivery with the porous-coated MNs was five times higher than that with the non-coated MNs, whereas 25 times more lidocaine was delivered by the porous-coated MNs compared with the non-coated MNs.

  7. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.

    Science.gov (United States)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-04-15

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone

  8. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, Sean W.; Clarke, James S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-09-01

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.

  9. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    International Nuclear Information System (INIS)

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon; King, Sean W.; Clarke, James S.; Nishi, Yoshio

    2014-01-01

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities

  10. Nanoporous metal-carbon composite

    Science.gov (United States)

    Worsley, Marcus A.; Satcher, Joe; Kucheyev, Sergei; Charnvanichborikarn, Supakit; Colvin, Jeffrey; Felter, Thomas; Kim, Sangil; Merrill, Matthew; Orme, Christine

    2017-12-19

    Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm.sup.3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.

  11. Porous Silicon Hydrogen Sensor at Room Temperature: The Effect of Surface Modification and Noble Metal Contacts

    Directory of Open Access Journals (Sweden)

    Jayita KANUNGO

    2009-04-01

    Full Text Available Porous silicon (PS was fabricated by anodization of p-type crystalline silicon of resistivity 2-5 Ω cm. After formation, the PS surface was modified by the solution containing noble metal like Pd. Pd-Ag catalytic contact electrodes were deposited on porous silicon and on p-Silicon to fabricate Pd-Ag/PS/p-Si/Pd-Ag sensor structure to carry out the hydrogen sensing experiments. The Sensor was exposed to 1% hydrogen in nitrogen as carrier gas at room temperature (270C. Pd modified sensor showed minimum fluctuations and consistent performance with 86% response, response time and recovery time of 24 sec and 264 sec respectively. The stability experiments were studied for both unmodified and Pd modified sensor structures for a period of about 24 hours and the modified sensors showed excellent durability with no drift in response behavior.

  12. THE ACCURACY OF AUTOMATIC PHOTOGRAMMETRIC TECHNIQUES ON ULTRA-LIGHT UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    O. Küng

    2012-09-01

    Full Text Available This paper presents an affordable, fully automated and accurate mapping solutions based on ultra-light UAV imagery. Several datasets are analysed and their accuracy is estimated. We show that the accuracy highly depends on the ground resolution (flying height of the input imagery. When chosen appropriately this mapping solution can compete with traditional mapping solutions that capture fewer high-resolution images from airplanes and that rely on highly accurate orientation and positioning sensors on board. Due to the careful integration with recent computer vision techniques, the post processing is robust and fully automatic and can deal with inaccurate position and orientation information which are typically problematic with traditional techniques.

  13. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  14. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity.

    Science.gov (United States)

    Lin, Sha; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W K; Pan, Haobo; Wu, Shuilin

    2017-06-07

    Sustained drug release plays a critical role in targeting the therapy of local diseases such as bacterial infections. In the present work, porous iron-carboxylate metal-organic framework [MOF-53(Fe)] nanoparticles (NPs) were designed to entrap the vancomycin (Van) drugs. This system exhibited excellent chemical stability under acidic conditions (pH 7.4, 6.5, and 5.5) and much higher drug-loading capability because of the high porosity and large surface area of MOF NPs. The results showed that the drug-loading ratio of Van could reach 20 wt % and that the antibacterial ratio of the MOF-53(Fe)/Van system against Staphylococcus aureus could reach up to 90%. In addition, this MOF-53(Fe)/Van system exhibited excellent biocompatibility because of its chemical stability and sustained release of iron ions. Hence, these porous MOF NPs are a promising bioplatform not only for local therapy of bacterial infections but also for other biomedical therapies for tissue regeneration.

  15. Preparation of Porous Hydroxyapatite Tablets and Porous Hydroxyapatite Coatings for Orthopaedic Use

    International Nuclear Information System (INIS)

    Mendez-Gonzalez, M.

    2004-01-01

    Porous hydroxyapatite tablets and coatings on metal substrates were obtained by the addition of polymeric additives and liofilization. Both tablets and coatings were characterized by scanning electron microscopy and x-ray diffraction. Coatings obtained by plasma spraying also exhibited interconnected porous of 100 μm while coatings obtained by laser ablation did not show any porosity. The diffraction patterns of the deposited HA were similar to that of the powder obtained by the precipitation method suggesting that no significant changes occurred during the coating procedure

  16. Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides

    NARCIS (Netherlands)

    Kumalaputri, Angela J; Bottari, Giovanni; Erne, Petra M; Heeres, Hero J; Barta, Katalin

    Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C-6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by

  17. Porous magnesium-based scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R.; Tayebi, Lobat

    2017-01-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  18. Porous magnesium-based scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Razavi, Mehdi [Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Moharamzadeh, Keyvan [School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield (United Kingdom); Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Boccaccini, Aldo R. [Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2017-02-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  19. Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films

    Directory of Open Access Journals (Sweden)

    Bao Lin

    2014-10-01

    Full Text Available Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30 and white gold (Au50Ag50 foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM. Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested.

  20. Porous titanium bases for osteochondral tissue engineering

    Science.gov (United States)

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  1. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.

    Science.gov (United States)

    Wei, Yan; Yang, Ran; Zhang, Yong-Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2011-10-21

    γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.

  2. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  3. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    International Nuclear Information System (INIS)

    Baia, M; Melinte, G; Iancu, V; Baia, L; Barbu-Tudoran, L; Diamandescu, L; Cosoveanu, V; Danciu, V

    2011-01-01

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10 -1 -10 -4 M for acrylamide and around 10 -5 M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  4. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    Energy Technology Data Exchange (ETDEWEB)

    Baia, M; Melinte, G; Iancu, V; Baia, L [Faculty of Physics, Babes-Bolyai University, 400084, Cluj-Napoca (Romania); Barbu-Tudoran, L [Faculty of Biology and Geology, Babes-Bolyai University, 400015, Cluj-Napoca (Romania); Diamandescu, L [National Institute of Materials Physics, PO Box MG-7, 77125, Bucharest-Magurele (Romania); Cosoveanu, V; Danciu, V, E-mail: lucian.baia@phys.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028, Cluj-Napoca (Romania)

    2011-07-06

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10{sup -1}-10{sup -4} M for acrylamide and around 10{sup -5} M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  5. DOAS measurements of NO2 from an ultralight aircraft during the Earth Challenge expedition

    Directory of Open Access Journals (Sweden)

    O. Ronveaux

    2012-08-01

    Full Text Available We report on airborne Differential Optical Absorption Spectroscopy (DOAS measurements of NO2 tropospheric columns above South Asia, the Arabic peninsula, North Africa, and Italy in November and December 2009. The DOAS instrument was installed on an ultralight aircraft involved in the Earth Challenge project, an expedition of seven pilots flying on four ultralight aircraft between Australia and Belgium. The instrument recorded spectra in limb geometry with a large field of view, a set-up which provides a high sensitivity to the boundary layer NO2 while minimizing the uncertainties related to the attitude variations. We compare our measurements with OMI (Ozone Monitoring Instrument and GOME-2 (Global Ozone Monitoring Experiment 2 tropospheric NO2 products when the latter are available. Above Rajasthan and the Po Valley, two areas where the NO2 field is homogeneous, data sets agree very well. Our measurements in these areas are 0.1 ± 0.1 to 3 ± 1 × 1015 molec cm−2 and 2.6 ± 0.8 × 1016 molec cm−2, respectively. Flying downwind of Riyadh, our NO2 measurements show the structure of the megacity's exhaust plume with a higher spatial resolution than OMI. Moreover, our measurements are larger (up to 40% than those seen by satellites. We also derived tropospheric columns when no satellite data were available if it was possible to get information on the visibility from satellite measurements of aerosol optical thickness. This experiment also provides a confirmation for the recent finding of a soil signature above desert.

  6. On the capillary restriction in start-up regimes of liquid metal evaporation from capillary-porous surfaces

    International Nuclear Information System (INIS)

    Prosvetov, V.V.

    1979-01-01

    Evaporation of liquid metals from capillary-porous structures is one of the most effective methods of surface cooling, to which essential heat quantity is delivered at high temperatures. The paper deals with heat flux limitation, caused by incapability of core capillary forces to overcome pressure differential in heat carrier circulation shape in such evaporation regimes, when average length of free path of vapour molecule exceeds core cell size. Suggested are theoretical correlations for determination of critical heat flux density and temperature of liquid surface in starting regimes of liquid metal evaporation from rectangular slots and compound cores with screens made of foil with round perforations. The catculative and experimental values of critical heat flux density in starting regimes of sodium evaporation from rectangular slots satisfactorily agree with each other

  7. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels

    International Nuclear Information System (INIS)

    Bi, Shuguang; Zhang, Liying; Mu, Chenzhong; Liu, Ming; Hu, Xiao

    2017-01-01

    Graphical abstract: The electromagnetic interference shielding behavior and proposed mechanisms of ultralight free-standing 3D graphene aerogels. - Highlights: • The electromagnetic interference (EMI) shielding properties and mechanisms of ultralight 3D graphene aerogels (GAs) were systematically studied with respect to both the unique porous network and the intrinsic properties of the graphene sheets. • Thickness of the shielding material played a critical role on EMI SE. • By compressing the porous GAs into compact film didnt increase the EMI SE despite the increased electrical conductivity and connectivity. EMI SE is highly dependent on the effective amounts of the materials response to the EM waves. - Abstract: Graphene was recently demonstrated to exhibit excellent electromagnetic interference (EMI) shielding performance. In this work, ultralight (∼5.5 mg/cm"3) graphene aerogels (GAs) were fabricated through assembling graphene oxide (GO) using freeze-drying followed by a chemical reduction method. The EMI shielding properties and mechanisms of GAs were systematically studied with respect to the intrinsic properties of the reduced graphene oxide (rGO) sheets and the unique porous network. The EMI shielding effectiveness (SE) of GAs was increased from 20.4 to 27.6 dB when the GO was reduced by high concentration of hydrazine vapor. The presence of more sp"2 graphitic lattice and free electrons from nitrogen atoms resulted in the enhanced EMI SE. Absorption was the dominant shielding mechanism of GAs. Compressing the highly porous GAs into compact thin films did not change the EMI SE, but shifted the dominant shielding mechanism from absorption to reflection.

  8. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Shuguang [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Zhang, Liying, E-mail: LY.Zhang@ntu.edu.sg [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Mu, Chenzhong [School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Liu, Ming, E-mail: LIUMING@ntu.edu.sg [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Hu, Xiao [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2017-08-01

    Graphical abstract: The electromagnetic interference shielding behavior and proposed mechanisms of ultralight free-standing 3D graphene aerogels. - Highlights: • The electromagnetic interference (EMI) shielding properties and mechanisms of ultralight 3D graphene aerogels (GAs) were systematically studied with respect to both the unique porous network and the intrinsic properties of the graphene sheets. • Thickness of the shielding material played a critical role on EMI SE. • By compressing the porous GAs into compact film didnt increase the EMI SE despite the increased electrical conductivity and connectivity. EMI SE is highly dependent on the effective amounts of the materials response to the EM waves. - Abstract: Graphene was recently demonstrated to exhibit excellent electromagnetic interference (EMI) shielding performance. In this work, ultralight (∼5.5 mg/cm{sup 3}) graphene aerogels (GAs) were fabricated through assembling graphene oxide (GO) using freeze-drying followed by a chemical reduction method. The EMI shielding properties and mechanisms of GAs were systematically studied with respect to the intrinsic properties of the reduced graphene oxide (rGO) sheets and the unique porous network. The EMI shielding effectiveness (SE) of GAs was increased from 20.4 to 27.6 dB when the GO was reduced by high concentration of hydrazine vapor. The presence of more sp{sup 2} graphitic lattice and free electrons from nitrogen atoms resulted in the enhanced EMI SE. Absorption was the dominant shielding mechanism of GAs. Compressing the highly porous GAs into compact thin films did not change the EMI SE, but shifted the dominant shielding mechanism from absorption to reflection.

  9. Evaluation of Heat Losses Behind the Front of the Detonation Moving Along the Metallic Porous Surface

    Directory of Open Access Journals (Sweden)

    S. V. Golovastov

    2016-01-01

    Full Text Available The paper considers a computational technique of the heat flow from the hot products of detonation combustion into the porous coating and estimates the efficiency of the coating layer that results in slowing the flame front down with disregard the transverse displacement of the combustion products weight of a hydrogen-air mixture.Initial thermodynamic parameters of combustion products on the porous coating surface have been estimated. A drag (stagnation temperature of flow was determined.The statement of task was to calculate the heat flow into the long cylindrical metal fiber with radius of 15 μm. The reference values of heat capacity and heat diffusivity were used to estimate a thermal diffusivity in a wide range of temperatures. An approximation of the parameters is given for a wide range of temperatures.The calculation algorithm using an explicit four-point scheme is presented. The convergence and accuracy of the results were confirmed. The theoretical estimation using cylindrical Bessel functions was made to prove the accuracy of the results.Total heat loss was estimated using the photos of moving detonation front and hot combustion gases.Comparison of the total heat loss and the amount of energy absorbed by a single fiber allowed us to find that the porous coating thickness, resulting in attenuation of detonation wave, is efficient.

  10. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    NARCIS (Netherlands)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous

  11. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    Science.gov (United States)

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  12. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery.

    Science.gov (United States)

    Li, Jiyu; Liu, Bin; Zhou, Yingying; Chen, Zhipeng; Jiang, Lelun; Yuan, Wei; Liang, Liang

    2017-01-01

    Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified metal injection molding (MIM) technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin.

  13. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery.

    Directory of Open Access Journals (Sweden)

    Jiyu Li

    Full Text Available Microneedle arrays (MA have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA fabricated by modified metal injection molding (MIM technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin.

  14. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    Science.gov (United States)

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  15. Efficiency improvement of a concentrated solar receiver for water heating system using porous medium

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.

  16. Verification Test for Ultra-Light Deployment Mechanism for Sectioned Deployable Antenna Reflectors

    Science.gov (United States)

    Zajac, Kai; Schmidt, Tilo; Schiller, Marko; Seifart, Klaus; Schmalbach, Matthias; Scolamiero, Lucio

    2013-09-01

    The ultra-light deployment mechanism (UDM) is based on three carbon fibre reinforced plastics (CFRP) curved tape springs made of carbon fibre / cyanate ester prepregs.In the frame of the activity its space application suitability for the deployment of solid reflector antenna sections was investigated. A projected diameter of the full reflector of 4 m to 7 m and specific mass in the order of magnitude of 2.6kg/m2 was focused for requirement derivation.Extensive verification tests including health checks, environmental and functional tests were carried out with an engineering model to enable representative characterizing of the UDM unit.This paper presents the design and a technical description of the UDM as well as a summary of achieved development status with respect to test results and possible design improvements.

  17. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst

    Science.gov (United States)

    Li, Wenhui; Wu, Xiaofeng; Li, Shuangde; Tang, Wenxiang; Chen, Yunfa

    2018-04-01

    The synthesis of effective and recyclable Fenton-like catalyst is still a key factor for advanced oxidation processes. Herein, magnetic porous Fe3O4/carbon octahedra were constructed by a two-step controlled calcination of iron-based metal organic framework. The porous octahedra were assembled by interpenetrated Fe3O4 nanoparticles coated with graphitic carbon layer, offering abundant mesoporous channels for the solid-liquid contact. Moreover, the oxygen-containing functional groups on the surface of graphitic carbon endow the catalysts with hydrophilic nature and well-dispersion into water. The porous Fe3O4/carbon octahedra show efficiently heterogeneous Fenton-like reactions for decomposing the organic dye methylene blue (MB) with the help of H2O2, and nearly 100% removal efficiency within 60 min. Furthermore, the magnetic catalyst retains the activity after ten cycles and can be easily separated by external magnetic field, indicating the long-term catalytic durability and recyclability. The good Fenton-like catalytic performance of the as-synthesized Fe3O4/carbon octahedra is ascribed to the unique mesoporous structure derived from MOF-framework, as well as the sacrificial role and stabilizing effect of graphitic carbon layer. This work provides a facile strategy for the controllable synthesis of integrated porous octahedral structure with graphitic carbon layer, and thereby the catalyst holds significant potential for wastewater treatment.

  18. Synthesis of Cr-MOF derived porous carbon for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-07-01

    Full Text Available Over the recent years, applications of porous metal-organic frameworks (MOFs) in hydrogen storage have received increasing attention in the scientific community. Conversion of organic moiety in MOFs to porous carbon, as well as the use of MOFs as a...

  19. The evaluation of hydroxyapatite (HA) coated and uncoated porous tantalum for biomedical material applications

    International Nuclear Information System (INIS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-01-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  20. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    Science.gov (United States)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  1. Additive Manufacturing of Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division. Polymers and Coatings

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  2. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials

    Directory of Open Access Journals (Sweden)

    Weihua Chen

    2016-01-01

    Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.

  3. Stochastic and Resolvable Gravitational Waves from Ultralight Bosons.

    Science.gov (United States)

    Brito, Richard; Ghosh, Shrobana; Barausse, Enrico; Berti, Emanuele; Cardoso, Vitor; Dvorkin, Irina; Klein, Antoine; Pani, Paolo

    2017-09-29

    Ultralight scalar fields around spinning black holes can trigger superradiant instabilities, forming a long-lived bosonic condensate outside the horizon. We use numerical solutions of the perturbed field equations and astrophysical models of massive and stellar-mass black hole populations to compute, for the first time, the stochastic gravitational-wave background from these sources. In optimistic scenarios the background is observable by Advanced LIGO and LISA for field masses m_{s} in the range ∼[2×10^{-13},10^{-12}] and ∼5×[10^{-19},10^{-16}]  eV, respectively, and it can affect the detectability of resolvable sources. Our estimates suggest that an analysis of the stochastic background limits from LIGO O1 might already be used to marginally exclude axions with mass ∼10^{-12.5}  eV. Semicoherent searches with Advanced LIGO (LISA) should detect ∼15(5) to 200(40) resolvable sources for scalar field masses 3×10^{-13} (10^{-17})  eV. LISA measurements of massive BH spins could either rule out bosons in the range ∼[10^{-18},2×10^{-13}]  eV, or measure m_{s} with 10% accuracy in the range ∼[10^{-17},10^{-13}]  eV.

  4. Performance and impedance studies of thin, porous molybdenum and tungsten electrodes for the alkali metal thermoelectric converter

    Science.gov (United States)

    Wheeler, B. L.; Williams, R. M.; Jeffries-Nakamura, B.; Lamb, J. L.; Loveland, M. E.; Bankston, C. P.; Cole, T.

    1988-01-01

    Columnar, porous, magnetron-sputtered molybdenum and tungsten films show optimum performance as alkali metal thermoelectric converter electrodes at thicknesses less than 1.0 micron when used with molybdenum or nickel current collector grids. Power densities of 0.40 W/sq cm for 0.5-micron molybdenum films at 1200 K and 0.35 W/sq cm for 0.5-micron tungsten films at 1180 K were obtained at electrode maturity after 40-90 h. Sheet resistances of magnetron sputter deposited films on sodium beta-double-prime-alumina solid electrolyte (BASE) substrates were found to increase very steeply as thickness is decreased below about 0.3-double-prime 0.4-micron. The ac impedance data for these electrodes have been interpreted in terms of contributions from the bulk BASE and the porous electrode/BASE interface. Voltage profiles of operating electrodes show that the total electrode area, of electrodes with thickness less than 2.0 microns, is not utilized efficiently unless a fairly fine (about 1 x 1 mm) current collector grid is employed.

  5. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    Science.gov (United States)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan; Su, Zhong-Min; Yuan, Gang; Wang, Xin-Long

    2013-02-01

    Three metal-organic frameworks (MOFs), [Co2(BPDC)2(4-BPH)·3DMF]n (1), [Cd2(BPDC)2(4-BPH)2·2DMF]n (2) and [Ni2(BDC)2(3-BPH)2 (H2O)·4DMF]n (3) (H2BPDC=biphenyl-4,4'-dicarboxylic acid, H2BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N'-dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has "single-pillared" MOF-5-like motif with inner cage diameters of up to 18.6 Å. Framework 2 has "double pillared" MOF-5-like motif with cage diameters of 19.2 Å while 3 has "double pillared" 8-connected framework with channel diameters of 11.0 Å. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework.

  6. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    Science.gov (United States)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Gas phase fractionation method using porous ceramic membrane

    Science.gov (United States)

    Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  8. Chemical vapor deposition of yttria stabilized zirconia in porous substrates

    International Nuclear Information System (INIS)

    Carolan, M.F.; Michaels, J.N.

    1987-01-01

    Electrochemical vapor deposition (EVD) of yttria stabilized zirconia (YSZ) is the preferred route to the production of thin films of YSZ on porous substrates. This process has been used in the construction of both fuel cells and steam electrolyzers. A critical aspect of the EVD process is an initial chemical vapor deposition phase in which the pores of a porous substrate are plugged by YSZ. In this process, water vapor and a mixture of gaseous zirconium chloride and yttrium chloride diffuse into the porous substrate from opposite sides and react to form YSZ and HCl ga. During the second stage of the process a continuous dense film of electrolyte is formed by a tarnishing-type process. Experimentally it is observed that the pores plug within a few pore diameters of the metal chloride face of the substrate. A kinetic rate expression that is first order in metal chloride but zero order in water is best able to explain this phenomenon. With this rate expression, the pores always plug near the metal chloride face. The model predicts less pore narrowing to occur as the ratio of the reaction rate to the diffusion rate of the metal chloride is increased. A kinetic rate expression that is first order in both water and metal chloride predicts that the pores plug much deeper in the substrate

  9. Fundamental water experiment on subassembly with porous blockage in 4 sub-channel geometry. Influence of flow on temperature distribution in the porous blockage

    International Nuclear Information System (INIS)

    Tanaka, Masa-aki; Kobayashi, Jun; Isozaki, Tadasi; Nishimura, Motohiko; Kamide, Hideki

    1998-03-01

    In the liquid metal cooled Fast Breeder Reactor, Local Fault incident is recognized as a key issue of the local subassembly accident. In terms of the reactor safety assessment, it is important to predict the velocity and temperature distributions not only in the fuel subassembly but also in the blockage accurately to evaluate the location of the hottest point and the maximum temperature. In this study, the experiment was performed with the 4 sub-channel geometry water test facility. Dimension is five times larger than that of a real FBR. The porous blockage is located at the center sub-channel in the test section and surrounded with three unplugged sub-channels. The blockages used in this study were, the solid metal, the porous medium consisted of metal spheres, the porous blockage with end plates covering the side or top faces of the blockage to prevent the horizontal and axial flows into the blockage. The experimental parameters were the heater output provided by the electrical heater in the simulated fuel pins and the flow rate. Temperature of the fluid was measured inside/outside the blockage and velocity profiles outside the blockage were measured. (J.P.N.)

  10. Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols.

    Science.gov (United States)

    Albo, Jonathan; Vallejo, Daniel; Beobide, Garikoitz; Castillo, Oscar; Castaño, Pedro; Irabien, Angel

    2017-03-22

    The electrocatalytic reduction of CO 2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu 3 (μ 6 -C 9 H 3 O 6 ) 2 ] n ; (2) CuAdeAce MOF, [Cu 3 (μ 3 -C 5 H 4 N 5 ) 2 ] n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C 2 H 2 N 2 S 2 )] n ; and (4) CuZnDTA MOA, [Cu 0.6 Zn 0.4 (μ-C 2 H 2 N 2 S 2 )] n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO 2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO 2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm -2 , an electrolyte-flow/area ratio of 3 mL min cm -2 , and a gas-flow/area ratio of 20 mL min cm -2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Metal-assisted chemical etching in HF/Na2S2O8 OR HF/KMnO4 produces porous silicon

    NARCIS (Netherlands)

    Hadjersi, T.; Gabouze, N.; Kooij, Ernst S.; Zinine, A.; Zinine, A.; Ababou, A.; Chergui, W.; Cheraga, H.; Belhousse, S.; Djeghri, A.

    2004-01-01

    A new metal-assisted chemical etching method using Na2S2O8 or KMnO4 as an oxidizing agent was proposed to form a porous silicon layer on a highly resistive p-type silicon. A thin layer of Ag or Pd is deposited on the Si(100) surface prior to immersion in a solution of HF and Na2S2O8 or HF and KMnO4.

  12. Manufacturing of Porous Ceramic Preforms Based on Halloysite Nanotubes (Hnts

    Directory of Open Access Journals (Sweden)

    Kujawa M.

    2016-06-01

    Full Text Available The aim of this study was to determine the influence of manufacturing conditions on the structure and properties of porous halloysite preforms, which during pressure infiltration were soaked with a liquid alloy to obtain a metal matrix composite reinforced by ceramic, and also to find innovative possibilities for the application of mineral nanotubes obtained from halloysite. The method of manufacturing porous ceramic preforms (based on halloysite nanotubes as semi-finished products that are applicable to modern infiltrated metal matrix composites was shown. The ceramic preforms were manufactured by sintering of halloysite nanotubes (HNT, Natural Nano Company (USA, with the addition of pores and canals forming agent in the form of carbon fibres (Sigrafil C10 M250 UNS SGL Group, the Carbon Company. The resulting porous ceramic skeletons, suggest innovative application capabilities mineral nanotubes obtained from halloysite.

  13. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams

    International Nuclear Information System (INIS)

    Uedono, Akira; Armini, Silvia; Zhang, Yu; Kakizaki, Takeaki; Krause-Rehberg, Reinhard; Anwand, Wolfgang; Wagner, Andreas

    2016-01-01

    Graphical abstract: - Highlights: • Pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the low-k film. • For the sample without the SAM sealing process, metal atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. Almost all pore interiors were covered by those metals. • For the sample damaged by a plasma etch treatment before the SAM sealing process, self-assembled molecules diffused into the OSG film, and they were preferentially trapped by larger pores. - Abstract: Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C_4F_8 plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C_4F_8 plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

  14. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    Science.gov (United States)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  15. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  16. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  17. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yuanshen, E-mail: yuanshen.qi@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Contreras, Karla G. [Monash Institute of Medical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800 (Australia); Jung, Hyun-Do [Liquid Processing & Casting Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyoun-Ee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of); Lapovok, Rimma [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Estrin, Yuri, E-mail: yuri.estrin@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Laboratory of Hybrid Nanostructured Materials, NUST MISiS, Moscow 119490 (Russian Federation)

    2016-02-01

    Compaction of powders by equal channel angular pressing (ECAP) using a novel space holder method was employed to fabricate metallic scaffolds with tuneable porosity. Porous Ti and Ti/Mg composites with 60% and 50% percolating porosity were fabricated using powder blends with two kinds of sacrificial space holders. The high compressive strength and good ductility of porous Ti and porous Ti/Mg obtained in this way are believed to be associated with the ultrafine grain structure of the pore walls. To understand this, a detailed electron microscopy investigation was employed to analyse the interface between Ti/Ti and Ti/Mg particles, the grain structures in Ti particles and the topography of pore surfaces. It was found that using the proposed compaction method, high quality bonding between particles was obtained. Comparing with other powder metallurgy methods to fabricate Ti with an open porous structure, where thermal energy supplied by a laser beam or high temperature sintering is essential, the ECAP process conducted at a relatively low temperature of 400 °C was shown to produce unique properties. - Highlights: • Porous Ti and porous Ti/Mg composite scaffolds were fabricated successfully. • Space holder-enabled severe plastic deformation was first used in this application. • Silicon particles as sacrificial space holders were used for the first time. • Ultrafine-grained microstructure and good bonding between particles were obtained. • Good preosteoblast cell response to as-manufactured porous Ti was achieved.

  18. Metallization of uranium oxide powders by lithium reduction

    International Nuclear Information System (INIS)

    Kim, I. S.; Seo, J. S.; Oh, S. C.; Hong, S. S.; Lee, W. K.

    2002-01-01

    Laboratory scale experiments on the reduction of uranium oxide powders into metal by lithium were performed in order to determine the equipment setup and optimum operation conditions. The method of filtration using the porous magnesia filter was introduced to recover uranium metal powders produced. Based on the laboratory scale experimental results, mock-up scale (20 kg U/batch) metallizer was designed and made. The applicability to the metallization process was estimated with respect to the thermal stability of the porous magnesia filter in the high temperature molten salt, the filtration of the fine uranium metal powders, and the operability of the equipment

  19. Metal Nanoparticles/Porous Silicon Microcavity Enhanced Surface Plasmon Resonance Fluorescence for the Detection of DNA

    Directory of Open Access Journals (Sweden)

    Jiajia Wang

    2018-02-01

    Full Text Available A porous silicon microcavity (PSiMC with resonant peak wavelength of 635 nm was fabricated by electrochemical etching. Metal nanoparticles (NPs/PSiMC enhanced fluorescence substrates were prepared by the electrostatic adherence of Au NPs that were distributed in PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA. Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR of the MC substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive in biosensor.

  20. Metal Nanoparticles/Porous Silicon Microcavity Enhanced Surface Plasmon Resonance Fluorescence for the Detection of DNA.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong

    2018-02-23

    A porous silicon microcavity (PSiMC) with resonant peak wavelength of 635 nm was fabricated by electrochemical etching. Metal nanoparticles (NPs)/PSiMC enhanced fluorescence substrates were prepared by the electrostatic adherence of Au NPs that were distributed in PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA). Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR) of the MC substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive in biosensor.

  1. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    Science.gov (United States)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  2. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag.

    Science.gov (United States)

    Liang, Yinxiu; Zhu, Hui; Bañuelos, Gary; Xu, Yingying; Yan, Baixing; Cheng, Xianwei

    2018-06-07

    This study aims to evaluate the practical potential of using constructed wetlands (CWs) for treating saline wastewater containing various heavy metals. The results demonstrated that CWs growing Canna indica with porous slag as substrate could efficiently remove heavy metals (Cu, Zn, Cd, and Pb) from saline wastewater at an electrical conductivity (EC) of 7 mS/cm, especially under low influent load. Salts with salinity level (characterized as EC) of 30 mS/cm suppressed the removal of some heavy metals, dependent on heavy metal species and their influent concentrations. The presence of salts in CWs can improve the accumulation of Cu, Zn, and Pb in plant tissues as compared to control treatment, irrespective of metal concentrations in solution. The influence of salts on Cd accumulation depended on both salinity levels and Cd concentrations in solution. Although more heavy metals were accumulated in roots than in shoots, the harvesting of aboveground plant materials is still efficient addition for heavy metal removal due to the greater biomass and growth rate of aboveground plant material. Furthermore, replacing all plants instead of preserving roots from harvested plants in CWs over a period of time is essential for heavy metal removal, because the continued accumulation by roots can be inhibited by the increasing accumulated heavy metals from saline wastewater.

  3. Mobility of engineered inorganic nanoparticles in porous media

    Science.gov (United States)

    Metreveli, George; Heidmann, Ilona; Schaumann, Gabriele Ellen

    2013-04-01

    Besides the excellent properties and great potential for various industrial, medical, pharmaceutical, cosmetic, and life science applications, engineered inorganic nanoparticles (EINP) can show also disadvantages concerning increasing risk potential with increasing application, if they are released in the environmental systems. EINP can influence microbial activity and can show toxic effects (Fabrega et al., 2009). Similar to the inorganic natural colloids, EINP can be transported in soil and groundwater systems (Metreveli et al., 2005). Furthermore, due to the large surface area and high sorption and complex formation capacity, EINP can facilitate transport of different contaminants. In this study the mobility behaviour of EINP and their effect on the transport of different metal(loid) species in water saturated porous media was investigated. For these experiments laboratory column system was used. The column was filled with quartz sand. The interactions between EINP and metal(loid)s were characterised by coupling of asymmetrical flow field flow fractionation (AF4) with inductively coupled plasma mass spectrometer (ICP-MS). As EINP laponite (synthetic three layer clay mineral), and as metal(loid)s Cu, Pb, Zn, Pt and As were used. In AF4 experiments sorption of metal(loid)s on the surface of EINP could be observed. The extent of interactions was influenced by pH value and was different for different metal(loid)s. Laboratory column experiments showed high mobility of EINP, which facilitated transport of most of metal(loid)s in water saturated porous media. Furthermore the migration of synthetic silver nanoparticles in natural soil columns was determined in leaching experiments. Acknowledgement Financial support by German Research Council (DFG) and Max-Buchner-Research Foundation (MBFSt) is gratefully acknowledged. We thank Karlsruhe Institute of Technology (KIT) for the opportunity to perform the column and AF4 experiments. References: Fabrega, J., Fawcett, S. R

  4. Electrical behavior of free-standing porous silicon layers

    International Nuclear Information System (INIS)

    Bazrafkan, I.; Dariani, R.S.

    2009-01-01

    The electrical behavior of porous silicon (PS) layers has been investigated on one side of p-type silicon with various anodization currents and electrolytes. The two contact I-V characteristic is assigned by the metal/porous silicon rectifying interface, whereas, by using the van der Pauw technique, a nonlinear dependence of the current vs voltage was found. By using Dimethylformamide (DMF) in electrolyte, regular structures and columns were formed and porosity increased. Our results showed that by using DMF, surface resistivity of PS samples increased and became double for free-standing porous silicon (FPS). The reason could be due to increasing surface area and adsorbing some more gas molecules. Activation energy of PS samples was also increased from 0.31 to 0.34 eV and became 0.35 eV for FPS. The changes induced by storage are attributed to the oxidation process of the internal surface of free-standing porous silicon layers.

  5. Surface Characteristics and Catalytic Activity of Copper Deposited Porous Silicon Powder

    Directory of Open Access Journals (Sweden)

    Muhammad Yusri Abdul Halim

    2014-12-01

    Full Text Available Porous structured silicon or porous silicon (PS powder was prepared by chemical etching of silicon powder in an etchant solution of HF: HNO3: H2O (1:3:5 v/v. An immersion time of 4 min was sufficient for depositing Cu metal from an aqueous solution of CuSO4 in the presence of HF. Scanning electron microscopy (SEM analysis revealed that the Cu particles aggregated upon an increase in metal content from 3.3 wt% to 9.8 wt%. H2-temperature programmed reduction (H2-TPR profiles reveal that re-oxidation of the Cu particles occurs after deposition. Furthermore, the profiles denote the existence of various sizes of Cu metal on the PS. The Cu-PS powders show excellent catalytic reduction on the p-nitrophenol regardless of the Cu loadings.

  6. Ligand flexibility and framework rearrangement in a new family of porous metal-organic frameworks

    DEFF Research Database (Denmark)

    Hawxwell, Samuel M; Espallargas, Guillermo Mínguez; Bradshaw, Darren

    2007-01-01

    Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs.......Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs....

  7. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    International Nuclear Information System (INIS)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-01-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures

  8. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Wauthle, Ruben, E-mail: ruben.wauthle@3dsystems.com [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems - LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Ahmadi, Seyed Mohammad; Amin Yavari, Saber [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Mulier, Michiel [KU Leuven, Department of Orthopaedics, Weligerveld 1, 3212 Pellenberg (Belgium); Zadpoor, Amir Abbas [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Weinans, Harrie [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Department of Orthopedics & department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands); Van Humbeeck, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); Kruth, Jean-Pierre [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); Schrooten, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, PB 813, O& N1, Herestraat 49, 3000 Leuven (Belgium)

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures.

  9. Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching.

    Science.gov (United States)

    Sainato, Michela; Strambini, Lucanos Marsilio; Rella, Simona; Mazzotta, Elisabetta; Barillaro, Giuseppe

    2015-04-08

    Surface doping of nano/mesostructured materials with metal nanoparticles to promote and optimize chemi-transistor sensing performance represents the most advanced research trend in the field of solid-state chemical sensing. In spite of the promising results emerging from metal-doping of a number of nanostructured semiconductors, its applicability to silicon-based chemi-transistor sensors has been hindered so far by the difficulties in integrating the composite metal-silicon nanostructures using the complementary metal-oxide-semiconductor (CMOS) technology. Here we propose a facile and effective top-down method for the high-yield fabrication of chemi-transistor sensors making use of composite porous silicon/gold nanostructures (cSiAuNs) acting as sensing gate. In particular, we investigate the integration of cSiAuNs synthesized by metal-assisted etching (MAE), using gold nanoparticles (NPs) as catalyst, in solid-state junction-field-effect transistors (JFETs), aimed at the detection of NO2 down to 100 parts per billion (ppb). The chemi-transistor sensors, namely cSiAuJFETs, are CMOS compatible, operate at room temperature, and are reliable, sensitive, and fully recoverable for the detection of NO2 at concentrations between 100 and 500 ppb, up to 48 h of continuous operation.

  10. Perturbations of ultralight vector field dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, J.A.R.; Maroto, A.L.; Jareño, S.J. Núñez [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2017-02-13

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with k{sup 2}≪Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with k{sup 2}≫Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c{sub s}{sup 2}≃k{sup 2}/m{sup 2}a{sup 2}. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order (Φ−Ψ)/Φ∼c{sub s}{sup 2}. Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/Φ∼c{sub s}{sup 2}. This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  11. Adsorption and separation of propane and propylene by porous hexacyanometallates

    International Nuclear Information System (INIS)

    Autie-Castro, G.; Autie, M.; Reguera, E.; Moreno-Tost, R.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Santamaria-Gonzalez, J.

    2011-01-01

    The separation capability for mixtures of propane and propylene by porous frameworks representatives of transition metal hexacyanometallates was studied from adsorption data under equilibrium conditions at 273.15 K and from inverse gas chromatography profiles at different column temperatures. Samples of two porous solids were considered; Cd 3 [Co(CN) 6 ] 2 , which is representative of Prussian blue analogues (cubic structure) with a porous framework related to vacancies for building block, and Zn 3 [Co(CN) 6 ] 2 (rhombohedral phase) where the porous framework results from the tetrahedral coordination for the Zn atoms. The two materials were found to be able for the mixtures separation, with the highest separation ability for the rhombohedral phase under equilibrium conditions but, in dynamic conditions the cubic one shown a better separation, which was ascribed to a kinetic contribution related to a smaller windows size.

  12. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong; Huang Rongbin; Zheng Lansun

    2007-01-01

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates

  13. Synthesis and applications of MOF-derived porous nanostructures

    Directory of Open Access Journals (Sweden)

    Min Hui Yap

    2017-07-01

    Full Text Available Metal organic frameworks (MOFs represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area, large pore volume, and excellent chemical stability. Research on synthesis, structures and properties of various MOFs has shown that they are promising materials for many applications, such as energy storage, gas storage, heterogeneous catalysis and sensing. Apart from direct use, MOFs have also been used as support substrates for nanomaterials or as sacrificial templates/precursors for preparation of various functional nanostructures. In this review, we aim to present the most recent development of MOFs as precursors for the preparation of various nanostructures and their potential applications in energy-related devices and processes. Specifically, this present survey intends to push the boundaries and covers the literatures from the year 2013 to early 2017, on supercapacitors, lithium ion batteries, electrocatalysts, photocatalyst, gas sensing, water treatment, solar cells, and carbon dioxide capture. Finally, an outlook in terms of future challenges and potential prospects towards industrial applications are also discussed. Keywords: Metal organic frameworks, Porous nanostructures, Supercapacitors, Lithium ion batteries, Heterogeneous catalyst

  14. Porous carbon-coated ZnO nanoparticles derived from low carbon content formic acid-based Zn(II) metal-organic frameworks towards long cycle lithium-ion anode material

    International Nuclear Information System (INIS)

    Gao, Song; Fan, Ruiqing; Li, Bingjiang; Qiang, Liangsheng; Yang, Yulin

    2016-01-01

    Graphical abstract: The nanocomposites constructed from Zn-based MOFs exhibit low carbon content with super-high rate capability and long cycling life. - Highlights: • Novel ZnO@porous carbon matrix nanocomposites are constructed by pyrolysis of Zn-based MOFs. • The nanocomposites constructed with Zn-based MOFs show low carbon content. • The constructed nanocomposites exhibit high energy density, super-high rate capability and long cycling life. - Abstract: Single-C formic acid-based metal-organic frameworks (MOFs) are used to construct novel ZnO@porous carbon matrix nanocomposites by controlled pyrolysis. In the constructed nanocomposites, the porous carbon matrices act as a confined support to prevent agglomeration of the ZnO nanoparticles and create a rapid electron conductive network. Meanwhile, the well-defined, continuous porous structured MOFs provide a large specific surface area, which increases the contact of electrolyte-electrode and improves the penetration of electrolyte. Especially, the reasonable choice of formic acid-based MOFs construct the low carbon content composite, which contribute to the high energy density and long cycle life. The constructed nanocomposites show stable, ultrahigh rate lithium ion storage properties of 650 mAh g −1 at charge/discharge rate of 1 C even after 200 cycles.

  15. Development of Ultra-Light Composite Material to Build the Platform of a Shaking Table

    Directory of Open Access Journals (Sweden)

    Botero-Jaramillo Eduardo

    2013-10-01

    Full Text Available Based on the developments of the last decades in the area of ultra-light materials, their application in the construction of the platform of the new one direction hydrau- lic shaking table was proposed, with capacity of one ton and frequency range from 0.4 Hz to 4.0 Hz for the Geotechnical Laboratory of the Institute of Engineering, UNAM. The aim was to replace the heavy conventional steel platforms, used in shaking tables, by a composite material based on wood and Kevlar, hence reducing its weight and optimizing the hydraulic equipment capacity available in the labora- tory. Accordingly, an experimental investigation was conducted to characterize the stress-strain behavior of composite materials under monotonically increasing load. This research involved the determination of the adequate proportions of the different constituent materials and manufacturing techniques that best suit the needs and available resources.

  16. Novel highly porous magnetic hydrogel beads composed of chitosan and sodium citrate: an effective adsorbent for the removal of heavy metals from aqueous solutions.

    Science.gov (United States)

    Pu, Shengyan; Ma, Hui; Zinchenko, Anatoly; Chu, Wei

    2017-07-01

    This research focuses on the removal of heavy metal ions from aqueous solutions using magnetic chitosan hydrogel beads as a potential sorbent. Highly porous magnetic chitosan hydrogel (PMCH) beads were prepared by a combination of in situ co-precipitation and sodium citrate cross-linking. Fourier transform infrared spectroscopy indicated that the high sorption efficiency of metal cations is attributable to the hydroxyl, amino, and carboxyl groups in PMCH beads. Thermogravimetric analysis demonstrated that introducing Fe 3 O 4 nanoparticles increases the thermal stability of the adsorbent. Laser confocal microscopy revealed highly uniform porous structure of the resultant PMCH beads, which contained a high moisture content (93%). Transmission electron microscopy micrographs showed that the Fe 3 O 4 nanoparticles, with a mean diameter of 5 ± 2 nm, were well dispersed inside the chitosan beads. Batch adsorption experiments and adsorption kinetic analysis revealed that the adsorption process obeys a pseudo-second-order model. Isotherm data were satisfactorily described by the Langmuir equation, and the maximum adsorption capacity of the adsorbent was 84.02 mg/g. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectra analyses were performed to confirm the adsorption of Pb 2+ and to identify the adsorption mechanism.

  17. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    Science.gov (United States)

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Mechanical Properties of Porous Titanium Structure Fabricated by Investment Casting with Pressurization/Depressurization System

    International Nuclear Information System (INIS)

    Kang, San; Lee, Ji-Woon; Hyun, Soong-Keun; Lee, Byong-Pil; Kim, Myoung-Gyun; Kim, Young-Jig

    2014-01-01

    A porous titanium structure was fabricated by investment casting with a pressurization/depressurization system, and its mechanical properties were studied. A Micro-Vickers hardness profile revealed that hardness gradually increased from the matrix to the metal/mold interface. A compression test was conducted on a single cell of the porous Ti structure. The theoretical and experimental values of yield strength were in good agreement. Such agreement suggested that the reaction layer did not affect the macro-mechanical properties of the porous Ti structure.

  19. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan

    2016-04-14

    Asymmetric supercapacitors provide a promising approach to fabricate capacitive energy storage devices with high energy and power densities. In this work, asymmetric supercapacitors with excellent performance have been fabricated using ternary (Ni, Co)0.85Se on carbon fabric as bind-free positive electrode and porous free-standing graphene films as negative electrode. Owing to their metal-like conductivity (~1.67×106 S m−1), significant electrochemical activity, and superhydrophilic nature, our nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid supercapacitors can afford impressive areal capacitance and stack capacitance of 529.3 mF cm−2 and 6330 mF cm−3 at 1 mA cm−2, respectively. More impressively, our optimized asymmetric device operating at 1.8 V delivers a very high stack energy density of 2.85 mWh cm−3 at a stack power density of 10.76 mW cm−3, as well as 85% capacitance retention after 10,000 continuous charge-discharge cycles. Even at a high stack power density of 1173 mW cm−3, this device still deliveries a stack energy density of 1.19 mWh cm−3, superior to most of the reported supercapacitors.

  20. Comparative analysis of the possibility of applying low-melting metals with the capillary-porous system in tokamak conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I. E., E-mail: lyublinski@yandex.ru; Vertkov, A. V., E-mail: avertkov@yandex.ru; Semenov, V. V., E-mail: darkfenix2006@mail.ru [OAO Krasnaya Zvezda (Russian Federation)

    2016-12-15

    The use of capillary-porous systems (CPSs) with liquid Li, Ga, and Sn is considered as an alternative for solving the problem of creating plasma-facing elements (PFEs) of the fusion neutron source (FNS) and the DEMO-type reactor. The main advantages of CPSs with liquid metal compared with hard materials are their stability with respect to the degradation of properties in tokamak conditions and capability of surface self-restoration. The evaluation of applicability of liquid metals is performed on the basis of the analysis of their physical and chemical properties, the interaction with the tokamak plasma, and constructive and process features of in-vessel elements with CPSs implementing the application of these metals in a tokamak. It is shown that the upper limit of the PFE working temperature for all low-melting metals under consideration lies in the range of 550–600°Ð¡. The decisive factor for PFEs with Li is the limitation on the admissible atomic flux into plasma, while for those with Ga and Sn it is the corrosion resistance of construction materials. The upper limit of thermal loads in the steady-state operating mode for the considered promising PFE design with the use of Li, Ga, and Sn is close to 18–20 MW/m{sup 2}. It is seen from the analysis that the use of metals with a low equilibrium vapor pressure of (Ga, Sn) gives no gain in extension of the region of admissible working temperatures of PFEs. However, with respect to the totality of properties, the possibility of implementing the self-restoration and stabilization effect of the liquid surface, the influence on the plasma discharge parameters, and the ability to protect the PFE surface in conditions of plasma perturbations and disruption, lithium is the most attractive liquid metal to create CPS-based PFEs for the tokamak.

  1. Reconfigurable electronics using conducting metal-organic frameworks

    Science.gov (United States)

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  2. Adsorption and separation of propane and propylene by porous hexacyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Autie-Castro, G. [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Autie, M. [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Centro de Ingenieria y Proyectos (CIPRO), ISPJAE, La Habana (Cuba); Reguera, E., E-mail: ereguera@yahoo.com [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Unidad Legaria, Mexico DF (Mexico); Moreno-Tost, R.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Santamaria-Gonzalez, J. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Malaga (Spain)

    2011-01-15

    The separation capability for mixtures of propane and propylene by porous frameworks representatives of transition metal hexacyanometallates was studied from adsorption data under equilibrium conditions at 273.15 K and from inverse gas chromatography profiles at different column temperatures. Samples of two porous solids were considered; Cd{sub 3}[Co(CN){sub 6}]{sub 2}, which is representative of Prussian blue analogues (cubic structure) with a porous framework related to vacancies for building block, and Zn{sub 3}[Co(CN){sub 6}]{sub 2} (rhombohedral phase) where the porous framework results from the tetrahedral coordination for the Zn atoms. The two materials were found to be able for the mixtures separation, with the highest separation ability for the rhombohedral phase under equilibrium conditions but, in dynamic conditions the cubic one shown a better separation, which was ascribed to a kinetic contribution related to a smaller windows size.

  3. Supercapacitive characteristics of electrochemically active porous materials

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-06-01

    Full Text Available The results of an investigation of the capacitive characteristics of sol–gel-processed titanium- and carbon-supported electrochemically active noble metal oxides, as representatives of porous electrode materials, are presented in the lecture. The capacitive properties of these materials were correlated to their composition, the preparation conditions of the oxides and coatings, the properties of the carbon support and to the composition of the electrolyte. The results of the electrochemical test methods, cyclic voltammetry and electrochemical impedance spectroscopy, were employed to resolve the possible physical structures of the mentioned porous materials, which are governed by the controlled conditions of the preparation of the oxide by the sol–gel process.

  4. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants

    NARCIS (Netherlands)

    Barrère, F.; van der Valk, Chantal M.; Dalmeijer, Remco A.J.; Meijer, Gert; van Blitterswijk, Clemens; de Groot, K.; Layrolle, Pierre

    2003-01-01

    The biomimetic route allows the homogeneous deposition of calcium phosphate (Ca-P) coatings on porous implants by immersion in simulated physiologic solution. In addition, various Ca-P phases, such as octacalcium phosphate (OCP) or bone-like carbonated apatite (BCA), which are stable only at low

  5. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    Science.gov (United States)

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV−visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties. PMID:27877868

  6. Electroless porous silicon formation applied to fabrication of boron-silica-glass cantilevers

    DEFF Research Database (Denmark)

    Teva, Jordi; Davis, Zachary James; Hansen, Ole

    2010-01-01

    This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5-1 mm3) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases...... where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing...... for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH...

  7. Particulate Filtration from Emissions of a Plasma Pyrolysis Assembly Reactor Using Regenerable Porous Metal Filters

    Science.gov (United States)

    Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  8. Metal nanoparticles as a conductive catalyst

    Science.gov (United States)

    Coker, Eric N [Albuquerque, NM

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  9. Porous copper template from partially spark plasma-sintered Cu–Zn ...

    Indian Academy of Sciences (India)

    Administrator

    analysis. Keywords. Metal; corrosion; porous structure; sintering; powder metallurgy. 1. Introduction ... well as in the case, when the overall electrode potential of the final ... at 100 °C/min to reach sintering temperature and load was applied ...

  10. Properties of porous magnesium prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2013-01-01

    Porous magnesium-based materials are biodegradable and promising for use in orthopaedic applications, but their applications are hampered by their difficult fabrication. This work reports the preparation of porous magnesium materials by a powder metallurgy technique using ammonium bicarbonate as spacer particles. The porosity of the materials depended on the amount of ammonium bicarbonate and was found to have strong negative effects on flexural strength and corrosion behaviour. However, the flexural strength of materials with porosities of up to 28 vol.% was higher than the flexural strength of non-metallic biomaterials and comparable with that of natural bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Preparation of porous adsorbers and supports most favorable for separation by using radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Saito, Kyoichi

    2014-01-01

    Various functional groups such as chelate-forming and ion-exchange groups were introduced into the poly-glycidyl methacrylate chain grafted onto a commercially available porous hollow-fiber membrane with a thickness of approximately 1 mm, an average pore size of 0.4 µm, and a porosity of 70%. Permeation of a target metal-ion or protein solution driven by a transmembrane pressure enables us to minimize the diffusional mass-transfer resistance of metal ions or proteins to the functional groups. Considerable degree of GMA grafting and molar conversion of the epoxy group into the functional group provide a higher functional group density of the porous hollow-fiber membrane than for conventional adsorbents. First, metal ions and proteins were transported to the chelating and ion-exchange groups, respectively, of the graft chain. The higher the permeation rate of the target solution is, the higher the overall adsorption rate of the target ions or proteins onto the modified porous hollow-fiber membrane becomes. In addition, proteins were bound to the ion-exchange polymer brush in multilayers because the polymer brush extends from the pore surface towards the pore interior due to its mutual electrostatic repulsion. Second, replacement adsorption was observed in a binary system of metal ions or proteins during the permeation of the solution through the membrane with a membrane thickness of approximately 1 mm. Third, chiral resolution of DL-tryptophan was demonstrated using albumin-multilayered porous hollow-fiber membranes. (author)

  12. Recovery of gold as a type of porous fiber by using biosorption followed by incineration.

    Science.gov (United States)

    Park, Seong-In; Kwak, In Seob; Bae, Min A; Mao, Juan; Won, Sung Wook; Han, Do Hyeong; Chung, Yong Sik; Yun, Yeoung-Sang

    2012-01-01

    This study introduces a new process for the recovery of gold in porous fiber form by the incineration of Au-loaded biosorbent fiber from gold-cyanide solutions. For the recovery of gold from such aqueous solutions, polyethylenimine (PEI)-modified bacterial biosorbent fiber (PBBF) and PEI-modified chitosan fiber (PCSF) were developed and used. The maximum uptakes of Au(I) ions were estimated as 421.1 and 251.7 mg/g at pH 5.5 for PBBF and PCSF, respectively. Au-loaded biosorbents were freeze-dried and then incinerated to oxidize their organic constituents while simultaneously obtaining reduced gold. As a result, porous metallic gold fibers were obtained with 60 μm of diameter. Scanning electron microscopic (SEM) analysis and mercury porosimetry revealed the fibers to have 60 μm of diameter and to be highly porous and hollow. The proposed process therefore offers the potential for the efficient recovery of metallic porous gold fibers using combined biosorption and incineration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Spinel-based coatings for metal supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Stefan, Elena; Neagu, Dragos; Blennow Tullmar, Peter

    2017-01-01

    Metal supports and metal supported half cells developed at DTU are used for the study of a solution infiltration approach to form protective coatings on porous metal scaffolds. The metal particles in the anode layer, and sometimes even in the support may undergo oxidation in realistic operating...... conditions leading to severe cell degradation. Here, a controlled oxidation of the porous metal substrate and infiltration of Mn and/or Ce nitrate solutions are applied for in situ formation of protective coatings. Our approach consists of scavenging the FeCr oxides formed during the controlled oxidation...... into a continuous and well adhered coating. The effectiveness of coatings is the result of composition and structure, but also of the microstructure and surface characteristics of the metal scaffolds....

  14. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    Science.gov (United States)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  15. Methane storage in metal-organic frameworks.

    Science.gov (United States)

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  16. Development of regeneration technique for diesel particulate filter made of porous metal; Kinzoku takotai DPF no saisei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoro, K; Ban, S; Ooka, T; Saito, H; Oji, M; Nakajima, S; Okamoto, S [Sumitomo Electric Industries, Ltd., Osaka (Japan)

    1997-10-01

    We have developed the diesel particulate filter (DPF) in which porous metal is used for a filter because of its high thermal conductivity and a radiation heater is used for a regeneration device because of its uniform thermal distribution. In the case high trapping efficiency is required, filter thickness should be thick. The thicker filter has a disadvantage of difficulty in regeneration because of the thermal distribution in the direction of thickness. In order to improve regeneration efficiency, we designed the best filter-heater construction which achieves uniform thermal distribution by using computer simulation and we confirmed good regeneration efficiency in the experiment. 4 refs., 14 figs., 1 tab.

  17. Processing conditions and microstructural features of porous 316L stainless steel components by DMLS

    Energy Technology Data Exchange (ETDEWEB)

    Gu Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)], E-mail: dongdonggu@nuaa.edu.cn; Shen Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)

    2008-12-30

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, would be especially interesting to produce complex shaped porous metallic components. In the present work, processing conditions and microstructural characteristics of direct laser sintered porous 316L stainless steel components were studied. It was found that a partial melting mechanism of powders gave a high feasibility in obtaining porous sintered structures possessing porosities of {approx}21-{approx}55%. Linear energy density (LED), which was defined by the ratio of laser power to scan speed, was used to tailor the laser sintering mechanism. A moderate LED of {approx}3400-{approx}6000 J/m and a lower scan speed less than 0.06 m/s proved to be feasible. With the favorable sintering mechanism prevailed, lowering laser power or increasing scan speed, scan line spacing, and powder layer thickness generally led to a higher porosity. Metallurgical mechanisms of pore formation during DMLS were addressed. It showed that the presence of pores was through: (i) the formation of liquid bridges between partially melted particles during laser irradiation; and (ii) the growth of sintering necks during solidification, leaving residual pores between solidified metallic agglomerates.

  18. Processing conditions and microstructural features of porous 316L stainless steel components by DMLS

    Science.gov (United States)

    Gu, Dongdong; Shen, Yifu

    2008-12-01

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, would be especially interesting to produce complex shaped porous metallic components. In the present work, processing conditions and microstructural characteristics of direct laser sintered porous 316L stainless steel components were studied. It was found that a partial melting mechanism of powders gave a high feasibility in obtaining porous sintered structures possessing porosities of ˜21-˜55%. Linear energy density (LED), which was defined by the ratio of laser power to scan speed, was used to tailor the laser sintering mechanism. A moderate LED of ˜3400-˜6000 J/m and a lower scan speed less than 0.06 m/s proved to be feasible. With the favorable sintering mechanism prevailed, lowering laser power or increasing scan speed, scan line spacing, and powder layer thickness generally led to a higher porosity. Metallurgical mechanisms of pore formation during DMLS were addressed. It showed that the presence of pores was through: (i) the formation of liquid bridges between partially melted particles during laser irradiation; and (ii) the growth of sintering necks during solidification, leaving residual pores between solidified metallic agglomerates.

  19. Processing conditions and microstructural features of porous 316L stainless steel components by DMLS

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu

    2008-01-01

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, would be especially interesting to produce complex shaped porous metallic components. In the present work, processing conditions and microstructural characteristics of direct laser sintered porous 316L stainless steel components were studied. It was found that a partial melting mechanism of powders gave a high feasibility in obtaining porous sintered structures possessing porosities of ∼21-∼55%. Linear energy density (LED), which was defined by the ratio of laser power to scan speed, was used to tailor the laser sintering mechanism. A moderate LED of ∼3400-∼6000 J/m and a lower scan speed less than 0.06 m/s proved to be feasible. With the favorable sintering mechanism prevailed, lowering laser power or increasing scan speed, scan line spacing, and powder layer thickness generally led to a higher porosity. Metallurgical mechanisms of pore formation during DMLS were addressed. It showed that the presence of pores was through: (i) the formation of liquid bridges between partially melted particles during laser irradiation; and (ii) the growth of sintering necks during solidification, leaving residual pores between solidified metallic agglomerates.

  20. Effective antireflection properties of porous silicon nanowires for photovoltaic applications

    KAUST Repository

    Najar, Adel; Al-Jabr, Ahmad; Alsunaidi, Mohammad; Anjum, Dalaver H.; Ng, Tien Khee; Ooi, Boon S.; Ben Slimane, Ahmed; Sougrat, Rachid

    2013-01-01

    Porous silicon nanowires (PSiNWs) have been prepared by metal-assisted chemical etching method on the n-Si substrate. The presence of nano-pores with pore size ranging between 10-50nm in SiNWs was confirmed by electron tomography (ET

  1. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  2. Numerical simulation of the transport phenomena due to sudden heating in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lei, S.Y.; Zheng, G.Y.; Wang, B.X.; Yang, R.G.; Xia, C.M.

    1997-07-01

    Such process as wet porous media suddenly heated by hot fluids frequently occurs in nature and in industrial applications. The three-variable simulation model was developed to predict violent transport phenomena due to sudden heating in porous media. Two sets of independent variables were applied to different regions in porous media in the simulation. For the wet zone, temperature, wet saturation and air pressure were used as the independent variables. For the dry zone, the independent variables were temperature, vapor pressure and air pressure. The model simulated two complicated transport processes in wet unsaturated porous media which is suddenly heated by melting metal or boiling water. The effect of the gas pressure is also investigated on the overall transport phenomena.

  3. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Alistair C. McKinlay

    2014-12-01

    Full Text Available The highly porous nature of metal-organic frameworks (MOFs offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  4. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  5. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  6. Gradient porous electrode architectures for rechargeable metal-air batteries

    Science.gov (United States)

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  7. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials.

    Science.gov (United States)

    Chen, Xi'an; Chen, Xiaohua; Xu, Xin; Yang, Zhi; Liu, Zheng; Zhang, Lijie; Xu, Xiangju; Chen, Ying; Huang, Shaoming

    2014-11-21

    Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

  8. 3D Microstructure Modeling of Porous Metal Filters

    Directory of Open Access Journals (Sweden)

    Vladimír Hejtmánek

    2012-09-01

    Full Text Available The contribution presents a modified method of stochastic reconstruction of two porous stainless-steel filters. The description of their microstructures was based on a combination of the two-point probability function for the void phase and the lineal-path functions for the void and solid phases. The method of stochastic reconstruction based on simulated annealing was capable of reproducing good connectivity of both phases, which was confirmed by calculating descriptors of the local porosity theory. Theoretical values of permeability were compared with their experimental counterparts measured by means of quasi-stationary permeation of four inert gases.

  9. Human bone ingrowth into a porous tantalum acetabular cup

    Directory of Open Access Journals (Sweden)

    Gregory N. Haidemenopoulos

    2017-11-01

    Full Text Available Porous Tantalum is increasingly used as a structural scaffold in orthopaedic applications. Information on the mechanisms of human bone ingrowth into trabecular metal implants is rather limited. In this work we have studied, qualitatively, human bone ingrowth into a retrieved porous tantalum monoblock acetabular cup using optical microscopy, scanning electron microscopy and energy dispersive X-ray analysis. According to the results and taking into account the short operational life (4 years of the implant, bone ingrowth on the acetabular cup took place in the first two-rows of porous tantalum cells to an estimated depth of 1.5 to 2 mm. The bone material, grown inside the first raw of cells, had almost identical composition with the attached bone on the cup surface, as verified by the same Ca:P ratio. Bone ingrowth has been a gradual process starting with Ca deposition on the tantalum struts, followed by bone formation into the tantalum cells, with gradual densification of the bone tissue into hydroxyapatite. A critical step in this process has been the attachment of bone material to the tantalum struts following the topology of the porous tantalum scaffold. These results provide insight to the human bone ingrowth process into porous tantalum implants.

  10. Development of ultra-light pixelated systems based on CMOS sensors for future high precision vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Marc [Institut Pluridisciplinaire Hubert Curien - IPHC, 23 rue du loess - BP28, 67037 Strasbourg cedex 2 (France)

    2010-07-01

    CMOS pixel sensors have demonstrated attractive performances in terms of spatial resolution and material budget. The recent emergence of high resistivity substrates in mass production CMOS processes has originated particularly high signal-to-noise ratios and improved the non-ionising radiation tolerance to fluences close to 10{sup 14} Neq/cm{sup 2}. These achievements, obtained with MIMOSA sensors developed at IPHC (Strasbourg) and IRFU (Saclay) will be overviewed and put in perspective of the numerous applications of the sensors. These include collider experiments at RHIC, LHC, ILC and CLIC. The development of ultra-light ladders composed of these sensors and featuring 0.1% to 0.3% of radiation length, will be summarised. The contribution to the conference will also address the evolution of these pixelated systems, including on-going R on multi-tier sensors exploiting vertical integration technologies. (author)

  11. Alien plant monitoring with ultralight airborne imaging spectroscopy.

    Directory of Open Access Journals (Sweden)

    María Calviño-Cancela

    Full Text Available Effective management of invasive plants requires a precise determination of their distribution. Remote sensing techniques constitute a promising alternative to field surveys and hyperspectral sensors (also known as imaging spectrometers, with a large number of spectral bands and high spectral resolution are especially suitable when very similar categories are to be distinguished (e.g. plant species. A main priority in the development of this technology is to lower its cost and simplify its use, so that its demonstrated aptitude for many environmental applications can be truly realized. With this aim, we have developed a system for hyperspectral imaging (200 spectral bands in the 380-1000 nm range and circa 3 nm spectral resolution operated on board ultralight aircraft (namely a gyrocopter, which allows a drastic reduction of the running costs and operational complexity of image acquisition, and also increases the spatial resolution of the images (circa 5-8 pixels/m(2 at circa 65 km/h and 300 m height. The detection system proved useful for the species tested (Acacia melanoxylon, Oxalis pes-caprae, and Carpobrotus aff. edulis and acinaciformis, with user's and producer's accuracy always exceeding 90%. The detection accuracy reported corresponds to patches down to 0.125 m(2 (50% of pixels 0.5 × 0.5 m in size, a very small size for many plant species, making it very effective for initial stages of invasive plant spread. In addition, its low operating costs, similar to those of a 4WD ground vehicle, facilitate frequent image acquisition. Acquired images constitute a permanent record of the status of the study area, with great amount of information that can be analyzed in the future for other purposes, thus greatly facilitating the monitoring of natural areas at detailed spatial and temporal scales for improved management.

  12. Metal-Matrix Composites and Porous Materials: Constitute Models, Microstructure Evolution and Applications

    National Research Council Canada - National Science Library

    Castafieda, P

    2000-01-01

    Constitutive models were developed and implemented numerically to account for the evolution of microstructure and anisotropy in finite-deformation processes involving porous and composite materials...

  13. Porous Fe-Mn-O nanocomposites: Synthesis and supercapacitor electrode application

    Directory of Open Access Journals (Sweden)

    Guoxing Zhu

    2016-06-01

    Full Text Available Transition metal oxide micro-/nanostructures demonstrate high potential applications in energy storage devices. Here, we report a facile synthesis of highly homogeneous oxide composites with porous structure via a coordination polymer precursor, which was prepared with the assistance of tartaric acid. The typical product, Fe-Mn-O composite was demonstrated here. The obtained Fe-Mn-O product was systemically characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping analysis, and X-ray photoelectron spectroscopy. It was demonstrated that the Fe-Mn-O nanocomposite shows interconnected porous structure, in which iron, manganese, and oxygen are uniformly distributed. In addition, the Fe-Mn-O nanocomposite was then fabricated as capacitor electrodes. Operating in an aqueous neutral solution, the Fe-Mn-O composite electrodes showed an wide working potential window from −0.2 to 1.0 V (vs. SCE, and a specific capacitance of 86.7 Fg−1 or 0.4 Fcm−2 at a constant current density of 1 Ag−1 with good cycle life. This study offers a new precursor approach to prepare porous metal oxide composites, which would be applied in energy-storage/conversion devices, catalysts, sensors, and so on.

  14. Evaluation of charred porous polymers as a method of storm water pollution prevention for shipyards

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.E.

    1998-08-01

    Most shipyards have viable Best Management Practices (BMPs) in place to mitigate the transport of heavy metals to surface waters by storm water. Despite aggressive efforts to control storm water, shipyards have come under increased regulatory pressure to further reduce concentrations of heavy metals, such as copper and nickel, in storm water discharges. The tightening of regulatory requirements warrants research into additional BMPs. The objectives of this research project were to: (1) determine the feasibility of placing a replaceable cartridge of adsorbent material within a storm water collection system; and (2) evaluate two commercially available charred porous polymer adsorbents for the removal of heavy metals from storm water. The results indicated that there are commercially available storm water treatment components which could be adapted to house a cartridge of porous adsorbent material.

  15. Metal oxide membranes for gas separation

    Science.gov (United States)

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  16. InPhoCUS (Inflated Photovoltaic Ultra-light Mirror Concentrators): First Results Of The Project And Future Perspectives

    Science.gov (United States)

    Pravettoni, Mauro; Barbato, Maurizio; Cooper, Thomas; Pedretti, Andrea; Ambrosetti, Gianluca; Steinfeld, Aldo

    2011-12-01

    InPhoCUS (Inflated PhotovoltaiC Ultra-light mirror concentratorS) is a concentrating photovoltaic (CPV) project funded by the Swiss Confederation's Innovation Promotion Agency (CTI) and developed by Airlight Energy Holding SA, the University of Applied Sciences and Arts of Southern Switzerland and the Swiss Federal Institute of Technology. The proposed novel concentrating system has already been patented for concentrated solar power applications: it is made by unconventional pneumatic multilayer polymeric mirrors, has an innovative fibre-reinforced concrete structure and an original tilting mechanism to track the sun. The innovative CPV solar collector is profitable for electric power plants both for the sun-belt region and in the Mediterranean. In this paper the authors present the novel CPV system and preliminary results on cost analysis, optical design and thermal modelling.

  17. Core-shell composite metal catalysts incased into natural ceramic nanotubes

    International Nuclear Information System (INIS)

    Vinokurov, V; Berberov, A; Afonin, D; Borzaev, H; Ivanov, E; Gushchin, P; Lvov, Y

    2014-01-01

    The bimetallic halloysite nanotubes were prepared by the injection of halloysite- containing aerosols into the microwave plasma reactor. Nanotubes contain metal nanoparticles formed from the metal salt solution in the lumen of nanotubes and the iron oxide nanoparticles at the outer surface of nanotubes. Such halloysite composites may be sputtered onto the surface of the porous carrier forming the nanostructured catalyst, as was shown by the pure halloysite sputtering onto the model porous ceramic surface

  18. General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.

    Science.gov (United States)

    Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L

    2018-04-18

    In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

  19. Preparation of porous materials for radionuclides capture

    International Nuclear Information System (INIS)

    Bajzikova, Anna; Smrcek, Stanislav; Kozempel, Jan; Vlk, Martin; Barta, Jan

    2015-01-01

    Porous materials showing promise for radionuclide capture from water at contaminated sites were prepared. Nanoporous materials (size of pores 1-100 nm) and some polymers are well suited to this purpose owing their affinity for selected radionuclides. Nanoporous metal oxides and silica gel with styrene-divinylbenzene-TODGA-modified surface were prepared, characterized and tested for radionuclide ( 227 Ac, 227 Th, 223 Ra) capture efficiency. (orig.)

  20. Obtaining porous silicon suitable for sensor technology using MacEtch nonelectrolytic etching

    Directory of Open Access Journals (Sweden)

    Iatsunskyi I. R.

    2013-12-01

    Full Text Available The author suggests to use the etching method MacEtch (metal-assisted chemical etching for production of micro- and nanostructures of porous silicon. The paper presents research results on the morphology structures obtained at different parameters of deposition and etching processes. The research has shown that, depending on the parameters of deposition of silver particles and silicon wafers etching, the obtained surface morphology may be different. There may be both individual crater-like pores and developed porous or macroporous surface. These results indicate that the MacEtch etching is a promising method for obtaining micro-porous silicon nanostructures suitable for effective use in gas sensors and biological object sensors.

  1. Potential of hybrid functionalized meso-porous materials for the separation and immobilization of radionuclides

    International Nuclear Information System (INIS)

    Luca, V.

    2013-01-01

    Functionalized meso-porous materials are a class of hybrid organic-inorganic material in which a meso-porous metal oxide framework is functionalized with multifunctional organic molecules. These molecules may contain one or more anchor groups that form strong bonds to the pore surfaces of the metal oxide framework and free functional groups that can impart and or modify the functionality of the material such as for binding metal ions in solution. Such materials have been extensively studied over the past decade and are of particular interest in absorption applications because of the tremendous versatility in choosing the composition and architecture of the metal oxide framework and the nature of the functional organic molecule as well as the efficient mass transfer that can occur through a well-designed hierarchically porous network. A sorbent for nuclear applications would have to be highly selective for particular radio nuclides, it would need to be hydrolytically and radiolytically stable, and it would have to possess reasonable capacity and fast kinetics. The sorbent would also have to be available in a form suitable for use in a column. Finally, it would also be desirable if once saturated with radio nuclides, the sorbent could be recycled or converted directly into a ceramic or glass waste form suitable for direct repository disposal or even converted directly into a material that could be used as a transmutation target. Such a cradle-to- grave strategy could have many benefits in so far as process efficiency and the generation of secondary wastes are concerned.This paper will provide an overview of work done on all of the above mentioned aspects of the development of functionalized meso-porous adsorbent materials for the selective separation of lanthanides and actinides and discuss the prospects for future implementation of a cradle-to-grave strategy with such materials. (author)

  2. Deposited Micro Porous Layer as Lubricant Carrier in Metal Forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2008-01-01

    as lubricant reservoirs. Conventional friction tests for cold forming; ring compression and double cup extrusion tests are carried out with Molykote DX paste and mineral oil as lubricant. Both lubricants act as intended for the ring compressions test whereas only the low viscosity oil perform successfully...... in the cup extrusion test. For all specimens without the porous coating, high friction conditions are identified....

  3. Formic Acid Oxidation over Hierarchical Porous Carbon Containing PtPd Catalysts

    Directory of Open Access Journals (Sweden)

    Elena Pastor

    2013-10-01

    Full Text Available The use of high surface monolithic carbon as support for catalysts offers important advantage, such as elimination of the ohmic drop originated in the interparticle contact and improved mass transport by ad-hoc pore design. Moreover, the approach discussed here has the advantage that it allows the synthesis of materials having a multimodal porous size distribution, with each pore size contributing to the desired properties. On the other hand, the monolithic nature of the porous support also imposes new challenges for metal loading. In this work, the use of Hierarchical Porous Carbon (HPC as support for PtPd nanoparticles was explored. Three hierarchical porous carbon samples (denoted as HPC-300, HPC-400 and HPC-500 with main pore size around 300, 400 and 500 nm respectively, are used as porous support. PtPd nanoparticles were loaded by impregnation and subsequent chemical reduction with NaBH4. The resulting material was characterized by EDX, XRD and conventional electrochemical techniques. The catalytic activity toward formic acid and methanol electrooxidation was evaluated by electrochemical methods, and the results compared with commercial carbon supported PtPd. The Hierarchical Porous Carbon support discussed here seems to be promising for use in DFAFC anodes.

  4. Modeling of the effective thermal conductivity of sintered porous pastes

    NARCIS (Netherlands)

    Ordonez-Miranda, J.; Hermens, M.; Nikitin, I.; Kouznetsova, V.G.; Volz, S.

    2014-01-01

    The thermal conductivity of sintered porous pastes of metals is modelled, based on an analytical and a numerical approach. The first method arises from the differential effective medium theory and considers the air voids as ellipsoidal pores of different sizes, while second one is based on the

  5. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P. [Belarusian State University of Information and RadioElectronics (Belarus)

    2016-03-15

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  6. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    International Nuclear Information System (INIS)

    Chubenko, E. B.; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P.

    2016-01-01

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  7. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    Science.gov (United States)

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  8. Formation of Porous Structure with Subspot Size under the Irradiation of Picosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2013-01-01

    Full Text Available A study was presented in this paper on porous structure with microsize holes significantly smaller than laser spot on the stainless steel 304 target surface induced by a picosecond Nd:van regenerative amplified laser, operating at 1064 nm. The target surface variations were studied in air ambience. The estimated surface damage threshold was 0.15 J/cm2. The target specific surface changes and phenomena observed supported a complementary study on the formation and growth of the subspot size pit holes on metal surface with dependence of laser pulse number of 50–1000 and fluences of 0.8 and 1.6 J/cm2. Two kinds of porous structures were presented: periodic holes are formed from Coulomb Explosion during locally spatial modulated ablation, and random holes are formed from the burst of bubbles in overheated liquid during phase explosion. It can be concluded that it is effective to fabricate a large metal surface area of porous structure by laser scanning regime. Generally, it is also difficult for ultrashort laser to fabricate the microporous structures compared with traditional methods. These porous structures potentially have a number of important applications in nanotechnology, industry, nuclear complex, and so forth.

  9. Fabrication of γ-Fe2O3 Nanoparticles by Solid-State Thermolysis of a Metal-Organic Framework, MIL-100(Fe, for Heavy Metal Ions Removal

    Directory of Open Access Journals (Sweden)

    Shengtao Hei

    2014-01-01

    Full Text Available Porous γ-Fe2O3 nanoparticles were prepared via a solid-state conversion process of a mesoporous iron(III carboxylate crystal, MIL-100(Fe. First, the MIL-100(Fe crystal that served as the template of the metal oxide was synthesized by a low-temperature (<100°C synthesis route. Subsequently, the porous γ-Fe2O3 nanoparticles were fabricated by facile thermolysis of the MIL-100(Fe powders via a two-step calcination treatment. The obtained γ-Fe2O3 was characterized by X-ray diffraction (XRD, N2 adsorption, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM techniques, and then used as an adsorbent for heavy metal ions removal in water treatment. This study illustrates that the metal-organic frameworks may be suitable precursors for the fabrication of metal oxides nanomaterials with large specific surface area, and the prepared porous γ-Fe2O3 exhibits a superior adsorption performance for As(V and As(III ions removal in water treatment.

  10. CVD of solid oxides in porous substrates for ceramic membrane modification

    NARCIS (Netherlands)

    Lin, Y.S.; Lin, Y.S.; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The

  11. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    Science.gov (United States)

    2016-01-01

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr2+, Fe3+, Nd3+, and Am3+, from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  12. Engineered porous silicon counter electrodes for high efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Erwin, William R; Oakes, Landon; Chatterjee, Shahana; Zarick, Holly F; Pint, Cary L; Bardhan, Rizia

    2014-06-25

    In this work, we demonstrate for the first time, the use of porous silicon (P-Si) as counter electrodes in dye-sensitized solar cells (DSSCs) with efficiencies (5.38%) comparable to that achieved with platinum counter electrodes (5.80%). To activate the P-Si for triiodide reduction, few layer carbon passivation is utilized to enable electrochemical stability of the silicon surface. Our results suggest porous silicon as a promising sustainable and manufacturable alternative to rare metals for electrochemical solar cells, following appropriate surface modification.

  13. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    International Nuclear Information System (INIS)

    Yeheskel, O.

    2008-01-01

    The elastic moduli of γ-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals

  14. 32 CFR Appendix D to Subpart M of... - Unauthorized Activities in Maneuver Training Areas

    Science.gov (United States)

    2010-07-01

    ... vehicle operation. Hang gliding. Ultralight aircraft flying. Hot air ballooning. Souvenir hunting and.... Hot air ballooning. Souvenir hunting and metal-detecting, including recovery of ammunition residue or... aircraft flying. Hot air ballooning. Souvenir hunting and metal-detecting, including recovery of ammunition...

  15. Porous γ-TiAl Structures Fabricated by Electron Beam Melting Process

    Directory of Open Access Journals (Sweden)

    Ashfaq Mohammad

    2016-01-01

    Full Text Available Porous metal structures have many benefits over fully dense structures for use in bio-implants. The designs of porous structures can be made more sophisticated by altering their pore volume and strut orientation. Porous structures made from biocompatible materials such as titanium and its alloys can be produced using electron-beam melting, and recent reports have shown the biocompatibility of titanium aluminide (γ-TiAl. In the present work, we produced porous γ-TiAl structures by electron-beam melting, incorporating varying pore volumes. To achieve this, the individual pore dimensions were kept constant, and only the strut thickness was altered. Thus, for the highest pore volume of ~77%, the struts had to be as thin as half a millimeter. To accomplish such fine struts, we used various beam currents and scan strategies. Microscopy showed that selecting a proper scan strategy was most important in producing these fine struts. Microcomputed tomography revealed no major gaps in the struts, and the fine struts displayed compressive stiffness similar to that of natural bone. The characteristics of these highly-porous structures suggest their promise for use in bio-implants.

  16. Microstructural and Optical Properties of Porous Alumina Elaborated on Glass Substrate

    Science.gov (United States)

    Zaghdoudi, W.; Gaidi, M.; Chtourou, R.

    2013-03-01

    A transparent porous anodized aluminum oxide (AAO) nanostructure was formed on a glass substrate using the anodization of a highly pure evaporated aluminum layer. A parametric study was carried out in order to achieve a fine control of the microstructural and optical properties of the elaborated films. The microstructural and surface morphologies of the porous alumina films were characterized by x-ray diffraction and atomic force microscopy. Pore diameter, inter-pore separation, and the porous structure as a function of anodization conditions were investigated. It was then found that the pores density decreases with increasing the anodization time. Regular cylindrical porous AAO films with a flat bottom structure were formed by chemical etching and anodization. A high transmittance in the 300-900 nm range is reported, indicating a fulfilled growth of the transparent sample (alumina) from the aluminum metal. The data showed typical interference oscillations as a result of the transparent characteristics of the film throughout the visible spectral range. The thickness and the optical constants ( n and k) of the porous anodic alumina films, as a function of anodizing time, were obtained using spectroscopic ellipsometry in the ultraviolet-visible-near infrared (UV-vis-NIR) regions.

  17. Front buried metallic contacts and thin porous silicon combination for efficient polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ben Rabha, M.; Boujmil, M.F.; Meddeb, N.; Saadoun, M.; Bessais, B.

    2006-01-01

    We investigate the impacts of achieving buried grid metallic contacts (BGMC), with and without application of a front porous silicon (PS) layer, on the photovoltaic properties of polycrystalline silicon (pc-Si) solar cells. A grooving method based on Chemical Vapor Etching (CVE) was used to perform buried grid contacts on the emitter of pc-Si solar cells. After realizing the n + /p junction using a phosphorus diffusion source, BGMCs were realized using the screen printing technique. We found that the buried metallic contacts improve the short circuit current from 16 mA/cm 2 (for reference cell without buried contacts) to about 19 mA/cm 2 . After application of a front PS layer on the n + emitter, we observe an enhancement of the short circuit current from 19 to 24 mA/cm 2 with a decrease of the reflectivity by about 40% of its initial value. The dark I-V characteristics of the pc-Si cells with PS-based emitter show an important reduction of the reverse current together with an improvement of the rectifying behaviour. Spectral response measurements performed at a wavelength range of 400-1100 nm showed a significant increase in the quantum efficiency, particularly at shorter wavelength (400-650 nm). These results indicate that the BGMCs improve the carrier collection and that the PS layer acts as an antireflective coating that reduces reflection losses and passivates the front surface. This low cost and simple technology based on the CVE technique could enable preparing efficient polycrystalline silicon solar cells

  18. Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis

    KAUST Repository

    Haikal, Rana R.

    2016-07-18

    A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multi-topic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity towards hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited state lifetime of the covalently-immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.

  19. Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis

    KAUST Repository

    Haikal, Rana R.; Wang, Xia; Hassan, Youssef S.; Parida, Manas R.; Banavoth, Murali; Mohammed, Omar F.; Pellechia, Perry J.; Fontecave, Marc; Alkordi, Mohamed H.

    2016-01-01

    A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multi-topic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity towards hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited state lifetime of the covalently-immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.

  20. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    Science.gov (United States)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  1. Optical performance of hybrid porous silicon-porous alumina multilayers

    Science.gov (United States)

    Cencha, L. G.; Antonio Hernández, C.; Forzani, L.; Urteaga, R.; Koropecki, R. R.

    2018-05-01

    In this work, we study the optical response of structures involving porous silicon and porous alumina in a multi-layered hybrid structure. We performed a rational design of the optimal sequence necessary to produce a high transmission and selective filter, with potential applications in chemical and biosensors. The combination of these porous materials can be used to exploit its distinguishing features, i.e., high transparency of alumina and high refractive index of porous silicon. We assembled hybrid microcavities with a central porous alumina layer between two porous silicon Bragg reflectors. In this way, we constructed a Fabry-Perot resonator with high reflectivity and low absorption that improves the quality of the filter compared to a microcavity built only with porous silicon or porous alumina. We explored a simpler design in which one of the Bragg reflectors is replaced by the aluminium that remains bound to the alumina after its fabrication. We theoretically explored the potential of the proposal and its limitations when considering the roughness of the layers. We found that the quality of a microcavity made entirely with porous silicon shows a limit in the visible range due to light absorption. This limitation is overcome in the hybrid scheme, with the roughness of the layers determining the ultimate quality. Q-factors of 220 are experimentally obtained for microcavities supported on aluminium, while Q-factors around 600 are reached for microcavities with double Bragg reflectors, centred at 560 nm. This represents a four-fold increase with respect to the optimal porous silicon microcavity at this wavelength.

  2. Formability of porous tantalum sheet-metal

    International Nuclear Information System (INIS)

    Nebosky, Paul S; Schmid, Steven R; Pasang, Timotius

    2009-01-01

    Over the past ten years, a novel cellular solid, Trabecular Metal T M , has been developed for use in the orthopaedics industry as an ingrowth scaffold. Manufactured using chemical vapour deposition (CVD) on top of a graphite foam substrate, this material has a regular matrix of interconnecting pores, high strength, and high porosity. Manufacturing difficulties encourage the application of bending, stamping and forming technologies to increase CVD reactor throughput and reduce material wastes. In this study, the bending and forming behaviour of Trabecular Metal T M was evaluated using a novel camera-based system for measuring surface strains, since the conventional approach of printing or etching gridded patterns was not feasible. A forming limit diagram was obtained using specially fabricated 1.65 mm thick sheets. A springback coefficient was measured and modeled using effective hexagonal cell arrangements.

  3. Polyoxometalates@Metal-Organic Frameworks Derived Porous MoO3@CuO as Electrodes for Symmetric All-Solid-State Supercapacitor

    International Nuclear Information System (INIS)

    Zhang, Yidong; Lin, Baoping; Wang, Junchuan; Han, Pei; Xu, Tong; Sun, Ying; Zhang, Xueqin; Yang, Hong

    2016-01-01

    Highlights: • Porous MoO 3 @CuO was obtained from POMs@MOFs template. • A good charge capacity of 86.3 mAh g −1 was achieved in 1 M LiOH electrolyte. • The MoO 3 @CuO electrode was assembled into an all-solid-state device. • The introduction of MoO 3 improves the charge capacity. • The MoO 3 @CuO composite has good uniformity and porosity. - Abstract: The demand of uniformity and porosity for composite supercapacitor material has triggered tremendous research efforts for the development of doping method. Herein, we report an effective strategy for homogeneous and polyporous MoO 3 @CuO composite by heating a POMs@MOFs template (POMs = polyoxometalates, MOFs = Metal-organic frameworks), in which the Mo-POMs are incorporated into Cu-MOFs as secondary building units. The excellent doping of MoO 3 to CuO leads to an obvious improvement in specific discharge capacity (from 15.4 mAh g −1 for CuO to 86.3 mAh g −1 for MoO 3 @CuO). The layered structure of MoO 3 plays a key role in providing facilitated ion transport and electron diffusion pathways for the composite material. This electrode demonstrates excellent electrochemical performance with a specific discharge capacity of 86.3 mAh g −1 at 1 A g −1 in 1 M LiOH. When this porous MoO 3 @CuO electrode is assembled into a symmetric all-solid-state device with PVA-LiOH gel polymer, the as-fabricated device demonstrates good performance with an energy density of 7.9 W h kg −1 , power density of 8726 W kg −1 , and excellent cycle life. This work presents a new template to improve the uniformity and porosity of composite metal oxides, which can be used for high-performance supercapacitors.

  4. One-step synthesis of highly efficient nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel.

    Science.gov (United States)

    Kang, Xinchen; Zhang, Jianling; Shang, Wenting; Wu, Tianbin; Zhang, Peng; Han, Buxing; Wu, Zhonghua; Mo, Guang; Xing, Xueqing

    2014-03-12

    Stable porous ionic liquid-water gel induced by inorganic salts was created for the first time. The porous gel was used to develop a one-step method to synthesize supported metal nanocatalysts. Au/SiO2, Ru/SiO2, Pd/Cu(2-pymo)2 metal-organic framework (Cu-MOF), and Au/polyacrylamide (PAM) were synthesized, in which the supports had hierarchical meso- and macropores, the size of the metal nanocatalysts could be very small (esterification of benzyl alcohol to methyl benzoate, benzene hydrogenation to cyclohexane, and oxidation of benzyl alcohol to benzaldehyde because they combined the advantages of the nanocatalysts of small size and hierarchical porosity of the supports. In addition, this method is very simple.

  5. Computer design of porous active materials at different dimensional scales

    Science.gov (United States)

    Nasedkin, Andrey

    2017-12-01

    The paper presents a mathematical and computer modeling of effective properties of porous piezoelectric materials of three types: with ordinary porosity, with metallized pore surfaces, and with nanoscale porosity structure. The described integrated approach includes the effective moduli method of composite mechanics, simulation of representative volumes, and finite element method.

  6. Nanoscale electrochemical metallization memories based on amorphous (La, Sr)MnO3 using ultrathin porous alumina masks

    International Nuclear Information System (INIS)

    Liu, Dongqing; Zhang, Chaoyang; Wang, Nannan; Cheng, Haifeng; Wang, Guang; Shao, Zhengzheng; Zhu, Xuan

    2014-01-01

    Nanoscale electrochemical metallization (ECM) memories based on amorphous La 1−x Sr x MnO 3 (a-LSMO) were fabricated using ultrathin porous alumina masks. The ultrathin alumina masks, with thicknesses of about 200 nm and pore diameters of about 80 nm, were fabricated through a typical two-step anodization electrochemical procedure and transferred onto conductive Pt/Ti/SiO 2 /Si substrates. Resistive switching (RS) properties of the individual Ag/a-LSMO/Pt ECM cell were directly measured using a conductive atomic force microscope. The cells exhibited typical RS characteristics and the OFF/ON resistance ratio is as high as 10 2 . Reproducible RS behaviours on the same ECM cell and the I–V cycles obtained from different ECM cells ensured that the RS properties in nanoscale Ag/a-LSMO/Pt cells are reproducible and reliable. This work provides an effective approach for the preparation of nanostructured large-scale ordered ECM memories or memristors. (paper)

  7. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Kiraly, Brian; Yang, Shikuan; Huang, Tony Jun

    2013-01-01

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be <3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface-enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. (paper)

  8. Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

    Directory of Open Access Journals (Sweden)

    Taimoor Aqeel Ahmad

    2016-06-01

    Full Text Available Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.

  9. Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO

    Science.gov (United States)

    He, Gege; Tian, Liangliang; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Pu, Wanrong; Zhang, Jinkun; Li, Lu

    2018-01-01

    Transition metal oxides (TMOs) have attracted extensive research attentions as promising electrocatalytic materials. Despite low cost and high stability, the electrocatalytic activity of TMOs still cannot satisfy the requirements of applications. Inspired by kinetics, the design of hollow porous structure is considered as a promising strategy to achieve superior electrocatalytic performance. In this work, cubic NiO hollow porous architecture (NiO HPA) was constructed through coordinating etching and precipitating (CEP) principle followed by post calcination. Being employed to detect glucose, NiO HPA electrode exhibits outstanding electrocatalytic activity in terms of high sensitivity (1323 μA mM-1 cm-2) and low detection limit (0.32 μM). The excellent electrocatalytic activity can be ascribed to large specific surface area (SSA), ordered diffusion channels, and accelerated electron transfer rate derived from the unique hollow porous features. The results demonstrate that the NiO HPA could have practical applications in the design of nonenzymatic glucose sensors. The construction of hollow porous architecture provides an effective nanoengineering strategy for high-performance electrocatalysts.

  10. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sheng [Science and Technology on Power Beam Processes Laboratory, Beijing Aeronautical Manufacturing Technology Research Institute (BAMTRI), Beijing 100024 (China); State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheng, Xian; Yao, Yao; Wei, Yehui [Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Han, Changjun; Shi, Yusheng [State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wei, Qingsong, E-mail: wqs_xn@163.com [State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Zhen, E-mail: zhangzhentitanium@163.com [State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2015-08-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392 ± 37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co–Cr, and other traditional biomedical materials without wasting raw materials. - Highlights: • Porous Nb coating was firstly fabricated on Ti substrate by SLM technique. • Morphology, microstructure and hardness of the coating were characterized. • In vitro test of the coating showed good cell attachment, morphology and growth.

  11. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior

    International Nuclear Information System (INIS)

    Zhang, Sheng; Cheng, Xian; Yao, Yao; Wei, Yehui; Han, Changjun; Shi, Yusheng; Wei, Qingsong; Zhang, Zhen

    2015-01-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392 ± 37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co–Cr, and other traditional biomedical materials without wasting raw materials. - Highlights: • Porous Nb coating was firstly fabricated on Ti substrate by SLM technique. • Morphology, microstructure and hardness of the coating were characterized. • In vitro test of the coating showed good cell attachment, morphology and growth

  12. Thermodynamic Damping in Porous Materials with Spherical Cavities

    Directory of Open Access Journals (Sweden)

    Sofia D. Panteliou

    1997-01-01

    Full Text Available When a material is subjected to an alternating stress field, there are temperature fluctuations throughout its volume due to the thermoelastic effect. The resulting irreversible heat conduction leads to entropy production that in turn is the cause of thermoelastic damping. An analytical investigation of the entropy produced during a vibration cycle due to the reciprocity of temperature rise and strain yielded the change of the material damping factor as a function of the porosity of the material. A homogeneous, isotropic, elastic bar of cylindrical shape is considered with uniformly distributed spherical cavities under alternating uniform axial stress. The analytical calculation of the dynamic characteristics of the porous structure yielded the damping factor of the bar and the material damping factor. Exsperimental results on porous metals are in good correlation with an analysis.

  13. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors.

    Science.gov (United States)

    Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin

    2008-02-15

    In this work, the hydrogen storage behaviors of porous graphite nanofibers (GNFs) decorated by Pt nanoparticles were investigated. The Pt nanoparticles were introduced onto the GNF surfaces using a well-known chemical reduction method. We investigated the hydrogen storage capacity of the Pt-doped GNFs for the platinum content range of 1.3-7.5 mass%. The microstructure of the Pt/porous GNFs was characterized by X-ray diffraction and transmission electron microscopy. The hydrogen storage behaviors of the Pt/GNFs were studied using a PCT apparatus at 298 K and 10 MPa. It was found that amount of hydrogen stored increased with increasing Pt content to 3.4 mass%, and then decreased. This result indicates that the hydrogen storage capacity of porous carbons is based on both their metal content and dispersion rate.

  14. Use of ultralight aircraft for introducing migratory crane populations

    Science.gov (United States)

    Clegg, K.R.; Lewis, J.C.; Ellis, D.H.; Urbanek, Richard P.; Stahlecker, Dale

    1997-01-01

    Objectives were to determine if captive-reared cranes could be led behind an ultralight aircraft (UL) along a migration route and, if after release on a wintering area, they would integrate with wild cranes and migrate north in spring to their natal area without assistance. Greater sandhill cranes (Grus canadensis tabida) were used as the research surrogate for whooping cranes (Grus americana). In 1995, the senior author raised 15 cranes to fledging and trained them to respond to his vocal imitation of a sandhill crane brood call. Chicks learned to follow him as he walked, drove an all-terrain vehicle (ATV), or piloted an UL. The caretakers were not in crane costumes. Cranes were tame but allowed to roam at will without accompanying humans part of the day and were penned at night. Daily excursions provided exposure to habitats, foods, and predators the birds would encounter after release into the wild. In mid-October 1995, 11 radio-tagged cranes were led in migration from Grade, Idaho to Bosque del Apache National Wildlife Refuge (BdANWR), central New Mexico, and released near wild wintering sandhill cranes. The 1,204km migration took 11 days, including 1 day when the aircraft were grounded due to a winter storm. Hazards encountered enroute included mountainous terrain, turbulent air, and attacks by gold eagles (Aquila chrysaetos). On the wintering ground, hazards included crane hunters and coyotes (Canis latrans). Within 2 days after release at the BdANWR wintering site, the research cranes were associating with and imitating the behavior of wild cranes. The 4 surviving birds migrated north in spring 1996 and at the time of this writing 2 were within 53 km of their natal area in Idaho.

  15. Nanoparticles of Pt and Ag supported in meso porous SiO2: characterization and catalytic applications

    International Nuclear Information System (INIS)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G.; Arenas A, J.

    2004-01-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO 2 hey have been studied through reduction reactions of N 2 O with H 2 which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO 2 of great surface area (1100 m 2 /gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N 2 O depending on the size and dispersion of the metallic phases. (Author)

  16. Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials

    NARCIS (Netherlands)

    Hedayati, R.; Hosseini-Toudeshky, H; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    The mechanical behavior of additively manufactured porous biomaterials has recently received increasing attention. While there is a relatively large body of data available on the static mechanical properties of such biomaterials, their fatigue behavior is not yet well-understood. That is partly

  17. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior.

    Science.gov (United States)

    Zhang, Sheng; Cheng, Xian; Yao, Yao; Wei, Yehui; Han, Changjun; Shi, Yusheng; Wei, Qingsong; Zhang, Zhen

    2015-08-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392±37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co-Cr, and other traditional biomedical materials without wasting raw materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene

    KAUST Repository

    Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, Xinglong; Han, Y.; Li, B.; Ren, Q.; Zaworotko, M. J.; Chen, B.

    2016-01-01

    The trade-off between physical adsorption capacity and selectivity of porous materials is a major barrier for efficient gas separation and purification through physisorption. We report control over pore chemistry and size in metal coordination

  19. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    International Nuclear Information System (INIS)

    Nagarajan, S.; Rajendran, N.

    2009-01-01

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  20. Porous organic cages

    Science.gov (United States)

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  1. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    International Nuclear Information System (INIS)

    Payez, Alexandre; Ringwald, Andreas; Evoli, Carmelo; Mirizzi, Alessandro; Fischer, Tobias; Giannotti, Maurizio

    2014-10-01

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g aγ -12 GeV -1 , for m a -10 eV, and we also give its dependence at larger ALP masses m a . Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.

  2. Characteristics Of The Porous Body Sintered By Nano-Sized Fe-Cr-Al Alloy Powder

    Directory of Open Access Journals (Sweden)

    Lee Su-In

    2015-06-01

    Full Text Available Porous metal with uniform honeycomb structure was successfully produced by sintering using Fe-Cr-Al nano powder, which was prepared by the pulsed wire evaporation (PWE in ethanol. Its process consisted of the several steps; 1 coating on the surface of polyurethane sponge with the liquid droplets generated from the ethanol-based slurry where the Fe-Cr-Al nano powders were uniformly dispersed, 2 heat treatment of debinding to remove the polyurethane sponge and 3 sintering of the porous green body formed by Fe-Cr-Al nano powders. The strut thickness of porous Fe-Cr-Al was increased by the increase of spraying times in ESP step. Also, The shrinkages and the oxidation resistance of the sintered porous body was increased with increase of sintering temperature. The optimal sintering temperature was shown to 1450°C in views to maximize the oxidation resistance and sinterability.

  3. Use of porous MgO in pyrochemical applications

    International Nuclear Information System (INIS)

    Maiya, P.S.; Sweeney, S.M.; Carroll, L.A.; Dusek, J.T.

    1994-11-01

    Pyrochemical methods for the extraction of transuranic elements from light water reactor spent fuel require a reduction step in which the oxide fuel is reduced to metals by Li in molten LiCl. The Li 2 O formed is electrolytically reduced to metal in a cell that uses a carbon (or inert) anode and a Li cathode to recycle the salt and minimize the waste. Use of a carbon anode causes carbon dust that interferes with the process. Moreover, current efficiency is reduced as a result of oxidation of Li to Li 2 O by CO 2 . A porous MgO shroud around the anode was found to obviate these problems. Porous MgO crucibles and rectangular bar specimens were fabricated from MgO powders (electrically fused MgO, reagent grade MgO were mixed in appropriate combinations with a binder and lubricant). Particle size, force applied to the powders during cold pressing, and sintering temperature were varied to achieve a total porosity of >45% (mostly open porosity) and to control pore size and pore distribution. Mercury intrusion porosimetry was used to determine the pore size and pore size distribution. Flexural strength is observed to be proportional to the square root of pore size, which is consistent with fracture mechanics

  4. Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: Isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Renuka Gonte

    2016-09-01

    Full Text Available Hypercrosslinked styrene-maleic acid copolymer beads were used for the removal of metal ions from mimicked industrial effluents. The polymer was characterized by SEM which revealed the presence of a porous network. Carboxyl acid groups of the polymer were identified as active sites for metal uptake. Highly porous surface enhanced metal ion uptake was achieved through a physicochemical process. Equilibrium sorption of metal ions was best described by the Freundlich and Temkin model with R2 > 0.99. Adsorption followed pseudo first and pseudo second order reaction kinetics. Intraparticle diffusion model suggested a three step equilibrium. Desorption was a fast process with ∼90% in 60 min.

  5. SCDAP/RELAP5 modeling of movement of melted material through porous debris in lower head

    International Nuclear Information System (INIS)

    Siefken, L. J.; Harvego, E. A.

    2000-01-01

    A model is described for the movement of melted metallic material through a ceramic porous debris bed. The model is designed for the analysis of severe accidents in LWRs, wherein melted core plate material may slump onto the top of a porous bed of relocated core material supported by the lower head. The permeation of the melted core plate material into the porous debris bed influences the heatup of the debris bed and the heatup of the lower head supporting the debris. A model for mass transport of melted metallic material is applied that includes terms for viscosity and turbulence but neglects inertial and capillary terms because of their small value relative to gravity and viscous terms in the momentum equation. The relative permeability and passability of the porous debris are calculated as functions of debris porosity, particle size, and effective saturation. An iterative numerical solution is used to solve the set of nonlinear equations for mass transport. The effective thermal conductivity of the debris is calculated as a function of porosity, particle size, and saturation. The model integrates the equations for mass transport with a model for the two-dimensional conduction of heat through porous debris. The integrated model has been implemented into the SCDAP/RELAP5 code for the analysis of the integrity of LWR lower heads during severe accidents. The results of the model indicate that melted core plate material may permeate to near the bottom of a 1m deep hot porous debris bed supported by the lower head. The presence of the relocated core plate material was calculated to cause a 12% increase in the heat flux on the external surface of the lower head

  6. Microstructure characterization of porous microalloyed aluminium-silicate ceramics

    Directory of Open Access Journals (Sweden)

    Purenović Jelena

    2011-01-01

    Full Text Available Kaolinite and bentonite clay powders mixed with active additives, based on Mg(NO32 and Al(NO32, sintered at high temperatures produce very porous ceramics with microcrystalline and amorphous regions and highly developed metalized surfaces (mainly with magnesium surplus. Microstructure investigations have revealed non-uniform and highly porous structure with broad distribution of grain size, specifically shaped grains and high degree of agglomeration. The ceramics samples were characterized by scanning electron microscopy (SEM, energy dispersive spectrometer (EDS, X-ray diffraction analysis (XRD and IR spectroscopy analysis, prior and after treatment in “synthetic water”, i.e. in aqueous solution of arsenic-salt. Grain size distribution for untreated and treated samples was done with software SemAfore 4. It has shown great variety in size distribution of grains from clay powders to sintered samples.

  7. Characterization of Ge Nano structures Embedded Inside Porous Silicon for Photonics Application

    International Nuclear Information System (INIS)

    Rahim, A.F.A.; Hashim, M.R.; Rahim, A.F.A.; Ali, N.K.

    2011-01-01

    In this work we prepared germanium nano structures by means of filling the material inside porous silicon (PS) using conventional and cost effective technique, thermal evaporator. The PS acts as patterned substrate. It was prepared by anodization of silicon wafer in ethanoic hydrofluoric acid (HF). A Ge layer was then deposited onto the PS by thermal evaporation. This was followed by deposition of Si layer by thermal evaporation and anneal at 650 degree Celsius for 30 min. The process was completed by Ni metal deposition using thermal evaporator followed by metal annealing of 400 degree Celsius for 10 min to form metal semiconductor metal (MSM) photodetector. Structural analysis of the samples was performed using energy dispersive x-ray analysis (EDX), scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectroscopy (RS). EDX spectrum suggests the presence of Ge inside the pores structure. Raman spectrum showed that good crystalline structure of Ge can be produced inside silicon pores with a phase with the diamond structure by (111), (220) and (400) reflections. Finally current-voltage (I-V) measurement of the MSM photodetector was carried out and showed lower dark currents compared to that of Si control device. Interestingly the device showed enhanced current gain compared to Si device which can be associated with the presence of Ge nano structures in the porous silicon. (author)

  8. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  9. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  10. Constructed ILs coated porous magnetic nickel cobaltate hexagonal nanoplates sensing materials for the simultaneous detection of cumulative toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuanyuan; Zhang, Lei, E-mail: zhanglei63@126.com

    2017-07-05

    Highlights: • A novel sensor material based on ionic liquids@nickel cobaltate was constructed. • Various morphologies of NiCo{sub 2}O{sub 4} were synthesized for electrocatalytic comparison. • ILs@NiCo{sub 2}O{sub 4}-P was used to detect cumulative toxic metals for the first time. • The sensor displayed well reproducibility, excellent selectivity and sensitivity. • The method was applied to detect practical samples with satisfactory results. - Abstract: The different morphologies of magnetic nickel cobaltate (NiCo{sub 2}O{sub 4}) electrocatalysts, consisting of nanoparticles (NiCo{sub 2}O{sub 4}-N), nanoplates (NiCo{sub 2}O{sub 4}-P) and microspheres (NiCo{sub 2}O{sub 4}-S) were fabricated. It was found that the electrocatalytic properties of the sensing materials were strongly dependent on morphology and specific surface area. The porous NiCo{sub 2}O{sub 4} hexagonal nanoplates coupled with ILs as modified materials (ILs@NiCo{sub 2}O{sub 4}-P) for the simultaneous determination of thallium (Tl{sup +}), lead (Pb{sup 2+}) and copper (Cu{sup 2+}), exhibited high sensitivity, long-time stability and good repeatability. The enhanced electrocatalytic activity was attributed to relatively large specific surface area, excellent electronic conductivity, and unique porous nanostructure. The analytical performance of the constructed electrode on detection of Tl{sup +}, Pb{sup 2+} and Cu{sup 2+} was examined using differential pulse anodic stripping voltammetry (DPASV). Under optimal conditions, the electrode showed a good linear response to Tl{sup +}, Pb{sup 2+}and Cu{sup 2+} in the concentration range of 0.1–100.0, 0.1–100.0 and 0.05–100.0 μg/L, respectively. The detection limits (S/N = 3) were 0.046, 0.034 and 0.029 μg/L for Tl{sup +}, Pb{sup 2+} and Cu{sup 2+}, respectively. The fabricated sensor was successfully applied to detect trace Tl{sup +}, Pb{sup 2+} and Cu{sup 2+} in various water and soil samples with satisfactory results. Hence, this work

  11. Development of an oxidized porous silicon vacuum microtriode

    Energy Technology Data Exchange (ETDEWEB)

    Smith, II, Don Deewayne [Texas A & M Univ., College Station, TX (United States)

    1994-05-01

    In order to realize a high-power microwave amplifier design known as a gigatron, a gated field emission array must be developed that can deliver a high-intensity electron beam at gigahertz frequencies. No existing field emission device meets the requirements for a gigatron cathode. In the present work, a porous silicon-based approach is evaluated. The use of porous silicon reduces the size of a single emitter to the nanometer scale, and a true two-dimensional array geometry can be approached. A wide number of applications for such a device exist in various disciplines. Oxidized porous silicon vacuum diodes were first developed in 1990. No systematic study had been done to characterize the performance of these devices as a function of the process parameters. The author has done the first such study, fabricating diodes from p<100>, p<111>, and n<100> silicon substrates. Anodization current densities from 11 mA/cm2 to 151 mA/cm2 were used, and Fowler-Nordheim behavior was observed in over 80% of the samples. In order to effectively adapt this technology to mainstream vacuum microelectronic applications, a means of creating a gated triodic structure must be found. No previous attempts had successfully yielded such a device. The author has succeeded in utilizing a novel metallization method to fabricate the first operational oxidized porous silicon vacuum microtriodes, and results are encouraging.

  12. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-01-01

    are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due

  13. Magnetic properties of a metal-organic porous network [Ni2(BODC)2(TED)

    Science.gov (United States)

    Yuen, Tan; Danilovic, D.; Li, Kunhao; Li, Jing

    2008-04-01

    A new material [Ni2(BODC)2(TED)], (BODC =4,4'-bicyclo[2.2.2]octane dicarboxylate and TED =triethylene-4,4'-diamine), which is a guest-free, porous metal-organic coordination network, has been successfully synthesized. The crystal structure of this compound is tetragonal with the space group P4/mmm. It is a three-dimensional network that can be deconstructed into rectangular gridlike layers along ab planes. These planes are formed by BODC and Zn2O4 paddle-wheel-like clusters, and the TED ligands from the axial directions of the paddle-wheels connect the layers into a three-dimesional structure. There are no guest molecules found in the pores. The shortest Ni-Ni distance within the paddle wheel is found to be 2.613Å. Magnetic susceptibility χ(T )=M(T)/H and isothermal magnetization M(H ) measurements have been measured on powder samples of this compound. The results of χ(T ) show that there is a rapid increase in the susceptibility below 20K due to a spontaneous ordering of the Ni2+ moments. The effective moment μeff of Ni2+ is about 2.20μB at room temperature. The M(H ) result at 1.8K shows a clear hysteresis with a coercivity of Hcoe≈1700G. The behavior of this compound is discussed in terms of Ni-Ni coupling within the Ni dimers and dimer chains.

  14. Electroless porous silicon formation applied to fabrication of boron–silica–glass cantilevers

    International Nuclear Information System (INIS)

    Teva, J; Davis, Z J; Hansen, O

    2010-01-01

    This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5–1 mm 3 ) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing the etching rate and reproducibility of the etching. In addition to that, a study of the morphology of the pore that is obtained by this technique is presented. The results from the characterization of the process are applied to the fabrication of boron–silica–glass cantilevers that serve as a platform for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH solution

  15. Fabrication of a micro-porous Ti–Zr alloy by electroless reduction with a calcium reductant for electrolytic capacitor applications

    International Nuclear Information System (INIS)

    Kikuchi, Tatsuya; Yoshida, Masumi; Taguchi, Yoshiaki; Habazaki, Hiroki; Suzuki, Ryosuke O.

    2014-01-01

    Highlights: • A metallic Ti–Zr alloy was obtained by electroless reduction for capacitor applications. • The reduction mechanisms were studied by SEM, XRD, EPMA, and an oxygen analyzer. • The alloy was obtained by electroless reduction in the presence of excess calcium reductant. • A micro-porous Ti–Zr alloy was successfully obtained. • The alloy has a low oxygen content and a large surface area. -- Abstract: A metallic titanium and zirconium micro-porous alloy for electrolytic capacitor applications was produced by electroless reduction with a calcium reductant in calcium chloride molten salt at 1173 K. Mixed TiO 2 –70 at%ZrO 2 oxides, metallic calcium, and calcium chloride were placed in a titanium crucible and heated under argon atmosphere to reduce the oxides with the calcium reductant. A metallic Ti–Zr alloy was obtained by electroless reduction in the presence of excess calcium reductant and showed a micro-porous morphology due to the sintering of each of the reduced particles during the reduction. The residual oxygen content and surface area of the reduced Ti–Zr alloy decreased over time during the electroless reduction. The element distributions were slightly different at the positions of the alloy and were in the composition range of Ti-69.3 at% to 74.3 at%Zr. A micro-porous Ti–Zr alloy with low oxygen content (0.20 wt%) and large surface area (0.55 m 2 g −1 ) was successfully fabricated by electroless reduction under optimal conditions. The reduction mechanisms of the mixed and pure oxides by the calcium reductant are also discussed

  16. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts.

    Science.gov (United States)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetically controlled reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the PtCu hierarchically porous nanostructures synthesized under optimized conditions exhibit enhanced electrocatalytic performance for oxygen reduction reaction in acid media.

  17. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H.; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetic reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the resultant PtCu hierarchically porous nanostructures with optimized composition exhibit enhanced electrocatalytic performance for oxygen reduction reaction.

  18. Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions

    International Nuclear Information System (INIS)

    Niu, Pengfei; Gich, Martí; Roig, Anna; Fernández-Sánchez, César; Navarro- Hernández, Carla; Fanjul-Bolado, Pablo

    2016-01-01

    This work reports on the simplified fabrication and on the characterization of bismuth-based screen-printed electrodes (SPEs) for use in heavy metal detection. A nanocomposite consisting of bismuth nanoparticles and amorphous carbon was synthesized by a combined one-step sol-gel and pyrolysis process and milled down to a specific particle size distribution as required for the preparation of an ink formulation to be used in screen printing. The resulting electrochemical devices were applied to the detection of Pb(II) and Cd(II) ions in water samples. The porous structure of carbon and the high surface area of the bismuth nanoparticles allow for the detection of Pb(II) and Cd(II) at concentration levels below 4 ppb. The application of the SPEs was demonstrated by quantifying these ions in tap drinking water and wastewater collected from an influent of an urban wastewater treatment plant. (author)

  19. Natural Gas Purification Using a Porous Coordination Polymer with Water and Chemical Stability

    NARCIS (Netherlands)

    Duan, J.; Jin, W.; Krishna, R.

    2015-01-01

    Porous coordination polymers (PCPs), constructed by bridging the metals or clusters and organic linkers, can provide a functional pore environment for gas storage and separation. But the rational design for identifying PCPs with high efficiency and low energy cost remains a challenge. Here, we

  20. Cermet materials prepared by combustion synthesis and metal infiltration

    Science.gov (United States)

    Holt, Joseph B.; Dunmead, Stephen D.; Halverson, Danny C.; Landingham, Richard L.

    1991-01-01

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.

  1. Porous Titanium for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Zena J. Wally

    2015-10-01

    Full Text Available Recently, an increasing amount of research has focused on the biological and mechanical behavior of highly porous structures of metallic biomaterials, as implant materials for dental implants. Particularly, pure titanium and its alloys are typically used due to their outstanding mechanical and biological properties. However, these materials have high stiffness (Young’s modulus in comparison to that of the host bone, which necessitates careful implant design to ensure appropriate distribution of stresses to the adjoining bone, to avoid stress-shielding or overloading, both of which lead to bone resorption. Additionally, many coating and roughening techniques are used to improve cell and bone-bonding to the implant surface. To date, several studies have revealed that porous geometry may be a promising alternative to bulk structures for dental implant applications. This review aims to summarize the evidence in the literature for the importance of porosity in the integration of dental implants with bone tissue and the different fabrication methods currently being investigated. In particular, additive manufacturing shows promise as a technique to control pore size and shape for optimum biological properties.

  2. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  3. Film condensation on a porous vertical surface in a porous media

    International Nuclear Information System (INIS)

    Ebinuma, C.D.; Liu, C.Y.; Ismail, K.A.R.

    1983-01-01

    The problem of dry saturated steam film condensation by natural convection on a porous surface in a porous medium is presented. Through the classical Darcy law for flow in porous medium and the approximations considered in the Boundary layer theory, it is shown that the analytical solution exists only when the normal velocity to the porous wall is inversly proportional to the square root of the distance along the plate. (E.G.) [pt

  4. Influence of the volume ratio of solid phase on carrying capacity of regular porous structure

    Directory of Open Access Journals (Sweden)

    Monkova Katarina

    2017-01-01

    Full Text Available Direct metal laser sintering is spread technology today. The main advantage of this method is the ability to produce parts which have a very complex geometry and which can be produced only in very complicated way by classical conventional methods. Special category of such components are parts with porous structure, which can give to the product extraordinary combination of properties. The article deals with some aspects that influence the manufacturing of regular porous structures in spite of the fact that input technological parameters at various samples were the same. The main goal of presented research has been to investigate the influence of the volume ratio of solid phase on carrying capacity of regular porous structure. Realized tests have indicated that the unit of regular porous structure with lower volume ratio is able to carry a greater load to failure than the unit with higher volume ratio.

  5. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  6. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  7. Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems.

    Science.gov (United States)

    Guo, Hengyu; Yeh, Min-Hsin; Zi, Yunlong; Wen, Zhen; Chen, Jie; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2017-05-23

    The development of lightweight, superportable, and sustainable power sources has become an urgent need for most modern personal electronics. Here, we report a cut-paper-based self-charging power unit (PC-SCPU) that is capable of simultaneously harvesting and storing energy from body movement by combining a paper-based triboelectric nanogenerator (TENG) and a supercapacitor (SC), respectively. Utilizing the paper as the substrate with an assembled cut-paper architecture, an ultralight rhombic-shaped TENG is achieved with highly specific mass/volume charge output (82 nC g -1 /75 nC cm -3 ) compared with the traditional acrylic-based TENG (5.7 nC g -1 /5.8 nC cm -3 ), which can effectively charge the SC (∼1 mF) to ∼1 V in minutes. This wallet-contained PC-SCPU is then demonstrated as a sustainable power source for driving wearable and portable electronic devices such as a wireless remote control, electric watch, or temperature sensor. This study presents a potential paper-based portable SCPU for practical and medical applications.

  8. Structural Contraction of Zeolitic Imidazolate Frameworks: Membrane Application on Porous Metallic Hollow Fibers for Gas Separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Etxeberría-Benavides, Miren; David, Oana; Téllez, Carlos; Coronas, Joaquín

    2017-06-21

    Positive thermal expansion coefficients (TECs) of 52 × 10 -6 and 35 × 10 -6 K -1 were experimentally calculated in the -116 to 250 °C range for the III-phases of zeolitic imidazolate frameworks (ZIF) ZIF-9(Co) and ZIF-7(Zn), respectively, by means of the unit cell dimensions and volume of the materials in the monoclinic crystal system calculated from the XRD patterns. The unit cell dimensions and volume showed a significant expansion phenomenon as the temperature increased, by as much as 5.5% for ZIF-9-III in the studied range. To exploit the advantages of such thermal behavior, a new approach to the fabrication of ZIF-9-III membranes on thin, flexible, and highly porous nickel hollow fiber (Ni HF) supports by a versatile and easy-controllable microfluidic setup is herein reported. These Ni HF supports result from the sintering of 25-μm Ni particles and display very positive mechanical properties and bending resistance. As compared to the traditional polymer-based HF membranes, the ZIF metal-supported membrane exhibited good durability and robustness throughout its operation in a wide temperature range and after heating and cooling cycles. These benefits derive from (1) the pore-plugging membrane configuration resulting from the high porosity of the support and (2) the similarity between the TECs of the ZIF and the metallic support, both positive, which enhances their mutual compatibility. An increase in the H 2 /CO 2 separation selectivity at low temperatures (as high as 22.2 at -10 °C, along with 102 GPU permeance of H 2 ) was achieved, in agreement with the structural variations observed in the ZIF material.

  9. Lanthanide metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peng

    2015-01-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  10. Lanthanide metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peng (ed.) [Nankai Univ., Tianjin (China). Dept. of Chemistry

    2015-03-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  11. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    Science.gov (United States)

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  12. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    Science.gov (United States)

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis, Characterization and Application of Multiscale Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hussami, Linda

    2010-07-01

    This thesis work brings fresh insights and improved understanding of nano scale materials through introducing new hybrid composites, 2D hexagonal in MCM-41 and 3D random interconnected structures of different materials, and application relevance for developing fields of science, such as fuel cells and solar cells. New types of porous materials and organometallic crystals have been prepared and characterized in detail. The porous materials have been used in several studies: as hosts to encapsulate metal-organic complexes; as catalyst supports and electrode materials in devices for alternative energy production. The utility of the new porous materials arises from their unique structural and surface chemical characteristics as demonstrated here using various experimental and theoretical approaches. New single crystal structures and arene-ligand exchange properties of f-block elements coordinated to ligand arene and halogallates are described in Paper I. These compounds have been incorporated into ordered 2D-hexagonal MCM-41 and polyhedral silica nano foam (PNF-SiO{sub 2}) matrices without significant change to the original porous architectures as described in Paper II and III. The resulting inorganic/organic hybrids exhibited enhanced luminescence activity relative to the pure crystalline complexes. A series of novel polyhedral carbon nano foams (PNF-C's) and inverse foams were prepared by nano casting from PNF-SiO{sub 2}'s. These are discussed in Paper IV. The synthesis conditions of PNF-C's were systematically varied as a function of the filling ratio of carbon precursor and their structures compared using various characterization methods. The carbonaceous porous materials were further tested in Paper V and VI as possible catalysts and catalyst supports in counter- and working electrodes for solar- and fuel cell applications

  14. Porous metal revision shells for management of contained acetabular bone defects at a mean follow-up of six years: a comparison between up to 50% bleeding host bone contact and more than 50% contact.

    Science.gov (United States)

    Sternheim, A; Backstein, D; Kuzyk, P R T; Goshua, G; Berkovich, Y; Safir, O; Gross, A E

    2012-02-01

    We report the use of porous metal acetabular revision shells in the treatment of contained bone loss. The outcomes of 53 patients with ≤ 50% acetabular bleeding host bone contact were compared with a control group of 49 patients with > 50% to 85% bleeding host bone contact. All patients were treated with the same type of trabecular metal acetabular revision shell. The mean age at revision was 62.4 years (42 to 80) and the mean follow-up of both groups was 72.4 months (60 to 102). Clinical, radiological and functional outcomes were assessed. There were four (7.5%) mechanical failures in the ≤ 50% host bone contact group and no failures in the > 50% host bone contact group (p = 0.068). Out of both groups combined there were four infections (3.9%) and five recurrent dislocations (4.9%) with a stable acetabular component construct that were revised to a constrained liner. Given the complexity of the reconstructive challenge, porous metal revision acetabular shells show acceptable failure rates at five to ten years' follow-up in the setting of significant contained bone defects. This favourable outcome might be due to the improved initial stability achieved by a high coefficient of friction between the acetabular implant and the host bone, and the high porosity, which affords good bone ingrowth.

  15. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Directory of Open Access Journals (Sweden)

    Fabio Lupo

    2014-11-01

    Full Text Available Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100 and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process.

  16. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    Directory of Open Access Journals (Sweden)

    Liuyang Duan

    2018-01-01

    Full Text Available There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures. The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The

  17. FABRICATION, MORPHOLOGICAL AND OPTOELECTRONIC PROPERTIES OF ANTIMONY ON POROUS SILICON AS MSM PHOTODETECTOR

    Directory of Open Access Journals (Sweden)

    H. A. Hadi

    2015-07-01

    Full Text Available We report on the fabrication and characterization of MSM photodetector. We investigated the surface morphological and the structural properties of the porous silicon by optical microscopy, atomic force microscope (AFM and X-ray diffraction. The metal–semiconductor–metal photodetector were fabricated by using Sb as Schottky contact metal.The junction exhibits good rectification ratio of 105 at bias of 2V. A large photocurrent to dark-current contrast ratio higher than 55 orders of magnitude and low dark currents below 0.89 nA .High   responsivity of 0.225A/W at 400 nm and 0.15 A/W at 400 and 700nm were observed at an operating bias of less than -2 V, corresponding quantum efficiency of 70% and 26% respectively. The lifetimes are evaluated using OCVD method and the carrier life time is 100 μs. The results show that Sb on porous silicon (PS structures will act as good candidates for making highly efficient photodiodes.

  18. FABRICATION, MORPHOLOGICAL AND OPTOELECTRONIC PROPERTIES OF ANTIMONY ON POROUS SILICON AS MSM PHOTODETECTOR

    Directory of Open Access Journals (Sweden)

    H. A. Hadi

    2014-12-01

    Full Text Available We report on the fabrication and characterization of MSM photodetector. We investigated the surface morphological and the structural properties of the porous silicon by optical microscopy, atomic force microscope (AFM and X-ray diffraction. The metal–semiconductor–metal photodetector were fabricated by using Sb as Schottky contact metal.The junction exhibits good rectification ratio of 105 at bias of 2V. A large photocurrent to dark-current contrast ratio higher than 55 orders of magnitude and low dark currents below 0.89 nA .High responsivity of 0.225A/W at 400 nm and 0.15 A/W at 400 and 700nm were observed at an operating bias of less than -2 V, corresponding quantum efficiency of 70% and 26% respectively. The lifetimes are evaluated using OCVD method and the carrier life time is 100 μs. The results show that Sb on porous silicon (PS structures will act as good candidates for making highly efficient photodiodes.

  19. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2017-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO 2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.

  20. In vivo response of laser processed porous titanium implants for load-bearing implants

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2016-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 volume% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control. PMID:27307009

  1. Macro-structural effect of metal surfaces treated using computer-assisted yttrium-aluminum-garnet laser scanning on bone-implant fixation.

    Science.gov (United States)

    Hirao, Makoto; Sugamoto, Kazuomi; Tamai, Noriyuki; Oka, Kunihiro; Yoshikawa, Hideki; Mori, Yusuke; Sasaki, Takatomo

    2005-05-01

    Porous coatings have been applied to the surface of prosthetic devices to foster stable device fixation. The coating serves as a source of mechanical interlocking and may stimulate healthy bone growth through osseointegrated load transfer in cementless arthroplasty. Joint arthroplasty by porous-coated prostheses is one of the most common surgical treatments, and has provided painless and successful joint mobility. However, long-term success is often impaired by the loss of fixation between the prosthesis and bone. Porous-coated prostheses are associated with several disadvantages, including metal debris from porous coatings (third body wear particles) and irregular micro-texture of metal surfaces. Consequently, quantitative histological analysis has been very difficult. These issues arise because the porous coating treatment is based on addition of material and is not precisely controllable. We recently developed a precisely controllable porous texture technique based on material removal by yttrium-aluminum-garnet laser. Free shapes can be applied to complex, three-dimensional hard metal surfaces using this technique. In this study, tartan check shapes made by crossing grooves and dot shapes made by forming holes were produced on titanium (Ti6A14V) or cobalt chrome (CoCr) and evaluated with computer-assisted histological analysis and measurement of bone-metal interface shear strength. Width of grooves or holes ranged from 100 to 800 mum (100, 200, 500, and 800 microm), with a depth of 500 microm. When the cylindrical porous-texture-treated metal samples (diameter, 5 mm; height, 15 mm) were implanted into a rabbit femoral condyle, bone tissue with bone trabeculae formed in the grooves and holes after 2 or 4 weeks, especially in 500-microm-wide grooves. Abundant osteoconduction was consistently observed throughout 500-microm-wide grooves in both Ti6A14V and CoCr. Speed of osteoconduction was faster in Ti6A14V than in CoCr, especially in the tartan check shape made of

  2. Electrochromic Devices Based on Porous Tungsten Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Y. Djaoued

    2012-01-01

    Full Text Available Recent developments in the synthesis of transition metal oxides in the form of porous thin films have opened up opportunities in the construction of electrochromic devices with enhanced properties. In this paper, synthesis, characterization and electrochromic applications of porous WO3 thin films with different nanocrystalline phases, such as hexagonal, monoclinic, and orthorhombic, are presented. Asymmetric electrochromic devices have been constructed based on these porous WO3 thin films. XRD measurements of the intercalation/deintercalation of Li+ into/from the WO3 layer of the device as a function of applied coloration/bleaching voltages show systematic changes in the lattice parameters associated with structural phase transitions in LixWO3. Micro-Raman studies show systematic crystalline phase changes in the spectra of WO3 layers during Li+ ion intercalation and deintercalation, which agree with the XRD data. These devices exhibit interesting optical modulation (up to ~70% due to intercalation/deintercalation of Li ions into/from the WO3 layer of the devices as a function of applied coloration/bleaching voltages. The obtained optical modulation of the electrochromic devices indicates that, they are suitable for applications in electrochromic smart windows.

  3. Computational materials chemistry for carbon capture using porous materials

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Malani, Ateeque; Huang, Runhong; Babarao, Ravichandar

    2017-01-01

    Control over carbon dioxide (CO 2 ) release is extremely important to decrease its hazardous effects on the environment such as global warming, ocean acidification, etc. For CO 2 capture and storage at industrial point sources, nanoporous materials offer an energetically viable and economically feasible approach compared to chemisorption in amines. There is a growing need to design and synthesize new nanoporous materials with enhanced capability for carbon capture. Computational materials chemistry offers tools to screen and design cost-effective materials for CO 2 separation and storage, and it is less time consuming compared to trial and error experimental synthesis. It also provides a guide to synthesize new materials with better properties for real world applications. In this review, we briefly highlight the various carbon capture technologies and the need of computational materials design for carbon capture. This review discusses the commonly used computational chemistry-based simulation methods for structural characterization and prediction of thermodynamic properties of adsorbed gases in porous materials. Finally, simulation studies reported on various potential porous materials, such as zeolites, porous carbon, metal organic frameworks (MOFs) and covalent organic frameworks (COFs), for CO 2 capture are discussed. (topical review)

  4. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    Science.gov (United States)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-04-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  5. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    Science.gov (United States)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-05-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  6. Synthesis of porous LiFe0.2Mn1.8O4 with high performance for lithium-ion battery

    International Nuclear Information System (INIS)

    Shi, Yishan; Zhu, Shenmin; Zhu, Chengling; Li, Yao; Chen, Zhixin; Zhang, Di

    2015-01-01

    Highlights: • Porous LiFe 0.2 Mn 1.8 O 4 was fabricated with P123 as a template through a nitrate decomposition method • A high rate capacity and cycling stability were demonstrated when used as cathode in LIBs • This strategy is expected to fabricate other multiple metal oxides with porous structures - Abstract: A facile and effective route was developed for the fabrication of LiFe 0.2 Mn 1.8 O 4 with porous structures by using Pluronic P-123 as a soft template, based on a nitrate decomposition method. The resultant LiFe 0.2 Mn 1.8 O 4 was characterized by XRD, SEM, as well as N 2 adsorption/desorption measurements which showed a porous structure with a pore size centered at 20 nm. When used as cathode materials in lithium battery, the as-synthesized LiFe 0.2 Mn 1.8 O 4 exhibited a discharge capacity of 122 mAh g −1 at 1 C and 102 mAh g −1 at 5 C. Moreover, after 500 cycles, the capacity retention (108 mAh g −1 ) reached 88% of the initial capacity at 1 C. As compared with conventional cathode LiMn 2 O 4 , the high performance is believed to originate from the combined effects of porous structure, iron doping and highly crystalline nature of the obtained LiFe 0.2 Mn 1.8 O 4 . This strategy is expected to allow the fabrication of other multiple metal oxides with porous structures for high performance cathode materials

  7. Metallizing porous scaffolds as an alternative fabrication method for solid oxide fuel cell anodes

    Science.gov (United States)

    Ruiz-Trejo, Enrique; Atkinson, Alan; Brandon, Nigel P.

    2015-04-01

    A combination of electroless and electrolytic techniques is used to incorporate nickel into a porous Ce0.9Gd0.1O1.90 scaffold. First a porous backbone was screen printed into a YSZ electrolyte using an ink that contains sacrificial pore formers. Once sintered, the scaffold was coated with silver using Tollens' reaction followed by electrodeposition of nickel in a Watts bath. At high temperatures the silver forms droplets enabling direct contact between the gadolinia-doped ceria and nickel. Using impedance spectroscopy analysis in a symmetrical cell a total area specific resistance of 1 Ωcm2 at 700 °C in 97% H2 with 3% H2O was found, indicating the potential of this fabrication method for scaling up.

  8. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Payez, Alexandre; Ringwald, Andreas [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); Evoli, Carmelo; Mirizzi, Alessandro [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Fischer, Tobias [Institute for Theoretical Physics, University of Wroc\\law, Pl. M. Borna 9, 50-204 Wroc\\law (Poland); Giannotti, Maurizio, E-mail: alexandre.payez@desy.de, E-mail: carmelo.evoli@desy.de, E-mail: fischer@ift.uni.wroc.pl, E-mail: mgiannotti@barry.edu, E-mail: alessandro.mirizzi@desy.de, E-mail: andreas.ringwald@desy.de [Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161 (United States)

    2015-02-01

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g{sub aγ} ∼< 5.3 × 10{sup -12} GeV{sup -1}, for m{sub a} ∼< 4.4 × 10{sup -10} eV, and we also give its dependence at larger ALP masses m{sub a}. Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.

  9. Zn-based porous coordination solid as diclofenac sodium carrier

    Science.gov (United States)

    Lucena, Guilherme Nunes; Alves, Renata Carolina; Abuçafy, Marina Paiva; Chiavacci, Leila Aparecida; da Silva, Isabel Cristiane; Pavan, Fernando Rogério; Frem, Regina Célia Galvão

    2018-04-01

    Drug delivery systems produced with biocompatible components can be used to reduce adverse effects and improve therapy efficacy. Most of the carrier materials reported in the literature show poor drug loading and rapid release. However, porous hybrid solids, such as metal-organic frameworks, are well suited to serve as carriers for delivery and imaging applications. In this work, a luminescent and nontoxic porous Zn(II) coordination polymer with 4,4‧-biphenyl-dicarboxylic acid (BPDC) and adenine linkers (BioMOF-Zn) was synthesized by a solvothermal process and characterized by PXRD, TGA, SEM-FEG, and FTIR. Nitrogen adsorption measurements revealed the presence of micropores as well as mesopores in the framework after activation of the material. The blue-emitting BioMOF-Zn exhibited an outstanding loading capacity (1.72 g g-1) and satisfactory release capability (56% after two days) for diclofenac sodium.

  10. Response of porous beryllium to static and dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Isbell, W.M.; Walton, O.R.; Ree, F.H.

    1977-07-01

    Previous investigstions of the mechanical response of porous materials to dynamic loading have been extended to include the shock wave response of a brittle metal. The complex response of berylliums of 85 to 90 percent porosity in two initial conditions has been examined in a theoretical and experimental program to be described. The study has resulted in the development of constitutive relations placed in hydrocodes which are capable of accurately predicting wave propagation in the berylliums. A comprehensive set of static (0 to 4 Gpa) and dynamic (0 to 35 Gpa) experiments was performed to measure the behavior of these brittle, porous materials to imposed loads. The results of the experiments guided a modeling effort which added several new features to previous models, including deviatoric stresses, porosity-dependent relaxation time of pore closure, elastic-plastic reopening of pores, and improved compaction functions.

  11. Response of porous beryllium to static and dynamic loading

    International Nuclear Information System (INIS)

    Isbell, W.M.; Walton, O.R.; Ree, F.H.

    1977-07-01

    Previous investigstions of the mechanical response of porous materials to dynamic loading have been extended to include the shock wave response of a brittle metal. The complex response of berylliums of 85 to 90 percent porosity in two initial conditions has been examined in a theoretical and experimental program to be described. The study has resulted in the development of constitutive relations placed in hydrocodes which are capable of accurately predicting wave propagation in the berylliums. A comprehensive set of static (0 to 4 Gpa) and dynamic (0 to 35 Gpa) experiments was performed to measure the behavior of these brittle, porous materials to imposed loads. The results of the experiments guided a modeling effort which added several new features to previous models, including deviatoric stresses, porosity-dependent relaxation time of pore closure, elastic-plastic reopening of pores, and improved compaction functions

  12. Solar thermal energy storage via exploitation and rational combination of porous ceramic structures and redox oxides chemistry

    OpenAIRE

    Agrafiotis, Christos; Becker, Andreas; Roeb, Martin; Sattler, Christian

    2015-01-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. This storage concept can be rendered from “purely” sensible to “hybrid” sensible/thermochemical one, via coating the chemically inert porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactio...

  13. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    Science.gov (United States)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  14. Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, M.; Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2010-03-15

    Photovoltaic properties of buried metallic contacts (BMCs) with and without application of a front porous silicon (PS) layer on multicrystalline silicon (mc-Si) solar cells were investigated. A Chemical Vapor Etching (CVE) method was used to perform front PS layer and BMCs of mc-Si solar cells. Good electrical performance for the mc-Si solar cells was observed after combination of BMCs and thin PS films. As a result the current-voltage (I-V) characteristics and the internal quantum efficiency (IQE) were improved, and the effective minority carrier diffusion length (Ln) increases from 75 to 110 {mu}m after BMCs achievement. The reflectivity was reduced to 8% in the 450-950 nm wavelength range. This simple and low cost technology induces a 12% conversion efficiency (surface area = 3.2 cm{sup 2}). The obtained results indicate that the BMCs improve charge carrier collection while the PS layer passivates the front surface. (author)

  15. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  16. Wüstite in the fusion crust of Almahata Sitta sulfide-metal assemblage MS-166: Evidence for oxygen in metallic melts

    Science.gov (United States)

    Horstmann, Marian; Humayun, Munir; Harries, Dennis; Langenhorst, Falko; Chabot, Nancy L.; Bischoff, Addi; Zolensky, Michael E.

    2013-05-01

    Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide-metal assemblage MS-166 was found highly enriched in wüstite (Fe1-xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe-sulfide and minor amounts of the outer Ni-rich portions of the originally zoned metal in MS-166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite-rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni-rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS-166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.

  17. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar; Cairns, Amy J.; Eddaoudi, Mohamed; Vittal, Jagadese J.

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal

  18. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  19. The hierarchical cobalt oxide-porous carbons composites and their high performance as an anode for lithium ion batteries enhanced by the excellent synergistic effect

    International Nuclear Information System (INIS)

    Zhao, Shuping; Liu, Wei; Liu, Shuang; Zhang, Yuan; Wang, Huanlei; Chen, Shougang

    2017-01-01

    Highlights: • The CoO/PBCs composites with unique hierarchical architecture by utilizing porous biocarbons derived from kapok fibers (KFs) have been successfully synthesized. • The unique structure is aggregated by CoO rods anchored on the surface or inside the porous carbons. • The CoO/PBCs composites exhibit excellent electrochemical performances. - Abstract: The designed metal oxide-carbon composites are always considered as a potential candidate for high-performance electrode materials. In this work, we fabricated the CoO rods-porous carbon composites with a unique hierarchical architecture by utilizing porous biocarbons derived from kapok fibers (KFs). As the composites of CoO nanocrystals with the mean size of 10 nm and graphene-like carbon sheets, the CoO rods are homogeneously anchored on or inside the porous carbons, thus achieving a 3D hierarchical porous structure. When tested as anode materials for lithium-ion batteries, the as-obtained composites exhibit the high lithium storage of 1057 mAh g"−"1. More importantly, the CoO rods/porous biocarbons composites display a superior long-term stable reversible capacity of about 550 mAh g"−"1 at the high current density of 5 A g"−"1 after 600 cycles. The superior electrochemical performance of the obtained composites has been attributed to the synergistic effect between CoO nanoparticles and porous biocarbons, which makes the composites favorable for fast electronic and ionic transfer, and superior stable structure. Therefore, we believe that the designed preparation of metal oxide architectures in low-cost and renewable porous biocarbons will be a valuable direction for exploring advanced electrode materials.

  20. Heterometallic metal-organic framework-templated synthesis of porous Co3O4/ZnO nanocage catalysts for the carbonylation of glycerol

    Science.gov (United States)

    Lü, Yinyun; Jiang, Yating; Zhou, Qi; Li, Yunmei; Chen, Luning; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2017-12-01

    The efficient synthesis of glycerol carbonate (GLC) has recently received great attention due to its significance in reducing excess glycerol in biodiesel production as well as its promising applications in several industrial fields. However, the achievement of high conversion and high selectivity of GLC from glycerol in heterogeneous catalytic processes remains a challenge due to the absence of high-performance solid catalysts. Herein, highly porous nanocage catalysts composed of well-mixed Co3O4 and ZnO nanocrystals were successfully fabricated via a facile heterometallic metal-organic framework (MOF)-templated synthetic route. Benefiting from a high porosity and the synergistic effect between Co3O4 and ZnO, the as-prepared composite catalysts exhibited a significantly enhanced production efficiency of GLC in the carbonylation reaction of glycerol with urea compared to the single-component counterparts. The yield of GLC over the Co50Zn50-350 catalyst reached 85.2%, with 93.3% conversion and near 91% GLC selectivity, and this catalytic performance was superior to that over most heterogeneous catalysts. More importantly, the proposed templated synthetic strategy of heterometallic MOFs facilitates the regulation of catalyst composition and surface structure and can therefore be potentially extended in the tailoring of other metal oxide composite catalysts.

  1. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xingyan, E-mail: yaoxingyan-jsj@163.com [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Liu, Chuanwen; Liang, Huang; Qin, Huafeng [Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Yu, Qibing; Li, Chuan [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China)

    2016-04-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  2. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    International Nuclear Information System (INIS)

    Yao, Xingyan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan

    2016-01-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  3. Structural control in the synthesis of inorganic porous materials

    Science.gov (United States)

    Holland, Brian Thomas

    Mesoporous (2.0--50.0 nm pore diameter) and macroporous (50.0 nm on up) materials have been the basis of my studies. These materials, for many years, possessed large pore size distributions. Recently, however, it has been possible to synthesize both mesoporous and macroporous materials that possess highly ordered uniform pores throughout the material. Workers at Mobil Corporation in 1992 discovered a hexagonally arrayed mesoporous material, designated MCM-41, which exhibited uniform pores ranging from 2.0--10.0 nm in diameter. In my work MCM-41 was used as a host for the incorporation of meso-tetrakis(5-trimethylammoniumpentyl)porphyrin (TMAP-Cl) and as a model for the synthesis of mesoporous alumino- and galloaluminophosphates which were created using cluster precursors of the type MO4Al 12(OH)24(H2O)12 7+, M = Al or Ga. Macroporous materials with uniform pore sizes have been synthesized by our group with frameworks consisting of a variety of metal oxides, metals, organosilanes, aluminophosphates and bimodal pores. These materials are synthesized from the addition of metal precursors to preordered polystyrene spheres. Removal of the spheres results in the formation of macropores with highly uniform pores extending microns in length. Porous materials with uniform and adjustable pore sizes in the mesoporous and macroporous size regimes offer distinct advantages over non-ordered materials for numerous reasons. First, catalysis reactions that are based on the ability of the porous materials to impose size and shape restrictions on the substrate are of considerable interest in the petroleum and petrochemical industries. As pore diameters increase larger molecules can be incorporated into the pores, i.e., biological molecules, dyes, etc. For the macroporous materials synthesized by our group it has been envisioned that these structures may not only be used for catalysis because of increased efficiencies of flow but for more advanced applications, e.g., photonic crystals

  4. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water

    Science.gov (United States)

    Bo, Shaoguo; Ren, Wenjing; Lei, Chao; Xie, Yuanbo; Cai, Yurong; Wang, Shunli; Gao, Junkuo; Ni, Qingqing; Yao, Juming

    2018-06-01

    The low cost of adsorption treatment of heavy metal ions in water has been extensively studied. In this paper, we have demonstrated a facile method of combining two emerging materials cellulose aerogels (CA) and metal-organic frameworks (MOFs) into one highly functional aerogel to adsorption removal of heavy metal ions from water, by entrapping MOF particles into a flexible and porous CA. The resultant hybrid cellulose aerogels had a highly porous structure with zeolitic imidazolate framework-8 (ZIF-8) loadings can reach 30 wt%. The hybrid cellulose aerogels (named as ZIF-8@CA) show good adsorption capacity for Cr(Ⅵ). The adsorption process of ZIF-8@CA is better described by pseudo-second-order kinetic model and Langmuir isotherm, with maximum monolayer adsorption capacity of 41.8 mg g-1 for Cr(Ⅵ), whose adsorption capacity has greatly improved when compared with a single CA or ZIF-8. Thus, such a flexible and durable hybrid cellulose aerogel is a very prospective material for metal ions cleanup and industrial wastewater purification.

  5. Leaching of heavy metals from timah langat amang

    International Nuclear Information System (INIS)

    Shukri bin Othman

    1990-01-01

    Accelerated leaching studies of amang from Timah Langat for heavy metals showed that the material was rather stable. From almost 24 types of heavy metals contained in the material, the metal that leached out most was Al, followed by Pb, U, Cu, Mn, Fe, Mg, Y and La but at smaller quantities. The studies also showed that amang was very porous. The high seepage rate resulted in the solubilities of the metals not reaching equilibrium. In that situation, the leaching of heavy metals from amang was dependent on the seepage rate of water, the height of the material, the volume of water that seeped through and the solubility of the metals

  6. Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Eddaoudi [USF; Zaworotko, Michael [USF; Space, Brian [USF; Eckert, Juergen [USF

    2013-05-08

    Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable for super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:

  7. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction.

    Science.gov (United States)

    Zhou, Huang; Zhang, Jian; Amiinu, Ibrahim Saana; Zhang, Chenyu; Liu, Xiaobo; Tu, Wenmao; Pan, Mu; Mu, Shichun

    2016-04-21

    Porous nitrogen-doped graphene with a very high surface area (1152 m(2) g(-1)) is synthesized by a novel strategy using intrinsically porous biomass (soybean shells) as a carbon and nitrogen source via calcination and KOH activation. To redouble the oxygen reduction reaction (ORR) activity by tuning the doped-nitrogen content and type, ammonia (NH3) is injected during thermal treatment. Interestingly, this biomass-derived graphene catalyst exhibits the unique properties of mesoporosity and high pyridine-nitrogen content, which contribute to the excellent oxygen reduction performance. As a result, the onset and half-wave potentials of the new metal-free non-platinum catalyst reach -0.009 V and -0.202 V (vs. SCE), respectively, which is very close to the catalytic activity of the commercial Pt/C catalyst in alkaline media. Moreover, our catalyst has a higher ORR stability and stronger CO and CH3OH tolerance than Pt/C in alkaline media. Importantly, in acidic media, the catalyst also exhibits good ORR performance and higher ORR stability compared to Pt/C.

  8. Correlation between the Microstructure of Porous Materials and the Adsorption Properties of H2 and D2

    International Nuclear Information System (INIS)

    Krkljus, Ivana Biljana

    2011-01-01

    One of the most challenging tasks toward the full implementation of the hydrogen based economy is the reversible storage of hydrogen for portable applications. Three main approaches have been investigated to store the hydrogen, storage as a compressed gas or a liquid, or through a direct chemical bond between the hydrogen atom and the material. The alternative approach, the most recently investigated, is the storage of hydrogen at cryogenic conditions. Storage by physisorption within porous adsorbents has particular advantages of complete reversibility, the fast refueling time, the low heat evolution, and above all increased safety. The nature of interaction of hydrogen, deuterium, and gas mixtures with porous adsorbents was exploited by performing thermal desorption spectroscopy (TDS) measurements. This sensitive experimental technique gives qualitative information about the different adsorption sites, which show different desorption temperatures depending on the interaction energy. After an appropriate calibration the amount of gas desorbed may be quantified. To gain a more fundamental insight into the available adsorption sites multiple TDS spectra were recorded, corresponding to different surface coverages (in the pressure range of 1 to 700 mbar), and different heating regimes. Different kind of porous adsorbents, conventional carbon-based materials and novel Metal Organic Framework Materials (MOFs), were used to investigate the hydrogen/deuterium physisorption mechanism. For carbon materials an increase in the hydrogen interaction potential was observed for adsorbents with narrow pore size. The confined geometry, where hydrogen simultaneously interacts with all the surrounding adsorbent walls, strengthens the interaction potential with the adsorbate molecule, thus, maximizing the total van der Waals force on the adsorbate. Crystalline MOFs are a new class of porous materials assembled from discrete metal centers, which act as framework nodes, and organic

  9. Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery.

    Science.gov (United States)

    Wang, Linlin; Zhu, Hongli; Shi, Ying; Ge, You; Feng, Xiaomiao; Liu, Ruiqing; Li, Yi; Ma, Yanwen; Wang, Lianhui

    2018-06-07

    Micromotors hold promise as drug carriers for targeted drug delivery owing to the characteristics of self-propulsion and directional navigation. However, several defects still exist, including high cost, short movement life, low drug loading and slow release rate. Herein, a novel catalytic micromotor based on porous zeolitic imidazolate framework-67 (ZIF-67) synthesized by a greatly simplified wet chemical method assisted with ultrasonication is described as an efficient anticancer drug carrier. These porous micromotors display effective autonomous motion in hydrogen peroxide and long durable movement life of up to 90 min. Moreover, the multifunctional micromotor ZIF-67/Fe3O4/DOX exhibits excellent performance in precise drug delivery under external magnetic field with high drug loading capacity of fluorescent anticancer drug DOX up to 682 μg mg-1 owing to its porous nature, high surface area and rapid drug release based on dual stimulus of catalytic reaction and solvent effects. Therefore, these porous ZIF-67-based catalytic micromotors combine the domains of metal-organic frameworks (MOFs) and micomotors, thus developing potential resources for micromotors and holding great potential as label-free and precisely controlled high-quality candidates of drug delivery systems for biomedical applications.

  10. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-03

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m 2 g -1 has been synthesized by chemical activation of papayas for the first time. This sp 2 -bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ∼ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg -1 in aqueous electrolyte and 65.5 Wh kg -1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g -1 in Li + and Na + based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  11. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-01

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m2 g-1 has been synthesized by chemical activation of papayas for the first time. This sp2-bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ˜ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg-1 in aqueous electrolyte and 65.5 Wh kg-1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g-1 in Li+ and Na+ based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  12. Novel Bioactive Titanate Layers Formed on Ti Metal and Its Alloys by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Tadashi Kokubo

    2009-12-01

    Full Text Available Sodium titanate formed on Ti metal by NaOH and heat treatments induces apatite formation on its surface in a body environment and bonds to living bone. These treatments have been applied to porous Ti metal in artificial hip joints, and have been used clinically in Japan since 2007. Calcium titanate formed on Ti-15Zr-4Nb-4Ta alloy by NaOH, CaCl2, heat, and water treatments induces apatite formation on its surface in a body environment. Titanium oxide formed on porous Ti metal by NaOH, HCl, and heat treatments exhibits osteoinductivity as well as osteoconductivity. This is now under clinical tests for application to a spinal fusion device.

  13. Interaction of Light with Metallized Ultrathin Silicon Membrane

    Science.gov (United States)

    Shome, Krishanu

    Freestanding metallized structures, a few tens of nanometer thick, show promise in creating flow-through sensors, single molecule detectors and novel solar cells. In this thesis we study test structures that are a step towards creating such devices. Finite- difference time-domain simulations have been used to understand and predict the interaction of light with such devices. Porous nanocrystalline silicon membrane is a novel freestanding layer structure that has been used as a platform to fabricate and study sensors and novel slot nanohole devices. Optical mode studies of the sensing structures, together with the method of fabrication inspired the creation of ultrathin freestanding hydrogenated amorphous silicon p-i-n junctions solar cells. All the freestanding structures used in this thesis are just a few tens of nanometers in thicknesses. In the first part of the thesis the sensing properties of the metallized porous nanocrystalline structure are studied. The surprising blueshift associated with the sensing peak is observed experimentally and predicted theoretically with the help of simulations. Polarization dependence of the membranes is predicted and confirmed for angled deposition of metal on the membranes. In the next part, a novel slot structure is fabricated and modeled to study the slot effect in nanohole metal-insulator-metal structures. Atomic layer deposition of alumina is used to conformally deposit alumina within the nanohole to create the slot structure. Simulation models were used to calculate the lowest modal volume of 4x10-5 mum3 for an optimized structure. In the last part of the thesis, freestanding solar cells are fabricated by effectively replacing the porous nanocrystalline silicon layer of the membranes with a hydrogenated amorphous silicon p-i-n junction with metal layers on both sides of the p-i-n junction. The metal layers act both as electrical contacts as well as mirrors for a Fabry Perot cavity resonator. This helps in tuning the

  14. A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6.

    Science.gov (United States)

    Bhadra, Biswa Nath; Jhung, Sung Hwa

    2017-10-15

    A series of metal-azolate frameworks or MAFs-MAF-4, -5, and -6-were synthesized and pyrolyzed to prepare porous carbons derived from MAFs (CDM-4, -5, -6, respectively). Not only the obtained carbons but also MAFs were characterized and applied for the adsorption of organic contaminants of emerging concern (CECs, including pharmaceuticals and personal care products) such as salicylic acid, clofibric acid, diclofenac sodium, bisphenol-A, and oxybenzone (OXB) from water. CDM-6 was found to be the most remarkable adsorbent among the tested ones (including activated carbon) for all the adsorbates. OXB was taken as a representative adsorbate for detailed adsorption studies as well as understanding the adsorption mechanism. H-bonding (H-acceptor: CDM; H-donor: CECs) was suggested as the principal mechanism for the adsorption of tested adsorbates. Finally, CDMs, especially CDM-6, were suggested as highly efficient and easily recyclable adsorbents for water purification. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    Science.gov (United States)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  16. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Payez, Alexandre; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Evoli, Carmelo; Mirizzi, Alessandro [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Fischer, Tobias [Wroclaw Univ. (Poland). Inst. for Theoretical Physics; Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences

    2014-10-15

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g{sub aγ}

  17. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  18. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  19. Supercritical Carbon Dioxide-Soluble Ligands for Extracting Actinide Metal Ions from Porous Solids

    International Nuclear Information System (INIS)

    Dietz, Mark L.

    2001-01-01

    Numerous types of actinide-bearing waste materials are found throughout the DOE complex. Most of these wastes consist of large volumes of non-hazardous materials contaminated with relatively small quantities of actinide elements. Separation of these wastes into their inert and radioactive components would dramatically reduce the costs of stabilization and disposal. For example, the DOE is responsible for decontaminating concrete within 7000 surplus contaminated buildings. The best technology now available for removing surface contamination from concrete involves removing the surface layer by grit blasting, which produces a large volume of blasting residue containing a small amount of radioactive material. Disposal of this residue is expensive because of its large volume and fine particulate nature. Considerable cost savings would result from separation of the radioactive constituents and stabilization of the concrete dust. Similarly, gas diffusion plants for uranium enrichment contain valuable high-purity nickel in the form of diffusion barriers. Decontamination is complicated by the extremely fine pores in these barriers, which are not readily accessible by most cleaning techniques. A cost-effective method for the removal of radioactive contaminants would release this valuable material for salvage. The objective of this project is to develop novel, substituted diphosphonic acid ligands that can be used for supercritical carbon dioxide extraction of actinide ions from solid wastes. Specifically, selected diphosphonic acids, which are known to form extremely stable complexes with actinides in aqueous and organic solution, are to be rendered carbon dioxide-soluble by the introduction of appropriate alkyl- or silicon-containing substituents. The metal complexation chemistry of these new ligands in SC-CO2 will then be investigated and techniques for their use in actinide extraction from porous solids developed

  20. Template-assisted electrostatic spray deposition as a new route to mesoporous, macroporous, and hierarchically porous oxide films.

    Science.gov (United States)

    Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R

    2011-03-01

    A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.

  1. Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping.

    Science.gov (United States)

    Castells-Gil, Javier; Padial, Natalia M; Almora-Barrios, Neyvis; Albero, Josep; Ruiz-Salvador, A Rabdel; González-Platas, Javier; García, Hermenegildo; Martí-Gastaldo, Carlos

    2018-06-06

    We report a new family of titanium-organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at multi-gram scale from multiple precursors. Their heterometallic structure enables engineering of their photoactivity by metal doping rather than by linker functionalization. Compared to other methodologies based on the post-synthetic metallation of MOFs, our approach is well-fitted for controlling the positioning of dopants at an atomic level to gain more precise control over the band-gap and electronic properties of the porous solid. Changes in the band-gap are also rationalized with computational modelling and experimentally confirmed by photocatalytic H 2 production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A micromechanical approach To numerical modeling of yielding of open-cell porous structures under compressive loads

    NARCIS (Netherlands)

    Hedayati, R.; Sadighi, M.

    2016-01-01

    Today, interconnected open-cell porous structures made of titanium and its alloys are replacing the prevalent solid metals used in bone substitute implants. The advent of additive manufacturing techniques has enabled manufacturing of open-cell structures with arbitrary micro-structural geometry.

  3. Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers

    Science.gov (United States)

    An, Geon-Hyoung; Ahn, Hyo-Jin; Hong, Woong-Ki

    2015-01-01

    Four different types of carbon nanofibers (CNFs) for electrical double-layer capacitors (EDLCs), porous and non-porous CNFs with and without Pt metal nanoparticles, are synthesized by an electrospinning method and their performance in electrical double-layer capacitors (EDLCs) is characterized. In particular, the Pt-embedded porous CNFs (PCNFs) exhibit a high specific surface area of 670 m2 g-1, a large mesopore volume of 55.7%, and a low electrical resistance of 1.7 × 103. The synergistic effects of the high specific surface area with a large mesopore volume, and superior electrical conductivity result in an excellent specific capacitance of 130.2 F g-1, a good high-rate performance, superior cycling durability, and high energy density of 16.9-15.4 W h kg-1 for the performance of EDLCs.

  4. Porous carbons

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and ...

  5. An Ising model for metal-organic frameworks

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz

    2017-08-01

    We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

  6. Sweep gas membrane distillation in a membrane contactor with metallic hollow fibers

    NARCIS (Netherlands)

    Shukla, Sushumna; Benes, Nieck Edwin; Vankelecom, I.F.J.; Mericq, J.P.; Belleville, M.P.; Hengl, N.; Sanchez Marcano, Jose

    2015-01-01

    This work revolves around the use of porous metal hollow fibers in membrane distillation. Various stages are covered, starting from membrane synthesis up to the testing of a pilot scale membrane module. Mechanically stable metal hollow fibers have been synthesized by phase inversion of a stainless

  7. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants.

    Science.gov (United States)

    Traini, T; Mangano, C; Sammons, R L; Mangano, F; Macchi, A; Piattelli, A

    2008-11-01

    This work focuses on a titanium alloy implants incorporating a gradient of porosity, from the inner core to the outer surface, obtained by laser sintering of metal powder. Surface appearance, microstructure, composition, mechanical properties and fractography were evaluated. All the specimens were prepared by a selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 1-10 microm. The morphological and chemical analyses were performed by SEM and energy dispersive X-ray spectroscopy. The flexure strength was determined by a three-point bend test using a universal testing machine. The surface roughness was investigated using a confocal scanning laser microscope. The surface roughness variation was statistically evaluated by use of a Chi square test. A p value of metal core consisted of columnar beta grains with alpha and beta laths within the grains. The alloy was composed of 90.08% Ti, 5.67% Al and 4.25% V. The Young's modulus of the inner core material was 104+/-7.7 GPa; while that of the outer porous material was 77+/-3.5 GPa. The fracture face showed a dimpled appearance typical of ductile fracture. In conclusion, laser metal sintering proved to be an efficient means of construction of dental implants with a functionally graded material which is better adapted to the elastic properties of the bone. Such implants should minimize stress shielding effects and improve long-term performance.

  9. Ultra-low reflection porous silicon nanowires for solar cell applications

    OpenAIRE

    Najar , Adel; Charrier , Joël; Pirasteh , Parastesh; Sougrat , R.

    2012-01-01

    International audience; High density vertically aligned Porous Silicon NanoWires (PSiNWs) were fabricated on silicon substrate using metal assisted chemical etching process. A linear dependency of nanowire length to the etching time was obtained and the change in the growth rate of PSiNWs by increasing etching durations was shown. A typical 2D bright-field TEM image used for volume reconstruction of the sample shows the pores size varying from 10 to 50 nm. Furthermore, reflectivity measuremen...

  10. Positronium formation in porous materials for antihydrogen production

    International Nuclear Information System (INIS)

    Ferragut, R; Calloni, A; Dupasquier, A; Consolati, G; Giammarchi, M G; Quasso, F; Trezzi, D; Egger, W; Ravelli, L; Petkov, M P; Jones, S M; Wang, B; Yaghi, O M; Jasinska, B; Chiodini, N; Paleari, A

    2010-01-01

    Positronium (Ps) formation measurements in several porous materials as: Vycor, germanate Xerogel, Metal-Organic Frameworks MOF-177 and Aerogel with two densities (20 and 150 mg/cm 3 ), were performed by means of a variable energy positron beam provided with a Ge detector and a positron lifetime spectrometer. An efficient formation of cooled Ps atoms is a requisite for the production of antihydrogen, with the aim of a direct measurement of the Earth gravitational acceleration g of antimatter, which is a primary scientific goal of AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy). Porous materials are necessary to form a high yield of Ps atoms as well as to cool Ps through collisions with the inner walls of the pores. The different materials were characterized and produce Ps into the pores. Lifetime measurements give an estimation of the typical pores dimension of the substances. A comparative study of the positron lifetime and the Ps fraction values in the above mentioned materials indicates that silica Aerogel, with the appropriate density, is an excellent candidate for an efficient formation of cold Ps atoms for the AEGIS project.

  11. Break-down of Losses in High Performing Metal-Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Kromp, Alexander; Nielsen, Jimmi; Blennow Tullmar, Peter

    2012-01-01

    Metal supported SOFC designs offer competitive advantages such as reduced material costs and improved mechanical robustness. On the other hand, disadvantages might arise due to possible corrosion of the porous metal parts during processing and operation at high fuel utilization. In this paper we...... in hydrogen. The electrochemically active parts were applied by infiltrating CGO-Ni precursor solution into the porous metal and anode backbone and screenprinting (La,Sr)(Co,Fe)O3-based cathodes. To prevent a solid state reaction between cathode and zirconia electrolyte, CGO buffer layers were applied...... in between cathode and electrolyte. The detailed electrochemical characterization by means of impedance spectroscopy and a subsequent data analysis by the distribution of relaxation times enabled us to separate the different loss contributions in the cell. Based on an appropriate equivalent circuit model...

  12. Development of the method for preparation of actinide metals

    International Nuclear Information System (INIS)

    Shiokawa, Y.; Hasegawa, K.; Takahashi, M.; Suzuki, K.

    1997-01-01

    The uranium amalgam was quantitatively prepared by electrolysis from the aqueous solution containing acetic acid and sodium acetate using mercury cathode. A bright button or brown porous one of uranium metal was obtained by thermal decomposition of the amalgam. The purity was found to be much higher than commercial grade metal of ca.99.95%. As a result of this work, the simple and easy procedure for preparation of uranium metal with high purity level on the laboratory scale has been developed. (author)

  13. Development of the Method for Preparation of Actinide Metals

    OpenAIRE

    Shiokawa, Y.; Hasegawa, K.; Takahashi, M.; Suzuki, K.

    1997-01-01

    The uranium amalgam was quantitatively prepared by electrolysis from the aqueous solution containing acetic acid and sodium acetate using mercury cathode. A bright button or brown porous one of uranium metal was obtained by thermal decomposition of the amalgam. The purity was found to be much higher than commercial grade metal of ca.99.95%. As a result of this work, the simple and easy procedure for preparation of uranium metal with high purity level on the laboratory scale has been developed.

  14. Porous CrN thin films by selectively etching CrCuN for symmetric supercapacitors

    KAUST Repository

    Wei, Binbin

    2018-03-18

    Transition metal nitrides are regarded as a new class of excellent electrode materials for high-performance supercapacitors due to their superior chemical stability and excellent electrical conductivity. We synthesize successfully the porous CrN thin films for binder-free supercapacitor electrodes by reactive magnetron co-sputtering and selective chemical etching. The porous CrN thin film electrodes exhibit high-capacitance performance (31.3 mF cm−2 at 1.0 mA cm−2) and reasonable cycling stability (94% retention after 20000 cycles). Moreover, the specific capacitance is more than two-fold higher than that of the CrN thin film electrodes in previous work. In addition, a symmetric supercapacitor device with a maximum energy density of 14.4 mWh cm−3 and a maximum power density of 6.6 W cm−3 is achieved. These findings demonstrate that the porous CrN thin films will have potential applications in supercapacitors.

  15. Porous CrN thin films by selectively etching CrCuN for symmetric supercapacitors

    Science.gov (United States)

    Wei, Binbin; Mei, Gui; Liang, Hanfeng; Qi, Zhengbing; Zhang, Dongfang; Shen, Hao; Wang, Zhoucheng

    2018-05-01

    Transition metal nitrides are regarded as a new class of excellent electrode materials for high-performance supercapacitors due to their superior chemical stability and excellent electrical conductivity. We synthesize successfully the porous CrN thin films for binder-free supercapacitor electrodes by reactive magnetron co-sputtering and selective chemical etching. The porous CrN thin film electrodes exhibit high-capacitance performance (31.3 mF cm-2 at 1.0 mA cm-2) and reasonable cycling stability (94% retention after 20000 cycles). Moreover, the specific capacitance is more than two-fold higher than that of the CrN thin film electrodes in previous work. In addition, a symmetric supercapacitor device with a maximum energy density of 14.4 mWh cm-3 and a maximum power density of 6.6 W cm-3 is achieved. These findings demonstrate that the porous CrN thin films will have potential applications in supercapacitors.

  16. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates

    International Nuclear Information System (INIS)

    Haque, Enamul; Lee, Ji Eun; Jang, In Tae; Hwang, Young Kyu; Chang, Jong-San; Jegal, Jonggeon; Jhung, Sung Hwa

    2010-01-01

    Two typical highly porous metal-organic framework (MOF) materials based on chromium-benzenedicarboxylates (Cr-BDC) obtained from Material of Institute Lavoisier with special structure of MIL-101 and MIL-53 have been used for the adsorptive removal of methyl orange (MO), a harmful anionic dye, from aqueous solutions. The adsorption capacity and adsorption kinetic constant of MIL-101 are greater than those of MIL-53, showing the importance of porosity and pore size for the adsorption. The performance of MIL-101 improves with modification: the adsorption capacity and kinetic constant are in the order of MIL-101 < ethylenediamine-grafted MIL-101 < protonated ethylenediamine-grafted MIL-101 (even though the porosity and pore size are slightly decreased with grafting and further protonation). The adsorption capacity of protonated ethylenediamine-grafted MIL-101 decreases with increasing the pH of an aqueous MO solution. These results suggest that the adsorption of MO on the MOF is at least partly due to the electrostatic interaction between anionic MO and a cationic adsorbent. Adsorption of MO at various temperatures shows that the adsorption is a spontaneous and endothermic process and that the entropy increases (the driving force of the adsorption) with MO adsorption. The adsorbent MIL-101s are re-usable after sonification in water. Based on this study, MOFs can be suggested as potential re-usable adsorbents to remove anionic dyes because of their high porosity, facile modification and ready re-activation.

  17. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir; Arciniega, Roman; El Sayed, Tamer

    2011-01-01

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006

  18. Cathode architectures for alkali metal / oxygen batteries

    Science.gov (United States)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  19. Boiling in porous media

    International Nuclear Information System (INIS)

    1998-01-01

    This conference day of the French society of thermal engineers was devoted to the analysis of heat transfers and fluid flows during boiling phenomena in porous media. This book of proceedings comprises 8 communications entitled: 'boiling in porous medium: effect of natural convection in the liquid zone'; 'numerical modeling of boiling in porous media using a 'dual-fluid' approach: asymmetrical characteristic of the phenomenon'; 'boiling during fluid flow in an induction heated porous column'; 'cooling of corium fragment beds during a severe accident. State of the art and the SILFIDE experimental project'; 'state of knowledge about the cooling of a particulates bed during a reactor accident'; 'mass transfer analysis inside a concrete slab during fire resistance tests'; 'heat transfers and boiling in porous media. Experimental analysis and modeling'; 'concrete in accidental situation - influence of boundary conditions (thermal, hydric) - case studies'. (J.S.)

  20. A review: fabrication of porous polyurethane scaffolds.

    Science.gov (United States)

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  1. Lead and copper removal from aqueous solutions by porous glass derived calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Liang Wen; Zhan Lei; Piao Longhua; Ruessel, Christian

    2011-01-01

    Graphical abstract: . Adsorption of Pb 2+ increases with the increase in NaCl volume percentage (1:0%, 2:30%, 3:40%, 4:40%) of the Glass Derived Hydroxyapatite and reaches equilibrium after 24 h. Highlights: → Novel porous glass derived hydroxyapatite matrix is prepared. → Glass derived hydroxyapatite matrix adsorbs lead and copper ions in solutions effectively. → Two adsorption mechanisms including ion exchange theory and the dissolution and precipitation theory are involved in removal of the heavy metal ions from the solutions. - Abstract: A porous glass was prepared by sintering Na 2 O-CaO-B 2 O 3 glass powder with powdered sodium chloride. Subsequently, the sodium chloride was dissolved in water resulting in a highly porous material. A sample was prepared consisting of 60 vol% glass and 40 vol% salt which both had particle sizes 2 HPO 4 solutions at room temperature for 1 day. The porous glass derived hydroxyapatite matrix was then processed for removing lead and copper ions from aqueous solutions. The results showed that the glass derived calcium hydroxyapatite matrix effectively immobilizes lead and copper ions in solution. The adsorption mechanism was investigated by the X-ray Diffraction (XRD) and Scanning Electron Microscopy including Energy Dispersive X-Ray Spectrometry (SEM-EDX).

  2. Sustainable green catalysis by supported metal nanoparticles.

    Science.gov (United States)

    Fukuoka, Atsushi; Dhepe, Paresh L

    2009-01-01

    The recent progress of sustainable green catalysis by supported metal nanoparticles is described. The template synthesis of metal nanoparticles in ordered porous materials is studied for the rational design of heterogeneous catalysts capable of high activity and selectivity. The application of these materials in green catalytic processes results in a unique activity and selectivity arising from the concerted effect of metal nanoparticles and supports. The high catalytic performances of Pt nanoparticles in mesoporous silica is reported. Supported metal catalysts have also been applied to biomass conversion by heterogeneous catalysis. Additionally, the degradation of cellulose by supported metal catalysts, in which bifunctional catalysis of acid and metal plays the key role for the hydrolysis and reduction of cellulose, is also reported. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  3. Porous plasmonic nanocomposites for SERS substrates fabricated by two-step laser method

    Energy Technology Data Exchange (ETDEWEB)

    Koleva, M.E., E-mail: mihaela_ek@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee blvd., Sofia 1784 (Bulgaria); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 (Japan); Nedyalkov, N.N.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee blvd., Sofia 1784 (Bulgaria); Gerlach, J.W.; Hirsch, D.; Prager, A.; Rauschenbach, B. [Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany); Fukata, N.; Jevasuwan, W. [International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 (Japan)

    2016-04-25

    This research is focused on investigation of coupled plasmonic/metal-semiconductor nanomaterials. A two-step laser-assisted method is demonstrated for formation of plasmonic Ag nanoparticles (NPs) distributed into porous metal–oxide semiconductors. The mosaic Ag-ZnO target is used for laser ablation and, subsequently, laser annealing of the deposited layer is applied. The plasmon resonance properties of the nanostructures produced are confirmed by optical transmission spectroscopy. The wurtzite structure of ZnO is formed with tilted c-axis orientation and, respectively, a mixed Raman mode appears at 580 cm{sup −1}. The oxygen pressure applied during a deposition process has impact on the morphology and thickness of the porous nanostructures, but not on the size and size distribution of AgNPs. The porous nanocomposites exhibited potential for SERS applications, most pronounced for the oxygen deficient sample, grown at lower oxygen pressure. The observed considerable SERS enhancement of R6G molecules on AgNP/ZnO can be attributed to the ZnO-to-molecule charge transfer contribution, enhanced by the additional electrons from the local surface plasmon resonance (LSPR) of AgNPs to the ZnO through the conduction band. - Highlights: • Porous AgNPs/ZnO composites are obtained by laser deposition and laser annealing. • Morphology and properties depend on growth oxygen pressure. • The emergence of mixed-symmetry Raman mode at 580 cm{sup −1} is registered. • The AgNPs/ZnO porous nanocomposites are suitable for SERS-active substrates. • The charge transfer enhanced by LSPR has a contribution to SERS effect.

  4. Artificial organs: recent progress in metals and ceramics.

    Science.gov (United States)

    Nomura, Naoyuki

    2010-04-01

    The superior properties and novel functions of biomaterials, including metals and ceramics commonly used as implants and medical devices, have been the focus of a number of recent papers. New functions have been explored in metastable beta-Ti alloys, Ni-free Co-Cr-Mo alloys, Mg alloys, and other materials. In addition, porous metals and ceramics with sophisticated structures have been studied as scaffolds for regenerative medicine. In this review, recent advances in bioceramics, metallic biomaterials, and their composites are discussed in terms of their material properties and morphology.

  5. Analyses of cavitation instabilities in ductile metals

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Cavitation instabilities have been predicted for a single void in a ductile metal stressed under high triaxiality conditions. In experiments for a ceramic reinforced by metal particles a single dominant void has been observed on the fracture surface of some of the metal particles bridging a crack......, and also tests for a thin ductile metal layer bonding two ceramic blocks have indicated rapid void growth. Analyses for these material configurations are discussed here. When the void radius is very small, a nonlocal plasticity model is needed to account for observed size-effects, and recent analyses......, while the surrounding voids are represented by a porous ductile material model in terms of a field quantity that specifies the variation of the void volume fraction in the surrounding metal....

  6. Flexible free-standing porous graphene/Ni film electrode with enhanced rate capability for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Hailiang; Zhou, Xufeng, E-mail: zhouxf@nimte.ac.cn; Shi, Junli; Liu, Zhaoping, E-mail: liuzp@nimte.ac.cn

    2016-11-15

    Flexible, lightweight and reliable lithium-ion batteries have attracted tremendous attention and research interest to meet the requirements of portable and bendable devices. Here, flexible, free-standing and porous graphene/Ni film with vertical nano-channels inside is prepared by metal etching of graphene film. Compared with dense graphene film, the porous graphene/Ni film employed as a binder-free anode in lithium-ion batteries exhibits higher capacity and much better rate capability, due to its unique interior channel architecture which is favorable for fast ion transport. At a high current density of 2 A g{sup −1}, it can reach a specific capacity of 117 mAh g{sup −1}. The porous film also shows low charge transfer resistance and good cycling stability. After 300 cycles at 1 A g{sup −1}, its specific capacity still remains at 147 mAh g{sup −1}, with high Coulombic efficiency of nearly 100%. Furthermore, the strategy developed here is very simple and of great importance to rational design of porous graphene film or graphene-based hybrids with various applications.

  7. Flexible free-standing porous graphene/Ni film electrode with enhanced rate capability for lithium-ion batteries

    International Nuclear Information System (INIS)

    Cao, Hailiang; Zhou, Xufeng; Shi, Junli; Liu, Zhaoping

    2016-01-01

    Flexible, lightweight and reliable lithium-ion batteries have attracted tremendous attention and research interest to meet the requirements of portable and bendable devices. Here, flexible, free-standing and porous graphene/Ni film with vertical nano-channels inside is prepared by metal etching of graphene film. Compared with dense graphene film, the porous graphene/Ni film employed as a binder-free anode in lithium-ion batteries exhibits higher capacity and much better rate capability, due to its unique interior channel architecture which is favorable for fast ion transport. At a high current density of 2 A g"−"1, it can reach a specific capacity of 117 mAh g"−"1. The porous film also shows low charge transfer resistance and good cycling stability. After 300 cycles at 1 A g"−"1, its specific capacity still remains at 147 mAh g"−"1, with high Coulombic efficiency of nearly 100%. Furthermore, the strategy developed here is very simple and of great importance to rational design of porous graphene film or graphene-based hybrids with various applications.

  8. Hard template synthesis of metal nanowires

    Science.gov (United States)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  9. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    Science.gov (United States)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  10. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing

    Science.gov (United States)

    Nishinaga, Osamu; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2013-01-01

    Anodic porous alumina has been widely investigated and used as a nanostructure template in various nanoapplications. The porous structure consists of numerous hexagonal cells perpendicular to the aluminum substrate and each cell has several tens or hundreds of nanoscale pores at its center. Because the nanomorphology of anodic porous alumina is limited by the electrolyte during anodizing, the discovery of additional electrolytes would expand the applicability of porous alumina. In this study, we report a new self-ordered nanoporous alumina formed by selenic acid (H2SeO4) anodizing. By optimizing the anodizing conditions, anodic alumina possessing 10-nm-scale pores was rapidly assembled (within 1 h) during selenic acid anodizing without any special electrochemical equipment. Novel sub-10-nm-scale spacing can also be achieved by selenic acid anodizing and metal sputter deposition. Our new nanoporous alumina can be used as a nanotemplate for various nanostructures in 10-/sub-10-nm-scale manufacturing. PMID:24067318

  11. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  12. Histological and biomechanical analysis of porous additive manufactured implants made by direct metal laser sintering: a pilot study in sheep.

    Science.gov (United States)

    Stübinger, Stefan; Mosch, Isabel; Robotti, Pierfrancesco; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J; von Rechenberg, Brigitte

    2013-10-01

    It was the aim of this study to analyze osseointegrative properties of porous additive manufactured titanium implants made by direct metal laser sintering in a sheep model after an implantation period of 2 and 8 weeks. Three different types of implants were placed in the pelvis of six sheep. In each sheep were placed three standard machined (M), three sandblasted and etched (SE), and three porous additive manufactured (AM) implants. Of these three implants (one per type) were examined histologically and six implants were tested biomechanically. Additionally a semiquantitative histomorphometrical and qualitative fluorescent microscopic analysis were performed. After 2 and 8 weeks bone-to-implant-contact (BIC) values of the AM surface (2w: 20.49% ± 5.18%; 8w: 43.91% ± 9.69%) revealed no statistical significant differences in comparison to the M (2w: 20.33% ± 11.50%; 8w: 25.33% ± 4.61%) and SE (2w: 43.67 ± 12.22%; 8w: 53.33 ± 8.96%) surfaces. AM surface showed the highest increase of the BIC between the two observation time points. Considering the same implantation period histomorphometry and fluorescent labelling disclosed no significant differences in the bone surrounding the three implants groups. In contrast Removal-torque-test showed a significant improve in fixation strength (P ≤ 0.001) for the AM (1891.82 ± 308, 44 Nmm) surface after eight weeks in comparison to the M (198.93±88,04 Nmm) and SE (730.08 ± 151,89 Nmm) surfaces. All three surfaces (M, SE, and AM) showed sound osseointegration. AM implants may offer a possible treatment option in clinics for patients with compromised bone situations. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  13. Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals

    Science.gov (United States)

    Bhattacharya, Kakoli; Parasar, Devaborniny; Mondal, Bholanath; Deb, Pritam

    2015-01-01

    Porous magnetic secondary nanostructures exhibit high surface area because of the presence of plentiful interparticle spaces or pores. Mesoporous Fe3O4 secondary nanostructures (MFSNs) have been studied here as versatile adsorbent for heavy metal scavenging. The porosity combined with magnetic functionality of the secondary nanostructures has facilitated efficient heavy metal (As, Cu and Cd) remediation from water solution within a short period of contact time. It is because of the larger surface area of MFSNs due to the porous network in addition to primary nanostructures which provides abundant adsorption sites facilitating high adsorption of the heavy metal ions. The brilliance of adsorption property of MFSNs has been realized through comprehensive adsorption studies and detailed kinetics. Due to their larger dimension, MFSNs help in overcoming the Brownian motion which facilitates easy separation of the metal ion sorbed secondary nanostructures and also do not get drained out during filtration, thus providing pure water. PMID:26602613

  14. Fabrication of 3D heteroatom-doped porous carbons from self-assembly of chelate foams via a solid state method

    KAUST Repository

    Wang, Yu; Pan, Ying; Zhu, Liangkui; Guo, Ningning; Wang, Runwei; Zhang, Zongtao; Qiu, Shilun

    2018-01-01

    A novel 3D foam-like porous carbon architectures with homogeneous N doping and unique mesopore-in-macropore structures have been fabricated from metal-organic complex via a facile template-free solid state method, which show high specific surface area (2732 m2 g-1), large pore volume (3.31 cm3 g-1), interconnected hierarchical pore structures with macro/meso/micro multimodal distribution and abundant surface functionality N doping (5.36 wt%). These characteristics afford high catalytic performance for oxygen reduction with an onset potential of 0.98 V (vs RHE) and a half-wave potential of 0.83 V (vs RHE) in alkaline media, which are comparable with those of the commercial 20 wt% Pt/C catalyst and many state-of-the-art noble-metal-free catalysts. These results demonstrate the significant advantages of the unique mesopore-in-macropore porous structures with efficient heteroatom doping, which provides abundant of accessible active sites for highly mass and charge transports. The present work pave a new facile and environmentally benign synthesis strategy for the preparation of 3D porous carbon architectures as efficient electrochemical energy devices and give deep insights into fabricating advanced nanostructured materials.

  15. Fabrication of 3D heteroatom-doped porous carbons from self-assembly of chelate foams via a solid state method

    KAUST Repository

    Wang, Yu

    2018-01-09

    A novel 3D foam-like porous carbon architectures with homogeneous N doping and unique mesopore-in-macropore structures have been fabricated from metal-organic complex via a facile template-free solid state method, which show high specific surface area (2732 m2 g-1), large pore volume (3.31 cm3 g-1), interconnected hierarchical pore structures with macro/meso/micro multimodal distribution and abundant surface functionality N doping (5.36 wt%). These characteristics afford high catalytic performance for oxygen reduction with an onset potential of 0.98 V (vs RHE) and a half-wave potential of 0.83 V (vs RHE) in alkaline media, which are comparable with those of the commercial 20 wt% Pt/C catalyst and many state-of-the-art noble-metal-free catalysts. These results demonstrate the significant advantages of the unique mesopore-in-macropore porous structures with efficient heteroatom doping, which provides abundant of accessible active sites for highly mass and charge transports. The present work pave a new facile and environmentally benign synthesis strategy for the preparation of 3D porous carbon architectures as efficient electrochemical energy devices and give deep insights into fabricating advanced nanostructured materials.

  16. Preparation and catalytic effect of porous Co3O4 on the hydrogen storage properties of a Li-B-N-H system

    Directory of Open Access Journals (Sweden)

    You Li

    2017-02-01

    Full Text Available A porous Co3O4 with a particle size of 1–3 µm was successfully prepared by heating Co-based metal organic frameworks MOF-74(Co up to 500 °C in air atmospheric conditions. The as-prepared porous Co3O4 significantly reduced the dehydrogenation temperatures of the LiBH4-2LiNH2 system and improved the purity of the released hydrogen. The LiBH4-2LiNH2-0.05/3Co3O4 sample started to release hydrogen at 140 °C and released hydrogen levels of approximately 9.7 wt% at 225 °C. The end temperature for hydrogen release was lowered by 125 °C relative to that of the pristine sample. Structural analyses revealed that the as-prepared porous Co3O4 is in-situ reduced to metallic Co, which functions as an active catalyst, reducing the kinetic barriers and lowering the dehydrogenation temperatures of the LiBH4-2LiNH2 system. More importantly, the porous Co3O4-containing sample exhibited partially improved reversibility for hydrogen storage in the LiBH4-2LiNH2 system.

  17. Microstructured liquid metal electron and ion sources (MILMES/MILMIS)

    Energy Technology Data Exchange (ETDEWEB)

    Mitterauer, J [Technische Universitaet Wien (Austria). Institut fuer Allgemeine Elektrotechnik und Elektronik

    1997-12-31

    Ion or electron beams can be emitted from liquid metal wetted needles, or from capillaries or slits into which the liquid metal is allowed to flow. Large-area liquid metal field emission sources have been proposed recently, using either two-dimensional, regular arrays of cones or capillaries, or even a substrate with an intrinsically microstructured surface covered by a liquid metal film. This latter concept has been realized in a pilot experiment by in situ wicking and wetting of a porous sintered metal disc. Microstructured liquid metal ion or electron sources are capable of operating in a pulsed mode at a current level which is orders of magnitude above that for steady-state operation. (author). 3 figs., 10 refs.

  18. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  19. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  20. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors.

    Science.gov (United States)

    Jeon, Ju-Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W; Schaef, Herbert T; Lutkenhaus, Jodie L; Lemmon, John P; Thallapally, Praveen K; Nandasiri, Manjula I; McGrail, Benard Peter; Nune, Satish K

    2014-05-28

    A hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid. Nitrogen content and surface area are easily controlled by the carbonization temperature. The nitrogen content decreases from 7 to 3.3 at % as carbonization temperature increases from 600 to 950 °C. There is a distinct trade-off between nitrogen content, porosity, and defects in the carbon structure. Carbonized IRMOFs are evaluated as supercapacitor electrodes. For a carbonization temperature of 950 °C, the nitrogen-doped porous carbon has an exceptionally high capacitance of 239 F g(-1). In comparison, an analogous nitrogen-free carbon bears a low capacitance of 24 F g(-1), demonstrating the importance of nitrogen dopants in the charge storage process. The route is scalable in that multi-gram quantities of nitrogen-doped porous carbons are easily produced.

  1. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.

    Science.gov (United States)

    Kelly, Cambre N; Miller, Andrew T; Hollister, Scott J; Guldberg, Robert E; Gall, Ken

    2018-04-01

    3D printing is now adopted for use in a variety of industries and functions. In biomedical engineering, 3D printing has prevailed over more traditional manufacturing methods in tissue engineering due to its high degree of control over both macro- and microarchitecture of porous tissue scaffolds. However, with the improved flexibility in design come new challenges in characterizing the structure-function relationships between various architectures and both mechanical and biological properties in an assortment of clinical applications. Presently, the field of tissue engineering lacks a comprehensive body of literature that is capable of drawing meaningful relationships between the designed structure and resulting function of 3D printed porous biomaterial scaffolds. This work first discusses the role of design on 3D printed porous scaffold function and then reviews characterization of these structure-function relationships for 3D printed synthetic metallic, polymeric, and ceramic biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Functionalized ultra-porous titania nanofiber membranes as nuclear waste separation and sequestration scaffolds for nuclear fuels recycle.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haiqing; Bell, Nelson S; Cipiti, Benjamin B.; Lewis, Tom Goslee,; Sava, Dorina Florentina; Nenoff, Tina Maria

    2012-09-01

    Advanced nuclear fuel cycle concept is interested in reducing separations to a simplified, one-step process if possible. This will benefit from the development of a one-step universal getter and sequestration material so as a simplified, universal waste form was proposed in this project. We have developed a technique combining a modified sol-gel chemistry and electrospinning for producing ultra-porous ceramic nanofiber membranes with controllable diameters and porous structures as the separation/sequestration materials. These ceramic nanofiber materials have been determined to have high porosity, permeability, loading capacity, and stability in extreme conditions. These porous fiber membranes were functionalized with silver nanoparticles and nanocrystal metal organic frameworks (MOFs) to introduce specific sites to capture gas species that are released during spent nuclear fuel reprocessing. Encapsulation into a durable waste form of ceramic composition was also demonstrated.

  3. Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles

    Science.gov (United States)

    Hwang, Jangsun; Hwang, Mintai P.; Choi, Moonhyun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Hong, Jinkee; Choi, Jonghoon

    2016-10-01

    Heavy metal pollution has been a problem since the advent of modern transportation, which despite efforts to curb emissions, continues to play a critical role in environmental pollution. Copper ions (Cu2+), in particular, are one of the more prevalent metals that have widespread detrimental ramifications. From this perspective, a simple and inexpensive method of detecting Cu2+ at the micromolar level would be highly desirable. In this study, we use porous silicon nanoparticles (NPs), obtained via anodic etching of Si wafers, as a basis for undecylenic acid (UDA)- or acrylic acid (AA)-mediated hydrosilylation. The resulting alkyl-terminated porous silicon nanoparticles (APS NPs) have enhanced fluorescence stability and intensity, and importantly, exhibit [Cu2+]-dependent quenching of fluorescence. After determining various aqueous sensing conditions for Cu2+, we demonstrate the use of APS NPs in two separate applications - a standard well-based paper kit and a portable layer-by-layer stick kit. Collectively, we demonstrate the potential of APS NPs in sensors for the effective detection of Cu2+.

  4. Porous silicon: X-rays sensitivity

    International Nuclear Information System (INIS)

    Gerstenmayer, J.L.; Vibert, Patrick; Mercier, Patrick; Rayer, Claude; Hyvernage, Michel; Herino, Roland; Bsiesy, Ahmad

    1994-01-01

    We demonstrate that high porosity anodically porous silicon is radioluminescent. Interests of this study are double. Firstly: is the construction of porous silicon X-rays detectors (imagers) possible? Secondly: is it necessary to protect silicon porous based optoelectronic systems from ionising radiations effects (spatial environment)? ((orig.))

  5. Cyclic voltammetry study of PEO processing of porous Ti and resulting coatings

    Science.gov (United States)

    Shbeh, Mohammed; Yerokhin, Aleksey; Goodall, Russell

    2018-05-01

    Ti is one of the most commonly used materials for biomedical applications. However, there are two issues associated with the use of it, namely its bio-inertness and high elastic modulus compared to the elastic modulus of the natural bone. Both of these hurdles could potentially be overcome by introducing a number of pores in the structure of the Ti implant to match the properties of the bone as well as improve the mechanical integration between the bone and implant, and subsequently coating it with a biologically active ceramic coating to promote chemical integration. Hence, in this study we investigated the usage of cyclic voltammetry in PEO treatment of porous Ti parts with different amount of porosity produced by both Metal Injection Moulding (MIM) and MIM in combination with a space holder. It was found that porous samples with higher porosity and open pores develop much thicker surface layers that penetrate through the inner structure of the samples forming a network of surface and subsurface coatings. The results are of potential benefit in producing surface engineered porous samples for biomedical applications which do not only address the stress shielding problem, but also improve the chemical integration.

  6. Primary hafnium metal sponge and other forms, approved standard 1973

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A specification is presented covering virgin hafnium metal commonly designated as sponge because of its porous, sponge-like texture; it may also be in other forms such as chunklets. The specification does not cover crystal bar

  7. RGB-Switchable Porous Electrospun Nanofiber Chemoprobe-Filter Prepared from Multifunctional Copolymers for Versatile Sensing of pH and Heavy Metals.

    Science.gov (United States)

    Liang, Fang-Cheng; Kuo, Chi-Ching; Chen, Bo-Yu; Cho, Chia-Jung; Hung, Chih-Chien; Chen, Wen-Chang; Borsali, Redouane

    2017-05-17

    Novel red-green-blue (RGB) switchable probes based on fluorescent porous electrospun (ES) nanofibers exhibiting high sensitivity to pH and mercury ions (Hg 2+ ) were prepared with one type of copolymer (poly(methyl methacrylatete-co-1,8-naphthalimide derivatives-co-rhodamine derivative); poly(MMA-co-BNPTU-co-RhBAM)) by using a single-capillary spinneret. The MMA, BNPTU, and RhBAM moieties were designed to (i) permit formation of porous fibers, (ii) fluoresce for Hg 2+ detection, and (iii) fluoresce for pH, respectively. The fluorescence emission of BNPTU (fluorescence resonance energy transfer (FRET) donor) changed from green to blue as it detected Hg 2+ . The fluorescence emission of RhBAM (FRET acceptor) was highly selective for pH, changing from nonfluorescent (pH 7) to exhibiting strong red fluorescence (pH 2). The full-color emission of the ES nanofibers included green, red, blue, purple, and white depending on the particular pH and Hg 2+ -concentration combination of the solution. The porous ES nanofibers with 30 nm pores were fabricated using hydrophobic MMA, low-boiling-point solvent, and at a high relative humidity (80%). These porous ES nanofibers had a higher surface-to-volume ratio than did the corresponding thin films, which enhanced their performance. The present study demonstrated that the FRET-based full-color-fluorescence porous nanofibrous membranes, which exhibit on-off switching and can be used as naked eye probes, have potential for application in water purification sensing filters.

  8. Hard template synthesis of metal nanowires

    Directory of Open Access Journals (Sweden)

    Go eKawamura

    2014-11-01

    Full Text Available Metal nanowires (NWs have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  9. Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications

    International Nuclear Information System (INIS)

    Yoo, Jeong Eun; Park, Jiyoung; Cha, Gihoon; Choi, Jinsub

    2013-01-01

    The anodization of niobium in an aqueous mixture of H 3 PO 4 and HF in the potential range from 2.5 to 30 V for 2 h at 5 °C was performed, demonstrating that anodic porous niobium oxide film with a thickness of up to 2000 nm, including a surface dissolution layer, can be obtained by controlling the applied potential and composition of the electrolytes. Specifically, surface dissolution-free porous niobium oxide film with a thickness of 800 nm can be prepared in a low electrolyte concentration. The surface dissolution is observed when the concentration ratio of HF (wt.%):H 3 PO 4 (M) was more than 2:1. The discontinuous layers in the niobium oxide film were observed when the thickness was higher than 500 nm, which was ascribed to the large volume expansion of the niobium oxide grown from the niobium metal. The anodic porous niobium oxide film was used as the cathode for lithium-ion batteries in the potential range from 1.2 to 3.0 V at a current density of 7.28 × 10 − 6 A cm −2 . The first discharge capacity of ca. 53 μA h cm − 2 was obtained in 800 nm thick niobium oxide without a surface dissolution layer. - Highlights: ► Anodic porous niobium oxide film with a thickness of 2000 nm was obtained. ► Surface dissolution-free porous niobium oxide film was prepared. ► The niobium oxide film was used as the cathode for lithium-ion batteries

  10. From porous gold nanocups to porous nanospheres and solid particles - A new synthetic approach

    KAUST Repository

    Ihsan, Ayesha

    2015-05-01

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4{dot operator}3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  11. From porous gold nanocups to porous nanospheres and solid particles - A new synthetic approach

    KAUST Repository

    Ihsan, Ayesha; Katsiev, Habib; AlYami, Noktan; Anjum, Dalaver H.; Khan, Waheed S.; Hussain, Irshad

    2015-01-01

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4{dot operator}3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  12. Efficient Catalytic Conversion of Ethanol to 1-Butanol via the Guerbet Reaction over Copper- and Nickel-Doped Porous

    NARCIS (Netherlands)

    Sun, Zhuohua; Vasconcelos, Anais Couto; Bottari, Giovanni; Stuart, Marc C. A.; Bonura, Giuseppe; Cannilla, Catia; Frusteri, Francesco; Barta, Katalin

    The direct conversion of ethanol to higher value 1-butanol is a catalytic transformation of great interest in light of the expected wide availability of bioethanol originating from the fermentation of renewable resources. In this contribution we describe several novel compositions of porous metal

  13. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  14. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  15. Low Temperature Two-Steps Sintering (LTTSS) - an innovative method for consolidating porous UO2 pellets

    International Nuclear Information System (INIS)

    Sanjay Kumar, D.; Ananthasivan, K.; Senapati, Abhiram; Venkata Krishnan, R.

    2015-01-01

    Metallic uranium and its alloys are an important fuel for fast reactors. Presently, metallic uranium is being prepared using expensive fluoro-metallothermic process. Recent reports suggest that metal oxide could be reduced to metal using a novel electrochemical de-oxidation method and this could serve as attractive alternate for expensive metallothermic process. In view of which, a research program is being pursued in our Centre to develop an optimum process parameter for the scaled up preparation of metallic uranium efficiently. One of the important process parameter is the size, nature and distribution of porosity in the urania pellet. Essentially the ceramic form of the urania should encompass interconnected porosity that would allow percolation of melts into the UO 2 . However, the matrix density of the pellet should be high to ensure that it possesses good handling strength and is electrically conducting. Hence preparation of high dense porous UO 2 pellets was required. In this study, we report the preparation of porous UO 2 pellets possessing a very high matrix density by using the citrate gel-combustion method. The 'as-prepared' powders were consolidated at various compaction pressures as such and these pellets were sintered in 8 mol %Ar+H 2 gas with a flow rate of 250 mL/min at 1073 K for 30 min followed by soaking at 1473 K for 4 h with heating rate of 5 K min -1 in a molybdenum furnace. X-ray diffraction studies revealed that these pellets contained UO 2 . The morphological analysis sintered pellets was carried out by using Scanning Electron Microscope (M/s. Philips model XL 30, Netherlands). All these pellets were gold coated

  16. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed; Guillerm, Vincent; Weselinski, Lukasz Jan; Alkordi, Mohamed H.; Mohideen, Mohamed Infas Haja; Belmabkhout, Youssef

    2015-01-01

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  17. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  18. Reactor vessel using metal oxide ceramic membranes

    Science.gov (United States)

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  19. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  20. Towards the Development of Electrical Biosensors Based on Nanostructured Porous Silicon

    Science.gov (United States)

    Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso, Miguel; Gallach, Darío; López-García, Juan; Martín-Palma, Raúl J.

    2010-01-01

    The typical large specific surface area and high reactivity of nanostructured porous silicon (nanoPS) make this material very suitable for the development of sensors. Moreover, its biocompatibility and biodegradability opens the way to the development of biosensors. As such, in this work the use of nanoPS in the field of electrical biosensing is explored. More specifically, nanoPS-based devices with Al/nanoPS/Al and Au-NiCr/nanoPS/Au-NiCr structures were fabricated for the electrical detection of glucose and Escherichia Coli bacteria at different concentrations. The experimental results show that the current-voltage characteristics of these symmetric metal/nanoPS/metal structures strongly depend on the presence/absence and concentration of species immobilized on the surface.

  1. Towards the Development of Electrical Biosensors Based on Nanostructured Porous Silicon

    Directory of Open Access Journals (Sweden)

    Raúl J. Martín-Palma

    2010-01-01

    Full Text Available The typical large specific surface area and high reactivity of nanostructured porous silicon (nanoPS make this material very suitable for the development of sensors. Moreover, its biocompatibility and biodegradability opens the way to the development of biosensors. As such, in this work the use of nanoPS in the field of electrical biosensing is explored. More specifically, nanoPS-based devices with Al/nanoPS/Al and Au-NiCr/nanoPS/Au-NiCr structures were fabricated for the electrical detection of glucose and Escherichia Coli bacteria at different concentrations. The experimental results show that the current-voltage characteristics of these symmetric metal/nanoPS/metal structures strongly depend on the presence/absence and concentration of species immobilized on the surface.

  2. New Porous Material Made from Industrial and Municipal Waste for Building Application

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2014-09-01

    Full Text Available The aim of this study was to find a new method for usage of the hazardous waste coming from recycling industry. Two hazardous wastes – aluminium recycling final dross or non-metallic product (NMP and lead – silica glass (LSG were investigated. It is generally considered that NMP is a process waste and subject to disposal after residual metal has been recovered from primary dross. NMP is impurities which are removed from the molten metal in dross recycling process and it could be defined as a hazardous waste product in aluminium recycling industry. LSG comes from fluorescence lamp recycling plant and could be classified as hazardous waste due to high amount of lead in the composition and re-melting problems. The new alkali activated material, which can be defined as porous building material, was created. Composition of this material consisted of aluminium recycling waste, recycled fluorescent lamp LSG, sintered kaolin clay as well as commercially available alkali flakes (NaOH and liquid glass (Na2SiO3 + nH2O. Physical and mechanical properties of the obtained material were tested. Density of the obtained material was from (460 – 550 kg/m3 and the total porosity was from 82 % – 83 %. The compressive strength of the material was in range from 1.1 MPa to 2.3 MPa. The thermal conductivity was determined. The pore microstructure was investigated and the mineralogical composition of porous material was determined. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4330

  3. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  4. Selective formation of porous silicon

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  5. Metal oxide nanoparticle transport in porous media – an analysis about (un)certainties in environmental research

    International Nuclear Information System (INIS)

    Heidmann, I

    2013-01-01

    Research about the fate and behavior of engineered nanoparticles in the environment is despite its wide applications still in the early stages. The fast-growing area of nanoparticle research and the high level of uncertainty create a big challenge for describing clearly the recent state of the current scientific knowledge. Therefore, in this study the certain knowledge, the known uncertainties and the identified knowledge gaps concerning mobility of engineered metal oxide nanoparticles in porous media are analyzed. The mobility of nanoparticles is mainly investigated in model laboratory studies under well-defined conditions, which are often not realistic for natural systems. In these model systems, nanoparticles often retain in the pore system due to aggregation and sedimentation. However, under environmental conditions, the presence of natural organic matter may cause stabilization or disaggregation of nanoparticles and favors therefore higher mobility of nanoparticles. Additionally, potential higher mobility of particles using preferential flow paths is not considered. Knowledge of the long-term behavior of nanoparticles concerning disaggregation, dissolution or remobilization in soils under environmental conditions is scarce. Scientific uncertainty itself is rarely mentioned in the research papers. Seldom known methodically uncertainties in nanoparticle characterization are referred to. The uncertainty about the transferability of the results to environmental conditions is discussed more often. Due to the sparse studies concerning natural material or natural pore systems, certain conclusions concerning the mobility of nanoparticles in the soil environment are not possible to drawn.

  6. Thermohydraulic and thermal stress aspects of a porous blockage in an LMFBR fuel assembly

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Marr, W.W.; Helenberg, H.W.; Ariman, T.; Wilson, R.E.; Pedersen, D.R.

    1979-01-01

    The current safety scenarios of Liquid Metal Fast Breeder Reactors (LMFBR) under local fault propagation include the study of a hypothetical accident initiated by the formation of an external debris porous blockage in a fuel subassembly. In this preliminary experimental and analytical investigation, a non-heat-generating porous blockage was postulated to cover 18 flow channels of a 37 pin Fast Test Reactor (FTR) type fuel subassembly. The axial extent of the blockage is 50 mm. The blockage material is stainless steel (SS 316) with 30 percent average porosity (percent void volume). The blockage and the pins were modeled with a finite element technique and the thermal field in the blockage was predicted. This thermal field was utilized to do a planar thermal stress analysis of the postulated blockage. To verify the analytical model and also to better understand the thermal-hydraulics of such a porous blockage out-of-pile tests were conducted in a sodium loop. Data from the out-of-pile tests was utilized to calibrate and improve the analytical model

  7. Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor

    Science.gov (United States)

    Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John

    2016-11-01

    In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.

  8. Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil

    International Nuclear Information System (INIS)

    Quan Cui; Li Aimin; Gao Ningbo

    2010-01-01

    The possibility and feasibility of using pyrolysis oil from printed circuit board (PCB) waste as a precursor for advanced carbonaceous materials is presented. The PCB waste was first pyrolyzed in a laboratory scale fixed bed reactor at 600 deg. C to prepare pyrolysis oil. The analysis of pyrolysis oil by gas chromatography-mass spectroscopy indicated that it contained a very high proportion of phenol and phenol derivatives. It was then polymerized in formaldehyde solution to synthesize pyrolysis oil-based resin which was used as a precursor to prepare carbon nanotubes (CNTs) and porous carbons. Scanning electron microscopy and transmission microscopy investigation showed that the resulting CNTs had hollow cores with outer diameter of ∼338 nm and wall thickness of ∼86 nm and most of them were filled with metal nanoparticles or nanorods. X-ray diffraction reveals that CNTs have an amorphous structure. Nitrogen adsorption isotherm analysis indicated the prepared porous carbons had a Brunauer-Emmett-Teller surface area of 1214 m 2 /g. The mechanism of the formation of the CNTs and porous carbons was discussed.

  9. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  10. Tracer transfer in consolidated porous medium and fractured porous medium: experimentations and modelling

    International Nuclear Information System (INIS)

    Dalla Costa, C.

    2007-07-01

    We try to identify and model physical and chemical mechanisms governing the water flow and the solute transport in fractured consolidated porous medium. An original experimental device was built. The 'cube' consists of an idealized fractured medium reproduced by piling up consolidated porous cubes of 5 cm edge. Meanwhile, columns of the homogeneous consolidated porous medium are studied. The same anionic tracing technique is used in both cases. Using a system analysis approach, we inject concentration pulses in the device to obtain breakthrough curves. After identifying the mass balance and the residence time, we fit the CD and the MIM models to the experimental data. The MIM model is able to reproduce experimental curves of the homogeneous consolidated porous medium better than the CD model. The mobile water fraction is in accordance with the porous medium geometry. The study of the flow rate influence highlights an interference dispersion regime. It was not possible to highlight the observation length influence in this case. On the contrary, we highlight the effect of the observation scale on the fractured and porous medium, comparing the results obtained on a small 'cube' and a big 'cube'. The CD model is not satisfactory in this case. Even if the MIM model can fit the experimental breakthrough curves, it was not possible to obtain unique parameters for the set of experiments. (author)

  11. Gas-solid heat exchange in a fibrous metallic material measured by a heat regenerator technique

    NARCIS (Netherlands)

    Golombok, M.; Jariwala, H.; Shirvill, C.

    1990-01-01

    The convective heat transfer properties of a porous metallic fibre material used in gas surface combustion burners are studied. The important parameter governing the heat transfer between hot gas and metal fibre—the heat transfer coefficient—is measured using a non-steady-state method based on

  12. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  13. A new numerical modelling method for deformation behaviour of metallic porous materials using X-ray computed microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Doroszko, M., E-mail: m.doroszko@pb.edu.pl; Seweryn, A., E-mail: a.seweryn@pb.edu.pl

    2017-03-24

    Microtomographic devices have limited imaging accuracy and are often insufficient for proper mapping of small details of real objects (e.g. elements of material mesostructures). This paper describes a new method developed to compensate the effect of X-ray computed microtomography (micro-CT) inaccuracy in numerical modelling of the deformation process of porous sintered 316 L steel. The method involves modification of microtomographic images where the pore shapes are separated. The modification consists of the reconstruction of fissures and small pores omitted by micro-CT scanning due to the limited accuracy of the measuring device. It enables proper modelling of the tensile deformation process of porous materials. In addition, the proposed approach is compared to methods described in the available literature. As a result of numerical calculations, stress and strain distributions were obtained in deformed sintered 316 L steel. Based on the results, macroscopic stress-strain curves were received. Maximum principal stress distributions obtained by the proposed calculation model, indicated specific locations, where the stress reached a critical value, and fracture initiation occurred. These are bridges with small cross sections and notches in the shape of pores. Based on calculation results, the influence of the deformation mechanism of the material porous mesostructures on their properties at the macroscale is described.

  14. A new numerical modelling method for deformation behaviour of metallic porous materials using X-ray computed microtomography

    International Nuclear Information System (INIS)

    Doroszko, M.; Seweryn, A.

    2017-01-01

    Microtomographic devices have limited imaging accuracy and are often insufficient for proper mapping of small details of real objects (e.g. elements of material mesostructures). This paper describes a new method developed to compensate the effect of X-ray computed microtomography (micro-CT) inaccuracy in numerical modelling of the deformation process of porous sintered 316 L steel. The method involves modification of microtomographic images where the pore shapes are separated. The modification consists of the reconstruction of fissures and small pores omitted by micro-CT scanning due to the limited accuracy of the measuring device. It enables proper modelling of the tensile deformation process of porous materials. In addition, the proposed approach is compared to methods described in the available literature. As a result of numerical calculations, stress and strain distributions were obtained in deformed sintered 316 L steel. Based on the results, macroscopic stress-strain curves were received. Maximum principal stress distributions obtained by the proposed calculation model, indicated specific locations, where the stress reached a critical value, and fracture initiation occurred. These are bridges with small cross sections and notches in the shape of pores. Based on calculation results, the influence of the deformation mechanism of the material porous mesostructures on their properties at the macroscale is described.

  15. Superior performance of nanoscaled Fe3O4 as anode material promoted by mosaicking into porous carbon framework

    Science.gov (United States)

    Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang

    2014-01-01

    A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.

  16. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  17. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  18. Controllable synthesis of cobalt oxide nanoflakes on three-dimensional porous cobalt networks as high-performance cathode for alkaline hybrid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua, E-mail: chenminghuahrb@126.com [Key Laboratory of Engineering Dielectric and Applications, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Jiawei; Qi, Meili; Yin, Jinghua; Chen, Qingguo [Key Laboratory of Engineering Dielectric and Applications, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China)

    2016-02-15

    Highlights: • Construct self-supported porous Co networks. • Porous Co/CoO composite films show high capacity and good cycling life. • Porous conductive metal network is favorable for fast ion/electron transfer. - Abstract: Herein we report porous three-dimensional cobalt networks supported CoO nanoflakes by the combination of successive electro-deposition methods. The electrodeposited Co networks have average large pores of ∼5 μm and all the branches are composed of interconnected nanoparticles. CoO nanoflakes with thickness of ∼15 nm are uniformly coated on the Co networks forming self-supported Co/CoO composite films. The as-prepared Co/CoO composite films possess combined properties of porous structure and strong mechanical stability. As cathode for alkaline hybrid batteries, the Co/CoO composite films exhibit good electrochemical performances with high capacity of 83.5 mAh g{sup −1} at 1 A g{sup −1} and stable high-rate cycling life (65 mAh g{sup −1} at 10 A g{sup −1} after 15,000 cycles). The hierarchical porous architecture provides positive roles in the enhancement of electrochemical properties, including fast electronic transportation path, short diffusion of ions and high contact area between the active material and the electrolyte.

  19. Book Review [Surfaces of Nanoparticles and Porous Materials. Edited by James A. Schwarz and Cristian I. Contescu. 1 999. Marcel Dekker, New York, USA. ISBN: 0824719336

    International Nuclear Information System (INIS)

    Gonzalez, Richard D

    1999-01-01

    The volume is organized into three sections. The first section deals with the preparation, characterization and transport properties of this unique class of materials. A total of twelve contributions are included in this section, ten of which are full reviews and two are essentially short papers. The topics include: the synthesis of polysilazane coatings on the surface of silica gel; preparation of molecular sieves by the pillaring of synthetic clays; the acid/base behavior of surfaces of porous materials; electro-optical spectroscopy of colloid systems; NMR studies of colloidal oxides; polymer surface dynamics via contact angle measurements; collagen fibers; the role of diffusion on adsorption on oxide surfaces; transport processes in microemulsions; electrokinetic phenomena in porous media, and structural effects on diffusivity within colloidal zirconia. The remaining two sections deal with the fundamental and practical utilization of nanostructured materials in gaseous and liquid environments. The second section addresses the former case. A total of seven well documented contributions are included in this section. The papers address studies in diverse areas: energetically heterogeneous surfaces as studied using experimental adsorption isotherms; computer simulations of adsorbed surface layers; the effect of surface heterogeneity on adsorption equilibria and kinetics; single and multicomponent adsorption; surface properties of modified porous silicas; heats of adsorption of pure gases; and nanodimensional magnetic assembly of confined oxygen. The final section includes a total of ten reviews that address adsorption from the liquid phase. The following topics are covered: surface chemistry of activated carbon; charge regulation at the surface of porous solids; surface ionization and complexation; ionic adsorbates on hydrophobic surfaces; adsorption of metals on humic acid surfaces; hydrated metal oxides as adsorbents for heavy metals; adsorption of ions on alumina

  20. Microstructural effects on the overall poroelastic properties of saturated porous media

    International Nuclear Information System (INIS)

    Bouhlel, M; Jamei, M; Geindreau, C

    2010-01-01

    At the macroscopic scale, the quasi-static deformation of an elastic porous medium saturated by an incompressible Newtonian fluid is described by the well-known Biot's model, which involves four effective parameters. In this work, the three effective poroelastic properties and the permeability of two periodic microstructures of saturated cohesive granular media, i.e. simple cubic (SC) and body-centered cubic (BCC) arrays of overlapping spheres, are computed by solving, over the representative elementary volume, boundary-value problems arising from the homogenization process. The influence of microstructure properties, i.e. solid volume fraction, arrangement of spheres, number of contacts as well as the intrinsic properties of the solid phase on the overall properties, is highlighted. Numerical results are then compared with rigorous bounds, self-consistent estimations, exact expansions and experimental results on ceramics and metals available in the literature. Finally, the capability of the obtained results on such periodic microstructures to describe the poroelastic properties of real porous media is discussed

  1. Metrology of nanosize biopowders using porous silicon surface

    International Nuclear Information System (INIS)

    Zhuravel', L.V.; Latukhina, N.V.; Pisareva, E.V.; Vlasov, M.Yu.; Volkov, A.V.; Volodkin, B.O.

    2008-01-01

    Powders of hydroxyapatite deposited on porous silicon surface were investigated by TEM and STM methods. Thickness of porous lay was 1-100 micrometers; porous diameter was 0.01-10 micrometers. Images of porous silicon surface with deposited particles give possibility to estimate particles size and induce that only proportionate porous diameter particles have good adhesion to porous silicon surface.

  2. The colloid hematite particle migration through the unsaturated porous bed at the presence of biosurfactants.

    Science.gov (United States)

    Pawlowska, Agnieszka; Sznajder, Izabela; Sadowski, Zygmunt

    2017-07-01

    Colloidal particles have an ability to sorb heavy metals, metalloids, and organic compounds (e.g. biosurfactants) present in soil and groundwater. The pH and ionic strength changes may promote release of such particles causing potential contaminant transport. Therefore, it is very important to know how a colloid particle-mineral particle and colloid-mineral-biosurfactant system behaves in the natural environment. They can have negative impact on the environment and human health. This study highlighted the influence of biosurfactants produced by Pseudomonas aeruginosa on the transport of colloidal hematite (α-Fe 2 O 3 ) through porous bed (materials collected from the Szklary and Zloty Stok solid waste heaps from Lower Silesia, Poland). Experiments were conducted using column set in two variants: colloid solution with porous bed and porous bed with adsorbed biosurfactants, in the ionic strengths of 5 × 10 -4 and 5 × 10 -3  M KCl. The zeta potential of mineral materials and colloidal hematite, before and after adsorption of biosurfactant, was determined. Obtained results showed that reduction in ionic strength facilitates colloidal hematite transport through the porous bed. The mobility of colloidal hematite was higher when the rhamnolipid adsorbed on the surface of mineral grain.

  3. Noise Reduction Potential of Cellular Metals

    Directory of Open Access Journals (Sweden)

    Björn Hinze

    2012-06-01

    Full Text Available Rising numbers of flights and aircrafts cause increasing aircraft noise, resulting in the development of various approaches to change this trend. One approach is the application of metallic liners in the hot gas path of aero-engines. At temperatures of up to 600 °C only metallic or ceramic structures can be used. Due to fatigue loading and the notch effect of the pores, mechanical properties of porous metals are superior to the ones of ceramic structures. Consequently, cellular metals like metallic foams, sintered metals, or sintered metal felts are most promising materials. However, acoustic absorption depends highly on pore morphology and porosity. Therefore, both parameters must be characterized precisely to analyze the correlation between morphology and noise reduction performance. The objective of this study is to analyze the relationship between pore morphology and acoustic absorption performance. The absorber materials are characterized using image processing based on two dimensional microscopy images. The sound absorption properties are measured using an impedance tube. Finally, the correlation of acoustic behavior, pore morphology, and porosity is outlined.

  4. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  5. Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Zhixin Tai

    2017-07-01

    Full Text Available Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8B pencil. Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries (KIBs, significantly better than in lithium-ion batteries (LIBs, with capacity retention of 66% for the KIB vs. 28% for the LIB from 0.1 to 0.5 A g−1. It also shows a high reversible capacity of ∼230 mAh g−1 at 0.2 A g−1, 75% capacity retention over 350 cycles at 0.4 A g−1and the highest rate performance (based on the total electrode weight among graphite electrodes for K+ storage reported so far. Keywords: Current-collector-free, Flexible pencil-trace electrode, Potassium-ion battery, Lithium-ion battery, Layer-by-layer interconnected architecture

  6. Performance Evaluation and Field Application of Porous Vegetation Concrete Made with By-Product Materials for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-03-01

    Full Text Available The purpose of this study was to evaluate the performance of porous vegetation concrete block made from blast furnace slag cement containing industrial by-products such as blast furnace slag aggregate and powder. The blocks were tested for void ratio, compressive strength and freeze-thaw resistance to determine the optimal mixing ratio for the porous vegetation block. An economic analysis of the mixing ratio showed that the economic efficiency increased when blast furnace slag aggregate and cement were used. Porous vegetation concrete blocks for river applications were designed and produced. Hydraulic safety, heavy metal elution and vegetation tests were completed after the blocks were applied in the field. The measured tractive force ranged between 7.0 kg/m2 for fascine revetment (vegetation revetment and 16.0 kg/m2 for stone pitching (hard revetment, which ensured sufficient hydraulic stability in the field. Plant growth was measured after the porous vegetation concrete block was placed in the field. Seeds began to sprout one week after seeding; after six weeks, the plant length exceeded 300 mm. The average coverage ratio reached as high as 90% after six weeks of vegetation. These results clearly indicated that the porous vegetation concrete block was suitable for environmental restoration projects.

  7. A biosystem for removal of metal ions from water

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  8. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    Science.gov (United States)

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  9. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    Science.gov (United States)

    Willit, James L.

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  10. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    Science.gov (United States)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-01-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283

  11. Biogenic Cracks in Porous Rock

    Science.gov (United States)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  12. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants.

    Science.gov (United States)

    Moiduddin, Khaja

    2018-02-01

    The traditional methods of metallic bone implants are often dense and suffer from adverse reactions, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. The objective of this study is to evaluate the customized porous cranial implant with mechanical properties closer to that of bone and to improve the aesthetic outcome in cranial surgery with precision fitting for a better quality of life. Two custom cranial implants (bulk and porous) are digitally designed based on the Digital Imaging and Communications in Medicine files and fabricated using additive manufacturing. Initially, the defective skull model and the implant were fabricated using fused deposition modeling for the purpose of dimensional validation. Subsequently, the implant was fabricated using titanium alloy (Ti6Al4V extra low interstitial) by electron beam melting technology. The electron beam melting-produced body diagonal node structure incorporated in cranial implant was evaluated based on its mechanical strength and structural characterization. The results show that the electron beam melting-produced porous cranial implants provide the necessary framework for the bone cells to grow into the pores and mimic the architecture and mechanical properties closer to the region of implantation. Scanning electron microscope and micro-computed tomography scanning confirm that the produced porous implants have a highly regular pattern of porous structure with a fully interconnected network channel without any internal defect and voids. The physical properties of the titanium porous structure, containing the compressive strength of 61.5 MPa and modulus of elasticity being 1.20 GPa, represent a promising means of reducing stiffness and stress-shielding effect on the surrounding bone. This study reveals that the use of porous structure in cranial reconstruction satisfies the need of lighter implants with an adequate mechanical strength and structural characteristics

  13. Hierarchically porous MgCo2O4 nanochain networks: template-free synthesis and catalytic application

    Science.gov (United States)

    Guan, Xiangfeng; Yu, Yunlong; Li, Xiaoyan; Chen, Dagui; Luo, Peihui; Zhang, Yu; Guo, Shanxin

    2018-01-01

    In this work, hierarchically porous MgCo2O4 nanochain networks were successfully synthesized by a novel template-free method realized via a facile solvothermal synthesis followed by a heat treatment. The morphologies of MgCo2O4 precursor could be adjusted from nanosheets to nanobelts and finally to interwoven nanowires, depending on the volume ratio of diethylene glycol to deionized water in the solution. After calcination, the interwoven precursor nanowires were transformed to hierarchical MgCo2O4 nanochain networks with marco-/meso-porosity, which are composed of 10-20 nm nanoparticles connected one by one. Moreover, the relative formation mechanism of the MgCo2O4 nanochain networks was discussed. More importantly, when evaluated as catalytic additive for AP thermal decomposition, the MgCo2O4 nanochain networks show excellent accelerating effect. It is benefited from the unique hierarchically porous network structure and multicomponent effect, which effectively accelerates ammonia oxidation and {{{{ClO}}}4}- species dissociation. This approach opens the way to design other hierarchically porous multicomponent metal oxides.

  14. Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow

    NARCIS (Netherlands)

    Vural - Gursel, Dr. Iris; Aldiansyah, Ferry; Wang, Qi; Noël, Timothy; Hessel, Volker

    2015-01-01

    Increasing usage of catalytic chemistry calls for efficient removal of metal traces. This paper describes the development and optimization of a scavenger-based extraction in flow to remove metal catalysts. It enables liquid-liquid extraction with slug flow and phase separation with a porous

  15. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  16. Positronium chemistry in porous materials

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Ito, K.; Oka, T.; Hirata, K.

    2007-01-01

    Porous materials have fascinated positron and positronium chemists for over decades. In the early 1970s it was already known that ortho-positronium (o-Ps) exhibits characteristic long lifetimes in silica gels, porous glass and zeolites. Since then, our understanding of Ps formation, diffusion and annihilation has been drastically deepened. Ps is now well recognized as a powerful porosimetric and chemical probe to study the average pore size, pore size distribution, pore connectivity and surface properties of various porous materials including thin films. In this paper, developments of Ps chemistry in porous materials undertaken in the past some 40 yr are surveyed and problems to be addressed in future are briefly discussed

  17. Magnetic properties of iron oxide photolytically produced from Fe(CO)5 impregnated porous glass

    Science.gov (United States)

    Borelli, N. F.; Morse, D. L.; Schreurs, J. W. H.

    1983-06-01

    This article discusses the magnetic properties observed in porous glasses impregnated with metal carbonyls after exposure to light. In the photolyzed and consolidated glasses both superparamagnetic and single domain ferrimagnetic particles were found to be present, with the single domain particles having an exceedingly high coercive force. The concentration ratio between superparamagnetic and single domain particles depends strongly on temperature. An analysis of the observed phenomena is given.

  18. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    Energy Technology Data Exchange (ETDEWEB)

    Sirirak, Reungruthai [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarakonsri, Thapanee, E-mail: tsarakonsri@gmail.com [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Medhesuwakul, Min [Plasma & Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-11-30

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  19. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    International Nuclear Information System (INIS)

    Sirirak, Reungruthai; Sarakonsri, Thapanee; Medhesuwakul, Min

    2015-01-01

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  20. Process of preparing tritiated porous silicon

    Science.gov (United States)

    Tam, Shiu-Wing

    1997-01-01

    A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

  1. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    International Nuclear Information System (INIS)

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-01-01

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO 2 and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 deg. C for 2-6 h by changing the SiO 2 /Al 2 O 3 , H 2 O/Na 2 O and Na 2 O/SiO 2 molar ratios of precursors in the two-step process. The surface area and NH 4 + -cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m 2 /g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m 2 /g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of ∼3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously. - Graphical Abstract: Novel Na-X zeolite/porous carbon composite.

  2. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  3. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    Directory of Open Access Journals (Sweden)

    Waldemar Hoffmann

    2014-06-01

    Full Text Available While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used

  4. Synthesis of metal-adeninate frameworks with high separation capacity on C{sub 2}/C{sub 1} hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-Ping, E-mail: hyp041@163.com [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Nan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Hunan GuangYi Experimental Middle School, Changsha, Hunan 410014 (China); Tan, Yan-Xi; Wang, Fei; Zhang, Jian [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-06-15

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m{sup 2}/g and exhibits high separation capacity on C{sub 2}/C{sub 1} hydrocarbons. - Graphical abstract: The assembly between isophthalic acid, adenine ligands and Cd{sup 2+} ions leads to an anionic porous metal-organic frameworks, which shows permanent porosity and exhibits high C{sub 2}/C{sub 1} hydrocarbons separation capacity. Display Omitted.

  5. Dewetting behavior of Au films on porous substrates

    International Nuclear Information System (INIS)

    Zhao Xiaowei; Lee, Ung-Ju; Lee, Kun-Hong

    2010-01-01

    Understanding the stability of thin films and their spontaneous pattern formation upon dewetting is essential to a host of physical phenomena. In this paper, we study the dewetting phenomena of Au thin films deposited on anodic aluminum oxide (AAO) membranes to analyze the stability of the metal film on porous substrates. AAO membranes, as-sputtered and dewetted Au films are all characterized by scanning electronic microscopy and X-ray diffraction. We found that both the roughness of AAO surface and modification of AAO pores exhibit remarkable influences on the dewetting behavior of Au films. The observed dewetting phenomena are explained from an energetic point of view since dewetting is a process of minimization of the system free energy.

  6. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2015-07-01

    Full Text Available Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane.

  7. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane.

    Science.gov (United States)

    Umegaki, Tetsuo; Xu, Qiang; Kojima, Yoshiyuki

    2015-07-21

    Hydrogen storage is still one of the most significant issues hindering the development of a "hydrogen energy economy". Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane.

  8. Disulfide polymer grafted porous carbon composites for heavy metal removal from stormwater runoff

    DEFF Research Database (Denmark)

    Ko, Dongah; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2018-01-01

    The emerging concern of heavy metal pollution derived from stormwater runoff has triggered a demand for effective heavy metal sorbents. To be an effective sorbent, high affinity along with rapid sorption kinetics for environmental relevant concentrations of heavy metals is important. Herein, we...... have introduced a new composite suitable for trace metal concentration removal, which consists of cheap and common granular activated carbon covered with polymers containing soft bases, thiols, through acyl chlorination (DiS-AC). Material characterization demonstrated that the polymer was successfully...

  9. The development of a high-throughput gradient array apparatus for the study of porous polymer networks.

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Partha (North Dakota State University, Fargo, ND); Lee, Elizabeth (North Dakota State University, Fargo, ND); Chisholm, Bret J. (North Dakota State University, Fargo, ND); Dirk, Shawn M.; Weisz, Michael (North Dakota State University, Fargo, ND); Bahr, James (North Dakota State University, Fargo, ND); Schiele, Kris (North Dakota State University, Fargo, ND)

    2010-01-01

    A gradient array apparatus was constructed for the study of porous polymers produced using the process of chemically-induced phase separation (CIPS). The apparatus consisted of a 60 element, two-dimensional array in which a temperature gradient was placed in the y-direction and composition was varied in the x-direction. The apparatus allowed for changes in opacity of blends to be monitored as a function of temperature and cure time by taking images of the array with time. The apparatus was validated by dispense a single blend composition into all 60 wells of the array and curing them for 24 hours and doing the experiment in triplicate. Variations in micron scale phase separation were readily observed as a function of both curing time and temperature and there was very good well-to-well consistency as well as trial-to-trial consistency. Poragen of samples varying with respect to cure temperature was removed and SEM images were obtained. The results obtained showed that cure temperature had a dramatic affect on sample morphology, and combining data obtained from visual observations made during the curing process with SEM data can enable a much better understanding of the CIPS process and provide predictive capability through the relatively facile generation of composition-process-morphology relationships. Data quality could be greatly enhanced by making further improvements in the apparatus. The primary improvements contemplated include the use of a more uniform light source, an optical table, and a CCD camera with data analysis software. These improvements would enable quantification of the amount of scattered light generated from individual elements as a function of cure time. In addition to the gradient array development, porous composites were produced by incorporating metal particles into a blend of poragen, epoxy resin, and crosslinker. The variables involved in the experiment were metal particle composition, primary metal particle size, metal concentration

  10. Porous substrates filled with nanomaterials

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  11. Metal oxide nanostructures and their gas sensing properties: a review.

    Science.gov (United States)

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  12. Fabricating porous silicon carbide

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  13. X-ray and scanning electron microscopic investigation of porous silicon and silicon epitaxial layers grown on porous silicon

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Pawlowska, M.; Nossarzewska-Orlowska, E.; Brzozowski, A.; Wieteska, K.; Graeff, W.

    1998-01-01

    The 1 to 5 μm thick layers of porous silicon and epitaxial layers grown on porous silicon were studied by means of X-ray diffraction methods, realised with a wide use of synchrotron source and scanning microscopy. The results of x-ray investigation pointed the difference of lateral periodicity between the porous layer and the substrate. It was also found that the deposition of epitaxial layer considerably reduced the coherence of porous fragments. A number of interface phenomena was also observed in section and plane wave topographs. The scanning electron microscopic investigation of cleavage faces enabled direct evaluation of porous layer thickness and revealed some details of their morphology. The scanning observation of etched surfaces of epitaxial layers deposited on porous silicon revealed dislocations and other defects not reasonable in the X-ray topographs. (author)

  14. Creep behaviour of porous metal supports for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Sudireddy, Bhaskar Reddy

    2014-01-01

    The creep behaviour of porous ironechromium alloy used as solid oxide fuel cell support was investigated, and the creep parameters are compared with those of dense strips of similar composition under different testing conditions. The creep parameters were determined using a thermo......-mechanical analyser with applied stresses in the range from 1 to 15 MPa and temperatures between 650 and 800 _C. The GibsoneAshby and Mueller models developed for uniaxial creep of open-cell foams were used to analyse the results. The influence of scale formation on creep behaviour was assessed by comparing the creep...... data for the samples tested in reducing and oxidising atmospheres. The influence of preoxidation on creep behaviour was also investigated. In-situ oxidation during creep experiments increases the strain rate while pre-oxidation of samples reduces it. Debonding of scales at high stress regime plays...

  15. Porous Metal Filters for Gas and Liquid Applications in the Nuclear Industry

    International Nuclear Information System (INIS)

    Kenneth, Rubow

    2009-01-01

    Sintered metal media are ideally suited for use in the most demanding industrial applications where long life is required and often other media are not cost-effective solution. As examples, filtration technology utilizing sintered metal media provides excellent performance in numerous liquid/solids and gas/solid separation applications found in the handling and processing of fluids containing radioactive materials. Many types of filter media, ranging from single use (disposable) to semi-permanent, are utilized today for separation of particulate matter. However, semi-permanent media are usually cleanable, either on or off-line, and are intended for sustainable, often multi-year, operating life in harsh environments. These harsh environments, which may involve corrosive fluids, high temperatures, high pressures or pressure spikes, often requiring continuous filtration service, are ideally suited for all-metal filtration systems employing semi-permanent sintered metal media. Sintered metal media, usually fabricated into tubular metal elements, have proven high particle removal efficiency and demonstrated reliability that uniquely afford excellent performance for demanding liquid/solids and gas/solids separation processes. The filter element and, in certain cases, the entire filter are weldable; therefore, the inherent sealing eliminates the need for potentially problematic seals. These media provide a positive barrier to ensure particulate removal to protect downstream equipment, for product separation, and/or to meet health, safety and environmental regulations. Typical applications for sintered metal media include: 1) gas and liquid filter systems used in various nuclear and radioactive waste processing applications, 2) an all-metal High Efficiency Particulate Air (HEPA) filter developed under Department of Energy (DOE) funding as an alternative to traditional HEPA filters fabricated with conventional glass fibers used on High Level Waste (HLW) tank ventilation

  16. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Method of making sulfur-resistant composite metal membranes

    Science.gov (United States)

    Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  18. Porous sulfated metal oxide SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} as an anode material for Li-ion batteries with enhanced electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Lv, Qianqian; Huang, Xiaoxiong; Tan, Yueyue; Tang, Bohejin, E-mail: tangbohejin@sues.edu.cn [Shanghai University of Engineering Science, College of Chemistry and Chemical Engineering (China)

    2017-01-15

    Sulfated metal oxide SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} was prepared by a novel facile sol–gel method combined with a subsequent heating treatment process. The as-synthesized products were analyzed by XRD, FTIR, and FE-SEM. Compared with the unsulfated Fe{sub 2}O{sub 3}, the agglomeration of particles has been alleviated after the incorporation of SO{sub 4}{sup 2−}. Interestingly, the primary particle size of the SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} (about 5 nm) is similar to its normal counterparts even after the calcination treatment. More importantly, SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} exhibits a porous architecture, which is an intriguing feature for electrode materials. When used as anode materials in Li-ion batteries, SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} delivered a higher reversible discharge capacity (992 mAh g{sup −1}), with smaller charge transfer resistance, excellent rate performance, and better cycling stability than normal Fe{sub 2}O{sub 3}. We believed that the presence of SO{sub 4}{sup 2−} and porous architecture should be responsible for the enhanced electrochemical performance, which could provide more continuous and accessible conductive paths for Li{sup +} and electrons.

  19. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  20. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2016-01-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  1. Microwave-Assisted Conversion of Levulinic Acid to γ-Valerolactone Using Low-Loaded Supported Iron Oxide Nanoparticles on Porous Silicates

    Directory of Open Access Journals (Sweden)

    Alfonso Yepez

    2015-09-01

    Full Text Available The microwave-assisted conversion of levulinic acid (LA has been studied using low-loaded supported Fe-based catalysts on porous silicates. A very simple, productive, and highly reproducible continuous flow method has been used for the homogeneous deposition of metal oxide nanoparticles on the silicate supports. Formic acid was used as a hydrogen donating agent for the hydrogenation of LA to effectively replace high pressure H2 mostly reported for LA conversion. Moderate LA conversion was achieved in the case of non-noble metal-based iron oxide catalysts, with a significant potential for further improvements to compete with noble metal-based catalysts.

  2. USEBILITY OF HYDROGELS IN ADSORPTION TECHNOLOGHY FOR REMOVAL OF HEAVY METAL AND DYE

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  3. Prefunctionalized Porous Organic Polymers: Effective Supports of Surface Palladium Nanoparticles for the Enhancement of Catalytic Performances in Dehalogenation.

    Science.gov (United States)

    Zhong, Hong; Liu, Caiping; Zhou, Hanghui; Wang, Yangxin; Wang, Ruihu

    2016-08-22

    Three porous organic polymers (POPs) containing H, COOMe, and COO(-) groups at 2,6-bis(1,2,3-triazol-4-yl)pyridyl (BTP) units (i.e., POP-1, POP-2, and POP-3, respectively) were prepared for the immobilization of metal nanoparticles (NPs). The ultrafine palladium NPs are uniformly encapsulated in the interior pores of POP-1, whereas uniform- and dual-distributed palladium NPs are located on the external surface of POP-2 and POP-3, respectively. The presence of carboxylate groups not only endows POP-3 an outstanding dispersibility in H2 O/EtOH, but also enables the palladium NPs at the surface to show the highest catalytic activity, stability, and recyclability in dehalogenation reactions of chlorobenzene at 25 °C. The palladium NPs on the external surface are effectively stabilized by the functionalized POPs containing BTP units and carboxylate groups, which provides a new insight for highly efficient catalytic systems based on surface metal NPs of porous materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of porous material heating on the drag force of a cylinder with gas-permeable porous inserts in a supersonic flow

    Science.gov (United States)

    Mironov, S. G.; Poplavskaya, T. V.; Kirilovskiy, S. V.

    2017-10-01

    The paper presents the results of an experimental investigation of supersonic flow around a solid cylinder with a gas-permeable porous insert on its front end and of supersonic flow around a hollow cylinder with internal porous inserts in the presence of heating of the porous material. The experiments were performed in a supersonic wind tunnel with Mach number 4.85 and 7 with porous inserts of cellular-porous nickel. The results of measurements on the filtration stand of the air filtration rate through the cellular-porous nickel when it is heated are also shown. For a number of experiments, numerical modeling based on the skeletal model of a cellular-porous material was carried out.

  5. Linking experiment and theory for three-dimensional networked binary metal nanoparticle–triblock terpolymer superstructures

    KAUST Repository

    Li, Zihui; Hur, Kahyun; Sai, Hiroaki; Higuchi, Takeshi; Takahara, Atsushi; Jinnai, Hiroshi; Gruner, Sol M.; Wiesner, Ulrich

    2014-01-01

    the intimate coupling of synthesis, in-depth electron tomographic characterization and theory enables exquisite control of superstructure in highly ordered porous three-dimensional continuous networks from single and binary mixtures of metal nanoparticles

  6. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions

    Science.gov (United States)

    Feng, Xiaogeng; Bo, Xiangjie; Guo, Liping

    2018-06-01

    Rational synthesis and development of earth-abundant materials with efficient electrocatalytic activity and stability for water splitting is a critical but challenging step for sustainable energy application. Herein, a family of bimetal (CoFe, CoCu, CoNi) embedded nitrogen-doped carbon frameworks is developed through a facile and simple thermal conversion strategy of metal-doped zeolitic imidazolate frameworks. Thanks to collaborative superiorities of abundant M-N-C species, modulation action of secondary metal, cobalt-based electroactive phases, template effect of MOFs and unique porous structure, bimetal embedded nitrogen-doped carbon frameworks materials manifest good oxygen and hydrogen evolution catalytic activity. Especially, after modulating the species and molar ratio of metal sources, optimal Co0.75Fe0.25 nitrogen-doped carbon framework catalyst just requires a low overpotential of 303 mV to achieve 10 mA cm-2 with a low Tafel slope (39.49 mV dec-1) for oxygen evolution reaction, which even surpasses that of commercial RuO2. In addition, the optimal catalyst can function as an efficient bifunctional electrocatalyst for overall water splitting with satisfying activity and stability. This development offers an attractive direction for the rational design and fabrication of porous carbon materials for electrochemical energy applications.

  7. Porous media geometry and transports

    CERN Document Server

    Adler, Pierre

    1992-01-01

    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  8. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-01-01

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  9. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2015-04-21

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  10. Robust C–C bonded porous networks with chemically designed functionalities for improved CO2 capture from flue gas

    Directory of Open Access Journals (Sweden)

    Damien Thirion

    2016-10-01

    Full Text Available Effective carbon dioxide (CO2 capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon–carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile–aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C.

  11. Multi-Scale Modification of Metallic Implants With Pore Gradients, Polyelectrolytes and Their Indirect Monitoring In vivo

    OpenAIRE

    Vrana, Nihal E.; Dupret-Bories, Agnes; Chaubaroux, Christophe; Rieger, Elisabeth; Debry, Christian; Vautier, Dominique; Metz-Boutigue, Marie-Helene; Lavalle, Philippe

    2013-01-01

    Metallic implants, especially titanium implants, are widely used in clinical applications. Tissue in-growth and integration to these implants in the tissues are important parameters for successful clinical outcomes. In order to improve tissue integration, porous metallic implants have being developed. Open porosity of metallic foams is very advantageous, since the pore areas can be functionalized without compromising the mechanical properties of the whole structure. Here we describe such modi...

  12. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  13. Photonic Crystal Sensors Based on Porous Silicon

    Science.gov (United States)

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  14. Coupling Metallic Nanostructures to Thermally Responsive Polymers Allows the Development of Intelligent Responsive Membranes

    Directory of Open Access Journals (Sweden)

    J. Rubén Morones-Ramírez

    2014-01-01

    Full Text Available Development of porous membranes capable of controlling flow or changing their permeability to specific chemical entities, in response to small changes in environmental stimuli, is an area of appealing research, since these membranes present a wide variety of applications. The synthesis of these membranes has been mainly approached through grafting of environmentally responsive polymers to the surface walls of polymeric porous membranes. This synergizes the chemical stability and mechanical strength of the polymer membrane with the fast response times of the bonded polymer chains. Therefore, different composite membranes capable of changing their effective pore size with environmental triggers have been developed. A recent interest has been the development of porous membranes responsive to light, since these can achieve rapid, remote, noninvasive, and localized flow control. This work describes the synthesis pathway to construct intelligent optothermally responsive membranes. The method followed involved the grafting of optothermally responsive polymer-metal nanoparticle nanocomposites to polycarbonate track-etched porous membranes (PCTEPMs. The nanoparticles coupled to the polymer grafts serve as the optothermal energy converters to achieve optical switching of the pores. The results of the paper show that grafting of the polymer and in situ synthesis of the metallic particles can be easily achieved. In addition, the composite membranes allow fast and reversible switching of the pores using both light and heat permitting control of fluid flow.

  15. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    Science.gov (United States)

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2017-06-01

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R

  16. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    Tsujimoto, K; Hirai, Y; Sugano, K; Tsuchiya, T; Tabata, O; Ban, K; Mizutani, N

    2013-01-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN 6 ), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  17. Highly porous ZnS microspheres for superior photoactivity after Au and Pt deposition and thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Shilpa; Pal, Bonamali, E-mail: bpal@thapar.edu

    2013-11-15

    Graphical abstract: Highly porous ZnS microsphere of size 2–5 μm having large surface area ca. 173.14 m{sup 2} g{sup −1} exhibits superior photocatalytic activity for the oxidation of 4-nitrophenol under UV light irradiation. The rate of photooxidation has been significantly improved by Au and Pt deposition and after sintering, respectively, due to rapid electron acceptance by metal from photoexcited ZnS and growth of crystalline ZnS phase. - Highlights: • Photoactive ZnS microsphere of size 2–5 μm was prepared by hydrothermal route. • Highly porous cubic spherical ZnS crystals possess a large surface area, 173 m{sup 2} g{sup −1}. • 1 wt% Au and Pt photodeposition highly quenched the photoluminescence at 437 nm. • Sintering and metal loading notably improve the photooxidation rate of 4-nitrophenol. • Pt co-catalyst always exhibits superior photoactivity of ZnS microsphere than Au. - Abstract: This work highlights the enhanced photocatalytic activity of porous ZnS microspheres after Au and Pt deposition and heat treatment at 500 °C for 2 h. Microporous ZnS particles of size 2–5 μm with large surface area 173.14 m{sup 2} g{sup −1} and pore volume 0.0212 cm{sup 3} g{sup −1} were prepared by refluxing under an alkaline medium. Photoluminescence of ZnS at 437 nm attributed to sulfur or zinc vacancies were quenched to 30% and 49%, respectively, after 1 wt% Au and Pt loading. SEM images revealed that each ZnS microparticle consist of several smaller ZnS spheres of size 2.13 nm as calculated by Scherrer's equation. The rate of photooxidation of 4-nitrophenol (10 μM) under UV (125 W Hg arc–10.4 mW/cm{sup 2}) irradiation has been significantly improved by Au and Pt deposition followed by sintering due to better electron capturing capacity of deposited metals and growth of crystalline ZnS phase with less surface defects.

  18. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    Science.gov (United States)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  19. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  20. Nuclear reactor pressure vessel with an inner metal coating covered with a high temperature resistant thermal insulator

    International Nuclear Information System (INIS)

    1974-01-01

    The thermal insulator covering the metal coating of a reactor vessel is designed for resisting high temperatures. It comprises one or several porous layers of ceramic fibers or of stacked metal foils, covered with a layer of bricks or ceramic tiles. The latter are fixed in position by fasteners comprising pins fixed to the coating and passing through said porous layers and fasteners (nut or bolts) for individually fixing the bricks to said pins, whereas ceramic plugs mounted on said bricks or tiles provide for the thermal insulation of the pins and of the nuts or bolts; such a thermal insulation can be applied to high-temperature reactors or to fast reactors [fr