WorldWideScience

Sample records for ultrafine filtration systems

  1. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Delp, William W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Black, Douglas R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-12-01

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration produced indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection whereas supply MERV16 filtration reduced PM2.55 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filters in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5. Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.

  2. Filtration efficiency of an electrostatic fibrous filter: Studying filtration dependency on ultrafine particle exposure and composition

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Johnson, Matthew S.; Yazdi, Sadegh

    2014-01-01

    The objective of the present study is to investigate the relationship between ultrafine particle concentrations and removal efficiencies for an electrostatic fibrous filter in a laboratory environment. Electrostatic fibrous filters capture particles efficiently, with a low pressure drop. Therefor...

  3. Diesel fuel filtration system

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel's hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system

  4. Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration

    International Nuclear Information System (INIS)

    Kimmer, Dusan; Vincent, Ivo; Fenyk, Jan; Petras, David; Zatloukal, Martin; Sambaer, Wannes; Zdimal, Vladimir

    2011-01-01

    Selected procedures permitting to prepare homogeneous nanofibre structures of the desired morphology by employing a suitable combination of variables during the electrospinning process are presented. A comparison (at the same pressure drop) was made of filtration capabilities of planar polyurethane nanostructures formed exclusively by nanofibres, space polycarbonate nanostructures having bead spacers, structures formed by a combination of polymethyl methacrylate micro- and nanofibres and polypropylene meltblown microstructures, through which ultrafine particles of ammonium sulphate 20-400 nm in size were filtered. The structures studied were described using a new digital image analysis technique based on black and white images obtained by scanning electron microscopy. More voluminous structures modified with distance microspheres and having a greater thickness and mass per square area of the material, i.e. structures possessing better mechanical properties, demanded so much in nanostructures, enable preparation of filters having approximately the same free volume fraction as flat nanofibre filters but an increased effective fibre surface area, changed pore size morphology and, consequently, a higher filter quality.

  5. Impact of two particle measurement techniques on the determination of N95 class respirator filtration performance against ultrafine particles

    International Nuclear Information System (INIS)

    Mostofi, Reza; Noël, Alexandra; Haghighat, Fariborz; Bahloul, Ali; Lara, Jaime; Cloutier, Yves

    2012-01-01

    Highlights: ► Performance evaluation of respirator using two different measurement techniques. ► Impaction and electrical mobility were used to characterize ultrafine particle. ► The experiment was done using ultrafine-sized poly-dispersed aerosols. ► Both techniques show that MPPS would occur at a similar size range. - Abstract: The purpose of this experimental study was to compare two different particle measurement devices; an Electrical Low Pressure Impactor (ELPI) and a Scanning Mobility Particle Sizer (SMPS), to measure the number concentration and the size distribution of NaCl salt aerosols to determine the collection efficiency of filtering respirators against poly disperse aerosols. Tests were performed on NIOSH approved N95 filtering face-piece respirators (FFR), sealed on a manikin head. Ultrafine particles found in the aerosols were also collected and observed by transmission electron microscopy (TEM). According to the results, there is a systematic difference for the particle size distribution measured by the SMPS and the ELPI. It is largely attributed to the difference in the measurement techniques. However, in spite of these discrepancies, reasonably similar trends were found for the number concentration with both measuring instruments. The particle penetration, calculated based on mobility and aerodynamic diameters, never exceeded 5% for any size range measured at constant flow rate of 85 L/min. Also, the most penetrating particle size (MPPS), with the lowest filtration efficiency, would occur at a similar ultrafine size range <100 nm. With the ELPI, the MPPS was at 70 nm aerodynamic diameter, whereas it occurred at 40 nm mobility diameter with the SMPS.

  6. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  7. Filtration system for nuclear power plant

    International Nuclear Information System (INIS)

    Otani, Takashi; Nakamizo, Hiroshi.

    1991-01-01

    The filtration system of the present invention comprises a filtering device incorporating ceramic filament element bundles, a pool return line for returning filtrates to a side banker pool or fuel storage pool, a waste sludge discharge line for discharging waste sludges captured in the filter elements by way of washing operation and a settling separation vessel. Ceramics of excellent radiation resistance and having an extremely thin multi-layered structure at the surface are used for the filter elements. Highly radioactive cruds captured at the surface of the elements by liquid passage are removed by supplying water or gas in a pulsative manner in the direction opposite to the liquid passage thereby cleaning the surface of the elements at a high speed. The thus removed high radioactive cruds are concentrically confined within the settling separation layer by gravitational settling separation. Thus, there is no more necessary for disposing the filtration element bundles after use, so that the amount of wastes can be reduced, the radiation dosage can be lowered and the facility can be simplified. (N.H.)

  8. Investigation of Microgranular Adsorptive Filtration System

    Science.gov (United States)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling

  9. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  10. Performance of school bus retrofit systems: ultrafine particles and other vehicular pollutants.

    Science.gov (United States)

    Zhang, Qunfang; Zhu, Yifang

    2011-08-01

    This study evaluated the performance of retrofit systems for diesel-powered school buses, a diesel oxidation catalyst (DOC) muffler and a spiracle crankcase filtration system (CFS), regarding ultrafine particles (UFPs) and other air pollutants from tailpipe emissions and inside bus cabins. Tailpipe emissions and in-cabin air pollutant levels were measured before and after retrofitting when the buses were idling and during actual pick-up/drop off routes. Retrofit systems significantly reduced tailpipe emissions with a reduction of 20-94% of total particles with both DOC and CFS installed. However, no unequivocal decrease was observed for in-cabin air pollutants after retrofitting. The AC/fan unit and the surrounding air pollutant concentrations played more important roles for determining the in-cabin air quality of school buses than did retrofit technologies. Although current retrofit systems reduce children's exposure while waiting to board at a bus station, retrofitting by itself does not protect children satisfactorily from in-cabin particle exposures. Turning on the bus engine increased in-cabin UFP levels significantly only when the wind blew from the bus' tailpipe toward its hood with its windows open. This indicated that wind direction and window position are significant factors determining how much self-released tailpipe emissions may penetrate into the bus cabin. The use of an air purifier was found to remove in-cabin particles by up to 50% which might be an alternative short-to-medium term strategy to protect children's health.

  11. Filtration Systems Design for Universal Oils in Agricultural Tractors

    Directory of Open Access Journals (Sweden)

    R. Majdan

    2017-12-01

    Full Text Available Three filtration systems using the tractor hydraulic circuit were proposed and verified during the tractors operation. Using the tractor-implement hydraulic system and filter body with accessories the universally useful filtration systems were designed. The designed filtration systems are the second stage of universal oil filtration whereas the first stage is the standard tractor filter. The decrease in the content of iron reached the values 25.53 %, 32.95 % and 41.55 % and the average decrease in oil contamination characterized by average value of decrease in content of iron, copper and silicium reached values 24.3 %, 24.7 % and 35.53 % in dependence on the filtration system and an oil contamination level. The decrease in contamination level verified the ability of designed filtration systems for agricultural tractors.

  12. Particle filtration in consolidated granular systems

    International Nuclear Information System (INIS)

    Schwartz, L.M.; Wilkinson, D.J.; Bolsterli, M.; Hammond, P.

    1993-01-01

    Grain-packing algorithms are used to model the mechanical trapping of dilute suspensions of particles by consolidated granular media. We study the distribution of filtrate particles, the formation of a damage zone (internal filter cake), and the transport properties of the host--filter-cake composite. At the early stages of filtration, our simulations suggest simple relationships between the structure of the internal filter cake and the characteristics of the underlying host matrix. These relationships are then used to describe the dynamics of the filtration process. Depending on the grain size and porosity of the host matrix, calculated filtration rates may either be greater than (spurt loss) or less than (due to internal clogging) those predicted by standard surface-filtration models

  13. CRNL research reactor retrofit Emergency Filtration System

    International Nuclear Information System (INIS)

    Philippi, H.M.

    1990-01-01

    This paper presents a brief history of NRX and NRU research reactor effluent air treatment systems before describing the selection and design of an appropriate retrofit Emergency Filtration System (EFS) to serve these reactors and the future MX-10 isotope production reactor. The conceptual design of the EFS began in 1984. A standby concrete shielding filter-adsorber system, sized to serve the reactor with the largest exhaust flow, was selected. The standby system, bypassed under normal operating conditions, is equipped with normal exhaust stream shutoff and diversion valves to be activated manually when an emergency is anticipated, or automatically when emergency levels of gamma radiation are detected in the exhaust stream. The first phase of the EFS installation, that is the construction of the EFS and the connection of NRU to the system, was completed in 1987. The second phase of construction, which includes the connection of NRX and provisions for the future connection of MX-10, is to be completed in 1990

  14. Life Support Filtration System Trade Study for Deep Space Missions

    Science.gov (United States)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  15. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  16. Filter aids influence on pressure drop across a filtration system

    Science.gov (United States)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  17. Additive Difference Schemes for Filtration Problems in Multilayer Systems

    CERN Document Server

    Ayrjan, E A; Pavlush, M; Fedorov, A V

    2000-01-01

    In the present paper difference schemes for solution of the plane filtration problem in multilayer systems are analyzed within the framework of difference schemes general theory. Attention is paid to splitting the schemes on physical processes of filtration along water-carring layers and vertical motion between layers. Some absolutely stable additive difference schemes are obtained the realization of which needs no software modification. Parallel algorithm connected with the solving of the filtration problem in every water-carring layer on a single processor is constructed. Program realization on the multi-processor system SPP2000 at JINR is discussed.

  18. Four years experience with filtration systems in commercial nurseries for eliminating Phytophthora species from recirculation water

    Science.gov (United States)

    T. Ufer; M. Posner; H.-P. Wessels; S. Wagner; K. Kaminski; T. Brand; Werres S.

    2008-01-01

    In a four year project, three different filtration systems were tested under commercial nursery conditions to eliminate Phytophthora spp. from irrigation water. Five nurseries were involved in the project. Slow sand filtration systems were tested in three nurseries. In the fourth nursery, a filtration system with lava grains (Shieer® Bio filtration)...

  19. Filtration effectiveness of HVAC systems at near-roadway schools.

    Science.gov (United States)

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T

    2013-06-01

    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  20. Field Demonstration of Fuel Crud Filtration System at Ulchin Plant

    International Nuclear Information System (INIS)

    Kang, Duk-Won; Lee, Doo-Ho; Park, Jong-Youl; Choi, In-Kyu

    2007-01-01

    Crud deposited onto the fuel assemblies in nuclear power plants was not a serious problem until an upper core flux depression named Axial Offset Anomaly (AOA) was found at Callaway, USA in 1989. Though the mechanism of an AOA is not completely understood, crud is believed to be a key component of initiating AOA. After the sufficient amount of corrosion products in the reactor cooling system are deposited on the fuel clad by a sub-cooled nucleate boiling, boron is adsorbed in the crud. Thus a measurable reduction in the neutron flux occurs which causes an AOA problem. A filtration system has been developed to remove the fuel crud from irradiated fuel assemblies for mitigating the axial offset anomaly under a technical cooperation agreement with DEI (Dominion Engineering Inc.). This filtration system with a fuel cleaning fixture was successfully demonstrated at Ulchin plant unit 2. Within several minutes, detachable crud deposits were effectively removed from the clad surfaces of the fuel assembly. Also, to characterize the crud particles for each fuel assembly, a small crud sampling device and radiation monitor devices were connected to the filtration system during the cleaning operation. In this study, we completed a functional test and demonstration of an ultrasonic fuel cleaning system by using four spent fuel assemblies. It took only 5 minutes to remove the fuel crud from each fuel assembly. In addition, collective dose rates indicated an average of 8 R/Hr per assembly

  1. Centrifugal Filtration System for Severe Accident Source Term Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shu Chang; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of this paper is to present the conceptual design of a filtration system that can be used to process airborne severe accident source term. Reactor containment may lose its structural integrity due to over-pressurization during a severe accident. This can lead to uncontrolled radioactive releases to the environment. For preventing the dispersion of these uncontrolled radioactive releases to the environment, several ways to capture or mitigate these radioactive source term releases are under investigation at KAIST. Such technologies are based on concepts like a vortex-like air curtain, a chemical spray, and a suction arm. Treatment of the radioactive material captured by these systems would be required, before releasing to environment. For current filtration systems in the nuclear industry, IAEA lists sand, multi-venturi scrubber, high efficiency particulate arresting (HEPA), charcoal and combinations of the above in NS-G-1-10, 4.143. Most if not all of the requirements of the scenario for applying this technology near the containment of an NPP site and the environmental constraints were analyzed for use in the design of the centrifuge filtration system.

  2. The use of an air filtration system in podiatry clinics.

    Science.gov (United States)

    McLarnon, Nichola; Burrow, Gordon; Maclaren, William; Aidoo, Kofi; Hepher, Mike

    2003-06-01

    A small-scale study was conducted to ascertain the efficiency and effectiveness of an air filtration system for use in podiatry/chiropody clinics (Electromedia Model 35F (A), Clean Air Ltd, Scotland, UK). Three clinics were identified, enabling comparison of data between podiatry clinics in the West of Scotland. The sampling was conducted using a portable Surface Air Sampler (Cherwell Laboratories, Bicester, UK). Samples were taken on two days at three different times before and after installation of the filtration units. The global results of the study indicate the filter has a statistically significant effect on microbial counts, with an average percentage decrease of 65%. This study is the first time, to the authors' knowledge, such a system has been tested within podiatric practice.

  3. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  4. A system for aerodynamically sizing ultrafine environmental radioactive particles

    International Nuclear Information System (INIS)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by 222 Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It's major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented

  5. A system for aerodynamically sizing ultrafine environmental radioactive particles

    Energy Technology Data Exchange (ETDEWEB)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  6. Transport of micropollutants in a riverbank filtration system

    Science.gov (United States)

    van Driezum, Inge; Oudega, Thomas; Reiner, Philipp; Zessner, Matthias; Farnleitner, Andreas; Blaschke, Paul

    2014-05-01

    Groundwater locations at alluvial backwaters are essential for public water supply. Riverbank filtration (RBF) systems are widely used as a means of obtaining public water supplies. Riverbank filtration is an effective way to remove micropollutants from the receiving surface water. The efficiency of the RBF system strongly depends on the residence time of the water in the aquifer and on the soil properties (Ray, 2011). In order to understand all bio- and geochemical processes within the hyporheic zone (e.g. the region were mixing of surface water and groundwater occurs), exchange rates and flow patterns need to be quantified. The main study area covers the porous groundwater aquifer study site (PGWA) - an urban floodplain extending on the left bank of the River Danube downstream of the City of Vienna. It is one of the main groundwater bodies in Austria. Groundwater quality in the PGWA is influenced by a combination of anthropogenic activities, industry, wastewater treatment plants, heavy precipitation events and floodings. The upper layer of the DPA is impermeable, preventing pollution originating from the surface. The upper layer consists of silt. The underlying confined aquifer consists of sand and gravel layers. Hydraulic conductivities range from 5 x 10-2 m/s up to 5 x 10-5 m/s. Underneath the aquifer are alternating sand an clay/silt layers. Samples are taken from two transects in the DPA. These transects consist of four piezometers in the first few meters of the groundwater aquifer. Several other piezometers are placed downstream from the river-groundwater interface. The behaviour of the micropollutants in the hyporheic zone can therefore be studied intensively. The transport behaviour of several micropollutants is modeled using carbamazepine (CBZ) and acesulfame (ACE) as natural tracers. Furthermore, temperature and electrical conductivity data was used for modeling. The micropollutants are measured using an in house developed online SPE-HPLC-MS/MS method

  7. Secondary waste characteristics and ITS filtration system on laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Kunio; Miyao, Hidehiko [Research Association for Facility Decommissioning (RANDEC), Tokai, Ibaraki (Japan); Nakazawa, Masaharu [Tokyo Univ. (Japan); Kataoka, Shinichi; Nagura, Yasumi; Saiki, Hideo [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    2001-03-01

    Technology of dismantling nuclear facilities has been developing in various fields for its evaluation and dismantling system. RANDEC has been studying remote dismantling system for highly activated equipments such as core internals with a laser using optical fiber. Recently a high power YAG laser having the advantage of application for remote dismantling on thick metallic material is the stage for practical use, and narrow kerf can bring the reduction of secondary waste as well. The present paper describes the experimental results and discussion on the laser cutting, including the secondary waste characteristics and its filtration system using the YAG laser. This study has been performed on consignment to RANDEC from the Science and Technology Agency of Japan. (author)

  8. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    In the last decade, pressure driven membrane filtration processes; reverse osmosis, nano, ultra and micro-filtration have undergone steady growth. Drivers for this growth include desalination to combat water scarcity and the removal of various material from water to comply with increasingly

  9. Emergency field water supply system using natural filtration elements

    Science.gov (United States)

    Vikneswaran, M.; Yahya, Muhamad Azani; Yusof, Mohammed Alias; Ismail, Siti Nor Kamariah

    2018-02-01

    Water is the most important resource in times of emergency and during military missions. In addition, if there is a war in a country, sources of clean water are essential for life. But, the safety and cleanliness of the river water for the campers and hikers still uncertain. Usually, polluted and contaminated river water is not safe to be directly consumed by human. However, this problem can be partly resolved by using water filter where the river water can be consumed directly after the filtration process. In respect of that, this study was conducted to design the filter media for personal water purification system. Hence, the objective of this work also is to develop a personal, portable dual purpose handy water filter to provide an easier way to get safe, clean and healthy drinking water for human wherever they go. The water quality of samples collected before and after filtration were analyzed. Water samples were taken from a waterfall near Lestari Block and Lake beside Marine Centre UPNM Campus. The experimental results were analyzed based on the assessment of water quality parameters. Overall, the analysis of the results showed that the water filter was designed with basic mix tabs aqua filter water purification tablets is showing a better result where it achieve the class I of water quality index (WQI). In details, the water sample taken from waterfall near Lestari Block shown the WQI around 93 which is higher than WQI of water sample from Lake near Marine Centre UPNM which is 86, class II A which can be used for external purpose only.

  10. Efficient filtration system for paraffin-catalyst slurry separation

    Directory of Open Access Journals (Sweden)

    Khodagholi Mohammad Ali

    2013-01-01

    Full Text Available The filtration efficiency for separating liquid paraffin (or water from a slurry consisting of 25 weight% spherical alumina in a Slurry Bubble Column Reactor (SBCR comprised of a cylindrical tube of 10 cm diameter and 150 cm length was studied. Various differential pressures (ΔP were applied to two separate tubular sintered metal stainless steel filter elements with nominal pore size of 4 and 16μm. The experimental results disclosed that the rate of filtrations increased on applying higher differential pressure to the filter element. Albeit this phenomenon is limited to moderate ΔPs and for ΔP more than 1 bar is neither harmful nor helpful. The highest filtration rates at ΔPs higher than 1 bar were 170 and 248 ml/minute for 4 and 16μm respectively. Using water as the liquid in slurry the rate of filtration enhanced to 4 folds, and this issue reveals impact of viscosity on filtration efficiency clearly. In all situations, the total amount of particles present in the filtrate part never exceeded a few parts per million (ppm. The statistical analysis of the SEM image of the filtrate indicated that by applying higher pressure difference to the filter element the frequency percent of larger particle size increases. The operation of filter cake removing was performed with back flashing of 300 ml of clean liquid with pressures of 3-5 bar of N2 gas.

  11. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    Membrane filtration technologies have emerged as cost competitive and viable techniques in drinking and industrial water production. Despite advancements in membrane manufacturing and technology, membrane scaling and fouling remain major problems and may limit future growth in the industry. Scaling

  12. Introduction of filtration systems in container nurseries for nonchemical elimination of Phytophthora spp. from irrigation water

    Science.gov (United States)

    Thorsten Ufer; Heinrich Beltz; Thomas Brand; Katrin Kaminski; Ralf Lüttmann; Martin Posner; Stefan Wagner; Sabine Werres; Hans-Peter Wessels

    2006-01-01

    In a 3-year project the elimination of Phytophthora spp. from the recirculation water with different kinds of filtration systems will be tested under commercial conditions in container nurseries. First results indicate that the filtration systems eliminate Phytophthora spp. from the water.

  13. Grey water treatment in urban slums by a filtration system: optimisation of the filtration medium.

    Science.gov (United States)

    Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Kansiime, F; Lens, P N L

    2014-12-15

    Two uPVC columns (outer diameter 160 cm, internal diameter 14.6 cm and length 100 cm) were operated in parallel and in series to simulate grey water treatment by media based filtration at unsaturated conditions and constant hydraulic loading rates (HLR). Grey water from bathroom, laundry and kitchen activities was collected from 10 households in the Bwaise III slum in Kampala (Uganda) in separate containers, mixed in equal proportions followed by settling, prior to transferring the influent to the tanks. Column 1 was packed with lava rock to a depth of 60 cm, while column 2 was packed with lava rock (bottom 30 cm) and silica sand, which was later replaced by granular activated carbon (top 30 cm) to further investigate nutrient removal from grey water. Operating the two filter columns in series at a HLR of 20 cm/day resulted in a better effluent quality than at a higher (40 cm/day) HLR. The COD removal efficiencies by filter columns 1 and 2 in series amounted to 90% and 84% at HLR of 20 cm/day and 40 cm/day, respectively. TOC and DOC removal efficiency amounted to 77% and 71% at a HLR of 20 cm/day, but decreased to 72% and 67% at a HLR of 40 cm/day, respectively. The highest log removal of Escherichia coli, Salmonella sp. and total coliforms amounted to 3.68, 3.50 and 3.95 at a HLR of 20 cm/day respectively. The overall removal of pollutants increased with infiltration depth, with the highest pollutant removal efficiency occurring in the top 15 cm layer. Grey water pre-treatment followed by double filtration using coarse and fine media has the potential to reduce the grey water pollution load in slum areas by more than 60%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette

    2002-08-16

    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project.

  15. ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM

    International Nuclear Information System (INIS)

    Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette

    2002-01-01

    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project

  16. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  17. SPECTRAL FILTRATION OF IMAGES BY MEANS OF DISPERSIVE SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available Instruments for spectral filtration of images are an important element of the systems used in remote sensing, medical diagnostics, in-process measurements. The aim of this study is analysis of the functional features and characteristics of the proposed two image monochromator versions which are based on dispersive spectral filtering. The first is based on the use of a dispersive monochromator, where collimating and camera lenses form a telescopic system, the dispersive element of which is within the intermediate image plane. The second version is based on an imaging double monochromator with dispersion subtraction by back propagation. For the telescopic system version, the spectral and spatial resolutions are estimated, the latter being limited by aberrations and diffraction from the entrance slit. The device has been numerically simulated and prototyped. It is shown that for the spectral bandwidth 10 nm (visible spectral range, the aberration-limited spot size is from 10–20 μm at the image center to about 30 μm at the image periphery for the image size 23–27 mm. The monochromator with dispersion subtraction enables one to vary the spectral resolution (up to 1 nm and higher by changing the intermediate slit width. But the distinctive feature is a significant change in the selected central wavelength over the image field. The considered designs of dispersive image monochromators look very promising due to the particular advantages over the systems based on tunable filters as regards the spectral resolution, fast tuning, and the spectral contrast. The monochromator based on a telescopic system has a simple design and a rather large image field but it also has a limited light throughput due to small aperture size. The monochromator with dispersion subtraction has higher light throughput, can provide high spectral resolution when recording a full data cube in a series of measuring acts for different dispersive element positions. 

  18. Evaluation of Filtration and UV Disinfection for Inactivation of Viruses in Non-Community Water Systems in Minnesota

    Science.gov (United States)

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3...

  19. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    Directory of Open Access Journals (Sweden)

    Hussein Traboulsi

    2017-01-01

    Full Text Available Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood, fossil fuels (e.g., cars and trucks, incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene, metals, sulphur and nitrogen oxides, ozone and particulate matter (PM. PM0.1 (ultrafine particles (UFP, those particles with a diameter less than 100 nm (includes nanoparticles (NP are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB and nuclear factor (erythroid-derived 2-like 2 (Nrf2. Epigenetic mechanisms including non-coding RNA (ncRNA may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.

  20. Effect of Ultrafine Pulverization of Senecio Scandens on Growth, Immune System and Faecal Microorganisms in Piglets

    Directory of Open Access Journals (Sweden)

    J Yue1, CQ Lu1, HY Lin1, XN Wang, JQ Zheng1, JJ Chen1* and R Gooneratne2*

    2016-11-01

    Full Text Available There is increased interest in using naturally occurring compounds subjected to new technologies for enhancing pig nutrition to replace antibiotic usage in swine production. The effects of ultrafine pulverization on the size distribution, morphology of Senecio scandens Buch.-Ham., and the growth performance, serum immunity parameters and faecal microorganisms of piglets fed this powder were investigated. The size distribution and morphology of S. scandens were characterized by using a laser diffraction analyser and scanning electron microscopy respectively. Ninety Duroc×Landrace×Yorkshire piglets (average body weight of 10.43kg were randomly assigned to six treatments with three pens of five pigs per treatment. Group 1 (Control piglets were fed the basal diet only. Groups 2 to 5 were fed with the basal diet supplemented with ultrafine powder (median diameter [d0.5] of 8.89μm of S. scandens at 0.3, 0.6, 0.9, and 1.2% of the basal diet, respectively, for 30 days. For group 6, 1.2% of ordinary S. scandens powder (d0.5=88.59μm was added to the basal diet. Both S. scandens ordinary and ultrafine powder increased piglet body weight and reduced the feed to gain ratio, but the performance of piglets fed the ultrafine powder was better. In groups 4 to 6, the number of Escherechia coli in faeces and the diarrhoeal incidence were significantly lower (P<0.05 and the serum IgA, IgG, IgM contents significantly higher (P<0.05. Feeding S. scandens ultrafine powder in the diet improved piglet performance and the diet supplemented with 0.9% of the ultrafine powder was the most effective.

  1. Static and dynamic filtrations of different clay, electrolytes, polymer systems; Filtrations statiques et dynamiques de differents systemes argile, electrolytes, polymere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y

    1996-04-16

    Filtration properties of model drilling fluids composed of water, clays, electrolytes and water soluble polymers have been studied in static and dynamic conditions on paper filters and rock slices. Filtration experiments combined with cake observations by cryo-S.E.M. and T.E.M., show the influence of the size shape of clay particles as well as their associating mode in suspension, on the texture of the cake, its permeability, and relaxation properties. These parameters depend on the nature of the electrolyte. The polymer reduces the cake permeability by enhancing the dispersion of the clay within the suspension, but mainly by plugging the porous network due its auto aggregation properties. The cake construction in dynamic conditions, is related to the state of aggregation of the initial suspension, its poly-dispersity, its sensitivity to shear rates, and also, to the permeability of the cake built at the beginning of the filtration. In all cases, the rate of thickening of the cake is slower and larger filtrate volumes are obtained compared to the static conditions. Shear rate has two effects: first, to dissociate the weak aggregates in suspension, second, to impose a size selection of the particles in the case of a poly-dispersed suspension. At high shear rates, a cake of constant thin thickness is quickly obtained. The thickness of this limiting cake depends on the fraction of small particles present in suspension, or that can be formed by dissociation of weak aggregates under shear rate. The permeability of this limiting cake formed in dynamic conditions is, as in static conditions, controlled by the size and the shape of the particles that form the cake or by the presence of a build loss reducer water soluble polymer. Filtrations carried out on Fontainebleau sandstones allow to visualize the internal cake and to precise the risks of formation damage by the drilling fluid. (author) 127 refs.

  2. Quantitative measurement and visualization of biofilm O 2 consumption rates in membrane filtration systems

    KAUST Repository

    Prest, Emmanuelle I E C; Staal, Marc J.; Kü hl, Michael; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2012-01-01

    There is a strong need for techniques enabling direct assessment of biological activity of biofouling in membrane filtration systems. Here we present a new quantitative and non-destructive method for mapping O 2 dynamics in biofilms during

  3. TECHNICAL BASIS DOCUMENT FOR VENTILATION SYSTEM FILTRATION FAILURE LEADING TO AN UNFILTERED RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    KOZLOWSKI, S.D.

    2005-01-06

    This document analyzed three scenarios involving failures of HEPA filtration systems leading to releases from liquid waste tanks. The scenarios are failure due to high temperature (fire), overpressure (filter blowout), and unfiltered release due to filter failure, improper installation. etc.

  4. Biofouling investigation in membrane filtration systems using Optical Coherence Tomography (OCT)

    KAUST Repository

    Fortunato, Luca

    2017-01-01

    Biofouling represents the main problem in membrane filtration systems. Biofouling arises when the biomass growth negatively impacts the membrane performance parameters (i.e. flux decrease and feed channel pressure drop). Most of the available

  5. Renin-angiotensin system antagonists, glomerular filtration rate and blood pressure

    Directory of Open Access Journals (Sweden)

    D.D. Ivanov

    2018-02-01

    Full Text Available The article deals with the mModern data on the influence of renin-angiotensin system blockers on the glomerular filtration rate, the level of arterial pressure and the outcome of chronic kidney disease. The strategy of  rennin-angiotensine blockade is offered to be changed depending on the criteria va­lues of glomerular filtration rate: a combination of inhibitors of angiotensin-converting enzyme + angiotensin receptors blo­ckers, monotherapy and drug withdrawal in glomerular filtration rate under 15–30 ml/min/m2. The formula BRIMONEL for treatment of chronic kidney disease is given.

  6. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  7. Description of the surface water filtration and ozone treatment system at the Northeast Fishery Center

    Science.gov (United States)

    A water filtration and ozone disinfection system was installed at the U.S. Fish and Wildlife Service's Northeast Fishery Center in Lamar, Pennsylvania to treat a surface water supply that is used to culture sensitive and endangered fish. The treatment system first passes the surface water through dr...

  8. Development of an Indexing Media Filtration System for Long Duration Space Missions

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles derived from multiple biological and material sources. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reduce-gravity flight tests data will be presented. The features of the new filter system may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical.

  9. Small Water System Alternatives: Media and Membrane Filtration Alternatives for Small Communities and Households

    Science.gov (United States)

    This webinar presentation will highlight research case studies on innovative drinking water treatment alternatives for small community water systems. Emphasis will be placed on media and membrane filtration technologies capable of meeting the requirements of the Long-Term 2 Enha...

  10. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  11. Occupational exposure to ultrafine particles among airport employees--combining personal monitoring and global positioning system

    DEFF Research Database (Denmark)

    Møller, Karina Lauenborg; Thygesen, Lau Caspar; Schipperijn, Jasper

    2014-01-01

    BACKGROUND: Exposure to ultrafine particles (UFP) has been linked to cardiovascular and lung diseases. Combustion of jet fuel and diesel powered handling equipment emit UFP resulting in potentially high exposure levels among employees working at airports. High levels of UFP have been reported...... at several airports, especially on the apron, but knowledge on individual exposure profiles among different occupational groups working at an airport is lacking. PURPOSE: The aim of this study was to compare personal exposure to UFP among five different occupational groups working at Copenhagen Airport (CPH......). METHOD: 30 employees from five different occupational groups (baggage handlers, catering drivers, cleaning staff and airside and landside security) at CPH were instructed to wear a personal monitor of particle number concentration in real time and a GPS device. The measurements were carried out on 8 days...

  12. Modern devices of optimum filtration for the active radar system

    OpenAIRE

    V. E. Bychkov; O. D. Mrachkovskiy; V. I. Pravda

    2006-01-01

    The principle of construction the matched filter and correlator, for the active radar system operating with a broadband noise signal is esteemed. The example of construction a сhan-nel of processing on the basis of microcircuits of a programmed logic (PLD) is shown

  13. Filtration system for the removal of depleted uranium from water

    International Nuclear Information System (INIS)

    Barlett, P.T.; Wolfe, S.

    1989-01-01

    Previous depleted uranium (DU) munitions testing has resulted in 2 132 cubic meters (500 to 35,000 gallons) of wastewater containing: DU concentrations from 2.5 x 10 -5 to 9 x 10 -8 microcuries/mL DU particles equal to and greater than 0.1 micron in size. Personnel reasoned that if particles could be filtered from the wastewater down to a 0.1 micron size, the wastewater could be disposed of on-site and comply with the Nuclear Regulatory Commission (NRC) standard of 35 pCi/g of soil. This paper compares the effectiveness of three cross-flow membrane modules using a pilot-scale microfiltration (MF) system that was designed to process the wastewater described and designed to allow direct scale-up to a system that is capable of processing 132 m 3 (35,000 gals) of wastewater that can then be disposed of on-site within applicable standards. A cross-flow MF system was designed, assembled, and tested using replicated wastewater

  14. Aerosol filtration

    International Nuclear Information System (INIS)

    First, M.W.; Gilbert, H.

    1982-01-01

    Significant developments in high-efficiency filtration for nuclear applications are reviewed for the period 1968 to 1980. Topics of special interest include (1) factory (bench) and in-place test methods, (2) new developments in paper and filter unit construction methods, (3) vented containment air cleaning systems for liquid-metal fast breeder reactors and light-water-moderated reactors, and (4) decontamination of off-gases from nuclear waste volume-reduction processes. Standards development has been vigorously pursued during this period, but advances in filtration theory have been few. One of the significant changes likely to occur in the immediate future is adoption of the European style of high-efficiency particulate air filters instead of those which have been in service for the past three decades to obtain the benefits of having almost twice as much filter paper in the same filter cartridge

  15. Aerosol filtration

    International Nuclear Information System (INIS)

    First, M.W.; Gilbert, H.

    1981-01-01

    Significant developments in high efficiency filtration for nuclear applications are reviewed for the period 1968 to 1980. Topics of special interest include factory (bench) and in-place test methods, new developments in paper and filter unit construction methods, vented containment air cleaning systems for LMFBR and light water moderated reactors, and decontamination of offgases from nuclear waste volume reduction processes. It is noted that standards development has been vigorously pursued during this period but that advances in filtration theory have been few. One of the significant changes likely to occur in the immediate future is adoption of the European style of HEPA filters for those that have been in service for the past three decades to obtain the benefits of having almost twice as much filter paper in the same filter cartridge. 71 references

  16. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    Science.gov (United States)

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  17. Membrane morphology and topology for fouling control in Reverse Osmosis filtration systems

    Science.gov (United States)

    Ling, Bowen; Battiato, Ilenia

    2017-11-01

    Reverse Osmosis Membrane (ROM) filtration systems are widely utilized in waste-water recovery, seawater desalination, landfill water treatment, etc. During filtration, the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. Design and optimization of ROM filtration systems aim at reducing membrane fouling by studying the coupling between membrane structure, local flow field and foulant adsorption patterns. Yet, current studies focus exclusively on oversimplified steady-state models that ignore any dynamic coupling between fluid flow and transport through the membrane. In this work, we develop a customized solver (SUMembraneFoam) under OpenFOAM to solve the transient equations. The simulation results not only predict macroscopic quantities (e.g. permeate flux, pressure drop, etc.) but also show an excellent agreement with the fouling patterns observed in experiments. It is observed that foulant deposition is strongly controlled by the local shear stress on the membrane, and channel morphology or membrane topology can be modified to control the shear stress distribution and reduce fouling. Finally, we identify optimal regimes for design.

  18. Measurement-Based Evaluation of Installed Filtration System Performance in Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Wanyu Rengie; Singer, Brett C.

    2014-04-03

    This guide discusses important study design issues to consider when conducting an on-site evaluation of filtration system performance. The two most important dichotomies to consider in developing a study protocol are (1) whether systems are being evaluated in occupied or unoccupied homes and (2) whether different systems are being compared in the same homes or if the comparison is between systems installed in different homes. This document provides perspective and recommendations about a suite of implementation issues including the choice of particle measurement devices, selection of sampling locations, ways to control and/or monitor factors and processes that can impact particle concentrations, and data analysis approaches.

  19. Reliability and testing considerations in the design of nuclear reactor filtration systems

    International Nuclear Information System (INIS)

    O'Nan, A.; Williams, R.P.; Goldsmith, J.M.

    1975-01-01

    The high performance standards set by USAEC-DRL Regulatory Guides for nuclear reactor filtration systems pose difficult problems for on-site leakage tests. These problems are compounded by the crowded conditions inside reactor structures, and by the fact that, until recently, little consideration has been given by system designers to the needs of testing. Techniques for coping with testing problems on existing systems, and suggestions for improving the testability of future systems, are given. Test crew safety considations are discussed, and a pair of easily portable contaminant generators is described. (U.S.)

  20. Noble gas control room accident filtration system for severe accident conditions N-CRAFT. System design

    International Nuclear Information System (INIS)

    Hill, Axel

    2014-01-01

    Severe accidents might cause the release of airborne radioactive substances to the environment of the NPP. This can either be due to leakages of the containment or due to a filtered containment venting in order to ensure the overall integrity of the containment. During the containment venting process aerosols and iodine can be retained by the FCVS which prevents long term ground contamination. Noble gases are not retainable by the FCVS. From this it follows that a large amount of radioactive noble gases (e.g. xenon, krypton) might be present in the nearby environment of the plant dominating the activity release, depending on the venting procedure and the weather conditions. Accident management measures are necessary in case of severe accidents and the prolonged stay of staff inside the main control room (MCR) or emergency response center (ERC) is essential. Therefore, the in leakage and contamination of the MRC and ERC with airborne activity has to be prevented. The radiation exposure of the crises team needs to be minimized. The entrance of noble gases cannot be sufficiently prevented by the conventional air filtration systems such as HEPA filters and iodine absorbers. With the objective to prevent an unacceptable contamination of the MCR/ERC atmosphere by noble gases AREVA GmbH has developed a noble gas retention system. The noble gas control room accident filtration system CRAFT is designed for this case and provides supply of fresh air to the MCR/ERC without time limitation. The retention process of the system is based on the dynamic adsorption of noble gases on activated carbon. The system consists of delay lines (carbon columns) which are operated by a continuous and simultaneous adsorption and desorption process. These cycles ensure a periodic load and flushing of the delay lines retaining the noble gases from entering the MCR. CRAFT allows a minimization of the dose rate inside MCR/ERC and ensures a low radiation exposure to the staff on shift maintaining

  1. 40 CFR 141.173 - Filtration.

    Science.gov (United States)

    2010-07-01

    ... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system...

  2. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    Science.gov (United States)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  3. Maskless localized patterning of biomolecules on carbon nanotube microarray functionalized by ultrafine atmospheric pressure plasma jet using biotin-avidin system

    Science.gov (United States)

    Abuzairi, Tomy; Okada, Mitsuru; Purnamaningsih, Retno Wigajatri; Poespawati, Nji Raden; Iwata, Futoshi; Nagatsu, Masaaki

    2016-07-01

    Ultrafine plasma jet is a promising technology with great potential for nano- or micro-scale surface modification. In this letter, we demonstrated the use of ultrafine atmospheric pressure plasma jet (APPJ) for patterning bio-immobilization on vertically aligned carbon nanotube (CNT) microarray platform without a physical mask. The biotin-avidin system was utilized to demonstrate localized biomolecule patterning on the biosensor devices. Using ±7.5 kV square-wave pulses, the optimum condition of plasma jet with He/NH3 gas mixture and 2.5 s treatment period has been obtained to functionalize CNTs. The functionalized CNTs were covalently linked to biotin, bovine serum albumin (BSA), and avidin-(fluorescein isothiocyanate) FITC, sequentially. BSA was necessary as a blocking agent to protect the untreated CNTs from avidin adsorption. The localized patterning results have been evaluated from avidin-FITC fluorescence signals analyzed using a fluorescence microscope. The patterning of biomolecules on the CNT microarray platform using ultrafine APPJ provides a means for potential application of microarray biosensors based on CNTs.

  4. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    Science.gov (United States)

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  5. The effects of water filtration systems on fluoride: Washington, D.C. metropolitan area.

    Science.gov (United States)

    Jobson, M D; Grimm, S E; Banks, K; Henley, G

    2000-01-01

    According to the U.S. Environmental Protection Agency (EPA), approximately one in eight Americans is exposed to potentially harmful microbes, pesticides, lead, or radioactive radon whenever they drink a glass of tap water or take a shower. One reason for this exposure is that the water plants are aging or ill equipped to process the huge amounts of raw sewage and agricultural pollutants that are still being discharged into our drinking-water sources. Other compounds such as fluoride and chloride have been added to the community water supplies for health benefits. Water filtration systems are becoming more popular as people become concerned with pollutants in the public water supply and questions are being raised as to whether fluoride is affected by these filters. The aim of this pilot study was to assess the efficacy of three types of water filtration systems and to determine their impact on fluoride content of the water in the Washington, D.C. metropolitan area. One sample of water was collected daily for fourteen days, from one location. The sample was divided to use as a control and the test samples which were processed through various filter systems. With the use of a fluoride ion specific electrode, the fluoride concentration level was tested in all samples in order to determine the percentage of fluoride removed. This study was intended to prove that the water filtration systems did not affect the advantage offered by optimum water fluoride levels. The experimental samples were ascertained and compared to the control group, resulting in three of the four carbon filters showing statistically significant amounts of fluoride removed from the water. Both Reverse Osmosis and Distillation, as expected, removed the fluoride at a high rate.

  6. Adequacy and adjustment of electromechanical elements of a X radiation generator for automation of system of additional filtration

    International Nuclear Information System (INIS)

    Alves Junior, Iremar; Santos, Lucas dos; Potiens, Maria da Penha A.; Vivolo, Vitor

    2011-01-01

    This paper dimensioned the filter wheel components and the adequacy of additional filtrations for the implantation of the OTW automated system with complete replacement of previous used filtration by new set of machine-made filters to be used as the qualities already implanted at the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil. In the sequence, it was performed the measurements of kerma i the air in each quality to be used as reference values

  7. Estimation of characteristics on high temperature filtration system for particle removal in vitrification process

    International Nuclear Information System (INIS)

    Park, Seung Chul; Ryu, Bo Hyun; Park, Byoung Chul; Ryu, Chang Soo; Hwang, Tae Won; Ha, Jong Hyun

    2003-01-01

    High temperature filtration technology has been widely used in nuclear industry systems to remove particulate matter from air and gas streams. Air filters are defined as porous structures through which air is passed to separate out entrained particulate matter. Especially among of them, ceramic candle filters are suitable to gain efficient dust removal at high temperatures and achieve high collection efficiencies for (sub-)micron particles. The paper presents experimental results for their application in the pilot scale vitrification plant operations. Experimental results were transformed into design equations for (i) total pressure drop and the effect of face velocity; (ii) the prediction of the operating parameters

  8. Study of efficiency of particles removal by different filtration systems in a municipal wastewater tertiary treatment

    International Nuclear Information System (INIS)

    Andreu, P. S.; Lardin Mifsut, C.; Farinas Iglesias, M.; Sanchez-Arevalo Serrano, J.; Perez Sanchez, P.; Rancano Perez, A.

    2009-01-01

    The disinfection of municipal wastewater using ultraviolet radiation depends greatly on the presence within the water of particles in suspension. This work determines how the level of elimination of particles varies depending on the technique of filtration used (open, closed sand filters, with continuous washing of the sand, cloth, disk and ring filters). all systems are very effective in the removal of particles more than 25 microns and for removing helminth eggs. The membrane bio-reactors with ultrafiltration membranes were superior in terms of particle removal when compared to conventional filters. (Author) 11 refs.

  9. Aerosol filtration

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.; De Smet, M.; Trine, J.; Hertschap, M.

    1984-01-01

    This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m 3 /h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m 3 /h at 400 0 C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134 Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower

  10. Framework for feasibility assessment and performance analysis of riverbank filtration systems for water treatment

    KAUST Repository

    Sharma, Saroj K.

    2012-03-01

    Bank filtration (BF) is an attractive, robust and reliable water treatment technology. It has been used in Europe and USA for a long time; however experience with this technology so far is site specific. There are no guidelines or tools for transfer of this technology to other locations, specifically to developing countries. A four-step methodology was developed at UNESCO-IHE to analyse feasibility and to predict the performance of BF for water treatment. This included (i) hydraulic simulation using MODFLOW; (ii) determination of share of bank filtrate using NASRI BF simulator; (iii) prediction of water quality from a BF system using the water quality guidelines developed and (iv) comparison of the costs of BF systems and existing conventional surface water treatment systems for water treatment. The methodology was then applied to assess feasibility of BF in five cities in Africa. It was found that in most of the cities studied BF is a feasible and attractive option from hydraulic, water quality as well as operational cost considerations. Considerable operational and maintenance costs saving can be achieved and water quality can be further improved by switching from conventional chemical-based surface water treatment to BF or at least by replacing some of the treatment units with BF systems. © IWA Publishing 2012.

  11. Development of filter module for passive filtration and accident gas release confinement system for NPP

    International Nuclear Information System (INIS)

    Yelizarov, P.G.; Efanov, A.D.; Martynov, P.N.; Masalov, D.P.; Osipov, V.P.; Yagodkin, I.V.

    2005-01-01

    Full text of publication follows: One of the urgent problems of the safe NPP operation is air cleaning from radioactive aerosols and volatile iodine compounds under the accident operation conditions of NPP. A principally new passive accident gas release confinement system is used as the basis of the designs of new generation reactor power blocks under the-beyond-design-basis accident conditions with total loss of current. The basic structural component of the passive filtration system (PFS) is the filter-sorber being heated up to 300 deg. C. The filter-sorber represents a design consisting of 150 connected in parallel two-step filtering modules. The first step is intended to clean air from radioactive aerosols, the second one - to clean air from radioactive iodine and its volatile compounds. The filter-sorber is located in the upper point of the exterior protection shell. Due to natural convection, it provides confinement of r/a impurities and controlled steam-gas release from the inter-shell space into atmosphere. The basic specific design feature is the two-section design of the PFS filter module consisting of a coarse-cleaning section and a fine-cleaning section. A combination of layer-by-layer put filtering materials on the basis of glass fiber and metal fiber. The pilot PFS filter module specimen tests run in conditions modeling accident situation indicated that at a filtration rate of 0,3 cm/s the aerodynamic resistance of the module does not exceed 12 Pa, the filtration effectiveness equals 99,99 % in terms of aerosol, no less than 99,9% in terms of radioactive 131 I and no less than 99,0% in terms of organic compounds of iodine (CH 3 131 I); the dust capacity amounts to a value above 50 g/m 2 . The obtained results of tests comply with the design requirements imposed on the PFS filter-sorber module. (authors)

  12. Biofouling investigation in membrane filtration systems using Optical Coherence Tomography (OCT)

    KAUST Repository

    Fortunato, Luca

    2017-10-01

    Biofouling represents the main problem in membrane filtration systems. Biofouling arises when the biomass growth negatively impacts the membrane performance parameters (i.e. flux decrease and feed channel pressure drop). Most of the available techniques for characterization of biofouling involve membrane autopsies, providing information ex-situ destructively at the end of the process. OCT, is non-invasive imaging technique, able to acquire scans in-situ and non-destructively. The objective of this study was to evaluate the suitability of OCT as in-situ and non-destructive tool to gain a better understanding of biofouling behavior in membrane filtration systems. The OCT was employed to study the fouling behavior in two different membrane configurations: (i) submerged flat sheet membrane and (ii) spacer filled channel. Through the on-line acquisition of OCT scans and the study of the biomass morphology, it was possible to relate the impact of the fouling on the membrane performance. The on-line monitoring of biofilm formation on a flat sheet membrane was conducted in a gravity-driven submerged membrane bioreactor (SMBR) for 43 d. Four different phases were observed linking the variations in permeate flux with changes in biofilm morphology. Furthermore, the biofilm morphology was used in computational fluid dynamics (CFD) simulation to better understand the role of biofilm structure on the filtration mechanisms. The time-resolved OCT analysis was employed to study the biofouling development at the early stage. Membrane coverage and average biofouling layer thickness were found to be linearly correlated with the permeate flux pattern. An integrated characterization methodology was employed to characterize the fouling on a flat sheet membrane, involving the use of OCT as first step followed by membrane autopsies, revealing the presence of a homogeneous layer on the surface. In a spacer filled channel a 3D OCT time series analysis of biomass development under

  13. Noble gas control room accident filtration system for severe accident conditions (N-CRAFT)

    International Nuclear Information System (INIS)

    Hill, Axel; Stiepani, Cristoph; Drechsler, Michael

    2015-01-01

    Severe accidents might cause the release of airborne radioactive substances to the environment of the NPP either due to containment leakages or due to intentional filtered containment venting. In the latter case aerosols and iodine are retained, however noble gases are not retainable by the FCVS or by conventional air filtration systems like HEPA filters and iodine absorbers. Radioactive noble gases nevertheless dominate the activity release depending on the venting procedure and the weather conditions. To prevent unacceptable contamination of the control room atmosphere by noble gases, AREVA GmbH has developed a noble gas control room accident filtration system (CRAFT) which can supply purified fresh air to the control room without time limitation. The retention process is based on dynamic adsorption of noble gases on activated carbon. The system consists of delay lines (carbon columns) which are operated by a continuous and simultaneous adsorption and desorption process. CRAFT allows minimization of the dose rate inside the control room and ensures low radiation exposure to the staff by maintaining the control room environment suitable for prolonged occupancy throughout the duration of the accident. CRAFT consists of a proven modular design either transportable or permanently installed. (author)

  14. Estimating Travel Time in Bank Filtration Systems from a Numerical Model Based on DTS Measurements.

    Science.gov (United States)

    des Tombe, Bas F; Bakker, Mark; Schaars, Frans; van der Made, Kees-Jan

    2018-03-01

    An approach is presented to determine the seasonal variations in travel time in a bank filtration system using a passive heat tracer test. The temperature in the aquifer varies seasonally because of temperature variations of the infiltrating surface water and at the soil surface. Temperature was measured with distributed temperature sensing along fiber optic cables that were inserted vertically into the aquifer with direct push equipment. The approach was applied to a bank filtration system consisting of a sequence of alternating, elongated recharge basins and rows of recovery wells. A SEAWAT model was developed to simulate coupled flow and heat transport. The model of a two-dimensional vertical cross section is able to simulate the temperature of the water at the well and the measured vertical temperature profiles reasonably well. MODPATH was used to compute flowpaths and the travel time distribution. At the study site, temporal variation of the pumping discharge was the dominant factor influencing the travel time distribution. For an equivalent system with a constant pumping rate, variations in the travel time distribution are caused by variations in the temperature-dependent viscosity. As a result, travel times increase in the winter, when a larger fraction of the water travels through the warmer, lower part of the aquifer, and decrease in the summer, when the upper part of the aquifer is warmer. © 2017 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  15. Surgical smoke and ultrafine particles

    Directory of Open Access Journals (Sweden)

    Nowak Dennis

    2008-12-01

    Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.

  16. Assessing the fate of organic micropollutants during riverbank filtration utilizing field studies and laboratory test systems

    Science.gov (United States)

    Schmidt, C. K.; Lange, F. T.; Sacher, F.; Baus, C.; Brauch, H.-J.

    2003-04-01

    In Germany and other highly populated countries, several waterworks use riverbank filtration as a first step in the treatment of river water for water supplies. Unfortunately, industrial and municipal discharges and the influence of agriculture lead to the pollution of rivers and lakes by a number of organic chemicals. In order to assess the impact of those organic micropollutants on the quality of drinking water, it is necessary to clarify their fate during infiltration and underground passage. The fate of organic micropollutants in a river water-groundwater infiltration system is mainly determined by adsorption mechanisms and biological transformations. One possibility to simulate the microbial degradation of single compounds during riverbank filtration is the use of laboratory test filter systems, that are operated as biological fixed-bed reactors under aerobic conditions. The benefit and meaningfulness of those test filters was evaluated on the basis of selected target compounds by comparing the results derived from test filter experiments with field studies under environmental conditions at the River Rhine. Samples from the river and from groundwater of a well characterized aerobic infiltration pathway were analyzed over a time period of several years for a spectrum of organic micropollutants. Target compounds comprised several contaminants relevant for the aquatic environment, such as complexing agents, aromatic sulfonates, pharmaceuticals (including iodinated X ray contrast media), and MTBE. Furthermore, the behaviour of some target compounds during aerobic riverbank filtration was compared to their fate along a section of an anaerobic (oxygen-depleted) aquifer at the River Ruhr that is characterized by a transition state between sulfate reduction and methane production. While some organic micropollutants showed no major differences, the elimination of others turned out to be clearly dependent on the underlying redox processes in the groundwater. The

  17. Development of a Model for a Continuous Ultra-Filtration System

    DEFF Research Database (Denmark)

    Jhamb, Spardha Virendra; Gani, Rafiqul; Rype, Jens-Ulrik

    Due to the wide applicability and simplicity of the ultra-filtration process, it is currently being used in a variety of commercial processes for the purpose of separation and concentration of valuable products and/or recovery of raw materials from dilute systems [1]. A predictive model......) system consisting of different geometry (and ‘N’ membrane stacks) used for the concentration of enzyme solutions from a known inlet concentration to a desired (target) outlet concentration during the recovery and/or downstream processing of enzymes. The envisaged purpose of this model is to improve...... for a system derived from first principles, is instrumental in evading the costs of conducting time-consuming experiments while also allowing one to not be dependent on a trial and error analysis approach. The validated final model can serve to understand the operational issues of the process and from...

  18. Experimental results of rectification and filtration from an offshore wave energy system

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, C.; Staalberg, M.; Thorburn, K.; Leijon, M. [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity Research, Department of Engineering Science, Uppsala University, Box 534, 75121 Uppsala (Sweden); Lejerskog, E. [Seabased Industry AB, Dag Hammarskjoelds vaeg 52b, 75183 Uppsala (Sweden)

    2009-05-15

    The present paper presents results from a wave energy conversion that is based on a direct drive linear generator. The linear generator is placed on the seabed and connected to a buoy via a rope. Thereby, the natural wave motion is transferred to the translator by the buoy motion. When using direct drive generators, voltage and current output will have varying frequency and varying amplitude and the power must be converted before a grid connection. The electrical system is therefore an important part to study in the complete conversion system from wave energy to grid connected power. This paper will bring up the first steps in the conversion: rectification and filtration of the power. Both simulation studies and offshore experiments have been made. The results indicate that this kind of system works in a satisfactory way and a smooth DC power can be achieved with one linear generator. (author)

  19. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran; Fortunato, Luca; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  20. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran

    2017-04-21

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  1. Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems.

    Science.gov (United States)

    Zhang, Yanyan; Hunt, Heather K; Hu, Zhiqiang

    2013-09-01

    Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial

  2. Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters.

    Science.gov (United States)

    Zheng, Junjian; Wang, Zhiwei; Ma, Jinxing; Xu, Shaoping; Wu, Zhichao

    2018-04-03

    Inability to remove low-molecular-weight anthropogenic contaminants is a critical issue in low-pressure membrane filtration processes for water treatment. In this work, a novel electrochemical ceramic membrane filtration (ECMF) system using TiO 2 @SnO 2 -Sb anode was developed for removing persistent p-chloroaniline (PCA). Results showed that the ECMF system achieved efficient removal of PCA from contaminated waters. At a charging voltage of 3 V, the PCA removal rate of TiO 2 @SnO 2 -Sb ECMF system under flow-through mode was 2.4 times that of flow-by mode. The energy consumption for 50% of PCA removal for TiO 2 @SnO 2 -Sb ECMF at 3 V under flow-through mode was 0.38 Wh/L, much lower than that of flow-by operation (1.5 Wh/L), which was attributed to the improved utilization of the surface adsorbed HO· and dissociated HO· driven by the enhanced mass transfer of PCA toward the anode surface. Benefiting from the increased production of reactive oxygen species such as O 2 •- , H 2 O 2 , and HO· arising from excitation of anatase TiO 2 , TiO 2 @SnO 2 -Sb ECMF exhibited a superior electrocatalytic activity to the SnO 2 -Sb ECMF system. The degradation pathways of PCA initiated by OH· attack were further proposed, with the biodegradable short-chain carboxylic acids (mainly formic, acetic, and oxalic acids) identified as the dominant oxidized products. These results highlight the potential of the ECMF system for cost-effective water purification.

  3. Commissioning of the first U.S. hollow fiber condensate filtration system

    International Nuclear Information System (INIS)

    Wilson, John A.; Mura, Michelle; Garcia, Susan E.; Giannelli, Joseph F.

    2008-01-01

    Exelon Corporation's Oyster Creek Generating Station, a boiling water reactor (BWR), is the first nuclear plant in the U.S. to install and operate a condensate filtration system using HFF (hollow fiber filter) technology developed in Japan. Oyster Creek is a 640 MW (electric)/1 930 MW (thermal) General Electric BWR-2 (non-jet pump plant) with cascaded heater drains. The plant began commercial operation in 1969, and is one of the two oldest operating commercial BWRs in the U.S. Both noble metal chemical addition (NMCA) and hydrogen injection are used for intergranular stress corrosion cracking (IGSCC) mitigation, and depleted zinc oxide (DZO) is injected for drywell radiation field control. The HFF filters, which were installed in preparation for the operating license renewal, were commissioned in November 2007 and are designed to treat 3 639 m 3 . h -1 (16 020 gallons per minute) using a total filtration surface area of 9 457 m 2 (101 796 ft 2 ). The particle retention rating of the hollow fibers is 0.14 μm, which is considerably smaller than the rating of 1-4 μm for filters commonly used in U.S. condensate filtration applications. System performance and monitoring results during the initial year of operation are reported, including the use of a special hollow fiber health monitoring sampling system. Feedwater and reactor water chemistry control and monitoring strategies and results are discussed, including the effects of the transition from the highest feedwater iron to among the lowest in the U.S. BWR fleet. The projected annual average feedwater iron concentration is -1 . Data on the impact of low iron operation on reactor coolant activated corrosion products and the ratio of 60 Co(soluble)/Zn(soluble), the key parameter used to suppress drywell radiation dose rates, are presented. The zinc control strategy and results are presented, including the effect of low feedwater iron on the reactor water to feedwater zinc concentration factor. The potential need and

  4. Ultrafine portland cement performance

    Directory of Open Access Journals (Sweden)

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  5. Preparation of a ceramic superconductor from ultrafine particles by freeze-dry process in Ba-Y-Cu-O system

    International Nuclear Information System (INIS)

    Chen Zuyao; Qian Yitai; Wan Yanjian; Rong Jingfang; Zhang Han; Pan Guoqiang; Zhao Yong; Zhang Qirui

    1989-01-01

    Freeze-dry technique is first reported for preparing ceramic ultrafines. The single-phase complex oxide Ba 2 YCu 3 O/sub 9-δ/, a poly-crystallized compound, and ceramic superconductor have been synthesized successfully. The experimental results show that not only is the ceramic superconductor obtained uniform with fine particles and excellent superconductivity, but the conditions for solid reactions are relatively limited

  6. Bromate formation in a hybrid ozonation-ceramic membrane filtration system.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2011-11-01

    The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Concepts for passive heat removal and filtration systems under core meltdown conditions

    International Nuclear Information System (INIS)

    Wilhelm, J.G.; Neitzel, H.-J.

    1993-01-01

    The objective of the new containment concept being developed by KfK is the complete passive enclosure of a power reactor after a core meltdown accident by means of a solid containment structure and passive removal of the decay heat. This is to be accomplished by cooling the containment walls with ambient air, with thermoconvection as the driving force. The concept of the containment is described. Data are given of the heat removal and the requirements for filtration of the exhaust air, which is contaminated due to the leak rate assumed for the inner containment. The concept for the filter system is described. Various solutions for reduction of the large volumetric flow to be filtered are discussed. 3 refs., 8 figs

  8. New filtration system for efficient recovery of waterborne Cryptosporidium oocysts and Giardia cysts

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Gad, J. A.; Riber, Ulla

    2015-01-01

    -)cysts (1x10(2); 10 replicates) was successfully amplified using real-time PCR.ConclusionsThe use of a metallic filter, sonication and air backwash' were key factors for creating a highly efficient system for recovery of apparently undamaged protozoa.Significance and Impact of the StudyThis reagent......AimsTo develop a filtration unit for efficient recovery of waterborne Cryptosporidium oocysts and Giardia cysts ((oo-)cysts) in drinking water.Methods and ResultsThis unit utilizes a metallic filter and an ultrasound transducer for eluting (oo-)cysts, with a fixed retentate backwash volume; approx....... 400l. Changes in the viability was evaluated by seeding wild type (oo-)cysts (1x10(4)) followed by sonication for 5, 10, 20 or 40s (five replicates for each period). Flow cytometry analysis showed negligible increase in the mortality of (oo-)cysts exposed to 5-10s of sonication. Recovery rate...

  9. Risks associated with volcanic ash fallout from Mt.Etna with reference to industrial filtration systems

    International Nuclear Information System (INIS)

    Milazzo, Maria Francesca; Ancione, Giuseppa; Salzano, Ernesto; Maschio, Giuseppe

    2013-01-01

    The recent eruption of the Icelandic volcano has focused the worldwide attention on volcanic ash effects for the population, road, rail and air traffic and production activities. This paper aims to study of technological (industrial) accidental scenarios triggered by ash fallout and, more specifically, to define and quantify the potential damage on filtration systems. Malfunctions due to the filter clogging and service interruptions caused by the rupture of the filtering surface have been analysed in order to define the vulnerability of the equipment to such damages. Results are given in terms of threshold values of deposit on the filtering surface and exceedance probability curves of ash concentrations and the duration of the ash emission. This data can be easily implemented in the standard risk assessment with the aim to include the estimation of Natural-Technological (Na-Tech) hazards

  10. Feasibility Analysis of a Seabed Filtration Intake System for the Shoaiba III Expansion Reverse Osmosis Plant

    KAUST Repository

    Rodríguez, Luis Raúl

    2012-06-01

    The ability to economically desalinate seawater in arid regions of the world has become a vital advancement to overcome the problem on freshwater availability, quality, and reliability. In contrast with the major capital and operational costs for desalination plants represented by conventional open ocean intakes, subsurface intakes allow the extraction of high quality feed water at minimum costs and reduced environmental impact. A seabed filter is a subsurface intake that consists of a submerged slow sand filter, with benefits of organic matter removal and pathogens, and low operational cost. A site investigation was carried out through the southern coast of the Red Sea in Saudi Arabia, from King Abdullah University of Science and Technology down to 370 kilometers south of Jeddah. A site adjacent to the Shoaiba desalination plant was selected to assess the viability of constructing a seabed filter. Grain sieve size analysis, porosity and hydraulic conductivity permeameter measurements were performed on the collected sediment samples. Based on these results, it was concluded that the characteristics at the Shoaiba site allow for the construction of a seabed filtration system. A seabed filter design is proposed for the 150,000 m3/d Shoaiba III expansion project, a large-scale Reverse Osmosis desalination plant. A filter design with a filtration rate of 7 m/d through an area of 6,000 m2 is proposed to meet the demand of one of the ten desalination trains operating at the plant. The filter would be located 90 meters offshore where hydraulic conductivity of the sediment is high, and mud percentage is minimal. The thin native marine sediment layer is insufficient to provide enough water filtration, and consequently the proposed solution involves excavating the limestone rock and filling it with different layers of non-native sand and gravel of increasing grain size. An initial assessment of the area around Shoaiba showed similar sedimentological conditions that could

  11. Longitudinal associations of long-term exposure to ultrafine particles with blood pressure and systemic inflammation in Puerto Rican adults.

    Science.gov (United States)

    Corlin, Laura; Woodin, Mark; Hart, Jaime E; Simon, Matthew C; Gute, David M; Stowell, Joanna; Tucker, Katherine L; Durant, John L; Brugge, Doug

    2018-04-05

    Few longitudinal studies have examined the association between ultrafine particulate matter (UFP, particles blood pressure and high sensitivity C-reactive protein (hsCRP, a biomarker of systemic inflammation). Residential annual average UFP exposure (measured as particle number concentration, PNC) was assigned using a model accounting for spatial and temporal trends. We also adjusted PNC values for participants' inhalation rate to obtain the particle inhalation rate (PIR) as a secondary exposure measure. Multilevel linear models with a random intercept for each participant were used to examine the association of UFP with blood pressure and hsCRP. Overall, in adjusted models, an inter-quartile range increase in PNC was associated with increased hsCRP (β = 6.8; 95% CI = - 0.3, 14.0%) but not with increased systolic blood pressure (β = 0.96; 95% CI = - 0.33, 2.25 mmHg), pulse pressure (β = 0.70; 95% CI = - 0.27, 1.67 mmHg), or diastolic blood pressure (β = 0.55; 95% CI = - 0.20, 1.30 mmHg). There were generally stronger positive associations among women and never smokers. Among men, there were inverse associations of PNC with systolic blood pressure and pulse pressure. In contrast to the primary findings, an inter-quartile range increase in the PIR was positively associated with systolic blood pressure (β = 1.03; 95% CI = 0.00, 2.06 mmHg) and diastolic blood pressure (β = 1.01; 95% CI = 0.36, 1.66 mmHg), but not with pulse pressure or hsCRP. We observed that exposure to PNC was associated with increases in measures of CVD risk markers, especially among certain sub-populations. The exploratory PIR exposure metric should be further developed.

  12. Experimental study on filtration and continuous regeneration of a particulate filter system for heavy-duty diesel engines.

    Science.gov (United States)

    Tang, Tao; Zhang, Jun; Cao, Dongxiao; Shuai, Shijin; Zhao, Yanguang

    2014-12-01

    This study investigated the filtration and continuous regeneration of a particulate filter system on an engine test bench, consisting of a diesel oxidation catalyst (DOC) and a catalyzed diesel particulate filter (CDPF). Both the DOC and the CDPF led to a high conversion of NO to NO2 for continuous regeneration. The filtration efficiency on solid particle number (SPN) was close to 100%. The post-CDPF particles were mainly in accumulation mode. The downstream SPN was sensitively influenced by the variation of the soot loading. This phenomenon provides a method for determining the balance point temperature by measuring the trend of SPN concentration. Copyright © 2014. Published by Elsevier B.V.

  13. Hemocompatibility of ultrafine systems on the basis of chitosan and its derivatives polymer-colloid complexes

    Directory of Open Access Journals (Sweden)

    M.V. Bazunova

    2015-03-01

    Full Text Available This article presents the results of the development process for the preparation of micro and nano-sized polymer-colloid com-plexes (РСС on the basis of water-soluble natural polymer chitosan (СTZ and the sodium salt of chitosan succinylamid (SСTZ with silver halide sols in aqueous media. Results of research of СTZ, sodium salt of SСTZ solutions and PСС of CTZ and SСTZ with colloidal parti-cles of silver iodide influence on structurally-functional properties of erythrocytes’ membranes on model of acidic hemolisis are presented in the article. Their influence on the nature of erythrocytes distribution by degree of their stability and on kinetic parameters (the beginning, intensity and completion of process of their destruction under the influence of the damaging agent (HCl is shown. The comparative analysis of results convinces that СTZ, SСTZ solutions and disperse systems on the basis of PСС of СTZ and SСTZ with colloidal particles of the silver iodide are capable of modulating variously matrix properties of erythrocytes of blood.

  14. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    Science.gov (United States)

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  15. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV systems.

    Directory of Open Access Journals (Sweden)

    Bing Feng Ng

    Full Text Available The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  16. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  17. Quantitative measurement and visualization of biofilm O 2 consumption rates in membrane filtration systems

    KAUST Repository

    Prest, Emmanuelle I E C

    2012-03-01

    There is a strong need for techniques enabling direct assessment of biological activity of biofouling in membrane filtration systems. Here we present a new quantitative and non-destructive method for mapping O 2 dynamics in biofilms during biofouling studies in membrane fouling simulators (MFS). Transparent planar O 2 optodes in combination with a luminescence lifetime imaging system were used to map the two-dimensional distribution of O 2 concentrations and consumption rates inside the MFS. The O 2 distribution was indicative for biofilm development. Biofilm activity was characterized by imaging of O 2 consumption rates, where low and high activity areas could be clearly distinguished. The spatial development of O 2 consumption rates, flow channels and stagnant areas could be determined. This can be used for studies on concentration polarization, i.e. salt accumulation at the membrane surface resulting in increased salt passage and reduced water flux. The new optode-based O 2 imaging technique applied to MFS allows non-destructive and spatially resolved quantitative biological activity measurements (BAM) for on-site biofouling diagnosis and laboratory studies. The following set of complementary tools is now available to study development and control of biofouling in membrane systems: (i) MFS, (ii) sensitive pressure drop measurement, (iii) magnetic resonance imaging, (iv) numerical modelling, and (v) biological activity measurement based on O 2 imaging methodology. © 2011 Elsevier B.V.

  18. Evaluation of innovative operation concept for flat sheet MBR filtration system.

    Science.gov (United States)

    Weinrich, L; Grélot, A

    2008-01-01

    One of the most limiting factors for the extension and acceptance of MBR filtration systems for municipal and industrial wastewater is the impact of membrane fouling on maintenance, operation and cleaning efforts. One field of action in the European Research Project "AMEDEUS" is the development and testing of MBR module concepts with innovative fouling-prevention technology from three European module manufacturers. This article deals with the performances of the flat-sheet modules by A3 Water Solutions GmbH in double-deck configuration evaluated over 10 months in Anjou Recherche under typical biological operation conditions for MBR systems (MLSS = 10 g/l; SRT = 25 days). By using a double-deck configuration, it is possible to operate with a net flux of 25.5 l/m2.h at 20 degrees C, a membrane air flow rate of 0.21 Nm3/h.m2 of membrane to achieve a stable permeability of around 500-600 l/m2.h.bar. Additionally, it was observed that it is possible to recover the membrane performance after biofouling during operation without intensive cleaning and to maintain stable permeability during peak flows. The evaluated concepts for equipping and operating MBR systems will be applied to several full-scale plants constructed by A3 Water Solutions GmbH.

  19. Acceptance and Impact of Point-of-Use Water Filtration Systems in Rural Guatemala.

    Science.gov (United States)

    Larson, Kim L; Hansen, Corrie; Ritz, Michala; Carreño, Diego

    2017-01-01

    Infants and children in developing countries bear the burden of diarrheal disease. Diarrheal disease is linked to unsafe drinking water and can result in serious long-term consequences, such as impaired immune function and brain growth. There is evidence that point-of-use water filtration systems reduce the prevalence of diarrhea in developing countries. In the summer of 2014, following community forums and interactive workshops, water filters were distributed to 71 households in a rural Maya community in Guatemala. The purpose of this study was to evaluate the uptake of tabletop water filtration systems to reduce diarrheal diseases. A descriptive correlational study was used that employed community partnership and empowerment strategies. One year postintervention, in the summer of 2015, a bilingual, interdisciplinary research team conducted a house-to-house survey with families who received water filters. Survey data were gathered from the head of household on family demographics, current family health, water filter usage, and type of flooring in the home. Interviews were conducted in Spanish and in partnership with a village leader. Each family received a food package of household staples for their participation. Descriptive statistics were calculated for all responses. Fisher's exact test and odds ratios were used to determine relationships between variables. Seventy-nine percent (n = 56) of the 71 households that received a water filter in 2014 participated in the study. The majority of families (71.4%; n = 40) were using the water filters and 16 families (28.6%) had broken water filters. Of the families with working water filters, 15% reported diarrhea, while 31% of families with a broken water filter reported diarrhea. Only 55.4% of the homes had concrete flooring. More households with dirt flooring and broken water filters reported a current case of diarrhea. A record review of attendees at an outreach clinic in this village noted a decrease in intestinal

  20. High speed municipal sewage treatment in microbial fuel cell integrated with anaerobic membrane filtration system.

    Science.gov (United States)

    Lee, Y; Oa, S W

    2014-01-01

    A cylindrical two chambered microbial fuel cell (MFC) integrated with an anaerobic membrane filter was designed and constructed to evaluate bioelectricity generation and removal efficiency of organic substrate (glucose or domestic wastewater) depending on organic loading rates (OLRs). The MFC was continuously operated with OLRs 3.75, 5.0, 6.25, and 9.38 kg chemical oxygen demand (COD)/(m(3)·d) using glucose as a substrate, and the cathode chamber was maintained at 5-7 mg/L of dissolved oxygen. The optimal OLR was found to be 6.25 kgCOD/(m(3)·d) (hydraulic retention time (HRT) 1.9 h), and the corresponding voltage and power density averaged during the operation were 0.15 V and 13.6 mW/m(3). With OLR 6.25 kgCOD/(m(3)·d) using domestic wastewater as a substrate, the voltage and power reached to 0.13 V and 91 mW/m(3) in the air cathode system. Even though a relatively short HRT of 1.9 h was applied, stable effluent could be obtained by the membrane filtration system and the following air purging. In addition, the short HRT would provide economic benefit in terms of reduction of construction and operating costs compared with a conventional aerobic treatment process.

  1. Design of the monitoring system at the Sant'Alessio induced riverbank filtration plant (Lucca, Italy)

    Science.gov (United States)

    Rossetto, Rudy; Barbagli, Alessio; Borsi, Iacopo; Mazzanti, Giorgio; Picciaia, Daniele; Vienken, Thomas; Bonari, Enrico

    2015-04-01

    In Managed Aquifer Recharge (MAR) schemes the monitoring system, for both water quality and quantity issues, plays a key role in assuring that a groundwater recharge plant is really managed. Considering induced Riverbank Filtration (RBF) schemes, while the effect of the augmented filtration consists in an improvement of the quality and quantity of the water infiltrating the aquifer, there is in turn the risk for groundwater contamination, as surface water bodies are highly susceptible to contamination. Within the framework of the MARSOL (2014) EU FPVII-ENV-2013 project, an experimental monitoring system has been designed and will be set in place at the Sant'Alessio RBF well field (Lucca, Italy) to demonstrate the sustainability and the benefits of managing induced RBF versus the unmanaged option. The RBF scheme in Sant'Alessio (Borsi et al. 2014) allows abstraction of an overall amount of about 0,5 m3/s groundwater providing drinking water for about 300000 people of the coastal Tuscany. Water is derived by ten vertical wells set along the Serchio River embankments inducing river water filtration into a high yield (10-2m2/s transmissivity) sand and gravel aquifer. Prior to the monitoring system design, a detailed site characterization has been completed taking advantage of previous and new investigations, the latter performed by means of MOSAIC on-site investigation platform (UFZ). A monitoring network has been set in place in the well field area using existing wells. There groundwater head and the main physico-chemical parameters (temperature, pH, dissolved oxygen, electrical conductivity and redox potential) are routinely monitored. Major geochemical compounds along with a large set of emerging pollutants are analysed (in cooperation with IWW Zentrum Wasser, Germany) both in surface-water and ground-water. The experimental monitoring system (including sensors in surface- and ground-water) has been designed focusing on managing abstraction efficiency and safety at

  2. Removal of Escherichia coli via low frequency electromagnetic field in riverbank filtration system.

    Science.gov (United States)

    Selamat, Rossitah; Abustan, Ismail; Rizal Arshad, Mohd; Mokhtar Kamal, Nurul Hana

    2018-04-01

    The removal of Escherichia coli (E. coli) via low frequency of electromagnetic field (LF-EMF) with different magnetic field was studied. LF-EMF is known as a high magnetic susceptibility method, which could affect E. coli growth without the usage of chemicals. The aim of this study was to investigate the removal of E. coli by using LF-EMF in water abstraction for the riverbank filtration (RBF) application. The effect of LF-EMF with the intensity of 2 to 10mT and 50Hz on coiled column of 1mm copper wire at 1 to 6 hours was assessed. The removal of E. coli after exposing to LF-EMF on the column model was measured using most probable number (MPN/100mL) and colonies forming unit (CFU/100mL) methods. Water flows into the column were varied up to 6 hours and with flowrate of 100 mL/min. Experimental results demonstrate that 100% of E. coli was removed at 8mT after 6 hours exposure. The magnetic field at 10mT removed 100% of E. coli after 4 hours exposure. The results obtained in this study proved that the LF-EMF was efficient in E. coli removal from RBF system. These finding indicated that the LF-EMF intensities and time of exposure can affect the removal of E. coli.

  3. Results of laboratory tests on a robust filtration system for PWR containments in the case of a serious accident

    International Nuclear Information System (INIS)

    L'Homme, A.; Berlin, M.; Beraud, G.

    1986-01-01

    A study is currently in progress in France on a simple filtration process using sand as a filtration medium which, in the event of a serious accident leading to core meltdown in a pressurized water reactor, will permit controlled and filtered releases from the containment. Laboratory tests on sand filters for aerosols have been conducted. The tests involved the use of columns of sand, 80 cm high and 20 cm in diameter, under conditions which were similar to those inside the containment of a PWR in which a serious accident has occurred. The sand granulometry, the aerosol particle size and the flow rate and steam content of the fluid to be filtered were variable parameters. The results obtained from the experiment showed that as a filtration medium for this simple filter system for reactors a sand obtainable from the Cattenom quarry was most suitable. For this sand the filtration coefficient for aerosols is greater than 10 and the pressure drop is less than 10 4 pascals. Experience has also shown that there is no risk, under the operating conditions envisaged, that the filter will become clogged by aerosols or steam from condensed water or that there will be any major escape of aerosols retained during long-term operation of the filter or caused by the vaporisation of the condensed water. A larger scale experiment is already being carried out. (author)

  4. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  5. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  6. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    Science.gov (United States)

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  7. Integration of sand and membrane filtration systems for iron and pesticide removal without chemical addition

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2013-01-01

    the content of key foulants, the techniques can be used as a pre-treatment for nanofiltration and low pressure reverse osmosis that has proved to be capable of removing pesticides. It was found that a lower fouling potential could be obtained by using the membranes, but that sand filter was better at removing......Pilot plant investigations of sand and membrane filtration (MF/UF/NF/LPRO) have been performed to treat groundwater polluted with pesticides. The results show that simple treatment, with use of aeration and sand filtration or MF/UF membranes, does not remove pesticides. However, by reducing...... manganese and dissolved organic matter. The results indicate that combining aeration; sand filtration and membrane techniques might be a good option for pesticide removal without any addition of chemicals and minimized membrane maintenance....

  8. [A technological study on the extraction of ultra-fine powder of Panax notoginsen].

    Science.gov (United States)

    Huang, Yaohai; Huang, Mingqing; Zeng, Huifang; Guo, Wei; Xi, Ping

    2005-12-01

    To investigate the extraction of ultra-fine powder Panax notoginsen. The extraction rate of ginseng saponin Rg1, Re, Rb1, notoginseng saponin R1 and filtrated time were determined by alcoholic and aqueous extraction of Panax notoginsen in tablet, coarse powder, ultra-fine powder and recostitution granules of ultra-fine powder. The filtered time of ultra-fine powder of Panax notoginsen extraction and that of the tablet of Panax notoginsen extraction were similar, while the extraction rates of various saponins of it were high. The method of aqueous extrction in ltra-fine powder of Panax notoginsen is easy in filtrationer, higher in extraction rate of Panax notoginsen and lower in production cost.

  9. Effect of operation parameters on the flux stabilization of gravity-driven membrane (GDM) filtration system for decentralized water supply.

    Science.gov (United States)

    Tang, Xiaobin; Ding, An; Qu, Fangshu; Jia, Ruibao; Chang, Haiqing; Cheng, Xiaoxiang; Liu, Bin; Li, Guibai; Liang, Heng

    2016-08-01

    A pilot-scale gravity-driven membrane (GDM) filtration system under low gravitational pressure without any pre-treatment, backwash, flushing, or chemical cleaning was carried out to investigate the effect of operation parameters (including operation pressure, aeration mode, and intermittent filtration) on the effluent quality and permeability development. The results revealed that GDM system exhibited an efficient performance for the removal of suspended substances and organic compounds. The stabilization of flux occurred and the average values of stable flux were 6.6, 8.1, and 8.6 Lm(-2) h(-1) for pressures of 65, 120, and 200 mbar, respectively. In contrast, flux stabilization was not observed under continuous and intermittent aeration conditions. However, aeration (especially continuous aeration) was effective to improve flux and alleviate membrane fouling during 1-month operation. Moreover, intermittent filtration would influence the stabilization of permeate flux, resulting in a higher stable flux (ranging from 6 to 13 Lm(-2) h(-1)). The stable flux significantly improved with the increase of intermittent period. Additionally, GDM systems exhibited an efficient recovery of flux after simple physical cleaning and the analyses of resistance reversibility demonstrated that most of the total resistance was hydraulic reversible resistance (50-75 %). Therefore, it is expected that the results of this study can develop strategies to increase membrane permeability and reduce energy consumption in GDM systems for decentralized water supply.

  10. TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES DONALDSON COMPANY INC.SERIES 6000 DISEL OXIDATION CATALYST MUFFLER AND SPIRACLE CLOSED CRANKCASE FILTRATION SYSTEM

    Science.gov (United States)

    This report is on testing of a Donaldson Corp. catalytic muffler and closed crankcase filtration system for diesel trucks. It verified the emissions for these systems using low sufur and ultra low sulfur fuel.

  11. A conceptual study of the filtration equipment arrangement in CFVS system

    International Nuclear Information System (INIS)

    Kim, Hyun-Soo; Lee, Jong- Wook; Kim, Won-Seok

    2014-01-01

    Containment Filtered Venting System (CFVS) is installed in nuclear power plant to protect the integrity of containment against the over pressurization and removal of fission product which are aerosol, vapor and gaseous forms release from the fuel into the containment. CFVS has filtering process in two step. In step one, the multi-venturi scrubber for removing aerosol. The venting gas entering the venturi scrubber is injected into a pool of water via a small number of nozzles. Due to the large difference between the velocity of the scrubbing water droplet and gas velocity, aerosols are removed. So the maximum gas velocity of throat is to affect the performance is an important factor in the venturi scrubber. For this reason, composition of distribution pipe and location of scrubber is important, because read to a flow rate different in each venture scrubber. In step two, the metal filter combination additionally equipped with metal fibers and cyclone device. The gas exiting from the pool venturi section contains small amounts of penetrating aerosols as well as small scrubbing water droplets. In case that water droplet moves to metal filter unseparated, filtering performance is rapidly declined. Cyclone is used to prevent the water droplets on the metal filter, separating the droplet including radioactivity which is passed through scrubber by centrifugal force. Therefore separating droplet phase in cyclone is the important thing in aerosol filtering phases although radioactive is not separated. In this study, we found a conceptual design alternative for CFVS performance increasing by reviewing the optimal composition of cyclone and optimal design of distribution pipe with numerical analysis. Numerical analysis was performed with the relationship between the distributions of the flow to the nozzle arrangement in accordance with the size of the distribution pipes, so that the optimal performance of the scrubber can be installed in CFVS. As a result, a high filtration

  12. A conceptual study of the filtration equipment arrangement in CFVS system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Soo; Lee, Jong- Wook; Kim, Won-Seok [BHI, Changwon (Korea, Republic of)

    2014-10-15

    Containment Filtered Venting System (CFVS) is installed in nuclear power plant to protect the integrity of containment against the over pressurization and removal of fission product which are aerosol, vapor and gaseous forms release from the fuel into the containment. CFVS has filtering process in two step. In step one, the multi-venturi scrubber for removing aerosol. The venting gas entering the venturi scrubber is injected into a pool of water via a small number of nozzles. Due to the large difference between the velocity of the scrubbing water droplet and gas velocity, aerosols are removed. So the maximum gas velocity of throat is to affect the performance is an important factor in the venturi scrubber. For this reason, composition of distribution pipe and location of scrubber is important, because read to a flow rate different in each venture scrubber. In step two, the metal filter combination additionally equipped with metal fibers and cyclone device. The gas exiting from the pool venturi section contains small amounts of penetrating aerosols as well as small scrubbing water droplets. In case that water droplet moves to metal filter unseparated, filtering performance is rapidly declined. Cyclone is used to prevent the water droplets on the metal filter, separating the droplet including radioactivity which is passed through scrubber by centrifugal force. Therefore separating droplet phase in cyclone is the important thing in aerosol filtering phases although radioactive is not separated. In this study, we found a conceptual design alternative for CFVS performance increasing by reviewing the optimal composition of cyclone and optimal design of distribution pipe with numerical analysis. Numerical analysis was performed with the relationship between the distributions of the flow to the nozzle arrangement in accordance with the size of the distribution pipes, so that the optimal performance of the scrubber can be installed in CFVS. As a result, a high filtration

  13. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems

    OpenAIRE

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle cl...

  14. Redundant filtration system of the fuel buildings,units 1 and 2 Almaraz NPP

    International Nuclear Information System (INIS)

    Lopez Tanco, J.

    2011-01-01

    The project redundant filtering fuel buildings in units 1 and 2 of Almaraz NPP, will compliance to the requirements established in the complementary technical instructions to the authorization of exploitation of Almaraz NPP, established by the CSN and will consist of the installation of a new filtration unit.

  15. Framework for feasibility assessment and performance analysis of riverbank filtration systems for water treatment

    KAUST Repository

    Sharma, Saroj K.; Chaweza, Daniel; Bosuben, Nelson; Holzbecher, Ekkehard; Amy, Gary L.

    2012-01-01

    Bank filtration (BF) is an attractive, robust and reliable water treatment technology. It has been used in Europe and USA for a long time; however experience with this technology so far is site specific. There are no guidelines or tools for transfer

  16. THE PERSISTENCE OF MYCOBACTERIUM AVIUM IN A DRINKING WATER SYSTEM AFTER THE ADDITION OF FILTRATION

    Science.gov (United States)

    Drinking water is increasingly recognized as a major source of pathogenic nontuberculous mycobacteria (NTM) associated with human infection. Our goal was to determine if the prevalence of NTM would decrease after the addition of filtration treatment to an unfiltered surface water...

  17. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.

    2008-01-01

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  18. A new concept for filtration units for trapping radioactive aerosols and iodine in the ventilation systems of nuclear power plants with WWER reactors

    International Nuclear Information System (INIS)

    Foerster, V.; Slanina, S.

    1985-01-01

    The paper describes a concept for new filtration units in the ventilation systems of nuclear power plants with WWER reactors. The new units are characterized by more stringent requirements on the efficiency of air purification (removal of radioactive contaminants) and various requirements for the quality of air purification in the ventilation systems. Work performed at the Scientific Research Institute for Air Technology has resulted in filtration units of a universal modular type, the structural design of which permits a high degree of variation in their component parts. A brief description is given of the filtration units, their basic technical characteristics and examples of their use in nuclear power plant ventilation systems. (author)

  19. Epidemiological study of air filtration systems for preventing PRRSV infection in large sow herds.

    Science.gov (United States)

    Alonso, Carmen; Murtaugh, Michael P; Dee, Scott A; Davies, Peter R

    2013-10-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the most economically significant pathogen in the US swine industry. Aerosol transmission among herds is a major concern in pig dense regions and filtration of incoming air, in combination with standard biosecurity procedures, has been demonstrated to prevent transmission of PRRSV into susceptible herds. To quantify the impact of air filtration on reducing risk of PRRSV outbreaks, we compared the incidence rate of new PRRSV introductions in 20 filtered and 17 non-filtered control sow herds in a swine dense region of North America during a 7 year study period. Events of novel virus introduction were ascertained by phylogenetic analysis of PRRSV ORF5 gene sequences. Putative new viruses were defined as exogenous (introduced) based on ORF5 nucleotide sequence differences compared to previous farm isolates. The influence of sequence difference cut-off values ranging from 2 to 10% on case definition and relative risk were evaluated. Non-filtered farms incurred about 0.5 outbreaks per year, with a seasonal increase in risk in cooler periods. Baseline risk, prior to filtration, in treatment farms was approximately 0.75 per year, approximately 50% higher than in control farms. Air filtration significantly reduced risk of PRRSV introduction events to 0.06-0.22 outbreaks per year, depending on the cut-off values used to classify a virus isolate as new to the herd. Overall, air filtration led to an approximately 80% reduction in risk of introduction of novel PRRSV, indicating that on large sow farms with good biosecurity in swine-dense regions, approximately four-fifths of PRRSV outbreaks may be attributable to aerosol transmission. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Comparison of three different fat graft preparation methods: gravity separation, centrifugation, and simultaneous washing with filtration in a closed system.

    Science.gov (United States)

    Zhu, Min; Cohen, Steven R; Hicok, Kevin C; Shanahan, Rob K; Strem, Brian M; Yu, Johnson C; Arm, Douglas M; Fraser, John K

    2013-04-01

    Successful long-term volume retention of an autologous fat graft is problematic. The presence of contaminating cells, tumescent fluid, and free lipid in the graft contributes to disparate outcomes. Better preparation methods for the fat graft before transplantation may significantly improve results. Subcutaneous fat from 22 donors was divided and processed using various graft preparation methods: (1) no manipulation control, (2) gravity separation, (3) Coleman centrifugation, and (4) simultaneous washing with filtration using a commercially available system (Puregraft; Cytori Therapeutics, Inc., San Diego, Calif.). Fat grafts from various preparation methods were examined for free lipid, aqueous liquid, viable tissue, and blood cell content. Adipose tissue viability was determined by measuring glycerol release after agonist induction of lipolysis. All test graft preparation methods exhibited significantly less aqueous fluid and blood cell content compared with the control. Grafts prepared by washing with filtration exhibited significantly reduced blood cell and free lipid content, with significantly greater adipose tissue viability than other methods. Washing with filtration within a closed system produces a fat graft with higher tissue viability and lower presence of contaminants compared with grafts prepared by alternate methods.

  1. Geoelectrical Monitoring of Ammonium Sorption Processes in a Biochar Filtration System

    Science.gov (United States)

    Wang, S. L.; Osei, C.; Rabinovich, A.; Ntarlagiannis, D.; Rouff, A.

    2017-12-01

    With the rise of modern agriculture, nutrient pollution has become an increasingly important environmental concern. A common problem is excess nitrogen which agricultural livestock farms often generate in the form of ammonium (NH4+). This highly soluble ion is easily transported through runoff and leaching, leading to water supply contamination and soil fertility decline. Biochar is the carbon-rich product of thermal decomposition of biomass in an oxygen-free environment. It is primarily used as a soil enhancer with other applications currently under research. Biochar's unique characteristics such as high surface area, high sorption capacity and long term biological and chemical stability make it a prime candidate for environmental applications such as contaminant regulation and waste effluent treatment. The spectral induced polarization (SIP) method is an established geoelectrical method that has been increasingly used in environmental investigations. SIP is unique among geophysical methods because it is sensitive not only to the bulk properties of the medium under investigation but also to the interfacial properties (e.g., mineral-fluid). The unique properties that make biochar attractive for environmental use are associated with surface properties (e.g., surface area, surface charge, presence of functional groups) that are expected to have a profound effect on SIP signals. This study presents early results on the use of the SIP method to monitor ammonium recycling of swine wastewater in a biochar filtration system. SIP measurements were taken continuously as biochar-packed columns were first injected with an ammonium wastewater solution (sorption phase) and then an ammonium-free solution (desorption phase). Geochemical monitoring showed that outflow ammonium concentration decreased during the sorption phase and increased during the desorption phase. The collected SIP data appear to be in agreement with the geochemical monitoring, providing a temporally

  2. Filtration and compression of organic materials

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    is to use more simple systems. Dextran-MnO2 particles and polystyrene particles with a water-swollen polyacrylic acid shell have therefore been synthesised. These particles have been filtered and used to study the non-linear filtration behaviour. The compressibility of the formed cake has been investigated......The conventional filtration theory has been based on filtrations of incompressible particles such as anatase, kaolin and clay. The filtration models have later been used for organic slurries but can often not explain the observed experimental data. At constant pressure, the filtrate volume does...... and the discrepancy between the filtration theory and the observed filtration behaviour explained as a time-dependent collapse of the formed cake (creep). Thus, the creep phenomenon has been adopted in the conventional filtration models and it will be shown that the model can be used to simulate filtration data...

  3. Development of a low-cost biogas filtration system to achieve higher-power efficient AC generator

    Science.gov (United States)

    Mojica, Edison E.; Ardaniel, Ar-Ar S.; Leguid, Jeanlou G.; Loyola, Andrea T.

    2018-02-01

    The paper focuses on the development of a low-cost biogas filtration system for alternating current generator to achieve higher efficiency in terms of power production. A raw biogas energy comprises of 57% combustible element and 43% non-combustible elements containing carbon dioxide (36%), water vapor (5%), hydrogen sulfide (0.5%), nitrogen (1%), oxygen (0 - 2%), and ammonia (0 - 1%). The filtration system composes of six stages: stage 1 is the water scrubber filter intended to remove the carbon dioxide and traces of hydrogen sulfide; stage 2 is the silica gel filter intended to reduce the water vapor; stage 3 is the iron sponge filter intended to remove the remaining hydrogen sulfide; stage 4 is the sodium hydroxide solution filter intended to remove the elemental sulfur formed during the interaction of the hydrogen sulfide and the iron sponge and for further removal of carbon dioxide; stage 5 is the silica gel filter intended to further eliminate the water vapor gained in stage 4; and, stage 6 is the activated carbon filter intended to remove the carbon dioxide. The filtration system was able to lower the non-combustible elements by 72% and thus, increasing the combustible element by 54.38%. The unfiltered biogas is capable of generating 16.3 kW while the filtered biogas is capable of generating 18.6 kW. The increased in methane concentration resulted to 14.11% increase in the power output. The outcome resulted to better engine performance in the generation of electricity.

  4. Application of design for six sigma methodology on portable water filter that uses membrane filtration system: A preliminary study

    Science.gov (United States)

    Fahrul Hassan, Mohd; Jusoh, Suhada; Zaini Yunos, Muhamad; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.

    2017-09-01

    Portable water filter has grown significantly in recent years. The use of water bottles as a water drink stuff using hand pump water filtration unit has been suggested to replace water bottled during outdoor recreational activities and for emergency supplies. However, quality of water still the issue related to contaminated water due to the residual waste plants, bacteria, and so on. Based on these issues, the study was carried out to design a portable water filter that uses membrane filtration system by applying Design for Six Sigma. Design for Six Sigma methodology consists of five stages which is Define, Measure, Analyze, Design and Verify. There were several tools have been used in each stage in order to come out with a specific objective. In the Define stage, questionnaire approach was used to identify the needs of portable water filter in the future from potential users. Next, Quality Function Deployment (QFD) tool was used in the Measure stage to measure the users’ needs into engineering characteristics. Based on the information in the Measure stage, morphological chart and weighted decision matrix tools were used in the Analyze stage. This stage performed several activities including concept generation and selection. Once the selection of the final concept completed, detail drawing was made in the Design stage. Then, prototype was developed in the Verify stage to conduct proof-of-concept testing. The results that obtained from each stage have been reported in this paper. From this study, it can be concluded that the application of Design for Six Sigma in designing a future portable water filter that uses membrane filtration system is a good start in looking for a new alternative concept with a completed supporting document.

  5. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    Science.gov (United States)

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  6. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    International Nuclear Information System (INIS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO 2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95%.

  7. Preliminary Study on Treatment of Palm Oil Mill Effluent (POME by Sand Filtration-DBD Plasma System

    Directory of Open Access Journals (Sweden)

    Ariadi Hazmi

    2016-02-01

    Full Text Available In the palm oil industry, open ponding, aerobic and anaerobic digestion, physicochemical treatment and membrane filtration are generally applied as conventional treatments of palm oil mill effluent (POME. In this study, a sand filtration-dielectric barrier discharge (DBD system was investigated as an alternative process for treating POME. This system can reduce land usage, processing time and costs compared to conventional systems. The removal efficiency of chemical oxygen demand (COD, biological oxygen demand (BOD5, and oil-grease in relation to the applied voltage were studied. Furthermore, the pH and temperature profiles were investigated. The obtained results indicate that the removal efficiency of COD, BOD5, and oil-grease increased with an increase of the applied voltage. The electrical energy consumption needed is about 10.56 kWh/L of POME.

  8. STEADY ESTIMATION ALGORITHMS OF THE DYNAMIC SYSTEMS CONDITION ON THE BASIS OF CONCEPTS OF THE ADAPTIVE FILTRATION AND CONTROL

    Directory of Open Access Journals (Sweden)

    H.Z. Igamberdiyev

    2014-07-01

    Full Text Available Dynamic systems condition estimation regularization algorithms in the conditions of signals and hindrances statistical characteristics aprioristic uncertainty are offered. Regular iterative algorithms of strengthening matrix factor elements of the Kalman filter, allowing to adapt the filter to changing hindrance-alarm conditions are developed. Steady adaptive estimation algorithms of a condition vector in the aprioristic uncertainty conditions of covariance matrixes of object noise and the measurements hindrances providing a certain roughness of filtration process in relation to changing statistical characteristics of signals information parameters are offered. Offered practical realization results of the dynamic systems condition estimation algorithms are given at the adaptive management systems synthesis problems solution by technological processes of granulation drying of an ammophos pulp and receiving ammonia.

  9. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    Science.gov (United States)

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China.

  10. Mixture based outlier filtration

    Czech Academy of Sciences Publication Activity Database

    Pecherková, Pavla; Nagy, Ivan

    2006-01-01

    Roč. 46, č. 2 (2006), s. 30-35 ISSN 1210-2709 R&D Projects: GA MŠk 1M0572; GA MDS 1F43A/003/120 Institutional research plan: CEZ:AV0Z10750506 Keywords : data filtration * system modelling * mixture models Subject RIV: BD - Theory of Information http://library.utia.cas.cz/prace/20060165.pdf

  11. Analysis of results obtained with different cutting techniques and associated filtration systems for the dismantling of radioactive metallic components

    International Nuclear Information System (INIS)

    Bach, F.W.; Steiner, H.; Schreck, G.

    1993-01-01

    The present joint study performed by the Commissariat a l'energie atomique and the Universitaet Hannover and coordinated by the Commission of the European Communities was intended to analyse the results generated in a number of research contracts concerned with cutting tests in air and underwater, with consideration of the prevailing working conditions. The analysis has led to a large database, giving broadly-assessed information for the dismantling of radioactive components. The range of study was enlarged, where possible, to include recently obtained results outside the present research programme, consideration also being given to supplementary cutting tools and filtration systems not covered by the present programme. Data was concentrated in structured information packages on practical experience available for a series of cutting tools and filters. These were introduced into a computerized user-friendly databank, to be considered as a first-stage development, which should be continuously updated and possibly oriented in the future to an expert system

  12. Performance modeling of industrial gas turbines with inlet air filtration system

    Directory of Open Access Journals (Sweden)

    Samuel O. Effiom

    2015-03-01

    Full Text Available The effect of inlet air filtration on the performance of two industrial gas turbines (GT is presented. Two GTs were modeled similar to GE LM2500+ and Alstom GT13 E2-2012, using TURBOMATCH and chosen to operate at environmental conditions of Usan offshore oilfield and Maiduguri dessert in Nigeria. The inlet pressure recovered (Precov from the selected filters used in Usan offshore, and Maiduguri ranged between 98.36≤Precov≤99.51% and 98.67≤Precov≤99.56% respectively. At reduced inlet Precov by 98.36% (1.66 kPa and, at a temperature above 15 °C (ISA, a reduction of 16.9%, and 7.3% of power output and efficiency was obtained using GT13 E2-2012, while a decrease of 14.8% and 4.7% exist for power output and efficiency with GE LM2500+. In addition, a reduction in mass flow rate of air and fuel under the same condition was between 4.3≤mair≤10.6% and 10.4≤mfuel≤11.5% for GT13 E2-2012 and GE LM2500+, correspondingly. However, the GE LM2500+ was more predisposed to intake pressure drops since it functioned at a higher overall pressure ratio. The results obtained were found worthwhile and could be the basis for filter selection and efficient compressor housing design in the locations concerned.

  13. Challenges and Approaches for Developing Ultrafine Particle Emission Inventories for Motor Vehicle and Bus Fleets

    Directory of Open Access Journals (Sweden)

    Diane U. Keogh

    2011-03-01

    Full Text Available Motor vehicles in urban areas are the main source of ultrafine particles (diameters < 0.1 µm. Ultrafine particles are generally measured in terms of particle number because they have little mass and are prolific in terms of their numbers. These sized particles are of particular interest because of their ability to enter deep into the human respiratory system and contribute to negative health effects. Currently ultrafine particles are neither regularly monitored nor regulated by ambient air quality standards. Motor vehicle and bus fleet inventories, epidemiological studies and studies of the chemical composition of ultrafine particles are urgently needed to inform scientific debate and guide development of air quality standards and regulation to control this important pollution source. This article discusses some of the many challenges associated with modelling and quantifying ultrafine particle concentrations and emission rates for developing inventories and microscale modelling of motor vehicles and buses, including the challenge of understanding and quantifying secondary particle formation. Recommendations are made concerning the application of particle emission factors in developing ultrafine particle inventories for motor vehicle fleets. The article presents a précis of the first published inventory of ultrafine particles (particle number developed for the urban South-East Queensland motor vehicle and bus fleet in Australia, and comments on the applicability of the comprehensive set of average particle emission factors used in this inventory, for developing ultrafine particle (particle number and particle mass inventories in other developed countries.

  14. Ultrafine particles in the atmosphere

    CERN Document Server

    Brown, L M; Harrison, R M; Maynard, A D; Maynard, R L

    2003-01-01

    Following the recognition that airborne particulate matter, even at quite modest concentrations, has an adverse effect on human health, there has been an intense research effort to understand the mechanisms and quantify the effects. One feature that has shone through is the important role of ultrafine particles as a contributor to the adverse effects of airborne particles. In this volume, many of the most distinguished researchers in the field provide a state-of-the-art overview of the scientific and medical research on ultrafine particles. Contents: Measurements of Number, Mass and Size Distr

  15. Biotic Iron Precipitation in Sand Filtration Systems by Gallionella ferruginea: Morphology and content of Exopolymers

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Charlotte

    conditions for principally biotic or abiotic iron precipitation is not well defined. An rH2 greater than 14 e.g. corresponding to an Eh a little above zero at slightly acidic pH is stated to be the best condition for biotic iron precipitation (Degremont, 1991). Abiotic iron precipitation is performed at a p...... are built with the purpose of biotic iron precipitation in order to reduce frequency of backwashing filtration systems. This is possibly due to the fact that biologically precipitated iron has a much denser structure than the corresponding abiotic precipitates (Søgaard et al. 2000). Both kinds of iron......-Peskir J. (2000) Conditions and rates of biotic and abiotic iron precipitation in selected Danish freshwater plants and microscopic analysis of precipitate morphology. Water Research, 34, 10, 2675-2682 Søgaard E.G., Aruna R., Abraham-Peskir, J. and Bender Koch, C. (2001) Conditions for iron precipitation...

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT HYDRO COMPLIANCE MANAGEMENT, INC. HYDRO-KLEEN FILTRATION SYSTEM, 03/07/WQPC-SWP, SEPTEMBER 2003

    Science.gov (United States)

    Verification testing of the Hydro-Kleen(TM) Filtration System, a catch-basin filter designed to reduce hydrocarbon, sediment, and metals contamination from surface water flows, was conducted at NSF International in Ann Arbor, Michigan. A Hydro-Kleen(TM) system was fitted into a ...

  17. Determination of formaldehyde in frozen fish with formaldehyde dehydrogenase using a flow injection system with an incorporated gel-filtration chromatrography column

    DEFF Research Database (Denmark)

    Bechmann, Iben Ell

    1996-01-01

    in a FIA system. The FIA system is furnished with a gel-filtration chromatography column for on-line removal of the proteins from the extract before the enzymatic analysis is performed. Compared with the standard methods for determination of formaldehyde in fish products the present method is much faster...

  18. Determination of Formaldehyde in Frozen Fish with Formaldehyde Dehydrogenase Using a Flow Injection System with an Incorporated Gel-filtration Chromatography Column

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard

    1996-01-01

    in a FIA system. The FIA system is furnished with a gel-filtration chromatography column for on-line removal of the proteins from the extract before the enzymatic analysis is performed. Compared with the standard methods for determination of formaldehyde in fish products the present method is much faster...

  19. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    Science.gov (United States)

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  20. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-09-01

    Full Text Available In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM, mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system.

  1. Detection of Ultrafine Anaphase Bridges

    DEFF Research Database (Denmark)

    Bizard, Anna H; Nielsen, Christian F; Hickson, Ian D

    2018-01-01

    Ultrafine anaphase bridges (UFBs) are thin DNA threads linking the separating sister chromatids in the anaphase of mitosis. UFBs are thought to form when topological DNA entanglements between two chromatids are not resolved prior to anaphase onset. In contrast to other markers of defective...

  2. Nanomaterials vs Ambient Ultrafine Particles

    DEFF Research Database (Denmark)

    Stone, Vicki; Miller, Mark R.; Clift, Martin J. D.

    2017-01-01

    BACKGROUND: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology ...

  3. Suitability assessment of grey water quality treated with an upflow-downflow siliceous sand/marble waste filtration system for agricultural and industrial purposes.

    Science.gov (United States)

    Chaabane, Safa; Riahi, Khalifa; Hamrouni, Hédi; Thayer, Béchir Ben

    2017-04-01

    The present study examines the suitability assessment of an upflow-downflow siliceous sand/marble waste filtration system for treatment and reuse of grey water collected from bathrooms of the student residential complex at the Higher Institute of Engineering Medjez El Bab (Tunisia). Once the optimization of grey water pre-treatment system has been determined, the filtration system was operated at different hydraulic loading rate and media filter proportions in order to assess the suitability of treated grey water for irrigational purpose according to salinity hazard, sodium hazard, magnesium hazard, permeability index, water infiltration rate, and widely used graphical methods. Suitability of the treated grey water for industrial purpose was evaluated in terms of foaming, corrosion, and scaling. Under optimal operational conditions, results reveals that treated grey water samples with an upflow-downflow siliceous sand/marble waste filtration system may be considered as a good and an excellent water quality suitable for irrigation purpose. However, treated grey water was found not appropriate for industrial purpose due to high concentrations of calcium and sodium that can generate foaming and scaling harm to boilers. These results suggest that treated grey water with an upflow-downflow siliceous sand/marble waste filtration system would support production when used as irrigation water.

  4. New innovative electrocoagulation (EC) treatment technology for BWR colloidal iron utilizing the seeding and filtration electronically (SAFETTM) system

    International Nuclear Information System (INIS)

    Denton, Mark S.; Bostick, William D.

    2007-01-01

    is 1) to break the colloid (i.e., break the outer radius repulsive charges of the similar charged colloidal particles), 2) allow these particles to now flocculate (floc), and 3) form a type of floc that is more readily filterable, and, thus, de-waterable. This task has been carried out with the innovative application of electronically seeding the feed stream with the metal of choice, and without the addition of chemicals common to ferri-flocking, or polymer addition. This patent-pending new system and technique is called Seeding And Filtration Electronically, or the SAFE TM System. Once the colloid has been broken and flocking has begun, removal of the resultant floc can be carried out by standard, back-washable (or, in simple cases, dead-end) filters; or simply in de-waterable HICs or liners. Such applications include low level radwaste (LLW) from both PWRs and BWRs, fuel pools, storage basins, salt water collection tanks, etc. For the removal of magnetic materials, such as some BWR irons, an Electro Magnetic Filter (EMF) was developed to couple with the Electro Coagulation (EC), (or metal-Flocking) Unit. In the advent that the waste stream primarily contains magnetic materials (e.g., boiler condensates and magnetite, and he-magnetite from BWRs), the material was simply filtered using the EMF. Bench-, pilot- and full-scale systems have been assembled and applied on actual plant waste samples quite successfully. The effects of initial feed pH and conductivity, as well as flocculation retention times was examined prior to applying the production equipment into the field. Since the initial studies (Denton, et al, EPRI, 2006), the ultimate success of field applications is now being demonstrated as the next development phase. For such portable field demonstrations and demand systems, a fully self enclosed (secondary containment) EC system was first developed and assembled in a modified B 25 Box (Floc-In-A-Box) and is being deployed to a number of NPP sites. Finally, a

  5. Evaluation of Small System Filtration Technologies for the Treatment of Color, Disinfection ByProducts and Microbiological Contaminants in Surface Water

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) National Risk Management Research Laboratory (NRMRL) evaluated various filtration systems at the EPA T&E Facility in Cincinnati, Ohio and at a field site in Ely, Minnesota (MN) in collaboration with the Minnesota Department of Health...

  6. Safety aspects of the emergency filtration system (EFS) for NRU reactor

    International Nuclear Information System (INIS)

    Hickey, D.L.; Lounsbury, R.I.

    1990-01-01

    A description of the NRU emergency filter system (EFS) is presented, including operation, testing and hazards. Operation of the NRU EFS reduces the dose to the thyroid for members of the public and site personnel by a factor of 100. The calculated thyroid doses for off-site and on-site locations for the current system configuration are 91 and 160 mSv, respectively. An unavailability analysis was performed on the control system which recognized subtle problems in the current system. Modifications to the system result in a system unavailability of 2.0 E-3. The thyroid risk analysis revealed that these improvements in system availability result in risk reduction by approximately a factor of three. Improvements beyond the availability analysis recommendations do not result in substantial risk benefit for members of the public or on-site personnel

  7. A full-scale biological aerated filtration system application in the ...

    African Journals Online (AJOL)

    owner

    sedimentation of the wastewater for six hours reduced the COD, BOD, and TSS by 43, 26, and 76%, respectively. ... treatment system due to its advantages relative to other systems ... working hours (8 h) and the Table 1 shows the average and.

  8. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling

    Directory of Open Access Journals (Sweden)

    Yili Liu

    2018-02-01

    Full Text Available Clogging of the leachate collection system (LCS has been a common operation problem in municipal solid waste (MSW landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L−1 and larger particle size (>30% TSS particles > 15 μm in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10−8 to 10−9 m s−1 after 1–2 years of operation and perching significant leachate above it (0.6–0.7 m. On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China.

  9. A Comprehensive Software and Database Management System for Glomerular Filtration Rate Estimation by Radionuclide Plasma Sampling and Serum Creatinine Methods.

    Science.gov (United States)

    Jha, Ashish Kumar

    2015-01-01

    Glomerular filtration rate (GFR) estimation by plasma sampling method is considered as the gold standard. However, this method is not widely used because the complex technique and cumbersome calculations coupled with the lack of availability of user-friendly software. The routinely used Serum Creatinine method (SrCrM) of GFR estimation also requires the use of online calculators which cannot be used without internet access. We have developed user-friendly software "GFR estimation software" which gives the options to estimate GFR by plasma sampling method as well as SrCrM. We have used Microsoft Windows(®) as operating system and Visual Basic 6.0 as the front end and Microsoft Access(®) as database tool to develop this software. We have used Russell's formula for GFR calculation by plasma sampling method. GFR calculations using serum creatinine have been done using MIRD, Cockcroft-Gault method, Schwartz method, and Counahan-Barratt methods. The developed software is performing mathematical calculations correctly and is user-friendly. This software also enables storage and easy retrieval of the raw data, patient's information and calculated GFR for further processing and comparison. This is user-friendly software to calculate the GFR by various plasma sampling method and blood parameter. This software is also a good system for storing the raw and processed data for future analysis.

  10. BWR condensate filtration studies

    International Nuclear Information System (INIS)

    Wilson, J.A.; Pasricha, A.; Rekart, T.E.

    1993-09-01

    Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin

  11. Cross-flow filtration and axial filtration

    International Nuclear Information System (INIS)

    Kraus, K.A.

    1974-01-01

    Two relatively novel alternative solid-liquid-separation techniques of filtration are discussed. In cross-flow filtration, the feed is pumped past the filtering surface. While in axial filtration the filter, mounted on a rotor, is moved with respect to the feed. While large-scale application of the axial filter is still in doubt, it permits with little expenditure of time and money, duplication of many hydrodynamic aspects of cross-flow filtration for fine-particle handling problems. The technique has been applied to municipal wastes, low-level radioactive waste treatment plant, lead removal from industrial wastes, removal of pulp-mill contaminants, textile-mill wastes, and pretreatment of saline waters by lime-soda process in preparation for hyperfiltration. Economics and energy requirements are also discussed

  12. A full-scale biological aerated filtration system application in the ...

    African Journals Online (AJOL)

    The treated wastewater characteristics are in compliance with the Egyptian law which regulates the discharge of industrial wastewater to the sewerage system. The results from each treatment process proved to be efficient for the treatment of such wastewater. Keywords: Paints wastewater treatment, Biological aerated filter ...

  13. Balance carried out on an alpha waste incinerator in order to qualify its filtration system

    International Nuclear Information System (INIS)

    Cartier, R.; Burghofer, P.; Tregoures, A.; Maurel, J.M.; Vendel, J.

    1991-01-01

    A balance was carried out on a pilot incinerator of inactive solid waste running at 4 kg/h. Various measurements were taken in order to qualify the prefiltration system of the incineration process operating by pyrolysis, afterburning and calcination: determining the ventilation characteristics of the plant (gas flow rates and residence time) and the physico-chemical characteristics of the effluent (mass flow and granulometric range of particles, chemical composition of gases). Various methods of sampling and of analyzing the gases were adopted and a thermochemical model was produced. Its results are reasonably close to the experimental measurements. The emission consists of submicronic particles and porous layers are the best adapted cleaning system

  14. Investigation of pressure transients in nuclear filtration systems: construction details of a large shock tube

    International Nuclear Information System (INIS)

    Smith, P.R.; Gregory, W.S.

    1980-04-01

    This report documents the construction of a 0.914-m (36-in.)-dia. shock tube on the New Mexico State University caompus. Highly variable low-grade explosions can be simulated with the shock tube. We plan to investigate the response of nuclear facility ventilation system components to low-grade explosions. Components of particular interest are high-capacity, high efficiency paticulate air (HEPA) filters. Shock tube construction details, operating principles, firing sequence, and preliminary results are reported

  15. Outline of laundry drainage treatment system combining catalytic oxidation and filtration

    International Nuclear Information System (INIS)

    Kanda, Masanori; Matsuzaki, Susumu; Kikkawa, Ryouzo; Masuda, Kazumichi; Takeuchi, Kimihito; Urabe, Osamu

    2011-01-01

    We plan to use a laundry drainage treatment system that combines a device using a manganese dioxide-based catalyst for ozone oxidation with a ceramic microfiltration membrane (MF membrane). The high oxidizing power of ozone is enhanced by the catalyst, and the impurities (such as chemical oxygen demand (COD) causative substances and n-hexane extracts) in the drainage are sufficiently degraded to allow their releases to the environment. Ionic nuclides are also oxidized and in solubilized so that they can be separated with the MF membrane having fine pores of about 0.1 μm. The performance of the treatment system in removing radioactivity, COD causative substances, and n-hexane extracts was confirmed by hot demonstration tests using actual laundry drainage. Cold tests were also conducted using simulated laundry drainage to confirm the system operation conditions and the long-term stability of drainage treatment capability. While ozone has a high oxidizing power, it decays spontaneously in liquid within a short period of time. Therefore, the behavior of ozone under the operating conditions and its effect on the corrosion of structural materials were investigated to maintain a sufficient time for decay and select appropriate structural materials. (author)

  16. Evaluation of Baffle Fixes Film up Flow Sludge Blanket Filtration (BFUSBF) System in Treatment of Wastewaters from Phenol and 2,4-Dinitrophenol Using Daphnia Magna Bioassay

    OpenAIRE

    Mohammad Javad Ghannadzadeh; Ahmad Jonidi Jafari; Abbas Rezaee; Fatemeh Eftekharian; Ali Koolivand

    2016-01-01

    Background: Phenol and nitrophenol are common compounds found in different types of industrial wastewater known as serious threats to human health and natural environment. In this study, Daphnia magna was used to evaluate the effectiveness of "baffle fixes film up flow sludge blanket filtration" (BFUSBF) system in elimination of phenolic compounds from water. Methods: D. magna cultures were used as toxicity index of phenol and 2,4-DNP mixtures after treatment by a pilot BFUSBF system which...

  17. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, M; Kochergin, V; Hess, R; Foust, T; Herbst, R; Mann, N

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, while these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract

  18. Biological filters and their use in potable water filtration systems in spaceflight conditions

    Science.gov (United States)

    Thornhill, Starla G.; Kumar, Manish

    2018-05-01

    Providing drinking water to space missions such as the International Space Station (ISS) is a costly requirement for human habitation. To limit the costs of water transport, wastewater is collected and purified using a variety of physical and chemical means. To date, sand-based biofilters have been designed to function against gravity, and biofilms have been shown to form in microgravity conditions. Development of a universal silver-recycling biological filter system that is able to function in both microgravity and full gravity conditions would reduce the costs incurred in removing organic contaminants from wastewater by limiting the energy and chemical inputs required. This paper aims to propose the use of a sand-substrate biofilter to replace chemical means of water purification on manned spaceflights.

  19. Radionuclides and particles in seawater with the large volume in situ filtration and concentration system in the coastal waters off Japan

    International Nuclear Information System (INIS)

    Aono, Tatsuo; Nakanishi, Takahiro; Okubo, Ayako; Zheng, Jian; Yamada, Masatoshi; Kusakabe, Masashi

    2008-01-01

    It is necessary to determine the radionuclides in dissolved and particulate state in order to clarify the distributions and behavior of these in seawater. Because the concentrations of radionuclides and particles are very low in the ocean, it is difficult to concentrate and fractionate the particulate matters with the filtration systems in seawater. The large volume in situ filtration and concentration system (LV-FiCS) was developed to collect various forms of trace radionuclides and particles in seawater. The LV-FiCS has been operated during several cruises in the coastal waters off Japan, and several m 3 of seawaters were filtered through different kinds of filters and then pass through the adsorbents to concentrate radionuclides simultaneously. This system could be shown the vertical profiles of thorium with the size-fractionated method and the behavior of these nuclides in the ocean. (author)

  20. Development and Deployment of a Full-Scale Cross-Flow Filtration System for Treatment of Liquid Low-Level Waste at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kent, T.E.

    2000-05-12

    A full-scale modular solid/liquid separation (SLS) system was designed, fabricated, installed, and successfully deployed for treatment of liquid low-level waste from the Melton Valley Storage Tanks (MVSTs) at Oak Ridge National Laboratory (ORNL). The SLS module, utilizing cross-flow filtration, was operated as part of an integrated tank waste pretreatment system (otherwise known as the Wastewater Triad) to remove suspended solids and prevent fouling of ion-exchange materials and heat exchange surfaces. The information gained from this testing was used to complete design specifications for the full-scale modular SLS system in May 1997. The contract for detailed design and fabrication of the system was awarded to NUMET in July 1997, and the design was completed in January 1998. Fabrication began in March 1998, and the completed system was delivered to ORNL on December 29, 1998. Installation of the system at the MVST facility was completed in May 1999. After completing an operational readiness assessment, approval was given to commence hot operations on June 7, 1999. Operations involving two of the eight MVSTs were performed safely and with very little unscheduled downtime. Filtration of supernatant from tank W-31 was completed on June 24, 1999 and W-26 processing was completed on August 20, 1999. The total volume processed during these two campaigns was about 45,000 gal. The suspended solids content of the liquid processed from tank W-31 was lower than expected, resulting in higher-than-expected filtrate production for nearly the entire operation. The liquid processed from tank W-26 was higher in suspended solids content, and filtrate production was lower, but comparable to the rates expected based on the results of previous pilot-scale, single-element filtration tests. The quality of the filtrate consistently met the requirements for feed to the downstream ion-exchange and evaporation processes. From an equipment and controls standpoint, the modular system (pumps

  1. Testing Metallic Iron Filtration Systems for Decentralized Water Treatment at Pilot Scale

    Directory of Open Access Journals (Sweden)

    Raoul Tepong-Tsindé

    2015-03-01

    Full Text Available There are many factors to consider for the design of appropriate water treatment systems including: cost, the concentration and type of biological and/or chemical contamination, concentration limits at which contaminant(s are required to be removed, required flow rate, level of local expertise for on-going maintenance, and social acceptance. An ideal technology should be effective at producing clean, potable water; however it must also be low-cost, low-energy (ideally energy-free and require low-maintenance. The use of packed beds containing metallic iron (Fe0 filters has the potential to become a cheap widespread technology for both safe drinking water provision and wastewater treatment. Fe0 filters have been intensively investigated over the past two decades, however, sound design criteria are still lacking. This article presents an overview of the design of Fe0 filters for decentralized water treatment particularly in the developing world. A design for safe drinking water to a community of 100 people is also discussed as starting module. It is suggested that Fe0 filters have the potential for significant worldwide applicability, but particularly in the developing world. The appropriate design of Fe0 filters, however, is site-specific and dependent upon the availability of local expertise/materials.

  2. Cytocompatible and water stable ultrafine protein fibers for tissue engineering

    Science.gov (United States)

    Jiang, Qiuran

    This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be

  3. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    Science.gov (United States)

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  4. 40 CFR 141.73 - Filtration.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface water source or a ground water source under the direct influence of surface water...

  5. Hot filtration 2

    International Nuclear Information System (INIS)

    Jimenez Rebagliati, Raul; Liberman, S.J.

    1982-01-01

    The magnetic filtration technique allows the removal of suspended magnetic species from a fluid at high flow rate and temperature. It is specially advantageous for water purification in systems such as thermonuclear and thermoelectric plants in which corrosion products must be removed from the heat transport and cooling circuits. Using diluted aqueous suspensions of magnetite, the behaviour of a ball matrix filter was studied as a function of flow rate, temperature and concentration of particles. The retention efficiency shows an exponential decay with fluid's velocity and viscosity in agreement with theory. Within the range of concentration considered, there is no change in the retention with concentration. Design parameters for filters according to plant's needs are obtained from the results of this study. (Author) [es

  6. Particle counter as a tool to control pre-hydrolyzed coagulant dosing and rapid filtration efficiency in a conventional treatment system.

    Science.gov (United States)

    Gumińska, Jolanta; Kłos, Marcin

    2015-01-01

    Filtration efficiency in a conventional water treatment system was analyzed in the context of pre-hydrolyzed coagulant overdosing. Two commercial coagulants of different aluminum speciation were tested. A study was carried out at a water treatment plant supplied with raw water of variable quality. The lack of stability of water quality caused many problems with maintaining the optimal coagulant dose. The achieved results show that the type of coagulant had a very strong influence on the effectiveness of filtration resulting from the application of an improper coagulant dose. The overdosing of high basicity coagulant (PAC85) caused a significant increase of fine particles in the outflow from the sedimentation tanks, which could not be retained in the filter bed due to high surface charge and the small size of hydrolysis products. When using a coagulant of lower basicity (PAC70), it was much easier to control the dose of coagulant and to adjust it to the changing water quality.

  7. 40 CFR 141.71 - Criteria for avoiding filtration.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71 Criteria for avoiding filtration. A public water system that uses a surface water source must meet all of...)(C)(iii), that filtration is required. A public water system that uses a ground water source under...

  8. Dewaterability of five sewage sludges in Guangzhou conditioned with Fenton's reagent/lime and pilot-scale experiments using ultrahigh pressure filtration system.

    Science.gov (United States)

    Liang, Jialin; Huang, Shaosong; Dai, Yongkang; Li, Lei; Sun, Shuiyu

    2015-11-01

    Sludge conditioning with Fenton's reagent and lime is a valid method for sludge dewatering. This study investigated the influence of different organic matter content sludge on sludge dewatering and discussed the main mechanism of sludge conditioning by combined Fenton's reagent and lime. The results indicated that the specific resistance to filterability (SRF) of sludge was reduced efficiently by approximately 90%, when conditioned with Fenton's reagent and lime. Through single factor experiments, the optimal conditioning combinations were found. In addition, the relationship between VSS% and consumption of the reagents was detected. Furthermore, it was also demonstrated that the SRF and filtrate TOC values had a significant correlation with VSS% of sludge (including raw and conditioned). The main mechanism of sludge dewatering was also investigated. Firstly, it revealed that the dewaterability of sludge was closely correlated to extracellular polymeric substances (EPS) and bound water contents. Secondly, the results of scanning electron microscopy (SEM) stated that sludge particles were to be smaller and thinner after conditioning. And this structure could easily form outflow channels for releasing free water. Additionally, with the ultrahigh pressure filtration system, the water content of sludge cake conditioned with Fenton's reagent and lime could be reduced to below 50%. Moreover, the economic assessment shows that Fenton's reagent and lime combined with ultrahigh pressure filtration system can be an economical and viable technology for sewage sludge dewatering. Finally, three types of sludge were classified: (1) Fast to dewater; (2) Moderately fast to dewater; (3) Slow to dewater sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    Science.gov (United States)

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  10. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S.

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab

  11. 40 CFR 141.174 - Filtration sampling requirements.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration sampling requirements. 141...

  12. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    Science.gov (United States)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  13. ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kanyuk M. I.

    2014-07-01

    Full Text Available The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.

  14. Ultracentrifugation for ultrafine nanodiamond fractionation

    Science.gov (United States)

    Koniakhin, S. V.; Besedina, N. A.; Kirilenko, D. A.; Shvidchenko, A. V.; Eidelman, E. D.

    2018-01-01

    In this paper we propose a method for ultrafine fractionation of nanodiamonds using the differential centrifugation in the fields up to 215000g. The developed protocols yield 4-6 nm fraction giving main contribution to the light scattering intensity. The desired 4-6 nm fraction can be obtained from various types of initial nanodiamonds: three types of detonation nanodiamonds differing in purifying methods, laser synthesis nanodiamonds and nanodiamonds made by milling. The characterization of the obtained hydrosols was conducted with Dynamic Light Scattering, Zeta potential measurements, powder XRD and TEM. According to powder XRD and TEM data ultracentrifugation also leads to a further fractionation of the primary diamond nanocrystallites in the hydrosols from 4 to 2 nm.

  15. PROBLEMS OF NONSTATIONARY FILTRATION

    Directory of Open Access Journals (Sweden)

    Vsevolod A. Shabanov

    2018-03-01

    Full Text Available he article deals with the classical hydrodynamic theory of filtration. Discusses models of soil, fluid and nature of fluid flow that formed the basis for the creation of the classic filtration theory. Also discusses the assumptions made for the linearization of the equations. Evaluated the scope of the classical filtration theory. Proposed a new model of filtration through a porous medium, based on the application of the laws of theoretical mechanics. It is based on the classical model of soil: the soil is composed of capillaries with ..parallel axes, in which the liquid moves. For tasks of infiltration equations of motion. Considered special cases of unsteady motion of a finite volume of liquid. Numerical example a machine experiment.

  16. Filtration in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...... to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....

  17. Water Filtration Products

    Science.gov (United States)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  18. Adequacy and adjustment of electromechanical elements of a X radiation generator for automation of system of additional filtration; Adequacao e ajuste dos elementos eletromecanicos de um gerador de radiacao X para automacao do sistema de filtracao adicional

    Energy Technology Data Exchange (ETDEWEB)

    Alves Junior, Iremar; Santos, Lucas dos; Potiens, Maria da Penha A.; Vivolo, Vitor, E-mail: iremarjr@usp.b, E-mail: lucas.se@usp.b, E-mail: mppalbu@ipen.b, E-mail: vivolo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    This paper dimensioned the filter wheel components and the adequacy of additional filtrations for the implantation of the OTW automated system with complete replacement of previous used filtration by new set of machine-made filters to be used as the qualities already implanted at the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil. In the sequence, it was performed the measurements of kerma i the air in each quality to be used as reference values

  19. Unraveling the atomic structure of ultrafine iron clusters

    KAUST Repository

    Wang, Hongtao; Li, Kun; Yao, Yingbang; Wang, Qingxiao; Cheng, Yingchun; Schwingenschlö gl, Udo; Zhang, Xixiang; Yang, Wei

    2012-01-01

    Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first

  20. Site suitability for riverbed filtration system in Tanah Merah, Kelantan-A physical model study for turbidity removal

    Science.gov (United States)

    Ghani, Mastura; Adlan, Mohd Nordin; Kamal, Nurul Hana Mokhtar; Aziz, Hamidi Abdul

    2017-10-01

    A laboratory physical model study on riverbed filtration (RBeF) was conducted to investigate site suitability of soil from Tanah Merah, Kelantan for RBeF. Soil samples were collected and transported to the Geotechnical Engineering Laboratory, Universiti Sains Malaysia for sieve analysis and hydraulic conductivity tests. A physical model was fabricated with gravel packs laid at the bottom of it to cover the screen and then soil sample were placed above gravel pack for 30 cm depth. River water samples from Lubok Buntar, Kedah were used to simulate the effectiveness of RBeF for turbidity removal. Turbidity readings were tested at the inlet and outlet of the filter with specified flow rate. Results from soil characterization show that the soil samples were classified as poorly graded sand with hydraulic conductivity ranged from 7.95 x 10-3 to 6.61 x 10-2 cm/s. Turbidity removal ranged from 44.91% - 92.75% based on the turbidity of water samples before filtration in the range of 33.1-161 NTU. The turbidity of water samples after RBeF could be enhanced up to 2.53 NTU. River water samples with higher turbidity of more than 160 NTU could only reach 50% or less removal by the physical model. Flow rates of the RBeF were in the range of 0.11-1.61 L/min while flow rates at the inlet were set up between 2-4 L/min. Based on the result of soil classification, Tanah Merah site is suitable for RBeF whereas result from physical model study suggested that 30 cm depth of filter media is not sufficient to be used if river water turbidity is higher.

  1. Filtration by eyelashes

    Science.gov (United States)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  2. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    Depaoli, D.

    1996-01-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes

  3. A cone-beam tomography system with a reduced size planar detector: A backprojection-filtration reconstruction algorithm as well as numerical and practical experiments

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Zhang Li; Xing Yuxiang; Kang Kejun

    2007-01-01

    In a traditional cone-beam computed tomography (CT) system, the cost of product and computation is very high. In this paper, we develop a transversely truncated cone-beam X-ray CT system with a reduced-size detector positioned off-center, in which X-ray beams only cover half of the object. The existing filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms are not directly applicable in this new system. Hence, we develop a BPF-type direct backprojection algorithm. Different from the traditional rebinning methods, our algorithm directly backprojects the pretreated projection data without rebinning. This makes the algorithm compact and computationally more efficient. Because of avoiding interpolation errors of rebinning process, higher spatial resolution is obtained. Finally, some numerical simulations and practical experiments are done to validate the proposed algorithm and compare with rebinning algorithm

  4. Characterizing ultrafine particles and other air pollutants in and around school buses.

    Science.gov (United States)

    Zhu, Yifang; Zhang, Qunfang

    2014-03-01

    Increasing evidence has demonstrated toxic effects of ultrafine particles (UFP*, diameter emissions from idling school buses to air pollutant levels in and around school buses under different scenarios; 3. Retrofit tests to evaluate the performance of two retrofit systems, a diesel oxidation catalyst (DOC) muffler and a crankcase filtration system (CFS), on reducing tailpipe emissions and in-cabin air pollutant concentrations under idling and driving conditions; and 4. High efficiency particulate air (HEPA) filter air purifier tests to evaluate the effectiveness of in-cabin filtration. In total, 24 school buses were employed to cover a wide range of school buses commonly used in the United States. Real-time air quality measurements included particle number concentration (PNC), fine and UFP size distribution in the size range 7.6-289 nm, PM2.5 mass concentration, black carbon (BC) concentration, and carbon monoxide (CO) and carbon dioxide (CO2) concentrations. For in-cabin measurements, instruments were placed on a platform secured to the rear seats inside the school buses. For all other tests, a second set of instruments was deployed to simultaneously measure the ambient air pollutant levels. For tailpipe emission measurements, the exhaust was diluted and then measured by instruments identical to those used for the in-cabin measurements. The results show that when driving on roads, in-cabin PNC, fine and UFP size distribution, PM2.5, BC, and CO varied by engine age, window position, driving speed, driving route, and operating conditions. Emissions from idling school buses increased the PNC close to the tailpipe by a factor of up to 26.0. Under some circumstances, tailpipe emissions of idling school buses increased the in-cabin PNC by factors ranging from 1.2 to 5.8 in the 10-30 nm particle size range. Retrofit systems significantly reduced the tailpipe emissions of idling school buses. With both DOC and CFS installed, PNC in tailpipe emissions dropped by 20

  5. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  6. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies.

    Science.gov (United States)

    Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2016-02-01

    Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira; Dimopoulos Eggenschwiler, Panayotis

    2018-08-01

    Ultrafine (electron microscopy (TEM) is applied to obtain a concrete picture on the nature, morphology and chemical composition of non-volatile ultrafine particles in the exhaust of state-of-the-art, Euro 6b, Gasoline and Diesel vehicles. The particles were collected directly on TEM grids, at the tailpipe, downstream of the after-treatment system, during the entire duration of typical driving cycles on the chassis dynamometer. Based on TEM imaging coupled with Energy Dispersive X-ray (EDX) analysis, numerous ultrafine particles could be identified, imaged and analyzed chemically. Particles vehicles and driving cycles. The present TEM study gives information also on the imaging and chemical composition of the solid fraction of the unregulated sub-23 nm size category particles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  9. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.

    Science.gov (United States)

    Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S

    2014-09-15

    Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ∼ 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ∼ 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ∼ 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System.

    Science.gov (United States)

    Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun

    2015-01-01

    The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.

  11. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    Science.gov (United States)

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Method of electrostatic filtration

    International Nuclear Information System (INIS)

    Devienne, F.M.

    1975-01-01

    Electrostatic filtration of secondary ions of mass m in a given mass ratio with a primary ion of mass M which has formed the secondary ions by fission is carried out by a method which consists in forming a singly-charged primary ion of the substance having a molecular mass M and extracting the ion at a voltage V 1 with respect to ground. The primary ion crosses a potential barrier V 2 , in producing the dissociation of the ion into at least two fragments of secondary ions and in extracting the fragment ion of mass m at a voltage V 2 . Filtration is carried out in an electrostatic analyzer through which only the ions of energy eV'' are permitted to pass, detecting the ions which have been filtered. The mass m of the ions is such that (M/m) = (V 1 - V 2 )/(V'' - V 2 )

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR FP-98 MINIPLEAT V-BLANK FILTER

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar FP-98 Minipleat V-Bank Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 137 Pa clean and 348 Pa ...

  14. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  15. Detergent zeolite filtration plant

    OpenAIRE

    Stanković Mirjana S.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for detergent zeolite filtration plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production, from 50,000 to 100,000 t/y. The main goal was to increase the detergent zeoli...

  16. Fatigue mechanisms in ultrafine-grained copper

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2009-01-01

    Roč. 47, č. 1 (2009), s. 1-9 ISSN 0023-432X R&D Projects: GA AV ČR(CZ) 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained copper * effect of purity * effect of temperature Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.345, year: 2007

  17. Atmospheric ultrafine aerosol number concentration and its ...

    Indian Academy of Sciences (India)

    B. Pant Institute of Himalayan Environment & Development, Himachal Unit, ... a significant increase indicating impact of vehicular onslaught on pure air of this hilly region. 1. .... Meteorological conditions during ultrafine measurement days in 2008 at: (a) Mohal and ..... Claiborne C and Koenig J 1999 Episodes of high coarse.

  18. Filtration of polydispersed colloids

    International Nuclear Information System (INIS)

    Nuttall, H.E.

    1988-01-01

    In this study, the dynamic microscopic form of the population balance model is applied to the problem of polydispersed particle capture in one spatial diffusion. This mathematical modeling approach can be applied to the difficult and potentially important problem of particulate (radiocolloid) transport in the groundwater surrounding a nuclear waste disposal site. To demonstrate the population balance methodology, the equations were developed and used to investigate transport and capture of polydispersed colloids in packed columns. Modeling simulations were compared to experimental column data. The multidimensional form of the population balance equation was used to analyze the transport and capture of polydispersed colloids. A numerical model was developed to describe transport of polydispersed colloids through a one-dimensional porous region. The effects of various size distributions were investigated in terms of capture efficiency. For simulating the column data, it was found by trial and error that as part of the population balance model a linear size dependent filtration function gave a good fit to the measured colloid concentration profile. The effects of constant versus size dependent filtration coefficients were compared and the differences illustrated by the calculated colloid profile within the column. Also observed from the model calculations was the dramatically changing liquid-phase colloid-size distribution which was plotted as a function of position down the column. This modeling approach was excellent for describing and understanding microscopic filtration in porous media

  19. Personal exposure to ultrafine particles.

    Science.gov (United States)

    Wallace, Lance; Ott, Wayne

    2011-01-01

    Personal exposure to ultrafine particles (UFP) can occur while people are cooking, driving, smoking, operating small appliances such as hair dryers, or eating out in restaurants. These exposures can often be higher than outdoor concentrations. For 3 years, portable monitors were employed in homes, cars, and restaurants. More than 300 measurement periods in several homes were documented, along with 25 h of driving two cars, and 22 visits to restaurants. Cooking on gas or electric stoves and electric toaster ovens was a major source of UFP, with peak personal exposures often exceeding 100,000 particles/cm³ and estimated emission rates in the neighborhood of 10¹² particles/min. Other common sources of high UFP exposures were cigarettes, a vented gas clothes dryer, an air popcorn popper, candles, an electric mixer, a toaster, a hair dryer, a curling iron, and a steam iron. Relatively low indoor UFP emissions were noted for a fireplace, several space heaters, and a laser printer. Driving resulted in moderate exposures averaging about 30,000 particles/cm³ in each of two cars driven on 17 trips on major highways on the East and West Coasts. Most of the restaurants visited maintained consistently high levels of 50,000-200,000 particles/cm³ for the entire length of the meal. The indoor/outdoor ratios of size-resolved UFP were much lower than for PM₂.₅ or PM₁₀, suggesting that outdoor UFP have difficulty in penetrating a home. This in turn implies that outdoor concentrations of UFP have only a moderate effect on personal exposures if indoor sources are present. A time-weighted scenario suggests that for typical suburban nonsmoker lifestyles, indoor sources provide about 47% and outdoor sources about 36% of total daily UFP exposure and in-vehicle exposures add the remainder (17%). However, the effect of one smoker in the home results in an overwhelming increase in the importance of indoor sources (77% of the total).

  20. Analytical filtration model for nonlinear viscoplastic oil in the theory of oil production stimulation and heating of oil reservoir in a dual-well system

    Science.gov (United States)

    Ivanovich Astafev, Vladimir; Igorevich Gubanov, Sergey; Alexandrovna Olkhovskaya, Valeria; Mikhailovna Sylantyeva, Anastasia; Mikhailovich Zinovyev, Alexey

    2018-02-01

    Production of high-viscosity oil and design of field development systems for such oil is one of the most promising directions in the development of world oil industry. The ability of high-viscosity oil to show in filtration process properties typical for non-Newtonian systems is proven by experimental studies. Nonlinear relationship between the pressure gradient and the rate of oil flow is due to interaction of high-molecular substances, in particular, asphaltenes and tars that form a plastic structure in it. The authors of this article have used the analytical model of stationary influx of nonlinear viscoplastic oil to the well bottom in order to provide rationale for the intensifying impact on a reservoir. They also have analyzed the method of periodic heating of productive reservoir by means of dual-wells. The high-temperature source is placed at the bottom of the vertical well, very close to the reservoir; at the same time the side well, located outside the zone of expected rock damage, is used for production. Suggested method of systemic treatment of reservoirs with dual wells can be useful for small fields of high-viscosity oil. The effect is based on the opportunity to control the structural and mechanical properties of high-viscosity oil and to increase depletion of reserves.

  1. Evaluation of Baffle Fixes Film up Flow Sludge Blanket Filtration (BFUSBF System in Treatment of Wastewaters from Phenol and 2,4-Dinitrophenol Using Daphnia Magna Bioassay

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Ghannadzadeh

    2016-02-01

    Full Text Available Background: Phenol and nitrophenol are common compounds found in different types of industrial wastewater known as serious threats to human health and natural environment. In this study, Daphnia magna was used to evaluate the effectiveness of "baffle fixes film up flow sludge blanket filtration" (BFUSBF system in elimination of phenolic compounds from water. Methods: D. magna cultures were used as toxicity index of phenol and 2,4-DNP mixtures after treatment by a pilot BFUSBF system which consisted of baffle in anoxic section and biofilm in aerobic sections. Initial concentrations were 312 mg/L phenol and 288 mg/L 2,4-dinitrophenol (2,4-DNP. Results: Bioassay tests showed that D. magna was influenced by the toxicity of phenol and 2,4 DNP mixtures. The comparison between the toxicity of initial phenol and 2,4-DNP mixtures and the output toxic unit (TU derived from BFUSBF treatment system showed that the TU of the effluent from BFUSBF reactor was much lower than that of the solution that entered the reactor. Conclusion: Based on the acute toxicity test, BFUSBF process could reduce phenol and 2,4-DNP in aqueous solutions. Therefore, it is possible to use BFUSBF process as an appropriate treatment option for wastewaters containing phenolic compounds.

  2. Evaluation of alternative strategies to MERV 16-based air filtration systems for reduction of the risk of airborne spread of porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Dee, Scott; Pitkin, Andrea; Deen, John

    2009-07-02

    Porcine reproductive and respiratory syndrome (PRRS) is a re-emerging disease of pigs and a growing threat to the global swine industry. For sustainable disease control it is critical to prevent the airborne spread of the etiologic agent, PRRS virus, between pig populations. The application of MERV 16-based air filtration systems to swine facilities in an effort to reduce this risk has been proposed; however, due to the cost and air flow restrictions of such systems the need for alternative strategies has arisen. Therefore, the objective of this study was to evaluate 3 groups of alternative biosecurity strategies for reducing the risk of the airborne spread of PRRSV. Strategies evaluated included mechanical filters, antimicrobial filters and a disinfectant-EVAP (evaporative cooling) system. Results from this study indicate that while alternatives to MERV 16-based biosecurity protocols for protecting farms from the airborne spread of PRRSV are available, further information on their efficacy in the field is needed before conclusions can be drawn.

  3. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  4. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    DePaoli, D.W.; Tsouris, C.; Yiacoumi, Sotira.

    1997-01-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process

  5. A hybrid froth flotation-filtration system as a pretreatment for oil sands tailings pond recycle water management: Bench- and pilot-scale studies.

    Science.gov (United States)

    Loganathan, Kavithaa; Bromley, David; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2015-09-15

    Through sustainable water management, oil sands companies are working to reduce their reliance on fresh water by minimizing the amount of water required for their operations and by recycling water from tailings ponds. This study was the first pilot-scale testing of a hybrid technology consisting of froth flotation combined with filtration through precoated submerged stainless steel membranes used to treat recycle water from an oil sands facility. The results indicated that the most important factor affecting the performance of the hybrid system was the influent water quality. Any rise in the levels of suspended solids or total organic carbon of the feed water resulted in changes of chemical consumption rates, flux rates, and operating cycle durations. The selections of chemical type and dosing rates were critical in achieving optimal performance. In particular, the froth application rate heavily affected the overall recovery of the hybrid system as well as the performance of the flotation process. Optimum surfactant usage to generate froth (per liter of treated water) was 0.25 mL/L at approximately 2000 NTU of influent turbidity and 0.015 mL/L at approximately 200 NTU of influent turbidity. At the tested conditions, the optimal coagulant dose was 80 mg/L (as Al) at approximately 2000 NTU of influent turbidity and recycle water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Determination of anti-canine IgG using a continuous filtration/dissolution system based on the formation of a high-molecular size immunocomplex.

    Science.gov (United States)

    Reyes, F D; Arce, C; Moreno, A; Fernández Romero, J M; Luque de Castro, M D

    2001-10-31

    A method for the determination of monoclonal antibody anti-canine-IgG based on a continuous filtration/dissolution system is presented as prototype for further developments. The basis of the system is the continuous formation of a high-molecular immunocomplex, which is temporally retained on a microfilter located prior to the detector. The immunochemical method consists of the development of a sandwich type heterogeneous non-competitive reaction to yield a high molecular immunocomplex, as a result of the affinity interaction between streptavidin and biotincanine IgG and the immunoreaction between canine IgG and mAb anti-canine IgG, which occurs in solution. Goat anti-mouse IgG labelled with peroxidase is used as tracer. The extension of the immunoreaction is monitored fluorimetrically via the condensation product between 4-hydroxyphenylacetic acid and hydrogen peroxide in the presence of the peroxidase retained on the filter. The method provides a dynamic range from 10(-4) to 500 mug l(-1) with an IC(50) of 0.554 mug 1(-1) (for a biotin-IgG dilution of 1:250, chi(2)=0.6085, r(2)=0.9991, n=14) and a precision, expressed as R.S.D.%, lower than 4.7%. After modifications, the method here proposed can be extended for monitoring analytes of interest in the agrochemical, food and environmental areas, as far as permitted by the availability to produce the corresponding monoclonal antibody.

  7. Health Benefits of Particle Filtration

    OpenAIRE

    Fisk, William J.

    2013-01-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and as...

  8. Immobilized Filters for Air Filtration

    National Research Council Canada - National Science Library

    Mahle, John J; Zaiee, Saeed

    2002-01-01

    ... (settling performance) and attrition resistance. The fabricated filter samples will be analyzed in order to determine the physical and chemical factors affecting mechanical strength and chemical filtration...

  9. Treatment of wastewater from a school in a decentralized filtration system by percolation over organic packing media.

    Science.gov (United States)

    Garzón-Zúñiga, M A; Buelna, G

    2011-01-01

    Based on results obtained in the laboratory a WWTP composed of a septic tank and an aerated percolating filter packed with organic media was built for a school. The system can treat 18 m3 d(-1) and was operated with a hydraulic loading rate of 0.078 (m3 m(-2) d(-1). For 360 days different operational conditions including start-up; stabilization; operation with aeration and non aeration; effect of rainy season, breaks from activities due to holidays and restart; were monitored and described in the article. Once stabilized, the system was able to remove, without the need for mechanical aeration, 97% of BOD5, 71% of COD, 93% of TKN, 11% of PO(4-)-P, 95% of TSS, 96% of VSS, in addition to having a removal efficiency of 4 log units of Faecal Coliforms (FC) and 100% helminthes eggs (HE). With this quality, the treated wastewater can be chlorinated and reused to irrigate green areas and/or in toilets. Although sanitary wastewater has a high concentration of Total-N (250 mg L(-1)) and a C/N ratio of less than 1, the system removed 65% of Total-N. Finally it was observed that after non activity periods, there was neither system failure nor the need to re-stabilize the system.

  10. NASA Engineering Design Challenges: Environmental Control and Life Support Systems. Water Filtration Challenge. EG-2008-09-134-MSFC

    Science.gov (United States)

    Schneider, Twila, Ed.

    2010-01-01

    This educator guide is organized into seven chapters: (1) Overview; (2) The Design Challenge; (3) Connections to National Curriculum Standards; (4) Preparing to Teach; (5) Classroom Sessions; (6) Opportunities for Extension; and (7) Teacher Resources. Chapter 1 provides information about Environmental Control and Life Support Systems used on NASA…

  11. THE PERSISTENCE OF MYCOBACTERIUM AVIUM IN A DRINKING WATER DISTRIBUTION SYSTEM AFTER THE ADDITION OF FILTRATION TREATMENT

    Science.gov (United States)

    There is evidence that drinking water may be a source of pathogenic nontuberculous mycobacteria (NTM) infections in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular location within protozoa. Our goal was to determ...

  12. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    Stepan, Daniel J.; Stevens, Bradley G.; Hetland, Melanie D.

    1999-01-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  13. Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2015-01-01

    Full Text Available The Smith-Waterman (SW algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.

  14. The fabrication process of ceramic grade UO2 powder via fluorid system AUC and the treatment on AUC precipitation filtrate

    International Nuclear Information System (INIS)

    Liu Jinhong; Xu Kui; Li Zhiwan; Yi Wei; Tang Yueming; Li Guangrong; Lei Maolin; Cui Chuanjiang

    2006-10-01

    It is described about the technology of fabricating AUC powder by Circum-fluence Precipitation Reactor with Gas (CPRG) from UF 6 hydrolyzed liquid, manufacturing nuclear pure ceramic grade UO 2 powder via fluorid system AUC process with fluidized bed method, recovering U(VI) with ion exchange resin, depositing fluorin in an outflow of effusion wastewater from the ion exchange using calces. The primary control parameters on the fabricating AUC powder is study, it is discussed to character difference of AUC powder between fluorid system and nitrate. Result show that the composing the manufacture AUC powder is invariable by CORG, and that the AUC quality is consistent, and that by decomposition and reduction of AUC and stabilization of UO 2 powder with fluidized bed, through optimum technological parameters, the excellent UO 2 powder is obtained on the quality. (authors)

  15. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Science.gov (United States)

    2012-06-29

    ... Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water- Cooled Nuclear Power... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... draft regulatory guide (DG), DG-1280, ``Design, Inspection, and Testing Criteria for Air Filtration and...

  16. 40 CFR 141.717 - Pre-filtration treatment toolbox components.

    Science.gov (United States)

    2010-07-01

    ... surface water or GWUDI source. (c) Bank filtration. Systems receive Cryptosporidium treatment credit for... paragraph. Systems using bank filtration when they begin source water monitoring under § 141.701(a) must... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Pre-filtration treatment toolbox...

  17. Salt disposition alternatives filtration at SRTC

    International Nuclear Information System (INIS)

    Walker, B. W.; Hobbs, D.

    2000-01-01

    Several of the prospective salt disposition alternative technologies require a monosodium titanate (MST) contact to remove strontium and actinides from inorganic salt solution feedstock. This feedstock also contains sludge solids from waste removal operations and may contain defoamers added in the evaporator systems. Filtration is required to remove the sludge and MST solids before sending the salt solution for further processing. This report describes testing performed using the Parallel Theological Experimental Filter (PREF). The PREF contains two single tube Mott sintered metal crossflow filters. For this test one filter was isolated so that the maximum velocities could be achieved. Previous studies showed slurries of MST and sludge in the presence of sodium tetraphenylborate (NaTPB) were filterable since the NaTPB slurry formed a filter cake which aided in removing the smaller MST and sludge particles. Some of the salt disposition alternative technologies do not use NaTPB raising the question of how effective crossflow filtration is with a feed stream containing only sludge and MST. Variables investigated included axial velocity, transmembrane pressure, defoamer effects, and solids concentration (MST and sludge). Details of the tests are outlined in the technical report WSRC-RP-98-O0691. Key conclusions from this study are: (1) Severe fouling of the Mott sintered metal filter did not occur with any of the solutions filtered. (2) The highest fluxes, in the range of .46 to 1.02 gpm/f 2 , were obtained when salt solution decanted from settled solids was fed to the filter. These fluxes would achieve 92 to 204 gpm filtrate production for the current ITP filters. The filtrate fluxes were close to the flux of 0.42 gpm/f 2 reported for In Tank Precipitation Salt Solution by Morrisey. (3) For the range of solids loading studied, the filter flux ranged from .04 to .17 gpm/f 2 which would result in a filtrate production rate of 9 to 31 gpm for the current HP filter. (4

  18. Preparation of ultrafine poly(sodium 4-styrenesulfonate) fibres via ...

    Indian Academy of Sciences (India)

    The ultrafine poly (sodium 4-styrenesulfonate) (NaPSS) fibres have been prepared for the first time by electrospinning. The spinning solutions (NaPSS aqueous solutions) in varied concentrations were studied for electrospinning into ultrafine fibres. The results indicated that the smooth fibre could be formed when the ...

  19. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    DEFF Research Database (Denmark)

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    . Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate......Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked...... to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related...

  20. Measurement and characterization of filtration efficiencies for prefilter materials used in aerosol filtration

    International Nuclear Information System (INIS)

    Sciortino, J.

    1991-01-01

    In applications where the filtration of large quantities of mixed (liquid and solid) aerosols is desired, a multistage filtration system is often employed. This system consists of a prefilter, a High Efficiency Particulate Air (HEPA) filter, and any number of specialized filters particular to the filtration application. The prefilter removes liquids and any large particles from the air stream, keeping them from prematurely loading the HEPA filter downstream. The HEPA filter eliminates 99.97% of all particulates in the aerosol. The specialized filters downstream of the HEPA filter can be used to remove organic volatiles or other vapors. While the properties of HEPA filters have been extensively investigated, literature characterizing the prefilter is scarce. The purpose of this report is to characterize the efficiency of the prefilter as a function of particle size, nature of the particle (solid or liquid), and the gas flow rate across the face of the prefilter. 1 ref., 4 figs

  1. Problems of multiphase fluid filtration

    CERN Document Server

    Konovalov, AN

    1994-01-01

    This book deals with a spectrum of problems related to the mathematical modeling of multiphase filtration. Emphasis is placed on an inseparable triad: model - algorithm - computer code. An analysis of new and traditional filtration problems from the point of view of both their numerical implementation and the reproduction of one or another technological characteristics of the processes under consideration is given. The basic principles which underlie the construction of efficient numerical methods taking into account the filtration problems are discussed: non-evolutionary nature, degeneration,

  2. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  3. Latest aspects of mechanical filtration

    Directory of Open Access Journals (Sweden)

    Stanislav Koláček

    2013-01-01

    Full Text Available The aim of this study was to describe and unify all knowledge about mechanic filtration. The first part deals with the parameters and properties of filtration. Here some important basic concepts are explained such as pressure gradient, filter life, etc. There’s also a description of convenient filtration technology for coarse and fine materials, such as sand, smoke or soot. The second part primarily focuses on the real use and application of filters for liquid and gaseous media. The differences in construction between different types of filters for filtration of fuels, oils, hydraulic fluids, air and cabin filters are described. The last section is focused mainly on new materials for the production of filters. These materials are ceramic or nanomaterials, which can actually be enriched for example with antibacterial silver or some fungicides.

  4. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  5. Development and applications of ultrafine aluminium powders

    International Nuclear Information System (INIS)

    Kearns, Martin

    2004-01-01

    Over the last 20 years or so, a variety of new technologies has been developed to produce sub-micron powders. Among the products attracting interest is nanoaluminium which is being evaluated in specialist propulsion and exothermic end-uses. This paper examines the advances made in 'nanopowder' production in the context of the existing aluminium powder industry where finest commercial grades have a median size of ∼6 μm (one or two orders of magnitude coarser than nanopowders) and which today supplies the markets being targeted by nanopowders with coarser, but effective products. Are there genuine market opportunities for nanoaluminium and if so, how will they be produced? One the one hand there are the novel nanopowder production methods which are high yielding but generally slow and costly, while on the other, there is the very fine fraction from conventional atomising routes which generate a very low yield of sub-micron powder but which nevertheless can translate into a meaningful rate as part of the bulk production. Can conventional routes ever hope to make sufficient volumes of nanopowders cost effectively and which will be the favoured routes in future? Moreover, what of the 'ultrafine' size range (∼0.5-5 μm) which is of more immediate potential interest to today's powder users. This paper seeks to identify the near term opportunities for application of low volume/high value ultrafine and nano powders

  6. Health benefits of particle filtration.

    Science.gov (United States)

    Fisk, W J

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, for example, 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air. Published 2013. This article is a US Government work and is in the public domain in the USA.

  7. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  8. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  9. Dynamic optimization of a dead-end filtration trajectory: non-ideal cake filtration

    NARCIS (Netherlands)

    Blankert, B.; Kattenbelt, C.; Betlem, Bernardus H.L.; Roffel, B.

    2007-01-01

    A control strategy aimed at minimizing energy consumption is formulated for non-ideal dead-end cake filtration with an inside-out hollow fiber ultrafiltration membrane system. The non-ideal behavior was assumed to originate from cake compression, non-linear cake resistance and a variable pump

  10. Study on preparation of ultrafine lead tungstate for radiation protection and γ-ray shielding of the gloves

    International Nuclear Information System (INIS)

    Du Licheng; He Ping; Zhou Yuanlin; Song Kaiping; Yang Kuihua

    2012-01-01

    Lead tungstate combines the radiation shielding properties of tungsten and lead, and it is quite distinctive to manufacture lead tungstate with ultra-fine granularity to enhance its capacity of radiation shielding. The grain size of lead tungstate has direct impact on the ability of its protection from radioactive materials. the smaller the grain size and more uniform dispersion of lead tungstate, the better protective ability it is going to be. In this paper, soft-template synthesis was introduced to prepare ultra-fine PbWO 4 . Rigorous experiment conditions are settled to ensure the access to obtain ultra-fine, homogeneous lead tungstate product, and it is better than other physical and chemical preparation methods. The surface-active agent for the soft template, with S-60 for the water system W/O microemulsion zone, was used to synthesize successfully ultra-fine PbWO 4 . It was shown that dispersing agent S-60 in the soft template method produced ultra-fine PbWO 4 with uniform granularity distribution. By using orthogonal experimental method, the best experimental conditions were obtained as follows: S-60 as surfactant dispersant with diluted 30 times concentration, solutions with pH9, 0.01 mol/L concentration of reactant, 1300 rpm of stirring speed and slowly adding drops of Na 2 WO 4 solution into Pb (Ac) 2 solution. Based on the optimal experimental conditions, the product of ultra-fine product for the anti-radiation protection filler has been made. The fine packing for the preparation of tungsten the gamma rays on the gloves is an average capacity of 5% or so. (authors)

  11. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  12. High Temperature Particle Filtration Technology; TOPICAL

    International Nuclear Information System (INIS)

    Besmann, T.M.

    2001-01-01

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment

  13. ULTRAFINE PARTICLE DEPOSITION IN HEALTHY SUBJECTS VS. PATIENTS WTH COPD

    Science.gov (United States)

    Individuals affected with chronic obstructive pulmonary disease (COPD) have increased susceptibility to adverse health effects from exposure to particulate air pollution. The dosimetry of ultrafine aerosols (diameter # 0.1 :m) is not well characterized in the healthy or diseas...

  14. Reverse Taylor Tests on Ultrafine Grained Copper

    International Nuclear Information System (INIS)

    Mishra, A.; Meyers, M. A.; Martin, M.; Thadhani, N. N.; Gregori, F.; Asaro, R. J.

    2006-01-01

    Reverse Taylor impact tests have been carried out on ultrafine grained copper processed by Equal Channel Angular Pressing (ECAP). Tests were conducted on an as-received OFHC Cu rod and specimens that had undergone sequential ECAP passes (2 and 8). The average grain size ranged from 30 μm for the initial sample to less than 0.5 μm for the 8-pass samples. The dynamic deformation states of the samples, captured by high speed digital photography were compared with computer simulations run in AUTODYN-2D using the Johnson-Cook constitutive equation with constants obtained from stress-strain data and by fitting to an experimentally measured free surface velocity trace. The constitutive response of copper of varying grain sizes was obtained through quasistatic and dynamic mechanical tests and incorporation into constitutive models

  15. [Why? How? What for? We must measure the glomerular filtration].

    Science.gov (United States)

    Treviño-Becerra, Alejandro

    2010-01-01

    The measurement of the glomerular filtration shows the degree of the functional qualities and the proficiency of the renal system. Despite new technologies, at present the best accepted technique for measuring the glomerular filtration in most countries is the clearance of creatinine in 24 hour urine. The clearance of creatinine has the advantage that it is confident, easy to reproduce, without technical limitations and low cost.

  16. Efficiency of cloud condensation nuclei formation from ultrafine particles

    Directory of Open Access Journals (Sweden)

    J. R. Pierce

    2007-01-01

    Full Text Available Atmospheric cloud condensation nuclei (CCN concentrations are a key uncertainty in the assessment of the effect of anthropogenic aerosol on clouds and climate. The ability of new ultrafine particles to grow to become CCN varies throughout the atmosphere and must be understood in order to understand CCN formation. We have developed the Probability of Ultrafine particle Growth (PUG model to answer questions regarding which growth and sink mechanisms control this growth, how the growth varies between different parts of the atmosphere and how uncertainties with respect to the magnitude and size distribution of ultrafine emissions translates into uncertainty in CCN generation. The inputs to the PUG model are the concentrations of condensable gases, the size distribution of ambient aerosol, particle deposition timescales and physical properties of the particles and condensable gases. It was found in most cases that condensation is the dominant growth mechanism and coagulation with larger particles is the dominant sink mechanism for ultrafine particles. In this work we found that the probability of a new ultrafine particle generating a CCN varies from <0.1% to ~90% in different parts of the atmosphere, though in the boundary layer a large fraction of ultrafine particles have a probability between 1% and 40%. Some regions, such as the tropical free troposphere, are areas with high probabilities; however, variability within regions makes it difficult to predict which regions of the atmosphere are most efficient for generating CCN from ultrafine particles. For a given mass of primary ultrafine aerosol, an uncertainty of a factor of two in the modal diameter can lead to an uncertainty in the number of CCN generated as high as a factor for eight. It was found that no single moment of the primary aerosol size distribution, such as total mass or number, is a robust predictor of the number of CCN ultimately generated. Therefore, a complete description of the

  17. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    Energy Technology Data Exchange (ETDEWEB)

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour [US Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  18. The influence of reagent type on the kinetics of ultrafine coal flotation

    Science.gov (United States)

    Read, R.B.; Camp, L.R.; Summers, M.S.; Rapp, D.M.

    1989-01-01

    A kinetic study has been conducted to determine the influence of reagent type on flotation rates of ultrafine coal. Two ultrafine coal samples, the Illinois No. 5 (Springfield) and Pittsburgh No. 8, have been evaluated with various reagent types in order to derive the rate constants for coal (kc), ash (ka), and pyrite (kc). The reagents used in the study include anionic surfactants, anionic surfactant-alcohol mixtures, and frothing alcohols. In general, the surfactant-alcohol mixtures tend to float ultrafine coal at a rate three to four times faster than either pure alcohols or pure anionic surfactants. Pine oil, a mixture of terpene alcohols and hydrocarbons, was an exception to this finding; it exhibited higher rate constants than the pure aliphatic alcohols or other pure anionic surfactants studied; this may be explained by the fact that the sample of pine oil used (70% alpha-terpineol) acted as a frother/collector system similar to alcohol/kerosene. The separation efficiencies of ash and pyrite from coal, as evidenced by the ratios of kc/ka or kc/kp, tend to indicate, however, that commercially available surfactant-alcohol mixtures are not as selective as pure alcohols such as 2-ethyl-1-hexanol or methylisobutylcarbinol. Some distinct differences in various rate constants, or their ratios, were noted between the two coals studied, and are possibly attributable to surface chemistry effects. ?? 1989.

  19. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century.

    Science.gov (United States)

    Xia, Tian; Zhu, Yifang; Mu, Lina; Zhang, Zuo-Feng; Liu, Sijin

    2016-12-01

    Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM 2.5 ) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM 2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (ambient ultrafine particles have higher toxic potential compared with PM 2.5 . In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future.

  20. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems.

    Science.gov (United States)

    Budeli, Phumudzo; Moropeng, Resoketswe Charlotte; Mpenyana-Monyatsi, Lizzy; Momba, Maggie Ndombo Benteke

    2018-01-01

    Development of biofilms occurring on the inner surface of storage vessels offers a suitable medium for the growth of microorganisms and consequently contributes to the deterioration of treated drinking water quality in homes. The aim of this study was to determine whether the two point-of-use technologies (biosand zeolite silver-impregnated clay granular (BSZ-SICG) filter and silver-impregnated porous pot (SIPP) filter) deployed in a rural community of South Africa could inhibit the formation of biofilm on the surface of plastic-based containers generally used by rural households for the storage of their drinking water. Culture-based methods and molecular techniques were used to detect the indicator bacteria (Total coliforms, faecal coliform, E. coli) and pathogenic bacteria (Salmonella spp., Shigella spp. and Vibrio cholerae) in intake water and on the surface of storage vessels containing treated water. Scanning electron microscopy was also used to visualize the development of biofilm. Results revealed that the surface water source used by the Makwane community was heavily contaminated and harboured unacceptably high counts of bacteria (heterotrophic plate count: 4.4-4.3 Log10 CFU/100mL, total coliforms: 2.2 Log10 CFU/100 mL-2.1 Log10 CFU/100 mL, faecal coliforms: 1.9 Log10 CFU/100 mL-1.8 Log10 CFU/100 mL, E. coli: 1.7 Log10 CFU/100 mL-1.6 Log10 CFU/100 mL, Salmonella spp.: 3 Log10 CFU/100 mL -8 CFU/100 mL; Shigella spp. and Vibrio cholerae had 1.0 Log10 CFU/100 mL and 0.8 Log10 CFU/100 mL respectively). Biofilm formation was apparent on the surface of the storage containers with untreated water within 24 h. The silver nanoparticles embedded in the clay of the filtration systems provided an effective barrier for the inhibition of biofilm formation on the surface of household water storage containers. Biofilm formation occurred on the surface of storage plastic vessels containing drinking water treated with the SIPP filter between 14 and 21 days, and on those

  1. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems

    Science.gov (United States)

    Moropeng, Resoketswe Charlotte; Mpenyana-Monyatsi, Lizzy; Momba, Maggie Ndombo Benteke

    2018-01-01

    Development of biofilms occurring on the inner surface of storage vessels offers a suitable medium for the growth of microorganisms and consequently contributes to the deterioration of treated drinking water quality in homes. The aim of this study was to determine whether the two point-of-use technologies (biosand zeolite silver-impregnated clay granular (BSZ-SICG) filter and silver-impregnated porous pot (SIPP) filter) deployed in a rural community of South Africa could inhibit the formation of biofilm on the surface of plastic-based containers generally used by rural households for the storage of their drinking water. Culture-based methods and molecular techniques were used to detect the indicator bacteria (Total coliforms, faecal coliform, E. coli) and pathogenic bacteria (Salmonella spp., Shigella spp. and Vibrio cholerae) in intake water and on the surface of storage vessels containing treated water. Scanning electron microscopy was also used to visualize the development of biofilm. Results revealed that the surface water source used by the Makwane community was heavily contaminated and harboured unacceptably high counts of bacteria (heterotrophic plate count: 4.4–4.3 Log10 CFU/100mL, total coliforms: 2.2 Log10 CFU/100 mL—2.1 Log10 CFU/100 mL, faecal coliforms: 1.9 Log10 CFU/100 mL—1.8 Log10 CFU/100 mL, E. coli: 1.7 Log10 CFU/100 mL—1.6 Log10 CFU/100 mL, Salmonella spp.: 3 Log10 CFU/100 mL -8 CFU/100 mL; Shigella spp. and Vibrio cholerae had 1.0 Log10 CFU/100 mL and 0.8 Log10 CFU/100 mL respectively). Biofilm formation was apparent on the surface of the storage containers with untreated water within 24 h. The silver nanoparticles embedded in the clay of the filtration systems provided an effective barrier for the inhibition of biofilm formation on the surface of household water storage containers. Biofilm formation occurred on the surface of storage plastic vessels containing drinking water treated with the SIPP filter between 14 and 21 days, and on

  2. Study of efficiency of particles removal by different filtration systems in a municipal wastewater tertiary treatment; Eficacia en la eliminacion de particulas por diferentes sistemas de filtracion aplicados al tratamiento terciario de las aguas residuales urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Andreu, P. S.; Lardin Mifsut, C.; Farinas Iglesias, M.; Sanchez-Arevalo Serrano, J.; Perez Sanchez, P.; Rancano Perez, A.

    2009-07-01

    The disinfection of municipal wastewater using ultraviolet radiation depends greatly on the presence within the water of particles in suspension. This work determines how the level of elimination of particles varies depending on the technique of filtration used (open, closed sand filters, with continuous washing of the sand, cloth, disk and ring filters). all systems are very effective in the removal of particles more than 25 microns and for removing helminth eggs. The membrane bio-reactors with ultrafiltration membranes were superior in terms of particle removal when compared to conventional filters. (Author) 11 refs.

  3. Optimization of suspensions filtration with compressible cake

    Directory of Open Access Journals (Sweden)

    Janacova Dagmar

    2016-01-01

    Full Text Available In this paper there is described filtering process for separating reaction mixture after enzymatic hydrolysis to process the chromium tanning waste. Filtration of this mixture is very complicated because it is case of mixture filtration with compressible cake. Successful process strongly depends on mathematical describing of filtration, calculating optimal values of pressure difference, specific resistant of filtration cake and temperature maintenance which is connected with viscosity change. The mathematic model of filtration with compressible cake we verified in laboratory conditions on special filtration device developed on our department.

  4. Filtration set for gaseous fluids

    International Nuclear Information System (INIS)

    Lebrun, B.; Couvrat-Desvergnes, A.

    1988-01-01

    This filtration set is made by a cylindrical vessel containing upstairs to downstairs, the gas inlet, a sealed floor for man inspection, a horizontal granular filter bed, a linen with a porosity inferior to the granulometry of the filter bed, a light support layer of material of larger granulometry, gas permeable tubes and an annular collector connecting the tubes to the outlet [fr

  5. Some observations on air filtration

    NARCIS (Netherlands)

    Kluyver, A.J.; Visser, J.

    1950-01-01

    1. A method has been developed for testing the filtration efficiency of some filter materials. For each of the materials investigated — cotton wool, stillite and carbon — a suitable filter has been devised. 2. The filtered air was analyzed as to its germ content with the aid of a set of 3 capillary

  6. Filtration device for active effluents

    International Nuclear Information System (INIS)

    Guerin, M.; Meunier, G.

    1994-01-01

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter

  7. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    Science.gov (United States)

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH in Brisbane, Queensland (Australia: Study Design and Implementation

    Directory of Open Access Journals (Sweden)

    Wafaa Nabil Ezz

    2015-02-01

    Full Text Available Ultrafine particles are particles that are less than 0.1 micrometres (µm in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT and multiple breath nitrogen washout test (MBNW (to assess airway function, fraction of exhaled nitric oxide (FeNO, to assess airway inflammation, blood cotinine levels (to assess exposure to second-hand tobacco smoke, and serum C-reactive protein (CRP levels (to measure systemic inflammation. A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

  9. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-01-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34 + KDR + cells) or early (CD34 + CD133 + KDR + cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2′,7′-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.

  10. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  11. Graphite beds for coolant filtration at high temperature

    International Nuclear Information System (INIS)

    Heathcock, R.E.; Lacy, C.S.

    1978-01-01

    High temperature filtration will be provided for new Ontario Hydro CANDU heat transport systems. Filtration has been shown to effectively reduce the concentration of circulating corrosion products in our heat transport systems, hence, minimizing the processes of activity transport. This paper will present one option we have for this application; Deep Bed Granular Graphite Filters. The filter system is described by discussing pertinent aspects of its development programme. The compatibility of the filter and the heat transport coolant are demonstrated by results from loop tests, both out- and in-reactor, and by subsequent results from a large filter installation in the NPD NGS heat transport system. (author)

  12. Filtrations of free groups as intersections

    OpenAIRE

    Efrat, Ido

    2013-01-01

    For several natural filtrations of a free group S we express the n-th term of the filtration as the intersection of all kernels of homomorphisms from S to certain groups of upper-triangular unipotent matrices. This generalizes a classical result of Grun for the lower central filtration. In particular, we do this for the n-th term in the lower p-central filtration of S.

  13. Portable field water sample filtration unit

    International Nuclear Information System (INIS)

    Hebert, A.J.; Young, G.G.

    1977-01-01

    A lightweight back-packable field-tested filtration unit is described. The unit is easily cleaned without cross contamination at the part-per-billion level and allows rapid filtration of boiling hot and sometimes muddy water. The filtration results in samples that are free of bacteria and particulates and which resist algae growth even after storage for months. 3 figures

  14. Demonstration of creep during filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Bugge, Thomas Vistisen; Kirchheiner, Anders Løvenbalk

    The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found...... that the production of filtrate also depends on the characteristic time for the filter cake solids to deform. This is formulated in the Terzaghi-Voigt model in which a secondary consolidation is introduced. The secondary consolidation may be visualized by plots of the relative cake deformation (U) v.s. the square...... root of time. Even more clearly it is demonstrated by plotting the liquid pressure at the cake piston interface v.s. the relative deformation (to be shown). The phenomenon of a secondary consolidation processes is in short called creep. Provided that the secondary consolidation rate is of the same...

  15. Properties of plastic filtration material

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1988-01-01

    Discusses properties of filters made of thermoplastic granulated material. The granulated plastic has a specific density of 10.3-10.6 kN/m/sup 3/ and a bulk density of about 6 kN/m/sup 3/. Its chemical resistance to acids, bases and salts is high but is it soluble in organic solvents. Filters made of this material are characterized by a porosity coefficient of 36.5% and a bulk density of 5.7-6.8 kN/m/sup 3/. Physical and mechanical properties of filter samples made of thermoplastic granulated material (50x50x50 mm) were investigated under laboratory conditions. Compression strength and influencing factors were analyzed (ambient temperature, manufacturing technology). Tests show that this filtration material developed by Poltegor is superior to other filtration materials used in Poland.

  16. C-018H LERF filtration test plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, T.P.; King, C.V.

    1994-08-26

    The following outlines the plan to test the polymeric backwash filtration system at the LERF. These tests will determine if the ETF filter design is adequate. If the tests show that the design is adequate, the task will be complete. If the tests show that the technology is inadequate, it may be necessary to perform further tests to qualify other candidate filtration technologies (e.g., polymeric tubular ultrafiltration, centrifugal ultrafiltration). The criteria to determine the success or failure of the backwash filter will be based on the system`s ability to remove the bacteria and inorganic contaminants from the evaporator process condensate. The tests are designed to qualify the design basis of the filtration technology that will be used in the ETF.

  17. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    Science.gov (United States)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  18. Relation Between Filtration and Soil Consolidation Theories

    Directory of Open Access Journals (Sweden)

    Strzelecki Tomasz

    2015-03-01

    Full Text Available This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot’s and Terzaghi’s soil consolidation models, which has a bearing on the use of the methods of determining the filtration coefficient on the basis of oedometer test results. The present analysis of the filtration theory equations should help interpret effective parameters of the non-steady filtration model. Moreover, equations for the flow of a gas through a porous medium and an interpretation of the filtration model effective parameters in this case are presented.

  19. Twinning interactions induced amorphisation in ultrafine silicon grains

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Zhang, L.C., E-mail: liangchi.zhang@unsw.edu.au [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Zhang, Y. [School of Mechatronics Engineering, Harbin Institute of Technology (China)

    2016-03-21

    Detailed transmission electron microscopy analysis on a severely deformed Al-Si composite material has revealed that partial dislocation slips and deformation twinning are the major plastic deformation carriers in ultrafine silicon grains. This resembles the deformation twinning activities and mechanisms observed in nano-crystalline face-centred-cubic metallic materials. While deformation twinning and amorphisation in Si were thought unlikely to co-exist, it is observed for the first time that excessive twinning and partial dislocation interactions can lead to localised solid state amorphisation inside ultrafine silicon grains.

  20. Spontaneous water filtration of bio-inspired membrane

    Science.gov (United States)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  1. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2010-06-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro components in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and PW as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  2. A new and superior ultrafine cementitious grout

    International Nuclear Information System (INIS)

    Ahrens, E.H.

    1997-01-01

    Sealing fractures in nuclear waste repositories concerns all programs investigating deep burial as a means of disposal. Because the most likely mechanism for contaminant migration is by dissolution and movement through groundwater, sealing programs are seeking low-viscosity sealants that are chemically, mineralogically, and physically compatible with the host rock. This paper presents the results of collaborative work directed by Sandia National Laboratories (SNL) and supported by Whiteshell Laboratories, operated by Atomic Energy of Canada, Ltd. The work was undertaken in support of the Waste Isolation Pilot Plant (WIPP), an underground nuclear waste repository located in a salt formation east of Carlsbad, NM. This effort addresses the technology associated with long-term isolation of nuclear waste in a natural salt medium. The work presented is part of the WIPP plugging and sealing program, specifically the development and optimization of an ultrafine cementitious grout that can be injected to lower excessive, strain-induced hydraulic conductivity in the fractured rock termed the Disturbed Rock Zone (DRZ) surrounding underground excavations. Innovative equipment and procedures employed in the laboratory produced a usable cement-based grout; 90% of the particles were smaller than 8 microns and the average particle size was 4 microns. The process involved simultaneous wet pulverization and mixing. The grout was used for a successful in situ test underground at the WIPP. Injection of grout sealed microfractures as small as 6 microns (and in one rare instance, 3 microns) and lowered the gas transmissivity of the DRZ by up to three orders of magnitude. Following the WIPP test, additional work produced an improved version of the grout containing particles 90% smaller than 5 microns and averaging 2 microns. This grout will be produced in dry form, ready for the mixer

  3. Self Cleaning HEPA Filtration without Interrupting Process Flow

    International Nuclear Information System (INIS)

    Wylde, M.

    2009-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research (Bergman et al 1997, Moore et al 1992) suggests that the then costs to the DOE, based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4,450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5,000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15,000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  4. Ultrafine PEG-coated poly(lactic-co-glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications.

    Science.gov (United States)

    Chu, Chih-Hang; Wang, Yu-Chao; Huang, Hsin-Ying; Wu, Li-Chen; Yang, Chung-Shi

    2011-05-06

    A novel method was developed for the one-pot synthesis of ultrafine poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), using an emulsion solvent evaporation formulation method. Using either cetyltrimethylammonium bromide (CTAB) or poly(ethylene glycol)-distearyl phosphoethanolamine (PEGPE) as an oily emulsifier during the emulsion process, produced PLGA particle sizes of less than 50 nm, constituting a breakthrough in emulsion formulation methods. The yield of ultrafine PLGA NPs increased with PEGPE/PLGA ratio, reaching a plateau at around 85%, when the PEGPE/PLGA ratio reached 3:1. The PEGPE-PLGA NPs exhibited high drug loading content, reduced burst release, good serum stability, and enhanced cell uptake rate compared with traditional PLGA NPs. Sub-50 nm diameter PEG-coated ultrafine PLGA NPs show great potential for in vivo drug delivery systems.

  5. [A comparative and technical assessment of the HELP system (heparin extracorporeal LDL precipitation) and cascade filtration (CF) for the treatment of high plasma lipids].

    Science.gov (United States)

    Loschiavo, Carmelo

    2013-01-01

    Extracorporeal techniques for the removal of plasma lipids, known as LDL-apheresis, have improved treatment of atherosclerotic lesions in patients with familial hyperlipidemia (FH). In the homozygous form, such treatment is to be considered a life-saving therapy, and in heterozygous forms, which are widely distributed in the population, it is also used when there is a high risk of coronary atherogenic lesions and where a dietary and pharmacological approach has failed to satisfy the objective of a LDL-C 2.6 mmol/L. Of the various techniques available, we believe that cascade filtration (CF) and extracorporeal LDL precipitation with heparin (HELP) are the methods of choice for technical reasons, clinical efficacy and safety. HELP provides, at long-term follow-up, a 5% greater decrease in LDL-C and Lp (a) compared to CF, and about 10% increase in fibrinogen removal resulting in decreased blood viscosity. Conversely, CF produces a concomitant elimination of up to 20% of HDL-C, whereas HELP results in around 5% elimination. CF determines a loss of protein which over time can impact negatively on the protein profile, while HELP results in negligible protein loss. Finally, a significant dampening effect on the intermediate products of inflammation, which initiate the process of vessel atheroma development, has been documented only with HELP. Therefore, the HELP procedure appears to inhibit the development of atheromatous plaques via several different routes.

  6. C-018H LERF filtration test plan. Revision 1

    International Nuclear Information System (INIS)

    Moberg, T.P.; King, C.V.

    1994-01-01

    The following outlines the plan to test the polymeric backwash filtration system at the LERF. These tests will determine if the ETF filter design is adequate. If the tests show that the design is adequate, the task will be complete. If the tests show that the technology is inadequate, it may be necessary to perform further tests to qualify other candidate filtration technologies (e.g., polymeric tubular ultrafiltration, centrifugal ultrafiltration). The criteria to determine the success or failure of the backwash filter will be based on the system's ability to remove the bacteria and inorganic contaminants from the evaporator process condensate. The tests are designed to qualify the design basis of the filtration technology that will be used in the ETF

  7. Water treatment by multistage filtration system with natural coagulant from Moringa oleifera seeds Tratamento de água para abastecimento pelo sistema filme com extrato de sementes de Moringa oleifera

    Directory of Open Access Journals (Sweden)

    Monalisa Franco

    2012-10-01

    Full Text Available This study presents an evaluation of a pilot multistage filtration system (MSF with different dosages, 131 mg L-1 and 106 mg L-1, of the natural coagulant extracted from Moringa oleifera seeds in pre-filtration and slow filtration stages, respectively. The system was comprised by a dynamic pre-filter unit, two upflow filters in parallel and four slow filters in parallel, and in one of the four filters had the filter media altered. The performance of the system was evaluated by monitoring some water quality parameters such as: turbidity, apparent color and slow filter load loss. The stages that have received the coagulant solution had better treatment efficiency compared with the steps without it. However, the direct application of the coagulant solution in the slow filter caused rapid clogging of the non-woven blanket and shorter career length.O trabalho apresenta uma avaliação do sistema-piloto de filtração em múltiplas etapas, com aplicação de diferentes dosagens (131 mg L-1 e 106 mg L-1 do coagulante natural extraído de sementes de Moringa oleifera, nas etapas de pré-filtração e filtração lenta, respectivamente. O sistema foi constituído por uma unidade de pré-filtro dinâmico, duas unidades de pré-filtros de fluxo ascendente em paralelo e quatro unidades de filtros lentos em paralelo, sendo que, em um dos filtros lentos, houve variação do meio filtrante. O desempenho do sistema foi avaliado por meio de parâmetros como turbidez, cor aparente e perda de carga dos filtros lentos. As etapas que receberam a solução coagulante tiveram maior eficiência de tratamento se comparadas com as etapas sem o recebimento da mesma. Entretanto, a aplicação direta da suspensão coagulante no filtro lento causou rápida colmatação da manta e menor tempo de duração da carreira.

  8. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    Science.gov (United States)

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    International Nuclear Information System (INIS)

    Lin Feng; Jiang Xianliang; Yu Yueguang; Zeng Keli; Ren Xianjing; Li Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings

  10. Water filtration using plant xylem.

    Directory of Open Access Journals (Sweden)

    Michael S H Boutilier

    Full Text Available Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees--a readily available, inexpensive, biodegradable, and disposable material--can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm(3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  11. Renal filtration function in patients with gout

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2016-01-01

    Full Text Available Aim. To study circadian blood pressure (BP profile in patients with gout depending on the presence of arterial hypertension (HT and their relationship to the renal filtration function.Material and methods. Patients with gout (n=87 were included into the study. All the patients underwent ambulatory BP monitoring (ABPM with the assessment of circadian BP profile, determination of uric acid serum levels, glomerular filtration rate (GFR was evaluated by CKD-EPI method. Depending on GFR level, all the patients were divided into 2 groups - with renal dysfunction or without one.Results. ABPM revealed circadian BP dysregulation in 55% of gout patients both with HT and without HT. Chronic kidney disease (CKD was revealed in 72.4% of male patients, with the prevalence in patients with HT (76.6 vs 61%; p<0.001. Correlations between uric acid levels and some ABPM indicators and GFR were determined.Conclusion. Obtained data suggest the contribution of hyperuricemia in disorders of systemic and renal hemodynamics, leading to the early development of CKD.

  12. EM Task 9 - Centrifugal Membrane Filtration

    International Nuclear Information System (INIS)

    Stevens, B.G.; Stepan, D.J.; Hetland, M.D.

    1998-01-01

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  13. Separation of ultrafine particles from class F fly ashes

    Directory of Open Access Journals (Sweden)

    Acar Ilker

    2016-01-01

    Full Text Available In this study, ultrafine particles were recovered from Çatalağzı (CFA and Sugözü (SFA thermal power plant fly ashes using a specific hydraulic classification technology. Since fly ashes have a high tendency to be flocculated in water, settling experiments were first designed to determine the more effective dispersant and the optimum dosage. Two different types of the superplasticizers (SP polymers based on sulphonate (NSF, Disal and carboxylate (Glenium 7500 were used as the dispersing agents in these settling experiments. Hydraulic classification experiments were then conducted to separate ultrafine fractions from the fly ash samples on the basis of the settling experiments. According to the settling experiments, better results were achieved with the use of Disal for both CFA and SFA. The classification experiments showed that the overflow products with average particle sizes of 5.2 μm for CFA and 4.4 μm for SFA were separated from the respective as-received samples with acceptable yields and high enough recoveries of -5 μm (ultrafine particles. Overall results pointed out that the hydraulic classification technology used provided promising results in the ultrafine particle separations from the fly ash samples.

  14. Outdoor ultrafine particle concentrations in front of fast food restaurants

    NARCIS (Netherlands)

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A

  15. Fusion Kalman filtration with k-step delay sharing pattern

    Directory of Open Access Journals (Sweden)

    Duda Zdzisław

    2015-09-01

    Full Text Available A fusion hierarchical state filtration with k−step delay sharing pattern for a multisensor system is considered. A global state estimate depends on local state estimates determined by local nodes using local information. Local available information consists of local measurements and k−step delay global information - global estimate sent from a central node. Local estimates are transmitted to the central node to be fused. The synthesis of local and global filters is presented. It is shown that a fusion filtration with k−step delay sharing pattern is equivalent to the optimal centralized classical Kalman filtration when local measurements are transmitted to the center node and used to determine a global state estimate. It is proved that the k−step delay sharing pattern can reduce covariances of local state errors.

  16. Side Stream Filtration for Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  17. Relation Between Filtration and Soil Consolidation Theories

    OpenAIRE

    Strzelecki Tomasz; Strzelecki Michał

    2015-01-01

    This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot’s and Terzaghi’s soil consolidation models, which has a bearing on...

  18. Filtration of Sludge and Sodium Nonatitanate Solutions

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2000-01-01

    The proposed facility designs for the ion exchange and solvent extraction flowsheets under development to treat high level waste at the Savannah River Site use crossflow filtration to remove entrained sludge and monosodium titanate (MST). Bench-scale and pilot-scale testing performed with simulated feed streams showed much lower filtration rates than desired for the process. This report documents an investigation of the impact on filtration of using Honeywell sodium nonatitanate (ST), rather than MST, for strontium and actinide removal

  19. Performance assessment of adding Cu-ultrafine particles into falling film desiccant

    International Nuclear Information System (INIS)

    Al-Mulla Ali, A.

    2006-01-01

    The concept of dehumidification between air and liquid desiccant for the improvement of the efficiency of heating and cooling fluids in industrial applications was discussed. The use of solid/liquid desiccants has received much attention in recent years because liquid desiccants can take moisture from surrounding air at low temperature and then release the moisture at high temperature to provide a continuous process of dehumidification of air and regeneration of liquid desiccant. This process can be used with conventional vapor compression cycles. This paper presented a comparative numerical study between parallel and counter flow configurations that examined the effects of various parameters on heat and mass transfer for the dehumidification and cooling processes of air and regeneration rate of liquid desiccant. Ultrafine particles were added to the falling film desiccant to investigate heat and mass transfer enhancement for both parallel and counter flow channels. The Cu-volume fraction in the falling film desiccant and dispersion effect were the important parameters. A mathematical model was therefore developed to account for the addition of Cu-ultrafine particles into the film desiccant. The dehumidification and cooling rate processes were found to improve with an increase in the Cu-ultrafine particles and dispersion effect. The new hybrid AC system was shown to improve indoor air quality, reduce energy consumption, and be environmentally safe. It was concluded that although the volume fraction and dispersion factor improve the dehumidification and cooling processes of the air, the improvements are not significant due to the small thickness of the falling-film desiccant. The regeneration process did not improve for either controlling parameter because of the small thickness of the film desiccant. 14 refs., 10 figs

  20. Deposition of ultrafine aerosols in F344/N rat nasal casts

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y S; Hansen, G K; Su, Y F; Yeh, H C; Morgan, K T [Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States)

    1988-12-01

    Determination of regional respiratory deposition of inhaled aerosols is critical for evaluation of the health effects of air pollutants. Information on deposition of larger particles (> 0.02 {mu}m) in the nasal passages of laboratory animals is available; the deposition fraction increases with increasing particle size. Little information on ultrafine particles less than 0.2 {mu}m is available. Molds (models) were prepared from replica casts of the nasal passages of F344/N rats, using clear casting plastic. Total deposition of ultrafine aerosols in these casts was then determined using a unidirectional flow system. Measured pressure drops in the casts were a function of flow rate to the power of 1.4-1.6, indicating that the flow through the nasal passage was not laminar. Deposition data were obtained from these casts, using monodisperse sodium chloride aerosols with particle size ranging from 0.2 to 0.005 {mu}m, at inspiratory and expiratory flow rates of 200 to 600 cc/min. Similar deposition data were obtained for the three casts studied. The deposition efficiency was greatest for the smallest particles, and decreased with increasing particle size and flow rate, indicating that diffusion was the dominant mechanism for deposition. At an inspiratory flow rate of 400 cc/min, which is comparable to a respiratory minute volume of 200 cc/min for mature male F344/N rats, deposition efficiencies reached 40 and 70% for 0.01 and 0.005 {mu}m particles, respectively. Turbulent diffusion was considered to be the dominant mechanism for deposition of ultrafine particles in the nasal passage. This information is important for understanding the toxicity and carcinogenicity of submicrometer particles, including diesel soot, radon progeny and vapors. (author)

  1. Cake creep during filtration of flocculated manure

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    is filtered. Hence, it is not possible to scale up the experiments, and it is therefore difficult to optimize the flocculation and estimate the needed filter media area. Similar problems have been observed when sewage sludge and synthetic core-shell colloids are filtered, and it has been suggested......, and the mixing procedure affect the result, and lab-scale experiments are often used to study how these pre-treatments influence the filtration process. However, the existing mathematical filtration models are based on filtration of inorganic particles and cannot simulate the filtration data obtained when manure...

  2. Filtration Behaviour and Fouling Mechanisms of Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sondus Jamal

    2014-07-01

    Full Text Available This study investigated filtration behaviors of polysaccharides solutions, both alone and in mixture with proteins, in the short-time constant flux filtration with the focus on factors affecting the transmembrane pressure (TMP increase rate, the irreversible filtration resistance, and the membrane rejection behavior. The results showed that the TMP increase rates in the short-time constant flux filtration of alginate solutions were significantly affected by the calcium addition, alginate concentration, and flux. Although the addition of calcium resulted in a decrease in the TMP increase rate, it was found that the irreversible fouling developed during the filtration increased with the calcium addition, implying that the double-sided effect of calcium on membrane filtration and that the TMP increase rate observed in the filtration does not always reflect the irreversible membrane fouling development. It was also found that for the filtration of solutions containing mixed alginate and BSA, alginate exerted a dominant effect on the TMP increase rate and the membrane exhibited a reduced rejection to both alginate and BSA molecules compared to that in the filtration of the pure alginate or BSA.

  3. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system.

    Directory of Open Access Journals (Sweden)

    Alexandra Machen

    Full Text Available Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS. After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012 category agreement of antimicrobials tested, with 3.6% (36/1012 minor error, 1.7% (7/1012 major error, and 1.3% (13/1012 very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001. Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship.

  4. Same Day Identification and Full Panel Antimicrobial Susceptibility Testing of Bacteria from Positive Blood Culture Bottles Made Possible by a Combined Lysis-Filtration Method with MALDI-TOF VITEK Mass Spectrometry and the VITEK2 System

    Science.gov (United States)

    Machen, Alexandra; Drake, Tim; Wang, Yun F. (Wayne)

    2014-01-01

    Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001). Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship. PMID:24551067

  5. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system.

    Science.gov (United States)

    Machen, Alexandra; Drake, Tim; Wang, Yun F Wayne

    2014-01-01

    Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (pdirectly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship.

  6. Pathogen filtration to control plant disease outbreak in greenhouse production

    Science.gov (United States)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  7. Filtration of sodium-fire aerosols

    International Nuclear Information System (INIS)

    Alexas, A.; Jordan, S.; Lindner, W.

    1979-01-01

    Different filter devices have been developed and tested with respect to their use in the off-gas system of liquid-metal fast breeder reactors to prevent the escape of sodium-fire aerosols that might be formed in case of an accident. The testing results have shown that the use of a multilayer sand bed filter is still the best method to filter limited amounts of sodium-fire aerosols over a long operating time. Efficiencies on the order of 99.98 and 98.8% were reached for loading capacities of 500 and 1000 g/m 2 , respectively. Unlimited amounts of sodium-fire aerosols can be filtered by wet scrubbers with an efficiency of 70% per scrubber stage. Fiberglas filters connot be used for the filtration of sodium-fire aerosols over a long operating time because the filter material can be destroyed after several days of operating

  8. Successful Treatment Of Homozygous Familial Hypercholesterolemia Using Cascade Filtration Plasmapheresis

    Directory of Open Access Journals (Sweden)

    Fatih Kardas

    2012-12-01

    Full Text Available OBJECTIVE: The aim of our study is to discuss the efficacy of low-density lipoprotein-cholesterol (LDL-C apheresis procedure using the cascade filtration system for pediatric patients with homozygous familial hypercholesterolemia (FH, and to clarify the adverse effects and difficulties. METHODS: LDL apheresis using the cascade filtration system was performed in 3 pediatric patients with homozygous FH. In total, 120 apheresis sessions were performed for all patients. RESULTS: Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dl to 145 ± 43 mg/dl (p<0.05. We determined an acute mean reduction in the plasma levels of total cholesterol (57.9%, LDL cholesterol (70.8%, and high-density lipoprotein (HDL cholesterol (40.7%. Treatments were well tolerated. The most frequent clinical adverse effects were hypotension in 3 sessions (2.5%, chills/feeling cold (1.7% in 2 sessions, and nausea and vomiting in 3 sessions (2.5%. CONCLUSION: Our experience with three patients using the cascade filtration system were, good clinical outcomes, laboratory findings, safety of usage, minor adverse effects and technical problems.

  9. Successful treatment of homozygous familial hypercholesterolemia using cascade filtration plasmapheresis.

    Science.gov (United States)

    Kardaş, Fatih; Cetin, Aysun; Solmaz, Musa; Büyükoğlan, Rüksan; Kaynar, Leylagül; Kendirci, Mustafa; Eser, Bülent; Unal, Ali

    2012-12-01

    The aim of this study was to report the efficacy of low-density lipoprotein cholesterol (LDL-C) apheresisusing a cascade filtration system in pediatric patients with homozygous familial hypercholesterolemia (FH), and toclarify the associated adverse effects and difficulties. LDL-C apheresis using a cascade filtration system was performed in 3 pediatric patientswith homozygous FH; in total, 120 apheresis sessions were performed. Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dL to 145 ± 43 mg/dL (p= 0.011). We observed an acute mean reduction in the plasma level of total cholesterol (57.9%), LDL-C (70.8%),and high-density lipoprotein cholesterol (HDL-C) (40.7%). Treatments were well tolerated. The most frequent clinicaladverse effects were hypotension in 3 sessions (2.5%), chills (1.7%) in 2 sessions, and nausea/vomiting in 3 sessions(2.5%). Our experience using the cascade filtration system with 3 patients included good clinical outcomes andlaboratory findings, safe usage, and minor adverse effects and technical problems. None declared.

  10. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  11. Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium–Oxygen Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Yan, Pengfei; Xu, Wu; Zheng, Jianming; He, Yang; Luo, Langli; Bowden, Mark E.; Wang, Chong-Min; Zhang, Ji-Guang

    2016-08-10

    Lithium-oxygen (Li-O2) battery has an extremely high theoretical specific energy density as compared with conventional energy storage systems. However, practical application of Li-O2 battery system still faces significant challenges, especially its poor cyclability. In this work, we report a new approach to synthesis ultrafine metal oxide nanocatalysts through an electrochemical pre-lithiation process. This process reduces the size of NiCo2O4 (NCO) particles from 20~30 nm to a uniformly distributed domain of ~ 2 nm and largely improved their catalytic activity. Structurally, the pre-lithiated NCO NWs are featured by ultrafine NiO/CoO nanoparticles, which show high stability during prolonged cycles in terms of morphology and the particle size, therefore maintaining an excellent catalytic effect to oxygen reduction and evolution reactions. Li-O2 battery using this catalyst has demonstrated an initial capacity of 29,280 mAh g-1 and has retained a stable capacity of over 1,000 mAh g-1 after 100 cycles based on the weight of NCO active material. Direct in-situ TEM observation conclusively reveals the lithiation/delithiation process of as-prepared NCO NWs, clarifying the NCO/Li electrochemical reaction mechanism that can be extended to other transition-metal oxides and providing the in depth understandings on the catalysts and battery chemistries of other ternary transition-metal oxides.

  12. Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding

    Directory of Open Access Journals (Sweden)

    Igor Altenberger

    2015-05-01

    Full Text Available There is an increasing demand in the industry for conductive high strength copper alloys. Traditionally, alloy systems capable of precipitation hardening have been the first choice for electromechanical connector materials. Recently, ultrafine-grained materials have gained enormous attention in the materials science community as well as in first industrial applications (see, for instance, proceedings of NANO SPD conferences. In this study the potential of precipitation hardened ultra-fine grained copper alloys is outlined and discussed. For this purpose, swaging or accumulative roll-bonding is applied to typical precipitation hardened high-strength copper alloys such as Corson alloys. A detailed description of the microstructure is given by means of EBSD, Electron Channeling Imaging (ECCI methods and consequences for mechanical properties (tensile strength as well as fatigue and electrical conductivity are discussed. Finally the role of precipitates for thermal stability is investigated and promising concepts (e.g. tailoring of stacking fault energy for grain size reduction and alloy systems for the future are proposed and discussed. The relation between electrical conductivity and strength is reported.

  13. Filtration and retention capacities of filter aids

    International Nuclear Information System (INIS)

    Mellah, A.; Boualia, A.

    1992-01-01

    The present work involves the filtration of impure uranyl nitrate solutions by different filter aids such as kieselguhr, celite and bleaching clay. The retention of substances contained in uranyl nitrate solution was determined using the three filter aids. A study of the effects of granulometry and filter earths treatment (thermal and chemical) on the filtration rate was performed

  14. Preparation and pattern recognition of metallic Ni ultrafine powders by electroless plating

    International Nuclear Information System (INIS)

    Zhang, H.J.; Zhang, H.T.; Wu, X.W.; Wang, Z.L.; Jia, Q.L.; Jia, X.L.

    2006-01-01

    Using hydrazine hydrate as reductant, metallic Ni ultrafine powders were prepared from NiSO 4 aqueous solution by electroless plating method. The factors including concentration of NiSO 4 , bathing temperature, ratio of hydrazine hydrate to NiSO 4 , the pH of the solution, etc., on influence of the yield and average particle size of metallic Ni ultrafine powders were studied in detail. X-ray powders diffraction patterns show that the nickel powders are cubic crystallite. The average crystalline size of the ultrafine nickel powders is about 30 nm. The dielectric and magnetic loss of ultrafine Ni powders-paraffin wax composites were measured by the rectangle waveguide method in the range 8.2-12.4 GHz. The factors for Ni ultrafine powders preparation are optimized by computer pattern recognition program based on principal component analysis, the optimum factors regions with higher yield of metallic Ni ultrafine powders are indicated by this way

  15. Dewatering of ultrafine coal: Final report, August 1984-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Shiao-Hung; Klinzing, G.E.; Morsi, B.I.; Tierney, J.W.; Badgujar, M.; Binkley, T.; Cheng, Yisun; Huang, Suxuan; Qamar, I.; Venkatadri, R.

    1986-12-01

    The surfactant, Aerosol-OT, was used to wash distilled water cakes. In previous studies, cakes were washed with Triton X-114. The dewatering performance and influence on cake structure of the two reagents are compared. Also, filter cakes were analyzed using an image analysis system and micrographic analysis of coal particles was initiated. In the area of theoretical modelling, the concept of bond-flow correlation greatly improved the network model predicting the experimental desaturation curves. Predicted results for treated cakes suggested that the effect of the presence of surface-active agents was adequately accounted for. The effects of the various operating conditions on the filtration/dewatering characteristics of the 10 ..mu..m coal particles were assessed and comparisons with the -32 mesh coal were made as to its trends in response to changes in the operating conditions. 20 refs., 75 figs., 17 tabs.

  16. The impact of metallic filter media on HEPA filtration

    International Nuclear Information System (INIS)

    Chadwick, Chris; Kaufman, Seth

    2006-01-01

    Traditional HEPA filter systems have limitations that often prevent them from solving many of the filtration problems in the nuclear industry; particularly in applications where long service or storage life, high levels of radioactivity, dangerous decomposition products, chemical aggression, organic solvents, elevated operating temperatures, fire resistance and resistance to moisture are issues. This paper addresses several of these matters of concern by considering the use of metallic filter media to solve HEPA filtration problems ranging from the long term storage of transuranic waste at the WIPP site, spent and damaged fuel assemblies, in glove box ventilation and tank venting to the venting of fumes at elevated temperatures from incinerators, vitrification processes and conversion and sintering furnaces as well as downstream of iodine absorbers in gas cooled reactors in the UK. The paper reviews the basic technology, development, performance characteristics and filtration efficiency, flow versus differential pressure, cleanability and costs of sintered metal fiber in comparison with traditional resin bonded glass fiber filter media and sintered metal powder filter media. Examples of typical filter element and system configurations and applications will be presented The paper will also address the economic case for installing self cleaning pre-filtration, using metallic media, to recover the small volumes of dust that would otherwise blind large volumes of final disposable HEPA filters, thus presenting a route to reduce ultimate disposal volumes and secondary waste streams. (authors)

  17. Evaluation of condensate filtration technologies in fossil plants

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, Philip J. [JoDan Technologies Ltd., Glen Mills, PA (United States)

    2009-09-15

    Long-term protection of electric power generating station boilers depends upon the quality of their feedwater chemistry with respect to the transport and deposition of corrosion products to the boilers from various corrosion sources in the plant's condensate and feedwater cycle. It is in the utility's best interests to expand their programs to include ways to reduce the transport of corrosion products, especially those that occur during plant start-ups. Condensate filtration is a strategy employed by some utilities with demonstrable results in minimizing corrosion product transport and achieving a return on their investment. This paper provides a comparative review of available condensate filtration technologies as well as performance data from fossil plants with the new large diameter high flow filtration systems. Additionally, the paper identifies critical parameters to consider before installation as well as the necessity for agreement between utilities and suppliers on common filtration terminology definitions, to insure an ''apple-to-apple'' basis when comparing a system or technology from more than one supplier. (orig.)

  18. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Science.gov (United States)

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  19. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis

    Science.gov (United States)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Borbíró, I.; Angyal, A.; Csedreki, L.; Furu, E.; Szoboszlai, Z.; Kiss, Á. Z.; Hunyadi, J.

    2011-10-01

    Skin penetration is one of the potential routes for nanoparticles to gain access into the human body. Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the particle size smaller than 200 nm makes the product more transparent compared to formulations containing coarser particles. The present study continues the work carried out in the frame of the NANODERM: “Quality of skin as a barrier to ultrafine particles” European project and complements our previous investigations on human skin with compromised barrier function. Atopic dermatitis (a type of eczema) is an inflammatory, chronically relapsing, non-contagious skin disease. It is very common in children but may occur at any age. The exact cause of atopic dermatitis is unknown, but is likely due to a combination of impaired barrier function together with a malfunction in the body's immune system. In this study, skin samples were obtained from two patients suffering from atopic dermatitis. Our results indicate that the ultrafine zinc oxide particles, in a hydrophobic basis gel with an application time of 2 days or 2 weeks, have penetrated deeply into the stratum corneum in these patients. On the other hand, penetration into the stratum spinosum was not observed even in the case of the longer application time.

  20. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  1. Elevated temperature mechanical properties of novel ultra-fine grained Cu–Nb composites

    Energy Technology Data Exchange (ETDEWEB)

    Primorac, Mladen-Mateo [Department of Materials Physics, Montanuniversität Leoben (Austria); Abad, Manuel David; Hosemann, Peter [Department of Nuclear Engineering, University of California, Berkeley (United States); Kreuzeder, Marius [Department of Materials Physics, Montanuniversität Leoben (Austria); Maier, Verena [Department of Materials Physics, Montanuniversität Leoben (Austria); Erich-Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben (Austria); Kiener, Daniel, E-mail: daniel.kiener@unileoben.ac.at [Department of Materials Physics, Montanuniversität Leoben (Austria)

    2015-02-11

    Ultra-fine grained materials exhibit outstanding properties and are therefore favorable for prospective applications. One of these promising systems is the composite assembled by the body centered cubic niobium and the face centered cubic copper. Cu–Nb composites show a high hardness and good thermal stability, as well as a high radiation damage tolerance. These properties make the material interesting for use in nuclear reactors. The aim of this work was to create a polycrystalline ultra-fine grained composite for high temperature applications. The samples were manufactured via a powder metallurgical route using high pressure torsion, exhibiting a randomly distributed oriented grain size between 100 and 200 nm. The mechanical properties and the governing plastic deformation behavior as a function of temperature were determined by high temperature nanoindentation up to 500 °C. It was found that in the lower temperature regions up to 300 °C the plastic deformation is mainly governed by dislocation interactions, such as dislocation glide and the nucleation of kink pairs. For higher temperatures, thermally activated processes at grain boundaries are proposed to be the main mechanism governing plastic deformation. This mechanistic view is supported by temperature dependent changes in hardness, strain rate sensitivity, activation volume, and activation energy.

  2. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers

    International Nuclear Information System (INIS)

    Yu Dengguang; Shen Xiaxia; Zhu Limin; Branford-White, Chris; White, Kenneth; Annie Bligh, S W

    2009-01-01

    Oral fast-dissolving drug delivery membranes (FDMs) for poorly water-soluble drugs were prepared via electrospinning technology with ibuprofen as the model drug and polyvinylpyrrolidone (PVP) K30 as the filament-forming polymer and drug carrier. Results from differential scanning calorimetry, x-ray diffraction, and morphological observations demonstrated that ibuprofen was distributed in the ultrafine fibers in the form of nanosolid dispersions and the physical status of drug was an amorphous or molecular form, different from that of the pure drug and a physical mixture of PVP and ibuprofen. Fourier-transform infrared spectroscopy results illustrated that the main interactions between PVP and ibuprofen were mediated through hydrogen bonding. Pharmacotechnical tests showed that FDMs with different drug contents had almost the same wetting and disintegrating times, about 15 and 8 s, respectively, but significantly different drug dissolution rates due to the different physical status of the drug and the different drug-release-controlled mechanisms. 84.9% and 58.7% of ibuprofen was released in the first 20 s for FDMs with a drug-to-PVP ratio of 1:4 and 1:2, respectively. Electrospun ultrafine fibers have the potential to be used as solid dispersions to improve the dissolution profiles of poorly water-soluble drugs or as oral fast disintegrating drug delivery systems.

  3. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  4. Enhanced Antifungal Bioactivity of Coptis Rhizome Prepared by Ultrafining Technology

    Directory of Open Access Journals (Sweden)

    Ping-Chung Kuo

    2014-01-01

    Full Text Available The aim of this study was to identify and quantify the bioactive constituents in the methanol extracts of Coptis Rhizome prepared by ultrafining technology. The indicator compound was identified by spectroscopic method and its purity was determined by HPLC. Moreover, the crude extracts and indicator compound were examined for their ability to inhibit the growth of Rhizoctonia solani Kühn AG-4 on potato dextrose agar plates. The indicator compound is a potential candidate as a new plant derived pesticide to control Rhizoctonia damping-off in vegetable seedlings. In addition, the extracts of Coptis Rhizome prepared by ultrafining technology displayed higher contents of indicator compound; they not only improve their bioactivity but also reduce the amount of the pharmaceuticals required and, thereby, decrease the environmental degradation associated with the harvesting of the raw products.

  5. Unraveling the atomic structure of ultrafine iron clusters

    KAUST Repository

    Wang, Hongtao

    2012-12-18

    Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first time, thanks to the superior properties of graphene, including the monolayer thickness, chemical inertness, mechanical strength, electrical and thermal conductivity. These clusters prefer to take regular planar shapes with morphology changes by local atomic shuffling, as suggested by the early hypothesis of solid-solid transformation. Our observations differ from observations from earlier experimental study and theoretical model, such as icosahedron, decahedron or cuboctahedron. No interaction was observed between Fe atoms or clusters and pristine graphene. However, preferential carving, as observed by other research groups, can be realized only when Fe clusters are embedded in graphene. The techniques introduced here will be of use in investigations of other clusters or even single atoms or molecules.

  6. Physicochemical characterization of Baizhi particles by ultrafine pulverization

    Science.gov (United States)

    Yang, Lian-Wei; Sun, Peng; Gai, Guo-Sheng; Yang, Yu-Fen; Wang, Yu-Rong

    2011-04-01

    Baizhi, as a medicinal plant, has been demonstrated to be useful for the treatment of aches and pains in China. The physicochemical characterization of Baizhi particles is greatly influenced by ultrafine pulverization. To study the physicochemical characterization of Baizhi, the raw plant material of Baizhi was ground to 6 μm particles by a high speed centrifugal sheering (HSCS) pulverizer. The micron particles were characterized by optical microscopy and scanning electron microscopy (SEM). Imperatorin is one of the active ingredients of Baizhi, and its extraction yield is determined to evaluate the chemical characterization of Baizhi powder. Imperatorin was analyzed by high performance liquid chromatography (HPLC). The results show that after ultrafine pulverization, the plant cell walls are broken into pieces and the extraction yield of imperatorin is increased by 11.93% compared with the normal particles.

  7. Fundamentals of fast reduction of ultrafine iron ore at low temperature

    Institute of Scientific and Technical Information of China (English)

    Pei Zhao; Peimin Guo

    2008-01-01

    Fundamentals on the fast reduction of ultrafine iron ore at low temperature, including characterization of ultrafine ore, de- oxidation thermodynamics of stored-energy ultrafine ore, kinetics of iron ore deoxidation, and deoxidation mechanism, etc., and a new ironmaking process are presented in this article. Ultrafine ore concentrate with a high amount of stored energy can be produced by mechanical milling, and can be dcoxidated fast below 700℃ by either the coal-based or gas-based process. This novel process has some advantages over others: high productivity, low energy consumption, and environmental friendliness.

  8. Imaging of DNA Ultrafine Bridges in Budding Yeast

    DEFF Research Database (Denmark)

    Quevedo Rodriguez, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools...... and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae....

  9. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.

    Science.gov (United States)

    Jiang, Hao; Zhao, Ting; Ma, Jan; Yan, Chaoyi; Li, Chunzhong

    2011-01-28

    Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).

  10. Imaging of DNA Ultrafine Bridges in Budding Yeast.

    Science.gov (United States)

    Quevedo, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae.

  11. Microstructural response of ultrafine-grained copper to fatigue loading

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Buksa, Michal; Wang, Q.; Zheng, M.

    2007-01-01

    Roč. 13, č. 1 (2007), s. 512-518 ISSN 1335-1532. [Metallography 2007. Stará Lesná, 02.05.2007-04.05.2007] R&D Projects: GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ultrafine-grained copper * Fatigue * Softening/hardening Subject RIV: JG - Metallurgy

  12. The usage of filtration as fulfillment of acceptable indoor and optimal energy management

    International Nuclear Information System (INIS)

    Burroughs, H.E.

    1993-01-01

    The role of filtration is a significant factor in the prevention and mitigation of indoor air quality problems. ASHRAE Standard 62-89. Ventilation for Acceptable Indoor Air Quality, makes broad and non-specific references to filtration. This paper provides guidelines for the usage of filtration as a means of fulfillment of the Standard's requirements. The paper also references the specific authorities as iterated in the Standard. The discussion will include the usage of filtration in treating contaminated outside air, protection of equipment and systems, protection of occupants, reduction of ventilation air, and source control. The reduction of ventilation air through filtration has significant and positive energy management benefits. Other energy benefits accrue from clean heat exchange surfaces

  13. Cross-flow micro-filtration using ceramic membranes

    International Nuclear Information System (INIS)

    Thern, Gerardo G.; Marajofsky, Adolfo; Rossi, Federico; La Gamma, Ana M.; Chocron, Mauricio

    2004-01-01

    Pressurized Heavy Water Reactors have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D 2 O/H 2 O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting on an activated charcoal bed-strong cationic-anionic resin and a final polishing anionic bed resin. Traces of oils are retained by the charcoal bed but some of them pass through and could be responsible for the resins fouling. The process of micro filtration using ceramic materials is particularly applied to the treatment of waters with oil micro droplets. We describe the development stages of single and double layer filtration ceramic tubes, their characterization and the adaptation to test equipment. The efficiency was evaluated by means of tangential ('cross-flow') filtration of aqueous solutions containing dodecane at the micrograms per ml concentration level. This compound simulates the properties of a typical oil contaminant. A 100-fold reduction in the amount of dodecane in water was observed after the filtration treatment. (author)

  14. Sources of ultrafine particles in the Eastern United States

    Science.gov (United States)

    Posner, Laura N.; Pandis, Spyros N.

    2015-06-01

    Source contributions to ultrafine particle number concentrations for a summertime period in the Eastern U.S. are investigated using the chemical transport model PMCAMx-UF. New source-resolved number emissions inventories are developed for biomass burning, dust, gasoline automobiles, industrial sources, non-road and on-road diesel. According to the inventory for this summertime period in the Eastern U.S., gasoline automobiles are responsible for 40% of the ultrafine particle number emissions, followed by industrial sources (33%), non-road diesel (16%), on-road diesel (10%), and 1% from biomass burning and dust. With these emissions as input, the chemical transport model PMCAMx-UF reproduces observed ultrafine particle number concentrations (N3-100) in Pittsburgh with an error of 12%. For this summertime period in the Eastern U.S., nucleation is predicted to be the source of more than 90% of the total particle number concentrations. The source contributions to primary particle number concentrations are on average similar to those of their source emissions contributions: gasoline is predicted to contribute 36% of the total particle number concentrations, followed by industrial sources (31%), non-road diesel (18%), on-road diesel (10%), biomass burning (1%), and long-range transport (4%). For this summertime period in Pittsburgh, number source apportionment predictions for particles larger than 3 nm in diameter (traffic 65%, other combustion sources 35%) are consistent with measurement-based source apportionment (traffic 60%, combustion sources 40%).

  15. Exposure to airborne ultrafine particles from cooking in Portuguese homes.

    Science.gov (United States)

    Bordado, J C; Gomes, J F; Albuquerque, P C

    2012-10-01

    Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 microm2/cm3 (increased to 72.9 microm2/cm3 due to gas burning) to a maximum of 890.3 microm2/cm3 measured during fish boiling in water and a maximum of 4500 microm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities. The approach of this study considers the determination of alveolar deposited surface area of aerosols generated from cooking activities, namely, typical Portuguese dishes. This type of measurement has not been done so far, in spite of the recognition that cooking activity is a main source of submicrometer and ultrafine aerosols. The results have shown that the levels of generated aerosols surpass the outdoor concentrations in a major European town, which calls for further determinations, contributing to a better assessment of exposure of individuals to domestic activities such as this one.

  16. Acute change in glomerular filtration rate with inhibition of the renin-angiotensin system does not predict subsequent renal and cardiovascular outcomes.

    Science.gov (United States)

    Clase, Catherine M; Barzilay, Joshua; Gao, Peggy; Smyth, Andrew; Schmieder, Roland E; Tobe, Sheldon; Teo, Koon K; Yusuf, Salim; Mann, Johannes F E

    2017-03-01

    Initiation of blockade of the renin-angiotensin system may cause an acute decrease in glomerular filtration rate (GFR): the prognostic significance of this is unknown. We did a post hoc analysis of patients with, or at risk for, vascular disease, in two randomized controlled trials: Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET) and the Telmisartan Randomized AssessmeNt Study in ACE iNtolerant participants with cardiovascular Disease (TRANSCEND), whose median follow-up was 56 months. In 9340 patients new to renin-angiotensin system blockade, who were then randomized to renin-angiotensin system blockade, a fall in GFR of 15% or more at 2 weeks after starting renin-angiotensin system blockade was seen in 1480 participants (16%), with persistence at 8 weeks in 700 (7%). Both acute increases and decreases in GFR after initiation of renin-angiotensin system blockade were associated with tendencies, mostly not statistically significant, to increased risk of cardiovascular outcomes, which occurred in 1280 participants, and of microalbuminuria, which occurred in 864. Analyses of creatinine-based outcomes were suggestive of regression to the mean. In more than 3000 patients randomized in TRANSCEND to telmisartan or placebo, there was no interaction between acute change in GFR and renal or cardiovascular benefit from telmisartan. Thus, both increases and decreases in GFR on initiation of renin-angiotensin system blockade are common, and may be weakly associated with increased risk of cardiovascular and renal outcomes. Changes do not predict increased benefit from therapy. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES DONALDSON COMPANY INC.SERIES 6100 DIESEL OXIDATION CATALYST MUFFLER AND SPIRACLE CLOSED CRANKCASE FILTRATION SYSTEM

    Science.gov (United States)

    This report is on an environmental verification of the emissions characteristics of a Donaldson Corp. catalytic muffler and catalyic crankcase emissions control. It was found the systems reduced emissions.

  18. Volatility and mixing states of ultrafine particles from biomass burning

    International Nuclear Information System (INIS)

    Maruf Hossain, A.M.M.; Park, Seungho; Kim, Jae-Seok; Park, Kihong

    2012-01-01

    Highlights: ► Size distribution, volatility, and mixing states of ultrafine particles emitted from rice straw, oak, and pine burning under different burning conditions were investigated. ► Smoldering combustion emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for flaming combustion. ► While the flaming combustion and open burning results imply there is internal mixing of OC and BC, smoldering combustion in rice straw produced ultrafine particles devoid of BC. ► Mixing state of ultrafine particles from biomass burning can alter the single scattering albedo, and might even change the sign of radiative forcing. - Abstract: Fine and ultrafine carbonaceous aerosols produced from burning biomasses hold enormous importance in terms of assessing radiation balance and public health hazards. As such, volatility and mixing states of size-selected ultrafine particles (UFP) emitted from rice straw, oak, and pine burning were investigated by using volatility tandem differential mobility analyzer (VTDMA) technique in this study. Rice straw combustion produced unimodal size distributions of emitted aerosols, while bimodal size distributions from combustions of oak (hardwood) and pine (softwood) were obtained. A nearness of flue gas temperatures and a lower CO ratio of flaming combustion (FC) to smoldering combustion (SC) were characteristic differences found between softwood and hardwood. SC emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for FC. Rice straw open burning UFPs exhibited a volatilization behavior similar to that between FC and SC. In addition, internal mixing states were observed for size-selected UFPs in all biomasses for all combustion conditions, while external mixing states were only observed for rice straw combustion. Results for FC and open burning suggested there was an internal mixing of volatile organic carbon (OC) and non-volatile core (e

  19. Radio elements / bottom salts separation by nano-filtration aided by complexation in a highly saline environment

    International Nuclear Information System (INIS)

    Gaubert, Eric

    1997-01-01

    This research thesis addresses the use of a membrane-based technique, nano-filtration, aided or not by complexation, for the processing of highly saline liquid effluents produced by radio-chemical decontamination. The objective is to separate non-radioactive elements (sodium nitrate) from radio-elements (caesium, strontium and actinides) in order to reduce the volume of wastes. Within the perspective of an industrial application, a system to concentrate the effluent is firstly defined. Different nano-filtration membranes are tested and reveal to be insufficient in highly saline environment. A stage of selective complexation of radio-elements is therefore considered before nano-filtration. The main factors affecting performance of nano-filtration-complexation (for a given membrane system) are identified: ionic force, pH, ligand content, trans-membrane pressure. Finally, a nano-filtration pilot is implemented to perform nano-filtration-complexation operations by remote handling on radioactive substances [fr

  20. Projective Dimension in Filtrated K-Theory

    DEFF Research Database (Denmark)

    Bentmann, Rasmus Moritz

    2013-01-01

    Under mild assumptions, we characterise modules with projective resolutions of length n∈N in the target category of filtrated K-theory over a finite topological space in terms of two conditions involving certain Tor -groups. We show that the filtrated K-theory of any separable C∗dash-algebra over...... any topological space with at most four points has projective dimension 2 or less. We observe that this implies a universal coefficient theorem for rational equivariant KK-theory over these spaces. As a contrasting example, we find a separable C∗dash-algebra in the bootstrap class over a certain five......-point space, the filtrated K-theory of which has projective dimension 3. Finally, as an application of our investigations, we exhibit Cuntz-Krieger algebras which have projective dimension 2 in filtrated K-theory over their respective primitive spectrum....

  1. Filtration aids in uranium ore processing

    International Nuclear Information System (INIS)

    Ford, H.L.; Levine, N.M.; Risdon, A.L.

    1975-01-01

    The patent describes a process whereby improved flocculation efficiency and filtration of carbonate leached uranium ore pulps are obtained by treating the filter feed slurry with an aqueous solution of hydroxyalkyl guar. (J.R.)

  2. Public health protection through bank filtration - Kearney Nebraska case study

    Science.gov (United States)

    Esseks, E.; Bellamy, W.; Heinemann, T.; Stocker, K.

    2003-04-01

    The investigation of Kearney's bank filtration system provides further evidence of this technology's capability to assist in providing public health protection, as it relates to drinking water. The results of hydrogeologic and treatment studies demonstrate the capabilities of the Platte River aquifer materials, in this locale, to remove pathogens and their surrogates. Continual monitoring and evaluations will establish the system’s longevity and continued treatment efficacy. The City of Kearney is located in south central Nebraska. The City owns and operates a public water system that serves approximately 24,889 people. The water system includes 12 wells located on Killgore Island in the Platte River. In 1994, the Nebraska Department of Health and Human Services System (Department) determined that 3 wells in the wellfield serving the City of Kearney were ground water under the direct influence of surface water. This determination was based on results of microscopic particulate analysis (MPA). The City of Kearney undertook the natural bank filtration study to determine whether natural bank filtration was occurring at the site and if the filtration was sufficient to meet pathogen treatment requirements designed to protect public health. A preliminary study was undertaken from June through October 1995. This coincided with the City’s peak pumping time, which may be the time when the influence of the River is greatest on the wellfield wells. Hydrogeologic studies assisted in selecting wells that were at highest risk based on shortest travel times and greatest differential head. Data collected included particle counts, MPAs, turbidity, coliform, centrifugate pellet evaluation (CPE) volumes, pH, conductivity, and temperature. Following analysis of data collected during the preliminary 18-week study the Department granted conditional approval of 2-log credit for removal of Giardia lamblia and 1-log credit for removal of viruses through bank filtration, pending the

  3. Is the use of particle air filtration justified? Costs and benefits of filtration with regard to health effects, building cleaning and occupant productivity

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    Estimates of costs and the corresponding benefits of particle filtration have been derived for a standard office building. Reduction in occupants’ exposure to particles during their workday is anticipated to reduce their morbidity and mortality. Filtration may also reduce the costs associated......, the sensitivity of the results to these parameters was evaluated as part of this study. The study also acknowledges that the benefits-to-costs ratio depends on the perspective of the stakeholder: the employer renting the building is impacted by occupant performance and building energy costs; the building owner...... is impacted by maintenance of the building and its HVAC system; society is impacted by the employees’ health and welfare. Regardless of perspective, particle filtration is anticipated to lead to annual savings significantly exceeding the running costs for filtration. However, economic losses resulting from...

  4. [The species traceability of the ultrafine powder and the cell wall-broken powder of herbal medicine based on DNA barcoding].

    Science.gov (United States)

    Xiang, Li; Tang, Huan; Cheng, Jin-le; Chen, Yi-long; Deng, Wen; Zheng, Xia-sheng; Lai, Zhi-tian; Chen, Shi-lin

    2015-12-01

    Ultrafine powder and cell wall-broken powder of herbal medicine lack of the morphological characters and microscopic identification features. This makes it hard to identify herb's authenticity with traditional methods. We tested ITS2 sequence as DNA barcode in identification of herbal medicine in ultrafine powder and cell wall-broken powder in this study. We extracted genomic DNAs of 93 samples of 31 representative herbal medicines (28 species), which include whole plant, roots and bulbs, stems, leaves, flowers, fruits and seeds. The ITS2 sequences were amplified and sequenced bidirectionally. The ITS2 sequences were identified using Basic Local Alignment Search Tool (BLAST) method in the GenBank database and DNA barcoding system to identify the herbal medicine. The genetic distance was analyzed using the Kimura 2-parameter (K2P) model and the Neighbor-joining (NJ) phylogenetic tree was constructed using MEGA 6.0. The results showed that DNA can be extracted successfully from 93 samples and high quality ITS2 sequences can be amplified. All 31 herbal medicines can get correct identification via BLAST method. The ITS2 sequences of raw material medicines, ultrafine powder and cell wall-broken powder have same sequence in 26 herbal medicines, while the ITS2 sequences in other 5 herbal medicines exhibited variation. The maximum intraspecific genetic-distances of each species were all less than the minimum interspecific genetic distances. ITS2 sequences of each species are all converged to their standard DNA barcodes using NJ method. Therefore, using ITS2 barcode can accurately and effectively distinguish ultrafine powder and cell wall-broken powder of herbal medicine. It provides a new molecular method to identify ultrafine powder and cell wall-broken powder of herbal medicine in the quality control and market supervision.

  5. Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments

    Energy Technology Data Exchange (ETDEWEB)

    David Burnett; Harold Vance

    2007-08-31

    The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

  6. Tratamento de água de abastecimento por meio da tecnologia de filtração em múltiplas etapas - FIME Water treatment by multistage filtration systems - MSF

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Valadares Veras

    2008-03-01

    Full Text Available A pesquisa apresenta uma avaliação do sistema de Filtração em Múltiplas Etapas (FiME, utilizando instalação piloto composta por duas unidades de pré-filtros dinâmicos em série, três linhas de pré-filtros de escoamento ascendente, em série e em camadas, e quatro filtros lentos com diferentes meios filtrantes. O desempenho do sistema foi avaliado através de parâmetros como turbidez, cor aparente, sólidos suspensos, coliformes totais e fecais e ferro. Os resultados mostraram que as três linhas de pré-filtros de escoamento ascendente apresentaram comportamento semelhante em todas as carreiras de filtração. Os quatro filtros lentos tiveram igual desempenho com relação a sólidos suspensos e os filtros lentos 3 e 4 alcançaram as maiores remoções de ferro, turbidez e cor em algumas carreiras de filtração.This work presents an evaluation of some alternatives of multistage filtration system (MSF, using a pilot plant comprising two dynamic roughing filters, in series, three lines of upflow roughing filters, linked in series and in layers and four slow sand filters with different granular media composition. The performance of the system was evaluated by monitoring some water quality parameters such as: turbidity, suspended solids, total coliforms, fecal coliforms and particle size. The results showed that the MSF system produced effluents with low turbidity, solids and coliforms. The three lines of upflow roughing filters indicated the same efficiency in all tests. The four slow sand filters had similar performance concerning solids reductions and the slow sand filters 3 and 4 reached the greatest reductions in iron, organic matter, turbidity and color, in some experiments.

  7. Use of cross-flow membrane filtration in a recirculating hydroponic system to suppress root disease in pepper caused by Pythium myriotylum.

    Science.gov (United States)

    Schuerger, Andrew C; Hammer, William

    2009-05-01

    Zoosporic pathogens in the genera Pythium and Phytophthora cause extensive root disease epiphytotics in recirculating hydroponic vegetable-production greenhouses. Zoospore cysts of Pythium myriotylum Drechsler were used to evaluate the effectiveness of cross-flow membrane filters to control pythiaceous pathogens in recirculating hydroponic systems. Four membrane filter brands (Honeycomb, Polypure, Polymate, and Absolife) were tested alone or in combination to determine which filters would effectively remove infective propagules of P. myriotylum from solutions and reduce disease incidence and severity. Zoospore cysts of P. myriotylum generally measured 8 to 10 microm, and it was hypothesized that filters with pore-sizespepper plants from root infection. Single-filter assays with Honeycomb and Polypure brands removed 85 to 95% of zoospore cysts when pore sizes were rated at 1, 5, 10, 20, or 30 microm. Single-filter assays of Polymate and Absolife brands were more effective, exhibiting apparently 100% removal of zoospore cysts from nutrient solutions on filters rated at 1 to 10 microm. However, plant bioassays with Honeycomb and Polymate single filters failed to give long-term protection of pepper plants. Double-filter assays with 1- and 0.5-microm Polymate filters significantly increased the protection of pepper plants grown in nutrient film technique systems but, eventually, root disease and plant wilt could be observed. Insect transmissions by shore flies were not factors in disease development. Scanning electron microscopy images of zoospore cysts entrapped on Polymate filters revealed zoospore cysts that were either fully encysted, partially encysted, or of unusually small size (3 microm in diameter). It was concluded that either the atypically small or pliable pleomorphic zoospore cysts were able to penetrate filter membranes that theoretically should have captured them.

  8. A stochastic model for filtration of particulate suspensions with incomplete pore plugging

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Santos, A; Bedrikovetsky, P. G.

    2007-01-01

    . A closed system of governing stochastic equations determines the evolution of size distributions for suspended particles and pores. Its averaging results in the closed system of hydrodynamic equations accounting for permeability and porosity reduction due to plugging. The problem of deep bed filtration...... of a single particle size suspension through a single pore size medium where a pore can be completely plugged by two particles allows for an exact analytical solution. The phenomenological deep bed filtration model follows from the analytical solution....

  9. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident...

    Science.gov (United States)

    2012-10-03

    ... filtration and iodine adsorption units of ESF atmosphere cleanup systems in light-water-cooled nuclear power... Filtration and Adsorption Units of Post-Accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide...

  10. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    DEFF Research Database (Denmark)

    Kistrup, Kasper

    for ultrasonic welding, suitable for microfluidic systems. A methodology has been established where energy directors can be quickly added to existing mould inserts, using laser micromachining. The produced device was performance tested by isolating methicillin-resistant Staphylococcus aureus from bovine whole....... The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...

  11. Water Hyacinths and Alligator Weeds for Final Filtration of Sewage

    Science.gov (United States)

    Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.

    1976-01-01

    The potential of water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxerides) (Mart.) Griesb. as secondary and tertiary filtration systems for domestic sewage was demonstrated. These two vascular aquatic plants reduced the suspended solids, total Kjeldahl nitrogen, total phosphorus, BOD sub 5, and total organic carbon levels in domestic sewage from 60 percent to 98 percent within a two week period. These plants grown in domestic sewage were also free of toxic levels of trace heavy metals.

  12. Novel Particulate Air-Filtration Media: Market Survey

    Science.gov (United States)

    2013-02-01

    larger and more efficient filter designs similar to those being considered for future integrated respirator/helmet systems. To avoid eliminating ...including nonwoven, woven, and electret and combinations of media. Some of the manufacturers identified themselves as specializing in biofiltration or...Three Millipore products were identified. The 0.2 µm hydrophobic Aervent PTFE membrane62 is used for the sterile filtration of gases . Aerex

  13. Characterization, Washing, Leaching, and Filtration of C-104 Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KP Brooks; PR Bredt; GR Golcar; SA Hartley; LK Jagoda; KG Rappe; MW Urie

    2000-06-09

    Approximately 1,400 g of wet Hanford Tank C-104 Sludge was evaluated by Battelle for the high-level waste (HLW) pretreatment processes of ultrafiltration, dilute caustic washing, and elevated-temperature caustic leaching. The filterability of diluted C-104 sludge was measured with a 0.1-{micro}m sintered metal Mott filter using a 24-inch-long, single-element, crossflow filtration system (cells unit filter [CUF]). While the filtrate was being recirculated prior to washing and leaching, a 6.9 wt% solids slurry was evaluated with a matrix of seven 1-hour conditions of varying trans-membrane pressure (30 to 70 psid) and axial velocity (9 to 15 ft/s). The filtrate flux and backpulse efficiency were determined for each condition. The slurry was concentrated to 23 wt% solids, a second matrix of six 1-hour conditions was performed, and data analogous to that recorded in the first matrix were obtained. The low-solids-concentration matrix produced filtrate flux rates that ranged from 0.038 to 0.083 gpm/ft{sup 2}. The high-solids-concentration matrix produced filtrate flux rates that ranged from 0.0095 to 0.0172 gpm/ft{sup 2}. In both cases, the optimum filtrate flux was at the highest axial velocity (15 ft/s) and transmembrane pressure had little effect. Nearly all of the measured filtrate fluxes were more than an order of magnitude greater than the required plant flux for C-104 of 0.00126 gpm/ft{sup 2}. In both matrices, the filtrate flux appeared to be proportional to axial velocity, and the permeability appeared to be inversely proportional to the trans-membrane pressure. The first test condition was repeated as the last test condition for each matrix. In both cases, there was a significant decrease in filtrate flux, indicating some filter fouling during the test matrix that could not be removed by backpulsing alone, although the backpulse number and duration were not optimized. Following testing of these two matrices, the material was washed within the CUF by

  14. Experience with high-temperature filtration of incinerator flue gases

    International Nuclear Information System (INIS)

    Carpentier, S.; de Tassigny, C.

    1990-01-01

    It is always preferable to filter incinerator flue gases as close as possible to their origin, i.e. in a high-temperature zone, and means must be provided to destroy the other organic parts of the flyash resulting from these gases by in-filter combustion. The filter also traps a mineral part of the flyash, which eventually causes clogging and requires replacement or regeneration. Such filtration systems are available and can be operated on an industrial scale. They include candles made of micro-expanded refractory alloys supporting filtering media, porous ceramic candles and other devices. Research and subsequent pilot facility testing have enabled development of alumina fiber filter cartridges that offer more advantages than other equipment employed to date. Specifically, these advantages are: ultralight weight, which enables construction of systems that are relatively unaffected by creep and high-temperature deformations; excellent refractory qualities, which permit a use above 1000 degrees C; insensitivity to thermal shocks and in-situ carbon fines combustion capability; anti-acid quality of the material, which enables high-temperature filtration of acidic flue gases (chlorine and hydrochloric acid, SO x , etc.); low initial pressure drop of the cartridges; dimensional stability of the cartridges, which can be machined to a given tolerance with specific contours after casting and drying. This paper reports the results obtained during the last filtration system test campaign. Details are given for operating conditions, grain sizes and real-time monitoring of various parameters

  15. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  16. 40 CFR 141.719 - Additional filtration toolbox components.

    Science.gov (United States)

    2010-07-01

    ... taken from a surface water or GWUDI source. A cap, such as GAC, on a single stage of filtration is not... separate stage of filtration if both filtration stages treat entire plant flow taken from a surface water... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Additional filtration toolbox...

  17. Possible Gems and Ultra-Fine Grained Polyphase Units in Comet Wild 2.

    Science.gov (United States)

    Gainsforth, Z.; Butterworth, A. L.; Jilly-Rehak, C. E.; Westphal, A. J.; Brownlee, D. E.; Joswiak, D.; Ogliore, R. C.; Zolensky, M. E.; Bechtel, H. A.; Ebel, D. S.; hide

    2016-01-01

    GEMS and ultrafine grained polyphase units (UFG-PU) in anhydrous IDPs are probably some of the most primitive materials in the solar system. UFG-PUs contain nanocrystalline silicates, oxides, metals and sulfides. GEMS are rounded approximately 100 nm across amorphous silicates containing embedded iron-nickel metal grains and sulfides. GEMS are one of the most abundant constituents in some anhydrous CPIDPs, often accounting for half the material or more. When NASA's Stardust mission returned with samples from comet Wild 2 in 2006, it was thought that UFG-PUs and GEMS would be among the most abundant materials found. However, possibly because of heating during the capture process in aerogel, neither GEMS nor UFG-PUs have been clearly found.

  18. Unipolar and bipolar diffusion charging of ultrafine particles

    International Nuclear Information System (INIS)

    Adachi, Motoaki; Okuyama, Kikuo; Kousaka, Yasuo.

    1985-01-01

    Unipolar and bipolar diffusion charging of monodisperse ultrafine particles of 4 - 100 nm in diameter has been studied experimentally and theoretically. The particles were charged by unipolar and bipolar ions generated by α-ray irradiation and the charge distribution of particles was directly observed in the electric field after the growth of them by condensation of di-butyl phthalate vapor. In both cases of unipolar and bipolar charging, the experimental results have been found in good agreement with the solution of basic equations where Fuchs' formula is used as the combination probability of an ion with a particle. (author)

  19. Ultrafine luminescent structures through nanoparticle self-assembly

    International Nuclear Information System (INIS)

    Prabhakaran, K; Goetzinger, S; Shafi, K V P M; Mazzei, A; Schietinger, S; Benson, O

    2006-01-01

    We report the fabrication of ultrafine structures consisting of regular arrays of nanoemitters through the self-assembly of luminescent nanoparticles on a silicon wafer. Nanoparticles of yttrium aluminium garnet (YAG) doped with Eu 3+ ions were synthesized by a sonochemical technique. These particles, suspended in ethanol, are introduced onto a pre-patterned silicon wafer, covered with a thin oxide layer. On annealing the sample in an ultrahigh-vacuum chamber, the nanoparticles self-assemble along the pattern. We demonstrate this 'chemical lithography' by assembling the nanoparticles along a variety of patterns. We believe that such self-organized nanopatterning of functional structures is important for the realization of nanodevices

  20. Surface structure and adsorption properties of ultrafine porous carbon fibers

    International Nuclear Information System (INIS)

    Song Xiaofeng; Wang Ce; Zhang Dejiang

    2009-01-01

    Ultrafine porous carbon fibers (UPCFs) were successfully synthesized by chemical activation of electrospun polyacrylonitrile fibers. In the current approach, potassium hydroxide was adopted as activation reagent. UPCFs were systematically evaluated by scanning electron microscope and nitrogen adsorption. The mass ratio of potassium hydroxide to preoxidized fibers, activation temperature and activation time are crucial for producing high quality UPCFs. The relationships between porous structure and process parameters are explored. UPCFs were applied as adsorbent for nitrogen monoxide to be compared with commercial porous carbon fibers.

  1. Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles

    International Nuclear Information System (INIS)

    Liu, Z.L.; Wang, H.B.; Lu, Q.H.; Du, G.H.; Peng, L.; Du, Y.Q.; Zhang, S.M.; Yao, K.L.

    2004-01-01

    Ultrafine well-dispersed magnetic nanoparticles were directly prepared in aqueous solution using controlled coprecipitation method. The structure, size, size distributions and magnetic properties of the magnetic nanoparticles, characterized by TEM, XRD and VSM, indicated the formation of single domain nanoparticles with average size smaller than 5 nm. The magnetic nanoparticles show superparamagnetism and a lower saturation magnetization is found as a consequence of smaller particle size. The relevant conditions for obtaining these magnetic colloids are discussed and the so-prepared magnetic nanoparticles are stable in a wide pH range

  2. Contaminated fluid filtration plant using pneumatically renewable granulated material

    International Nuclear Information System (INIS)

    Lucas, J.-C.; Messirejean, Pierre.

    1980-01-01

    This invention concerns a plant for the filtration of a contaminated fluid flow using a granulated material capable of absorbing or adsorbing the contaminants. This plant includes a filtration box within which there is at least one appreciably vertical filtering bed filled with the material and crossed by the fluid flow, loading and discharge compartments respectively located at the top and bottom of the box, each in communication with the filtering bed and an air-actuated transfer system for loading and discharging this bed through these compartments. Facilities of this kind are used mainly in the nuclear and chemical engineering industries to rid their waste of radio-iodines, generally constituted by elementary iodine and methyl iodide, or of toxic gases that contaminate them. The granulated material, whose job it is to trap these contaminants by adsorption or absorption, is generally composed of active carbon or zeolites whose utilisation time is limited [fr

  3. Ultra-filtration measurement using CT imaging technology

    International Nuclear Information System (INIS)

    Lu Junfeng; Lu Wenqiang

    2009-01-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  4. Particle clogging in porous media. Filtration of a smectite solution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Tobias (Chalmers University of Technology, Goeteborg (Sweden))

    2010-01-15

    The goal of this project is to find out if it is possible for bentonite clay to self heal during leaching with deionized water. The investigation has focused on the formation of a filter cake made of accessory material from MX 80 and the separation of solid material when a smectite solution (1%) is pushed through the cake using a pressure difference of 5 bar. It was also in the scope of this project to design and build the necessary equipment for these experiments. In the literature review it was not found any example that the phenomenon of clogging has been used as a self-healing method previously. It was rather separated also between the clogging of a filter cake (deep bed filtration or cake filtration) and the filtration of colloidal particles. Probably because the latter are in such low concentrations in natural systems and the focus have mainly been in the transport properties of colloids within a filter cake or deep bed filter. An experimental equipment was designed and built. It consists of seven filtration cells that could operate in parallel. All of them are connected to the same source of pressure to ensure equal conditions. A system was also prepared to prevent air from dissolving in the solution because it could create an unwanted expansion in the filter cake due to lower solubility at lower pressure. The experiment showed good separation of smectite particles from the solution when it passed through the filter cake. In all tested cases, the separation was almost complete after long enough time, indicating that the cake has small enough pores to act as a geometrical hinder for the small particles. Comparison between the materials prepared at Chalmers University of Technology and at Clay Technology showed a very good agreement indicating similar properties of the produced smectite

  5. Particle clogging in porous media. Filtration of a smectite solution

    International Nuclear Information System (INIS)

    Richards, Tobias

    2010-01-01

    The goal of this project is to find out if it is possible for bentonite clay to self heal during leaching with deionized water. The investigation has focused on the formation of a filter cake made of accessory material from MX 80 and the separation of solid material when a smectite solution (1%) is pushed through the cake using a pressure difference of 5 bar. It was also in the scope of this project to design and build the necessary equipment for these experiments. In the literature review it was not found any example that the phenomenon of clogging has been used as a self-healing method previously. It was rather separated also between the clogging of a filter cake (deep bed filtration or cake filtration) and the filtration of colloidal particles. Probably because the latter are in such low concentrations in natural systems and the focus have mainly been in the transport properties of colloids within a filter cake or deep bed filter. An experimental equipment was designed and built. It consists of seven filtration cells that could operate in parallel. All of them are connected to the same source of pressure to ensure equal conditions. A system was also prepared to prevent air from dissolving in the solution because it could create an unwanted expansion in the filter cake due to lower solubility at lower pressure. The experiment showed good separation of smectite particles from the solution when it passed through the filter cake. In all tested cases, the separation was almost complete after long enough time, indicating that the cake has small enough pores to act as a geometrical hinder for the small particles. Comparison between the materials prepared at Chalmers University of Technology and at Clay Technology showed a very good agreement indicating similar properties of the produced smectite

  6. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2006-09-28

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination.

  7. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    International Nuclear Information System (INIS)

    DUNCAN JB

    2006-01-01

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination

  8. Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study

    Directory of Open Access Journals (Sweden)

    Dormans Jan AMA

    2006-05-01

    Full Text Available Abstract Background Many epidemiological studies have shown that mass concentrations of ambient particulate matter (PM are associated with adverse health effects in the human population. Since PM is still a very crude measure, this experimental study has explored the role of two distinct size fractions: ultrafine (3 to 3613 μg/m3 for fCAP and from 269μg/m3 to 556 μg/m3 for u+fCAP. Results Ammonium, nitrate, and sulphate ions accounted for 56 ± 16% of the total fCAP mass concentrations, but only 17 ± 6% of the u+fCAP mass concentrations. Unambiguous particle uptake in alveolar macrophages was only seen after u+fCAP exposures. Neither fCAP nor u+fCAP induced significant changes of cytotoxicity or inflammation in the lung. However, markers of oxidative stress (heme oxygenase-1 and malondialdehyde were affected by both fCAP and u+fCAP exposure, although not always significantly. Additional analysis revealed heme oxygenase-1 (HO-1 levels that followed a nonmonotonic function with an optimum at around 600 μg/m3 for fCAP. As a systemic response, exposure to u+fCAP and fCAP resulted in significant decreases of the white blood cell concentrations. Conclusion Minor pulmonary and systemic effects are observed after both fine and ultrafine + fine PM exposure. These effects do not linearly correlate with the CAP mass. A greater component of traffic CAP and/or a larger proportion ultrafine PM does not strengthen the absolute effects.

  9. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable instr......, particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution.......Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable...... instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from venous blood...

  10. Directly electrospun ultrafine nanofibres with Cu grid spinneret

    International Nuclear Information System (INIS)

    Li Wenwang; Zheng Gaofeng; Wang Xiang; Wang Lingyun; Wang Han; Sun Daoheng; Zhang Yulong; Li Lei

    2011-01-01

    A hydrophobic Cu grid was used as an electrospinning spinneret to fabricate ultrafine organic nanofibres. The Cu grid used in this study was that which holds samples in TEM. Due to the hydrophobic surface and larger contact angle of the electrospinning solution on the Cu grid surface, the solution flow was divided into several finer ones by the holes in the Cu grid instead of accumulating. Each finer flow was stretched into individual jets and established a multi-jet mode by the electrical field force. The finer jets played an important role in decreasing the diameter of the nanofibre. The charge repulsion force among charged jets enhanced the whipping instability motion of the liquid jets, which improved the uniformity of the nanofibre and decreased the diameter of the nanofibre. An ultrafine uniform nanofibre of diameter less than 80 nm could be fabricated directly with the novel Cu grid spinneret without any additive. This study provided a unique way to promote the application of one-dimensional organic nanostructures in micro/nanosystems.

  11. Defect structure of ultrafine MgB2 nanoparticles

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Repp, Sergej; Erdem, Emre; Thomann, Ralf; Acar, Selçuk

    2014-01-01

    Defect structure of MgB 2 bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB 2 , namely, boron 95 (purity 95%–97%, <1.5 μm) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB 2 , respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB 2 in comparison with bulk MgB 2 . Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB 2 can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB 2 material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications

  12. Ultrafine particles over Eastern Australia: an airborne survey

    Directory of Open Access Journals (Sweden)

    Wolfgang Junkermann

    2015-04-01

    Full Text Available Ultrafine particles (UFP in the atmosphere may have significant impacts on the regional water and radiation budgets through secondary effects on cloud microphysics. Yet, as these particles are invisible for current remote sensing techniques, knowledge about their three-dimensional distribution, source strengths and budgets is limited. Building on a 40-yr-old Australia-wide airborne survey which provides a reference case study of aerosol sources and budgets, this study presents results from a new airborne survey over Eastern Australia, northern New South Wales and Queensland. Observations identified apparent changes in the number and distribution of major anthropogenic aerosol sources since the early 1970s, which might relate to the simultaneously observed changes in rainfall patterns over eastern Queensland. Coal-fired power stations in the inland areas between Brisbane and Rockhampton were clearly identified as the major sources for ultrafine particulate matter. Sugar mills, smelters and shipping along the coast close to the Ports of Townsville and Rockhampton were comparable minor sources. Airborne Lagrangian plume studies were applied to investigate source strength and ageing properties within power station plumes. Significant changes observed, compared to the measurements in the 1970s, included a significant increase in the number concentration of UFP related to coal-fired power station emissions in the sparsely populated Queensland hinterland coincident with the area with the most pronounced reduction in rainfall.

  13. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  14. Surfactant-Modified Ultrafine Gold Nanoparticles with Magnetic Responsiveness for Reversible Convergence and Release of Biomacromolecules.

    Science.gov (United States)

    Xu, Lu; Dong, Shuli; Hao, Jingcheng; Cui, Jiwei; Hoffmann, Heinz

    2017-03-28

    It is difficult to synthesize magnetic gold nanoparticles (AuNPs) with ultrafine sizes (coating AuNPs using magnetic particles, compounds, or ions. Here, magnetic cationic surfactants C 16 H 33 N + (CH 3 ) 3 [CeCl 3 Br] - (CTACe) and C 16 H 33 N + (CH 3 ) 3 [GdCl 3 Br] - (CTAGd) are prepared by a one-step coordination reaction, i.e., C 16 H 33 N + (CH 3 ) 3 Br - (CTABr) + CeCl 3 or GdCl 3 → CTACe or CTAGd. A simple strategy for fabricate ultrafine (gold nanoparticles (AuNPs) via surface modification with weak oxidizing paramagnetic cationic surfactants, CTACe or CTAGd, is developed. The resulting AuNPs can highly concentrate the charges of cationic surfactants on their surfaces, thereby presenting strong electrostatic interaction with negatively charged biomacromolecules, DNA, and proteins. As a consequence, they can converge DNA and proteins over 90% at a lower dosage than magnetic surfactants or existing magnetic AuNPs. The surface modification with these cationic surfactants endows AuNPs with strong magnetism, which allows them to magnetize and migrate the attached biomacromolecules with a much higher efficiency. The native conformation of DNA and proteins can be protected during the migration. Besides, the captured DNA and proteins could be released after adding sufficient inorganic salts such as at c NaBr = 50 mmol·L -1 . Our results could offer new guidance for a diverse range of systems including gene delivery, DNA transfection, and protein delivery and separation.

  15. Ultrafine particle emissions by in-use diesel buses of various generations at low-load regimes

    Science.gov (United States)

    Tartakovsky, L.; Baibikov, V.; Comte, P.; Czerwinski, J.; Mayer, A.; Veinblat, M.; Zimmerli, Y.

    2015-04-01

    Ultrafine particles (UFP) are major contributors to air pollution due to their easy gas-like penetration into the human organism, causing adverse health effects. This study analyzes UFP emissions by buses of different technologies (from Euro II till Euro V EEV - Enhanced Environmentally-friendly Vehicle) at low-load regimes. Additionally, the emission-reduction potential of retrofitting with a diesel particle filter (DPF) is demonstrated. A comparison of the measured, engine-out, particle number concentrations (PNC) for buses of different technological generations shows that no substantial reduction of engine-out emissions at low-load operating modes is observed for newer bus generations. Retrofitting the in-use urban and interurban buses of Euro II till Euro IV technologies by the VERT-certified DPF confirmed its high efficiency in reduction of UFP emissions. Particle-count filtration efficiency values of the retrofit DPF were found to be extremely high - greater than 99.8%, similar to that of the OEM filter in the Euro V bus.

  16. Organic iodide capture using a zeolite dry filtration

    International Nuclear Information System (INIS)

    Park, Sanggil; Sung, Joonyoung; Kim, Gi-ppeum; Lee, Jaeyoung

    2017-01-01

    An organic iodide, especially, methyl iodide (CH 3 I) would generated non-negligibly from a severe accident in a nuclear power plant. This CH 3 I will be dangerous for human when it was inhaled, it is highly toxic and causes a serious nerve disorder. Even it is a major contributor to a thyroid cancer. In order to prevent its environmental release, it is required to decontaminate using a filtration system. For the removal of CH 3 I from the release gases, wet-type is not ideal due to a high re-volatile characteristics of CH 3 I. It may become volatile after dissolving in a pool and forms CH 3 I again at the surface of water pool. Therefore, a dry-filtration should be installed to remove the CH 3 I. In this study, we preliminary investigate the characteristics of zeolite filtration methods for the removal of CH 3 I. We used both silver ion exchanged ZSM-5-zeolite (Ag+-ZSM-5) to study the effect of silver ion for the removal of iodine from CH 3 I. In summary, the CH 3 I capture tests using a silver ion exchanged zeolite was conducted in the coupled TGAGC test set-up. The mass change of the sample and concentration of CH 3 I were measured. The samples were investigated by the SEM/EDS to see its surface characteristics.

  17. Statistical data filtration in neutron coincidence counting

    International Nuclear Information System (INIS)

    Beddingfield, D.H.; Menlove, H.O.

    1992-11-01

    We assessed the effectiveness of statistical data filtration to minimize the contribution of matrix materials in 200-ell drums to the nondestructive assay of plutonium. Those matrices were examined: polyethylene, concrete, aluminum, iron, cadmium, and lead. Statistical filtration of neutron coincidence data improved the low-end sensitivity of coincidence counters. Spurious data arising from electrical noise, matrix spallation, and geometric effects were smoothed in a predictable fashion by the statistical filter. The filter effectively lowers the minimum detectable mass limit that can be achieved for plutonium assay using passive neutron coincidence counting

  18. The Perspective of Riverbank Filtration in China

    Science.gov (United States)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China

  19. Industrial investigations of the liquid steel filtration

    Directory of Open Access Journals (Sweden)

    K. Janiszewski

    2014-07-01

    Full Text Available Hitherto existing investigations concerning the ceramic filter use in the steel making processes have given good results. The obtained results of filtration have proved that this method may be used as an effective and cheap way of steel filtration from non-metallic inclusions. Placing filters in the tundish is the best location considering the limitation of the possibility of secondary pollution of steel. Yet, the results presented in this paper, of an experiment prepared and carried out in the industrial environment, are the only positive results obtained, which are connected with so much quantities of liquid steel processed with use of the multi-hole ceramic filters.

  20. Reactor containment depressurization and filtration equipment for use in the case of a serious accident

    International Nuclear Information System (INIS)

    L'Homme, A.

    1987-06-01

    A study was carried out under the aegis of the OECD into filtered vented containment systems which permit depressurization of the containment and filtration of the effluents released to the environment, in the event of a major accident with a pressurized water reactor (PWR) (or BWR or CANDU type reactors) involving core meltdown, with a view to minimizing the consequences. This paper describes the various systems examined which could possibly be used for this purpose. These comprised the French robust sand filtration system, the Swedish FILTRA system, the vacuum containment and discharge and emergency filtration system used by the CANDU plants of the Ontario-Hydro electricity company in Canada and the BWR pressure-suppression pounds. The positions of the various national authorities regarding incorporation of such systems into nuclear power plants, the design and technical principles underlying the systems, the procedures and criteria for their use and their advantages and disadvantages are examined [fr

  1. Features of ultrafine-grained structure forming in Zr-1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Ekaterina N.; Prosolov, Konstantin A. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Grabovetskaya, Galina P.; Mishin, Ivan P. [Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk (Russian Federation)

    2013-07-01

    Ultrafine-grained structure forming by the method combined reversible hydrogenation and hot pressing in Zr-1Nb alloy was investigated. Preliminary hydrogenation to concentrations of (0.14–0.4) % at 873 K is found to lead to yield strength decreasing in Zr-1Nb alloy during hot pressing by 1,5–2 times. During uniaxial compression at (70–72) % under isothermal conditions at a temperature of 873 K in Zr-1Nb alloy, hydrogenated to concentration of 0.22 %, homogeneous ultrafine grained structure with an average grain size of 0,4 P m was formed. Key words: zirconium alloy, ultrafine-grained structure, hydrogen.

  2. Filtration of engineered nanoparticles using porous membranes

    NARCIS (Netherlands)

    Trzaskus, Krzystof

    2016-01-01

    The research presented in this thesis aims at providing a better understanding of the fundamental aspects responsible for nanoparticle removal and fouling development during filtration of engineered nanoparticles. The emphasis is put on the role of interparticle interactions in the feed solution,

  3. Dynamic membrane filtration in tangential flow

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Oil-containing waste water is produced in many cleaning processes and also on production of compressed air. Dynamic membrane filtration in the tangential flow mode has proved effective in the treatment of these stable emulsions. The possible applications of ceramic membrane filters are illustrated for a variety of examples. (orig.) [de

  4. Filtration aids in uranium ore processing

    International Nuclear Information System (INIS)

    Ford, H.L.; Levine, N.M.; Risdon, A.R.

    1975-01-01

    A process of improving the filtration efficiency and separation of uranium ore pulps obtained by carbonate leaching of uranium ore which comprises treating said ore pulps with an aqueous solution of hydroxyalkyl guar selected from the group consisting of hydroxyethyl and hydroxypropyl guar in the amount of 0.1 and 2.0 pounds of hydroxyalkyl guar per ton of uranium ore

  5. Filtration engineering study to upgrade the ETF

    International Nuclear Information System (INIS)

    McDonald, F.N.N.

    1995-01-01

    Filtration technologies are evaluated which have potential to augment or upgrade the 200 Area Effluent Treatment Facility. The study was written in anticipation of treating future waste waters that have high fouling potentials. The Three ultrafilters judged to be capable of treating future waste waters are: hollow fiber, tubular, and centrifugal

  6. Water Filtration through Homogeneous Granulated Charge

    Directory of Open Access Journals (Sweden)

    A. M. Krautsou

    2005-01-01

    Full Text Available General relationship for calculation of water filtration through homogeneous granulated charge has been obtained. The obtained relationship has been compared with experimental data. Discrepancies between calculated and experimental values do not exceed 6 % throughout the entire investigated range.

  7. Organic micropollutant removal during river bank filtration

    NARCIS (Netherlands)

    Bertelkamp, C.

    2015-01-01

    This study investigated the factors influencing the main removal mechanisms (adsorption and biodegradation) for organic micropollutant (OMP) removal during river bank filtration (RBF) and the possibility of developing a predictive model of this process for OMP removal during RBF. Chapter 2 analysed

  8. Vascular effects of ultrafine particles in persons with type 2 diabetes

    Science.gov (United States)

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  9. On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals

    KAUST Repository

    Gurses, Ercan; El Sayed, Tamer S.

    2010-01-01

    We present a physically motivated computational study explaining the tension/compression (T/C) asymmetry phenomenon in nanocrystalline (nc) and ultrafine-grained (ufg) face centered cubic (fcc) metals utilizing a variational constitutive model where

  10. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  11. Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways.

    NARCIS (Netherlands)

    Knol, A.B.; de Hartog, J.J.|info:eu-repo/dai/nl/288354850; Boogaard, H.|info:eu-repo/dai/nl/314406522; Slottje, P.|info:eu-repo/dai/nl/299345351; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489; Lebret, E.|info:eu-repo/dai/nl/071318917; Cassee, F.R.|info:eu-repo/dai/nl/143038990; Wardekker, J.A.|info:eu-repo/dai/nl/306644398; Ayres, J.G.; Borm, P.; Brunekreef, B.|info:eu-repo/dai/nl/067548180; Donaldson, K.; Forastiere, F.; Holgate, S.T.; Kreyling, W.; Nemery, B.; Pekkanen, J.; Stone, V.; Wichmann, H.E.; Hoek, G.|info:eu-repo/dai/nl/069553475

    2009-01-01

    ABSTRACT: BACKGROUND: Exposure to fine ambient particulate matter (PM) has consistently been associated with increased morbidity and mortality. The relationship between exposure to ultrafine particles (UFP) and health effects is less firmly established. If UFP cause health effects independently from

  12. Ultrafine grained steels processed by equal channel angular pressing

    International Nuclear Information System (INIS)

    Shin, Dong Hyuk; Park, Kyung-Tae

    2005-01-01

    Recent development of ultrafine grained (UFG) low carbon steels by using equal channel angular pressing (ECAP) and their room temperature tensile properties are reviewed, focusing on the strategies overcoming their inherent mechanical drawbacks. In addition to ferrite grain refinement, when proper post heat treatments are imposed, carbon atom dissolution from pearlitic cementite during ECAP can be utilized for microstructural modification such as uniform distribution of nano-sized cementite particles or microalloying element carbides inside UFG ferrite grains and fabrication of UFG ferrite/martensite dual phase steel. The utilization of nano-sized particles is effective on improving thermal stability of UFG low carbon ferrite/pearlite steel but less effective on improving its tensile properties. By contrast, UFG ferrite/martensite dual phase steel exhibits an excellent combination of ultrahigh strength, large uniform elongation and extensive strain hardenability

  13. Preparation of Ni-C Ultrafine Composite from Waste Material

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Rabah

    2017-06-01

    Full Text Available This work depicts the preparation of Ni-C ultrafine composite from used engine oil. The used oil was emulsified with detergent loaded with Ni (OH2. The loaded emulsion was sprayed on electric plasma generated between two C electrodes to a DC main 28 V and 70-80 A. The purged Ni-doped carbon fume was trapped on a polymer film moistened with synthetic adhesive to fix the trapped smoke. Characterization of the deposit was made using SEM. XRD examined the crystal morphology. Carbon density in the cloud was calculated. The average size and thickness of the deposited composite is 120-160 nm. Aliphatic hydrocarbons readily decompose to gaseous products. Solid carbon smoke originates from aromatic compounds. Plasma heat blasts the oil in short time to decompose in one step.

  14. Substantial convection and precipitation enhancements by ultrafine aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; Giangrande, Scott E.; Li, Zhanqing; Machado, Luiz A. T.; Martin, Scot T.; Yang, Yan; Wang, Jian; Artaxo, Paulo; Barbosa, Henrique M. J.; Braga, Ramon C.; Comstock, Jennifer M.; Feng, Zhe; Gao, Wenhua; Gomes, Helber B.; Mei, Fan; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; de Souza, Rodrigo A. F.

    2018-01-25

    Aerosol-cloud interaction remains the largest uncertainty in climate projections. Ultrafine aerosol particles (UAP; size <50nm) are considered too small to serve as cloud condensation nuclei conventionally. However, this study provides observational evidence to accompany insights from numerical simulations to support that deep convective clouds (DCCs) over Amazon have strong capability of nucleating UAP from an urban source and forming greater numbers of droplets, because fast drop coalescence in these DCCs reduces drop surface area available for condensation, leading to high vapor supersaturation. The additional droplets subsequently decrease supersaturation and release more condensational latent heating, a dominant contributor to convection intensification, whereas enhanced latent heat from ice-related processes plays a secondary role. Therefore, the addition of anthropogenic UAP may play a much greater role in modulating clouds than previously believed over the Amazon region and possibly in other relatively pristine regions such as maritime and forest locations.

  15. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  16. An ultra-fine group slowing down benchmark

    International Nuclear Information System (INIS)

    Ganapol, B. D.; Maldonado, G. I.; Williams, M. L.

    2009-01-01

    We suggest a new solution to the neutron slowing down equation in terms of multi-energy panels. Our motivation is to establish a computational benchmark featuring an ultra-fine group calculation, where the number of groups could be on the order of 100,000. While the CENTRM code of the SCALE code package has been shown to adequately treat this many groups, there is always a need for additional verification. The multi panel solution principle is simply to consider the slowing down region as sub regions of panels, with each panel a manageable number of groups, say 100. In this way, we reduce the enormity of dealing with the entire spectrum all at once by considering many smaller problems. We demonstrate the solution in the unresolved U3o8 resonance region. (authors)

  17. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Directory of Open Access Journals (Sweden)

    Rodolfo Rodríguez Baracaldo

    2010-01-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  18. OPTIMIZATION OF THE PROCESS OF DRYING THE FILTRATE DISTILLERY DREGS

    Directory of Open Access Journals (Sweden)

    A. A. Shevtsov

    2013-01-01

    Full Text Available The interactions of various factors affecting the process of drying the filtrate distillery dregs are investigated. Rational conditions for the process of drying the filtrate distillery dregs in a spray dryer are obtained.

  19. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration

    Directory of Open Access Journals (Sweden)

    L. D. Sánchez

    2012-12-01

    Full Text Available This paper assesses the operational and design aspects of coagulation and flocculation in upflow gravel filters (CF-UGF in a multi-stage filtration (MSF plant. This study shows that CF-UGF units improve the performance of MSF considerably, when the system operates with turbidity above 30 NTU. It strongly reduces the load of particulate material before the water enters in the slow sand filters (SSF and therewith avoids short filter runs and prevents early interruption in SSF operations. The removal efficiency of turbidity in the CF-UGF with coagulant was between 85 and 96%, whereas the average efficiency without coagulant dosing was 46% (range: 21–76%. Operating with coagulant also improves the removal efficiency for total coliforms, E-coli and HPC. No reduction was observed in the microbial activity of the SSF, no obstruction of the SSF bed was demonstrated and SSF runs were maintained between 50 and 70 days for a maximum head loss of 0.70 m. The most important advantage is the flexibility of the system to operate with and without coagulant according to the influent turbidity. It was only necessary for 20% of the time to operate with the coagulant. The CF-UGF unit represented 7% of total construction costs and the O&M cost for the use of coagulant represented only 0.3%.

  20. Particulate filtration in nuclear facilities

    International Nuclear Information System (INIS)

    1991-01-01

    The removal of particulate radioactive material from exhaust air or gases is an essential feature of virtually all nuclear facilities. Recent IAEA publications have covered the broad designs of off-gas and air cleaning systems for the range of nuclear power plants and other facilities. This report is a complementary guidebook that examines in detail the latest developments in the design, operation, maintenance and testing of fibrous air filters. The original draft of the report was prepared by three consultants, M.W. First, of the School of Public Health, Harvard University, United States of America, K.S. Robinson, from the UKAEA Harwell Laboratory, United Kingdom, and H.G. Dillmann, of the Kernforschungzentrum, Karlsruhe, Germany. The Technical Committee Meeting (TCM), at which the report was reviewed and much additional information contributed, was attended by 11 experts and was held in Vienna, from 30 May to 3 June 1988. 64 refs, 41 figs, 10 tabs

  1. Application of an Ultrafine Shearing Method for the Extraction of C-Phycocyanin from Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Jianfeng Yu

    2017-11-01

    Full Text Available Cell disruption is an important step during the extraction of C-phycocyanin from Spirulina platensis. An ultrafine shearing method is introduced and combined with soaking and ultrasonication to disrupt the cell walls of S. platensis efficiently and economically. Five kinds of cell disruption method, including soaking, ultrasonication, freezing-thawing, soaking-ultrafine shearing and soaking-ultrafine shearing-ultrasonication were applied to break the cell walls of S. platensis. The effectiveness of cell breaking was evaluated based on the yield of the C-phycocyanin. The results show that the maximum C-phycocyanin yield was 9.02%, achieved by the soaking-ultrafine shearing-ultrasonication method, followed by soaking (8.43%, soaking-ultrafine shearing (8.89%, freezing and thawing (8.34%, and soaking-ultrasonication (8.62%. The soaking-ultrafine shearing-ultrasonication method is a novel technique for breaking the cell walls of S. platensis for the extraction of C-phycocyanin.

  2. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts

    International Nuclear Information System (INIS)

    Gille, G.; Szesny, B.; Dreyer, K.; Berg, H. van den; Schidt, J.; Gestrich, T.; Leitner, G.

    2001-01-01

    Although round tools as carbide drills and mills are dominating by far the application of submicron and ultrafine hardmetals the consumption for PCB microdrills had the strongest growth rate over the last decade. This paper deals with the latest developments of ultrafine hardmetals and their application for PCB microdrills and metal cutting inserts. Based on optimized processing and properties such as hardness, hot hardness, toughness, strength and wear resistance a new generation of microdrills is presented. In particular the failure probability of the microdrills could be considerably reduced and the number of drilling strokes was nearly doubled. Combining improved pressing behavior with proper doping and optimized processing new applications of submicron and ultrafine hardmetals could be obtained by using complex shaped metal cutting inserts. Apart from these application examples the paper gives some insight into fundamental investigations an sintering and properties of ultrafine hardmetals and shows in particular the influence of milling, doping and sintering an the properties of ultrafine hardmetals. The paper also presents a new ultrafine WC grade showing a 0.1 μm WC intercept of a sintered WC - 10 wt % Co structure and a hardness of HV 30 = 2050 for a 1 wt % mixed VC/Cr 3 C 2 doping. (author)

  3. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  4. Determination of chromate ion in drilling mud filtrates

    International Nuclear Information System (INIS)

    Whitfill, D.

    1980-01-01

    A method of determining the amount of chromate ion in an aqueous drilling mud filtrate containing organic color bodies such as lignosulfate wherein the method comprises: (A) treating the aqueous filtrate with an effective amount of hydrogen peroxide to destroy said color bodies, and (B) measuring the amount of chromate ion in the filtrate by means of a spectrophotometer

  5. 21 CFR 177.2910 - Ultra-filtration membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultra-filtration membranes. 177.2910 Section 177... Components of Articles Intended for Repeated Use § 177.2910 Ultra-filtration membranes. Ultra-filtration membranes identified in paragraphs (a)(1), (a)(2), (a)(3), and (a)(4) of this section may be safely used in...

  6. The effect of filter cake viscoelasticity on filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    , it is difficult to use the existing mathematical filtration models to simulate and optimise the filtration process. Activated sludge as well as synthetic model particles has been filtrated in this project. The study shows that compression of the formed filter cake is a time dependent process, and not only...

  7. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.

    Science.gov (United States)

    Brown, D M; Wilson, M R; MacNee, W; Stone, V; Donaldson, K

    2001-09-15

    Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the present study was to investigate proinflammatory responses to various sizes of polystyrene particles as a simple model of particles of varying size including ultrafine. In the animal model, we demonstrated that there was a significantly greater neutrophil influx into the rat lung after instillation of 64-nm polystyrene particles compared with 202- and 535-nm particles and this was mirrored in other parameters of lung inflammation, such as increased protein and lactate dehydrogenase in bronchoalveolar lavage. When surface area instilled was plotted against inflammation, these two variables were directly proportional and the line passed through zero. This suggests that surface area drives inflammation in the short term and that ultrafine particles cause a greater inflammatory response because of the greater surface area they possess. In vitro, we measured the changes in intracellular calcium concentration in mono mac 6 cells in view of the potential role of calcium as a signaling molecule. Calcium changes after particle exposure may be important in leading to proinflammatory gene expression such as chemokines. We demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration. Experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays. There were significant increases in IL-8 gene expression in A549 epithelial cells after treatment with the ultrafine particles but not particles of other sizes. These findings suggest

  8. Comparison of lysis-centrifugation with lysis-filtration and a conventional unvented bottle for blood cultures.

    OpenAIRE

    Gill, V J; Zierdt, C H; Wu, T C; Stock, F; Pizzo, P A; MacLowry, J D

    1984-01-01

    Evaluation of a commercially available lysis-centrifugation blood culture system (Isolator, DuPont Co., Wilmington, Del.) and a lysis-filtration blood culture system for 3,111 cultures showed that both methods had comparable recoveries (73 and 68%, respectively) of significant aerobic and facultatively anaerobic isolates. The unvented conventional blood culture bottle had a recovery rate of 59%. Although the lysis-centrifugation and lysis-filtration systems had comparable recoveries of pathog...

  9. Laser Enhanced System for Ultra-Fine Microstructure Formation

    National Research Council Canada - National Science Library

    Chen, Ray T

    2002-01-01

    .... High-speed polymer-based EO modulator arrays and polymer-based optical true-time delay modules have been built through the existing programs involving UT Austin (Chen), USC (Steier), UCLA (Fetterman) and Univ. of Washington (Dalton...

  10. Hanford phosphate precipitation filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. A proposed Hanford waste pre-treatment process uses sodium hydroxide at high temperature to remove aluminum from sludge. This process also dissolves phosphates. Upon cooling to 40 degrees centigrade the phosphates form a Na7(PO4)2F9H2O precipitate which must be removed prior to further treatment. Filter studies were conducted with a phosphate slurry simulant to evaluate whether 0.5 micron cross-flow sintered metal Mott filters can separate the phosphate precipitate from the wash solutions. The simulant was recirculated through the filters at room temperature and filtration performance data was collected

  11. Primary effluent filtration for coastal discharges

    Energy Technology Data Exchange (ETDEWEB)

    Cooper-Smith, G.D. [Yorkshire Water Services, Huddersfield (United Kingdom); Rundle, H. [The Capital Controls Group, Nottingham (United Kingdom)

    1998-12-31

    The use of a Tetra Deep Bed filter demonstration unit to treat primary effluent (Primary Effluent Filtration, PEF) was investigated. PEF proved capable of achieving the UWWTD primary standard, even when the primary stage performs poorly, but is not a cost-effective alternative to chemically assisted settlement. Results demonstrated that using a 1.5 to 2.2 mm grade medium, a filtration rate of 5 m/h, three backwashes a day and dosing 40 mg/l of PAXXL60 (a polyaluminium silicte) an average effluent quality of 20 mg/l BOD and 15 mgl/l total solid could be achieved. UV disinfection produced an effluent which complied with the Bathing Water Directive imperative requirement. A high enterovirus kill was also achieved. However, considerable additional work would be required before PEF could be considered suitable for full-scale applications. (orig.)

  12. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  13. Enlargement of filtration with finance in view

    CERN Document Server

    Aksamit, Anna

    2017-01-01

    This volume presents classical results of the theory of enlargement of filtration. The focus is on the behavior of martingales with respect to the enlarged filtration and related objects. The study is conducted in various contexts including immersion, progressive enlargement with a random time and initial enlargement with a random variable.  The aim of this book is to collect the main mathematical results (with proofs) previously spread among numerous papers, great part of which is only available in French. Many examples and applications to finance, in particular to credit risk modelling and the study of asymmetric information, are provided to illustrate the theory. A detailed summary of further connections and applications is given in bibliographic notes which enables to deepen study of the topic.  This book fills a gap in the literature and serves as a guide for graduate students and researchers interested in the role of information in financial mathematics and in econometric science. A basic knowledge of...

  14. Osmosis, filtration and fracture of porous media

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    Filtration was produced in a small scale physical model of a granular porous medium of cylindrical shape.The same volume flow was obtained either applying a difference in hydrostatic pressure or in osmotic pressure.In the first case a process of sustained erosion ending in an hydraulic short circuit was observed,while in the second case the material remained stable.This paradoxical strength behaviour is explained using some results from differential geometry,classical field theory and thermo-kinetic theory.The fracture process of a continuous matrix in a porous medium under the combined effect of filtration and external mechanical loads in then considered.The obtained results can be applied to the textural and compressive strength of wet concrete

  15. Interplay between grain structure and protein adsorption on functional response of osteoblasts: ultrafine-grained versus coarse-grained substrates.

    Science.gov (United States)

    Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2013-01-01

    The rapid adsorption of proteins is the starting and primary biological response that occurs when a biomedical device is implanted in the physiological system. The biological response, however, depends on the surface characteristics of the device. Considering the significant interest in nano-/ultrafine surfaces and nanostructured coatings, we describe here, the interplay between grain structure and protein adsorption (bovine serum albumin: BSA) on osteoblasts functions by comparing nanograined/ultrafine-grained (NG/UFG) and coarse-grained (CG: grain size in the micrometer range) substrates by investigating cell-substrate interactions. The protein adsorption on NG/UFG surface was beneficial in favorably modulating biological functions including cell attachment, proliferation, and viability, whereas the effect was less pronounced on protein adsorbed CG surface. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on protein adsorbed NG/UFG surface. The functional response followed the sequence: NG/UFG(BSA) > NG/UFG > CG(BSA) > CG. The differences in the cellular response on bare and protein adsorbed NG/UFG and CG surfaces are attributed to cumulative contribution of grain structure and degree of hydrophilicity. The study underscores the potential advantages of protein adsorption on artificial biomedical devices to enhance the bioactivity and regulate biological functions. Copyright © 2012 Wiley Periodicals, Inc.

  16. Aerosol filtration with metallic fibrous filters

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.

    1983-01-01

    The filtration efficiency of stainless steel fibrous filters (BEKIPOR porous mats and sintered webs) is determined using submicronic monodisperse polystyrene aerosols. Lasers spectrometers are used for the aerosol measurements. The parameters varied are the fiber diameter, the number of layers, the aerosol diameter and the superficial velocity. Two selected types of filters are tested with polydisperse methylene blue aerosols to determine the effect of bed loading on the filter performance and to test washing techniques for the regeneration of the filter

  17. Diatomite releases silica during spirit filtration

    OpenAIRE

    Gómez Benítez, Juan; Gil Montero, María Luisa Almoraima; De la Rosa Fox, Nicolas; Alguacil, Marcos

    2014-01-01

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer’s health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon cont...

  18. Portable Hybrid Powered Water Filtration Device

    Directory of Open Access Journals (Sweden)

    Maria Lourdes V. Balansay

    2015-08-01

    Full Text Available The existing water filtration device has features that can be developed to be more useful and functional during emergency situations. The project’s development has been aided by following provisions in PEC, NEC, NEMA and Philippine National Standard for Safe Drinking Water provide standards for the construction of the project. These standards protect both the prototype and the user. These also served as guide for the maintenance of every component. The design of the portable hybrid powered water filtration device shows that the project has more advanced features such as portability and the power supply used such as photovoltaic module solar cells and manually operated generator. This also shows its effectiveness and reliability based on the results of discharging test, water quality test and water production test. Based on analysis of the overall financial aspects, the machine can be profitable and the amount of revenue and operating cost will increase as years pass. Using the proper machine/ tools and methods of fabrication helps in easy assembly of the project. The materials and components used are cost effective and efficient. The best time for charging the battery using solar panel is 9:00 am onwards while the hand crank generator is too slow because the generated current is little. The water filtration device is very efficient regarding the operating hours and water production. The machine may have a great effect to society and economy in generation of clean available water at less cost.

  19. Direct filtration of Biesbosch water and Algae and water treatment in the Netherlands : 3rd Direct Filtration Seminar

    NARCIS (Netherlands)

    Petrusevski, B.; Vlaski, A.; Van Breemen, A.N.; Alaerts, G.J.

    1993-01-01

    This presentation summarises basic information on direct filtration, and demonstrates the main research findings, related to the performance of simple in-line direct filtration. The results reported are part of a comprehensive ongoing research programm "Direct filtration of Biesbosch water"

  20. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    Science.gov (United States)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  1. Preventing colloidal fouling in reverse osmosis and nano filtration system. Application of electron beam surface analysis; Prevencion del ensuciamiento coloidal en sistemas de osmosis inversa y nanofiltracion. Aplicacion del analisis de superficies con haces de electrones.

    Energy Technology Data Exchange (ETDEWEB)

    Sanz Ataz, J.; Guerrero Gallego, L.; Taberna Camprubi, E.; Pena Garcia, N.M; Carulla Contreras, C.; Blavia Bergos, J.

    2003-07-01

    Particulate matter in natural waters and wastewaters can cause fouling in reverse osmosis and nano filtration membranes. Common foulants includes organic and inorganic colloids; hydrous aluminum and iron silicates, silt, iron and manganese oxides, calcium carbonate, microorganisms, polysaccharides, lipoproteins, biological debris, etc. Predicting fouling of dispersed materials on membrane surface and brine flow channels uses the silt density index (SDI) and modified fouling index (MFI). Scanning electron microscopy (SEM) coupled with energy X-ray microanalysis (EDX) of SDI filters contributes to obtain information about shape, size and chemical composition of foulants and cake layer. (Author) 6 refs.

  2. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    Science.gov (United States)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  3. Filtration approach to mitigate indoor Thoron progeny concentration

    International Nuclear Information System (INIS)

    Wang, J.; Meisenberg, O.; Karg, E.; Tschiersch, J.; Chen, Y.

    2010-01-01

    This study investigates filtration of air as potential mitigation method of thoron progeny exposure. The experiments were conducted in a model room (volume 7.1 m 3 ) which was equipped with a pump and an HEPA (high efficiency particulate air) filter. Filtration at a rate of 0.2, 0.4, 0.5 and 0.8 h -1 during 88 h proved an effective practice in reducing the total indoor thoron decay product concentration. The results indicate that 0.4-0.8 h -1 filtration rate had almost the same filtration efficiency in decreasing the total thoron EEC (equilibrium equivalent concentration) by 97% while 80% of total thoron EEC were reduced by 0.2 h -1 filtration rate; meanwhile, the unattached thoron EEC rose significantly by 190, 270, 290%, respectively under 0.4-0.8 h -1 filtration rate, whereas 0.2 h -1 filtration rate increased unattached thoron EEC by 40%. The aerosol number size distribution variation reveals that filtration operation removes smaller particles faster or earlier than the larger ones. The annual effective dose calculated was reduced by 91-92% at a filtration rate of 0.4-0.8 h -1 while 75% reduced at 0.2 h -1 filtration rate after 88 h filtration process. (authors)

  4. Optical measurements of lung microvascular filtration coefficient using polysulfone fibers.

    Science.gov (United States)

    Klaesner, J W; Roselli, R J; Evans, S; Pou, N A; Parker, R E; Tack, G; Parham, M

    1994-01-01

    Lung fluid balance, which is governed by the product of net transvascular pressure difference and lung filtration coefficient, can be altered in pulmonary diseases. A simple measurement of the lung filtration coefficient (Kfc) would be clinically useful and has been examined by several researchers. Current methods of determining Kfc include gravimetric measurement in isolated lungs and lymph node cannulation, neither of which can be extended to human use. Optical measurements of protein concentration changes in venous blood can be combined with pressure measurements to calculate Kfc. Blood, though, contains red corpuscles, which tend to absorb and scatter light, obscuring these optical measurements. In this study, an optical system was developed in which a polysulfone filter cartridge was used to remove red blood cells before the filtrate was passed through a spectrophotometer. Absorbance changes caused by changes in concentration of albumin labeled with Evans Blue were monitored at 620 nm after venous pressure was elevated by about 13 cm H2O. Optical measurements of Kfc averaged 0.401 +/- 0.074 (ml/min cm H2O 100 g DLW) for an isolated canine lung. Optical measurements of Kfc (0.363 +/- 0.120 ml/min cm H2O 100 g DLW) were made for the first time in an intact, closed chest sheep in which pulmonary pressure was altered by inflating a Foley balloon in the left atrium. We conclude that absorbance and scattering artifacts introduced by red blood cells can be eliminated by first filtering the blood through polysulfone fibers. Kfc measurements using the optical method are similar to values obtained by others using gravimetric methods. Finally, we have demonstrated that the technique can be used to estimate Kfc in an intact animal.

  5. Self Cleaning High Efficiency Particulate Air (HEPA) Filtration without Interrupting Process Flow - 59347

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2012-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research suggests that the then costs to the Department of Energy (DOE), based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5, 000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15, 000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  6. Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes.

    Science.gov (United States)

    Büchner, Nicole; Ale-Agha, Niloofar; Jakob, Sascha; Sydlik, Ulrich; Kunze, Kerstin; Unfried, Klaus; Altschmied, Joachim; Haendeler, Judith

    2013-01-01

    Diet and pollution are environmental factors known to compromise "healthy aging" of the cardiovascular and respiratory systems. The molecular consequences of this permanent burden in these cells are still unknown. Therefore, this study investigates the impact of unhealthy diet on aging-related signaling pathways of human, primary cardiovascular cells and of airborne particles on lung epithelial and human endothelial cells. Nutrition health reports have shown that the diet in industrialized countries contains more than 100mg/dl low density lipoprotein (LDL) and a high fraction of added sugars, especially fructose. Several studies demonstrated that ultrafine particles can enter the circulation and thus may interact with endothelial cells directly. Both, dietary compounds and pollution derived particles, have been shown to increase the risk for cardiovascular diseases. To simulate an unhealthy diet, we supplemented cell culture media of human primary endothelial cells, smooth muscle cells and cardiomyocytes with LDL and replaced 1/3 of glucose with fructose. We observed hypertrophy in cardiomyocytes, enhanced proliferation in smooth muscle cells and increased senescence, loss of endothelial nitric oxide synthase and increased nuclear FoxO3A in endothelial cells. With respect to pollution we have used ultrafine carbon black particles (ufCB), one of the major constituents of industrial and exhaust emissions, in concentrations our lungs and vessels are constantly exposed to. These concentrations of ufCB increased reactive oxygen species in lung epithelial and vascular endothelial cells and reduced the S-NO content, a marker for NO-bioavailability, in endothelial cells. NO increases activation of Telomerase Reverse Transcriptase (TERT), an enzyme essential for telomere maintenance. TERT is required for proper endothelial cell function and is inactivated by Src kinase under conditions of oxidative stress. ufCB significantly increased Src kinase activation and reduced

  7. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    Science.gov (United States)

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  8. A rigid porous filter and filtration method

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.

    1998-12-01

    The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  9. Limitation of releases and filtration by sand

    International Nuclear Information System (INIS)

    Schektman, N.

    1986-01-01

    In the highly hypothetic case of a severe reactor accident, it may lead to an increase of pressure within the containment and up to a value above the calculated pressure. A procedure is necessary in this case to maintain the integrity of the containment to prevent a release of radioactive products to the environment, while controlling in the best way releases. So, EDF and the CEA have developed a device of decompression-filtration of the containment atmosphere, using a free penetration of the containment and a sand box; the device and its operation constitute the U5 procedure [fr

  10. Good Filtrations and the Steinberg Square

    DEFF Research Database (Denmark)

    Kildetoft, Tobias

    that tensoring the Steinberg module with a simple module of restricted highest weight gives a module with a good filtration. This result was first proved by Andersen when the characteristic is large enough. In this dissertation, generalizations of those results, which are joint work with Daniel Nakano......, the socle completely determines how a Steinberg square decomposes. The dissertation also investigates the socle of the Steinberg square for a finite group of Lie type, again providing formulas which describe how to find the multiplicity of a simple module in the socle, given information about...

  11. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  12. Outdoor ultrafine particle concentrations in front of fast food restaurants.

    Science.gov (United States)

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A previous monitoring campaign could not separate the contribution of restaurants from road traffic. The main goal of this study has been the quantification of fast food restaurants' contribution to outdoor UFP concentrations. A portable particle number counter (DiscMini) has been used to carry out mobile monitoring in a largely pedestrianized area in the city center of Utrecht. A fixed route passing 17 fast food restaurants was followed on 8 days. UFP concentrations in front of the restaurants were 1.61 times higher than in a nearby square without any local sources used as control area and 1.22 times higher compared with all measurements conducted in between the restaurants. Adjustment for other sources such as passing mopeds, smokers or candles did not explain the increase. In conclusion, fast food restaurants result in significant increases in outdoor UFP concentrations in front of the restaurant.

  13. Fabrication of ultra-fine nanostructures using edge transfer printing.

    Science.gov (United States)

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  14. Workplace Measurements of Ultrafine Particles-A Literature Review.

    Science.gov (United States)

    Viitanen, Anna-Kaisa; Uuksulainen, Sanni; Koivisto, Antti J; Hämeri, Kaarle; Kauppinen, Timo

    2017-08-01

    Workers are exposed to ultrafine particles (UFP) in a number of occupations. In order to summarize the current knowledge regarding occupational exposure to UFP (excluding engineered nanoparticles), we gathered information on UFP concentrations from published research articles. The aim of our study was to create a basis for future epidemiological studies that treat UFP as an exposure factor. The literature search found 72 publications regarding UFP measurements in work environments. These articles covered 314 measurement results and tabled concentrations. Mean concentrations were compared to typical urban UFP concentration level, which was considered non-occupational background concentration. Mean concentrations higher than the typical urban UFP concentration were reported in 240 workplace measurements. The results showed that workers' exposure to UFP may be significantly higher than their non-occupational exposure to background concentration alone. Mean concentrations of over 100 times the typical urban UFP concentration were reported in welding and metal industry. However, according to the results of the review, measurements of the UFP in work environments are, to date, too limited and reported too heterogeneous to allow us to draw general conclusions about workers' exposure. Harmonization of measurement strategies is essential if we are to generate more reliable and comparable data in the future. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  15. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    Science.gov (United States)

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  17. Granularity and Laxative Effect of Ultrafine Powder of Dendrobium officinale.

    Science.gov (United States)

    Luo, DanDan; Qu, Chao; Zhang, ZhenBiao; Xie, JianHui; Xu, LieQiang; Yang, HongMei; Li, CaiLan; Lin, GuoSheng; Wang, HongFeng; Su, ZiRen

    2017-02-01

    Constipation is a common disorder that is a significant source of morbidity among people around the world ranging from 2% to 28%. Dendrobium officinale Kimura et Migo is a traditional herbal medicine and health food used for tonicity of the stomach and promotion of body fluid production in China. This study aimed to prepare the ultrafine powder of Dendrobium officinale (UDO) and investigate its laxative effect and potential mechanism in mice with diphenoxylate-induced constipation. Results indicated that the mean diameter (d 50 ) of UDO obtained by ball milling was 6.56 μm. UDO (62.5, 125, and 250 mg/kg, p.o.) could significantly enhance the gastrointestinal transit ratio and promote fecal output. Moreover, UDO treatment resulted in significant increases in the serum levels of acetylcholinesterase (AChE), gastrin (Gas), motilin (MTL), and substance P (SP), and obviously decreased serum contents of somatostatin (SS). Taken together, UDO, which can be easily obtained through milling to a satisfactory particle size, exhibited obvious laxative effect in diphenoxylate-induced constipated mice, and the mechanism might be associated with elevated levels of AChE, Gas, MTL, SP, and reduced production of SS. UDO has the potential for further development into an alternative effective diet therapy for constipation.

  18. Mechanochemical synthesis of ultrafine Ce2S3 powder

    International Nuclear Information System (INIS)

    Tsuzuki, T.; McCormick, P.G.

    1998-01-01

    Full text: Rare earth sulphides have been receiving an increasing attraction for various applications including infrared window materials and magneto-optical devices. In particular, Ce 2 S 3 has been under intensive study for use as a red pigment to replace toxic cadmium sulfoselenide. The conventional method for synthesising Ce 2 S 3 is the sulphidization of the element or sesquioxide with hydrogen sulphide gas. However, the method usually requires a high-temperature process (>1000 deg C), and hence coarse particles larger than the optimal size of ∼ 2 S 3 powder by mechanochemical processing using X-ray diffraction spectroscopy, BET surface area analysis and transmission electron microscopy. Mechanical milling of the mixture of a cerium salt and an alkali/alkali-earth sulphide powders led to a solid state displacement reaction in a steady-state manner, forming Ce 2 S 3 nanoparticles in a salt by-product matrix. After a simple washing process to remove the salt by-product, ultrafine Ce 2 S 3 particles with sizes of 20 - 200 nm having an orthorhombic structure were obtained. Using a diluent and mechanically alloyed CaS nanoparticles in the starting powder, particles of only a cubic γ-Ce 2 S 3 phase with sizes of 10 - 80 nm were formed

  19. Potential of ultrafine grained materials as high performance penetrator materials

    Directory of Open Access Journals (Sweden)

    Lee C.S.

    2012-08-01

    Full Text Available The shear formability and the metal jet formability are important for the kinetic energy penetrator and the chemical energy penetrator, respectively. The shear formability of ultrafine grained (UFG steel was examined, mainly focusing on the effects of the grain shape on the shear characteristics. For this purpose, UFG 4130 steel having the different UFG structures, the lamellar UFG and the equiaxed UFG, was prepared by equal channel angular pressing (ECAP. The lamellar UFG steel exhibited more sharper and localized shear band formation than the equiaxed UFG steel. This is because a lamellar UFG structure was unfavourable against grain rotation which is a main mechanism of the band propagation in UFG materials. Meanwhile, the metal jet formability of UFG OFHC Cu also processed by ECAP was compared to that of coarse grained (CG one by means of dynamic tensile extrusion (DTE tests. CG OFHC Cu exhibited the higher DTE ductility, i.e. better metal jet stability, than UFG OFHC Cu. The initial high strength and the lack of strain hardenability of UFG OFHC Cu were harmful to the metal jet formability.

  20. POTENTIAL PATHOPHYSIOLOGICAL MECHANISMS OF ULTRAFINE PARTICLE TOXIC EFFECTS IN HUMANS

    Directory of Open Access Journals (Sweden)

    JASMINA JOVIĆ-STOŠIĆ

    2008-03-01

    Full Text Available Epidemiological and clinical studies suggested the association of the particulate matter ambient air pollution and the increased morbidity and mortality, mainly from respiratory and cardiovascular diseases. The size of particles has great influence on their toxicity, because it determines the site in the respiratory tract where they deposit. The most well established theory explaining the mechanisms behind the increased toxicity of ultrafine particles (UFP, < 0.1 µm is that it has to do with the increased surface area and/or the combination with the increased number of particles. Biological effects of UFP are also determined by their shape and chemical composition, so it is not possible to estimate their toxicity in a general way. General hypothesis suggested that exposure to inhaled particles induces pulmonary alveolar inflammation as a basic pathophysiological event, triggering release of various proinflammatory cytokines. Chronic inflammation is a very important underlying mechanism in the genesis of atherosclerosis and cardiovascular diseases. UFP can freely move through the circulation, but their effects on the secondary organs are not known yet, so more studies on recognizing toxicological endpoints of UFP are needed. Determination of UFP toxicity and the estimation of their internal and biologically active dose are necessary for the evidence based conclusions connecting air pollution by UFP and human diseases.

  1. Asymptotics of the filtration problem for suspension in porous media

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2015-01-01

    Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

  2. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing

    International Nuclear Information System (INIS)

    Alihosseini, H.; Dehghani, K.

    2012-01-01

    Highlights: ► BH of UFG low carbon steel sheets was studied. ► Three passes of CGP are used for producing of UFG sheets. ► Maximum BH was achieved to the UFG specimen pre-strained 8% by baking at 250 °C. - Abstract: In the present work, the bake hardening of ultra-fine grained low carbon steel was compared with that of its coarse-grain counterpart. The ultra-fine grained sheets were produced by applying three passes of constrained groove pressing resulting the grains of 260–270 nm. The microstructure of ultra-fine grain specimens were characterized using electron back-scatter diffraction technique. Then, the bake hardenability of ultra-fine grain and coarse-grain samples were compared by pre-straining to 4, 6 and 8% followed by baking at 150 °C and 250 °C for 20 min. The results show that in case of baking at 250 °C, there was an increase about 108%, 93%, and 72% in the bake hardening for 4%, 6% and 8% pre-strain, respectively. As for baking at 150 °C, these values were 170%, 168%, and 100%, respectively for 4%, 6% and 8% pre-strain. The maximum in bake hardenability (103 MPa) and final yield stress (563 MPa) were pertaining to the ultra-fine grain specimen pre-strained 8% followed by baking at 250 °C.

  3. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang, E-mail: suigang@mail.buct.edu.cn; Yang, Xiaoping

    2016-12-15

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  4. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    International Nuclear Information System (INIS)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang; Yang, Xiaoping

    2016-01-01

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  5. Dynamic optimization of a dead-end filtration trajectory: Blocking filtration laws

    NARCIS (Netherlands)

    Blankert, B.; Betlem, Bernardus H.L.; Roffel, B.

    2006-01-01

    An operating model for dead-end membrane filtration is proposed based on the well-known blocking laws. The resulting model contains three parameters representing, the operating strategy, the fouling mechanism and the fouling potential of the feed. The optimal control strategy is determined by

  6. White-light Detection for Nanoparticle Sizing with the TSI Ultrafine Condensation Particle Counter

    International Nuclear Information System (INIS)

    Dick, William D.; McMurry, Peter H.; Weber, Rodney J.; Quant, Frederick R.

    2000-01-01

    Several of the most common methods for measuring nanoparticle size distributions employ the ultrafine condensation particle counter (UCPC) for detection purposes. Among these methods, the pulse height analysis (PHA) technique, in which the optical response of the UCPC detector is related to initial particle diameter in the 3-10 nm range, prevails in applications where fast sampling is required or for which concentrations of nanoparticles are frequently very low. With the PHA technique, white light is required for particle illumination in order to obtain a monotonic relationship between initial particle diameter and optical response (pulse height). However, the popular, commercially available TSI Model 3025A UCPC employs a laser for particle detection. Here, we report on a novel white-light detection system developed for the 3025A UCPC that involves minimal alteration to the instrument and preserves normal counting operation. Performance is illustrated with pulse height spectra produced by differential mobility analyzer (DMA) - generated calibration aerosols in the 3-50 nm range

  7. Improved remote HEPA filtration development program

    International Nuclear Information System (INIS)

    Wilson, C.E. III.

    1987-03-01

    This paper presents a summary of the prototype development and hot cell mock-up testing program undertaken to adapt a commercial remote HEPA filter housing for use in the Process Facility Modification Project (PFMP). This program was initiated in response to the project design criteria and documentation that required the air from the hot cell environment to be exhausted through three stages of HEPA filtration. Due to the anticipated quantity of radioactive contamination captured by the first stage of filters, it was determined that the first stage would need to be located in a remotely operated and maintained shielded cell adjoining the primary hot cell areas. Commercially available remote filtration equipment was evaluated and candidate unit was identified, which could be developed into a suitable filter housing. A candidate unit was obtained from Flanders Filters, Inc. and a series of hot cell mock-up tests were identified in the 305 facility at the Hanford site. The results of these tests, and further interaction with the vendor, led to a prototype remote filter housing which satisfied most PFMP criteria and proved to be significantly superior to existing commercial units for remote operation/maintenance

  8. Diatomite releases silica during spirit filtration.

    Science.gov (United States)

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2014-09-15

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Riverbed Clogging and Sustainability of Riverbank Filtration

    Directory of Open Access Journals (Sweden)

    Thomas Grischek

    2016-12-01

    Full Text Available Clogging refers to a reduction of riverbed hydraulic conductivity. Due to difficulties in determining the thickness of the clogging layer, the leakage coefficient (L is introduced and used to quantify the recoverable portion of bank filtrate. L was determined at several riverbank filtration (RBF sites in field tests and using an analytical solution. Results were compared with data from similar experiments in the early 1970s and 1991–1993. In the 1980s, severe river water pollution in conjunction with high water abstraction led to partly unsaturated conditions beneath the riverbed. A leakage coefficient L of 5 × 10−7 s−1 was determined. After water quality improvement, L increased to 1–1.5 × 10−6 s−1. An alternative, cost and time efficient method is presented to estimate accurate leakage coefficients. The analytical solution is based on groundwater level monitoring data from observation wells next to the river, which can later feed into numerical models. The analytical approach was able to reflect long-term changes as well as seasonal variations. Recommendations for its application are given based on experience.

  10. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  11. Longitudinal-transverse liquid filtration in an annular heat-liberating medium

    International Nuclear Information System (INIS)

    Akhramovich, A.P.; Kolos, V.P.; Sorokin, V.N.

    1987-01-01

    The authors interpret experimental flow visualization data and construct a flow model for coolant filtration and flow in a layered granular heat exchange material for implementation in a reactor cooling system. Breakaway flow zones close to the ends of a layer in longitudinal-transverse liquid filtration are observed. In a linear approximation the problem of determining the form of the ends of the layer for which there is no flow breakaway is solved. The model is tested against experimental data for water and a nitrogen tetroxide coolant

  12. Modeling Non-Fickian Transport and Hyperexponential Deposition for Deep Bed Filtration

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2010-01-01

    An integral model of the deep bed filtration process has been developed. It incorporates pore and particle size distributions, as well as the particle residence time distribution in the framework of the continuous time random walk theory. Numerical modeling is carried out to study the factors...... influencing breakthrough curves and deposition profiles for the deep bed filtration systems. Results are compared with a large set of experimental observations. Our findings show that highly dispersed breakthrough curves, e.g. those with early arrivals and large ending tails, correspond to large dispersion...

  13. A study of dynamic filtration; Um estudo sobre filtracao dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Joaquim Helder S [PETROBRAS, Natal, RN (Brazil). Distrito de Perfuracao da Bacia Potiguar. Div. de Tecnicas de Perfuracao

    1990-12-31

    The problems that cause cost increase such as: formation damage and borehole swelling or caving lead us to study the filtration of the liquid part of formation drilling fluid. With the aim of comparing static and dynamic filtration rates, we developed a modest dynamic filtration equipment, consisting of a modified API filter, connected to reservoir by means of a positive injection pump. We carried out various tests, and the results were set in charts and tables. Through these, it is possible to notice how the static and dynamic filtration curves come apart for a same pressure value. We also evaluated the effects of circulation speed, starch concentration and counter pressure. This paper does not include calculations or mathematical models accounting for filtrate invasion radii, but it demonstrates, for example, that cleaning circulation will cause lower filtration rates at lower flows. (author) 5 refs., 11 figs., 14 tabs.

  14. A study of dynamic filtration; Um estudo sobre filtracao dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Joaquim Helder S. [PETROBRAS, Natal, RN (Brazil). Distrito de Perfuracao da Bacia Potiguar. Div. de Tecnicas de Perfuracao

    1989-12-31

    The problems that cause cost increase such as: formation damage and borehole swelling or caving lead us to study the filtration of the liquid part of formation drilling fluid. With the aim of comparing static and dynamic filtration rates, we developed a modest dynamic filtration equipment, consisting of a modified API filter, connected to reservoir by means of a positive injection pump. We carried out various tests, and the results were set in charts and tables. Through these, it is possible to notice how the static and dynamic filtration curves come apart for a same pressure value. We also evaluated the effects of circulation speed, starch concentration and counter pressure. This paper does not include calculations or mathematical models accounting for filtrate invasion radii, but it demonstrates, for example, that cleaning circulation will cause lower filtration rates at lower flows. (author) 5 refs., 11 figs., 14 tabs.

  15. Chevrel phases superconductive and ultrafine powders synthesis and characterization; Synthese et caracterisation de poudres ultrafines supraconductrices de phases de Chevrel

    Energy Technology Data Exchange (ETDEWEB)

    Even-Boudjada, S

    1994-12-01

    This work deals with the Chevrel phases superconductive and ultrafine powders synthesis and characterization. The first part of this study presents some new way of synthesis (precipitation, coprecipitation) of Chevrel phases precursors powders (PbS, SnS, MoS{sub 2}) and their characterizations (X-ray fluorescence analysis, ICP mass spectroscopy, scanning electron microscopy, transmission electron microscopy and laser granulometry). These new synthesis methods lead to quasi spherical morphology grains and very weak size grains (0.2 to 0.5 {mu}m) whereas the chemical preparation from the solid state elements gives very different morphology grains (small plates) with a size of 1 to 20 {mu}m. In the second part is shown the interest of the binary Mo{sub 6} S{sub 8} as precursor in the synthesis of ternary superconductive phases (Li, Ni, Cu, Pb). The last part presents the formation reaction of the phase PbMo{sub 6} S{sub 8} and its main chemical and physical properties. Thus some calorimetric measures associated with X-ray diffraction analysis have been realized and have allowed to understand the different reactions occurring during the PbMo{sub 6}S{sub 8} synthesis. (O.L.). 100 refs., figs., tabs.

  16. Vibrating membrane filtration as improved technology for microalgae dewatering

    OpenAIRE

    Nurra, C.; Clavero, E.; Salvadó, J.; Torras, C.

    2014-01-01

    10.1016/j.biortech.2014.01.115 The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean ...

  17. Formation and evolution of ultrafine particles produced by radiolysis and photolysis

    International Nuclear Information System (INIS)

    Madelaine, G.J.; Perrin, M.L.; Renoux, A.

    1980-01-01

    Results are presented, concerning the formation, the size distribution, and the behavior of ultrafine particles produced by alpha disintegration of actinium and uv irradiation in filtered and natural atmospheric air. The characterization of these particles is obtained by electrical aerosol analyzer and diffusion battery method. Measurements are made in the range between 0.003 and 0.5 micrometer. Some qualitative indications are obtained on the different mechanisms which govern the evolution of ultrafine particles in the atmosphere (nucleation, coagulation, and condensation). It is now well established that the photo-oxydation of SO 2 in the atmosphere leads to the production of sulphuric acid and of sulphate, which are usually found in the form of submicronic particles. This paper concerns the evolution of ultrafine particles generated in the presence of a preexisting aerosol. They are either instantaneously produced by the alpha disintegrations of actinium 219 or continuously produced by the transformation of SO 2 under uv irradiation

  18. Seasonal variation and volatility of ultra-fine particles in coastal Antarctic troposphere

    Directory of Open Access Journals (Sweden)

    Keiichiro Hara

    2010-12-01

    Full Text Available The Size distribution and volatility of ultrafine aerosol particles were measured at Syowa Station during the 46-47 Japanese Antarctic Research Expeditions. During the summer, most of the ultrafine particles were volatile particles, which were composed of H_2SO_4, CH_3SO_3H and sulfates bi-sulfates. The abundance of non-volatile particles was ~ 20% during the summer, increasing to>90% in winter-spring. Non-volatile particles in winter were dominantly sea-salt particles. Some ultrafine sea-salt particles might be released from sea-ice. When air mass was transported from the free troposphere over the Antarctic continent, the abundance of non-volatile particles dropped to<30% even in winter.

  19. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults.

    Science.gov (United States)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-09

    The criteria for designating an "Active Fault" not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault's latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  20. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

    Directory of Open Access Journals (Sweden)

    Jianxin Zou

    2012-01-01

    Full Text Available In the present work, Mg-rich Mg-Ni ultrafine powders were prepared through an arc plasma method. The phase components, microstructure, and hydrogen storage properties of the powders were carefully investigated. It is found that Mg2Ni and MgNi2 could be obtained directly from the vapor state reactions between Mg and Ni, depending on the local vapor content in the reaction chamber. A nanostructured MgH2 + Mg2NiH4 hydrogen storage composite could be generated after hydrogenation of the Mg-Ni ultrafine powders. After dehydrogenation, MgH2 and Mg2NiH4 decomposed into nanograined Mg and Mg2Ni, respectively. Thermogravimetry/differential scanning calorimetry (TG/DSC analyses showed that Mg2NiH4 phase may play a catalytic role in the dehydriding process of the hydrogenated Mg ultrafine particles.

  2. Filtration in the Use of Individual Water Purification Devices

    National Research Council Canada - National Science Library

    Lundquist, Arthur; Clarke, Steven; Bettin, William

    2006-01-01

    .... Understanding the ability of filtration to reduce disease-causing microorganisms in water is important in protecting Soldiers, who are considering using this technology, from acute health threats...

  3. Efficiency and safety of leukocyte filtration during cardiopulmonary bypass for cardiac surgery

    NARCIS (Netherlands)

    Smit, JJJ; de Vries, AJ; Gu, YJ; van Oeveren, W

    Background. Leukocyte filtration of systemic blood during cardiopulmonary bypass surgery to reduce post-operative morbidity has not yet been established because of the enormous leukocyte release from the third space. This study was designed to examine the efficiency and safety of leukocyte

  4. Rapid Sand Filtration for Best Practical Treatment of Domestic Wastewater Stabilization Pond Effluent

    Science.gov (United States)

    Boatright, D. T.; Lawrence, C. H.

    1977-01-01

    The technical and economic feasibility of constructing and operating a rapid sand filtration sewage treatment system as an adjunct to a waste water stabilization pond is investigated. The study concludes that such units are within the technical and economic constraints of a small community and comply with the EPA criteria. (BT)

  5. Results of Laboratory Tests of the Filtration Characteristics of Clay-Cement Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sol’skii, S. V., E-mail: solskiysv@vniig.ru; Lopatina, M. G., E-mail: LoptainaMG@vniig.ru; Legina, E. E.; Orishchuk, R. N.; Orlova, N. L. [B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG) (Russian Federation)

    2017-01-15

    Laboratory studies of the filtration characteristics of clay-cement concrete materials for constructing filtering diaphragms of earth dams by the method of secant piles are reported. Areas for further study aimed at improving the quality of construction, increasing operational safety, and developing a standards base for the design, construction, and operation of these systems are discussed.

  6. Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope

    International Nuclear Information System (INIS)

    Trimby, Patrick W.; Cao, Yang; Chen, Zibin; Han, Shuang; Hemker, Kevin J.; Lian, Jianshe; Liao, Xiaozhou; Rottmann, Paul; Samudrala, Saritha; Sun, Jingli; Wang, Jing Tao; Wheeler, John; Cairney, Julie M.

    2014-01-01

    Graphical abstract: -- Abstract: The recent development of transmission Kikuchi diffraction (TKD) in a scanning electron microscope enables fast, automated orientation mapping of electron transparent samples using standard electron backscatter diffraction (EBSD) hardware. TKD in a scanning electron microscope has significantly better spatial resolution than conventional EBSD, enabling routine characterization of nanocrystalline materials and allowing effective measurement of samples that have undergone severe plastic deformation. Combining TKD with energy dispersive X-ray spectroscopy (EDS) provides complementary chemical information, while a standard forescatter detector system below the EBSD detector can be used to generate dark field and oriented dark field images. Here we illustrate the application of this exciting new approach to a range of deformed, ultrafine grained and nanocrystalline samples, including duplex stainless steel, nanocrystalline copper and highly deformed titanium and nickel–cobalt. The results show that TKD combined with EDS is a highly effective and widely accessible tool for measuring key microstructural parameters at resolutions that are inaccessible using conventional EBSD

  7. Ultrahigh strength martensite-austenite dual-phase steels with ultrafine structure: The response to indentation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Venkatsurya, P. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Wu, K.M. [International Research Institute for Steel Technolgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Karjalainen, L.P. [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland)

    2013-01-10

    In medium to high carbon steels, characterized by martensite-austenite microstructure processed by quenching and partitioning process, martensite potentially provides high strength, while austenite provides work hardening [Fu, Wu, and Misra, DOI: 10.1179/1743284712/068]. Given the significant interest in these steels in the steel community, the paper reports for the first time the nanoscale deformation experiments and accompanying microstructural evolution to obtain micromechanical insights into the deformation behavior of ultrahigh strength-high ductility dual-phase steels with significant retained austenite fraction of {approx}0.35. During deformation experiments with nanoindenter, dislocations were distributed on several slip systems, whereas strain-induced twinned martensite and twinning were the deformation mechanisms in carbon-enriched and thermally stabilized retained austenite. Furthermore, ultrafine dual-phase steels exhibited high strain rate sensitivity.

  8. Ultrahigh strength martensite–austenite dual-phase steels with ultrafine structure: The response to indentation experiments

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Venkatsurya, P.; Wu, K.M.; Karjalainen, L.P.

    2013-01-01

    In medium to high carbon steels, characterized by martensite–austenite microstructure processed by quenching and partitioning process, martensite potentially provides high strength, while austenite provides work hardening [Fu, Wu, and Misra, DOI: 10.1179/1743284712/068]. Given the significant interest in these steels in the steel community, the paper reports for the first time the nanoscale deformation experiments and accompanying microstructural evolution to obtain micromechanical insights into the deformation behavior of ultrahigh strength-high ductility dual-phase steels with significant retained austenite fraction of ∼0.35. During deformation experiments with nanoindenter, dislocations were distributed on several slip systems, whereas strain-induced twinned martensite and twinning were the deformation mechanisms in carbon-enriched and thermally stabilized retained austenite. Furthermore, ultrafine dual-phase steels exhibited high strain rate sensitivity.

  9. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Ho, Kin-Fai; Lin, Lian-Yu; Chang, Ta-Yuan; Hong, Gui-Bing; Ma, Chi-Ming; Liu, I-Jung; Chuang, Kai-Jen

    2017-09-01

    The association of short-term air pollution filtration with cardiovascular health has been documented. However, the effect of long-term indoor air conditioner filtration on the association between air pollution and cardiovascular health is still unclear. We recruited 200 homemakers from Taipei and randomly assigned 100 of them to air filtration or control intervention; six home visits were conducted per year from 2013 to 2014. The participants under air filtration intervention during 2013 were reassigned to control intervention in 2014. The air pollution measurements consisted of particulate matter less than or equal to 2.5μm in diameter (PM 2.5 ) and total volatile organic compounds (VOCs); blood pressure was monitored for each participant during each visit. The following morning, blood samples were collected after air pollution monitoring. The blood samples were used to analyze biological markers, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and fibrinogen. Household information, including cleaning, cooking, and air conditioning, was collected by a questionnaire. Mixed-effects models were used to investigate the associations among air pollution measurements, blood pressure and biological markers. The results showed that increased levels of PM 2.5 and total VOCs were associated with increased hs-CRP, 8-OHdG and blood pressure. The health variables were higher among participants in the control intervention phase than among those in the air filtration intervention phase. We concluded that air pollution exposure was associated with systemic inflammation, oxidative stress and elevated blood pressure. The long-term filtration of air pollution with an air conditioner filter was associated with cardiovascular health of adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evaluation of Impact of Coagulant Type on Operation Parameters in Direct Filtration

    Directory of Open Access Journals (Sweden)

    Ali Torabian

    2007-06-01

    Full Text Available Numerous advantages have been reported on PAC (poly aluminum chloride used as a coagulant over other coagulants such as alum and ferric chloride used in conventional water treatment process with medium and high turbidity levels. These include lower amounts of PACL required specially in removing turbidity, larger floc grain formation, reduced floc sedimentation time, lower sludge production, and relaxation of the need for pH adjustment by lime, among others. The present study aims to evaluate the effects of different coagulants such as ferric chloride and PACL on direct filtration and to identify the most effective material based on both turbidity and particle removal efficiencies. A perfectly experimental pilot system, including raw water preparation, coagulation, flocculation, distribution measurement, and filtration units, was designed and used. Raw water turbidity level in the experimental pilot was below 10 NTU. The effects of various parameters such as coagulant type, filtration rate, and coagulant dosage on the performance of the filter were investigated. The results obtained from several filtration cycles under different conditions indicated that average effluent turbidity level, effluent particle numbers, effluent turbidity variation graph, and effluent particle graph were lower throughout the filtration cycle when PACL was used compared to when ferric chloride was used as the coagulant. Increasing filtration rate led to increased turbidity and particle number. Addition of 2 mg/l of PACL (poor coagulation and flocculation scenario was compared with addition of 5 mg/l of ferric chloride (strong coagulation and flocculation scenario. The results indicated that higher average values of turbidity removal but lower turbidity and particle removal efficiencies obtained in the case of the poor coagulation and flocculation scenario.

  11. Experiments on high efficiency aerosol filtration

    International Nuclear Information System (INIS)

    Mazzini, M.; Cuccuru, A.; Kunz, P.

    1977-01-01

    Research on high efficiency aerosol filtration by the Nuclear Engineering Institute of Pisa University and by CAMEN in collaboration with CNEN is outlined. HEPA filter efficiency was studied as a function of the type and size of the test aerosol, and as a function of flowrate (+-50% of the nominal value), air temperature (up to 70 0 C), relative humidity (up to 100%), and durability in a corrosive atmosphere (up to 140 hours in NaCl mist). In the selected experimental conditions these influences were appreciable but are not sufficient to be significant in industrial HEPA filter applications. Planned future research is outlined: measurement of the efficiency of two HEPA filters in series using a fixed particle size; dependence of the efficiency on air, temperatures up to 300-500 0 C; performance when subject to smoke from burning organic materials (natural rubber, neoprene, miscellaneous plastics). Such studies are relevant to possible accidental fires in a plutonium laboratory

  12. Fluoride removal from water by nano filtration

    International Nuclear Information System (INIS)

    Bejaoui, Imen; Mnif, Amine; Hamrouni, Bechir

    2009-01-01

    As any oligo element, fluoride is necessary and beneficial for human health to low concentrations, but an excess amount of fluoride ions in drinking water has been known to cause undesirable effects, especially tooth and bones fluoro sis. The maximum acceptable concentration of fluoride in drinking water was fixed by the World Health Organization according to the climate in the range of 1 mg.L -1 to 1,2 mg.L -1 . Many methods have been used to remove fluoride from water such as precipitation, adsorption, electrocoagulation and membrane processes. Technologies using membrane processes are being used in many applications, particularly for brackish water desalination. Nano filtration seems to be the best process for a good selective defluorination of fluorinated waters. The main objective of this work was to investigate the retention of fluoride anions by nano filtration. The first part of this study deals with the characterisation of the NF HL2514TF membrane. The influence of various experimental parameters such as initial fluoride content, feed pressure, permeate flux, ionic strength, type of cation associated to fluoride and pH were studied in the second part. Results show that the retention order for the salts tested was TR(Na 2 SO 4 ) > TR(CaCl 2 ) > TR(NaCl), showing a retention sequence inversely proportional to the salt diffusion coefficients in water. It was also shown that charge effects could not be neglected, and a titration experiments confirmed that the NF membrane carry a surplus of negatively charged groups. Fluoride retention exceeds 60 pour cent, and increases with increasing concentration, where the rejection mechanism is related to the dielectric effects. Speigler-Kedem model was applied to experimental results in the aim to determine phenomenological parametersσand P s respectively, the reflexion coefficient of the membrane and the solute permeability of ions. The convective and diffusive parts of the mass transfer were quantified with

  13. Numerical simulation of the mechanical behavior of ultrafine- and coarse-grained Zr-Nb alloys over a wide range of strain rates

    Science.gov (United States)

    Serbenta, V. A.; Skripnyak, N. V.; Skripnyak, V. A.; Skripnyak, E. G.

    2017-12-01

    This paper presents the results on the development of theoretical methods of evaluation and prediction of mechanical properties of Zr-Nb alloys over a range of strain rates from 10-3 to 103 s-1. The mechanical behavior of coarse- and ultrafine-grained Zr-1Nb (E110) was investigated numerically. The ranges of strain rates and temperatures in which the mechanical behavior of Zr-1Nb alloy can be described using modified models of Johnson-Cook and Zerilli-Armstrong were defined. The results can be used in engineering analysis of designed technical systems for nuclear reactors.

  14. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Balakrishna Shrilatha

    2009-04-01

    Full Text Available Abstract Background Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs. Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230 as the EPFR because we have previously shown that it forms a EPFR on Cu(IIO surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species. Results Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH, glutathione peroxidase (GPx, and superoxide dismutase (SOD levels for both types of combustion-generated particle systems. Conclusion The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx. The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine

  15. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Ma, Kaka; Wen, Haiming; Hu, Tao; Topping, Troy D.; Isheim, Dieter; Seidman, David N.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-01-01

    To provide insight into the relationships between precipitation phenomena, grain size and mechanical behavior in a complex precipitation-strengthened alloy system, Al 7075 alloy, a commonly used aluminum alloy, was selected as a model system in the present study. Ultrafine-grained (UFG) bulk materials were fabricated through cryomilling, degassing, hot isostatic pressing and extrusion, followed by a subsequent heat treatment. The mechanical behavior and microstructure of the materials were analyzed and compared directly to the coarse-grained (CG) counterpart. Three-dimensional atom-probe tomography was utilized to investigate the intermetallic precipitates and oxide dispersoids formed in the as-extruded UFG material. UFG 7075 exhibits higher strength than the CG 7075 alloy for each equivalent condition. After a T6 temper, the yield strength (YS) and ultimate tensile strength (UTS) of UFG 7075 achieved 734 and 774 MPa, respectively, which are ∼120 MPa higher than those of the CG equivalent. The strength of as-extruded UFG 7075 (YS: 583 MPa, UTS: 631 MPa) is even higher than that of commercial 7075-T6. More importantly, the strengthening mechanisms in each material were established quantitatively for the first time for this complex precipitation-strengthened system, accounting for grain-boundary, dislocation, solid-solution, precipitation and oxide dispersoid strengthening contributions. Grain-boundary strengthening was the predominant mechanism in as-extruded UFG 7075, contributing a strength increment estimated to be 242 MPa, whereas Orowan precipitation strengthening was predominant in the as-extruded CG 7075 (∼102 MPa) and in the T6-tempered materials, and was estimated to contribute 472 and 414 MPa for CG-T6 and UFG-T6, respectively

  16. Purification of contaminated water by filtration through porous glass

    Science.gov (United States)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  17. 40 CFR 141.171 - Criteria for avoiding filtration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  18. Dynamic optimization of dead-end membrane filtration

    NARCIS (Netherlands)

    Blankert, B.; Betlem, Bernardus H.L.; Roffel, B.; Marquardt, Wolfgang; Pantelides, Costas

    2006-01-01

    An operating strategy aimed at minimizing the energy consumption during the filtration phase of dead-end membrane filtration has been formulated. A method allowing fast calculation of trajectories is used to allow incorporation in a hierarchical optimization scheme. The optimal trajectory can be

  19. Vibrating membrane filtration as improved technology for microalgae dewatering.

    Science.gov (United States)

    Nurra, Claudia; Clavero, Ester; Salvadó, Joan; Torras, Carles

    2014-04-01

    The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean pore sizes (from 7000Da to 0.2μm) were tested and compared in both filtration set-ups. Experiments were carried-out with Nannochloropsis gaditana and Phaeodactylum tricornutum microalgae. It has been demonstrated that, even if the choice of the membrane depends on its cut-off, its material and the type of microalgae filtrated, dynamic filtration is always the best technology over a conventional one. If with conventional filtration permeability values were in the vicinity of 10L/h/m(2)/bar in steady state phase, with dynamic filtration these values increased to 30L/h/m(2)/bar or more. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Filtration behaviors of rod-shaped bacterial broths in unsteady-state phase of cross-flow filtration

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Usui, K.; Koda, K.; Nakanishi, K. [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-12-20

    Filtration behaviors in the unsteady-state phase of crossflow filtration of broths of Bacillus subtilis, Escherichia coli, and Lactobacillus delbrueckii, which are rod-shaped, were studied from the viewpoint of the changes in the specific resistance and in the structure of the microbial cake formed on the membrane surface. The permeation flux followed the cake filtration law at the initial stage of the crossflow filtration of the broths of B. subtilis and E. coli, where the cells deposited randomly on the membrane. In the case of the crossflow filtration of a L. delbrueckii broth, the period of random deposition was shorter. The specific resistance for the cake formed at the initial stage agreed with that measured in dead-end filtration. Then, the specific resistance started to increase in comparison with that measured in dead-end filtration due to shear-induced arrangement of the cells. The extent of the increase in specific resistance became higher and the time taken to start the cell arrangement became shorter with increasing circulation flow rate. The increase in specific resistance due to the shear-induced arrangement was more appreciable in the crossflow filtration of the broth of L. delbrueckii than that of B. subtilis and E. coli. The average permeation flux was increased considerably by applying periodical backwashing with appropriate time intervals. The permeation flux was well predicted by the cake filtration law, since the cells deposited in a way similar to that for dead-end filtration during a sufficiently short period of crossflow filtration in a backwashing mode. 21 refs., 11 figs.

  1. Biophysical analysis of water filtration phenomenon in the roots of halophytes

    Science.gov (United States)

    Kim, Kiwoong; Lee, Sang Joon

    2015-11-01

    The water management systems of plants, such as water collection and water filtration have been optimized through a long history. In this point of view, new bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. In this study, the biophysical characteristics of water filtration process in the roots of halophytes are experimentally investigated in the plant hydrodynamic point of view. To understand the functional features of the halophytes 3D morphological structure of their roots are analyzed using advanced bioimaging techniques. The surface properties of the roots of halophytes are also examined Based on the quantitatively analyzed information, water filtration phenomenon in the roots is examined. Sodium treated mangroves are soaked in sodium acting fluorescent dye solution to trace sodium ions in the roots. In addition, in vitroexperiment is carried out by using the roots. As a result, the outermost layer of the roots filters out continuously most of sodium ions. This study on developing halophytes would be helpful for understanding the water filtration mechanism of the roots of halophytes and developing a new bio inspired desalination system. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  2. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-Grained Pure Titanium

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2017-12-01

    Full Text Available Ultrafine-grained pure titanium prepared by equal-channel angular pressing has favorable mechanical performance and does not contain alloy elements that are toxic to the human body. It has potential clinical value in applications such as cardiac valve prostheses, vascular stents, and hip prostheses. To overcome the material’s inherent thrombogenicity, surface-coating modification is a crucial pathway to enhancing blood compatibility. An electrolyte solution of sodium silicate + sodium polyphosphate + calcium acetate and the micro-arc oxidation (MAO technique were employed for in situ oxidation of an ultrafine-grained pure titanium surface. A porous coating with anatase- and rutile-phase TiO2 was generated and wettability and blood compatibility were examined. The results showed that, in comparison with ultrafine-grained pure titanium substrate, the MAO coating had a rougher surface, smaller contact angles for distilled water and higher surface energy. MAO modification effectively reduced the hemolysis rate; extended the dynamic coagulation time, prothrombin time (PT, and activated partial thromboplastin time (APTT; reduced the amount of platelet adhesion and the degree of deformation; and enhanced blood compatibility. In particular, the sample with an oxidation time of 9 min possessed the highest surface energy, largest PT and APTT values, smallest hemolysis rate, less platelet adhesion, a lesser degree of deformation, and more favorable blood compatibility. The MAO method can significantly enhance the blood compatibility of ultrafine-grained pure titanium, increasing its potential for practical applications.

  3. New insights into the formation and resolution of ultra-fine anaphase bridges

    DEFF Research Database (Denmark)

    Chan, Kok Lung; Hickson, Ian D

    2011-01-01

    that are important for preventing Fanconi anemia (FA) in man. As part of an analysis of the roles of these proteins in mitosis, we identified a novel class of anaphase bridge structure, called an ultra-fine anaphase bridge (UFB). These UFBs are also defined by the presence of a SNF2 family protein called PICH...

  4. Ultrafine-grained Al composites reinforced with in-situ Al3Ti filaments

    Czech Academy of Sciences Publication Activity Database

    Krizik, P.; Balog, M.; Nosko, M.; Riglos, M. V. C.; Dvořák, Jiří; Bajana, O.

    2016-01-01

    Roč. 657, MAR (2016), s. 6-14 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Aluminum * Filament * In-situ metal matrix composite * Mechanical properties * Microstructure * Ultrafine-grained Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.094, year: 2016

  5. A mechanism for the production of ultrafine particles from concrete fracture.

    Science.gov (United States)

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Preparation of Ultra-fine Calcium Carbonate by a Solvent-free ...

    African Journals Online (AJOL)

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  7. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    Science.gov (United States)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  8. Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Navrátilová, Lucie; Bokůvka, O.

    2011-01-01

    Roč. 528, - (2011), s. 7036-7040 ISSN 0921-5093 R&D Projects: GA ČR GAP108/10/2001 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained microstructure * ultrasonic fatigue * crack initiation * copper Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.003, year: 2011

  9. Microstructure changes in superplastically deformed ultrafine-grained Al-3Mg-0.2Sc alloy

    Czech Academy of Sciences Publication Activity Database

    Král, Petr; Dvořák, Jiří; Kvapilová, Marie; Horita, Z.; Sklenička, Václav

    2015-01-01

    Roč. 5, č. 3 (2015), s. 306-312 ISSN 2218-5046 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : ultrafine-grained microstructure * aluminium alloy * equal-channel angular pressing * electron back scatter diffraction Subject RIV: JJ - Other Materials

  10. Ultrafine and Fine Particles and Hospital Admissions in Central Europe Results from the UFIREG Study

    Czech Academy of Sciences Publication Activity Database

    Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostál, Miroslav; Pastorková, Anna; Bastian, S.; Cyrys, J.; Zscheppang, A.; Kolodnitská, T.; Peters, A.

    2016-01-01

    Roč. 194, č. 10 (2016), s. 1233-1241 ISSN 1073-449X Institutional support: RVO:68378041 Keywords : ultrafine particles * particulate matter * hospital admissions * respiratory Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 13.204, year: 2016

  11. Study of thermal stability of ultrafine-grained copper by means of electron back scattering diffraction

    Czech Academy of Sciences Publication Activity Database

    Man, O.; Pantělejev, L.; Kunz, Ludvík

    2010-01-01

    Roč. 51, č. 2 (2010), s. 209-213 ISSN 1345-9678 R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultra-fine grained copper * thermal stability of microstructure * electron back scattering diffraction * grain size * texture Subject RIV: JG - Metallurgy Impact factor: 0.779, year: 2010

  12. Effect of Hydrostatic Pressure on Defect Structure and Durability of Ultrafine-Grained Aluminum

    Czech Academy of Sciences Publication Activity Database

    Betekhtin, V.I.; Kadomtsev, A. G.; Sklenička, Václav; Narykova, M. V.

    2011-01-01

    Roč. 37, č. 10 (2011), s. 977-979 ISSN 1063-7850 Institutional research plan: CEZ:AV0Z20410507 Keywords : defect structure * ultrafine-grained aluminium * durability Subject RIV: JG - Metallurgy Impact factor: 0.565, year: 2011

  13. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  14. Size evolution of ultrafine particles: Differential signatures of normal and episodic events

    International Nuclear Information System (INIS)

    Joshi, Manish; Khan, Arshad; Anand, S.; Sapra, B.K.

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. - Highlights: • Effect of firework emissions on atmospheric aerosol characteristics was studied. • Significant increase in ultrafine particle concentration was observed during firework bursting. • Size distribution evolution analysis of number concentration peaks has been performed. • Differential signatures of normal and episodic event were noted. - Notable increase in ultrafine particle concentration during firework bursting was seen. Normal and episodic event could be differentiated on the basis of size evolution analysis.

  15. Release of ultrafine particles from three simulated building processes

    International Nuclear Information System (INIS)

    Kumar, Prashant; Mulheron, Mike; Som, Claudia

    2012-01-01

    Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5–560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near–steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri–modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei ( 4 cm −3 . These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and ‘dry’ and ‘wet’ recycling events were measured as ∼0.77, 19.1, 22.7 and 1.76 (×10 4 ) cm −3 , respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; ∼95, 79, 73 and 90% of total PNCs, and ∼71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling, respectively. The results of this study firmly elucidate the release of UFPs and raise a need for further detailed studies and designing health and safety related exposure guidelines for

  16. Electrospinning of oriented and nonoriented ultrafine fibers of biopolymers

    Science.gov (United States)

    Vu, David

    2005-07-01

    Chitosan has long been known as a biocompatible and biodegradable material suitable for tissue engineering applications. Unfortunately, conventional chitosan solutions cannot be used for electrospinning due to their high conductivity, viscosity and surface tension. We have developed a method to produce clear chitosan solutions with conductivities, surface tension and viscosities that facilitate their processing into micron and submicron fibers via electrospinning. Acetic acid, carbon dioxide and organic solvents are key ingredients in preparing the chitosan solutions. Oriented and non oriented chitosan fibers were produced with the ultimate goal of designing a suitable tissue engineering scaffold. Circularly oriented, continuous, and aligned nanofibers were produced via this technique in the form of a thin membrane or fibrous "mat". Chitosan fiber diameters ranged from 5 micrometers down to 100 nanometers. The structure and mechanical properties of oriented and randomly aligned chitosan fiber deposits could potentially be exploited for cartilage tissue engineering. Ultrafine fibers of starch acetate (SA) also were prepared by the electrospinning process. In this study, solvent mixtures based on DMF, DMSO, pyrindine, acetic acid, acetone, THF, DMC, chloroform were used. A two-solvent formulation was used to study the effect of viscosity, surface tension, and conductivity to the fiber diameter. Also, water and ethanol were used to decrease the boiling point of the solvent, and to make bundled fibers. Several techniques such as scanning electron microscopy, conductmetry, viscometry, and tensiometry were used in this study. The results showed that the combined effects of viscosity, surface tension, and conductivity are of great importance in controlling the diameter of the fibers. We were able to produce SA fibers that was less than 40 nm in diameter. The dependence of fiber diameter on flow-rate, electric field and solvents also was investigated. A rotating disk and a

  17. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment.

    Science.gov (United States)

    Wu, Bing; Hochstrasser, Florian; Akhondi, Ebrahim; Ambauen, Noëmi; Tschirren, Lukas; Burkhardt, Michael; Fane, Anthony G; Pronk, Wouter

    2016-04-15

    Seawater pretreatment by gravity-driven membrane (GDM) filtration at 40 mbar has been investigated. In this system, a beneficial biofilm develops on the membrane that helps to stabilize flux. The effects of membrane type, prefiltration and system configuration on stable flux, biofilm layer properties and dissolved carbon removal were studied. The results show that the use of flat sheet PVDF membranes with pore sizes of 0.22 and 0.45 μm in GDM filtration achieved higher stabilized permeate fluxes (7.3-8.4 L/m(2)h) than that of flat sheet PES 100 kD membranes and hollow fibre PVDF 0.1 μm membranes. Pore constriction and cake filtration were identified as major membrane fouling mechanisms, but their relative contributions varied with filtration time for the various membranes. Compared to raw seawater, prefiltering of seawater with meshes at sizes of 10, 100 and 1000 μm decreased the permeate flux, which was attributed to removal of beneficial eukaryotic populations. Optical coherence tomography (OCT) showed that the porosity of the biofouling layer was more significantly related with permeate flux development rather than its thickness and roughness. To increase the contact time between the biofilm and the dissolved organics, a hybrid biofilm-submerged GDM reactor was evaluated, which displayed significantly higher permeate fluxes than the submerged GDM reactor. Although integrating the biofilm reactor with the membrane system displayed better permeate quality than the GDM filtration cells, it could not effectively reduce dissolved organic substances in the seawater. This may be attributed to the decomposition/degradation of solid organic substances in the feed and carbon fixation by the biofilm. Further studies of the dynamic carbon balance are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Carbon-based coating containing ultrafine MoO2 nanoparticles as an integrated anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Li, Quanyi; Yang, Qi; Zhao, Yanhong; Wan, Bin

    2017-10-01

    Copper-supported MoO2-C composite as an integrated anode with excellent battery performance was synthesized by a facile knife coating technique followed by heat treatment in a vacuum. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal analysis, nitrogen adsorption and desorption analysis, field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM). The results show the MoO2-C composite coating is comprised of a porous carbon matrix with a pore size of 1-3 nm and ultrafine MoO2 nanoparticles with a size of 5-10 nm encapsulated inside, the coating is tightly attached on the surface of copper foil, and the interface between them is free of cracks. Stable PAN-DMF-H2O system containing ammonium molybdate suitable for knife coating technique and the MoO2-C composite with ultrafine MoO2 nanoparticles encapsulated in the carbon matrix can be prepared through controlling amount of added ammonium molybdate solution. The copper-supported MoO2-C composite coating can be directly utilized as the integrated anode for lithium-ion batteries (LIBs). It delivers a capacity of 814 mA h g-1 at a current density of 100 mA g-1 after 100 cycles without apparent capacity fading. Furthermore, with increase of current densities to 200, 500, 1000, 2000, and 5000 mA g-1, it exhibits average capacities of 809, 697, 568, 383, and 188 mA h g-1. Its outstanding electrochemical performance is attributed to combined merits of integrated anode and structure with ultrafine MoO2 nanoparticles embedded in the porous carbon matrix.

  19. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    International Nuclear Information System (INIS)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-01-01

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET

  20. Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration

    Science.gov (United States)

    Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Dulière, M.

    Ceramic foam filters were used for industrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration.

  1. Application of Combined Cake Filtration-Complete Blocking Model to Ultrafiltration of Skim Milk

    Directory of Open Access Journals (Sweden)

    Mansoor Kazemimoghadam

    2017-10-01

    Full Text Available Membrane ultrafiltration (UF is widely used in dairy industries like milk concentration and dehydration processes. The limiting factor of UF systems is fouling which is defined as the precipitation of solutes in the form of a cake layer on the surface of the membrane. In this study, the combined cake filtration-complete blocking model was compared to cake filtration mechanism for flux data through ultrafiltration of skim milk at constant flow rate. The resistance data also was modeled using cake filtration model and standard blocking model. The effect of different trans-membrane pressures and temperatures on flux decline was then investigated. Based on the results obtained here, the combined complete blocking-cake formation model was in excellent agreement with experimental data. The cake filtration model also provided good data fits and can be applied to solutions whose solutes tend to accumulate on the surface of the membrane in the form of a cake layer. With increasing pressure, the differences between the model and experimental data increased.

  2. High temperature filtration of radioactivable corrosion products in the primary circuit of PWR type reactors

    International Nuclear Information System (INIS)

    Dolle, L.

    1976-01-01

    A effective limitation to the deposition of radioactive corrosion products in the core of a reactor at power operation, is to be obtained by filtering the water of the primary circuit at a flow rate upper than 1% of the coolant flow rate. However, in view of accounting for more important release of corrosion products during the reactor start-up and also for some possible variations in the efficiency of the system, it is better that the flow rate to be treated by the cleaning circuit is stated at 5%. Filtration must be effected at the temperature of the primary circuit and preferably on each loop. To this end, the feasibility of electromagnetic filtration or filtration through a deep bed of granulated graphite has been studied. The on-loop tests effected on each filter gave efficiencies and yields respectively upper than 90% and 99% for magnetite and ferrite particles in suspension in water at 250 deg C. Such results confirm the interest lying in high temperature filtration and lead to envisage its application to reactors [fr

  3. Novel water filtration of saline water in the outermost layer of mangrove roots.

    Science.gov (United States)

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  4. Estimating Glomerular Filtration Rate in Older People

    Directory of Open Access Journals (Sweden)

    Sabrina Garasto

    2014-01-01

    Full Text Available We aimed at reviewing age-related changes in kidney structure and function, methods for estimating kidney function, and impact of reduced kidney function on geriatric outcomes, as well as the reliability and applicability of equations for estimating glomerular filtration rate (eGFR in older patients. CKD is associated with different comorbidities and adverse outcomes such as disability and premature death in older populations. Creatinine clearance and other methods for estimating kidney function are not easy to apply in older subjects. Thus, an accurate and reliable method for calculating eGFR would be highly desirable for early detection and management of CKD in this vulnerable population. Equations based on serum creatinine, age, race, and gender have been widely used. However, these equations have their own limitations, and no equation seems better than the other ones in older people. New equations specifically developed for use in older populations, especially those based on serum cystatin C, hold promises. However, further studies are needed to definitely accept them as the reference method to estimate kidney function in older patients in the clinical setting.

  5. Filtration characteristics of porous silicon carbide media

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Seo, Yong Chil; Yim, Sung Paal; Kim, Joon Hyung

    1991-01-01

    The characteristics of a filter such as clean filter pressure drop, filtering performance and filter drag variation with dust loading have been studied with fabricated SiC filter specimens in the laboratory and commercial ceramic filters. Several theoretical equations have been modified and applied to investigate such characteristics. To estimate the pressure drop of clean gas flow through a cylindrical porous filter, Forchheimer equation, which contains the terms of permeability and turbulent factor at a high velocity of gas, has been modified and tested with experimental data. The filtering efficiency was found to be above 99.9% and the penetration of dust decreased exponentially with dust loading. The pressure drop during filtration was measured and showed to increase exponentially with dust loading in the beginning because particles were intercepted and a cake layer was formed by structural properties of a filter. And then it increased in proportion as the cake layer thickened. The effect of dust deposition on the pressure drop could be explained theoretically using several characteristic parameters relevant to dust size, structure of filters and cake layer formation

  6. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan

    2016-12-30

    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  7. Macular thickness after glaucoma filtration surgery.

    Science.gov (United States)

    Sesar, Antonio; Cavar, Ivan; Sesar, Anita Pusić; Geber, Mia Zorić; Sesar, Irena; Laus, Katia Novak; Vatavuk, Zoran; Mandić, Zdravko

    2013-09-01

    The aim of present study was to analyze early postoperative changes in the macular area using optical coherence tomography (OCT) after uncomplicated glaucoma filtration surgery. This prospective study included 32 patients (34 eyes) with open-angle glaucoma, which underwent trabeculectomy with or without use of mitomycin C. Exclusion criteria were macular edema, uveitis, age-related macular degeneration, blurred optical media, secondary glaucoma and angle-closure glaucoma. All standard clinical examinations were made before surgery, at the 2nd day, 1 week and 1 month after surgery. Tomography of the macula was performed during every examination using Cirrus HD OCT for the analysis of central subfield thickness. Results show that thickening of the macula was slightly higher 1 week and 1 month after operation in comparison with baseline end 2nd day postoperativelly. There was no significant difference in the change of macular thickness in patients who have used topical prostaglandins compared with those who have used other topical medications. Also, there was no difference in macular changes between patients treated with or without mitomycin C. In conclusion, we found a slight subclinical increase in macular thickness after uncomplicated trabeculectomy, for which we considered that was the result in reduction of intraocular pressure after glaucoma surgery. Macular thickening after glaucoma filtering surgery could be a physiological reaction to the stress of the retina caused by a sudden reduction of intraocular pressure and it is the consequence of altered relationship between capillary pressure and interstitial fluid pressure.

  8. Filtration of submicrometer particles by pelagic tunicates.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P; Stocker, Roman

    2010-08-24

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d approximately 0.1 microm) at low velocity (U = 1.6 +/- 0.6 cmxs(-1), mean +/- SD) and is thus a low Reynolds-number (Re approximately 10(-3)) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-microm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 microm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-microm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 microm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean.

  9. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan; Falca, Gheorghe; Musteata, Valentina-Elena; Boi, Cristiana; Nunes, Suzana Pereira

    2016-01-01

    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  10. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal. Final Report

    International Nuclear Information System (INIS)

    Shamsuddin Ilias

    2005-01-01

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  11. Ultrafine needle CO{sub 2} splenoportography: A comparative investigation with transarterial portography and MR portography

    Energy Technology Data Exchange (ETDEWEB)

    Teng Gaojun [Department of Radiology, Zhong-Da Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China)]. E-mail: gjteng@vip.sina.com; Deng Gang [Department of Radiology, Zhong-Da Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China); Liu Zhensheng [Department of Radiology, Zhong-Da Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China); Fang Wen [Department of Radiology, Zhong-Da Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China); Zhu Guangyu [Department of Radiology, Zhong-Da Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China); Li Guozhao [Department of Radiology, Zhong-Da Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China); Guo Jinhe [Department of Radiology, Zhong-Da Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China); He Shicheng [Department of Radiology, Zhong-Da Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China); Dong Yonghua [Department of Radiology, Zhong-Da Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China)

    2006-09-15

    Purpose: To evaluate the safety and quality of CO{sub 2} splenoportography (CO{sub 2}-SP) by comparison to 3-dimensional dynamic contrast-enhanced magnetic resonance portography (3D-DCE-MRP) and transarterial portography (TAP). Materials and methods: CO{sub 2}-SP, 3D-DCE-MRP and TAP were performed within 3 days in 35 patients. CO{sub 2}-SP was conducted with a 26 G needle by puncture of spleen under fluoroscopy and/or ultrasound guidance. A fifty mm{sup 3} of CO{sub 2} was manually injected within 3 s. The safety and the side effects of CO{sub 2}-SP were assessed with a scoring system based on both the subjective feeling of patients questioned and the objective appearances of vital signs, electrocardiogram (ECG) and saturation of percutaneous blood oxygen (SpO{sub 2}). The quality of the imaging was compared among the three groups using different methods by a scoring criterion based on visualization of the portal branches. Results: Transient mild discomfortable reaction was present in 18 patients (51.4%). The scores measured for quality of portal vein branch visualization in the groups with CO{sub 2}-SP, 3D-DCE-MRP and TAP were 226, 196 and 167, respectively (P < 0.001, the higher of the scores, the better of the quality). The visibility of collateral veins was not significantly different amongst the three imaging techniques. Conclusion: Ultrafine needle CO{sub 2}-SP is safe and minimally invasive. The quality of CO{sub 2}-SP is better than that with 3D-DCE-MRP and TAP in terms of the visualizing portal vein branches.

  12. Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments

    Science.gov (United States)

    Collins, Douglas B.; Burkart, Julia; Chang, Rachel Y.-W.; Lizotte, Martine; Boivin-Rioux, Aude; Blais, Marjolaine; Mungall, Emma L.; Boyer, Matthew; Irish, Victoria E.; Massé, Guillaume; Kunkel, Daniel; Tremblay, Jean-Éric; Papakyriakou, Tim; Bertram, Allan K.; Bozem, Heiko; Gosselin, Michel; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2017-11-01

    The source strength and capability of aerosol particles in the Arctic to act as cloud condensation nuclei have important implications for understanding the indirect aerosol-cloud effect within the polar climate system. It has been shown in several Arctic regions that ultrafine particle (UFP) formation and growth is a key contributor to aerosol number concentrations during the summer. This study uses aerosol number size distribution measurements from shipboard expeditions aboard the research icebreaker CCGS Amundsen in the summers of 2014 and 2016 throughout the Canadian Arctic to gain a deeper understanding of the drivers of UFP formation and growth within this marine boundary layer. UFP number concentrations (diameter > 4 nm) in the range of 101-104 cm-3 were observed during the two seasons, with concentrations greater than 103 cm-3 occurring more frequently in 2016. Higher concentrations in 2016 were associated with UFP formation and growth, with events occurring on 41 % of days, while events were only observed on 6 % of days in 2014. Assessment of relevant parameters for aerosol nucleation showed that the median condensation sink in this region was approximately 1.2 h-1 in 2016 and 2.2 h-1 in 2014, which lie at the lower end of ranges observed at even the most remote stations reported in the literature. Apparent growth rates of all observed events in both expeditions averaged 4.3 ± 4.1 nm h-1, in general agreement with other recent studies at similar latitudes. Higher solar radiation, lower cloud fractions, and lower sea ice concentrations combined with differences in the developmental stage and activity of marine microbial communities within the Canadian Arctic were documented and help explain differences between the aerosol measurements made during the 2014 and 2016 expeditions. These findings help to motivate further studies of biosphere-atmosphere interactions within the Arctic marine environment to explain the production of UFP and their growth to sizes

  13. Fatigue and creep–fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    International Nuclear Information System (INIS)

    Carroll, M.C.; Carroll, L.J.

    2012-01-01

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep–fatigue response of an HT-UPS alloy have been investigated at 650 °C and 1.0% total strain, with an R-ratio of −1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep–fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep–fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  14. Fatigue and creep-fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.C., E-mail: Mark.Carroll@INL.gov [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States); Carroll, L.J. [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States)

    2012-10-30

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep-fatigue response of an HT-UPS alloy have been investigated at 650 Degree-Sign C and 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep-fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  15. Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores

    Energy Technology Data Exchange (ETDEWEB)

    Goix, Sylvaine [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Lévêque, Thibaut [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); ADEME (French Agency for Environment and Energy Management), 20 Avenue du Grésillé, BP 90406, 49004 Angers Cedex 01 (France); Xiong, Tian-Tian [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Schreck, Eva [Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); and others

    2014-08-15

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.

  16. Integrated photocatalytic filtration array for indoor air quality control.

    Science.gov (United States)

    Denny, Frans; Permana, Eric; Scott, Jason; Wang, Jing; Pui, David Y H; Amal, Rose

    2010-07-15

    Photocatalytic and filtration technologies were integrated to develop a hybrid system capable of removing and oxidizing organic pollutants from an air stream. A fluidized bed aerosol generator (FBAG) was adapted to prepare TiO(2)-loaded ventilation filters for the photodegradation of gas phase ethanol. Compared to a manually loaded filter, the ethanol photodegradation rate constant for the FBAG coated filter increased by 361%. Additionally, the presence of the photogenerated intermediate product, acetaldehyde, was reduced and the time for mineralization to CO(2) was accelerated. These improvements were attributed to the FBAG system providing a more uniform distribution of TiO(2) particles across the filter surface leading to greater accessibility by the UV light. A dual-UV-lamp system, as opposed to a single-lamp system, enhanced photocatalytic filter performance demonstrating the importance of high light irradiance and light distribution across the filter surface. Substituting the blacklight blue lamps with a UV-light-emitting-diode (UV-LED) array led to further improvement as well as suppressed the electrical energy per order (EE/O) by a factor of 6. These improvements derived from the more uniform distribution of light irradiance as well as the higher efficiency of UV-LEDs in converting electrical energy to photons.

  17. Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence

    Science.gov (United States)

    2014-10-30

    Paraffins DEFINITIONS Coalescence - the ability to shed water Conventional Material Source - crude oil , natural gas liquid condensates...Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence NF&LCFT REPORT 441/15-003 30 October 2014...heavy oil , shale oil , and oil sands Effluent - stream leaving a system Influent - stream entering a system Turnover - time required to flow the

  18. Automation of water supply and recirculation-filtration of water at a swimming pool using Zelio PLC

    Science.gov (United States)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2018-01-01

    The paper proposes the use of the Zelio PLC for the automation of the water supply and recirculation-filtration system of a swimming pool. To do this, the Zelio SR3B261BD - 24V DC with 10 digital inputs (24V DC) and 10 digital outputs (relay contacts) was used. The proposed application makes the control of the water supply pumps and the water recirculation-filtration from a swimming pool. The recirculation-filtration systems for pools and swimming pools are designed to ensure water cleaning and recirculation to achieve optimum quality and lasting service life. The water filtration process is one of the important steps in water treatment in polls and swimming pools. It consists in recirculation of the entire volume of water and begins by absorbing the water in the pool by means of a pump followed by the passing of water through the filter, disinfectant and pH dosing, and reintroducing the water back into the pool or swimming pool through the discharge holes. Filters must to work 24 hours a day to remove pollutants from pools or swimming pools users. Filtration removes suspension particles with different origins. All newly built pools and swimming pools must be fitted with water recirculation systems, and existing ones will be equipped with water recirculation and water treatment systems.

  19. Exposure assessment in Beijing, China: biological agents, ultrafine particles, and lead.

    Science.gov (United States)

    Dong, Shuofei; Yao, Maosheng

    2010-11-01

    In this study, air samples were taken using a BioSampler and gelatin filters from six sites in Beijing: office, hospital, student dormitory, train station, subway, and a commercial street. Dust samples were also collected using a surface sampler from the same environments. Limulus amoebocyte lysate (LAL) and Glucatell assays were used to quantify sample endotoxin and (1,3)-β-d-glucan concentration levels, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to measure the dust mite allergens (Der p 1 and Der f 1). Ultrafine particle and lead concentrations in these sampling sites were also measured using P-Trak and atomic absorption spectrometer, respectively. Analysis of variance (ANOVA) and linear regression analysis were used to analyze the concentration data. Higher culturable bacteria (12,639 CFU/m3) and fungi (1,806 CFU/m3) concentrations were observed for the train station and the subway system, respectively. For the rest of sampling sites, their concentrations were comparable to those found in western countries, ranging from 990 to 2,276 CFU/m3 for bacteria, and from 119 to 269 CFU/m3 for fungi. ANOVA analysis indicated that there were statistically significant differences between the culturable bacterial and fungal concentration levels obtained for different sites (p value=0.0001 and 0.0047). As for dust allergens, endotoxin, and (1,3)-β-D-glucan, their concentrations also seemed to be comparable to those found in the developed countries. Airborne allergen concentrations ranged from 16 to 68 ng/m3. The dust-borne allergen concentration was observed to range from 0.063 to 0.327 ng/mg. As for endotoxin, the highest airborne concentration of 25.24 ng/m3 was observed for the commercial street, and others ranged from 0.0427 to 0.1259 ng/m3. And dust-borne endotoxin concentration ranged from 58.83 to 6,427.4 ng/mg. For (1,3)-β-D-glucan, the airborne concentration ranged from 0.02 to 1.2 ng/m3. Linear regression analyses showed that there existed

  20. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth

    International Nuclear Information System (INIS)

    Yuan, Huihua; Zhou, Qihui; Li, Biyun; Bao, Min; Lou, Xiangxin; Zhang, Yanzhong

    2015-01-01

    Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications. (paper)