WorldWideScience

Sample records for ultrafiltration membranes impregnated

  1. 21 CFR 177.2910 - Ultra-filtration membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultra-filtration membranes. 177.2910 Section 177... Components of Articles Intended for Repeated Use § 177.2910 Ultra-filtration membranes. Ultra-filtration membranes identified in paragraphs (a)(1), (a)(2), (a)(3), and (a)(4) of this section may be safely used in...

  2. SURVEY REGARDING THE ULTRAFILTRATION OF PROTEINES THROUGH MEMBRANE BASED PROCEDURES

    Directory of Open Access Journals (Sweden)

    CAMELIA HODOSAN

    2008-05-01

    Full Text Available This work is based on examples that emphasize the complexity of the proteins ultrafiltration process, pointing out the first 10-15 minutes of ultrafiltration. The knowledgement of the factors that influence the separation through ultrafiltration of proteins will allow to choose the right type of membrane, the frequent use of the same membrane and the operation in mechanical and chemical conditions adequate to the ultrafiltration system, when it is separated a protein with certain molecular weight.

  3. On the use of ultrafiltration membranes in oily water separators

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, A.Y.; Nottegar, M. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; Veinot, D.E. [Defence Research Establishment Atlantic, Halifax, NS (Canada)

    2000-07-01

    Laboratory studies were conducted on the use of ultrafiltration membranes for oil water purification from ships bilges. Bilge water is a complex and highly variable mixture of several components such as seawater, lubricating oil, greases, marine diesel fuel, hydraulic oil, detergents, metal oxides, corrosion inhibitors, asbestos and other wastes. This laboratory study examined the performance of ultrafiltration membranes when separating oily waste water of similar composition to that of bilge water. Ultrafiltration membranes are nanoporous materials produced from ceramic, polymeric or metallic substrates. The ability of the membrane to retain macromolecules, colloids, sub-micron particles and oil emulsions depends on the size of the nanopores. The best results in this study occurred when upper and lower bounds on the membrane pore size were found to exist. It was determined that ultrafiltration is a viable separation process for the treatment of bilge water for compliance with overboard discharge regulations. 7 refs., 1 tab., 3 figs.

  4. Characterization of clean and fouled ultrafiltration membranes

    NARCIS (Netherlands)

    Hanemaaijer, J.H.; Robbertsen, T.; van den Boomgaard, Anthonie; Olieman, C.; Both, P.; Schmidt, D.G.

    1988-01-01

    Much research into the fundamentals of membrane formation and separation has been performed in order to improve the efficiency of the manufacture of ultrafiltration membranes. Determination of the membrane characteristics is a key problem in these investigations. In this paper, we report on a study

  5. The Effect of Cellulose Acetate Concentration from Coconut Nira on Ultrafiltration Membrane Characters

    Science.gov (United States)

    Vaulina, E.; Widyaningsih, S.; Kartika, D.; Romdoni, M. P.

    2018-04-01

    Cellulose acetate is one of material in produce ultrafiltration membrane. Many efforts have been done to produce cellulose acetate from natural product to replace commercial one. In this research, ultrafiltration membrane has been produced from coconut flower water (nira). Ultrafiltration membrane is widely used in separation processes. This research aims to determine the characteristics of ultrafiltration membrane at a various concentration of cellulose acetate. The ultrafiltration membrane is conducted by phase inversion method at various concentration of cellulose acetate. The cellulose acetate concentration was 20%, 23% and 25% (w/w) with formamide as additives. The results showed that the greater the concentration of cellulose acetate, the smaller the flux value. The highest flux was a membrane with 20% cellulose acetate concentration with water flux value 55.34 L/(m2. h). But the greater the concentration of cellulose acetate the greater the rejection. The highest rejection value was on a membrane with 25% cellulose acetate concentration of 82.82%. While from the tensile strength test and the pore size analysis, the greater the cellulose acetate concentration the greater the tensile strength and the smaller the pore size

  6. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suryani, Puput Eka [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia); Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Purnama, Herry [Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Susanto, Heru, E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia)

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  7. CROSS-FLOW ULTRAFILTRATION OF SECONDARY EFFLUENTS. MEMBRANE FOULING ANALYSIS

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The application of cross-flow ultrafiltration to regenerate secondary effluents is limited by membrane fouling. This work analyzes the influence of the main operational parameters (transmembrane pressure and cross-flow velocity about the selectivity and fouling observed in an ultrafiltration tubular ceramic membrane. The experimental results have shown a significant retention of the microcolloidal and soluble organic matter (52 – 54% in the membrane. The fouling analysis has defined the critical operational conditions where the fouling resistance is minimized. Such conditions can be described in terms of a dimensionless number known as shear stress number and its relationship with other dimensionless parameter, the fouling number.

  8. [Study on the interface of human hepatocyte/micropore polypropylene ultrafiltration membrane].

    Science.gov (United States)

    Peng, Cheng-Hong; Han, Bao-San; Gao, Chang-You; Ma, Zu-Wei; Zhao, Zhi-Ming; Wang, Yong; Liu, Hong; Zhang, Gui-di; Yang, Mei-Juan

    2004-09-02

    To found a new interface of human hepatocyte/micropore polypropylene ultrafiltration membrane (MPP) with good cytocompatibility so as to construct bioartificial bioreactor with polypropylene hollow fibers in future. MPP ultrafiltration membrane underwent chemical grafting modification through ultraviolet irradiation and Fe(2+) reduction. The contact angles of MPP and the modified MPP membranes were measured. Human hepatic cells L-02 were cultured. MPP and modified MPP membranes were spread on the wells of culture plate and human hepatic cells and cytodex 3 were inoculated on them. Different kinds of microscopy were used to observe the morphology of these cells. The water contact angle of MPP and the modified MPP membranes decreased from 78 degrees +/- 5 degrees to 27 degrees +/- 4 degrees (P < 0.05), which indicated that the hydrophilicity of the membrane was improved obviously after the grafting modification. Human hepatocyte L-02 did not adhere to and spread on the modified MPP membrane surface, and only grew on the microcarrier cytodex 3 with higher density and higher proliferation ratio measured by MTT. Grafting modification of acrylamide on MPP membrane is a good method to improve the human hepatocyte cytocompatibility with MPP ultrafiltration membrane.

  9. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-05

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    International Nuclear Information System (INIS)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-01-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  11. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Hu, Wenhan; Li, Yi [Suzhou Faith & Hope Membrane Technology Co., Ltd., Suzhou, 215000 (China); Li, Xinsong, E-mail: lixs@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2016-11-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  12. ULTRAFILTRATION AS PRETREATMENT OF REVERSE OSMOSIS: LOW FOULING ULTRAFILTRATION MEMBRANE PREPARED FROM POLYETHERSULFONE–AMPHIPHILIC BLOCK COPOLYMER BLEND

    Directory of Open Access Journals (Sweden)

    Heru Susanto

    2012-02-01

    Full Text Available This paper demonstrates the preparation of polyethersulfone (PES ultrafiltration (UF membranes via wet phase inversion method using either poly(ethylene oxide-b-poly(propylene oxide-b- poly(ethylene oxide (Pluronic®, Plu or polyethylene glycol (PEG as hydrophilic modifier. Their effects on membrane structure as well as the resulting membrane performance and their stability in membrane polymer matrix were systematically investigated. The investigated membrane characteristics include surface hydrophilicity (by contact angle, surface chemistry (by FTIR spectroscopy and water flux measurement. Visualization of membrane surface and cross section morphology was also done by scanning electron microscopy. The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of bovine serum albumin as the model system. The stability of additive was examined by incubating the membrane in water (40oC for up to 10 days. The results show that modification effects on membrane characteristic and low fouling behavior were clearly observed. Further, amphiphilic Pluronic generally showed better performance than PEG.   

  13. Mass transfer in corrugated-plate membrane modules. II. Ultrafiltration experiments

    NARCIS (Netherlands)

    van der Waal, M.J.; Stevanovic, S.; Racz, I.G.

    1989-01-01

    The application of corrugations as turbulence promoters in membrane filtration was studied. In ultrafiltration experiments with polysulfone membranes using Dextran T70 as solute, it was found that the corrugations result in reduced energy consumption or pressure drop compared with flat membranes at

  14. Microfiltration and Ultrafiltration Membranes for Drinking Water

    Science.gov (United States)

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  15. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide

    Science.gov (United States)

    Huang, Haitao; Yu, Jiayu; Guo, Hanxiang; Shen, Yibo; Yang, Fan; Wang, Han; Liu, Rong; Liu, Yang

    2018-01-01

    On the basis of the outstanding fouling resistance of zwitterionic polymers, an antifouling ultrafiltration membrane was fabricated through phase inversion induced by immersion precipitation method, directly using the novel zwitterionic polyimide (Z-PI), which was synthesized via a two-step procedure including polycondensation and quaternary amination reaction, as membrane material. The chemical structure and composition of the obtained polymer were confirmed by using FTIR, 1H NMR and XPS analysis, and its thermal stability was thoroughly characterized by TGA measurement, respectively. The introduction of zwitterionic groups into polyimide could effectively increase membrane pore size, porosity and wettability, and convert the membrane surface from hydrophobic to highly hydrophilic. As a result, Z-PI membrane displayed significantly improved water permeability compared with that of the reference polyimide (R-PI) membrane without having an obvious compromise in protein rejection. According to the static adsorption and dynamic cycle ultrafiltration experiments of bovine serum albumin (BSA) solution, Z-PI membrane exhibited better fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling property and long-term performance stability. Moreover, Z-PI membrane had a water flux recovery ratio of 93.7% after three cycle of BSA solution filtration, whereas only about 68.5% was obtained for the control R-PI membrane. These findings demonstrated the advantages of Z-PI membrane material and aimed to provide a facile and scalable method for the large-scale preparation of low fouling ultrafiltration membranes for potential applications.

  16. Ultrafiltration by gyroid nanoporous polymer membranes

    DEFF Research Database (Denmark)

    Li, Li; Szewczykowski, Piotr Przemyslaw; Clausen, Lydia D.

    2011-01-01

    the effect of membrane fouling on the flux decline and rejection profiles. Significant fouling occurred in the case of hydrophobic membranes in contact with water solutions, while in the presence of high concentration of ethanol in the filtration solution and in the case of hydrophilized membranes...... the fouling was reduced. The observed rejection of PEG was compared with theoretic predictions, as described by the Bungay–Brenner model. The model satisfactorily described the rejection profile of PEG up to 12kg/mol through hydrophobic membranes in the presence of excess ethanol. A significantly reduced......Gyroid nanoporous cross-linked 1,2-polybutadiene membranes with uniform pores were developed for ultrafiltration applications. The gyroid porosity has the advantage of isotropic percolation with no need for structure pre-alignment. The effects of solvent and surface photo...

  17. Effect of Time in Chemical Cleaning of Ultrafiltration Membranes

    NARCIS (Netherlands)

    Levitsky, I.; Naim, R.; Duek, A.; Gitis, V.

    2012-01-01

    Chemical cleaning of ultrafiltration membranes is often considered successful when the flux through a cleaned membrane is much higher than through a pristine one. Here, a novel definition of cleaning intensity is proposed as the product of the concentration of the cleaning agent and the cleaning

  18. Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2015-02-01

    Full Text Available High water consumption is a major environmental problem that the pulp and paper industry is facing. Ultrafiltration (UF can be used to remove the dissolved and colloidal substances (DCS concentrated during the recycling of white water (the process water to facilitate the reuse of white water and reduce fresh water consumption. However, membrane fouling limits the application of UF in this industry. In this study, super-clear filtrate obtained from a fine paper mill was purified with a polyethersulfone (PES ultrafiltration membrane to evaluate the reuse performance of the ultrafiltrate. The membrane foulants were characterized by scanning electron microscopy, energy-dispersive spectrophotometry, attenuated total reflection-fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. The results indicate that the retention rate of stock and the strength properties of paper increased when the ultrafiltrate was reused in the papermaking process compared to when super-clear filtrate was used. The reversible membrane foulants during ultrafiltration accounted for 85.52% of the total foulants and primarily originated from retention aids, drainage aids, and wet strength resins, while the irreversible adsorptive foulants accounted for 14.48% and mostly came from sizing agents, coating chemicals, and others. Moreover, the presence of dissolved multivalent metal ions, especially Ca2+, accelerated membrane fouling.

  19. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  20. Low fouling polysulfone ultrafiltration membrane via click chemistry

    KAUST Repository

    Xie, Yihui; Tayouo Djinsu, Russell; Nunes, Suzana Pereira

    2014-01-01

    %, and 94%). The glass transition temperature shifted with the introduction of triazole pendant groups from 190°C (unmodified) to 171°C. Ultrafiltration membranes were prepared via phase inversion by immersion in different coagulation baths (NMP

  1. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    International Nuclear Information System (INIS)

    Susanto, H.; Roihatin, A.; Aryanti, N.; Anggoro, D.D.; Ulbricht, M.

    2012-01-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 ± 4.2 o to 37.8 ± 4.2 o to 42.5 ± 4.3 o depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: ► We compared different methods to prepare low fouling ultrafiltration (UF) membranes.

  2. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes.

    Science.gov (United States)

    Gebru, Kibrom Alebel; Das, Chandan

    2018-01-01

    In this work, TiO 2 nanoparticles (NPs) were modified using tetraethylenepentamine (TEPA), ethylenediamine (EDA), and hexamethylenetetramine (HMTA) amines using impregnation process. The prepared amine modified TiO 2 samples were explored as an additive to fabricate ultrafiltration membranes with enhanced capacity towards the removal of chromium ions from aqueous solution. Modified membranes were prepared from cellulose acetate (CA) polymer blended with polyethylene glycol (PEG) additive, and amine modified TiO 2 by using phase inversion technique. Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), water contact angle (WCA), and atomic absorption spectrophotometer (AAS) studies were done to characterize the membranes in terms of chemical structure, electric charge, thermal stability, morphology, hydrophilicity, and removal performance. The pure water permeability and Cr (VI) ion removal efficiency of the unmodified (i.e. CA/U-Ti) and the amine modified (CA/Ti-HMTA, CA/Ti-EDA, and CA/Ti-TEPA) membranes were dependent on pH and metal ion concentration. Incorporation of amine modified TiO 2 composite to the CA polymer was found to improve the fouling and removal characteristics of the membranes during the chromium ultrafiltration process. The maximum removal efficiency result of Cr (VI) ions at pH of 3.5 using CA/Ti-TEPA membrane was 99.8%. The washing/regeneration cycle results in this study described as an essential part for prospect industrial applications of the prepared membranes. The maximum Cr (VI) removal results by using CA/Ti-TEPA membrane for four washing/regeneration cycles are 99.6%, 99.5%, 98.6% and, 96.6%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    Energy Technology Data Exchange (ETDEWEB)

    Susanto, H., E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Roihatin, A.; Aryanti, N.; Anggoro, D.D. [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Ulbricht, M. [Lehrstuhl fuer Technische Chemie, Universitaet Duisburg-Essen, Germany, Universitaetstr. 5, Essen (Germany)

    2012-10-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 {+-} 4.2{sup o} to 37.8 {+-} 4.2{sup o} to 42.5 {+-} 4.3{sup o} depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: Black-Right-Pointing-Pointer We compared different methods to prepare low

  4. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  5. Research and development of lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi

    2013-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6 Li. In Japan, new lithium isotope separation technique using ionic-liquid impregnated organic membranes have been developed. The improvement in the durability of the ionic-liquid impregnated organic membrane is one of the main issues for stable, long-term operation of electrodialysis cells while maintaining good performance. Therefore, we developed highly-durable ionic-liquid impregnated organic membrane. Both ends of the ionic-liquid impregnated organic membrane were covered by a nafion 324 overcoat to prevent the outflow of the ionic liquid. The transmission of Lithium aqueous solution after 10 hours under the highly-durable ionic-liquid impregnated organic membrane is almost 13%. So this highly-durable ionic-liquid impregnated organic membrane for long operating of electrodialysis cells has been developed through successful prevention of ion liquid dissolution. (J.P.N.)

  6. Fouling Characteristics of Dissolved Organic Matter in Papermaking Process Water on Polyethersulfone Ultrafiltration Membranes

    Directory of Open Access Journals (Sweden)

    Wenpeng Su

    2015-07-01

    Full Text Available In the papermaking industry, closure of process water (whitewater circuits has been used to reduce fresh water consumption. Membrane separation technology has potential for use in treating process water for recirculation. The purpose of this study was to reveal the fouling characteristics of a polyethersulfone (PES ultrafiltration membrane caused by dissolved organic matter (DOM in process water. Ultrafiltration membranes (UF and DAX ion exchange resins were applied to characterize the molecular weight (MW and hydrophilicity distribution of DOM. The interactions between various fractions of DOM and a PES ultrafiltration membrane were investigated. The membrane fouling characteristics were elucidated by examining the filtration resistances and linearized Herman’s blocking models. The results demonstrated that the membrane was fouled significantly by much of the MW distribution. The membrane was fouled more significantly by the low MW fraction rather than the high MW fraction. The filtration resistances and the fitted equation of Hermia’s laws indicated that hydrophilic organics were the main foulants. The hydrophilic organics partially block the membrane pores and form intermediate blocking, reducing the effective filtration area, while the hydrophobic organics form a gel layer or cake on the surface of the membrane.

  7. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios

    2007-01-01

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface......-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage. The static adsorption is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms the maximum static permeability drops...... and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75 % and the maximum static adsorption resistance is 0.014 m2hbar/L. The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23...

  8. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes.

    Science.gov (United States)

    Lee, Seung-Jin; Kim, Jae-Hong

    2014-01-01

    Ceramic ultrafiltration membranes has drawn increasing attention in drinking water treatment sectors as an alternative to traditional polymeric counterparts, yet only limited information has been made available about the characteristics of ceramic membrane fouling by natural organic matter. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Filtration characteristics were further probed via resistance-in-series model analysis, fouling visualization using quantum dots, batch adsorption test, contact angle measurement, solute-membrane surface adhesion force measurement, and quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on fouling behavior of ceramic membranes were generally similar to polymeric counterparts in terms of trends, while the extent varied significantly depending on water quality parameters. Lower fouling tendency and enhanced cleaning efficiency were observed with the ceramic membrane, further promoting the potential for ceramic membrane application to surface water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Ceramic membrane by tape casting and sol-gel coating for microfiltration and ultrafiltration application

    Science.gov (United States)

    Das, Nandini; Maiti, H. S.

    2009-11-01

    Alumina membrane filters in the form of thin (0.3-0.8 mm) discs of 25-30 mm diameter suitable for microfiltration application have been fabricated by tape-casting technique. Further using this microfiltration membrane as substrate, boehmite sol coating was applied on it and ultrafiltration membrane with very small thickness was formed. The pore size of the microfiltration membrane could be varied in the range of 0.1-0.7 μm through optimisation of experimental parameter. In addition, each membrane shows a very narrow pore size distribution. The most important factor, which determines the pore size of the membrane, is the initial particle size and its distribution of the ceramic powder. The top thin ultrafiltration, boehmite layer was prepared by sol-gel method, with a thickness of 0.5 μm. Particle size of the sol was approximately 30-40 nm. The structure and formation of the layer was analysed through TEM. At 550 °C formation of the top layer was completed. The pore size of the ultrafiltration membrane measured from TEM micrograph was almost 10 nm. Results of microbial (Escherichia coli—smallest-sized water-borne bacteria) test confirm the possibility of separation through this membrane

  10. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation.

    Science.gov (United States)

    Liu, Yang; Huang, Haitao; Huo, Pengfei; Gu, Jiyou

    2017-06-01

    This study focused on the preparation of a new kind of membrane material, zwitterionic cellulose acetate (ZCA), via a three-step procedure consist of oxidization, Schiff base and quaternary amination reaction, and the fabrication of antifouling ZCA ultrafiltration membrane by the non-solvent-induced phase separation method (NIPS). The morphologies, surface chemical structures and compositions of the obtained CA and ZCA membranes were thoroughly characterized by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Meanwhile, the thermal stability, porosity and average pore size of two investigated membranes were also studied. As a result, the ZCA membrane displayed significantly improved hydrophilicity and water permeability compared with those of the reference CA membrane, despite a slight decrease in the protein rejection ratio. According to the cycle ultrafiltration performance of bovine serum albumin (BSA) solution and protein adsorption experiment, ZCA membrane exhibited better flux recovery property and fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling performance. This new approach gives polymer-based membrane a long time life and excellent ultrafiltration performance, and seems promising for potential applications in the protein separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes

    DEFF Research Database (Denmark)

    Facciotti, Marco; Boffa, Vittorio; Magnacca, Giuliana

    2014-01-01

    Porous SiC based materials present high mechanical, chemical and thermal robustness, and thus have been largely applied to water-filtration technologies. In this study, commercial SiC microfiltration tubes with nominal pore size of 0.04 m were used as carrier for depositing thin aluminium oxide....... After 5 times coating, a 5.6 µm thick γ-Al2O3 layer was obtained. This membrane shows retention of ~75% for polyethylene glycol molecules with Mn of 8 and 35 kDa, indicating that, despite their intrinsic surface roughness, commercial SiC microfiltration tubes can be applied as carrier for thin...... ultrafiltration membranes. This work also indicates that an improvement of the commercial SiC support surface smoothness may greatly enhance permeance and selectivity of Υ-Al2O3 ultrafiltration membranes by allowing the deposition of thinner defect-free layers....

  12. Fabrication of TiO_2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    International Nuclear Information System (INIS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO_2/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO_2 functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO_2 and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO_2, we successfully fixed TiO_2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO_2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti"4"+. The TiO_2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO_2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO_2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  13. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  14. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  15. Low fouling polysulfone ultrafiltration membrane via click chemistry

    KAUST Repository

    Xie, Yihui

    2014-10-13

    Hydrophilic surfaces are known to be less prone to fouling. Ultrafiltration membranes are frequently prepared from rather hydrophobic polymers like polysulfone (PSU). Strategies to keep the good pore forming characteristics of PSU, but with improved hydrophilicity are proposed here. PSU functionalized with 1,2,3-triazole ring substituents containing OH groups was successfully synthesized through click chemistry reaction. The structures of the polymers were confirmed using NMR spectroscopy and Fourier transform infrared spectroscopy (FTIR). High thermal stability (>280°C) was observed by thermal gravimetric analysis. Elemental analysis showed the presence of nitrogen containing triazole group with different degrees of functionalization (23%, 49%, 56%, and 94%). The glass transition temperature shifted with the introduction of triazole pendant groups from 190°C (unmodified) to 171°C. Ultrafiltration membranes were prepared via phase inversion by immersion in different coagulation baths (NMP/water mixtures with volume ratios from 0/100 to 40/60). The morphologies of these membranes were studied by field emission scanning electron microscopy (FESEM). The optimized PSU bearing triazole functions membranes exhibited water permeability up to 187 L m-2 h-1 bar-1, which is 23 times higher than those prepared under the same conditions but with unmodified polysulfone (PSU; 8 L m-2 h-1 bar-1). Results of bovine serum albumin protein rejection test indicated that susceptibility to fouling decreased with the modification, due to the increased hydrophilicity, while keeping high protein rejection ratio (>99%).

  16. Dynamic modeling of ultrafiltration membranes for whey separation processes

    NARCIS (Netherlands)

    Saltik, M.B.; Ozkan, L.; Jacobs, M.; van der Padt, A.

    2017-01-01

    In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process

  17. Printing-assisted surface modifications of patterned ultrafiltration membranes

    International Nuclear Information System (INIS)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-01-01

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  18. EFFICIENCY OF ULTRAFILTRATION CERAMIC MEMBRANES FOR TOXIC ELEMENTS REMOVAL FROM WASTEWATERS

    Directory of Open Access Journals (Sweden)

    S. Alami Younssi

    2010-07-01

    Full Text Available The preparation and characterization of porous ceramics multilayer ultrafiltration membrane is described. The first step consisted to prepare high-quality macroporous support in Moroccan clay. The choice of this material is based on its natural abundance and thermal stability.The microporous interlayer was then prepared by slip casting from zirconia commercial powders and finally the active UF toplayers was obtained by sol-gel route using ZnAl2O4 and TiO2 mixed sols. The performance of ultrafiltration membrane (TiO2 (50�20– ZnAl2O4 (50� was evaluated by pores diameter, water flux, thickness and molecular weight cut off (MWCO. The water permeability measured for this composite membrane is 9.42 L/(m2•h•bar, the thickness is less than 700 nm, the pore diameter is centered near 5 nm and the MWCO was about 4500 Da.

  19. A survey of structure characterization methods for ultrafiltration and reverse osmosis membranes

    NARCIS (Netherlands)

    Smolders, C.A.; Mulder, M.H.V.; van der Velden, P.M.

    1976-01-01

    Asymmetric membranes consist of a thin skin, which is permselective to certain molecules in solution, and a porous support, serving as a mechanical support layer and also as a transport layer for the permeate. Both in ultrafiltration and in hyperfiltration (reverse osmosis) asymmetric membranes are

  20. Research on the experiment of reservoir water treatment applying ultrafiltration membrane technology of different processes.

    Science.gov (United States)

    Zhang, Liyong; Zhang, Penghui; Wang, Meng; Yang, Kai; Liu, Junliang

    2016-09-01

    The processes and effects of coagulation-ultrafiltration (C-UF) and coagulation sedimentation-ultrafiltration (CS-UF) process used in the treatment of Dalangdian Reservoir water were compared. The experiment data indicated that 99% of turbidity removal and basically 100% of microorganism and algae removal were achieved in both C-UF and CS-UF process. The organic removal effect of CS-UF? process was slightly better than C-UF process. However, the organic removal effect under different processes was not obvious due to limitation of ultrafiltration membrane aperture. Polyaluminium chloride was taken as a coagulant in water plant. The aluminum ion removal result revealed that coagulant dosage was effectively saved by using membrane technology during megathermal high algae laden period. Within the range of certain reagent concentration and soaking time, air-water backwashing of every filtration cycle of membrane was conducted to effectively reduce membrane pollution. Besides, maintenance cleaning was conducted every 60 min. whether or not restorative cleaning was conducted depends on the pollution extent. After cleaning, recovery of membrane filtration effect was obvious.

  1. Pretreatment with ceramic membrane microfiltration in the clarification process of sugarcane juice by ultrafiltration

    Directory of Open Access Journals (Sweden)

    Priscilla dos Santos Gaschi

    2014-04-01

    Full Text Available In the present study, the sugar cane juice from COCAFE Mill, was clarified using tubular ceramic membranes (α-Al2O3/TiO2 with pore size of 0.1 and 0.3 µm, and membrane area of 0.005 m2. Experiments were performed in batch with sugar cane juice, in a pilot unit of micro and ultrafiltration using the principle of tangential filtration. The sugar cane juice was settled for one hour and the supernatant was treated by microfiltration. After that, the MF permeate was ultrafiltered. The experiments of micro and ultrafiltration were carried out at 65ºC and 1 bar. The ceramic membranes were able to remove the colloidal particles, producing a limpid permeated juice with color reduction. The clarification process with micro- followed by ultrafiltration produced a good result with an average purity rise of 2.74 units, 99.4% lower turbidity and 44.8% lighter color in the permeate.

  2. Modeling of Hollow-Fiber Membrane System During Ultrafiltration

    International Nuclear Information System (INIS)

    EI-Bialy, S.H.

    2004-01-01

    The present study aims to evaluate the performance of hollow fiber membrane module during ultrafiltration of aqueous solutions. The model is represented by a set of differential equations for permeate and residue pressure drop and volumetric flow rates in the axial direction, beside the principle equations of both solvent and solute fluxes through the membrane, while osmotic pressure was neglected in model equations. The shell and tube module type was considered where feed pass in the shell and permeate in the bore side. Tortousily factor of membrane pores in addition to concentration polarization modulus were taken into account in calculations. The model was solved numerically with the help of suitable program in both co current and countercurrent flow pattern and comparison of results were carried out

  3. Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles

    Science.gov (United States)

    Mokhtari, Samaneh; Rahimpour, Ahmad; Shamsabadi, Ahmad Arabi; Habibzadeh, Setareh; Soroush, Masoud

    2017-01-01

    To improve the hydrophilicity and antifouling properties of polysulfone (PS) ultrafiltration membranes, we studied the use of salicylate-alumoxane (SA) nanoparticles as a novel hydrophilic additive. The effects of SA nanoparticles on the membrane characteristics and performance were investigated in terms of membrane structure, permeation flux, solute rejection, hydrophilicity, and antifouling ability. The new mixed-matrix membranes (MMMs) possess asymmetric structures. They have smaller finger-like pores and smoother surfaces than the neat PS membranes. The embedment of SA nanoparticles in the polymer matrix and the improvement of surface hydrophilicity were investigated. Ultrafiltration experiments indicated that the pure-water flux of the new MMMs initially increases with SA nanoparticles loading followed by a decrease at high loadings. Higher BSA solution flux was achieved for the MMMs compared to the neat PS membranes. Membranes with 1 wt.% SA nanoparticles exhibit the highest flux recovery ratio of 87% and the lowest irreversible fouling of 13%.

  4. Fabrication of TiO{sub 2}-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yingjia [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Chi, Lina, E-mail: lnchi@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Zhou, Weili; Yu, Zhenjiang [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Zhongzhi [College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China); Zhang, Zhenjia [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Zheng, E-mail: z.jiang@soton.ac.uk [Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO{sub 2}/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO{sub 2} functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO{sub 2} and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO{sub 2}, we successfully fixed TiO{sub 2} functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO{sub 2} attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti{sup 4+}. The TiO{sub 2} surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO{sub 2}/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO{sub 2}, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  5. Drinking water treatment by ultrafiltration membranes; Potabilizacion de aguas mediante membranas de ultrafiltracion

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, J. C.; Moreno, B.; Poyatos, J. M.; Rua, A. de la; Perez, J. J.; Plaza, F.; Garralon, G.; Gomez, M. A.

    2007-07-01

    In this paper the application of ultrafiltration technology as a drinking water treatment was evaluated. For this reason, a pilot scale ultrafiltration module equipped with a flat membrane cassette of polyvinylidene fluoride (PVDF) with an average pore size of 0.05 {mu}m was used. Different types of artificially polluted waters (with urban waste water and soil suspension) were used. the performance of ultrafiltration technology was evaluated by means of different physicochemical and microbiological parameters both feed water and treated water. Bacterial and viral indicators were efficiently retained by the system and the same time organoleptic parameters were improved. However, it is important to emphasize the problems that the ultrafiltration technology has for the eliminate dissolves compounds remaining the most dissolve organic compounds in the feed water. (Author) 11 refs.

  6. Ceramic membrane ultrafiltration of natural surface water with ultrasound enhanced backwashing.

    Science.gov (United States)

    Boley, A; Narasimhan, K; Kieninger, M; Müller, W-R

    2010-01-01

    Ultrafiltration membrane cleaning with ultrasound enhanced backwashing was investigated with two ceramic membrane systems in parallel. One of them was subjected to ultrasound during backwashing, the other acted as a reference system. The feed water was directly taken from a creek with a sedimentation process as only pre-treatment. The cleaning performance was improved with ultrasound but after 3 weeks of operation damages occurred on the membranes. These effects were studied with online measurements of flux, trans-membrane-pressure and temperature, but also with integrity tests, turbidity measurements and visual examination.

  7. Crossflow ultrafiltration of raw municipal wastewater : Investigations using PVDF tubular membranes

    NARCIS (Netherlands)

    Ravazzini, A.M.

    2008-01-01

    In the usual wastewater treatment schemes the application of membranes follows a biological process. However, ultrafiltration of untreated wastewater produces permeate free of particles and bacteria in one single step and could represent the starting point for new water-reuse concepts. This thesis

  8. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    International Nuclear Information System (INIS)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming

    2017-01-01

    Graphical abstract: The mechanisms fouling and cleaning process of PSF-COOH membranes (A) the content of carboxyl less than 80%. (B) the content of carboxyl at 80%, 100%. - Highlights: • Phenolphthalin (PPL) containing carboxyl was successfully introduced into the molecule backbone of polysulfone (PSF). • A series of PSF-COOH copolymers with different carboxylation degree was synthesized and prepared as ultrafiltration membranes. • The introduction of PPL significantly improved the hydrophilicity, permeation flux and antifouling property of membranes. • This method is valuable for large-scale industrial production of hydrophilic membrane material. - Abstract: In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m"2 h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the goal of

  9. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming, E-mail: wangdaming@jlu.edu.cn

    2017-04-15

    Graphical abstract: The mechanisms fouling and cleaning process of PSF-COOH membranes (A) the content of carboxyl less than 80%. (B) the content of carboxyl at 80%, 100%. - Highlights: • Phenolphthalin (PPL) containing carboxyl was successfully introduced into the molecule backbone of polysulfone (PSF). • A series of PSF-COOH copolymers with different carboxylation degree was synthesized and prepared as ultrafiltration membranes. • The introduction of PPL significantly improved the hydrophilicity, permeation flux and antifouling property of membranes. • This method is valuable for large-scale industrial production of hydrophilic membrane material. - Abstract: In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m{sup 2} h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the

  10. Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance.

    Science.gov (United States)

    Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun

    2017-05-02

    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH) x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.

  11. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Science.gov (United States)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  12. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    Science.gov (United States)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  13. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials

    KAUST Repository

    Mauter, Meagan S.; Wang, Yue; Okemgbo, Kaetochi C.; Osuji, Chinedum O.; Giannelis, Emmanuel P.; Elimelech, Menachem

    2011-01-01

    Figure Presented: Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes. © 2011 American Chemical Society.

  14. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials

    KAUST Repository

    Mauter, Meagan S.

    2011-08-24

    Figure Presented: Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes. © 2011 American Chemical Society.

  15. Preparation and Characterization of Novel Polyvinylidene Fluoride/2-Aminobenzothiazole Modified Ultrafiltration Membrane for the Removal of Cr(VI in Wastewater

    Directory of Open Access Journals (Sweden)

    Xiuju Wang

    2017-12-01

    Full Text Available Hexavalent chromium is one of the main heavy metal pollutants. As the environmental legislation becomes increasingly strict, seeking new technology to treat wastewater containing hexavalent chromium is becoming more and more important. In this research, a novel modified ultrafiltration membrane that could be applied to adsorb and purify water containing hexavalent chromium, was prepared by polyvinylidene fluoride (PVDF blending with 2-aminobenzothiazole via phase inversion. The membrane performance was characterized by evaluation of the instrument of membrane performance, infrared spectroscopy (FTIR, scanning electron microscope (SEM, and water contact angle measurements. The results showed that the pure water flux of the PVDF/2-aminobenzothiazole modified ultrafiltration membrane was 231.27 L/m2·h, the contact angle was 76.1°, and the adsorption capacity of chromium ion was 157.75 µg/cm2. The PVDF/2-aminobenzothiazole modified ultrafiltration membrane presented better adsorption abilities for chromium ion than that of the traditional PVDF membrane.

  16. Enhanced permeability and antifouling performance of cellulose acetate ultrafiltration membrane assisted by l-DOPA functionalized halloysite nanotubes.

    Science.gov (United States)

    Mu, Keguang; Zhang, Dalun; Shao, Ziqiang; Qin, Dujian; Wang, Yalong; Wang, Shuo

    2017-10-15

    l-Dopa functionalized halloysite nanotubes (HNTs) were prepared by the self-polymerization of l-dopa in the weak alkaline condition. Then different contents of l-dopa coated HNTs (LPDHNTs) were blended into cellulose acetate to prepare enhanced performance ultrafiltration membranes via the phase inversion method. The HNTs and LPDHNTs were characterized by FTIR, XPS, and TEM anysis. And the membranes morphologies, separation performance, antifouling performance, mechanical properties and hydrophilicity were also investigated. It was found that the composite membranes exhibited excellent antifouling performance. The pure water flux of 3.0wt% LPDHNTs/CA membrane increased from 11.4Lm -2 h -1 to 92.9Lm -2 h -1 , while the EA rejection ratio of the membrane was about 91.2%. In addition, the mechanical properties of the resultant membranes were strengthened compared with the CA ultrafiltration membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian; Katuri, Krishna; Logan, Bruce E.; Maab, Husnul; Nunes, Suzana Pereira; Saikaly, Pascal

    2013-01-01

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  18. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  19. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.; Kim, DooLi.; Nunes, Suzana. P.

    2017-01-01

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  20. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.

    2017-07-18

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  1. Efficient Preparation of Super Antifouling PVDF Ultrafiltration Membrane with One Step Fabricated Zwitterionic Surface.

    Science.gov (United States)

    Zhao, Xinzhen; He, Chunju

    2015-08-19

    On the basis of the excellent fouling resistance of zwitterionic materials, the super antifouling polyvinylidene fluoride (PVDF) membrane was efficiently prepared though one-step sulfonation of PVDF and polyaniline blend membrane in situ. The self-doped sulfonated polyaniline (SPANI) was generated as a novel zwitterionic polymer to improve the antifouling property of PVDF ultrafiltration membrane used in sewage treatment. Surface attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, surface zeta potential, and water contact angle demonstrated the successful fabrication of zwitterionic interface by convenient sulfonation modification. The static adsorption fouling test showed the quantified adsorption mass of bovine serum albumin (BSA) pollutant on the PVDF/SPANI membrane surface decreases to 3(±2) μg/cm(2), and the water flux recovery ratio (FRR) values were no less than 95% for the three model pollutants of BSA, sodium alginate (SA), and humic acid (HA), which were corresponding hydrophobic, hydrophilic, and natural pollutants in sewage, respectively. This Research Article demonstrated the antifouling advantages of zwitterionic SPANI and aimed to provide a simple method for the large scale preparation of zwitterionic antifouling ultrafiltration membranes.

  2. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  3. The processing of used cooking oil (yellow grease) using combination of adsorption and ultrafiltration membrane processes

    Science.gov (United States)

    Rosnelly, C. M.; Sofyana; Amalia, D.; Sarah, S.

    2018-03-01

    Yellow grease is used cooking oil whose quality has degraded due to the oxidation, polymerization, or hydrolysis process. In previous studies, yellow grease refining had been conducted either by adsorption or by using membrane. In this study, adsorption process using adsorbent from bagasse activated with H3PO4 12.5%, and ultrafiltration using Polyethersulfone (PES) membrane were combined. In adsorption stage, several variation of bagasse mass was fed into 200 ml of yellow grease and stirred for 60 minutes at 60 rpm. Yellow grease produced from adsorption with best condition was then processed using ultrafiltration membran that is PES membran with concentration by 15 wt % with transmembrane pressure variation by 0.5; 1; 1.5; 2; and 2.5 Bar. Analysis of yellow grease characteristics before refined showed its acid number, peroxide number, iodine number, and water content respectively by 2.68 mgKOH/Kg; 5.97 Meq/Kg; 51,48; and 1.29%. Characteristics of yellow grease after adsorption at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 2.55 mgKOH/Kg; 4.19 Meq/Kg; 40,02; and 0.27%. Characteristics of yellow grease after ultrafiltration at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 1.12 mgKOH/Kg; 1.8 Meq/Kg; 41,36; and 0.02%. Combination of adsorption and ultrafiltration processes for yellow grease processing showed decreasing value on the parameters of acid number, peroxide number, and water content that conforms to the SNI quality standard, but has not been able to increase the iodine number.

  4. Novel adsorptive ultrafiltration membranes derived from polyvinyltetrazole-co-polyacrylonitrile for Cu(II) ions removal

    KAUST Repository

    Kumar, Mahendra; Shevate, Rahul; Hilke, Roland; Peinemann, Klaus-Viktor

    2016-01-01

    Novel adsorptive ultrafiltration membranes were manufactured from synthesized polyvinyltetrazole−co−polyacrylonitrile (PVT−co−PAN) by nonsolvent induced phase separation (NIPS). PVT−co−PAN with various degree of functionalization (DF) was synthesized via a [3+2] cycloaddition reaction at 60°C using a commercial PAN. PVT−co−PAN with varied DF was then explored to prepare adsorptive membranes. The membranes were characterized by surface zeta potential and static water contact angle measurements, scanning electron microscopy as well as atomic force microscopy (AFM) techniques. It was shown that PVT segments contributed to alter the pore size, charge and hydrophilic behavior of the membranes. The membranes became more negatively charged and hydrophilic after addition of PVT segments. The PVT segments in the membranes served as the major binding sites for adsorption of Cu(II) ions from aqueous solution. The maximum adsorption of Cu(II) ions by the membranes in static condition and in a continuous ultrafiltration of 10 ppm solution was attained at pH = 5. The adsorption data suggest that the Freundlich isotherm model describes well Cu(II) ions adsorption on the membranes from aqueous solution. The adsorption capacity obtained from the Freundlich isotherm model was 44.3 mg g−1; this value is higher than other membrane adsorption data reported in the literature. Overall, the membranes fabricated from PVT−co−PAN are attractive for efficient removal of heavy metal ions under the optimized conditions.

  5. Novel adsorptive ultrafiltration membranes derived from polyvinyltetrazole-co-polyacrylonitrile for Cu(II) ions removal

    KAUST Repository

    Kumar, Mahendra

    2016-05-04

    Novel adsorptive ultrafiltration membranes were manufactured from synthesized polyvinyltetrazole−co−polyacrylonitrile (PVT−co−PAN) by nonsolvent induced phase separation (NIPS). PVT−co−PAN with various degree of functionalization (DF) was synthesized via a [3+2] cycloaddition reaction at 60°C using a commercial PAN. PVT−co−PAN with varied DF was then explored to prepare adsorptive membranes. The membranes were characterized by surface zeta potential and static water contact angle measurements, scanning electron microscopy as well as atomic force microscopy (AFM) techniques. It was shown that PVT segments contributed to alter the pore size, charge and hydrophilic behavior of the membranes. The membranes became more negatively charged and hydrophilic after addition of PVT segments. The PVT segments in the membranes served as the major binding sites for adsorption of Cu(II) ions from aqueous solution. The maximum adsorption of Cu(II) ions by the membranes in static condition and in a continuous ultrafiltration of 10 ppm solution was attained at pH = 5. The adsorption data suggest that the Freundlich isotherm model describes well Cu(II) ions adsorption on the membranes from aqueous solution. The adsorption capacity obtained from the Freundlich isotherm model was 44.3 mg g−1; this value is higher than other membrane adsorption data reported in the literature. Overall, the membranes fabricated from PVT−co−PAN are attractive for efficient removal of heavy metal ions under the optimized conditions.

  6. Study to determine the technical and economic feasibility of reclaiming chemicals used in micellar polymer and low tension surfactant flooding. Final report. [Ultrafiltration membranes and reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.

    1978-02-01

    Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.

  7. Novel Aluminum Oxide-Impregnated Carbon Nanotube Membrane for the Removal of Cadmium from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ihsanullah

    2017-09-01

    Full Text Available An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3 membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II. The membrane did not require any binder to hold the carbon nanotubes (CNTs together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM. Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II ions.

  8. Preparation of antifouling ultrafiltration membranes via irradiation induced graft polymerization technique

    International Nuclear Information System (INIS)

    Deng Bo; Liu Zhognying; Lu Xiaofeng; Li Jingye; Yang Xuanxuan; Yu Ming; Zhang Bowu

    2010-01-01

    PVDF powders were irradiated in air at dose of 15 kGy by using gamma-rays. Macromolecular peroxides transformed from free radicals in the irradiated PVDF powders in air can be preserved for long-term at appropriate temperature stably. By mixing acrylic monomers with irradiated PVDF powders then the graft polymerization can be initiated by heating. Then a series of hydrophilic ultrafiltration (UF) membranes were fabricated by dissolving the PVDF-g-PAAc powders in the NMP under phase inversion method. The antifouling performances of UF membranes cast from virgin and grafted PVDF powders were compared. (authors)

  9. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors

    KAUST Repository

    Liang, Shuai; Qi, Genggeng; Xiao, Kang; Sun, Jianyu; Giannelis, Emmanuel P.; Huang, Xia; Elimelech, Menachem

    2014-01-01

    This study systematically investigates the organic fouling behavior of a superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membrane functionalized via post-fabrication tethering of surface-tailored silica nanoparticles to poly

  10. Thermodynamic analysis of Cr(VI) extraction using TOPO impregnated membranes

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, Prashant; Loh, Kai-Chee, E-mail: chelohkc@nus.edu.sg

    2016-08-15

    Highlights: • Cr(VI) extraction by extractant impregnated membranes (EIM) was investigated. • EIM exhibited high extraction efficiency, mass transfer rate and stability. • Mass transfer mechanism was proposed based on kinetics and equilibrium data. • Uptake of Cr(VI) by EIMs was endothermic and spontaneous. • Cr(VI) extraction by EIMs was dominated by physical interactions. - Abstract: Solid/liquid extraction of Cr(VI) was accomplished using trioctylphosphine oxide impregnated polypropylene hollow fiber membranes. Extraction of 100–500 mg/L Cr(VI) by the extractant impregnated membranes (EIM) was characterized by high uptake rate and capacity, and equilibrium was attained within 45 min of contact. Extraction equilibrium was pH-dependent (at an optimal pH 2), whereas stripping using 0.2 M sodium hydroxide yielded the highest recovery of 98% within 60 min. The distribution coefficient was independent of initial Cr(VI) concentration, and the linear distribution equilibrium isotherm could be modeled using Freundlich isotherm. The mass transfer kinetics of Cr(VI) was examined using pseudo-second-order and intraparticle diffusion models and a mass transfer mechanism was deduced. The distribution coefficient increased with temperature, which indicated endothermic nature of the reaction. Enthalpy and entropy change during Cr(VI) extraction were positive and varied in the range of 37–49 kJ/mol and 114–155 J/mol, respectively. The free energy change was negative, confirming the feasibility and spontaneity of the mass transfer process. Results obtained suggest that EIMs are efficient and sustainable for extraction of Cr(VI) from wastewater.

  11. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance.

    Science.gov (United States)

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2012-03-30

    An ultrafiltration (UF) ceramic membrane was used to decolorize Reactive Black 5 (RB5) solutions at different dye concentrations (50 and 500 mg/L). Transmembrane pressure (TMP) and cross-flow velocity (CFV) were modified to study their influence on initial and steady-state permeate flux (J(p)) and dye rejection (R). Generally, J(p) increased with higher TMP and CFV and lower feed concentration, up to a maximum steady-state J(p) of 266.81 L/(m(2)h), obtained at 3 bar, 3m/s and 50mg/L. However, there was a TMP value (which changed depending on operating CFV and concentration) beyond which slight or no further increase in steady-state J(p) was observed. Similarly, the higher the CFV was, the more slightly the steady-state J(p) increased. Furthermore, the effectiveness of ultrafiltration treatment was evaluated through dye rejection coefficient. The results showed significant dye removals, regardless of the tested conditions, with steady-state R higher than 79.8% for the 50mg/L runs and around 73.2% for the 500 mg/L runs. Finally response surface methodology (RSM) was used to optimize membrane performance. At 50mg/L, a TMP of 4 bar and a CFV of 2.53 m/s were found to be the conditions giving the highest steady-state J(p), 255.86 L/(m(2)h), and the highest R, 95.2% simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Performance study of ultrafiltration membrane with bovine serum albumin as feed solution

    International Nuclear Information System (INIS)

    Syahril Ahmad

    2009-01-01

    Bovine serum albumin solutions at different temperature, pH, flow rate and operation pressure have been used as feed solution for studying performance of ultrafiltration membrane. Polysulfone membranes used for this experiment were in form of hollow fibers that have Molecular Weight Cut Off (MWCO) 60 kDa. Observation was focused on flux parameter and rejection coefficient towards protein during the process. Result shows that temperature, pH of BSA feed solution, flow rate and operation pressure can affect the flux and rejection coefficient of membrane. High temperature feed solution tend to decrease the flux but increase rejection coefficient. Rejection coefficient of membrane will increase while flux decreasing at pH of feed solution near to protein isoelectric point. High pressure of feed solution will increase flux but decrease rejection of membrane. Rejection of membrane will decrease and flux will increase when the process operated in slow flow rate. (author)

  13. Impregnated membranes for direct methanol fuel cells at high methanol concentrations

    NARCIS (Netherlands)

    Yildirim, M.H.; Schwarz, Alexander; Stamatialis, Dimitrios; Wessling, Matthias

    2009-01-01

    Sulfonated poly(phthalazinone ether ketone) (SPPEK) impregnated Solupor® microporous film (SPPEK–PE) and pure SPPEK membranes with two different ion-exchange capacities (IECs) were prepared and characterized for use in DMFC applications. Swelling, proton conductivity, diffusion and DMFC experiments

  14. Ultrafiltration membranes from waste polyethylene terephthalate and additives: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Smitha Rajesh

    2014-01-01

    Full Text Available The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET and polyvinylpyrrolidone (PVP is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP, molecular weight cut-off (MWCO, and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.

  15. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  16. Polypropylene Track Membranes for Mikro and Ultrafiltration of Chemically Aggressive Agents

    CERN Document Server

    Kravets, L I; Apel, P Yu

    2000-01-01

    A production process for track membranes on the basis of chemically resistant polymer polypropylene has been developed. Research in all stages of the formation of the polypropylene track membranes has been conducted: the main principles of the process of chemical etching of polypropylene irradiated with accelerated ions have been investigated, the most effective structure of the etchant for a selective etching of the heavy ion tracks has been selected, the parameters of etching have been optimized. A method for sensibilization of latent tracks in polypropylene by effect of solvents has been developed. It helps to reach a significant increase in etching selectivity. A method for destruction of an absorbed chromocontaining layer on the surface of polypropylene track membranes formed during etching has been elaborated. Experimental samples of the membranes for micro and ultrafiltration have been obtained and their properties have been studied in course of their exploitation in chemically aggressive agents. For t...

  17. Fabrication of palladium nanoparticles immobilized on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yan; Chen, Rizhi [Nanjing Tech University, Nanjing (China)

    2015-09-15

    An efficient and reusable catalyst was developed by depositing palladium nanoparticles on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method. The as-prepared Pdloaded ceramic membrane support was characterized by XRD, SEM, EDS, TEM, XPS, ICP, and its catalytic properties were investigated in the liquid-phase p-nitrophenol hydrogenation. A comparative study was also made with the palladium nanoparticles deposited on an amine-functionalized ceramic membrane support by an impregnation-reduction method. The palladium nanoparticles could be homogeneously immobilized on the ceramic membrane support surface, and exhibited excellent catalytic performance in the p-nitrophenol hydrogenation. The catalytic activity of the Pdloaded ceramic membrane support prepared by the nanoparticulate colloidal impregnation method increased by 16.6% compared to that of impregnation-reduction method. In the nanoparticulate colloidal impregnation method, palladium nanoparticles were presynthesized, higher loading of Pd(0) could be obtained, resulting in better catalytic activity. The as-prepared Pd-loaded ceramic membrane support could be easily reused for several cycles without appreciable degradation of catalytic activity.

  18. Ultrafiltration of pegylated proteins

    Science.gov (United States)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  19. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties

    OpenAIRE

    Jie Liu; Zhencheng Zhong; Rui Ma; Weichen Zhang; Jiding Li

    2016-01-01

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was a...

  20. Size enlargement of radioactive and hazardous species and their separation by microfiltration and ultrafiltration membranes

    International Nuclear Information System (INIS)

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1993-01-01

    Separation and volume reduction of aqueous solutions involving membranes is evolving into an expanding and diversified field. Numerous commercially successful membranes and their applications are now available. Among different driving forces used in membrane separation, pressure-driven separation has gained wide application. Depending on the size of the dissolved species in solution to be separated, the pressure needed to achieve the desired separation varies. The microfiltration and ultrafiltration membrane systems are low-pressure processes that generally operate below 350 kPa. To exploit these membranes in applications involving the removal of dissolved contaminants from solutions, it is essential to create a suitable size for the dissolved contaminants, so that the membranes can effectively retain them while producing a filtrate stream essentially free of contaminants. Size enlargement of the dissolved contaminants can be achieved through solution conditioning with the addition of one or a combination of chemical reagents and powdered materials. Examples of typical additives include: pH chemicals, polyelectrolytes, microorganisms and powdered adsorption/ion-exchange materials. In many situations, adequate control and optimization of the system chemistry and hydraulic conditions provide high selectivity and efficiency for contaminant removal. This paper summarizes removal efficiency data for cadmium, lead, mercury, uranium, arsenic, strontium-90/85, cesium-137 and iron. These data resulted from various initiatives on membrane technology undertaken during the past five years by the Waste Processing Technology group at Chalk River Laboratories. The technology involves size enlargement of contaminants present in waste solution, and their separation using either microfiltration or ultrafiltration. The data support remedial applications involving treatment of contaminated groundwater and soils

  1. Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes

    KAUST Repository

    Hoek, Eric M.V.; Ghosh, Asim K.; Huang, Xiaofei; Liong, Monty; Zink, Jeffrey I.

    2011-01-01

    Herein we report on the formation and characterization of mixed-matrix ultrafiltration (UF) membranes hand-cast by nonsolvent induced phase inversion. We evaluated nanometer-to-micrometer sized inorganic fillers (silver, copper, silica, zeolite, and silver-zeolite) materials with polysulfone (PSf) as the polymeric dispersing matrix. In general, mixed-matrix membranes were rougher, more hydrophilic, and more mechanically robust. Only sub-micron zeolite-PSf mixed-matrix membranes exhibited simultaneous improvements in water permeability and solute selectivity; all other mixed-matrix membranes were more permeable, but less selective due to defects associated with poor polymer-filler binding. Protein and bacterial fouling resistance of mixed-matrix membranes containing silver, zeolite, and silver-zeolite nanoparticles were compared to a low-fouling, poly(acrylonitrile) (PAN) UF membrane. Zeolite and silver containing membranes exhibited better protein fouling resistance (due to higher hydrophilicity), whereas silver and silver-zeolite based membranes produce better bacterial fouling resistance due to antimicrobial properties. Overall, zeolite-PSf and silver exchanged zeolite-PSf membranes offered the best combination of improved permeability, selectivity, and fouling resistance - superior to the commercial PAN membrane. © 2011 Elsevier B.V.

  2. Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes

    KAUST Repository

    Hoek, Eric M.V.

    2011-12-01

    Herein we report on the formation and characterization of mixed-matrix ultrafiltration (UF) membranes hand-cast by nonsolvent induced phase inversion. We evaluated nanometer-to-micrometer sized inorganic fillers (silver, copper, silica, zeolite, and silver-zeolite) materials with polysulfone (PSf) as the polymeric dispersing matrix. In general, mixed-matrix membranes were rougher, more hydrophilic, and more mechanically robust. Only sub-micron zeolite-PSf mixed-matrix membranes exhibited simultaneous improvements in water permeability and solute selectivity; all other mixed-matrix membranes were more permeable, but less selective due to defects associated with poor polymer-filler binding. Protein and bacterial fouling resistance of mixed-matrix membranes containing silver, zeolite, and silver-zeolite nanoparticles were compared to a low-fouling, poly(acrylonitrile) (PAN) UF membrane. Zeolite and silver containing membranes exhibited better protein fouling resistance (due to higher hydrophilicity), whereas silver and silver-zeolite based membranes produce better bacterial fouling resistance due to antimicrobial properties. Overall, zeolite-PSf and silver exchanged zeolite-PSf membranes offered the best combination of improved permeability, selectivity, and fouling resistance - superior to the commercial PAN membrane. © 2011 Elsevier B.V.

  3. Ultrafiltration evaluation with depleted uranium oxide

    International Nuclear Information System (INIS)

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    Scientists at the Los Alamos National Laboratory Plutonium Facility are using electrodissolution in neutral to alkaline solutions to decontaminate oralloy parts that have surface plutonium contamination. Ultrafiltration of the electrolyte stream removes precipitate so that the electrolyte stream to the decontamination fixture is precipitate free. This report describes small-scale laboratory ultrafiltration experiments that the authors performed to determine conditions necessary for full-scale operation of an ultrafiltration module. Performance was similar to what they observed in the ferric hydroxide system. At 12 psi transmembrane pressure, a shear rate of 12,000 sec -1 was sufficient to sustain membrane permeability. Ultrafiltration of uranium(VI) oxide appears to occur as easily as ultrafiltration of ferric hydroxide. Considering the success reported in this study, the authors plan to add ultrafiltration to the next decontamination system for oralloy parts

  4. Protein bioseparation using ultrafiltration: theory, applications and new developments

    National Research Council Canada - National Science Library

    Ghosh, Raja

    2003-01-01

    ... membrane-based separation process. This book discusses how ultrafiltration could be used for protein bioseparation. There are several good books on protein bioseparation and indeed several others on ultrafiltration. However, there are relatively fewer books dealing specifically with protein bioseparation using ultrafiltration, in spite of this being an a...

  5. Performance of Hollow Fiber Ultrafiltration Membranes in the Clarification of Blood Orange Juice

    Directory of Open Access Journals (Sweden)

    Carmela Conidi

    2015-12-01

    Full Text Available The clarification of blood orange juice by ultrafiltration (UF was investigated by using three hollow fiber membrane modules characterized by different membrane materials (polysulfone (PS and polyacrylonitrile (PAN and molecular weight cut-off (MWCO (50 and 100 kDa. The performance of selected membranes was investigated in terms of productivity and selectivity towards total anthocyanin content (TAC, total phenolic content (TPC, and total antioxidant activity (TAA. All selected membranes allowed a good preservation of antioxidant compounds; however, the most suitable membrane for the clarification of the juice was found to be the PS 100 kDa membrane. In optimized operating conditions this membrane exhibited steady-state fluxes of 7.12 L/m2h, higher than those measured for other investigated membranes. Rejections towards TPC and TAA were of the order of 17.5% and 15%, respectively. These values were lower than those determined for PS 50 kDa and PAN 50 kDa membranes. In addition, the PS 100 kDa membrane exhibited a lower rejection (7.3% towards TAC when compared to the PS 50 kDa membrane (9.2%.

  6. Reexamining ultrafiltration and solute transport in groundwater

    Science.gov (United States)

    Neuzil, C. E.; Person, Mark

    2017-06-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  7. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  8. Morphology and performance of polyvinylidene fluoride/perfluoro sulphonic acid hollow fiber ultrafiltration blend membranes

    International Nuclear Information System (INIS)

    Yuan, Guo-Lin; Xu, Zhen-Liang; Wei, Yong-Ming; Yu, Li-Yun

    2009-01-01

    Polyvinylidene fluoride-perfluoro sulphonic acid hollow fibre ultrafiltration blend membranes were prepared by wet-spinning method. Polyvinylpyrrolidone and ethanol aqueous solutions were employed as additive and coagulants, respectively. The effect of Polyvinylpyrrolidone concentration in the dopes and ethanol concentration in the coagulants on morphology and performance of Polyvinylidene fluoride -perfluoro sulphonic acid hollow fibre ultrafiltration blend membranes were investigated. Blend membranes were characterized in terms of precipitation kinetics, morphology, thermal property and separation performance. The results showed that the increments of Polyvinylpyrrolidone concentration in the dopes and ethanol concentration in coagulants both resulted in higher pure water permeation flux and worse rejection (R) of bovine serum albumin (with the increment of Polyvinylpyrrolidone concentration from 0 to 5 wt% in the dopes, pure water permeation increased from 41.7 L.m -2 .h -1 to 134 L.m -2 .h -1 and R decreased from 99.8% to 84.4% as well as with the increase in ethanol concentration in coagulants from 0 to 40 wt%, pure water permeation increased from 33.5 L.m -2 .h- 1 to 123 L.m -2 .h -1 and R decreased from 97.7% to 88.7%). However, the proportion of sponge-like structure in the cross-section of membranes decreased with the increasing Polyvinylpyrrolidone concentration in the dopes and the proportion increased with the increased ethanol concentration in the coagulations. In addition, the location of the sponge-like structure in the cross-section of membranes was significantly influenced by ethanol concentrations in the coagulants and differential scanning calorimeter results revealed that the crystallinity (X c ) of the blend membrane was in accordance with the proportion of sponge-like structure. These behaviours were attributed to the different roles of Polyvinylpyrrolidone in the dopes and ethanol in the coagulants, respectively. Polyvinylidene fluoride

  9. Basic technology for {sup 6}Li enrichment using an ionic-liquid impregnated organic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki 311-1393 (Japan); Terai, Takayuki [The Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2011-10-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ({sup 6}Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% {sup 6}Li. In this paper, a new lithium isotope separation technique using an ionic-liquid impregnated organic membrane is proposed. In order to separate and concentrate lithium isotopes, only lithium ions are able to move through the membrane by electrodialysis between the cathode and the anode in lithium solutions. Preliminary experiments of lithium isotope separation were conducted using this phenomenon. Organic membranes impregnated with TMPA-TFSI and PP13-TFSI as ionic liquids were prepared, and the relationship between the {sup 6}Li separation coefficient and the applied electrodialytic conditions was evaluated using them. The results showed that the {sup 6}Li isotope separation coefficient in this method (about 1.1-1.4) was larger than that in the mercury amalgam method (about 1.06).

  10. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO_2-HNTs nanocomposites

    International Nuclear Information System (INIS)

    Zeng, Guangyong; He, Yi; Yu, Zongxue; Zhan, Yingqing; Ma, Lan; Zhang, Lei

    2016-01-01

    Highlights: • A novel TiO_2-HNTs/PVDF ultrafiltration membrane was prepared. • TiO_2 dispersed well in membrane matrix by loading on the surface of HNTs. • The hydrophilicity of membrane was improved with the addition of TiO_2-HNTs. • TiO_2-HNTs/PVDF membranes showed good antifouling performance. - Abstract: Novel polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared by blending with different contents of titanium dioxide-halloysite nanotubes (TiO_2-HNTs) composites into the PVDF matrix. The effects of TiO_2-HNTs content on the membrane performances, such as hydrophilicity, rejection ratio and antifouling properties were investigated in detail. X-ray diffraction (XRD), thermo-gravimetric analyzer (TGA) and scanning electron microscope (SEM) analyses showed that TiO_2 was loaded on the surface of HNTs successfully and homogeneously by sol-gel method. The morphologies and microstructure of the membranes were characterized by SEM and atomic force microscopy (AFM). The contact angle (CA) tests indicated that the hydrophilicity of membranes was significantly increased with the addition of TiO_2-HNTs. The pure water flux of 3%TiO_2-HNTs/PVDF was increased by 264.8% and 35.6%, respectively, compared with pure PVDF membrane and 3%TiO_2/PVDF membrane, although the rejection of bovine serum albumin (BSA) was slightly decreased. More importantly, TiO_2-HNTs/PVDF membrane exhibited an excellent anti-fouling performance, which was attributed to the hydrophobic contaminants being resisted by hydrophilic nanoparticles. It can be expected that this work may provide some references to solve the dispersion of nanoparticle in the membrane and improve the anti-fouling performance of membrane in the field of wastewater treatment.

  11. Effects of Preparation Conditions on Morphology of Polyacrylonitrile Micro/Ultrafiltration Membrane and Its Application in Protein and Fat Separation from Milk

    Directory of Open Access Journals (Sweden)

    Seyed Ali Alavi

    2014-04-01

    Full Text Available Polyacrylonitrile (PAN micro/ultrafiltration membranes were prepared by phase inversion method. The effects of various preparation conditions including polymeric solution concentration, evaporation time, temperature, composition and residence time of the coagulation bath were investigated. Various important membrane characteristics such as pore size, bulk porosity, and mechanical and morphological properties were taken into the consideration. The characterizations were performed by measuring the bubble point, water flux, tensile strength and scanning electron microscopy (SEM analyses. The results showed that by increasing the polymeric solution concentration from 13 to 17 wt%, the porosity and water flux were decreased. Moreover, the membrane skin layer was considerably thickened with a very significant decrease in its pore sizes which was achieved in ultrafiltration region. By increasing the evaporation time at atmospheric pressure, membrane skin layer was thickened and the pore sizes were decreased. Low coagulation bath temperatures (below 30°C resulted in lower pore size, water flux, and an increase in membrane mechanical strength. Introduction of isopropanol (IPA into the water coagulation bath led to lower coagulation rate and consequently, the formation of smaller pores became possible by using pure isopropanol as coagulation bath. Furthermore, by increasing the residence time in coagulation bath, a more porous structure with more uniform pore sizes were formed that showed better mechanical properties. Finally, the so-called ultrafiltration membranes were applied in concentration process of protein and milk fat. A protein rejection more than 93% was attained while a complete removal of milk fat was achieved.

  12. Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres

    CSIR Research Space (South Africa)

    Mokhena, Teboho C

    2017-07-01

    Full Text Available of Chemistry, University of the Free State (Qwaqwa Campus), Phuthaditjhaba, South Africa 3 Center for Advanced Materials, Qatar University, Doha, Qatar Abstract The aim of this study was to develop a high flux three-tier composite membrane composed of a... of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres T.C. Mokhena1,2, A.S. Luyt3* 1 CSIR Materials Science and Manufacturing, Polymers and Composites, Port Elizabeth, South Africa. 2 Department...

  13. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  14. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croue, Jean-Philippe

    2016-01-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  15. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  16. Synthesis, Characterization, and Impregnation of Some Ionic Liquids on Polymer Membrane for Separation of Carbon Dioxide from Its Mixture with Methane

    Directory of Open Access Journals (Sweden)

    T. T. L. Bui

    2018-03-01

    Full Text Available Some 1-alkyl-3-methylimidazolium-based ionic liquids were synthesized, characterized, and immobilized on membranes to form supported ionic liquid membranes. The supported ionic liquid membranes were characterized by SEM. The initial transmembrane pressures were investigated for each type of impregnated membrane. The CO2/CH4 single gas and mixed gas permeability (CO2 and CH4 have been investigated. The results showed that the CO2/CH4 ideal selectivities and mixed gas selectivities reached 15.45 – 23.9 and 13.91 – 22.82, respectively (equivalent to separation yields of 93.3 – 95.98 %.mThe 1-alkyl-3-methylimidazolium acetate impregnated membrane leads to a slightly lowermCO2/CH4 selectivity, however, this ionic liquid is stable, free of halogen and has a low price. The impregnated membranes prepared from polyvinylidene fluoride are more stablemthan those from polyethersulfone support, and have a higher affinity for CO2 compared to other gas. The obtained high CO2/CH4 selectivities indicate that immobilized membranes can be used for CO2 separation processes.

  17. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  18. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  19. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Cheng, Wei; Zhang, Tao; Lu, Xinglin; Liu, Qianliang; Jiang, Jin; Ma, Jun

    2016-01-01

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  20. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-03-17

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  1. Preparation, Characterization and Performance Studies of Active PVDF Ultrafiltration-Surfactants Membranes Containing PVP as Additive

    International Nuclear Information System (INIS)

    Nur Izzah Md Fadilah; Abdul Rahman Hassan

    2016-01-01

    The role of surfactants in the formation of active Poly(vinylidene fluoride) (PVDF) ultrafiltration (AUF) membranes was studied. The effect combination of surfactants that are Sodium dodecyl sulfate (SDS)/ Tween 80 and Tween 80/ Triton X-100 formulations on performance and morphological structures were investigated for the first time. The influence of surfactants blends on the membrane pores was also examined. Experimental data showed that combination of Tween 80/ Triton X-100 give the highest BSA permeation flux with a value of 285.51 Lm -2 h -1 . With combination of SDS/ Tween 80, the AUF membrane showed the highest protein rejection up to 93 % and 79 % for Bovine Serum Albumin (BSA) and Egg Albumin (EA), respectively. Moreover, membranes characterization demonstrated that the addition of SDS/ Tween 80 and Tween 80/ Triton X-100 were found to affect the performance, surface morphologies and membrane pores of AUF PVDF membranes. (author)

  2. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties.

    Science.gov (United States)

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-02-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive ( Enterococcus faecalis ) and -negative ( Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation.

  3. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  4. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO{sub 2}-HNTs nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangyong [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); He, Yi, E-mail: heyi@swpu.edu.cn [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Yu, Zongxue; Zhan, Yingqing; Ma, Lan [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Zhang, Lei, E-mail: zgc166929@sohu.com [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2016-05-15

    Highlights: • A novel TiO{sub 2}-HNTs/PVDF ultrafiltration membrane was prepared. • TiO{sub 2} dispersed well in membrane matrix by loading on the surface of HNTs. • The hydrophilicity of membrane was improved with the addition of TiO{sub 2}-HNTs. • TiO{sub 2}-HNTs/PVDF membranes showed good antifouling performance. - Abstract: Novel polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared by blending with different contents of titanium dioxide-halloysite nanotubes (TiO{sub 2}-HNTs) composites into the PVDF matrix. The effects of TiO{sub 2}-HNTs content on the membrane performances, such as hydrophilicity, rejection ratio and antifouling properties were investigated in detail. X-ray diffraction (XRD), thermo-gravimetric analyzer (TGA) and scanning electron microscope (SEM) analyses showed that TiO{sub 2} was loaded on the surface of HNTs successfully and homogeneously by sol-gel method. The morphologies and microstructure of the membranes were characterized by SEM and atomic force microscopy (AFM). The contact angle (CA) tests indicated that the hydrophilicity of membranes was significantly increased with the addition of TiO{sub 2}-HNTs. The pure water flux of 3%TiO{sub 2}-HNTs/PVDF was increased by 264.8% and 35.6%, respectively, compared with pure PVDF membrane and 3%TiO{sub 2}/PVDF membrane, although the rejection of bovine serum albumin (BSA) was slightly decreased. More importantly, TiO{sub 2}-HNTs/PVDF membrane exhibited an excellent anti-fouling performance, which was attributed to the hydrophobic contaminants being resisted by hydrophilic nanoparticles. It can be expected that this work may provide some references to solve the dispersion of nanoparticle in the membrane and improve the anti-fouling performance of membrane in the field of wastewater treatment.

  5. Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids

    International Nuclear Information System (INIS)

    Garaev, Valeriy; Pavlovica, Sanita; Vaivars, Guntars; Kleperis, Janis

    2012-01-01

    In this work, the Nafion 112 membrane impregnated with nine various hydroxyl ammonium based ionic liquids have been investigated. The used ionic liquids were combined from hydroxyl ammonium cations (2-hydroxyethylammonium/HEA, bis(2- hydroxyethyl)ammonium/BHEA, tris(2-hydroxyethyl)ammonium/THEA) and carboxylate anions (formate, acetate, lactate). The membranes are characterized by conductivity and thermal stability measurements. It was found, that almost all composites have 10 times higher ion conductivity than a pure Nafion 112 at 90 °C in ambient environment due to the higher thermal stability. The thermal stability of Nafion membrane was increased by all studied nine ionic liquids. In this work, only biodegradable ionic liquids were used for composite preparation.

  6. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    Science.gov (United States)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  7. Unbound fraction of fluconazole and linezolid in human plasma as determined by ultrafiltration: Impact of membrane type.

    Science.gov (United States)

    Kratzer, Alexander; Kees, Frieder; Dorn, Christoph

    2016-12-15

    Ultrafiltration is a rapid and convenient method to determine the free concentrations of drugs in plasma. Several ultrafiltration devices based on Eppendorf cups are commercially available, but are not validated for such use by the manufacturer. Plasma pH, temperature and relative centrifugal force as well as membrane type can influence the results. In the present work, we developed an ultrafiltration method in order to determine the free concentrations of linezolid or fluconazole, both neutral and moderately lipophilic antiinfective drugs for parenteral as well as oral administration, in plasma of patients. Whereas both substances behaved relatively insensitive in human plasma regarding variations in pH (7.0-8.5), temperature (5-37°C) or relative centrifugal force (1000-10.000xg), losses of linezolid were observed with the Nanosep Omega device due to adsorption onto the polyethersulfone membrane (unbound fraction 75% at 100mg/L and 45% at 0.1mg/L, respectively). No losses were observed with Vivacon which is equipped with a membrane of regenerated cellulose. With fluconazole no differences between Nanosep and Vivacon were observed. Applying standard conditions (pH 7.4/37°C/1000xg/20min), the mean unbound fraction of linezolid in pooled plasma from healthy volunteers was 81.5±2.8% using Vivacon, that of fluconazole was 87.9±3.5% using Nanosep or 89.4±3.3% using Vivacon. The unbound fraction of linezolid was 85.4±3.7% in plasma samples from surgical patients and 92.1±6.2% in ICU patients, respectively. The unbound fraction of fluconazole was 93.9±3.3% in plasma samples from ICU patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of membrane properties on the performance of a hybrid GAC and ultrafiltration process for water treatment.

    Science.gov (United States)

    Qiao, Tiejun; Wu, Guangxue; Zhang, Xihui; Au, Doris W T; Zhang, Jinsong

    2012-06-01

    The performance of a hybrid granular activated carbon (GAC) and ultrafiltration (UF) process for water treatment was investigated using five types of UF membranes. The removal percentages for chemical oxygen demand (COD(Mn)), particles (> or = 2 microm) and total bacteria by the hybrid process were 30-40%, 98-99% and 76-92%, respectively. No invertebrates were detected in the hybrid process effluent. Transmembrane pressure and specific permeate flux (SPF) of the five types of membranes varied. With decreasing membrane pore sizes, removal of COD(Mn) and particles increased, whereas SPF firstly decreased and then increased. Hydrophilic membranes had a relatively high COD(Mn) removal potential, but did not obviously affect particle removal or SPF.

  9. Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF)

    International Nuclear Information System (INIS)

    Ilaiyaraja, P.; Ashish Kumar Singha Deb; Ponraju, D.

    2015-01-01

    Studies on removal of U(VI) and Th(IV) from aqueous solution have been carried out by ultrafiltration (UF) and dendrimer assisted ultrafiltration (DAUF) using regenerated cellulose acetate membrane and PAMAM [poly(amido)amine] dendrimer chelating agent. In UF, the U(VI) and Th(IV) are removed from aqueous solution by adsorption/mass deposition on the membrane at pH > 4. In DAUF, the water soluble PAMAM dendrimer chelating agent effectively concentrates these metal ions in retentate thereby preventing the mass deposition on membrane. At acidic pH (≤3), the binding of metal ions with PAMAM dendrimer is very weak and hence PAMAM can be regenerated and reused. Electronic supplementary material. The online version of this article (doi:10.1007/s10967-014-3462-x) contains supplementary material, which is available to authorized users. (author)

  10. Oily bilge water treatment with a tubular ultrafiltration system

    Energy Technology Data Exchange (ETDEWEB)

    Harris, L.R.; Jackson, D.F.; Schatzberg, P.

    1976-11-01

    The Navy has been developing various oil pollution abatement systems. One potential process for the separation of oil in bilge water is ultrafiltration, a pressure-driven membrane process which can separate, concentrate, and fractionate macromolecular solutes and suspended species from water. A tubular ultrafiltration system using cellulosic and noncellulosic membranes was tested with bilge oil obtained from a patrol craft. Tests were also conducted with tap water, river water, a turbine lubricating oil, and a fuel oil, alone and in combination with a nonionic detergent. The addition of the detergent was observed to result in a steeper flux decline than when any of the fluids were evaluated alone. Both membrane types produced a permeate with an oil content generally less than 15 mg/l. Although the noncellulosic membranes exhibited higher flux rates than the cellulosic membranes, only the former could be restored by a cleaning operation to its initial water flux after experiencing a decline in flux. A cumulative irreversible flux decline was exhibited by the cellulosic membrane. Cleaning operations, some of which were time-consuming, consisted of flushing the membrane with ultrafiltrate, distilled water, tap water, or the manufacturer's enzyme-detergent formulation. Only the last of these, when employed at elevated temperature (125/sup 0/F), restored the initial water flux of the noncellulosic membrane.

  11. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors

    KAUST Repository

    Liang, Shuai

    2014-08-01

    This study systematically investigates the organic fouling behavior of a superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membrane functionalized via post-fabrication tethering of surface-tailored silica nanoparticles to poly(methacrylic acid)-grafted PVDF membrane surface. Sodium alginate (SA), Suwannee River natural organic matter (SRNOM), and bovine serum albumin (BSA) were used as model organic foulants to investigate the antifouling behavior of the superhydrophilic membrane with combined-fouling (mixture of foulants) and individual-fouling (single foulant) tests. A membrane bioreactor (MBR) plant supernatant was also used to verify the organic antifouling property of the superhydrophilic membrane under realistic conditions. Foulant size distributions and foulant-membrane interfacial forces were measured to interpret the observed membrane fouling behavior. Molecular weight cutoff measurements confirmed that membrane functionalization did not adversely affect the intrinsic membrane selectivity. Both filtration tests with the synthetic foulant-mixture solution (containing SA, SRNOM, and BSA) and MBR plant supernatant demonstrated the reliability and durability of the antifouling property of the superhydrophilic membrane. The conspicuous reduction in foulant-membrane interfacial forces for the functionalized membrane further verified the antifouling properties of the superhydrophilic membrane, suggesting great potential for applications in wastewater treatment. © 2014 Elsevier B.V.

  12. Removal of paraquat and linuron from water by continuous flow adsorption/ ultrafiltration membrane processes

    International Nuclear Information System (INIS)

    Zahoor, M.

    2013-01-01

    The magnetic activated carbon (MAC) was prepared, characterized and compared with powdered activated carbon (PAC) for its adsorptive parameters. Both adsorbents were then used in combination ultrafiltration (UF) membrane as pretreatment for the removal of paraquat and linuron from water. The comparison of membrane parameters like percent retention, permeate flux and backwash times for PAC/UF and MAC/UF hybrid processes showed that percent retention of paraquat and linuron was high for PAC due to its high surface area. However due to cake formation over membrane surface the decline permeate fluxes and long backwash times for PAC were observed. PAC also caused blackening of pipes and flow meter. MAC (an iron oxide and PAC composite) was removed from slurry through magnet thus no cake formation and secondary problems observed for PAC was not encountered. Also the backwash times were minimum for MAC/UF process. (author)

  13. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation.

    Science.gov (United States)

    Wang, Hui; Park, Minkyu; Liang, Heng; Wu, Shimin; Lopez, Israel J; Ji, Weikang; Li, Guibai; Snyder, Shane A

    2017-11-15

    Wastewater reclamation has increasingly become popular to secure potable water supply. Low-pressure membrane processes such as microfiltration (MF) and ultrafiltration (UF) play imperative roles as a barrier of macromolecules for such purpose, but are often limited by membrane fouling. Effluent organic matter (EfOM), including biopolymers and particulates, in secondary wastewater effluents have been known to be major foulants in low-pressure membrane processes. Hence, the primary aim of this study was to investigate the effects of pre-ozonation as a pre-treatment for UF on the membrane fouling caused by EfOM in secondary wastewater effluents for hydrophilic regenerated cellulose (RC) and hydrophobic polyethersulfone (PES) UF membranes. It was found that greater fouling reduction was achieved by pre-ozonation for the hydrophilic RC membrane than the hydrophobic PES membrane at increasing ozone doses. In addition, the physicochemical property changes of EfOM, including biopolymer fractions, by pre-ozonation were systemically investigated. The classical pore blocking model and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theories were employed to scrutinize the fouling alleviation mechanism by pre-ozonation. As a result, the overarching mechanisms of fouling reduction were attributed to the following key reasons: (1) Ozone degraded macromolecules such as biopolymers like proteins and polysaccharides into smaller fractions, thereby increasing free energy of cohesion of EfOM and rendering them more hydrophilic and stable; (2) pre-ozonation augmented the interfacial free energy of adhesion between foulants and the RC/PES membranes, leading to the increase of repulsions and/or the decrease of attractions; and (3) pre-ozonation prolonged the transition from pore blocking to cake filtration that was a dominant fouling mechanism, thereby reducing fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    Science.gov (United States)

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Carbon dioxide nucleation as a novel cleaning method for ultrafiltration membranes

    KAUST Repository

    Al Ghamdi, Mohanned

    2016-12-08

    The use of low-pressure membranes, mainly ultrafiltration (UF), has emerged in the last decade and began to show acceptance as a novel pretreatment process for seawater reverse osmosis (SWRO) desalination. This is mainly due to the superior water quality provided by these membranes, in addition to reduction in chemicals consumption compared to conventional methods. However, membrane fouling remains the main drawback of this technology. Therefore, frequent cleaning of these membranes is required to maintain water flux and its quality. Usually, after a series of backwash using UF permeate chemical cleaning is required under some conditions to fully recover the operating flux. Frequent chemical cleaning will probably decrease the life time of the membrane, increase costs, and will have some effects on the environment. The new cleaning method proposed in this study consists of using a solution saturated with carbon dioxide (CO2) to clean UF membranes. Under the drop in pressure, this solution will become in a supersaturated state and bubbles will start to nucleate on the surface of the membrane and its pores from this solution resulting in the removal of the fouling material deposited on the membrane. Different compositions of fouling solutions including the use of organic compounds such as sodium alginate and colloidal 5 silica with different concentrations were studied using synthetic seawater with different concentrations. This cleaning method was then compared to the backwash using Milli-Q water and showed an improved performance compared to it. An operational modification to this cleaning technique was then investigated which includs a series of sudden pressure drop during the backwash process. This enhanced technique showed an even better performance in cleaning the membrane, especially at severe fouling conditions. In most cases, the membrane permeability was fully recovered even at harsh conditions where conventional backwash failed to maintain a stable

  16. Treatment of simulated plutonium-containing wastewater by ultrafiltration-reverse osmosis technology

    International Nuclear Information System (INIS)

    Xiong Zhonghua; Fan Xianhua; Luo Deli; Wang Tuo; Chen Qi

    2008-01-01

    Ultrafiltration and reverse osmosis were employed for the treatment of low level radioactive water containing plutonium. The system consists of ultrafiltration module with hollow fibre membrane and reverse osmosis module with spiral membrane. The decontamination efficiency and volume concentration ratio affected by technical parameters were explored in the experiment. The results show that the decontamination efficiency achieves 99.94% and the volume concentration ratio achieves 12.5 at pH=10 for solution fed into the membrane separation system. This technology will be applied in radioactive waste minimization as a new treatment method. (authors)

  17. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    Science.gov (United States)

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ultrafiltration to reuse laundering wash water

    DEFF Research Database (Denmark)

    Giagnorio, Mattia; Søtoft, Lene Fjerbæk; Tiraferri, Alberto

    2017-01-01

    Laundering industry consumes and discharges large amounts of water and surfactants, and the demand of surface active agents used for washing is increasing worldwide. Some of these substances are considered contaminants of emerging concern, as they persist in the environment. This work aimed...... at evaluating the feasibility of ultrafiltration as a method to treat the wash wastewater and possibly reuse the surfactant-rich permeate stream in laundry facilities. In particular, evaluation of surfactant recovery was performed through analysis of the permeate flux and properties obtained through polymeric...... and ceramic membranes. Wash water samples were collected at an industrial laundering facility for hospital linen and filtered through different ultrafiltration membranes with varying molecular weight cut-off. The critical micelle concentration of the detergent was quantified, and capillarity measurements were...

  19. FLUX PROFILES AND MATHEMATICAL MODELING OF FOULING MECHANISM FOR ULTRAFILTRATION OF KONJAC GLUCOMANNAN

    Directory of Open Access Journals (Sweden)

    NITA ARYANTI

    2016-07-01

    Full Text Available This study was focused on principles and fouling analysis of konjac glucomannan (KGM separation using ultrafiltration system. Two Polyethersulfone membranes (PES having molecular weight cut-off of 10 and 20 kDa were used. It was found that membrane having larger pore size provided higher flux profiles. Evaluation of different transmembrane pressures resulted on possibility of more severe fouling at higher membrane pressure. With the increase of konjac glucomannan concentration, decrease of profile flux was observed. Further, a simple mathematical modelling of fouling mechanism was analyzed based on Hermia’s model. The images of membrane surfaces and cross-sections obtained by scanning electron microscopy (SEM were examined and being compared with the model. The research found that the fouling mechanisms of KGM ultrafiltration using membrane with pore size of 10 kDa was complete blocking. On the contrary, cake/gel layer formation was a fouling mechanism for ultrafiltration system with pore size of 20kDa.

  20. Evaluation of Ultrafiltration Performance for Phospholipid Separation

    Science.gov (United States)

    Aryanti, N.; Wardhani, D. H.; Maulana, Z. S.; Roberto, D.

    2017-11-01

    Ultrafiltration membrane for degumming of crude palm oil has been applied as an alternative method since the membrane process required less procedure than the conventional degumming. This research focused on the examination of ultrafiltration performance for phospholipid separation from model crude palm oil degumming. Specifically, profile flux and rejection, as well as blocking mechanism, were investigated. Feed consisting of Refined Crude Palm Oil - Isopropanol - Lecithin mixtures were represented as crude palm oil degumming. Lecithin was denoted a phospholipid component, and the concentrations of lecithin in feed were varied to 0.1%, 0.2%, and 0.3%. The concentration of phospholipid was determined as phosphor content. At the concentration of lecithin in feed representing phospholipid concentration of 8,45 mg/kg, 8,45 mg/kg, 24,87 mg/kg and 57,58 mg/kg, respectively. Flux profiles confirmed that there was a flux decline during filtration. In addition, the lecithin concentrations do not significantly effect on further flux decline. Rejection characteristic and phospholipid concentration in the permeate showed that the phospholipid rejections by ultrafiltration were in the range of 23-79,5% representing permeate’s phospholipid concentration of 1,73 - 44,25 mg/kg. Evaluation of fouling mechanism by Hermia’s blocking model confirmed that the standard blocking is the dominant mechanism in the ultrafiltration of lecithin mixture.

  1. Preparation of Cu{sub 2}O nanowire-blended polysulfone ultrafiltration membrane with improved stability and antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zehai; Ye, Shuaiju; Fan, Zheng; Ren, Fanghua; Gao, Congjie [Zhejiang University of Technology, Institute of Oceanic and Environmental Chemical Engineering, College of Chemical Engineering and Material Science and College of Ocean, and State Key Lab Breeding Base of Green Chemical Synthesis Technology and Zhejiang Collaborative Innovation Center of Membrane Separation and Water Treatment (China); Li, Qingbiao; Li, Guoqing [Quanzhou Normal University, College of Chemistry and Life Science (China); Zhang, Guoliang, E-mail: membrane86571@163.com, E-mail: guoliangz@zjut.edu.cn [Zhejiang University of Technology, Institute of Oceanic and Environmental Chemical Engineering, College of Chemical Engineering and Material Science and College of Ocean, and State Key Lab Breeding Base of Green Chemical Synthesis Technology and Zhejiang Collaborative Innovation Center of Membrane Separation and Water Treatment (China)

    2015-10-15

    Polysulfone (PSF) membranes have been widely applied in water and wastewater treatment, food-processing and biomedical fields. In this study, we report the preparation of modified PSF membranes by blending PSF with Cu{sub 2}O nanowires (NWs) to improve their stability and antifouling activity. Synthesis of novel Cu{sub 2}O NWs/PSF-blended ultrafiltration membrane was achieved via phase inversion method by dispersing one-dimensional Cu{sub 2}O nanowires in PSF casting solutions. Various techniques such as XRD, SEM, TEM, and EDS were applied to characterize and investigate the properties of nanowires and membranes. The introduced Cu{sub 2}O nanowires can firmly be restricted into micropores of PSF membranes, and therefore, they can effectively prevent the serious leaking problem of inorganic substances in separation process. The blended PSF membranes also provided enhanced antimicrobial activity and superior permeation property compared to pure PSF membrane. The overall work can not only provide a new way for preparation of novel blended membranes with multidimensional nanomaterials, but can also be beneficial to solve the annoying problem of biofouling.

  2. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    Science.gov (United States)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  3. Prediction of power consumption and performance in ultrafiltration of simulated latex effluent using non-uniform pore sized membranes

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Amira; Doan, Huu; Lohi, Ali; Cheng, Chil-Hung [Ryerson University, 350 Victoria Street, Toronto (Canada)

    2016-03-15

    Tha aim of the present study was to develop a series of numerical models for an accurate prediction of the power consumption in ultrafiltration of simulated latex effluent. The developed power consumption model incorporated fouling attachment, as well as chemical and physical factors in membrane fouling, in order to ensure accurate prediction and scale-up. This model was applied to heterogeneous membranes with non-uniform pore sizes at a given operating conditions and membrane surface charges. Polysulfone flat membrane, with a membrane molecular weight cutoff (MWCO) of 60,000 dalton, at different surface charges was used under a constant flow rate and cross-flow mode. In addition, the developed models were examined using various membranes at a variety of surface charges so as to test the overall reliability and accuracy of these models. The power consumption predicted by the models corresponded to the calculated values from the experimental data for various hydrophilic and hydrophobic membranes with an error margin of 6.0% up to 19.1%.

  4. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME

    Directory of Open Access Journals (Sweden)

    Wong Pui Wah

    2002-11-01

    Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

  5. Experimental and computational investigation of polyacrylonitrile ultrafiltration membrane for industrial oily wastewater treatment

    International Nuclear Information System (INIS)

    Adib Hooman; Hassanajili, Shadi; Sheikhi-Kouhsar, Mohammad Reza; Salahi, Abdolhamid; Mohammadi, Toraj

    2015-01-01

    An experimental study on separation of industrial oil from oily wastewater has been done. A polyacrylonitrile membrane with a molecular weight cut-off (MWCO) of 20 kDa was used and an outlet wastewater of API unit of Tehran refinery was employed. The main purpose of this study was to develop a support vector machine model for permeation flux decline and fouling resistance in a cross-flow hydrophilic polyacrylonitrile membrane during ultrafiltration. The operating conditions which have been applied to develop a support vector machine model were transmembrane pressure (TMP), operating temperature, cross flow velocity (CFV), pH values of oily wastewater, permeation flux decline and fouling resistance. The testing results obtained by the support vector machine models are in very good agreement with experimental data. The calculated squared correlation coefficients for permeation flux decline and fouling resistance were both 0.99. Based on the results, the support vector machine proved to be a reliable accurate estimation method

  6. Experimental and computational investigation of polyacrylonitrile ultrafiltration membrane for industrial oily wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Adib Hooman; Hassanajili, Shadi; Sheikhi-Kouhsar, Mohammad Reza [Shiraz University, Shiraz (Iran, Islamic Republic of); Salahi, Abdolhamid; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)

    2015-01-15

    An experimental study on separation of industrial oil from oily wastewater has been done. A polyacrylonitrile membrane with a molecular weight cut-off (MWCO) of 20 kDa was used and an outlet wastewater of API unit of Tehran refinery was employed. The main purpose of this study was to develop a support vector machine model for permeation flux decline and fouling resistance in a cross-flow hydrophilic polyacrylonitrile membrane during ultrafiltration. The operating conditions which have been applied to develop a support vector machine model were transmembrane pressure (TMP), operating temperature, cross flow velocity (CFV), pH values of oily wastewater, permeation flux decline and fouling resistance. The testing results obtained by the support vector machine models are in very good agreement with experimental data. The calculated squared correlation coefficients for permeation flux decline and fouling resistance were both 0.99. Based on the results, the support vector machine proved to be a reliable accurate estimation method.

  7. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    International Nuclear Information System (INIS)

    Yu, Chien-Hwa; Fang, Lung-Chen; Lateef, Shaik Khaja; Wu, Chung-Hsin; Lin, Cheng-Fang

    2010-01-01

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including α-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  8. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chien-Hwa [Department of Civil and Environment Engineering, Nanya Institute of Technology, Taoyuan, Taiwan (China); Fang, Lung-Chen; Lateef, Shaik Khaja [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wu, Chung-Hsin, E-mail: chunghsinwu@yahoo.com.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China); Lin, Cheng-Fang [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-15

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including {alpha}-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  9. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2018-01-01

    Full Text Available Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF and nanolfiltration (NF membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.. This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.

  10. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products.

    Science.gov (United States)

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René; Castro-Muñoz, Roberto

    2018-01-24

    Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF) and nanolfiltration (NF) membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO) and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.). This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.

  11. Impact of ozonation, anion exchange resin and UV/H2O2 pre-treatments to control fouling of ultrafiltration membrane for drinking water treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-06-01

    The effects of ozonation, anion exchange resin (AER) and UV/H 2 O 2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H 2 O 2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H 2 O 2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.

  12. Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Madaeni, S.S., E-mail: smadaeni@yahoo.com [Membrane Research Center, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Ghaemi, N. [Membrane Research Center, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Alizadeh, A. [Nanoscience and Nanotechnology Research Centre (NNRC), Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Joshaghani, M. [Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2011-05-01

    Fouling is one of the most present prominent problems in almost all membrane processes. An increase in the membrane hydrophilicity is one of the effective ways to improve the membrane resistance to fouling. In this research, TiO{sub 2} nanoparticles were deposited on the surface of composite ultrafiltration (UF) membrane, and then irradiated by ultraviolet (UV) light. The coating of the membrane surface with TiO{sub 2} nanoparticles and radiation with (UV) light led to the considerable increase of hydrophilicity on the membrane surface. The deposition of TiO{sub 2} nanoparticles was carried out through coordinance bonds with OH functional groups of the polymer on the membrane surface. The flux through a coated and (UV) light radiated membrane was increased to a large extent compared to a virgin membrane. In this research, the effect of different concentrations of TiO{sub 2} nanoparticles in the presence and absence of (UV) irradiation was investigated, and the role of increasing of hydrophilicity on the anti-fouling property of membranes was studied. In order to characterize the membranes FTIR, XRD, SEM, water contact angle and cross-flow filtration were employed. This procedure is a useful technique for improvement of hydrophilicity to decrease (increase) fouling (anti-fouling performance) and enhance the permeation of membranes.

  13. Study and optimization of the ultrasound-enhanced cleaning of an ultrafiltration ceramic membrane through a combined experimental-statistical approach.

    Science.gov (United States)

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2014-05-01

    Membrane fouling is one of the main drawbacks of ultrafiltration technology during the treatment of dye-containing effluents. Therefore, the optimization of the membrane cleaning procedure is essential to improve the overall efficiency. In this work, a study of the factors affecting the ultrasound-assisted cleaning of an ultrafiltration ceramic membrane fouled by dye particles was carried out. The effect of transmembrane pressure (0.5, 1.5, 2.5 bar), cross-flow velocity (1, 2, 3 ms(-1)), ultrasound power level (40%, 70%, 100%) and ultrasound frequency mode (37, 80 kHz and mixed wave) on the cleaning efficiency was evaluated. The lowest frequency showed better results, although the best cleaning performance was obtained using the mixed wave mode. A Box-Behnken Design was used to find the optimal conditions for the cleaning procedure through a response surface study. The optimal operating conditions leading to the maximum cleaning efficiency predicted (32.19%) were found to be 1.1 bar, 3 ms(-1) and 100% of power level. Finally, the optimized response was compared to the efficiency of a chemical cleaning with NaOH solution, with and without the use of ultrasound. By using NaOH, cleaning efficiency nearly triples, and it improves up to 25% by adding ultrasound. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  15. Water hammer reduces fouling during natural water ultrafiltration.

    Science.gov (United States)

    Broens, F; Menne, D; Pothof, I; Blankert, B; Roesink, H D W; Futselaar, H; Lammertink, R G H; Wessling, M

    2012-03-15

    Today's ultrafiltration processes use permeate flow reversal to remove fouling deposits on the feed side of ultrafiltration membranes. We report an as effective method: the opening and rapid closing of a valve on the permeate side of an ultrafiltration module. The sudden valve closure generates pressure fluctuations due to fluid inertia and is commonly known as "water hammer". Surface water was filtrated in hollow fiber ultrafiltration membranes with a small (5%) crossflow. Filtration experiments above sustainable flux levels (>125 l (m2h)(-1)) show that a periodic closure of a valve on the permeate side improves filtration performance as a consequence of reduced fouling. It was shown that this effect depends on flux and actuation frequency of the valve. The time period that the valve was closed proved to have no effect on filtration performance. The pressure fluctuations generated by the sudden stop in fluid motion due to the valve closure are responsible for the effect of fouling reduction. High frequency recording of the dynamic pressure evolution shows water hammer related pressure fluctuations to occur in the order of 0.1 bar. The pressure fluctuations were higher at higher fluxes (higher velocities) which is in agreement with the theory. They were also more effective at higher fluxes with respect to fouling mitigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  17. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes

    Science.gov (United States)

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-01-01

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621

  18. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxiang [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guohe, E-mail: huang@iseis.org [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Wei, Jia [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 (Canada); Li, Huiqin; Zheng, Rubing; Zhou, Ya [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Gemini surfactant micellar enhanced ultrafiltration was used to remove phenol. Black-Right-Pointing-Pointer The effect of different hydrophilic head groups of surfactant was analyzed. Black-Right-Pointing-Pointer SEM, ATR-FTIR and mercury porosimeter were applied to elucidate membrane fouling. Black-Right-Pointing-Pointer Gemini surfactant had superior performance in comparing with conventional surfactant. - Abstract: Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L{sub m}) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated

  19. Preparation and characterization of novel zwitterionic poly(arylene ether sulfone) ultrafiltration membrane with good thermostability and excellent antifouling properties

    Science.gov (United States)

    Rong, Guolong; Zhou, Di; Han, Xiaocui; Pang, Jinhui

    2018-01-01

    Zwitterionic poly(arylene ether sulfone) (PAES-NS) was synthesized via copolymerization by using a bisphenol monomer with a pyridine group. The chemical structures of the copolymers were confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopy; the copolymers showed good thermal stability. A series of polyphenysulfone (PPSU)/PAES-NS blend ultrafiltration (UF) membranes was prepared via conventional immersion precipitation phase inversion methods The morphologies of the modified membranes were investigated by scanning electron microscopy (SEM). The surface hydrophilicity of the UF membranes was studied by water contact angle measurement, indicating that the zwitterionic group increased the membrane hydrophilicity. UF of solvated model pollutants using the membranes showed a significant reduction of the irreversible adsorption of the foulants, illustrating the excellent anti-fouling properties of the membrane. The water flux of the PAES-NS membrane was significantly enhanced, being almost three times higher than that of the pristine PPSU membrane, with retention of a high rejection level. After three UF cycles, the water flux recovery of the PAES-NS membrane was as high as 96%.

  20. Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes.

    Science.gov (United States)

    Doyen, Alain; Udenigwe, Chibuike C; Mitchell, Patricia L; Marette, André; Aluko, Rotimi E; Bazinet, Laurent

    2014-02-15

    Flaxseed protein hydrolysate has been fractionated by electrodialysis with two ultrafiltration membranes (20 and 50 kDa) stacked in the system for the recovery of two specific cationic peptide fractions (KCl-F1 and KCl-F2). After 360 min of treatment, peptide migration increased as a function of time in KCl compartments. Moreover, the use of two different ultrafiltration membrane allowed concentration of the 300-400 and 400-500 Da molecular weight range peptides in the KCl-F1 and KCl-F2 fractions, respectively, compared to the initial hydrolysate. After mass spectrometry analysis, higher amounts of low molecular weight peptides were recovered in the KCl-F2 compartment while relatively higher molecular weight peptides were more detected in the KCl-F1 compartment. Amino acid analysis showed that His, Lys and Arg were especially concentrated in the KCl compartments. Finally, glucose-transport assay demonstrated that the KCl-F2 fraction increased glucose uptake while oral administration of KCl-F1 and final FPH decreased systolic blood pressure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Development of a High Performance PES Ultrafiltration Hollow Fiber Membrane for Oily Wastewater Treatment Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Noor Adila Aluwi Shakir

    2015-12-01

    Full Text Available This study attempts to optimize the spinning process used for fabricating hollow fiber membranes using the response surface methodology (RSM. The spinning factors considered for the experimental design are the dope extrusion rate (DER, air gap length (AGL, coagulation bath temperature (CBT, bore fluid ratio (BFR, and post-treatment time (PT whilst the response investigated is rejection. The optimal spinning conditions promising the high rejection performance of polyethersulfone (PES ultrafiltration hollow fiber membranes for oily wastewater treatment are at the dope extrusion rate of 2.13 cm3/min, air gap length of 0 cm, coagulation bath temperature of 30 °C, and bore fluid ratio (NMP/H2O of 0.01/99.99 wt %. This study will ultimately enable the membrane fabricators to produce high-performance membranes that contribute towards the availability of a more sustainable water supply system.

  2. A STUDY OF BRACKISH WATER MEMBRANE WITH ULTRAFILTRATION PRETREATMENT IN INDONESIA´S COASTAL AREA

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-01-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30--61 L/m2·hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF--PS (Polysulfone-UF with total dissolved solid rejection about 96--98% and color rejection about 99--100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF--air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  3. A study of brackish water membrane with ultrafiltration pretreatment in Indonesia’s coastal area

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-06-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30–61 L/m2∙hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF–PS (Polysulfone-UF with total dissolved solid rejection about 96–98% and color rejection about 99–100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF–air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  4. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    International Nuclear Information System (INIS)

    Rahimpour, Ahmad; Madaeni, Sayed Siavash; Jahanshahi, Mohsen; Mansourpanah, Yaghoub; Mortazavian, Narmin

    2009-01-01

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  5. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    Science.gov (United States)

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes 3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders.

  6. A simplified ultrafiltration method for determination of serum free cortisol

    International Nuclear Information System (INIS)

    MacMahon, W.; Sgoutas, D.

    1983-01-01

    The authors describe the suitability of the Amicon MPS-1 centrifugal ultrafiltration device and the YMB membrane for measuring free cortisol in serum. The method combines two independent assays: total cortisol and the ultrafiltrate fraction of added [ 3 H]cortisol. The unbound fraction is determined in 0.25-0.30 ml of ultrafiltrate collected from 0.6 to 1 ml of serum that has been equilibrated with [ 3 H]cortisol at 37 0 C for 20 min. The assay is rapid (less than 1 h), practical (no more than 0.6 ml of serum is necessary) and repeatable (CV: 3.8% within-assay and 12.2% in different assays). Error introduced in free cortisol measurement due to dilution effects in dialysis is systematically defined, and the effect of tracer purity on the ultrafiltration method is examined. Dialyzed sera from normal men and women, from patients with Cushing's disease and adrenal insufficiency, and from pregnant women gave ultrafiltration results that accurately duplicated those obtained by previous dialysis. (Auth.)

  7. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yurekli, Yilmaz, E-mail: yilmazyurekli@gmail.com

    2016-05-15

    Highlights: • NaX addition significantly enhanced water hydraulic permeability of the membrane. • Metal exchange capacity of the membrane increased with the NaX content. • Hybrid membrane was efficient for the solutions with low metal concentrations - Abstract: In this study, the adsorption and the filtration processes were coupled by a zeolite nanoparticle impregnated polysulfone (PSf) membrane which was used to remove the lead and the nickel cations from synthetically prepared solutions. The results obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis indicated that the synthesized zeolite nanoparticles, using conventional hydrothermal method, produced a pure NaX with ultrafine and uniform particles. The performance of the hybrid membrane was determined under dynamic conditions. The results also revealed that the sorption capacity as well as the water hydraulic permeability of the membranes could both be improved by simply tuning the membrane fabricating conditions such as evaporation period of the casting film and NaX loading. The maximum sorption capacity of the hybrid membrane for the lead and nickel ions was measured as 682 and 122 mg/g respectively at the end of 60 min of filtration, under 1 bar of transmembrane pressure. The coupling process suggested that the membrane architecture could be efficiently used for treating metal solutions with low concentrations and transmembrane pressures.

  8. Simultaneous determination of free calcium, magnesium, sodium and potassium ion concentrations in simulated milk ultrafiltrate and reconstituted skim milk using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Gao, R.; Temminghoff, E.J.M.; Leeuwen, van H.P.; Valenberg, van H.J.F.; Eisner, M.D.; Boekel, van M.A.J.S.

    2009-01-01

    This study focused on determination of free Ca2+, Mg2+, Na+ and K+ concentrations in a series of CaCl2 solutions, simulated milk ultrafiltrate and reconstituted skim milk using a recently developed Donnan Membrane Technique (DMT). A calcium ion selective electrode was used to compare the DMT

  9. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda

    Directory of Open Access Journals (Sweden)

    Alexandra Huttinger

    2015-10-01

    Full Text Available There is a critical need for safe water in healthcare facilities (HCF in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8% and failure of the chlorination mechanism (7%. When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  10. Preparation and characterization of poly (methyl methacrylate) and sulfonated poly (ether ether ketone) blend ultrafiltration membranes for protein separation applications

    International Nuclear Information System (INIS)

    Arthanareeswaran, G.; Thanikaivelan, P.; Raajenthiren, M.

    2009-01-01

    Poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate)/sulfonated poly (ether ether ketone) (SPEEK) blend membranes were prepared by phase inversion technique in various composition using N,N'-dimethylformamide as solvent. The prepared membranes were characterized in terms of pure water flux, water content, porosity and thermal stability. The addition of SPEEK to the casting solution resulted in membranes with high pure water flux, water content, porosity and slightly low thermal stability. The cross sectional views of the blend membranes under electron microscope confirm the porosity and water flux results. The effect of the addition of SPEEK into the PMMA matrix on the extent of bovine serum albumin (BSA) separation was studied. It was found that the permeate flux increased significantly while the rejection of BSA from aqueous solution reduced moderately during ultrafiltration (UF) process. The effect was attributed to the increase in porosity and charge of the membrane due to the addition of SPEEK into the PMMA blend solution

  11. Evaluation of ultrafiltration membranes for treating low-level radioactive contaminated liquid waste

    International Nuclear Information System (INIS)

    Koenst, J.W.; Roberts, R.C.

    1978-01-01

    A series of experiments were performed on Waste Disposal Facility (WD) influent using Romicon hollow fiber ultrafiltration modules with molecular weight cutoffs ranging from 2000 to 80,000. The rejection of conductivity was low in most cases. The rejection of radioactivity ranged from 90 to 98%, depending on the membrane type and on the feed concentration. Typical product activity ranged from 7 to 100 dis/min/ml of alpha radiation. Experiments were also performed on alpha-contaminated laundry wastewater. Results ranged from 98 to >99.8%, depending on the membrane type. This yielded a product concentration of less than 0.1 dis/min/ml of alpha radiation. Tests on PP-Building decontamination water yielded rejections of 85 to 88% alpha radiation depending on the membrane type. These experiments show that the ability to remove radioactivity by membrane is a function of the contents of the waste stream because the radioactivity in the wastewater is in various forms: ionic, polymeric, colloidal, and absorbed onto suspended solids. Although removal of suspended or colloidal material is very high, removal of ionic material is not as effective. Alpha-contaminated laundry wastewater proved to be the easiest to decontaminate, whereas the low-level PP-Building decontamination water proved to be the most difficult to decontaminate. Decontamination of the WD influent, a combined waste stream, varied considerably from day to day because of its constantly changing makeup. The WD influent was also treated with various substances, such as polyelectrolytes, complexing agents, and coagulants, to determine if these additives would aid in the removal of radioactive material from the various wastewaters by complexing the ionic species. At the present time, none of the additives evaluated has had much effect; but experiments are continuing

  12. Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR).

    Science.gov (United States)

    Sahar, Eyal; Messalem, Rami; Cikurel, Haim; Aharoni, Avi; Brenner, Asher; Godehardt, Manuel; Jekel, Martin; Ernst, Mathias

    2011-10-15

    The fates of several macrolide, sulphonamide, and trimethoprim antibiotics contained in the raw sewage of the Tel-Aviv wastewater treatment plant (WWTP) were investigated after the sewage was treated using either a full-scale conventional activated sludge (CAS) system coupled with a subsequent ultrafiltration (UF) step or a pilot membrane bioreactor (MBR) system. Antibiotics removal in the MBR system, once it achieved stable operation, was 15-42% higher than that of the CAS system. This advantage was reduced to a maximum of 20% when a UF was added to the CAS. It was hypothesized that the contribution of membrane separation (in both systems) to antibiotics removal was due either to sorption to biomass (rather than improvement in biodegradation) or to enmeshment in the membrane biofilm (since UF membrane pores are significantly larger than the contaminant molecules). Batch experiments with MBR biomass showed a markedly high potential for sorption of the tested antibiotics onto the biomass. Moreover, methanol extraction of MBR biomass released significant amounts of sorbed antibiotics. This finding implies that more attention must be devoted to the management of excess sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties.

    Science.gov (United States)

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-06-21

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  14. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2016-06-01

    Full Text Available In this study, flat sheet asymmetric polyphenylsulfone (PPSU ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM, contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R, Rm (membrane inherent resistance, Rc (cake layer resistance, and Rp (pore plugging resistance. The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m2·h, the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  15. Increasing Water System Efficiency with Ultrafiltration Pre-treatment in Power Plants

    International Nuclear Information System (INIS)

    Majamaa, Katariina; Suarez, Javier; Gasia Eduard

    2012-09-01

    Water demineralization with reverse osmosis (RO) membranes has a long and successful history in water treatment for power plants. As the industry strives for more efficient, reliable and compact water systems, pressurized hollow-fiber ultrafiltration (UF) has become an increasingly appealing pre-treatment technology. Compared to conventional, non- membrane based pretreatments, ultrafiltration offers higher efficiency in the removal of suspended solids, microorganisms and colloidal matter, which are all common causes for operational challenges experienced in the RO systems. In addition, UF is more capable of handling varying feed water qualities and removes the risk of particle carry-over often seen with conventional filtration techniques. Ultrafiltration is a suitable treatment technology for various water types from surface waters to wastewater, and the more fluctuating or challenging the feed water source is, the better the benefits of UF are seen compared to conventional pretreatments. Regardless of the feed water type, ultrafiltration sustains a constant supply of high quality feed water to downstream RO, allowing a more compact and cost efficient RO system design with improved operational reliability. A detailed focus on the design and operational aspects and experiences of two plants is provided. These examples demonstrate both economical UF operation and tangible impact of RO process improvement. Experience from these plants can be leveraged to new projects. (authors)

  16. Ultrafiltration concept for separating oil from water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, R.L.; Schrab H.

    1973-01-01

    Discharge of oily wastes from shipboard operations of deballasting, bilge pumping, and slop tank cleaning constitutes a serious water pollution problem. Membrane ultrafiltration was studied in this project as a means of generating a highly purified water from a variety of oily wastes.

  17. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing; Croue, Jean-Philippe

    2012-01-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  18. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing

    2012-12-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  19. Non-aqueous retention measurement: ultrafiltration behaviour of polystyrene solutions and colloidal silver particles

    NARCIS (Netherlands)

    Beerlage, M.A.M.; Beerlage, M.A.M.; Heijnen, M.L.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.; Strathmann, H.

    1996-01-01

    The retention behaviour of polyimide ultrafiltration membranes was investigated using dilute solutions of polystyrene in ethyl acetate as test solutions. It is shown that flow-induced deformation of the polystyrene chains highly affects the membrane retention. This coil-stretch transition is not

  20. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xiaojian Zhang; Yonghong Li; Jun Wang; Chao Chen

    2011-01-01

    Particles and natural organic matter (NOM) are two major concerns in surface water,which greatly influence the membrane filtration process.The objective of this article is to investigate the effect of particles,NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF.Particles,NOM and their mixture were spiked in tap water to simulate raw water.Exponential relationship,(JP/JP0 =axexp{-k[t-(n- 1)T]}),was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well.In this equation,coefficient a was determined by the value of Jp/Jp0 at the beginning of a filtration cycle,reflecting the flux recovery after backwashing,that is,the irreversible fouling.The coefficient k reflected the trend of flux dynamics.Integrated total permeability (ΣJp) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios.According to the results,there was an additive effect on membrane flux by NOM and particles during solo UF process.This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant,which further delayed the decrease of membrane flux and benefited flux recovery by backwashing.The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.

  1. Stirred cell ultrafiltration of lignin from black liquor generated from South African kraft mills

    CSIR Research Space (South Africa)

    Kekana, Paul

    2016-12-01

    Full Text Available Ultrafiltration of lignin from black liquor was carried out in a stirred batch cell using polyethersulfone membranes. Parameters such as operating pressure, feed concentration, stirring rate and membrane cut-off size were varied and their effects...

  2. An improved ultrafiltration method for determining free testosterone in serum

    International Nuclear Information System (INIS)

    Vlahos, I.; MacMahon, W.; Sgoutas, D.; Bowers, W.; Thompson, J.; Trawick, W.

    1982-01-01

    In this method, we use the Amicon MPS-1 centrifugal ultrafiltration device and the YMB membrane in measuring free testosterone in serum. Two independent assays are combined: total testosterone and the ultrafiltrable fraction of added [ 3 H]testosterone. The unbound fraction is determined in 0.15-0.5 mL ultrafiltrates of 0.6 to 1 mL of variably diluted serum that has been equilibrated with [ 3 H]testosterone at 37 degrees C. The assay is rapid (less than 1 h), practicable (requires 0.6 mL of serum), and reproducible (CV 3.2% within assay, 3.9% between assays). Accuracy was evaluated as the fraction of free testosterone in the ultrafiltrate of dialyzed serum vs that in a prior dialysate; they were the same confirming the validity of the free testosterone measurement. Samples from ostensibly healthy men and women and from hirsute and pregnant women gave results that agreed with those obtained by equilibrium dialysis. Total testosterone concentrations for normal and hirsute women showed considerable overlap, but data on free testosterone concentrations in these populations were better resolved

  3. Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment.

    Science.gov (United States)

    Xing, Jiajian; Liang, Heng; Cheng, Xiaoxiang; Yang, Haiyan; Xu, Daliang; Gan, Zhendong; Luo, Xinsheng; Zhu, Xuewu; Li, Guibai

    2018-06-02

    This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.

  4. Recovery of carbohydrates from nixtamalization wastewaters (nejayote) by ultrafiltration

    OpenAIRE

    Castro-Muñoz, R.; Cerón-Montes, G.I.; Barragán-Huerta, B.E.; Yáñez-Fernández, J.

    2015-01-01

    Nejayote extract is a polluting by-product from Nixtamalization of maize; therefore in this study was evaluated a membrane operation for the treatment and recovery of industrial usable compounds. Nejayote extract was processed by ultrafiltration (UF) membrane on laboratory scale. In experimental tests performed according to the total recycle mode, the effect of transmembrane pressure (TMP) on permeate flux has been studied. The permeate flux no showed a considerable increase for TMP values hi...

  5. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance

    International Nuclear Information System (INIS)

    Chang, Xiaojing; Wang, Zhenxing; Quan, Shuai; Xu, Yanchao; Jiang, Zaixing; Shao, Lu

    2014-01-01

    Graphical abstract: - Highlights: • The synergetic effects of GO and PVP on membrane performance were investigated. • The surface hydrophilicity of membrane was enhanced by the synergistic effects. • The anti-fouling performance was obviously improved in PVDF/GO/PVP membrane. • The optimized performance can be obtained at the stipulated GO and PVP contents. - Abstract: Membrane surface and cross-sectional morphology created during membrane formation is one of the most essential factors determining membrane separation performance. However, the complicated interactions between added nanoparticles and additives influencing membrane morphology and performance during building membrane architectures had been generally neglected. In this study, asymmetric PVDF composite ultrafiltration (UF) membranes containing graphene oxides (GO) were prepared by using N-methyl pyrrolidone (NMP) as solvent and polyvinylpyrrodione (PVP) as the pore forming reagent. In the first time, the effects of mutual interactions between GO and PVP on membranes surface compositions, morphology and performance were investigated in detail. The variation in chemical properties of different membranes and hydrogen bonds in the membrane containing GO and PVP were confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle (CA) were utilized to clarify the synergetic effects of GO and PVP on morphologies and surface hydrophilicity of membranes. Besides, water flux, bovine serum albumin (BSA) rejection and attenuate coefficient were also determined to investigate filtration performance of various membranes. Compared with pure PVDF membrane, the comprehensive performance of PVDF/GO/PVP membrane has been obviously improved. The surface hydrophilicity and anti-fouling performance were enhanced by the synergistic effects of incorporated GO and

  6. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiaojing [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology 150001 (China); Research Institute of Aerospace Special Materials and Technology, Beijing 100074 (China); Wang, Zhenxing; Quan, Shuai; Xu, Yanchao; Jiang, Zaixing [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology 150001 (China); Shao, Lu, E-mail: odysseynus@hotmail.com [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology 150001 (China)

    2014-10-15

    Graphical abstract: - Highlights: • The synergetic effects of GO and PVP on membrane performance were investigated. • The surface hydrophilicity of membrane was enhanced by the synergistic effects. • The anti-fouling performance was obviously improved in PVDF/GO/PVP membrane. • The optimized performance can be obtained at the stipulated GO and PVP contents. - Abstract: Membrane surface and cross-sectional morphology created during membrane formation is one of the most essential factors determining membrane separation performance. However, the complicated interactions between added nanoparticles and additives influencing membrane morphology and performance during building membrane architectures had been generally neglected. In this study, asymmetric PVDF composite ultrafiltration (UF) membranes containing graphene oxides (GO) were prepared by using N-methyl pyrrolidone (NMP) as solvent and polyvinylpyrrodione (PVP) as the pore forming reagent. In the first time, the effects of mutual interactions between GO and PVP on membranes surface compositions, morphology and performance were investigated in detail. The variation in chemical properties of different membranes and hydrogen bonds in the membrane containing GO and PVP were confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle (CA) were utilized to clarify the synergetic effects of GO and PVP on morphologies and surface hydrophilicity of membranes. Besides, water flux, bovine serum albumin (BSA) rejection and attenuate coefficient were also determined to investigate filtration performance of various membranes. Compared with pure PVDF membrane, the comprehensive performance of PVDF/GO/PVP membrane has been obviously improved. The surface hydrophilicity and anti-fouling performance were enhanced by the synergistic effects of incorporated GO and

  7. A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles.

    Science.gov (United States)

    Li, Xin; Li, Jiansheng; Fang, Xiaofeng; Bakzhan, Kariboz; Wang, Lianjun; Van der Bruggen, Bart

    2016-05-01

    Fouling of ultrafiltration (UF) membranes is a major impediment for their use in drinking water production. Mixed matrix membranes (MMMs) may have great opportunities in dealing with this challenge due to their hierarchical structures and multiple functionalities. In this study, a synergetic analysis method based on intermolecular adhesion force measurement and fouling process simulation was applied to investigate the fouling mechanism of polyethersulfone (PES) UF membranes containing in situ self-assembled TiO2 nanoparticles (NPs). The fouling resistance behavior and antifouling mechanism of the newly developed composite membranes were investigated with sodium alginate (SA), bovine serum albumin (BSA) and humic acid (HA) as model organic foulants. An improved antifouling effect was conspicuously observed for the composite membranes, expressed by a lower flux decline and significantly better cleaning efficiency. A strong correlation between the self-assembled structure of TiO2 NPs and the antifouling behavior of the composite membrane was observed. A lower magnitude and a narrower distribution of adhesion forces for the composite membrane suggest the effective suppression of foulants adsorption on the clean or fouled membrane. The simulation analysis indicates that the main fouling mechanism was standard blocking and cake filtration, further confirming the superiority of the NPs self-assembled structure in mitigating membrane fouling. This dual analysis method may provide a promising technological support for the application of modified UF membranes with self-assembled NPs in drinking water production. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process.

    Science.gov (United States)

    Tay, Ming Feng; Liu, Chang; Cornelissen, Emile R; Wu, Bing; Chong, Tzyy Haur

    2018-02-01

    This study examines the feasibility of a novel nanofiltration membrane bioreactor (NF-MBR) followed by reverse osmosis (RO) process for water reclamation at 90% recovery and using an ultrafiltration MBR (UF-MBR)+RO as baseline for comparison. Both MBRs adopted the same external hollow fiber membrane configurations and operating conditions. The collected permeates of the MBRs were subsequently fed to the respective RO systems. The results showed that the NF-MBR (operated at a constant flux of 10 L/m 2 h) achieved superior MBR permeate quality due to enhanced biodegradation and high rejection capacity of the NF membrane, leading to lower RO fouling rates (∼3.3 times) as compared to the UF-MBR. Further analysis indicated that the cake layer fouling that caused the cake-enhanced osmotic pressure (CEOP) effect contributed predominantly to the transmembrane pressure (TMP) increase in the NF-MBR, while irreversible pore fouling was the major reason for UF membrane fouling. Furthermore, it was found that the biopolymers (i.e., organics with MW > 10 kDa) were the main components present in the foulants of the NF/UF membranes and RO membranes. The analysis indicated that the NF-MBR + RO system at recovery of 90% has comparable energy consumption as the UF-MBR + RO system at recovery of 75%. Our findings proved the feasibility of the NF-MBR + RO for water reclamation at a high recovery rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Crossflow Ultrafiltration for Removing Direct-15 Dye from Wastewater of Textile Industry

    Directory of Open Access Journals (Sweden)

    A.L. Ahmad

    2017-11-01

    Full Text Available Ultrafiltration membrane was used to treat the effluent from textile industries. Crossflow ultrafiltration using GN polymeric membrane was used to remove the dye from textile effluent. A synthetic textile effluent of Direct-15 dye was used. The study focused through the effect of feed concentration, transmembrane pressure and solution’s pH on the permeate flux and percentage of dye removal were investigated. Dye concentration had significant effects on flux values. Under the fixed pressures and pH, the flux decreased while the dye rejection increased with increasing feed concentration. Transmembrane pressure also had significant effect on flux values. Under the fixed feed concentration and pH, the flux increased while dye rejection decreased with increasing pressure. Experiment data showed that the highest flux was observed at pH 4 (acidic condition while the highest dye removal observed at pH 7. Data collection could be used to improve the effectiveness of dye removal from textile industry wastewater using membrane technology.

  10. PEMBUATAN MEMBRAN ULTRAFILTRASI DARI POLIMER SELULOSA ASETAT DENGAN METODE INVERSI FASA

    Directory of Open Access Journals (Sweden)

    Agus Mirwan

    2017-04-01

    Full Text Available Clean water treatment with membrane technology is a water treatment process with very good quality and suitable for drinking water treatment in developing countries because the membrane has a lot of advantages. One type of membrane separation operation is with ultrafiltration membranes. Ultrafiltration is a process of filtering particles in the size range of colloids, namely liquid while large molecules detained on the surface of the membrane and the solute with very small size can pass through the membrane. The purpose of this study was to determine the best composition of %wt of dimethylformamide in the manufacture of ultrafiltration membranes. Ultrafiltration membrane is made by varying the concentration of the additive of dimethylformamide which serves for the determination of membrane pore size and the concentration of acetone. Mixing materials done by stirring for ± 6 hours, polymer film printouts is coagulated for 1 hour in ice water (± 4 ° C and then washed with running water and stored in a container containing formalin. Then conducted testing on the membrane using peat water where permeate that generated is measured the volume of each interval of 5 minutes to determine the membrane flux. Then analyzing the concentration of permeate to determine the coefficient of rejection, where the expected rejection is> 90%. Based on the research results, the best ultrafiltration membrane was membrane with composition wt% of dimethylformamide of 20; 24 and 28, where rejection coefficient average respectively was 98.15; 92.80 and 95.41%.

  11. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal-Contribution of Fouling and Concentration Polarization to Filtration Resistance.

    Science.gov (United States)

    Winter, Joerg; Barbeau, Benoit; Bérubé, Pierre

    2017-07-02

    Nanofiltration (NF) and tight ultrafiltration (tight UF) membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP) and fouling to the increase in resistance during filtration of natural organic matter (NOM) with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs) of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM), the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM), the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended.

  12. Selective separation of Eu3+ using polymer-enhanced ultrafiltration

    International Nuclear Information System (INIS)

    Norton, M.V.

    1994-03-01

    A process to selectively remove 241 Am from liquid radioactive waste was investigated as an actinide separation method applicable to Hanford and other waste sites. The experimental procedures involved removal of Eu, a nonradioactive surrogate for Am, from aqueous solutions at pH 5 using organic polymers in conjunction with ultrafiltration. Commercially available polyacrylic acid (60,000 MW) and Pacific Northwest Laboratory's (PNL) synthesized E3 copolymer (∼10,000 MW) were tested. Test solutions containing 10 μg/mL of Eu were dosed vath each polymer at various concentrations in order to bind Eu (i.e., by complexation and/or cation exchange) for subsequent rejection by an ultrafiltration coupon. Test solutions were filtered with and without polymer to determine if enhanced Eu separation could be achieved from polymer treatment. Both polymers significantly increased Eu removal. Optimum concentrations were 20 μg/mL of polyacrylic acid and 100 μg/mL of E3 for 100% Eu rejection by the Amicon PM10 membrane at 55 psi. In addition to enhancement of removal, the polymers selectively bound Eu over Na, suggesting that selective separation of Eu was possible. This suggests that polymer-enhanced ultrafiltration is a potential process for separation of 241 Am from Hanford tank waste, further investigation of binding agents and membranes effective under very alkaline and high ionic strength is warranted. This process also has potential applications for selective separation of toxic metals from industrial process streams

  13. Application of Combined Cake Filtration-Complete Blocking Model to Ultrafiltration of Skim Milk

    Directory of Open Access Journals (Sweden)

    Mansoor Kazemimoghadam

    2017-10-01

    Full Text Available Membrane ultrafiltration (UF is widely used in dairy industries like milk concentration and dehydration processes. The limiting factor of UF systems is fouling which is defined as the precipitation of solutes in the form of a cake layer on the surface of the membrane. In this study, the combined cake filtration-complete blocking model was compared to cake filtration mechanism for flux data through ultrafiltration of skim milk at constant flow rate. The resistance data also was modeled using cake filtration model and standard blocking model. The effect of different trans-membrane pressures and temperatures on flux decline was then investigated. Based on the results obtained here, the combined complete blocking-cake formation model was in excellent agreement with experimental data. The cake filtration model also provided good data fits and can be applied to solutions whose solutes tend to accumulate on the surface of the membrane in the form of a cake layer. With increasing pressure, the differences between the model and experimental data increased.

  14. Membrane Bioreactor (MBR) as Alternative to a Conventional Activated Sludge System Followed by Ultrafiltration (CAS-UF) for the Treatment of Fischer-Tropsch Reaction Water from Gas-to-Liquids Industries

    NARCIS (Netherlands)

    Laurinonyte, Judita; Meulepas, Roel J.W.; Brink, van den Paula; Temmink, Hardy

    2017-01-01

    The potential of a membrane bioreactor (MBR) system to treat Fischer-Tropsch (FT) reaction water from gas-to-liquids (GTL) industries was investigated and compared with the current treatment system: a conventional activated sludge system followed by an ultrafiltration (CAS-UF) unit. The MBR and

  15. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes

    KAUST Repository

    Yoon, Jaekyung

    2009-09-01

    Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L-1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m-1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and ClO4 - rejection follows the order LFC-1 (>90%) > MX07 (25-95%) ≅ ESNA (30-90%) > GM (3-47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and ClO4 - rejection follows the order CaCl2 < KCl ≅ K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding NO3 - (71-74%) than the ESNA NF membrane (11-56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (CrO4 2 -, SO4 2 -, and HAsSO4 2 -) the rejection (38-56%) is fairly proportional to the ri,s/rp ratio (0.32-0.62) for the ESNA

  16. Enhanced antimony(V) removal using synergistic effects of Fe hydrolytic flocs and ultrafiltration membrane with sludge discharge evaluation.

    Science.gov (United States)

    Ma, Baiwen; Wang, Xing; Liu, Ruiping; Qi, Zenglu; Jefferson, William A; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2017-09-15

    The integration of adsorbents with ultrafiltration (UF) membranes is a promising method for alleviating membrane fouling and reducing land use. However, a number of problems have become apparent concerning the granular adsorbents used currently, such as high running cost, high chance of causing membrane surface damage, low in situ chemical cleaning efficiency, etc. Herein, to overcome these disadvantages, loose in situ hydrolyzed flocs were directly injected into the membrane tank, providing strong adsorption ability at low cost. To test the feasibility of this method, the heavy metal pollutant antimony (Sb (V)) in a water plant was chosen at a test case, which is similar to arsenic and difficult to remove. We found that Fe-based flocs integrated with an UF membrane showed a large potential advantage in removing Sb(V), even after running for 110 days. We demonstrated that the observed slow transmembrane pressure development could be ascribed to the loose floc cake layer formed, even though some extracellular polymeric substances were induced during operation. We also found that the floc cake layer was easily removed by washing with feed water or dissolved by in situ chemical cleaning under strongly acidic conditions, and many primary membrane pores were clearly observed. In addition, a relative long sludge discharge interval was feasible for this technology and the effluent quality was good, including the turbidity, chromaticity and iron concentration. Based on the excellent performance, these flocs integrated with UF membranes indeed show potential for application in water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  18. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    Science.gov (United States)

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  19. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun; Jeong, Sanghyun; Ye, Yun; Chen, Vicki; Vigneswaran, Saravanamuthu; Leiknes, TorOve; Liu, Zongwen

    2016-01-01

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  20. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun

    2016-11-04

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  1. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.

    Science.gov (United States)

    Yu, Wenzheng; Liu, Teng; Crawshaw, John; Liu, Ting; Graham, Nigel

    2018-08-01

    The fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size. For NF membranes the removal of smaller MW fractions (800 Da-10 kDa) was less than expected from their pore size; however, nearly all of the hydrophobic, humic-type substances could be removed by the hydrophilic NF membranes for all MW distributions (greater than 90%). The results indicated the importance of the charge and hydrophilic nature of the NOM. Thus, the hydrophilic NF membrane could remove the hydrophobic organic matter, but not the hydrophilic substances. Increasing charge effects (more negative zeta potentials) with increasing solution pH were found to enhance organics removal and reduce fouling (flux decline), most likely through greater membrane surface repulsion. Pre-ozonation of the surface water increased the hydrophilic fraction and anionic charge of NOM and altered their size distributions. This resulted in a decreased fouling (less flux decline) for the UF and smaller pore NF, but a slight increase in fouling for the larger pore NF. The differences in the NF behavior are believed to relate to the relative sizes of ozonated organic fractions and the NF pores; a similar size of ozonated organic fractions and the NF pores causes significant membrane fouling. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance

    Directory of Open Access Journals (Sweden)

    Joerg Winter

    2017-07-01

    Full Text Available Nanofiltration (NF and tight ultrafiltration (tight UF membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP and fouling to the increase in resistance during filtration of natural organic matter (NOM with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM, the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM, the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended.

  3. Flux limitation in ultrafiltration: Osmotic pressure model and gel layer model

    NARCIS (Netherlands)

    Wijmans, J.G.; Nakao, S.; Smolders, C.A.

    1984-01-01

    The characteristic permeate flux behaviour in ultrafiltration, i.e., the existence of a limiting flux which is independent of applied pressure and membrane resistance and a linear plot of the limiting flux versus the logarithm of the feed concentration, is explained by the osmotic pressure model. In

  4. A Review of Ultrafiltration and Forward Osmosis:application and modification

    Science.gov (United States)

    Chao, Gong; Shuili, Yu; Yufei, Shangguan; Zhengyang, Gu; Wangzhen, Yang; Liumo, Ren

    2018-03-01

    As a new treatment, membrane filtration is playing a more prominent role in treating many kinds of wastewater. Among all the membrane technologies, ultrafiltration(UF) and forward osmosis(FO) technology has been widely utilized and developed in oil field and refinery produced water. However, the reports about the differences between the two kinds of membrane technology used in oily wastewater are not yet available. In this review, at first we introduce the advantages, shortcomings and applications of UF and FO membranes. Among these, we mainly illustrate the membrane fouling, which now is a big problem because it increases costs and decreases membrane life to limit the industrialization of the membrane, and the different modification methods of membranes are discussed to figure out how these ways can ease the membrane fouling. Next we make a comparison of the two membranes. Finally we illustrate the future research topics.

  5. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    Science.gov (United States)

    Paswan, Suresh K; Saini, T R

    2017-12-01

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  6. Sequential micro and ultrafiltration of distillery wastewater

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2015-01-01

    Full Text Available Water reuse and recycling, wastewater treatment, drinking water production and environmental protection are the key challenges for the future of our planet. Membrane separation technologies for the removal of all suspended solids and a fraction of dissolved solids from wastewaters, are becoming more and more promising. Also, these processes are playing a major role in wastewater purification systems because of their high potential for recovery of water from many industrial wastewaters. The aim of this work was to evaluate the application of micro and ultrafiltration for distillery wastewater purification in order to produce water suitable for reuse in the bioethanol industry. The results of the analyses of the permeate obtained after micro and ultrafiltration showed that the content of pollutants in distillery wastewater was significantly reduced. The removal efficiency for chemical oxygen demand, dry matter and total nitrogen was 90%, 99.2% and 99.9%, respectively. Suspended solids were completely removed from the stillage.

  7. Development of ultrafiltration and inorganic adsorbents for reducing volumes of low-level and intermediate-level liquid waste: October--December 1977

    International Nuclear Information System (INIS)

    Koenst, J.W.; Herald, W.R.; Roberts, R.C.

    1978-01-01

    The exposures of noncellulosic ultrafiltration membranes to a radioactive environment simulating up to 24 months of exposure to a β dose of 10 μCi/cm 3 , a γ dose of 10 -5 μCi/cm 3 , and an α dose of 4.9 x 10 -3 μCi/cm 3 were completed. Exposure to β and γ radiation did not affect membrane performance. After a simulated six months of exposure to α radiation some degradation of membrane performance occurred. Several experiments were made on a laboratory-scale reverse-osmosis unit using the product from ultrafiltration as feed. Rejection of activity ranged from 88 to 99 percent. The ''continuous'' ultrafiltration pilot run was completed. Approximately 40,000 gal were processed in over 70 hr of operating time without shutdown for cleaning. Flux and rejection were maintained relatively steady over this period. Rejection of gross alpha ranged from 80 to 99.5 percent depending on the ionic content of the waste stream. Flux rates ranged from 5 to 8 liters/min over this period. The engineering column tests were continued using uranium-233 with product from the ultrafiltration pilot plant. Flow rates and pH were varied in order to determine optimum operating conditions

  8. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  9. Evaluation of Removal Mechanisms in a Graphene Oxide-Coated Ceramic Ultrafiltration Membrane for Retention of Natural Organic Matter, Pharmaceuticals, and Inorganic Salts.

    Science.gov (United States)

    Chu, Kyoung Hoon; Fathizadeh, Mahdi; Yu, Miao; Flora, Joseph R V; Jang, Am; Jang, Min; Park, Chang Min; Yoo, Sung Soo; Her, Namguk; Yoon, Yeomin

    2017-11-22

    Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramic GO ) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramic GO membrane (14.4-58.6 L/m 2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m 2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramic GO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na 2 SO 4 , CaCl 2 , and CaSO 4 ). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramic GO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.

  10. Exploring the structure-properties relationships of novel polyamide thin film composite membranes

    DEFF Research Database (Denmark)

    Briceño, Kelly; Javakhishvili, Irakli; Guo, Haofei

    Polysulfone (PSU) is a material widely used in the fabrication of membranes for ultrafiltration and as a support for nanofiltration and reverse osmosis membranes. Interfacial polymerization usually combines amine and acid chloride monomers for the fabrication of thin film composite membranes[1......] . However, only few publications describe it’s usage for the modification of supports for the fabrication of ultrafiltration membranes [2]. This research focuses on the modification of PSU supports to produce new ultrafiltration membranes. The advantages of interfacial polymerization in the fabrication...... of UF membranes includes: Negatively charged PSF surfaces that could be less prone to biofouling Scale up process for the modification of PSU. An alternative to costly and technically challenging processes as in situ interfacial polymerization [3]....

  11. Organic micro-pollutants’ removal via anaerobic membrane bioreactor with ultrafiltration and nanofiltration

    KAUST Repository

    Wei, Chunhai

    2015-12-15

    The removal of 15 organic micro-pollutants (OMPs) in synthetic municipal wastewater was investigated in a laboratory-scale mesophilic anaerobic membrane bioreactor (AnMBR) using ultrafiltration and AnMBR followed by nanofiltration (NF), where powdered activated carbon (PAC) was added to enhance OMPs removal. No significant effects of OMPs spiking and NF connection on bulk organics removal and biogas production were observed. Amitriptyline, diphenhydramine, fluoxetine, sulfamethoxazole, TDCPP and trimethoprim showed readily biodegradable characteristics with consistent biological removal over 80%. Atrazine, carbamazepine, DEET, Dilantin, primidone and TCEP showed refractory characteristics with biological removal below 40%. Acetaminophen, atenolol and caffeine showed a prolonged adaption time of around 45 d, with initial biological removal below 40% and up to 50-80% after this period. Most readily biodegradable OMPs contained a strong electron donating group. Most refractory OMPs contained a strong electron withdrawing group or a halogen substitute. NF showed consistent high rejection of 80-92% with an average of 87% for all OMPs, which resulted in higher OMPs removal in AnMBR-NF than in AnMBR alone, especially for refractory OMPs. Limited sorption performance of PAC for OMPs removal was mainly due to low and batch dosage (100 mg/L) as well as the competitive sorption caused by bulk organics.

  12. Molecular Mechanisms of Ultrafiltration Membrane Fouling in Polymer-Flooding Wastewater Treatment: Role of Ions in Polymeric Fouling.

    Science.gov (United States)

    Liu, Guicai; Yu, Shuili; Yang, Haijun; Hu, Jun; Zhang, Yi; He, Bo; Li, Lei; Liu, Zhiyuan

    2016-02-02

    Polymer (i.e., anionic polyacrylamide (APAM)) fouling of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and its relationships to intermolecular interactions were investigated using atomic force microscopy (AFM). Distinct relations were obtained between the AFM force spectroscopy measurements and calculated fouling resistance over the concentration polarization layer (CPL) and gel layer (GL). The measured maximum adhesion forces (Fad,max) were closely correlated with the CPL resistance (Rp), and the proposed molecular packing property (largely based on the shape of AFM force spectroscopy curve) of the APAM chains was related to the GL resistance (Rg). Calcium ions (Ca(2+)) and sodium ions (Na(+)) caused more severe fouling. In the presence of Ca(2+), the large Rp corresponded to high foulant-foulant Fad,max, resulting in high flux loss. In addition, the Rg with Ca(2+) was minor, but the flux recovery rate after chemical cleaning was the lowest, indicating that Ca(2+) created more challenges in GL cleaning. With Na(+), the fouling behavior was complicated and concentration-dependent. The GL structures with Na(+), which might correspond to the proposed molecular packing states among APAM chains, played essential roles in membrane fouling and GL cleaning.

  13. Operating considerations of ultrafiltration in enzyme enhanced carbon capture

    DEFF Research Database (Denmark)

    Deslauriers, Maria Gundersen; Gladis, Arne; Fosbøl, Philip Loldrup

    2017-01-01

    capture capacity of 1 MTonn CO2/year, and is here operated for one year continuously. This publication compares soluble enzymes dissolved in a capture solvent with and without the use of ultrafiltration membranes. The membranes used here have an enzyme retention of 90%, 99% and 99.9%. Enzyme retention......Today, enzyme enhanced carbon capture and storage (CCS) is gaining interest, since it can enable the use of energy efficient solvents, and thus potentially reduce the carbon footprint of CCS. However, a limitation of this technology is the high temperatures encountered in the stripper column, which...

  14. Application of Fe(II)/peroxymonosulfate for improving ultrafiltration membrane performance in surface water treatment: Comparison with coagulation and ozonation.

    Science.gov (United States)

    Cheng, Xiaoxiang; Liang, Heng; Ding, An; Zhu, Xuewu; Tang, Xiaobin; Gan, Zhendong; Xing, Jiajian; Wu, Daoji; Li, Guibai

    2017-11-01

    Coagulation and ozonation have been widely used as pretreatments for ultrafiltration (UF) membrane in drinking water treatment. While beneficial, coagulation or ozonation alone is unable to both efficiently control membrane fouling and product water quality in many cases. Thus, in this study an emerging alternative of ferrous iron/peroxymonosulfate (Fe(II)/PMS), which can act as both an oxidant and a coagulant was employed prior to UF for treatment of natural surface water, and compared with conventional coagulation and ozonation. The results showed that the Fe(II)/PMS-UF system exhibited the best performance for dissolved organic carbon removal, likely due to the dual functions of coagulation and oxidation in the single process. The fluorescent and UV-absorbing organic components were more susceptible to ozonation than Fe(II)/PMS treatment. Fe(II)/PMS and ozonation pretreatments significantly increased the removal efficiency of atrazine, p-chloronitrobenzene and sulfamethazine by 12-76% and 50-94%, respectively, whereas coagulation exerted a minor influence. The Fe(II)/PMS pretreatment also showed the best performance for the reduction of both reversible and irreversible membrane fouling, and the performance was hardly affected by membrane pore size and surface hydrophobicity. In addition, the characterization of hydraulic irreversible organic foulants confirmed its effectiveness. These results demonstrate the potential advantages of applying Fe(II)/PMS as a pretreatment for UF to simultaneously control membrane fouling and improve the permeate quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Incorporation of Hyperbranched Supramolecules into Nafion Ionic Domains via Impregnation and In-Situ Photopolymerization

    Directory of Open Access Journals (Sweden)

    Hiruto Kudo

    2011-11-01

    Full Text Available Nafion membranes were impregnated with photocurable supramolecules, viz., hyperbranched polyester having pendant functional carboxylic acid groups (HBPEAc-COOH by swelling in methanol and subsequently photocured in-situ after drying. Structure-property relationships of the HBPEAc-COOH impregnated Nafion membranes were analyzed on the basis of Fourier transform infrared (FTIR spectroscopy, solid-state nuclear magnetic resonance (SSNMR and dynamic mechanical analysis (DMA. FTIR and SSNMR investigations revealed that about 7 wt % of HBPEAc-COOH was actually incorporated into the ionic domains of Nafion. The FTIR study suggests possible complexation via inter-species hydrogen bonding between the carboxylic groups of HBPEAc-COOH and the sulfonate groups of Nafion. The α-relaxation peak corresponding to the glass transition temperature of the ionic domains of the neat Nafion-acid form was found to increase from ~100 to ~130 °C upon impregnation with enhanced modulus afforded by the cured polyester network within the ionic domains. The AC impedance fuel cell measurement of the impregnated membrane exhibited an increasing trend of proton conductivity with increasing temperature, which eventually surpassed that of neat Nafion above 100 °C. Of particular importance is that the present paper is the first to successfully incorporate polymer molecules/networks into the Nafion ionic domains by means of impregnation with hyperbranched supramolecules followed by in-situ photopolymerization.

  16. Characterization of Irreversible Fouling after Ultrafiltration of Thermomechanical Pulp Mill Process Water

    DEFF Research Database (Denmark)

    Thuvander, Johan; Zarebska, Agata; Hélix-Nielsen, Claus

    2018-01-01

    process streams is fouling of the membranes. Fouling not only increases operating costs but also reduces the operating time of the membrane plant. When optimizing the membrane cleaning method, it is important to know which compounds cause the fouling. In this work fouling of an ultrafiltration membrane...... was studied. The fouling propensity of untreated process water and microfiltrated process water was compared. Fouled membranes were analyzed using scanning electron microscopy and attenuated total reflection Fourier transform infrared spectrometry. Acid hydrolysis of membranes exposed to untreated process......Large volumes of wastewater with dissolved wood components are treated in wastewater treatment plants at thermomechanical pulp mills. It has been shown previously that hemicelluloses in these wastewater streams can be recovered by membrane filtration. A serious obstacle when treating lignocellulose...

  17. Effect of PAC addition on immersed ultrafiltration for the treatment of algal-rich water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yan, E-mail: zhang.yan113@163.com [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090 (China); Tian Jiayu; Nan Jun; Gao Shanshan; Liang Heng; Wang Meilian; Li Guibai [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090 (China)

    2011-02-28

    The aim of this study was to evaluate the effect of powdered activated carbon (PAC) addition on the treatment of algal-rich water by immersed ultrafiltration (UF), in terms of permeate quality and membrane fouling. Experiments were performed with a hollow-fiber polyvinyl chloride ultrafiltration membrane at a laboratory scale, 20-25 deg, C and 10 L/(m{sup 2} h) constant permeate flux. UF could achieve an absolute removal of Microcystis aeruginosa cells, but a poor removal of algogenic organic matter (AOM) released into water, contaminants responsible for severe membrane fouling. The addition of 4 g/L PAC to the immersed UF reactor significantly alleviated the development of trans-membrane pressure and enhanced the removal of dissovled organic carbon (by 10.9 {+-} 1.7%), UV{sub 254} (by 27.1 {+-} 1.7%), and microcystins (expressed as MC-LR{sub eq}, by 40.8 {+-} 4.2%). However, PAC had little effect on the rejection of hydrophilic high molecular weight AOM such as carbohydrates and proteins. It was also identified that PAC reduced the concentrations of carbohydrates and proteins in the reactor due to decreased light intensity, as well as the MC-LR{sub eq} concentration by PAC adsorption.

  18. Flexographic newspaper deinking : treatment of wash filtrate effluent by membrane technology

    Science.gov (United States)

    B. Chabot; G.A. Krishnagopalan; S. Abubakr

    1999-01-01

    Ultrafiltration was investigated as a means to remove flexographic ink pigments from wash filtrate effluent generated from various mixtures of flexographic and offset old newspapers from deinking operations. Membrane separation efficiency was assessed from permeate flux, fouling rate, and ease of membrane regeneration (cleaning). Ultrafiltration was capable of...

  19. Effect of Diafiltration on Preparation of Fermented Mung Beans Concentrate as Probiotic Savory Flavor Through Ultrafiltration Membrane

    Directory of Open Access Journals (Sweden)

    Aspiyanto Aspiyanto

    2011-05-01

    Full Text Available Diafiltration by means of the ultrafiltration system of probiotic fermented Mung beans (Phaseolus radiatus L. concentrate has been performed to reduce or eliminate salts and smaller impurities than the nominal cut-off of the membrane of 20,000 nominal weight cut-off (NWCO. These processes have been conducted as an attempt in order to get a probiotic product with organoleptic acceptability, composition, and the optimal total lactic acid bacteria (LAB counts because the presence of salts will affect on the viability of LAB and the cell lysis of LAB and limit its utility in food products. Concentrate of probiotic mung beans was prepared through fermentation of LAB using inoculum of LAB consisting of Lactobacillus bulgaricus and Streptococcus thermophylus (1 : 1 on fermented mung beans extract inoculated by inoculum of Rhizopus–C1 in rice substrates at salt condition. Ultrafiltration and diafiltration modes have been carried out at flow rate of 8.77 Liter/minute, room temperature and the pressure of 5 bar (0 to 79.7 minutes and 7 bar (0-154.5 minutes with the ratio of the volume of pure water to the volume of initial feed (number of diavolume, Nd of 0, 0.25, 0.5, 0.75, 1.0 and 1.25, respectively. The experiment results based on total LAB counts as a probiotic product show that a high Nd can reduce the salt content but increase the total LAB counts. Nd of 1.0 results reduce the salt content which is equal to retentate, permeate, and the optimal total LAB counts. Ultrafiltration and diafiltration modes at the pressure of 7 bar and Nd of 1.0 give a retentate with total solid of 6.1355%, salt of 1.3515% and remove 86.15% of the salt from probiotic fermented mung beans concentrate and total LAB counts of 10.73 log cycles. Meanwhile, the permeate obtained at this condition results in flux value of 10.83 Liter/m2.hour with contents of total solid of 6.8199%, salt of 1.325% and total LAB counts of 5.49 log cycles.

  20. Analysis of the membrane fouling on cross-flow ultrafiltration and microfiltration of soy sauce lees; Shoyuhiireden no kurosuforo roka ni okeru fauringu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Furukakwa, T. [Kikkoman Corporation, Chiba (Japan); Kobayashi, H.; Kokubo, K.; Watanabe, A. [Niigata University, Niigata (Japan). Graduate School of Science and Technology

    2000-05-10

    Although since the 1980's Japanese soy sauce manufactures have developed cross-flow membrane filtration systems to recover soy sauce from its lees, the mechanisms by which the membrane fouls during filtration have not been theoretically discussed. Calculated flux declines using a theoretical equation developed for cross-flow cake filtration were compared against experimental results involving the filtration of soy sauce lees using polysulfone ultrafiltration and micro filtration membranes. Membrane fouling due to the deposition and intrusion of soy sauce lees was evaluated from the hydraulic resistances of the membrane and the cake layer. Calculated flux declines with time agree with the experimental results. Specific resistance of the cake layer which is an adjustable parameter of the equation, decreases with increasing cross-flow velocity. Hydraulic resistance exhibited by the membranes is independent of feed flow velocity. However, the resistance of the cake layers decreases with increasing cross-flow velocity. This corresponds to the steady-state flux increase. In conclusion, the main cause of fouling in the filtration of soy sauce lees is cake layer formation. By using the cake filtration model for cross-flow, the flux decline with time during the filtration is capable of being predicted. (author)

  1. Characterization of a non-fouling ultrafiltration membrane

    DEFF Research Database (Denmark)

    Wei, J.; Helm, G.S.; Corner-Walker, N.

    2006-01-01

    This report describes the properties of surface-modified poly(vinylidene fluoride) (PVDF) membranes. These membranes were created by coating hydrophilic polymers on the support PVDF membrane to reduce the tendency to protein fouling. The modified membranes with different molecular weight cut......-off (MWCO) were characterized by filtration studies using bovine serum albumin (BSA) and an enzyme solution as test media, and the membranes exhibited the non-fouling property. The surface chemistry of the unmodified and modified PVDF membranes was characterized by X-ray photoelectron spectroscopy (XPS......) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). These surface sensitive techniques were used to confirm the successful surface modification. ToF-SIMS imaging visualizes the distribution of the coating layer on the PVDF membrane. Furthermore, the amount of protein adsorption onto the membrane...

  2. Increased saccharification of kallar grass using ultrafiltrated enzyme from sporrotrichum thermophile

    International Nuclear Information System (INIS)

    Latif, F.; Rajoka, M.I.; Malik, K.A.

    1991-01-01

    The local wild type strain of sporotrichum thermophile when grown on untreated lingo cellulose was found to produce a greater level of B-glucosidase component along with other cellulase/xylanase components than most of the reported wild type potent strains. Culture filtrate obtained, when grown on 4% leptochloa fusca (kallar grass) was used as such and after concentration by ultrafiltration technique for saccharification purpose. Concentrated enzymes titre was increased to 1.2 and 4.0 U/ml for Fp-ase and B-glucosidase, respectively. There were losses in the enzyme titre obtained through ultrafiltration possibly due to adsorption on to the ultrafiltration membrane. Enzyme preparations used, saccharifide 5% kallar grass to 70, 55, 75 and 60% (theoretical basis) from cellulases of S. thermophile concentrate, dilute, T. reesei alone and in supplementation with B-glucosidase from A. niger, respectively. Analysis by HPLC revealed slightly higher glucose yield from S. thermophile enzyme preparations, whereas higher level of xylose was attained from T. reesei preparations. Rest of the sugars pooled as Oligo-sugars were found in almost similar concentrations. (author)

  3. Impact of granular filtration on ultrafiltration membrane performance as pre-treatment to seawater desalination in presence of algal blooms

    Directory of Open Access Journals (Sweden)

    Nour-Eddine Sabiri

    2018-04-01

    Full Text Available To mitigate fouling of the ultrafiltration (UF membrane and improve permeate quality, we coupled granular filters (GF with UF membrane as a pre-treatment for reconstituted seawater in the presence of algal bloom. Mono and bilayer granular filtrations were led at a mean velocity of 10 m h−1 over a 7-hour period. Both GF gave the same algal cell retention rate (∼63% after 7 hours of filtration. Turbidity reduction rate was 50% for the monolayer filter and 75% for the bilayer filter. Resulting organic matter removal rate was 10% for the monolayer filter and 35% for the bilayer filter. Dissolved organic carbon removal was low (20% with the bilayer filter and non-existent with the monolayer filter. GF-coupled UF reduced humic acids in the permeate (20% compared with UF alone. Peak pressure of 3 bars was reached at the end of 30 minutes of UF in both direct UF or UF after monolayer GF. The filtrate from the bilayer GF enables UF over a longer period (7 hours.

  4. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    Science.gov (United States)

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Combining electrophoresis with detection under ultraviolet light and multiple ultrafiltration for isolation of humic fluorescence fractions.

    Science.gov (United States)

    Trubetskaya, Olga E; Shaloiko, Lubov A; Demin, Dmitrii V; Marchenkov, Victor V; Proskuryakov, Ivan I; Coelho, Christian; Trubetskoj, Oleg A

    2011-04-01

    Polyacrylamide gel electrophoresis of chernozem soil humic acids (HAs) followed by observation under UV (312 nm) excitation light reveals new low molecular weight (MW) fluorescent fractions. Ultrafiltration of HAs sample in 7 M urea on a membrane of low nominal MW retention (NMWR, 5 kDa) was repetitively used for separation of fluorescent and non-fluorescent species. Thirty ultrafiltrates and the final retentate R were obtained. Fluorescence maxima of separate ultrafiltrates were different and non-monotonously changed in the range of 475-505 nm. Fluorescence maxima of less than 490 nm were detected only in the four first utrafiltrates. For further physical-chemical analyses all utrafiltrates were combined into a fraction called UFchernozem soil HAs complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. An analysis of ultrafiltration applications for the oilsands

    Energy Technology Data Exchange (ETDEWEB)

    Pease, S. [Zenon Environmental Inc., Oakville, ON (Canada)

    2006-07-01

    This presentation examined ultrafiltration technologies in oil sands applications. The Athabasca region has limited water supplies, and regulatory standards regarding waterborne pathogens and disinfectant by-products are increasing. Membrane technologies are now rapidly replacing conventional water filtration technologies as they provide a more reliable means of filtration and use minimal amounts of chemicals. Membrane technologies are capable of removing 99.9 per cent of all Giardia, Cryptosporidium and viral agents from water samples, as well as various metals. ZeeWeed membrane filtration systems use a backpulse system to filter water in combination with a permeation system. Enhanced coagulation systems are used to remove colour, taste, and odours, as well as manganese and iron. The systems have been tested with Athabasca River samples, and are currently being used at several oil sands processing plants. It was concluded that ZeeWeed membrane systems are able to treat difficult waters with high pathogen and metals contents. tabs., figs.

  7. THE MUNICIPAL SEWAGE TREATMENT PLANT EFFLUENT POLISHING IN ULTRAFILTRATION

    Directory of Open Access Journals (Sweden)

    Mariusz Dudziak

    2017-08-01

    Full Text Available The effluent from the municipal sewage treatment plant was comparatively treated in the ultrafiltration process using ceramic and polymer membranes. Filtration was carried out in the cross-flow system under the conditions of the transmembrane process pressure 0.1 MPa - the ceramic membrane and 0.2 MPa – the polymer membrane at a temperature of 20°C. The effectiveness of the process had been assessed by various physical and chemical analyses (pH, turbidity, color, absorbance, TOC and phenol index. There was included the toxicological assessment (by applying as an indicator organism the bioluminescence bacteria Aliivibrio fischeri and microbiological assessment of tested samples. During filtration there was studied the hydraulic efficiency of membranes. Is was specified, that the efficiency of the process depends on the conditions of membrane filtration, wherein the better effects of the removal of organic pollutants had been noted in the case of polymer membrane than ceramic membrane. However, the polymer membrane, in the comparison to the ceramic membrane, was more susceptible to pore blocking, which caused the reduction of hydraulic efficiency. Regardless of what type of membrane the permeats were not toxic and did not contain microorganisms.

  8. How Do Polyethylene Glycol and Poly(sulfobetaine) Hydrogel Layers on Ultrafiltration Membranes Minimize Fouling and Stay Stable in Cleaning Chemicals?

    KAUST Repository

    Le, Ngoc Lieu

    2017-05-18

    We compare the efficiency of grafting polyethylene glycol (PEG) and poly(sulfobetaine) hydrogel layer on poly(ether imide) (PEI) hollow-fiber ultrafiltration membrane surfaces in terms of filtration performance, fouling minimization and stability in cleaning solutions. Two previously established different methods toward the two different chemistries (and both had already proven to be suited to reduce fouling significantly) are applied to the same PEI membranes. The hydrophilicity of PEI membranes is improved by the modification, as indicated by the change of contact angle value from 89° to 68° for both methods, due to the hydration layer formed in the hydrogel layers. Their pure water flux declines because of the additional permeation barrier from the hydrogel layers. However, these barriers increase protein rejection. In the exposure at a static condition, grafting PEG or poly(sulfobetaine) reduces protein adsorption to 23% or 11%, respectively. In the dynamic filtration, the hydrogel layers minimizes the flux reduction and increases the reversibility of fouling. Compared to the pristine PEI membrane that can recover its flux to 42% after hydraulic cleaning, the PEG and poly(sulfobetaine) grafted membranes can recover their flux up to 63% and 94%, respectively. Stability tests show that the poly(sulfobetaine) hydrogel layer is stable in acid, base and chlorine solutions, whereas the PEG hydrogel layer suffers alkaline hydrolysis in base and oxidation in chlorine conditions. With its chemical stability and pronounced capability of minimizing fouling, especially irreversible fouling, protective poly(sulfobetaine) hydrogel layers have great potential for various membrane-based applications.

  9. Microfiltration and ultrafiltration as a post-treatment of biogas plant digestates for producing concentrated fertilizers

    DEFF Research Database (Denmark)

    Camilleri Rumbau, Maria Salud; Norddahl, Birgir; Wei, Jiang

    2015-01-01

    Biogas plant digestate liquid fractions can be concentrated by microfiltration and ultrafiltration. Two types of microfiltration membranes (polysulphone (PS) and surface-modified polyvinylidene fluoride (PVDF)) were used to process digestate liquid fractions, and to assess their applicability in ...

  10. Optimisation of ultrafiltration of a highly viscous protein solution using spiral-wound modules

    DEFF Research Database (Denmark)

    Lipnizki, Jens; Casani, S.; Jonsson, Gunnar Eigil

    2005-01-01

    The ultrafiltration process of highly viscous protein process water with spiral-wound modules was optimised by analysing the fouling and developing a strategy to reduce it. It was shown that the flux reduction during filtration is mainly caused by the adsorption of proteins on the membrane and no...

  11. Characterization and utilization of the permeate and retentate obtained after “dead-end” ultrafiltration

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2013-01-01

    Full Text Available In the recent years, with the increase in bioethanol production, the increasing amounts of distillery wastewater are generated. Such wastewater (stillage is one of the most polluted waste product of the food and beverage industries. The present study evaluates the treatment of distillery wastewater by ultrafiltration (UF, in order to reduce its pollution and evaluate the composition of the permeate and retentate. Polyethersulfone ultrafiltration membrane with molecular weight cut-off (MWCO 30000 Da, was used for the experiments. The UF was carried out in dead-end mode. The results of the analyses of the permeate and retentate obtained after ultrafiltration were considered as well as different ways for their further utilization. The pollutant level in the permeate was decreased significantly in comparison to the raw stillage, and suspended solids were completely removed from the stillage. [Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  12. Development of ultrafiltration and inorganic adsorbents for reducing volumes of low-level and intermediate-level liquid waste, April--June 1978

    International Nuclear Information System (INIS)

    Herald, W.R.; Roberts, R.C.

    1978-01-01

    A series of runs was performed in which waste processing facility influent was spiked with americium-241, neptunium-237, and uranium-233 and run through the ultrafiltration and reverse osmosis (RO) units. The results of these experiments show that the ultrafiltration membranes are ionic dependent, whereas the RO unit is not. Membrane irradiation studies have been started. Continuous run parameters are being verified through a series of experiments. The small laboratory column tests were continued this quarter on several adsorbents. Decontamination factors were calculated for these adsorbents in removing neptunium-237 and americium-241 from waste solutions. Tests were continued with the 2-in. Engineering Columns using ultrafiltration product spiked with uranium-233. A 6-in. diameter column was installed in the combined raffinate line from the three Engineering Columns. This ''mixed bed'' column will polish the waste solution that is returned to the waste processing facility tanks. A quality control program was started this quarter

  13. Summary of the ultrafiltration, reverse osmosis, and adsorbents project

    International Nuclear Information System (INIS)

    Colvin, C.M.; Roberts, R.C.; Williams, M.K.

    1983-01-01

    The design for a medium-size (40 gal/min) ultrafiltration (UF) membrane unit includes a schematic diagram, capital and operating costs, a list and discussion of the radioisotopes tested and the results achieved, operating parameters, and characteristics of the available membrane configurations. The plant design for a reverse osmosis (RO) membrane unit includes a conceptual diagram, specifications for a RO unit producing 40 gal/min of permeated product, a list of radioisotopes tested on RO units and the rejections achieved, a discussion of the principal of RO, a discussion of the upper limits of cation and anion concentrations (there are no lower limits), a discussion of membrane configurations and porosities, a discussion of factors affecting membranes, a section on calculating the membrane area needed for a particular application, and capital and operating cost calculations. The design for an ion-exchange pilot plant includes a schematic diagram; flow, resin, and column specifications; impurity limits; and operating and capital costs. A short theoretical discussion and process description are also included. The design retains flexibility so that application to a specific stream can be determined

  14. Non-woven PET fabric reinforced and enhanced the performance of ultrafiltration membranes composed of PVDF blended with PVDF-g-PEGMA for industrial applications

    Science.gov (United States)

    Wang, Shuai; Li, Tong; Chen, Chen; Chen, Sheng; Liu, Baicang; Crittenden, John

    2018-03-01

    Ultrafiltration (UF) membranes composed of poly(vinylidene fluoride) (PVDF) blended with poly(vinylidene fluoride)-graft-poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) can present high flux and excellent foulant removal efficiencies under suitable preparation conditions. However, these PVDF/PVDF-g-PEGMA blended membranes cannot be applied industrially because of the insufficient mechanical strength (strength-to-break value of 8.4 ± 0.6 MPa). We incorporated two types of non-woven polyethylene terephthalate (PET) fabrics (thin hydrophobic and thick hydrophilic fabrics) as support layers to improve the mechanical properties of the blended membranes. The thin and thick PET fabrics were able to significantly improve the tensile strength to 23.3 ± 3.7 MPa and 30.1 ± 1.4 MPa, respectively. The PET fabrics had a limited impact on the separation-related membrane performance such as hydrophilicity, foulant rejection, whereas the mechanical strength and pure water flux was improved several folds. The enhanced flux was attributed to the higher surface porosity and wider finger-like voids in the cross-section. The thin PET fabric with larger porosity was able to maintain a consistent toughness simultaneously; thus it is recommended as a support material for this blended membrane.

  15. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma.

    Science.gov (United States)

    Damar Huner, Irem; Gulec, Haci Ali

    2017-12-01

    The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔG iwi value of the plain membrane from (-) 14.92±0.89mJ/m 2 to (+) 17.57±0.67mJ/m 2 . Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of R frev to R t , which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Moderate KMnO4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment.

    Science.gov (United States)

    Ma, Baiwen; Qi, Jing; Wang, Xing; Ma, Min; Miao, Shiyu; Li, Wenjiang; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-05-21

    Although ultrafiltration (UF) membranes are highly beneficial for removing algae, the removal process causes serious UF membrane fouling. To avoid the unfavorable effects of algal cells that have been damaged by oxidants, our previous study reported a novel, moderate pre-oxidation method (KMnO 4 -Fe(II) process) that aimed to achieve a balance between the release of intracellular organic matter and enhanced algae removal. This study further investigated the performance of a UF membrane with KMnO 4 -Fe(II) pretreatment in the presence of algae-laden reservoir water after a long running time. We found that algae could be completely removed, membrane fouling was significantly alleviated, and the overall performance was much better than that of Fe(III) coagulation alone. The transmembrane pressure (TMP) during Fe(III) coagulation increased to 42.8 kPa, however, that of the KMnO 4 -Fe(II) process only increased to 25.1 kPa for after running for 90 d. The slower transmembrane pressure was attributed to the larger floc size, higher surface activity, and inactivation of algae. Although there was little effect on microorganism development, lower microorganism abundance (20.7%) was observed during the KMnO 4 -Fe(II) process than during coagulation alone (44.9%) due to the release of extracellular polymeric substances. We also found that the floc cake layer was easily removed by washing, and many of the original membrane pores were clearly observed. Further analysis demonstrated that the effluent quality was excellent, especially its turbidity, chromaticity, and Mn and Fe concentrations. Based on the outstanding UF membrane performance, it may be concluded that the KMnO 4 -Fe(II) process exhibits considerable potential for application in the treatment of algae-laden water. Copyright © 2018. Published by Elsevier Ltd.

  17. Impact of organic fractions identified by SEC and fluorescence EEM on the hydraulic reversibility of ultrafiltration membrane fouling by secondary effluents

    KAUST Repository

    Haberkampa, Jens

    2011-05-01

    Loss of membrane filtration performance due to organic fouling is still a significant drawback for the application of low-pressure membranes in tertiary wastewater treatment. The present study investigates the relevance of different organic fractions present in secondary effluents in terms of hydraulically reversible and irreversible fouling of hollow-fibre ultrafiltration membranes. A good correlation between the hydraulically reversible filtration resistance and the total organic biopolymer concentration according to size exclusion chromatography (SEC) was observed. Qualitatively biopolymers consist mainly of polysaccharides as well as proteins with high molecular weight. Polysaccharides are retained by the membrane pores, but can be removed by simple UF backwashing. On the other hand, fluorescence excitation-emission matrix (EEM) analysis indicates that the extent of the hydraulically irreversible fouling correlates with the presence of protein-like substances. Removal of protein-like substances by biological slow sand filtration or chemical coagulation results in the significant reduction of the hydraulically irreversible fouling, which is presumably due to proteins in the molecular range of biopolymers. In contrast to the comparatively low sensitivity of colorimetric methods for the analysis of proteins and polysaccharides, the combined application of size exclusion chromatography and fluorescence EEM analysis is a promising tool for the determination of the organic fouling propensity of secondary effluents. ©2011 Desalination Publications. All rights reserved.

  18. Impact of organic fractions identified by SEC and fluorescence EEM on the hydraulic reversibility of ultrafiltration membrane fouling by secondary effluents

    KAUST Repository

    Haberkampa, Jens; Ernst, Mathias; Paar, Hendrik; Pallischeck, Daniela; Amy, Gary L.; Jekel, Martin R.

    2011-01-01

    Loss of membrane filtration performance due to organic fouling is still a significant drawback for the application of low-pressure membranes in tertiary wastewater treatment. The present study investigates the relevance of different organic fractions present in secondary effluents in terms of hydraulically reversible and irreversible fouling of hollow-fibre ultrafiltration membranes. A good correlation between the hydraulically reversible filtration resistance and the total organic biopolymer concentration according to size exclusion chromatography (SEC) was observed. Qualitatively biopolymers consist mainly of polysaccharides as well as proteins with high molecular weight. Polysaccharides are retained by the membrane pores, but can be removed by simple UF backwashing. On the other hand, fluorescence excitation-emission matrix (EEM) analysis indicates that the extent of the hydraulically irreversible fouling correlates with the presence of protein-like substances. Removal of protein-like substances by biological slow sand filtration or chemical coagulation results in the significant reduction of the hydraulically irreversible fouling, which is presumably due to proteins in the molecular range of biopolymers. In contrast to the comparatively low sensitivity of colorimetric methods for the analysis of proteins and polysaccharides, the combined application of size exclusion chromatography and fluorescence EEM analysis is a promising tool for the determination of the organic fouling propensity of secondary effluents. ©2011 Desalination Publications. All rights reserved.

  19. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal

    International Nuclear Information System (INIS)

    Montaña, M.; Camacho, A.; Serrano, I.; Devesa, R.; Matia, L.; Vallés, I.

    2013-01-01

    A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant. -- Highlights: ► A study with a pilot plant using different membranes technologies was made. ► Big reduction on natural uranium and 40 K by reverse osmosis was found. ► Pilot plant and full-scale treatment plant behave similarly

  20. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse.

    Science.gov (United States)

    Moazzem, Shamima; Wills, Jamie; Fan, Linhua; Roddick, Felicity; Jegatheesan, Veeriah

    2018-03-01

    Reusing treated effluents in industries is a great option to conserve freshwater resources. For example, car wash centres all over Australia are estimated to use 17.5 billion litres of water and discharge it as wastewater and spend $75 million a year for both purchasing fresh water and for treating and/or discharging the wastewater. Therefore, it is important to develop simple but reliable systems that can help to treat and reuse car wash wastewater. Significant savings could also be associated with the implementation of such systems. This study evaluates the performance of granular and membrane filtration systems with coagulation/flocculation and sedimentation in treating car wash wastewater for the purpose of reuse. Overall, 99.9% of turbidity, 100% of suspended solids and 96% of COD were removed from the car wash wastewater after treating by coagulation, flocculation, sedimentation, sand filtration, ceramic ultrafiltration and reverse osmosis and the treated water meets the standards required for class A recycled water in Australia and standards imposed in Belgium and China. The treated water can be reused. However, optimisation is required to reduce the sludge produced by this system.

  1. Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes

    DEFF Research Database (Denmark)

    Gringer, Nina; Hosseini, Seyed Vali; Svendsen, Tore

    2015-01-01

    Marinated herring processing brines, which are usually discarded, are rich in salt, protein, non-protein nitrogen, iron, fatty acids, antioxidant and even possess enzymatic activity. This study investigated the performance of ceramic ultrafiltration of two herring spice brines with a major focus...

  2. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water.

    Science.gov (United States)

    Mbareck, Chamekh; Nguyen, Quang Trong; Alaoui, Ouafa Tahiri; Barillier, Daniel

    2009-11-15

    Polysulfone (PSf)/polyacrylic acid ultrafiltration (PSf/PAA) membranes were prepared from a polymer blend in dimethylformamide by coagulation in water according to the wet phase inversion method. Immobilization of water-soluble PAA within the non-soluble PSf matrix was proven by the increase of ion exchange capacity and the intensity of the carboxyl groups' peak with the increase of PAA content as shown by Fourier transform infrared spectra. These results lead to consider that PSf and PAA form a semi-interpenetrating polymer networks. The obtained membranes showed a decrease of mean surface-pore sizes, the overall porosity and the hydraulic permeability with the increase in PAA content. Such results were imputed to the morphologic modifications of PSf film with the immobilization of increasing PAA amount. PSf/PAA membranes showed high lead, cadmium and chromium rejection which reaches 100% at pH superior to 5.7 and a low rejection at low pH. Moreover, the heavy metal rejection decreases with feed solution concentration and applied pressure increases. These behaviors were attributed to the role of carboxylic groups in ion exchange or complexation. As a matter of fact, the strong lead ion-PAA interactions were revealed by the scanning electron microscopy with energy dispersive X-rays (SEM-EDX).

  3. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions

    KAUST Repository

    Zheng, Xing

    2014-11-01

    EfOM has been regarded as a major organic foulant resulting in UF membrane fouling in wastewater reclamation. To investigate fouling potential of different EfOM fractions, the present study isolated EfOM into hydrophobic neutrals (HPO-N), colloids, hydrophobic acids (HPO-A), transphilic neutrals and acids (TPI), and hydrophilics (HPI), and tested their fouling effect in both salt solution and pure water during ultrafiltration (UF). Major functional groups and chemical structure of the isolates were identified using Fourier transform infrared spectroscopy (FT-IR) and solid-state carbon nuclear magnetic resonance (13C NMR) analysis. The influence of the isolation process on the properties of EfOM fractions was minor because the raw and reconstituted secondary effluents were found similar with respect to UV absorbance, molecular size distribution, and fluorescence character. In membrane filtration tests, unified membrane fouling index (UMFI) and hydraulic resistance were used to quantify irreversible fouling potential of different water samples. Results show that under similar DOC level in feed water, colloids present much more irreversible fouling than other fractions. The fouling effect of the isolates is related to their size, chemical properties, and solution chemistry. Further investigations have identified that the interaction between colloids and other fractions also influences the performance of colloids in fouling phenomena. © 2014 Elsevier Ltd.

  4. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration

    Directory of Open Access Journals (Sweden)

    Kowalska Izabela

    2017-01-01

    Full Text Available The aim of the study was to assess the usefulness of micellar–enhanced ultrafiltration (MEUF for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi–pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration. Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L, the average concentration of copper ions in the permeate ranged from 1.2–4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.

  5. Evaluation of biochar-ultrafiltration membrane processes for humic acid removal under various hydrodynamic, pH, ionic strength, and pressure conditions.

    Science.gov (United States)

    Shankar, Vaibhavi; Heo, Jiyong; Al-Hamadani, Yasir A J; Park, Chang Min; Chu, Kyoung Hoon; Yoon, Yeomin

    2017-07-15

    The performance of an ultrafiltration (UF)-biochar process was evaluated in comparison with a UF membrane process for the removal of humic acid (HA). Bench-scale UF experiments were conducted to study the rejection and flux trends under various hydrodynamic, pH, ionic strength, and pressure conditions. The resistance-in-series model was used to evaluate the processes and it showed that unlike stirred conditions, where low fouling resistance was observed (28.7 × 10 12  m -1 to 32.5 × 10 12  m -1 ), higher values and comparable trends were obtained for UF-biochar and UF alone for unstirred conditions (28.7 × 10 12  m -1 to 32.5 × 10 12  m -1 ). Thus, the processes were further evaluated under unstirred conditions. Additionally, total fouling resistance was decreased in the presence of biochar by 6%, indicating that HA adsorption by biochar could diminish adsorption fouling on the UF membrane and thus improve the efficiency of the UF-biochar process. The rejection trends of UF-biochar and UF alone were similar in most cases, whereas UF-biochar showed a noticeable increase in flux of around 18-25% under various experimental conditions due to reduced membrane fouling. Three-cycle filtration tests further demonstrated that UF-biochar showed better membrane recovery and antifouling capability by showing more HA rejection (3-5%) than UF membrane alone with each subsequent cycle of filtration. As a result of these findings, the UF-biochar process may potentially prove be a viable treatment option for the removal of HA from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  7. THE INFLUENCE OF MIEX® RESIN FOR WATER TREATMENT EFFICIENCYIN A HYBRID MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    Mariola Rajca

    2014-10-01

    Full Text Available The paper presents the results of studies related to the effectiveness of removal of natural organic matter (NOM from water using hybrid membrane reactor in which ion exchange and ultrafiltration processes were performed. MIEX® resin by Orica Watercare and immersed ultrafiltration polyvinylidene fluoride capillary module ZeeWeed 1 (ZW 1 by GE Power&Water operated at negative pressure were used. The application of multifunctional reactor had a positive effect on the removal of contaminants and enabled the production of high quality water. Additionally, in refer to single stage ultrafiltration it minimalized the occurrence of membrane fouling.

  8. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  9. Infrasonic backpulsed membrane cleaning of micro- and ...

    African Journals Online (AJOL)

    Membrane fouling is universally considered to be one of the most critical problems in the wider application of membrane filtration. In this research microfiltration and ultrafiltration membranes were fouled during a cross-flow filtration process, using yeast and alumina suspensions in a flat cell. Infrasonic backpulsing directly ...

  10. Whey protein concentration by ultrafiltration and study of functional properties

    Directory of Open Access Journals (Sweden)

    Sidiane Iltchenco

    2018-06-01

    Full Text Available ABSTRACT: This paper aim to evaluate the ultrafiltration (UF process for constituents recovery from whey. Sequences of factorial designs were performed by varying temperature (5 to 40°C and pressure (1 to 3 bar, to maximize the proteins concentration using membrane of 100kDa in dead end system. Based on the best result new experiments were performed with membrane of 50kDa and 10kDa. With the membrane of 50 the protein retention was about 3 times higher than the membrane of 100kDa. The concentrated obtained by UF membrane of 10kDa, 10°C and 2 bar in laboratory scale showed a mean protein retention of 80 %, greater protein solubility, emulsion stability and the identification of β-lactoglobulins (18.3 kDa and α-lactalbumin fractions (14.2kDa. Therefore, the use of membrane of 100 and 50kDa are became a industrially recommendable alternatives to concentration of whey proteins, and/or as a previous step to the fractionation of whey constituents using membrane ≤10kDa, aiming at future applications in different areas (food, pharmaceutical, chemical, etc..

  11. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  12. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers.

    Science.gov (United States)

    Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris

    2007-01-01

    Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).

  13. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh; Leiknes, TorOve

    2017-01-01

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti

  14. Flux, rejection and fouling during microfiltration and ultrafiltration of sugar palm sap using a pilot plant scale

    Directory of Open Access Journals (Sweden)

    Wanichapichart, P.

    2006-07-01

    Full Text Available The possibility of using a pilot plant scale microfiltration (MF and ultrafiltration (UF to clarify and reduce number of bacteria, yeast and mould of sugar palm sap was studied. The membrane used was multi channel tubular ceramic membrane (ZrO2-TiO2 with membrane pore size 0.2 and 0.1 μm and molecular weight cut off (MWCO 300 and 50 kDa for microfiltration and ultrafiltration respectively. The experiment was carried out to investigate the rejection of the components in sugar palm sap, permeate flux and fouling characteristics. The results showed that the turbidity, the total solid, the viscosity and the numbers of bacteria, yeast and mould in the permeate obtained by MF and UF were reduced significantly compared to those of fresh sugar palm sap. The total soluble solid, total sugar, reducing sugar and pH were not affected by MF and UF. The permeate fluxes for all membranes were reduced greatly as the volume concentration ratio (VCR increased due to severe fouling. The irreversible fouling on membrane surface and/or inside the membrane tended to increase with increasing membrane pore size or MWCO. The result also suggested that protein and small particle in the sugar palm sap were probably responsible for the internal fouling of large pore size membrane. According to the physical, chemical and microorganism quality results, both MF and UF showed the potential use for improving the quality of sugar palm sap but flux reduction due to fouling was a major problem affecting the process performance.

  15. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  16. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    Science.gov (United States)

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037 mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06 mg/mL, respectively. Six hours after oral administration (100 mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51 mmHg. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hydrophobicity measurements of microfiltration and ultrafiltration membranes.

    NARCIS (Netherlands)

    Keurentjes, J.T.F.; Harbrecht, J.G.; Brinkman, D.; Hanemaaijer, J.H.; Cohen Stuart, M.A.; Riet, van 't K.

    1989-01-01

    A method for the determination of the hydrophobicity of membrane materials is developed. The advantage of this method over existing methods is that it is not influenced by the presence of the pores. A piece of the membrane material is submerged horizontally in a liquid with surface tension L.

  18. High Concentration Protein Ultrafiltration: a Comparative Fouling Assessment

    Science.gov (United States)

    Lim, Y. P.; Mohammad, A. W.

    2018-05-01

    In this paper, the predominant fouling mechanism via pH manipulation in gelatin ultrafiltration (UF) at constant operating pressure was studied. Two 30 kDa molecular weight cut off (MWCO) UF membranes with different hydrophilic/hydrophobic properties were tested at solution pH near gelatin isoelectric point (IEP), pH below and above gelatin’s IEP. The resistance-in-series model was used to determine quantitatively the contribution of each filtration resistance occurred during gelatin UF. The governing fouling mechanisms were investigated using classical blocking laws. The results demonstrated that concentration polarization remain as dominant fouling resistance in gelatin UF, but exceptional case was observed at pH away from gelatin’s IEP, showing that combined reversible and irreversible fouling resistances contributed around 57% and 37%, respectively to the overall fouling resistances. Under all experimental condition tested, permeate flux decline was accurately predicted by all the models studied. Fouling profile was fitted well with “Standard Blocking”, “Intermediate Blocking” and “Cake Filtration” model for regenerated cellulose acetate (RCA) membrane and “Cake Filtration” model for polyethersulphone (PES) membrane.

  19. Concentration of lemon pectin extract by ultrafiltration

    Directory of Open Access Journals (Sweden)

    Damián Stechina

    2012-09-01

    Full Text Available Current annual lemon production in Argentina is about 900 thousand t. 75% is used industrially to obtain pasteurized juice concentrate. Since 40 - 45 % of citrus fruit content is peel and seeds, the annual lemon residue yield is 360 thousand t. Lemon peel contains about 30% (B.S. of peptic substances with an important commercial value due to its gelling and thickening properties for food, chemical, pharmacological and cosmetic products. Membrane processes have many applications in food manufacture. The objective of this study is to analyze the influence of ultrafiltration operating variables on instant permeate flow (Fp and on the energy requirement for pectin extract concentration from lemon peel. A DDS lab module was used, lab 20-772 model with synthetic material membranes, 9 kDa, shear force, the intrinsic membrane resistance (Rm being 3*1013 m -1 . Results show that Fp decrease caused by polarization induced resistance occurrence and the influence of operating variables on Fp offer relevant data to estimate the energy requirement in relation to feeding flow at constant temperature, which may be compared to pectin concentration increase in the retained flow in relation to initial extract concentration.

  20. Study on cross-flow ultrafiltration for the radioactive liquid waste treatment

    International Nuclear Information System (INIS)

    Jung, K. H.; Jo, E. S.; Lee, D. G.; Lee, G. W.; Jung, K. J.

    2000-01-01

    The effect of the UF membranes on permeate flux was investigated in the ultrafiltration of dodecane (0.1v%) / water emulsion and dodecane-SDS-water emulsion in view of the treatment of radioactive oily emulsion liquid waste in the future. For variety of membranes, experiments in cross-flow modes have been performed at various pressure and different cross-flow velocities. Permeate flux decreased with the time and reached a constant steady-state value. Steady-state flux was found to be dependent by the hydrodynamic conditions but independent by the pressure. Flux decrease and rates of permeate flow resistance change have been analysed using a formulation of the equations illustrating the method of resistance mechanism recognition

  1. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2016-06-01

    Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations ( 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2016-06-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  3. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2013-11-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  4. Influence of gas-liquid two-phase flow on angiotensin-I converting enzyme inhibitory peptides separation by ultra-filtration.

    Science.gov (United States)

    Charoenphun, Narin; Youravong, Wirote

    2017-01-01

    Membrane fouling is a major problem in ultra-filtration systems and two-phase flow is a promising technique for permeate flux enhancement. The objective of this research was to study the use of an ultra-filtration (UF) system to enrich angiotensin-I converting enzyme (ACE) inhibitory peptides from tilapia protein hydrolysate. To select the most appropriate membrane and operating condition, the effects of membrane molecular weight cut-off (MWCO), transmembrane pressure (TMP) and cross-flow velocity (CFV) on permeate flux and ACE inhibitory peptide separation were studied. Additionally, the gas-liquid two-phase flow technique was applied to investigate its effect on the process capability. The results showed that the highest ACE inhibitory activity was obtained from permeate of the 1 kDa membrane. In terms of TMP and CFV, the permeate flux tended to increase with TMP and CFV. The use of gas-liquid two-phase flow as indicated by shear stress number could reduce membrane fouling and increase the permeate flux up to 42%, depending on shear stress number. Moreover, the use of a shear stress number of 0.039 led to an augmentation in ACE inhibitory activity of permeates. Operating conditions using a shear stress number of 0.039 were recommended for enrichment of ACE inhibitory peptides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Influence of floc size and structure on membrane fouling in coagulation-ultrafiltration hybrid process-The role of Al{sub 13} species

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiying [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Ji' nan 250100, Shandong (China); Gao, Baoyu, E-mail: baoyugao_sdu@yahoo.com.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Ji' nan 250100, Shandong (China); Mao, Ranran; Yue, Qinyan [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Ji' nan 250100, Shandong (China)

    2011-10-15

    Highlights: {yields} The optimum dose of Al{sub 13} for improving the membrane permeability was 5 mg/L and for PACl was 7 mg/L. {yields} Effluent coagulated by Al{sub 13} species presented lower proportion of R{sub a} in the total resistance due to the high strength of Al{sub 13}-HA flocs. {yields} The high D{sub f} of flocs formed by Al{sub 13} was not favorable for the reduction of cake layer resistance. - Abstract: Coagulation application prior to ultrafiltration process was carried out to increase humic acid (HA) removal and membrane permeability. The [Al{sub 13}O{sub 4}(OH){sub 24}(H{sub 2}O){sub 12}]{sup 7+} polycation (Al{sub 13} species) was used in the coagulant process and polyaluminum chloride (PACl) was also used for comparison. Characteristics of aggregates pre-coagulated by Al{sub 13} species and PACl were investigated using a laser diffraction particle sizing device. Additionally, membrane fouling was investigated under different coagulation conditions. The various resistances caused by Al{sub 13} and PACl treatment effluents were determined using the membrane fouling index equation. The results indicated that at dose of 1 and 3 mg/L, Al{sub 13} produced larger flocs than PACl; while when dosage further increased, the PACl-HA flocs were much larger. The flocs formed by Al{sub 13} were strong and compact, and those formed by PACl were weak and loosely structured with the exception of the flocs generated at 1 mg/L. The investigation of membrane fouling demonstrated that Al{sub 13} contributed to the best effluent permeating at 5 mg/L and the corresponding dose for PACl was 7 mg/L. The adsorption resistance of effluent pre-treated by Al{sub 13} accounted for a smaller percentage of the total resistances compared with that by PACl.

  6. Cleaning UF membranes with simple and formulated solutions

    NARCIS (Netherlands)

    Levitsky, I.; Duek, A.; Naim, R.; Arkhangelsky, E.; Gitis, V.

    2012-01-01

    The ultrafiltration membranes fouled by proteins are typically cleaned by consecutive soaking in alkali, surfactant and oxidizing solutions. We combined all three chemicals into a formulated cleaning agent and examined its efficiency to restore the water flux without damaging the membrane or

  7. Recycling Cellulase from Enzymatic Hydrolyzate of Laser-Pretreated Corn Stover by UF Membrane

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2015-09-01

    Full Text Available The ultrafiltration membrane reactor, utilizing a membrane module with a suitable molecular weight alleyway, retains the larger cellulase components. Smaller molecules, such as the fermentable reducing sugars and water, pass through the membrane. The purpose of this work was to investigate the capability of recycling cellulase in the UF membrane. PS30 hollow fiber membrane, an ultrafiltration method using internal pressure, was found to be an ideal membrane separation device, allowing re-use of the enzyme. A Box-Behnken experimental design (BBD established the following optimum pretreatment parameters: operation pressure at 1.73 bar, temperature at 36.38 °C, and a pH of 5.92. Under these conditions, the model predicted a membrane flux yield of 2.3174 L/(m2•h. The rejection rate of the UF membrane was over 95%.

  8. Membrane processes in biotechnology: an overview.

    Science.gov (United States)

    Charcosset, Catherine

    2006-01-01

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.

  9. Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis.

    Science.gov (United States)

    Knutsen, Jeffrey S; Davis, Robert H

    2004-01-01

    Technologies suitable for the separation and reuse of cellulase enzymes during the enzymatic saccharification of pretreated corn stover are investigated to examine the economic and technical viability of processes that promote cellulase reuse while removing inhibitory reaction products such as glucose and cellobiose. The simplest and most suitable separation is a filter with relatively large pores on the order of 20-25 mm that retains residual corn stover solids while passing reaction products such as glucose and cellobiose to form a sugar stream for a variety of end uses. Such a simple separation is effective because cellulase remains bound to the residual solids. Ultrafiltration using 50-kDa polyethersulfone membranes to recover cellulase enzymes in solution was shown not to enhance further the saccharification rate or overall conversion. Instead, it appears that the necessary cellulase enzymes, including beta-glucosidase, are tightly bound to the substrate; when fresh corn stover is contacted with highly washed residual solids, without the addition of fresh enzymes, glucose is generated at a high rate. When filtration was applied multiple times, the concentration of inhibitory reaction products such as glucose and cellobiose was reduced from 70 to 10 g/L. However, an enhanced saccharification performance was not observed, most likely because the concentration of the inhibitory products remained too high. Further reduction in the product concentration was not investigated, because it would make the reaction unnecessarily complex and result in a product stream that is much too dilute to be useful. Finally, an economic analysis shows that reuse of cellulase can reduce glucose production costs, especially when the enzyme price is high. The most economic performance is shown to occur when the cellulase enzyme is reused and a small amount of fresh enzyme is added after each separation step to replace lost or deactivated enzyme.

  10. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal.

    Science.gov (United States)

    Montaña, M; Camacho, A; Serrano, I; Devesa, R; Matia, L; Vallés, I

    2013-11-01

    A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation

    International Nuclear Information System (INIS)

    Secondes, Mona Freda N.; Naddeo, Vincenzo; Belgiorno, Vincenzo; Ballesteros, Florencio

    2014-01-01

    Highlights: • Above 99% of the emerging contaminants were removed in the USAMe process. • Influence of PAC dose and US frequency on removal is studied. • Improved performance is due to PAC adsorption enhancement and sonolytic degradation. • US irradiation improved efficiency and delayed declines in the removal of contaminants. • Performance of the hybrid process is better under lower frequency ultrasound irradiation. -- Abstract: Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs

  12. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Secondes, Mona Freda N. [Environmental Engineering Graduate Program, Department of Chemical Engineering, University of the Philippines – Diliman, Quezon City (Philippines); Naddeo, Vincenzo, E-mail: vnaddeo@unisa.it [Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano 84084 (Saudi Arabia) (Italy); Belgiorno, Vincenzo [Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano 84084 (Saudi Arabia) (Italy); Ballesteros, Florencio [Environmental Engineering Graduate Program, Department of Chemical Engineering, University of the Philippines – Diliman, Quezon City (Philippines)

    2014-01-15

    Highlights: • Above 99% of the emerging contaminants were removed in the USAMe process. • Influence of PAC dose and US frequency on removal is studied. • Improved performance is due to PAC adsorption enhancement and sonolytic degradation. • US irradiation improved efficiency and delayed declines in the removal of contaminants. • Performance of the hybrid process is better under lower frequency ultrasound irradiation. -- Abstract: Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs.

  13. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system

    OpenAIRE

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration-nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized u...

  14. Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan

    Directory of Open Access Journals (Sweden)

    Grégorio Crini

    2017-05-01

    Full Text Available Polymer assisted ultrafiltration (PAUF is a relatively new process in water and wastewater treatment and the subject of an increasing number of papers in the field of membrane science. Among the commercial polymers used, poly(ethyleneimine and poly(acrylic acid are the most popular to complex numerous metal ions. Recently, there is an increasing interest in the use of chitosan, a natural linear polymer, as chelating agent for complexing metals. Chitosan has a high potential in wastewater treatment mainly due to its polyelectrolyte properties at acidic pH. The objectives of this review are to present the PAUF process and to highlight the advantages gained from the use of chitosan in the process of complexation–ultrafiltration. For this, a PAUF-based literature survey has been compiled and is discussed. From these data, chitosan, a biopolymer that is non-toxic to humans and the environment, is found to be effective in removing metal ions and exhibits high selectivity. It might be a promising polyelectrolyte for PAUF purposes.

  15. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER membrane was used as pre-treatment for electrochemical process. The obtained permeate from the ultrafiltration process allowed COD removal efficiency of about 96% from OMW. Obtained permeate with an average COD of about 1.1gdm-3 was treated by electrochemical reactor equipped with a reactor with bipolar iron plate electrodes. The effect of the experimental parameters such as current density, pH, surface electrode/reactor volume ratio and NaCl concentration on COD removal was assessed. The results showed that the optimum COD removal rate was obtained at a current density of 93.3Am-2 and pH ranging from 4.5 to 6.5. At the optimum operational parameters for the experiments, electrocoagulation process could reduce COD from 1.1gdm-3 to 78mgdm-3, allowing direct discharge of the treated OMW as that meets the Algerian wastewater discharge standards (<125mgdm-3). © 2010 Elsevier B.V.

  16. Characterization of anisotropic UF-membranes: top layer thickness and pore structure

    NARCIS (Netherlands)

    Cuperus, F.P.; Cuperus, F.P.; Bargeman, D.; Bargeman, D.; Smolders, C.A.; Smolders, C.A.

    1991-01-01

    Anisotropic poly(2,6-dimethyl-, 1,4-phenylene oxide) (PPO) ultrafiltration membranes are characterized by means of two techniques. A new method for the determination of skin thicknesses, the gold sol method, is introduced and applied to these membranes. The membranes appeared to have a well-defined

  17. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  18. The treatment of oily brines containing waste oils using membrane technologies

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Tremblay, A.Y. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; Veinot, D.E. [Defence R and D Canada, Halifax, NS (Canada). Atlantic Dockyard Laboratory

    2004-07-01

    Bilge water is an oily wastewater from ships that must be treated before it is discharged to coastal waters. It is difficult to treat because it contains seawater, particulates, used oils and detergents. This paper presents the results of a study which examined a cascaded membrane system comprised of a backflushed microfiltration membrane used for pretreatment of bilge water. It also examined an ultrafiltration membrane used in the final polishing step. Membrane pore size, materials and support structures were examined for single tube carbon membrane and multilumen ceramic membranes. Results indicate that membranes with a pore size less than 0.2 microns can treat bilge water directly. The performance of the membrane depends on its pore size and on the particle size distribution of the bilge water. Backflushing improved the flux in single tube carbon membranes but not in the multilumen ceramic membranes. Another important factor in bilge water treatment was the clearance of the support structure with respect to particulates. Heating, air and steam methods were all found to be suitable for membrane flux regeneration. A hybrid microfiltration and ultrafiltration membrane proved to be very effective in treating bilge water.

  19. Development of ultrafiltration and inorganic adsorbents: January--March 1977

    International Nuclear Information System (INIS)

    Koenst, J.W. Jr.

    1977-01-01

    Ultrafiltration media with and without the assistance of bone char filters were evaluated to determine their effectiveness in removing radionuclides from contaminated solutions. Precipitants, resin, adsorbents, and inorganic adsorbents were studied to determine their effectiveness in decontaminating solutions. A study of the effects of radiation on ultrafiltration media was initiated. An ultrafiltration media pilot plant was ordered and is being installed

  20. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-01-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration

  1. Characterization of antibacterial polyethersulfone membranes using the respiration activity monitoring system (RAMOS)

    NARCIS (Netherlands)

    Kochan, J.; Scheidle, M.; Erkel, J. van; Bikel, M.; Büchs, J.; Wong, J.E.; Melin, T.; Wessling, M.

    2012-01-01

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial

  2. Effects of different pretreatments on the performance of ceramic ultrafiltration membrane during the treatment of oil sands tailings pond recycle water: a pilot-scale study.

    Science.gov (United States)

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; El-Din, Mohamed Gamal

    2015-03-15

    Membrane filtration is an effective treatment method for oil sands tailings pond recycle water (RCW); however, membrane fouling and rapid decrease in permeate flux caused by colloids, organic matter, and bitumen residues present in the RCW hinder its successful application. This pilot-scale study investigated the impact of different pretreatment steps on the performance of a ceramic ultrafiltration (CUF) membrane used for the treatment of RCW. Two treatment trains were examined: treatment train 1 consisted of coagulant followed by a CUF system, while treatment train 2 included softening (Multiflo™ system) and coagulant addition, followed by a CUF system. The results indicated that minimum pretreatment (train 1) was required for almost complete solids removal. The addition of a softening step (train 2) provided an additional barrier to membrane fouling by reducing hardness-causing ions to negligible levels. More than 99% removal of turbidity and less than 20% removal of total organic carbon were achieved regardless of the treatment train used. Permeate fluxes normalized at 20 °C of 127-130 L/m(2) h and 111-118 L/m(2) h, with permeate recoveries of 90-93% and 90-94% were observed for the treatment trains 1 and 2, respectively. It was also found that materials deposited onto the membrane surface had an impact on trans-membrane pressure and influenced the required frequencies of chemically enhanced backwashes (CEBs) and clean-in-place (CIP) procedures. The CIP performed was successful in removing fouling and scaling materials such that the CUF performance was restored to baseline levels. The results also demonstrated that due to their low turbidity and silt density index values, permeates produced in this pilot study were suitable for further treatment by high pressure membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Appropriateness of mechanistic and non-mechanistic models for the application of ultrafiltration to mixed waste

    International Nuclear Information System (INIS)

    Foust, Henry; Ghosehajra, Malay

    2007-01-01

    This study asks two questions: (1) How appropriate is the use of a basic filtration equation to the application of ultrafiltration of mixed waste, and (2) How appropriate are non-parametric models for permeate rates (volumes)? To answer these questions, mechanistic and non-mechanistic approaches are developed for permeate rates and volumes associated with an ultrafiltration/mixed waste system in dia-filtration mode. The mechanistic approach is based on a filtration equation which states that t/V vs. V is a linear relationship. The coefficients associated with this linear regression are composed of physical/chemical parameters of the system and based the mass balance equation associated with the membrane and associated developing cake layer. For several sets of data, a high correlation is shown that supports the assertion that t/V vs. V is a linear relationship. It is also shown that non-mechanistic approaches, i.e., the use of regression models to are not appropriate. One models considered is Q(p) = a*ln(Cb)+b. Regression models are inappropriate because the scale-up from a bench scale (pilot scale) study to full-scale for permeate rates (volumes) is not simply the ratio of the two membrane surface areas. (authors)

  4. Hollow fiber membrane ultrafiltration of a simulated secondary treatment wastewater. Process and fouling modeling

    OpenAIRE

    Soler Cabezas, José Luis; Vincent Vela, Maria Cinta; Mendoza Roca, José Antonio; Martínez Francisco, Francisco Juan

    2012-01-01

    It is well known that there is a scarcity of drinking and irrigation water around the world nowadays. According to the United Nations, water scarcity affects 1.2 billion people (one-fifth of the world's population) and the water use has been growing at twice the rate of population increase in the last century. This fact makes the reuse of the wastewater from municipal wastewater treatment plants (MWTPs) an interesting option. Ultrafiltration after the secondary settling is becoming more f...

  5. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Mehrdad Ebrahimi

    2015-12-01

    Full Text Available Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  6. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    Science.gov (United States)

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  7. Radiocarbon dating of VIRI bone samples using ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Masayo, E-mail: minami@nendai.nagoya-u.ac.jp [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan); Yamazaki, Kana [Faculty of Science, Nagoya University, Nagoya 464-8602 (Japan); Omori, Takayuki [University Museum, University of Tokyo, Tokyo 113-0033 (Japan); Nakamura, Toshio [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan)

    2013-01-15

    Ultrafiltration can effectively remove low-molecular-weight (LMW) contaminants from bone gelatin to extract high-molecular-weight (HMW) proteins that are derived from original bone collagen, though it cannot remove HMW collagen crosslinked with humic acids. Therefore, ultrafiltration is often used to obtain more accurate {sup 14}C dates of bones. However, ultrafiltration may introduce new contaminants to bone gelatins, mainly from ultrafilters used. To study the effects of ultrafiltration on {sup 14}C age, we analyzed the C/N ratio, {delta}{sup 13}C{sub PDB} and {delta}{sup 15}N{sub AIR} values, and {sup 14}C ages of acid-soluble bone collagen obtained by decalcification, gelatin extracted from acid-insoluble bone collagen, and the HMW gelatin and LMW fractions produced during ultrafiltration of the extracted gelatin. Bone samples from the Fifth International Radiocarbon Intercomparison (VIRI) were used: VIRI-E (mammoth), -F (horse), -G (human), and -I (whale). In this study, carbon and nitrogen content and gelatin yields were used to evaluate collagen preservation in the VIRI bone samples. Radiocarbon ages, {delta}{sup 13}C{sub PDB} and {delta}{sup 15}N{sub AIR} values of unfiltered and HMW gelatins were obtained and compared with the published consensus values. The LMW fraction was found to exhibit different values from those of the other fractions, indicating the possible presence of extraneous contamination. The Vivaspin Trade-Mark-Sign 6 ultrafilters used in this study were analyzed and radiocarbon dated both before and after cleaning. We present evidence to suggest that LMW fraction contaminants could be derived from the ultrafilters rather than humic substances. Excessively long ultrafiltration time was suspected to have contaminated the bone samples with material from the ultrafilter, because those samples exhibited older {sup 14}C ages than did those filtered for shorter durations. The results in this study indicate that {sup 14}C ages of unfiltered

  8. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara; Li, Z.; Behzad, Ali Reza; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2015-01-01

    and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions

  9. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh; Hadwiger, Markus; Ben Romdhane, Mohamed; Behzad, Ali Reza; Madhavan, Poornima; Nunes, Suzana Pereira

    2016-01-01

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore

  10. Membrane methods for the treatment of low and intermediate radioactive wastes

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.; Chmielewski, A.G.; Harasimowicz, M.; Tyminski, B.

    2001-01-01

    Membrane processes have been investigated at Institute of Nuclear Chemistry and Technology, Warsaw (INCT) since eighties. Different polymeric membranes were tested with radioactive solutions in long time operations. Such membrane processes as ultrafiltration, 'seeded' ultrafiltration and reverse osmosis were studied in a laboratory scale and in pilot plant experiments. The experiments show the advantage of membrane methods over some other processes used for radioactive wastes treatment. The RO method is being implemented at Institute of Atomic Energy in Swierk (Warsaw), where liquid radioactive wastes from all of Poland are collected and processed. Another method for liquid radioactive wastes treatment employing hydrophobic polymer membrane was developed at INCT. The process called membrane distillation was investigated for some years and the pilot plant for the processing 50 dm 3 /h of radioactive effluents was constructed. The pilot plant experiments show membrane distillation allows complete purification of liquid radioactive waste in one stage and does not need additional processes to ensure sufficient purity of water discharged to the environment. Comparison between two processes: membrane distillation and reverse osmosis showed that in some cases MD could be more beneficial. (author)

  11. Effect of biological and coagulation pre-treatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Kajol, Annaduzzaman; Suja, Fatihah; Md Zain, Shahrom

    2017-03-01

    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.

  12. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane

    Science.gov (United States)

    Cheraghi Bidsorkhi, H.; Riazi, H.; Emadzadeh, D.; Ghanbari, M.; Matsuura, T.; Lau, W. J.; Ismail, A. F.

    2016-10-01

    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.

  13. Designing block copolymer architectures for targeted membrane performance

    KAUST Repository

    Dorin, Rachel Mika; Phillip, William A.; Sai, Hiroaki; Werner, Jö rg; Elimelech, Menachem; Wiesner, Ulrich

    2014-01-01

    Using a combination of block copolymer self-assembly and non-solvent induced phase separation, isoporous ultrafiltration membranes were fabricated from four poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymers with similar block volume

  14. A study of colloid-enhanced ultrafiltration. Final report, March 1984--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Scamehorn, J.F.; Christian, S.D.

    1994-02-01

    Over the past nine years of funding by DOE Office of Basic Energy Sciences, the authors have developed a whole family of methods under the umbrella of colloid-enhanced ultrafiltration techniques. These methods can be used for removal of either dissolved organics or multivalent ions from water or both simultaneously. They have gone from very fundamental studies of the ultrafiltration process to a field test using actual polluted groundwater. The orientation of this research has been the ultimate development of a workable, economical process. To do this, the authors have tried to understand the underlying fundamental phenomena involved in the separation and in potential solutions to technological bottlenecks and developed new scientific knowledge in the process. However, the thrust of the investigations have been focused on bringing the technology to a successful adoption by industry. This report summarizes the following: micellar-enhanced ultrafiltration; polyelectrolyte-enhanced ultrafiltration; ion-expulsion ultrafiltration; ligand-modified micellar-enhanced ultrafiltration; polyelectrolyte/surfactant-enhanced ultrafiltration, supporting research, and relation to energy. 61 refs.

  15. An ultrafiltration assay for lysyl oxidase

    International Nuclear Information System (INIS)

    Shackleton, D.R.; Hulmes, D.J.

    1990-01-01

    A modification of the original microdistillation assay for lysyl oxidase is described in which Amicon C-10 microconcentrators are used to separate, by ultrafiltration, the 3H-labeled products released from a [4,5-3H]-lysine-labeled elastin substrate. Enzyme activity is determined by scintillation counting of the ultrafiltrate, after subtraction of radioactivity released in the presence of beta-aminopropionitrile, a specific inhibitor of the enzyme. Conditions are described which optimize both the sensitivity and the efficient use of substrate. The assay shows linear inhibition of activity in up to 1 M urea; hence, as the enzyme is normally diluted in the assay, samples in 6 M urea can be assayed directly, without prior dialysis, and corrected for partial inhibition. Comparable results are obtained when enzyme activity is assayed by ultrafiltration or microdistillation. The assay is simple and convenient and, by using disposable containers throughout, it eliminates the need for time-consuming decontamination of radioactive glassware

  16. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    Science.gov (United States)

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  17. MECHANISM OF LIQUID MEMBRANES AND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Filiz Nuran ACAR

    2002-02-01

    Full Text Available It has been considerably studied on the recycling of waste materials in the source besides of wastewater treatment in the last years. It has been important developments on the using of semiconductor membranes in the recycling of toxic materials such as heavy metals, intensifying the environment protection measures especially in the west countries. Wastewater treatment has been achieved with liquid membranes as it has been achieved with polymeric membrane systems such as ultrafiltration, microfiltration, electrodialysis. At the same time, liquid membranes are used for removal of metal ions in hydrometallurgy. Liquid membranes are also used in biotechnology, medical areas and gas separation process.

  18. Influence of fertilizer draw solution properties on the process performance and microbial community structure in a side-stream anaerobic fertilizer-drawn forward osmosis – ultrafiltration bioreactor

    KAUST Repository

    Kim, Youngjin; Li, Sheng; Chekli, Laura; Phuntsho, Sherub; Ghaffour, NorEddine; Leiknes, TorOve; Shon, Ho Kyong

    2017-01-01

    In this study, a side-stream anaerobic fertilizer-drawn forward osmosis (FDFO) and ultrafiltration (UF) membrane bioreactor (MBR) hybrid system was proposed and operated for 55 days. The FDFO performance was first investigated in terms of flux

  19. Designing block copolymer architectures for targeted membrane performance

    KAUST Repository

    Dorin, Rachel Mika

    2014-01-01

    Using a combination of block copolymer self-assembly and non-solvent induced phase separation, isoporous ultrafiltration membranes were fabricated from four poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymers with similar block volume fractions but varying in total molar mass from 43 kg/mol to 115 kg/mol to systematically study the effect of polymer size on membrane structure. Small-angle X-ray scattering was used to probe terpolymer solution structure in the dope. All four triblocks displayed solution scattering patterns consistent with a body-centered cubic morphology. After membrane formation, structures were characterized using a combination of scanning electron microscopy and filtration performance tests. Membrane pore densities that ranged from 4.53 × 1014 to 1.48 × 1015 pores/m 2 were observed, which are the highest pore densities yet reported for membranes using self-assembly and non-solvent induced phase separation. Hydraulic permeabilities ranging from 24 to 850 L m-2 h-1 bar-1 and pore diameters ranging from 7 to 36 nm were determined from permeation and rejection experiments. Both the hydraulic permeability and pore size increased with increasing molar mass of the parent terpolymer. The combination of polymer characterization and membrane transport tests described here demonstrates the ability to rationally design macromolecular structures to target specific performance characteristics in block copolymer derived ultrafiltration membranes. © 2013 Elsevier Ltd. All rights reserved.

  20. p-Nitrophenol removal by combination of powdered activated carbon adsorption and ultrafiltration - comparison of different operational modes.

    Science.gov (United States)

    Ivancev-Tumbas, Ivana; Hobby, Ralph; Küchle, Benjamin; Panglisch, Stefan; Gimbel, Rolf

    2008-09-01

    Ultrafiltration is classified as a low-pressure membrane technology which effectively removes particulate matter and microorganisms and to a certain extent dissolved organic matter (15-25%) and colour. The technology has been optimized and is becoming competitive compared to conventional processes for larger scale plant capacities. In combination with activated carbon it is an effective barrier regarding the removal of synthetic organic chemicals. Growing interest in ultrafiltration raises the question of better usage of the adsorption capacity of powdered activated carbon (PAC) used in combination with this low-pressure membrane technique. This paper presents a pilot plant study of different PAC dosing procedures within a combined hybrid membrane IN/OUT process for removal of p-nitrophenol (PNP) from water (c(0)=1mg/L) under real case conditions (e.g. usage of the same module for the whole duration of the experiment, backwashing with permeate water, no separate saturation of the membrane with substance without presence of carbon). p-Nitrophenol was chosen as an appropriate test substance to assess the efficiency of different operation modes. Dead-end and cross-flow filtration were compared with respect to different PAC dosing procedures: continuous dosing into a continuously stirred tank reactor (CSTR) in front of the module and direct dosing into the pipe in front of the module (continuous, single-pulse and multi-pulse dosing). There was no advantage in cross-flow mode over dead-end referring to PNP concentration in the permeate. Relating to the carbon dosing procedure, the best results were obtained for continuous PAC addition. The option of dosing directly into the pipe has the advantage of no additional tank being necessary. In the case of single-pulse dosing, the formation of a carbon layer on the membrane surface was assumed and an LDF model applied for a simplified estimation of the "breakthrough behaviour" in the thus formed "PAC filter layer".

  1. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    International Nuclear Information System (INIS)

    Shamsuddin Ilias

    2005-01-01

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal

  2. EDTA fouling in dead-end ultrafiltration of low level radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Lixia [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Zhang, Xue [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Zhao, Xuan, E-mail: zhxinet@mail.tsinghua.edu.cn [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Hu, Hongying [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China)

    2015-12-15

    Highlights: • EDTA in LLRW caused unrecoverable UF membrane fouling. • The rejection of nuclides by UF was significantly enhanced with EDTA addition. • The nuclide (except Ag) deposition on membrane increased with EDTA addition. • Reducing EDTA in the feed water or alkaline/ultrasonic washing were suggested. - Abstract: EDTA is widely used as a detergent, and finally enters into wastewater. The influence of EDTA on ultrafiltration of low level radioactive wastewater (LLRW) was investigated under different operation conditions. As the main organic pollutant, EDTA led to unrecoverable membrane fouling and the normalized flux decreased from 100% to 85% depending on its concentration. The clogging caused by EDTA increased the surface roughness of the membrane, leading to the flux reduction. Both nuclide rejections and depositions on the membrane surfaces were enhanced with EDTA addition, due to the strong complexation of the nuclides with EDTA. However, Ag deposition on the membrane decreased slightly in the presence of EDTA, which may be caused by the stronger attraction of Ag to the unmodified membrane than that to the EDTA-modified one. Transmembrane pressure (TMP) and molecular weight cut off (MWCO) of membranes had negligible effects on membrane fouling, while the nuclide rejections by membrane and the depositions of nuclides on membrane both decreased significantly when the TMP increased to 0.2 MPa and MWCO increased from 5 kDa to 30 kDa. Based on these results, it clearly showed that EDTA even at a low concentration had strong effects on the performance of UF treating LLRW. Therefore, it is suggested for industrial application that pretreatments to reduce EDTA or alkaline/ultrasonic washing involved in UF process were necessary to reduce the nuclide depositions on the membrane surfaces and irradiation dose of membrane surface.

  3. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N.; Luonsi, A.; Levaenen, E.; Maentylae, T.; Vilen, J. [Haemeen ympaeristoekeskus, Tampere (Finland)

    1998-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  4. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N; Luonsi, A; Levaenen, E; Maentylae, T; Vilen, J [Haemeen ympaeristoekeskus, Tampere (Finland)

    1999-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  5. Active liquid treatment by a combination of precipitation and membrane processes

    International Nuclear Information System (INIS)

    Gutman, R.G.; Cumming, I.W.; Williams, G.H.

    1986-08-01

    New ultrafiltration processes developed for the treatment of low and medium active radioactive wastes, were applied successfully to a variety of simulated and real wastes, including magnesium alloy clad spent storage fuel pond waters, reprocessing plant solvent wash liquors, plutonium production effluents and mixed site effluents. After initial laboratory scale feasibility experiments the process was scaled up successfully, using a variety of different ultrafiltration modules. The information accumulated on membrane performance, membrane fouling and flux restoration techniques, and ancillary equipment performance was used to design a much larger demonstration pilot plant. This plant has been constructed and is now processing continuously each day over 1m 3 of a real radioactive effluent. (author)

  6. Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance

    KAUST Repository

    Filloux, Emmanuelle; Teychene, Benoî t; Tazi-Pain, Annie; Croue, Jean-Philippe

    2014-01-01

    In this study, the impact of membrane properties on membrane fouling and permeate water quality was investigated. Short- and long-term laboratory scale experiments using four commercially available hollow fiber UF membranes were performed to study the impact of membrane properties on reversible and irreversible fouling. No significant differences in terms of permeate quality (i.e. biopolymer rejection) were observed over the four tested membranes. It was found that membrane characteristics including pore size, pore distribution and especially materials had a strong impact on the filtration performances in terms of both reversible and irreversible fouling. The short-term filtration tests showed that due to its specific hydrodynamic condition only the inside-out mode UF membrane was subjected to irreversible fouling. These data demonstrate the importance of membrane selection with appropriate operating conditions for optimum performances. The added value of membrane characterization to lab-scale filtration tests for membrane performance was discussed. © 2014 Elsevier B.V. All rights reserved.

  7. Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance

    KAUST Repository

    Filloux, Emmanuelle

    2014-09-01

    In this study, the impact of membrane properties on membrane fouling and permeate water quality was investigated. Short- and long-term laboratory scale experiments using four commercially available hollow fiber UF membranes were performed to study the impact of membrane properties on reversible and irreversible fouling. No significant differences in terms of permeate quality (i.e. biopolymer rejection) were observed over the four tested membranes. It was found that membrane characteristics including pore size, pore distribution and especially materials had a strong impact on the filtration performances in terms of both reversible and irreversible fouling. The short-term filtration tests showed that due to its specific hydrodynamic condition only the inside-out mode UF membrane was subjected to irreversible fouling. These data demonstrate the importance of membrane selection with appropriate operating conditions for optimum performances. The added value of membrane characterization to lab-scale filtration tests for membrane performance was discussed. © 2014 Elsevier B.V. All rights reserved.

  8. Wastewater treatment by nanofiltration membranes

    Science.gov (United States)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  9. Clay filter-aid in ultrafiltration (UF) of humic acid solution

    KAUST Repository

    Pontié , M.; Thekkedath, A.; Kecili, K.; Dach, H.; De Nardi, F.; Castaing, J.B.

    2012-01-01

    Fouling studies with three different molecular weight cut-off (MWCO) (100. kDa, 30. kDa and 10. kDa) membranes in regenerated cellulose were carried out in the presence of Acros humic acids (HA) at pH 3.0, 6.7 and 9.5. It was shown that the tighter membranes were less fouled compared with the higher MWCO membranes. 100. kDa membrane showed the highest degree of fouling. The role of pH showed that the highest degree of fouling happened at a neutral pH (pH 6.7) and the lowest degree of fouling happened at a basic pH (pH 9.5).Effectiveness of a novel pre-treatment method was applied to the 100kDa membrane. We added in the HA solution clay particles, homemade synthetized from natural bentonite and denoted Mont-CTAB. We observed a gain in productivity of 25%. 2D-fractal dimension parameter decreased under 1.5, showing a de-organization of the cake due to clay particles in/on the cake and a specific resistance of 4.4×10 11m/kg was obtained in presence of clays versus 3.6×10 14m/kg with HA alone. Finally the development of clay assisted ultrafiltration process changes the cake morphology limiting fouling impact and it is hope that for long term experiments, formation of a gel-layer should be limited. © 2012 Elsevier B.V..

  10. Clay filter-aid in ultrafiltration (UF) of humic acid solution

    KAUST Repository

    Pontié, M.

    2012-04-01

    Fouling studies with three different molecular weight cut-off (MWCO) (100. kDa, 30. kDa and 10. kDa) membranes in regenerated cellulose were carried out in the presence of Acros humic acids (HA) at pH 3.0, 6.7 and 9.5. It was shown that the tighter membranes were less fouled compared with the higher MWCO membranes. 100. kDa membrane showed the highest degree of fouling. The role of pH showed that the highest degree of fouling happened at a neutral pH (pH 6.7) and the lowest degree of fouling happened at a basic pH (pH 9.5).Effectiveness of a novel pre-treatment method was applied to the 100kDa membrane. We added in the HA solution clay particles, homemade synthetized from natural bentonite and denoted Mont-CTAB. We observed a gain in productivity of 25%. 2D-fractal dimension parameter decreased under 1.5, showing a de-organization of the cake due to clay particles in/on the cake and a specific resistance of 4.4×10 11m/kg was obtained in presence of clays versus 3.6×10 14m/kg with HA alone. Finally the development of clay assisted ultrafiltration process changes the cake morphology limiting fouling impact and it is hope that for long term experiments, formation of a gel-layer should be limited. © 2012 Elsevier B.V..

  11. Effect of transmembrane pressure control on energy efficiency during skim milk concentration by ultrafiltration at 10 and 50°C.

    Science.gov (United States)

    Méthot-Hains, S; Benoit, S; Bouchard, C; Doyen, A; Bazinet, L; Pouliot, Y

    2016-11-01

    The efficiency of the ultrafiltration process during skim milk concentration was studied using both dynamic and constant (465 or 672kPa) transmembrane pressure experiments at refrigerated temperature (10°C) and high temperature (50°C). The pilot-scale module was equipped with a 10-kDa polyethersulfone spiral-wound membrane element with a surface area of 2.04m 2 . Permeation flux, resistance-in-series model, mineral and protein rejection, and energy consumption were studied as a function of temperature and transmembrane pressure applied. Higher permeation flux values were systematically obtained at 50°C. Also, a significant temperature effect was found for calcium rejection, which was lower at 10°C compared with 50°C. Total hydraulic resistance and reversible fouling resistance were higher at 50°C than at 10°C. No change in protein rejection was observed, depending on the operating mode studied. Permeation flux, which was higher at 50°C, had lower pumping energy consumption compared with ultrafiltration at the colder temperature. Also, the low ultrafiltration temperature required a higher total energy consumption to reach the 3.6× retentate compared with ultrafiltration at 50°C. Overall, our study shows that the operating parameters and temperature can be optimized using an energy efficiency ratio. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Recovery of Fermented Spinach (Amaranthus sp. Concentrate Through Ultrafiltration Membrane Process as Source of Folic Acid for Smart Food Formula

    Directory of Open Access Journals (Sweden)

    Aspiyanto Aspiyanto

    2017-11-01

    Full Text Available Fermentation process on spinach (Amaranthus sp. by Kombucha culture was done as an effort to recover naturally folic acid as bioactive components to increase smartness. The experimental activity was done by means of UF membrane (100,000 MWCO fitted in Stirred Ultrafiltration Cell (SUFC at stirrer rotation speed 200 and 400 rpm, room temperature, pressure 20 and 40 Psi for 30 min. Result of experimental activity showed that based on both selectivity and recovery of folic acid, process optimization of UF was reached at stirrer rotation speed 200 rpm and pressure 40 Psi. In the optimum condition, SUFC technique was able to recover folic acid in retentate 67.75% and in permeate 97.27% (63.19 µg/mL. Identification of monomer in permeate from the optimum process treatment was find out folic acid monomer with molecular weight (MW 441.39 and relative intensity 93% at mass spectra T2.32 between m/z 257–304 and glutamic acids monomer with MW 148.57 and relative intensity 0.22% at mass spectra T2.82 between m/z 415–470. Other dominant monomer were folic acid fraction.

  13. Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Benny Freeman

    2008-08-31

    Polymeric membranes could potentially be the most flexible and viable long-term strategy for treatment of produced water from oil and gas production. However, widespread use of membranes, including reverse osmosis (RO) membranes, for produced water purification is hindered due to fouling caused by the impurities present in the water. Fouling of RO membranes is likely caused by surface properties including roughness, hydrophilicity, and charge, so surface modification is the most widely considered approach to improve the fouling properties of current RO membranes. This project focuses on two main approaches to surface modification: coating and grafting. Hydrophilic coating and grafting materials based on poly(ethylene glycol) (PEG) are applied to commercial RO membranes manufactured by Dow FilmTec and GE. Crossflow filtration experiments are used to determine the fouling resistance of modified membranes, and compare their performance to that of unmodified commercial RO membranes. Grafting and coating are shown to be two alternative methods of producing modified membranes with improved fouling resistance.

  14. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal. Final Report

    International Nuclear Information System (INIS)

    Shamsuddin Ilias

    2005-01-01

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  15. Composite perfluorohydrocarbon membranes, their preparation and use

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  16. Substrate Effect on Carbon/Ceramic Mixed Matrix Membrane Prepared by a Vacuum-Assisted Method for Desalination

    Directory of Open Access Journals (Sweden)

    Yingjun Song

    2018-05-01

    Full Text Available This work investigates the effect of various membrane substrates and coating conditions on the formation of carbon/ceramic mixed matrix membranes for desalination application. The substrates were impregnated with phenolic resin via a vacuum-assisted method followed by carbonization under an inert gas. Substrates with pore sizes of 100 nm required a single impregnation step only, where short vacuum times (<120 s resulted in low quality membranes with defects. For vacuum times of ≥120 s, high quality membranes with homogeneous impregnation were prepared leading to high salt rejection (>90% and high water fluxes (up to 25 L m−2 h−1. The increase in water flux as a function of the vacuum time confirms the vacuum etching effect resulting from the vacuum-assisted method. Substrates with pore sizes of 140 nm required two impregnation steps. These pores were too large for the ceramic inter-particle space to be filled with phenolic resin via a single step. In the second impregnation step, increasing the concentration of the phenolic resin resulted in membranes with lower water fluxes. These results indicate that thicker films were formed by increasing the phenolic resin concentration. In the case of substrates with pores of 600 nm, these pores were too large and inter-particle space filling with phenolic resin was not attained.

  17. Whey pretreatments before ultrafiltration

    Directory of Open Access Journals (Sweden)

    Tuomo Tupasela

    1994-09-01

    Full Text Available Whey is a by-product of cheesemaking. Whey dry matter contains mainly lactose, but also valuable whey proteins. The aim of this study was to develop improvements to whey protein membrane isolation processes. In our trials CaCl2 -added, pH-adjusted and heat-treated wheys were found to have MF (microfiltration permeate fluxes about 30% higher than in untreated MF whey. The total solids and protein content of the MF permeates decreased compared to the original wheys. UF (ultrafiltration trials were conducted using MF whey to compare it with centrifugally separated whey. The MF whey consistently maintained an UF flux about 1.5 to 2.5 times higher than that of the separated whey. Differently treated MF whey UF permeate fluxes also showed a difference. With CaCl2 addition, pH adjustment and heat treatment, the UF permeate fluxes were about 20 to 40% higher than when only MF was used. The total solids content decreased in each trial. The protein content of the UF concentrate also decreased compared to the MF permeate. The (β-lg (β-lactoglobulin and α-la (α-lactalbumin content was almost the same in UF concentrates as in MF permeates.

  18. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  19. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  20. Synthesis Polysulfone-Acetylethanol Ultrafiltration Membranes. Application to Oily Wastewater Treatment

    OpenAIRE

    Masuelli, Martin Alberto

    2016-01-01

    Chemical functionalization of polymers after the synthesis of membranes has great importance for various applications separative processes of industrial or environmental interest. Polysulfone (PSf) is one of the most applied polymers for separative processes used especially in membrane technology, due to its excellent chemical, mechanical and thermal properties. The functionalization of PSf makes it very attractive to give special characteristics due to their high hydrophobicity and membrane ...

  1. Immersed membrane technology for advanced wastewater treatment and water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkies, J.W. [Zenon Municipal Systems Inc., Oakville, ON (Canada)

    2000-07-01

    The use of membrane technology for both municipal water purification and wastewater/sewage treatment was discussed. Membranes are available in a wide range of forms and configurations. Their primary characteristics are pore size and molecular weight separation which classifies then as either microfiltration, ultrafiltration or reverse osmosis membranes. Ultrafiltration can separate soluble organics and insoluble solids such as bacteria, viruses, colloids and suspended particles. Microfiltration can separate most suspended solids including bacteria, many viruses and other suspended solids. It is not, however a complete barrier to viruses and is best used in conjunction with an ultra-violet disinfecting process. Different membrane configurations currently available were described along with their performance and efficiency. The ZenoGem{sup R} process which operates at high organic loadings, meets surface water discharge criteria. This membrane bioreactor makes wastewater reuse an achievable and cost-effective option, particularly when it is combined with carbon filtration and ultra-violet disinfection. The Cycle-Let{sup R} system produces a treated stream that is suitable for re-use in non-potable applications such as toilet flush water or for irrigation. 1 tab., 3 figs.

  2. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  3. APPLICATION OF MEMBRANES FROM POLYACRYLONITRITE DOPPED WITH GRAPHEN OXIDE IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Tomasz Turek

    2017-08-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped with graphene oxide (GO to remove contaminations of galvanic wastewater. Membranes were obtained using phase inversion method from PAN and GO solution in N,N-dimethylformamide (DMF. Wastewater was pre-treated with the flocculant Magnafloc®336. Next, ultrafiltration of the treated wastewater was carried out in the ultrafiltration cell AMICON on the previously prepared PAN/GO composite membranes. Physico-chemical properties and composition of solutions before and after integrated purification process were analyzed by UV-Vis spectrophotometer and atomic absorption spectrometry (AAS. As a result of flocculation from wastewater there have been removed phosphates (97%, chlorides (5,2%, sulfates (5,9% and iron (82%. In addition, as a result of ultrafiltration was complete removal of phosphate anions (100% and iron (~91-92%, zinc (68÷84%, lead (65-98% and cadmium (~67%.

  4. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  5. Impact of Acid Cleaning on the Performance of PVDF UF Membranes in Seawater Reverse Osmosis Pretreatment

    KAUST Repository

    Alsogair, Safiya

    2016-01-01

    required to maintain the characteristics of the membrane. This research was made with the purpose of investigating the effects of acid cleaning during chemically enhanced backwashing (CEB) on the performance of ultrafiltration (UF) membranes in seawater

  6. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. Copyright © 2016. Published by Elsevier Ltd.

  7. Ultrafiltrative deinking of flexographic ONP : the role of surfactants

    Science.gov (United States)

    Bradley H. Upton; Gopal A. Krishnagopalan; Said Abubakr

    1999-01-01

    Ultrafiltration is a potentially viable method of removing finely dispersed flexographic pigments from the deinking water loop. This work examines the effects of surface-active materials on ultrafiltration efficiency. A logarithmic relationship between permeate flax and pigment concentration was demonstrated at ink concentrations above 0.4%, permeation rates becoming...

  8. The Modified Fouling Index Ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems

    KAUST Repository

    Salinas-Rodriguez, Sergio G.

    2015-02-18

    Reliable methods for measuring and predicting the fouling potential of reverse osmosis (RO) feed water are important in preventing and diagnosing fouling at the design stage, and for monitoring pre-treatment performance during plant operation. The Modified Fouling Index Ultrafiltration (MFI-UF) constant flux is a significant development with respect to assessing the fouling potential of RO feed water. This research investigates (1) the variables influencing the MFI-UF test at constant flux filtration (membrane pore size, membrane material, flux rate); and (2) the application of MFI-UF into pre-treatment assessment and RO fouling estimation. The dependency of MFI on flux, means that to assess accurately particulate fouling in RO systems, the MFI should be measured at a flux similar to a RO system (close to 20 L/m2/h) or extrapolated from higher fluxes. The two studied membrane materials showed reproducible results; 10% for PES membranes and 6.3% for RC membranes. Deposition factors (amount of particles that remain on the surface of membrane) were measured in a full-scale plant ranging between 0.2 and 0.5. The concept of “safe MFI” is presented as a guideline for assessing pre-treatment for RO systems.

  9. Comparison of the compressive strength of impregnated and nonimpregnated eucalyptus subjected to two different pressures and impregnation times

    Directory of Open Access Journals (Sweden)

    Waldemir Rodrigues

    2004-06-01

    Full Text Available The durability of wood is affected by several factors. For this reason, much research has been done on a variety of chemical compounds for impregnating wood, aimed at preserving it while simultaneously improving its properties. Recent studies of the properties of impregnated wood have demonstrated the possibility of substantially improving its mechanical characteristics. Thus, the purpose of this work was to compare the strength to parallel compression of wooden fibers (Eucalyptus grandis, both nonimpregnated and impregnated with a monocomponent resin, from the standpoint of pressure and impregnation time, aiming at its structural utilization. The results demonstrate that the compressive strength of impregnated test specimens is greater than that of nonimpregnated ones, indicating that monocomponent polyurethane resin can be considered suitable for impregnating wood, since it increases the compressive strength of eucalyptus.

  10. Recycling of impregnated wood and impregnating agents - combustion plant technology; Kyllaestetyn puutavaran ja kyllaestysaineiden kierraetys - polttolaitostekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Syrjaenen, T.; Kangas, E. [Kestopuu Oy, Helsinki (Finland)

    2000-07-01

    It has been estimated that in the 20th century it is possible to recycle about 70 000 m{sup 3} of impregnated wood, corresponding to about 48 % of the total amount of annually demolished impregnated wood. The amount is estimated to grow up to 130 000 m{sup 3} in 2015 (about 65% of demolished impregnated wood). In the beginning half of the recyclable impregnated wood is poles, but the share of sawn timber will increase as the time goes by. The poles and pieces of them are demolished and transported to an intermediate storage e.g. on the yard of an electricity supply company, from which they can be fetched in larger quantities. Even wood impregnation plant can act as intermediate storage sites. Collection points for impregnated construction timber can be established on timer sales companies, but most of it will be collected at waste processing sites. The economy of impregnated wood recycling chain depends on the sales income of generated energy. Calculations show that collection, transportation and processing costs can be covered with the sales of impregnated wood for energy generation and with recycling fees. The recycling fee for sawn timber would be 20 FIM/m{sup 3} and that for poles 64 FIM/m{sup 3}. In 2001 recycling fees were set for impregnated wood, the fees being 11 FIM/m{sup 3} for sawn timber and 42 FIM/m{sup 3} for poles. Collected impregnated wood can be crushed with either fixed or movable crushers used for crushing of waste wood. The impurities of wood (bolts, nails, stones, etc.), large dimensions of wood, in- homogenous material and dust require special features for the crushing equipment. Crushing device can be equipped with feeding crane and saw for processing of large-dimension wood, and metal detectors and magnetic separators if needed, but the large metal scrap has to be removed before crushing. At present in Finland there is not a combustion plant capable for combustion of impregnated wood without any modification. Improvements of flue gas

  11. Membrane technologies for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1998-01-01

    At Institute of Nuclear Chemistry and Technology (INCT) the membrane method for purification of radioactive wastes applied such processes as ultrafiltration (UF), 'seeded' ultrafiltration and reverse osmosis (RO) was developed. On the basis of the results obtained in laboratory experiments the pilot plant for radioactive effluents treatment was built. The plant was composed of UF unit (AMICON H 26P30 capillary module) and two RO units (NITTO NTR 739 HF S-4 spiral wound LPRO modules). The capacity of the pilot plant was up to 200 L/h and the specific activity of wastes purified in the system - below 10 4 Bq/L. Decontamination factor for entire system is higher than 5 x10 3 . Another possibility for radioactive wastes treatment is membrane distillation (MD), non-isothermal process employing hydrophobic polymer membrane, which is developed at INCT now. Preliminary tests with liquid radwaste were carried out on laboratory unit with permeation test-cell holding flat sheet membrane. As a hydrophobic barrier membranes made of two polymers were used: polytetrafluoroethylene (PTFE) and polypropylene (PP). The process was arranged in direct contact membrane distillation configuration. The permeate condensed directly in the cold stream (distilled water) and retentate was enriched in radionuclides. The further experiments carried out with capillary module BFMF 06-30-33 (Euro-Sep Ltd.) with polypropylene capillaries, diameter 0.33 mm and cut off 0.6 μm proved previous results. A pilot plant employing GORE-TEX membrane distillation was constructed. The plant can clean the low-level radioactive wastes from nuclear centre, at a throughput about 0.05 m 3 /h

  12. Characteristics of the Nafion (registered) - impregnated polycarbonate composite membranes for PEMFCs

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan; Ahn, Sang-Yeoul; Oh, In-Hwan; Ha, Heung Yong; Hong, Seong-Ahn; Kim, Moon-Sun; Lee, Youngkwan; Lee, Yong-Chul

    2004-01-01

    In this work, polycarbonate composite membranes were prepared for proton exchange membrane fuel cells (PEMFCs). In the preparation of membranes, a small amount of poly(ethylene glycol) (PEG) was blended with polycarbonate (PC) solution and then cast to make membranes. PEG contained in the membrane was removed by the high solubility of supercritical CO 2 to afford porosity in the membrane. Then, porous PC membranes were soaked in Nafion (registered) solution to yield the PC/Nafion (registered) composite membranes. The PC composite membrane had lower ion conductivity but higher conductance than Nafion (registered)

  13. Triple-membrane reduces need for ion exchange regeneration

    International Nuclear Information System (INIS)

    Valcour, H.

    1989-01-01

    Triple-membrane water treatment systems are comprised of ultrafiltration units for pretreatment, electrodialysis reversal primary demineralizers, reverse osmosis secondary demineralizers, portable ion exchange unit polishing demineralizers, and ultraviolet sterilizers. The triple-membrane process is designed to provide an unprecedented degree of pretreatment to maximize efficiency, durability and reliability of the reverse osmosis, whilst reducing the required regeneration frequency of the ion exchange demineralizer by one to two orders of magnitude. (author)

  14. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit

    International Nuclear Information System (INIS)

    Benhabiles, M.S.; Abdi, N.; Drouiche, N.; Lounici, H.; Pauss, A.; Goosen, M.F.A.; Mameri, N.

    2012-01-01

    The aims of the study were to optimize the production a fish protein hydrolysate (FPH) by enzymatic hydrolysis of sardine solid waste using crude pepsin, and to scale up the process in a bioreactor coupled to an ultrafiltration unit for product recovery. Results showed that the crude pepsin prepared by autolysis of the mucous membranes of a sheep stomach at optimal conditions (i. e. pH = 1.5–2 and incubation time of 6 h) could be satisfactory used for the enzymatic hydrolysis of fish solid waste. The optimal conditions for enzymatic reaction were: temperature 48 °C, and pH 1.5. The scale up of the enzymatic hydrolysis and the coupling of the reactor an ultrafiltration unit to concentrate the hydrolysate gave good results with a rejection coefficient for the protein hydrolysate product in the range of 90%. The volumetric concentration factor was 2.5, with a permeate flux of 200 L m −2 bar −1 . However, the results also suggest that the ultrafiltration product concentration process may be operating beyond the critical flux at which point irreversible membrane fouling occurs. - Highlights: ► Evaluating to produce a (FPH) by enzymatic hydrolysis of sardine solid wastes was achieved. ► Investigation of key parameters for optimal conditions for enzymatic hydrolysis have been studied. ► Valorization of sardine waste was realized by enzymatic hydrolysis process. ► Performances of this enzyme gave comparable results to those obtained with commercial pepsin. ► The nutritional quality of the FPH produced appears to be satisfactory.

  15. Thin stillage fractionation using ultrafiltration: resistance in series model.

    Science.gov (United States)

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2009-02-01

    The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5-10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R(2) > 0.98).

  16. Role of Peritoneal Ultrafiltration in Heart Failure Treatment

    Directory of Open Access Journals (Sweden)

    Tuba Elif Şenel

    2017-09-01

    Full Text Available Cardiorenal syndrome (CRS is a general term that can reflect different clinical conditions in which cardiac and renal dysfunctions coexist. The main pathogenetic mechanisms playing a role in heart failure (HF and CRS are neurohumoral adaptation, right ventricular dilatation and dysfunction and systemic inflammation. Persistence of these factors cause focal and segmental glomerulosclerosis, and tubulointerstitial fibrosis in the renal parenchyma. Diuretics, beta blockers, renin-angiotensin-aldosterone system inhibitors, and vasodilators are the main medical treatments besides conventional approach, such as salt and water restriction and quitting smoking, in HF treatment. Diuretic resistance is the main problem emerging during diuretic treatments. Two renal replacement treatments have become prominent for removal of excess fluids via ultrafiltration in HF patients with diuretic resistance extracorporeal ultrafiltration with hemodialysis and peritoneal dialysis (PD. Herein, the role of these two ultrafiltration modalities, especially peritoneal ultrafiltration (PUF in the treatment of HF is discussed. The main studies and advantages of PUF in HF treatment were discussed. Moreover, effects of PD on glomerular filtration rate, hospitalization and mortality were investigated. In conclusion, PD is an alternative cheap, practical and convenient therapy in reducing cardiac volume burden in HF patients who do not respond well to standard treatments and/or require frequent hospitalization.

  17. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor.

    Science.gov (United States)

    Sahar, E; Ernst, M; Godehardt, M; Hein, A; Herr, J; Kazner, C; Melin, T; Cikurel, H; Aharoni, A; Messalem, R; Brenner, A; Jekel, M

    2011-01-01

    The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8-10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin - at an MLSS of 6-9 g/L - showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.

  18. Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway.

    Science.gov (United States)

    Roblet, Cyril; Doyen, Alain; Amiot, Jean; Pilon, Geneviève; Marette, André; Bazinet, Laurent

    2014-03-15

    Soy peptides consumption has been associated with beneficial effects in type 2 diabetes patients. However, the peptide fractions responsible for these effects, and their mechanisms of action, have not been identified yet. In this study, we have isolated soybean peptides by electrodialysis with an ultrafiltration membrane (EDUF) at 50 V/100 kDa, and tested them for their capacity to improve glucose uptake in L6 muscle cells. We observed that these fractions were able to significantly enhance glucose uptake in the presence of insulin. The reported bioactivity would be due to the low molecular weight peptides (300-500 Da) recovered. Moreover, we observed that an enhancement of glucose uptake was correlated to the activation of the AMPK enzyme, well known for its capacity to increase glucose uptake in muscle cells. To our knowledge, this is the first time that bioactive peptides with glucose uptake activity have been isolated from a complex soy matrix, and that the implication of AMPK in it is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. All the same: isoporous membranes for water purification

    NARCIS (Netherlands)

    Vriezekolk, Erik

    2016-01-01

    In this thesis, the focus is on three approaches that allow fabrication of films and membranes that contain ordered and uniform pores with pore sizes in the ultrafiltration range. Special attention is given to the tuning of pore sizes by varying simple parameters during the fabrication process.

  20. An integrated membrane system for the biocatalytic production of 3′-sialyllactose from dairy by-products

    DEFF Research Database (Denmark)

    Luo, Jianquan; Nordvang, Rune Thorbjørn; Morthensen, Sofie Thage

    2014-01-01

    An integrated membrane system was investigated for the production of 30-sialyllactose by an engineered sialidase using casein glycomacropeptide (CGMP) and lactose as substrates. CGMP was purified by ultrafiltration (UF) to remove any small molecules present and then an enzymatic membrane reactor ...

  1. Studies on carboxylated graphene oxide incorporated polyetherimide mixed matrix ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kaleekkal, Noel Jacob, E-mail: noeljacob89@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Thanigaivelan, A., E-mail: thanichemstar@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Rana, Dipak, E-mail: rana@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario, K1N 6N5 (Canada); Mohan, D., E-mail: mohantarun@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India)

    2017-01-15

    In this work the graphene oxide prepared by the modified Hummers’ method was effectively carboxylated. These carboxylated graphene oxide (c-GO) microsheets was characterized by X-ray diffraction analysis, Raman shift, zeta potential, and their morphology was observed using a high resolution scanning/transmission electron microscopy. Polyetherimide mixed matrix membranes (MMMs) were fabricated by the non-solvent induced phase separation technique with varying concentration of this microsheet. The presence of these microsheets on the membrane surface was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and could also be confirmed visually by optical images. The membranes were further characterized; they showed a greater water flux, higher porosity, and sufficient thermal stability. Incorporation of these microsheets improved the hydrophilicity of the membrane confirmed by the lower contact angle values, which in turn explained the lower interfacial free energy, the increase in work of adhesion, the higher solid-vapor free energy and the spreading coefficient. Membranes loaded with 0.3 wt% of c-GO showed a flux recovery of 94% and only a small flux decline even after 180 min of filtration of humic acid (HA) solution. The efficiency of these membranes in removal of HA, toxic metal ions was also investigated. The bacterial anti-adhesion property of c-GO in the membranes was also explored using Escherichia coli, as a model bio-foulant. The charge of the microsheets and their unique architecture imparts higher hydrophilicity and greater fouling resistance along with improved permeation flux when incorporated into the polymer matrix. - Highlights: • Novel membranes by incorporating carboxylated GO into polyetherimide matrix. • Modified membranes exhibited greater porosity, flux and high humic acid rejection. • Nanoplatelets improved the flux recovery ratio to >94%. • Liquid phase polymer based retention utilized for toxic heavy metal

  2. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    to the variation in size of the proteins and a reasonable separation factor can be observed only when the size difference is in the order of 10 or more. This is partly caused by concentration polarization and membrane fouling which hinders an effective separation of the proteins. Application of an electric field...... across the porous membrane has been demonstrated to be an effective way to reduce concentration polarization and membrane fouling. In addition, this technique can also be used to separate the proteins based on difference in charge, which to some extent overcome the limitations of size difference...... of proteins on the basis of their charge, degree of hydrophobicity, affinity or size. Adequate purity is often not achieved unless several purification steps are combined thereby increasing cost and reducing product yield. Conventional fractionation of proteins using ultrafiltration membranes is limited...

  3. Hollow fiber ultrafiltration membranes with microstructured inner skin

    NARCIS (Netherlands)

    Culfaz, P.Z.; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    Hollow fiber membranes with microstructured inner surfaces were fabricated from a PES/PVP blend using a spinneret with a microstructured needle. The effect of spinning parameters such as polymer dope flow rate, bore liquid flowrate, air gap and take-up speed on the microstructure and shape of the

  4. Processing radioactive wastes using membrane (UF/HF/RO) systems

    International Nuclear Information System (INIS)

    Doyle, R.D.

    1988-01-01

    Over the years many technologies have been utilized to process low level radioactive waste streams generated by the nuclear industry, including: demineralization, evaporation, reverse osmosis and filtration. In the early 1980's interest was generated in membrane technologies and their application to radioactive wastes. This interest was generated based on the capabilities shown by membrane systems in non-radioactive environments and the promise that reverse osmosis systems showed in early testing with radioactive wastes. Membrane technologies have developed from the early development of reverse osmosis system to also include specifically designed membranes for ultrafiltration and hyperfiltration applications

  5. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit

    Energy Technology Data Exchange (ETDEWEB)

    Benhabiles, M.S.; Abdi, N. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Drouiche, N., E-mail: nadjibdrouiche@yahoo.fr [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Silicon Technology Development Unit (UDTS) 2, Bd Frantz Fanon BP140, Alger-7 Merveilles, 16000 (Algeria); Lounici, H. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Pauss, A. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France); Goosen, M.F.A. [Alfaisal University, Riyadh (Saudi Arabia); Mameri, N. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France)

    2012-05-01

    The aims of the study were to optimize the production a fish protein hydrolysate (FPH) by enzymatic hydrolysis of sardine solid waste using crude pepsin, and to scale up the process in a bioreactor coupled to an ultrafiltration unit for product recovery. Results showed that the crude pepsin prepared by autolysis of the mucous membranes of a sheep stomach at optimal conditions (i. e. pH = 1.5-2 and incubation time of 6 h) could be satisfactory used for the enzymatic hydrolysis of fish solid waste. The optimal conditions for enzymatic reaction were: temperature 48 Degree-Sign C, and pH 1.5. The scale up of the enzymatic hydrolysis and the coupling of the reactor an ultrafiltration unit to concentrate the hydrolysate gave good results with a rejection coefficient for the protein hydrolysate product in the range of 90%. The volumetric concentration factor was 2.5, with a permeate flux of 200 L m{sup -2} bar{sup -1}. However, the results also suggest that the ultrafiltration product concentration process may be operating beyond the critical flux at which point irreversible membrane fouling occurs. - Highlights: Black-Right-Pointing-Pointer Evaluating to produce a (FPH) by enzymatic hydrolysis of sardine solid wastes was achieved. Black-Right-Pointing-Pointer Investigation of key parameters for optimal conditions for enzymatic hydrolysis have been studied. Black-Right-Pointing-Pointer Valorization of sardine waste was realized by enzymatic hydrolysis process. Black-Right-Pointing-Pointer Performances of this enzyme gave comparable results to those obtained with commercial pepsin. Black-Right-Pointing-Pointer The nutritional quality of the FPH produced appears to be satisfactory.

  6. Metal oxide membranes for gas separation

    Science.gov (United States)

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  7. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  8. Mixed-matrix membranes with enhanced antifouling activity: probing the surface-tailoring potential of Tiron and chromotropic acid for nano-TiO2

    Science.gov (United States)

    Pal, Avishek; Dey, T. K.; Debnath, A. K.; Bhushan, Bharat; Sahu, A. K.; Bindal, R. C.; Kar, Soumitra

    2017-09-01

    Mixed-matrix membranes (MMMs) were developed by impregnating organofunctionalized nanoadditives within fouling-susceptible polysulfone matrix following the non-solvent induced phase separation (NIPS) method. The facile functionalization of nanoparticles of anatase TiO2 (nano-TiO2) by using two different organoligands, viz. Tiron and chromotropic acid, was carried out to obtain organofunctionalized nanoadditives, FT-nano-TiO2 and FC-nano-TiO2, respectively. The structural features of nanoadditives were evaluated by X-ray diffraction, X-ray photoelectron spectroscopy, Raman and Fourier transform infrared spectroscopy, which established that Tiron leads to the blending of chelating and bridging bidentate geometries for FT-nano-TiO2, whereas chromotropic acid produces bridging bidentate as well as monodentate geometries for FC-nano-TiO2. The surface chemistry of the studied membranes, polysulfone (Psf): FT-nano-TiO2 UF and Psf: FC-nano-TiO2 UF, was profoundly influenced by the benign distributions of the nanoadditives enriched with distinctly charged sites (-SO3 -H+ ), as evidenced by superior morphology, improved topography, enhanced surface hydrophilicity and altered electrokinetic features. The membranes exhibited enhanced solvent throughputs, viz. 3500-4000 and 3400-4300 LMD at 1 bar of transmembrane pressure, without significant compromise in their rejection attributes. The flux recovery ratios and fouling resistive behaviours of MMMs towards bovine serum albumin indicated that the nanoadditives could impart stable and appreciable antifouling activity, potentially aiding in a sustainable ultrafiltration performance.

  9. Mixed-matrix membranes with enhanced antifouling activity: probing the surface-tailoring potential of Tiron and chromotropic acid for nano-TiO2.

    Science.gov (United States)

    Pal, Avishek; Dey, T K; Debnath, A K; Bhushan, Bharat; Sahu, A K; Bindal, R C; Kar, Soumitra

    2017-09-01

    Mixed-matrix membranes (MMMs) were developed by impregnating organofunctionalized nanoadditives within fouling-susceptible polysulfone matrix following the non-solvent induced phase separation (NIPS) method. The facile functionalization of nanoparticles of anatase TiO 2 (nano-TiO 2 ) by using two different organoligands, viz . Tiron and chromotropic acid, was carried out to obtain organofunctionalized nanoadditives, F T -nano-TiO 2 and F C -nano-TiO 2 , respectively. The structural features of nanoadditives were evaluated by X-ray diffraction, X-ray photoelectron spectroscopy, Raman and Fourier transform infrared spectroscopy, which established that Tiron leads to the blending of chelating and bridging bidentate geometries for F T -nano-TiO 2 , whereas chromotropic acid produces bridging bidentate as well as monodentate geometries for F C -nano-TiO 2 . The surface chemistry of the studied membranes, polysulfone (Psf): F T -nano-TiO 2 UF and Psf: F C -nano-TiO 2 UF, was profoundly influenced by the benign distributions of the nanoadditives enriched with distinctly charged sites ([Formula: see text]), as evidenced by superior morphology, improved topography, enhanced surface hydrophilicity and altered electrokinetic features. The membranes exhibited enhanced solvent throughputs, viz . 3500-4000 and 3400-4300 LMD at 1 bar of transmembrane pressure, without significant compromise in their rejection attributes. The flux recovery ratios and fouling resistive behaviours of MMMs towards bovine serum albumin indicated that the nanoadditives could impart stable and appreciable antifouling activity, potentially aiding in a sustainable ultrafiltration performance.

  10. Pilot-scale ultrafiltration testing for the F and H area effluent treatment facility

    International Nuclear Information System (INIS)

    Kessler, J.L.

    1984-01-01

    An F and H Area Effluent Treatment Facility (F/H ETF) is being designed to treat low activity aqueous effluents which are produced from F and H Area daily operations. The treatment scheme for the F/H ETF will include pretreatment (pH adjustment and filtration) followed by Reverse Osmosis and/or Ion Exchange to remove dissolved species. Several alternative treatment processes are being considered for the F/H ETF. One of the alternatives in the pretreatment step is tubular Ultrafiltration (UF), using a dynamically formed zirconium oxide membrane supported on a porous stainless steel backing. Pilot-scale testing with a single membrane module (13 ft 2 area) and 200-Area effluent simulant has demonstrated that UF is a viable filtration option for the F/H ETF. UF testing at TNX has defined the operating conditions necessary for extended operation and also demonstrated excellent filtration performance (filtrate SDI 2 /day) flux and will provide excellent pretreatment for both reverse osmosis and ion exchange. 2 refs

  11. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing

    International Nuclear Information System (INIS)

    Luan, Jiabin; Wu, Jian; Zheng, Yudong; Wang, Guojie; Guo, Jia; Ding, Xun; Song, Wenhui

    2012-01-01

    Silver sulfadiazine (SSD) is a useful antimicrobial agent for wound treatment. However, recent findings indicate that conventional SSD cream has several drawbacks for use in treatments. Bacterial cellulose (BC) is a promising material for wound dressing due to its outstanding properties of holding water, strength and degradability. Unfortunately, BC itself exhibits no antimicrobial activity. A combination of SSD and BC is envisaged to form a new class of wound dressing with both antimicrobial activity and biocompatibility, which has not been reported to date. To achieve antimicrobial activity, SSD particles were impregnated into BC by immersing BC into SSD suspension after ultrasonication, namely SSD–BC. Parameters influencing SSD–BC impregnation were systematically studied. Optimized conditions of sonication time for no less than 90 min and the proper pH value between 6.6 and 9.0 were suggested. The absorption of SSD onto the BC nanofibrous network was revealed by XRD and SEM analyses. The SSD–BC membranes exhibited significant antimicrobial activities against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus evaluated by the disc diffusion method. In addition, the favorable biocompatibility of SSD–BC was verified by MTT colorimetry, epidermal cell counting method and optical microscopy. The results demonstrate the potential of SSD–BC membranes as a new class of antimicrobial and biocompatible wound dressing. (paper)

  12. Tight ceramic UF membrane as RO pre-treatment: The role of electrostatic interactions on phosphate rejection

    NARCIS (Netherlands)

    Shang, R.; Verliefde, A.R.D.; Hu, J.; Zeng, Z; Lu, L.; Lu, L.; Kemperman, Antonius J.B.; Deng, H.; Nijmeijer, Dorothea C.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can

  13. A new method to determine the skin thickness of asymmetric UF-membranes using colloidal gold particles

    NARCIS (Netherlands)

    Cuperus, Folkert Petrus; Bargeman, Derk; Smolders, C.A.

    1990-01-01

    In this paper a new method is presented for the determination of the skin thickness of asymmetric ultrafiltration membranes. The method is based on the use of well-defined, uniformly sized colloidal gold particles, permeated from the sublayer side of the membrane, combined with electron microscopic

  14. Mathematical modelling of dextran filtration through hollow fibre membranes

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2014-01-01

    In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes. The flow of solute and solvent within the h...

  15. Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation.

    Science.gov (United States)

    Reinehr, Christian Oliveira; Treichel, Helen; Tres, Marcus Vinicius; Steffens, Juliana; Brião, Vandré Barbosa; Colla, Luciane Maria

    2017-06-01

    In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m 2 h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

  16. Development of ultrafiltration and inorganic adsorbents for reducing volumes of low-level and intermediate-level liquid waste: July--September 1977

    International Nuclear Information System (INIS)

    Koenst, J.W.; Herald, W.R.; Roberts, R.C.

    1978-01-01

    The ultrafiltration (UF) pilot system is being evaluated at Mound Facility. The effect of pressure drop, temperature, and pH of the feed on system performance has been studied. The system has been run through a number of cleaning cycles including tap water flush, enzyme soak, detergent wash, and citric acid/oxalic acid wash. A continuous run was started on waste from the Waste Processing Facility; about 11,500 gal has been processed. Studies to determine the effect of (α, β, and γ) radiation on membrane characteristics were initiated. The small laboratory column tests were completed. Isotherms were run on several inorganic adsorbents, including titanium phosphate and sodium titanate. Tests were continued on the Engineering Test Ion Exchange System. Waste solution from the Waste Processing Facility spiked with plutonium-238 and ultrafiltration product spiked with uranium-233 were used as feeds. 6 tables, 1 figure

  17. Use of ultra-filtration in organic-rich groundwater for the physical separation of thorium

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Pimple, M.V.; Manisha, V.; Bassan, M.K.T.; Reddy, A.V.R.

    2014-01-01

    During this work, size fractionation technique 'ultra filtration' is used in physical speciation of thorium in organic rich groundwater. Laboratory simulated experiments were carried out to study the physical speciation of thorium in aquatic environment having elevated level of dissolved humus material classified as dissolved organic carbon (DOC). Samples were collected from organic rich environment having DOC in the range of 50-60 μg mL -1 . Th(IV) ions are extremely particle reactive having K d value of the order of 105-6, hence to avoid adsorption on suspended particulate matter, spiking of the solution with Th(NO 3 )4 was carried out in ground water samples after filtering through 450 nm pore size using suction filtration. Particles in dissolved state (colloids) ranging between 220 nm were separated using suction filtration assembly having a membrane with a pore diameter of 220 nm. Thereafter, solution was sequentially passed through the ultra-filtration membranes having pore diameters of 14 nm [300 k NMWL (nominal molecular weight limit)], 3.1 nm (50 k NMWL), 2.2 nm (30 k NMWL), 1.6 nm (10 k NMWL) and 1.1 nm (0.5 k NMWL) by using 'Stirred Ultra-filtration Cells', operating in concentration mode. Thorium has only one stable oxidation state i.e. IV, under all redox conditions in natural waters and therefore, its speciation is dominated by its interaction with various fractions of DOC. Experimental results show 50-60 % of the spiked Th is in association with fraction enriched with particles of 10 k NMWL (1.6 nm) followed by fraction enriched with particle of 0.5 k NMWL and <220 nm. (author)

  18. Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal

    Science.gov (United States)

    Lv, Jinling; Zhang, Guoquan; Zhang, Hanmin; Zhao, Chuanqi; Yang, Fenglin

    2018-05-01

    Hydrophilic cellulose nanocrystal (CNC) was incorporated into hydrophobic poly(vinylidene fluoride) (PVDF) membrane via phase inversion process to improve membrane antifouling property. The effects of CNC on membrane morphology, hydrophilicity, permeability and antifouling property were investigated in-detail. Results indicated that the introduction of CNC into PVDF membrane enhanced the permeability by optimizing membrane microstructure and improving membrane hydrophilicity. A higher pure water flux of 206.9 L m-2 h-1 was achieved for CNC/PVDF membrane at 100 kPa, which was 20 times that of PVDF membrane (9.8 L m-2 h-1). In bovine serum albumin filtration measurements, the permeation flux and flux recovery ratio of CNC/PVDF membrane were increased remarkably, while the irreversible fouling-resistance of CNC/PVDF membrane decreased by 48.8%. These results indicated that the CNC/PVDF membrane possessed superior antifouling property due to the hydrophilicity of CNC that formed a hydration layer on the membrane surface to effectively reduce contaminants adsorption/deposition.

  19. Synthesis and Modification of Nanoparticles for Surface Nanostructuration of Polymeric Membranes

    KAUST Repository

    Prada, Iran David Charry

    2012-05-01

    The objectives of this work are (i) to prepare silver and TiO2 nanoparticles functionalized with polymers or alkoxysilanes as capping agents with specific control of morphology, size, and chemical reactivity and (ii) their attachment to the surface and pore wall of ultrafiltration membranes. These particles are interesting due to their known antibacterial, anti-biofouling efficiency, besides the photocatytic activity exhibited by TiO2. The first chapter focuses on the synthesis and characterization of silver nanoparticles. Their performance depends on the shape, size and other colloidal characteristics. A complete analysis of the effect of the stabilizer and pH conditions on particle size and shape was conducted by using polyethyleneimine and polyvinylpyrrolidone. Opposite trends and different morphologies were observed for both stabilizers. The second chapter describes the surface attachment of TiO2 nanoparticles onto polyetherimide ultrafiltration membrane with pore size around 134nm by using organoalkylsilanes. Excellent hydrophilicity (contact angle 39  2) and high and thermal stability (260oC) was achieved. Particles and membranes samples were characterized by microscopy, chemical and surface analysis.

  20. Development of a Model for a Continuous Ultra-Filtration System

    DEFF Research Database (Denmark)

    Jhamb, Spardha Virendra; Gani, Rafiqul; Rype, Jens-Ulrik

    Due to the wide applicability and simplicity of the ultra-filtration process, it is currently being used in a variety of commercial processes for the purpose of separation and concentration of valuable products and/or recovery of raw materials from dilute systems [1]. A predictive model......) system consisting of different geometry (and ‘N’ membrane stacks) used for the concentration of enzyme solutions from a known inlet concentration to a desired (target) outlet concentration during the recovery and/or downstream processing of enzymes. The envisaged purpose of this model is to improve...... for a system derived from first principles, is instrumental in evading the costs of conducting time-consuming experiments while also allowing one to not be dependent on a trial and error analysis approach. The validated final model can serve to understand the operational issues of the process and from...

  1. Experimental Study of Impregnation Birch and Aspen Samples

    Directory of Open Access Journals (Sweden)

    Igor Vladislavovich Grigorev

    2014-10-01

    Full Text Available An experimental study of wood impregnation was implemented by applying centrifugal methods. The impregnants were a 10% aqueous solution of potassium chloride and a 2% aqueous solution of borax. Birch (Betula pendula and aspen (Populus tremula wood samples in different moisture content were tested. The impregnation time in the centrifugal device were 30 seconds repeated 21 times, and the samples were measured after every 30 seconds. The experimental results were fitted to a nonlinear filtration law, which indicated that the centrifugal wood impregnation was dependent on wood species, wood moisture, rotational speed, and radius. Determination of rotational speed and centrifuge radius for impregnating aspen and birch at varying lengths and humidity under conditions of the nonlinear impregnant filtration law can be done using the example charts that were developed and presented in this study.

  2. Chemical composition and properties of spray-dried sugar beet concentrate obtained after ultrafiltration of diffusion juice

    Directory of Open Access Journals (Sweden)

    Regiec Piotr

    2015-03-01

    Full Text Available Ultrafiltration of diffusion juice is a method that can reduce environmental pollution during the production of sugar. A by-product (concentrate of ultrafiltration contains a large amount of sucrose, but due to its properties, it is difficult to manage. The aim of this study was to determine the effects of the temperature used during drying of diffusion juice concentrates on the content of certain components and characteristics of resultant preparations. Diffusion juice obtained from one of the Polish sugar plants was subjected to ultrafiltration and the obtained concentrates were dried in a spray dryer. In the dried samples, the following parameters were analyzed: dry mass, sucrose, total ash, protein, crude fiber and color. It has been declared that the degree of concentration and drying temperature influenced the chemical composition and the properties of the dehydrated diffusion juice concentrates. An increase in drying temperature was accompanied by the increased content of dry mass, protein, ash and fiber content in the preparations. The greater the degree of juice concentration, the greater was the content of dry mass, ash, and fiber. Inversely, the greater the degree of juice concentration, the lower the content of sucrose. The brightest color of the dehydrated product was observed at the drying temperature of 200°C. Spray-drying may be used for waste management after the diffusion juice membrane filtration, and the resultant preparations might be used in the production of feedstuff or food industry in general e.g. as sucrose source, in fermentation processes or in microorganisms propagation.

  3. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  4. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    OpenAIRE

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluen...

  5. Ultrafiltration of thin stillage from conventional and e-mill dry grind processes.

    Science.gov (United States)

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2011-05-01

    We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.

  6. Development of membrane technology in BARC

    International Nuclear Information System (INIS)

    Misra, B.M.

    2003-01-01

    BARC has been engaged in research and development work on pressure-driven membrane technology from laboratory to pilot plant scale and its commercial scale deployment, for sea and brackish water desalination into potable water, effluent water treatment and water reuse and in various industrial separations including decontamination of radioactive liquid effluents for their safe disposal into the environment. This paper gives a brief description of pressure-driven membrane processes, reverse osmosis, nano filtration, ultrafiltration and micro filtration. Selection of polymeric candidate materials, preparation of semi-permeable membranes and their characterization has been discussed. Various applications of these processes conducted on pilot plant scale have been presented. Large scale deployment of membrane processes for sea water desalination has been indicated. Research and development at BARC has thus resulted in the indigenous development of membrane processes for commercial scale operation. (author)

  7. Utilization of membranes for H2O recycle system

    Science.gov (United States)

    Ohya, H.; Oguchi, M.

    1986-01-01

    Conceptual studies of closed ecological life support systems (CELSS) carried out at NAL in Japan for a water recycle system using membranes are reviewed. The system will treat water from shower room, urine, impure condensation from gas recycle system, and so on. The H2O recycle system is composed of prefilter, ultrafiltration membrane, reverse osmosis membrane, and distillator. Some results are shown for a bullet train of toilet-flushing water recycle equipment with an ultraviltration membrane module. The constant value of the permeation rate with a 4.7 square meters of module is about 70 1/h after 500th of operation. Thermovaporization with porous polytetrafluorocarbon membrane is also proposed to replce the distillator.

  8. Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications

    NARCIS (Netherlands)

    Diban-Ibrahim Gomez, Nazely; Stamatialis, Dimitrios

    2014-01-01

    Polymeric hollow fiber (HF) membranes are commercially available, i.e. microfiltration and ultrafiltration cartridges or reverse osmosis and gas separation modules, to be applied for separation purposes in industry, for instance to recover valuable raw materials or products, or for the treatment of

  9. Some properties of castor oil affecting its performance as a capacitor impregnant and their significance to future impregnant research

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1975-01-01

    For a considerable time castor oil and polychlorinated biphenyl (PCB) have been the principal impregnants used in energy-storage capacitors. Castor oil has proven to be better than PCB for pulsed applications. PCB's have come under attack as an environmental hazard, while castor oil is a vegetable product and its supply and quality are subject to fluctuation. These two facts make the development of new impregnants desirable. The properties of PCB as a capacitor impregnant are well known. This paper first compares a number of properties of castor oil and PCB's. A comparison is made between the lives of castor oil capacitors and comparable PCB energy-storage capacitors. Some of the physical and chemical properties of castor oil which make it a good pulse capacitor impregnant are examined. These properties can be used as a guide for future research on new pulse capacitor impregnants

  10. Carbon dioxide nucleation as a novel cleaning method for ultrafiltration membranes

    KAUST Repository

    Al Ghamdi, Mohanned

    2016-01-01

    will become in a supersaturated state and bubbles will start to nucleate on the surface of the membrane and its pores from this solution resulting in the removal of the fouling material deposited on the membrane. Different compositions of fouling solutions

  11. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com [Department of Chemistry, Bandung Institute of Technology (Indonesia); Syoni [Department of Metallurgy Engineering, Bandung Institute of Technology (Indonesia)

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  12. USE OF MEMBRANE BIOREACTOR FOR BIODEGRADATION OF MTBE IN CONTAMINATED WATER1

    Science.gov (United States)

    An ultrafiltration membrane bioreactor was evaluated for biodegradation of methyl tert-butyl ether (MTBE) in contaminated water. The system was fed 5 mg/L MTBE in granular activated carbon (GAC) treated Cincinnati tap water containing ample buffer and nutrients. Within 120...

  13. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight.

    Science.gov (United States)

    Rajeswari, A; Jackcina Stobel Christy, E; Pius, Anitha

    2018-02-01

    A study was carried out to investigate the degradation of organic contaminants (Congo red and Reactive yellow - 105) using cellulose acetate - polystyrene (CA-PS) membrane with and without ZnO impregnation. Scanning electron microscope (SEM), electron dispersive analysis of X-rays (EDAX), Fourier transform infrared spectrometer (FTIR), atomic force microscope (AFM) and thermogravimeric analysis (TG-DTA) analysis were carried out to characterize bare and ZnO impregnated CA-PS membranes. Membrane efficiency was also tested for pure water flux and antifouling performance. The modified membrane showed almost 85% water flux recovery. Blending of ZnO nanoparticles to CA-PS matrix could decrease membrane fouling and increase permeation quality of the membrane with above 90% of photocatalytic degradation efficiency for dyes. The rate of degradation of dyes was observed using UV-Vis spectrometer. Reusability of CA-PS-ZnO membrane was studied and no significant change was noted in the degradation efficiency until fourth cycle. Langmuir-Hinshelwood kinetic model well describes the photo degradation capacity and the degradation of dyes CR and RY - 105 exhibited pseudo-first order kinetics. The regression coefficient (R) of CR and RY - 105 found to be 0.99. The novelty of the prepared CA-PS-ZnO membrane is that it has better efficiency and high thermal stability than our previously reported material. Therefore, ZnO impregnated CA-PS membrane had proved to be an innovative alternative for the degradation of CR and RY - 105 dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Iron impregnated carbon materials with improved physicochemical characteristics

    International Nuclear Information System (INIS)

    Shah, Irfan; Adnan, Rohana; Wan Ngah, Wan Saime; Mohamed, Norita

    2015-01-01

    Highlights: • The morphology of raw AC was altered upon Fe impregnation and surface oxidation. • Surface modification had increased the pores diameter and surface functionalities. • Development of iron oxides have been expected on Fe impregnated carbon materials. • The M1, M2 and M3 have revealed magnetic susceptibility in applied magnetic field. • Dyes removal efficiency of M3 was notably higher (90–99%) than the raw AC (60–85%). - Abstract: This paper highlights the effect of iron impregnation and surface oxidation on the physicochemical characteristics of iron impregnated carbon materials. These materials were characterized by various techniques like surface area, pore size distribution, SEM/EDX, CHN, XRD, FTIR, TG/DT, VSM and XPS analyses. The increase in the surface functionalities and pores diameter (3.51–5.49 nm) of the iron-impregnated carbon materials was observed with the increase in iron contents and surface oxidation. The saturated magnetization values (0.029–0.034 emu/g) for the iron-impregnated carbon materials reflected the magnetic tendency due to the development of small size iron oxides on their surfaces. The XPS spectra revealed the existence of different oxidation states of the corresponding metals on the iron impregnated carbon materials. The percentage removal of model dyes (Methylene Blue and Methyl Orange) by iron-impregnated carbon materials was enhanced (>90%) with the increase in iron contents and pores diameters.

  15. ZirfonR-composite membranes: properties and applications

    International Nuclear Information System (INIS)

    Leysen, R.; Doyen, W.; Adriansen, W.; Vermeiren, Ph.

    1993-01-01

    In this report, the fabrication and the applications of a new type of composite membrane, the zirconium-oxide-polysulphone membrane (registered trade mark name: Zirfon), are described. The investigated Zirfon membranes are fabricated by the film casting technique and are composed of zirconium oxide powder and a polymeric binder, polysulphone. Zirfon membranes have been developed first for use as separators in electrochemical applications (e.g. alkaline water electrolysis and alkaline fuel cells). Besides their applications in electrochemical systems, Zirfon membranes have been tested as separating membranes for several ultrafiltration purposes. The most recent application of Zirfon membranes is their use for the removal of heavy metals in waste streams by means of incorporated bacteria. In this application, micro-organisms are immobilized on the porous structure of the membrane. Potential future applications are in the field of energy production (fuel cells) and the treatment of non-nuclear or nuclear waste water. (A.S.)

  16. Application of membrane technologies for the treatment of textile wastewater and synthetic textile dyes

    International Nuclear Information System (INIS)

    Aouni, A.; Bes-Pia, A.; Fersi, C.; Dhahbi, M.; Cuartas-Uribe, B.; Alcaina-Miranda, M. I.

    2009-01-01

    Textile industry is characterized by using a great variety of chemicals and by large water consumption. In this way, textile effluents contains many types of dyes, detergents, solvents and salts depending on the particular textile mill processes (dyeing, printing, finishing...) and on the raw matter. For those reasons, textile industry is one of the main sources of industrial pollution, producing effluents discharges characterized by high conductivities and chemical oxygen demand (COD) values and strong colour. Process selection and operating conditions are important issues to optimize technically and economically the textile effluent treatment. This work presents the results of the laboratory-scale membrane experiments of textile industry effluents and synthetic textile dyes. Different types of Ultrafiltration (UF) and Nano filtration (NF) membranes were evaluated for permeate flux and their suitability in separating COD, colour, conductivity. Experiments demonstrated that membrane treatment is a very promising advanced treatment option for pollution control for textile industry effluents. The results of this work show that the direct ultrafiltration seems to be a realistic method in the pretreatment of the textile wastewater. In fact, NF process was successfully used to improve permeate quality of synthetic dyeing textile wastewater, but this process presented some limitations in the treatment of textile industry effluents because of membrane fouling problems. So, this process requires an efficient and appropriate technique such as ultrafiltration as a pre-treatment step for textile wastewater reuse. For direct nano filtration of synthetic textile dyes aqueous solutions, with a weak salt concentration (500 ppm), good results were obtained. More than 95 pour cent of color was removed from the treated water accompanied with a reduction of 92 pour cent of conductivity and COD. Based on the experiments; NF membranes are suitable for producing permeate of reusable

  17. Performance evaluation of carbon nanotube enhanced membranes for SWRO pretreatment application

    KAUST Repository

    Lee, Jieun

    2016-04-25

    Multi-wall carbon nanotube (MWCNT) membrane was tested for SWRO pretreatment. The MWCNT membrane itself showed a superior permeate flux (321.3 LMH/bar), which was 4-times as polyethersulfone ultrafiltration (PES-UF) membrane. Reduction of dissolved organic matter improved to 66% with fewer amounts of powder activated carbon (PAC) (0.5 g/L) in MWCNT membrane filtration maintaining a high permeate flux of 600 LMH/bar. It was due to the increased porosity (84.5%) and hydrophilicity (52.9°) by incorporating MWCNT/polyaniline into PES membrane. Ionic strength affected organic removal in seawater filtration by altering electrostatic interaction between organic matter and surface charge of the positively charged MWCNT membrane.

  18. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer

    International Nuclear Information System (INIS)

    Ma, Wenzhong; Rajabzadeh, Saeid; Matsuyama, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • We successfully coated the poly(MPC-co-BMA) copolymer on the ultrafiltration membrane. • The hydrophilicity and antifouling were improved by coating poly(MPC-co-BMA). • The flow-through method showed better anti-fouling properties compared with immersion method. • P(MPC-co-BMA) was quite stable on the coated membranes. - Abstract: To reduce the fouling resistance of poly(vinylidene fluoride) membranes, a copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) [poly(MPC-co-BMA)] was coated on a membrane and into its pores from an aqueous solution using two different methods, the immersion and flow-through methods. The effects of poly(MPC-co-BMA) coating on the water flux, surface morphology, and fouling propensity of three types of commercial ultrafiltration membranes with molecular-weight cutoffs ranging from 50 to 250 kDa were investigated. The fouling resistances of modified membranes to bovine serum albumin were compared to those of the unmodified membranes. The evaluation of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the modified membranes confirmed that poly(MPC-co-BMA) was coated on the membrane surfaces. Although both modification methods effectively prevented protein fouling, the flow-through coating method demonstrated a better antifouling propensity. The coated copolymer stability results indicated that the coated copolymer layer on the membrane surface using both coating methods was quite stable even after ultrasonic treatment.

  19. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhong; Rajabzadeh, Saeid; Matsuyama, Hideto, E-mail: matuyama@kobe-u.ac.jp

    2015-12-01

    Graphical abstract: - Highlights: • We successfully coated the poly(MPC-co-BMA) copolymer on the ultrafiltration membrane. • The hydrophilicity and antifouling were improved by coating poly(MPC-co-BMA). • The flow-through method showed better anti-fouling properties compared with immersion method. • P(MPC-co-BMA) was quite stable on the coated membranes. - Abstract: To reduce the fouling resistance of poly(vinylidene fluoride) membranes, a copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) [poly(MPC-co-BMA)] was coated on a membrane and into its pores from an aqueous solution using two different methods, the immersion and flow-through methods. The effects of poly(MPC-co-BMA) coating on the water flux, surface morphology, and fouling propensity of three types of commercial ultrafiltration membranes with molecular-weight cutoffs ranging from 50 to 250 kDa were investigated. The fouling resistances of modified membranes to bovine serum albumin were compared to those of the unmodified membranes. The evaluation of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the modified membranes confirmed that poly(MPC-co-BMA) was coated on the membrane surfaces. Although both modification methods effectively prevented protein fouling, the flow-through coating method demonstrated a better antifouling propensity. The coated copolymer stability results indicated that the coated copolymer layer on the membrane surface using both coating methods was quite stable even after ultrasonic treatment.

  20. Nanocomposites for Improved Physical Durability of Porous PVDF Membranes

    Science.gov (United States)

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-01-01

    Current commercial polymer membranes have shown high performance and durability in water treatment, converting poor quality waters to higher quality suitable for drinking, agriculture and recycling. However, to extend the treatment into more challenging water sources containing abrasive particles, micro and ultrafiltration membranes with enhanced physical durability are highly desirable. This review summarises the current limits of the existing polymeric membranes to treat harsh water sources, followed by the development of nanocomposite poly(vinylidene fluoride) (PVDF) membranes for improved physical durability. Various types of nanofillers including nanoparticles, carbon nanotubes (CNT) and nanoclays were evaluated for their effect on flux, fouling resistance, mechanical strength and abrasion resistance on PVDF membranes. The mechanisms of abrasive wear and how the more durable materials provide resistance was also explored. PMID:24957121

  1. Catalytic membranes for CO oxidation in fuel cells

    Science.gov (United States)

    Sandi-Tapia, Giselle; Carrado Gregar, Kathleen; Kizilel, Riza

    2010-06-08

    A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

  2. Methods for the characterization of impregnating pitches

    Energy Technology Data Exchange (ETDEWEB)

    Compin, S.; Ben Aim, R.; Couderc, P.; Saint-Romain, J.L.

    1987-11-01

    This paper discusses modification of the impregnation performance of various pitches. The filtration ability, which expresses the impregnation performance, was studied using gel permeation chromatography and scanning electron microscopy. 16 refs., 5 figs., 2 tabs.

  3. Microfiltration of soy sauce sediment with rotating disk membrane module; Kaitengata enbanmaku module ni yoru shoyuori no roka

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, K.; Kanekuni, N.; Nogaki, H.; Itakura, I.; Shimizu, Y.; Watanabe, A. [TOTO Ltd., Kitakyushu (Japan)

    1995-01-15

    Soy sauce sediment is formed in pasteurization of raw soy sauce. It is treated as industrial waste, though its main component is soy sauce, because of difficulty in perfect clarification of the suspension. In this paper, we decided a suitable range of pore size of microfiltration and a cut-off level of ultrafiltration to clarify soy sauce sediment and we developed a rotating disk membrane module (RD Module) and compared performance with conventional a multi-tubular membrane module (MT Module). The optimum range to obtain soy sauce of quality was less than a pore size of O.2{mu}m for microfiltration, while ultrafiltration was not suitable for soy sauce sediment. Ultrafiltration was restricted by rejection of colors and nucleic acids and related compounds in soy sauce sediment, rather than rejection of bacteria and ethanol. An RD Module could recover soy sauce of quality and was superior to an MT Module for concentration ratio, but the permeate fluxes of the RD Module decreased under conditions of high revolution as centrifugal forces were exerted on the permeate in the disk membrane. The power consumption of the RD Module was proportional to the cube of number of revolutions and to the fifth power of the radius, so it was found that one of methods for the scale up is to increase the number of disk membranes than increase the radius. 15 refs., 8 figs., 1 tab.

  4. Membrane processes in nuclear technologies

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2006-01-01

    to the pressure-driven processes, e.g. ultrafiltration and reverse osmosis, which were studied on a laboratory and pilot scale. Verification of the potential application of reverse osmosis on an industrial scale for treatment of liquid low- and intermediate-level radioactive wastes has been carried out with the installation particularly designed and constructed for the Department of Radioactive Waste Processing, Institute of Atomic Energy at Swierk. The thin-layer composite membranes made from a cross-linked aromatic polyamide of high retention of NaCl (99,4-99,7%) were applied in this process. It has been proved that a three-stage installation enables the radioactive waste of specific radioactivity below 10 5 Bq/dm 3 to be cleaned down to 10 Bq/dm 3 in permeate, with simultaneous 7-15-fold reduction of the activity in the concentrate. The results of own studies concerning the removal of selected radionuclides from model aqueous solutions and radioactive wastes with ultra-filtration enhanced by complexation and sorption were also presented in this work. In these cases, the mineral (ceramic) porous membranes made from a-alumina, titanium and zirconium oxides were applied. These membranes exhibited a high resistance against ionizing radiation, aggressive chemical environment and high temperatures. The high effectiveness of removal of the main components of liquid radioactive waste like 134 Cs, 137 Cs, 60 Co, 124 Sb, 85 Sr, 152 Eu and 154 Eu with a hybrid ultrafiltration/complexation process has been experimentally proved. The effects of this type of complexing agent, its concentration and pH of the processed solution on the complexation effectiveness have been studied. Efficacy of the method was tested with real radioactive wastes. The monograph performs results of the studies on membrane distillation which has been proposed by the author for processing of liquid radioactive wastes, and the analysis of its applicability for nuclear desalination and the production of

  5. Simultaneous nitrogen and organics removal using membrane aeration and effluent ultrafiltration in an anaerobic fluidized membrane bioreactor

    KAUST Repository

    Ye, Yaoli; Saikaly, Pascal; Logan, B.E.

    2017-01-01

    Dissolved methane and a lack of nutrient removal are two concerns for treatment of wastewater using anaerobic fluidized bed membrane bioreactors (AFMBRs). Membrane aerators were integrated into an AFMBR to form an Aeration membrane fluidized bed membrane bioreactor (AeMFMBR) capable of simultaneous removal of organic matter and ammonia without production of dissolved methane. Good effluent quality was obtained with no detectable suspended solids, 93±5% of chemical oxygen demand (COD) removal to 14±11 mg/L, and 74±8% of total ammonia (TA) removal to 12±3 mg-N/L for domestic wastewater (COD of 193±23 mg/L and TA of 49±5 mg-N/L) treatment. Nitrate and nitrite concentrations were always low (< 1 mg-N/L) during continuous flow treatment. Membrane fouling was well controlled by fluidization of the granular activated carbon (GAC) particles (transmembrane pressures maintained <3 kPa). Analysis of the microbial communities suggested that nitrogen removal was due to nitrification and denitrification based on the presence of microorganisms associated with these processes.

  6. Simultaneous nitrogen and organics removal using membrane aeration and effluent ultrafiltration in an anaerobic fluidized membrane bioreactor

    KAUST Repository

    Ye, Yaoli

    2017-08-03

    Dissolved methane and a lack of nutrient removal are two concerns for treatment of wastewater using anaerobic fluidized bed membrane bioreactors (AFMBRs). Membrane aerators were integrated into an AFMBR to form an Aeration membrane fluidized bed membrane bioreactor (AeMFMBR) capable of simultaneous removal of organic matter and ammonia without production of dissolved methane. Good effluent quality was obtained with no detectable suspended solids, 93±5% of chemical oxygen demand (COD) removal to 14±11 mg/L, and 74±8% of total ammonia (TA) removal to 12±3 mg-N/L for domestic wastewater (COD of 193±23 mg/L and TA of 49±5 mg-N/L) treatment. Nitrate and nitrite concentrations were always low (< 1 mg-N/L) during continuous flow treatment. Membrane fouling was well controlled by fluidization of the granular activated carbon (GAC) particles (transmembrane pressures maintained <3 kPa). Analysis of the microbial communities suggested that nitrogen removal was due to nitrification and denitrification based on the presence of microorganisms associated with these processes.

  7. Filtration behavior of casein glycomacropeptide (CGMP) in an enzymatic membrane reactor: fouling control by membrane selection and threshold flux operation

    DEFF Research Database (Denmark)

    Luo, Jianquan; Morthensen, Sofie Thage; Meyer, Anne S.

    2014-01-01

    . In this study, the filtration performance and fouling behavior during ultrafiltration (UF) of CGMP for the enzymatic production of 3′-sialyllactose were investigated. A 5kDa regenerated cellulose membrane with high anti-fouling performance, could retain CGMP well, permeate 3′-sialyllactose, and was found...... to be the most suitable membrane for this application. Low pH increased CGMP retention but produced more fouling. Higher agitation and lower CGMP concentration induced larger permeate flux and higher CGMP retention. Adsorption fouling and pore blocking by CGMP in/on membranes could be controlled by selecting...... a highly hydrophilic membrane with appropriate pore size. Operating under threshold flux could minimize the concentration polarization and cake/gel/scaling layers, but might not avoid irreversible fouling caused by adsorption and pore blocking. The effects of membrane properties, pH, agitation and CGMP...

  8. Oil-Impregnated Polyethylene Films

    Science.gov (United States)

    Mukherjee, Ranit; Habibi, Mohammad; Rashed, Ziad; Berbert, Otacilio; Shi, Shawn; Boreyko, Jonathan

    2017-11-01

    Slippery liquid-infused porous surfaces (SLIPS) minimize the contact angle hysteresis of a wide range of liquids and aqueous food products. Although hydrophobic polymers are often used as the porous substrate for SLIPS, the choice of polymer has been limited to silicone-based or fluorine-based materials. Hydrocarbon-based polymers, such as polyethylene, are cost effective and widely used in food packaging applications where SLIPS would be highly desirable. However, to date there have been no reports on using polyethylene as a SLIPS substrate, as it is considered highly impermeable. Here, we show that thin films of low-density polyethylene can be stably impregnated with carbon-based oils without requiring any surface modification. Wicking tests reveal that oils with sufficient chemical compatibility follow Washburn's equation. The nanometric effective pore size of the polyethylene does result in a very low wicking speed, but by using micro-thin films and a drawdown coater, impregnation can still be completed in under one second. The oil-impregnated polyethylene films promoted ultra-slippery behavior for water, ketchup, and yogurt while remaining durable even after being submerged in ketchup for over one month. This work was supported by Bemis North America (AT-23981).

  9. Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2018-05-01

    Full Text Available Improving the thermal and chemical stabilities of classical polymer membranes will be beneficial to extend their applications in the high temperature or aggressive environment. In this work, the asymmetric ultrafiltration membranes prepared from the polyacrylonitrile (PAN were used to fabricate the cross-linking asymmetric (CLA PAN membranes via thermal cross-linking in air to improve their thermal and chemical stabilities. The effects of thermal cross-linking parameters such as temperature and holding time on the structure, gas separation performance, thermal and chemical stabilities of PAN membranes were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, positron annihilation lifetime spectroscopy (PALS, scanning electron microscopy (SEM, thermogravimetic analysis (TGA and gas permeation test. The thermal cross-linking significantly influences the chemical structure, microstructure and pore structure of PAN membrane. During the thermal cross-linking, the shrinkage of membrane and coalescence or collapse of pore and microstructure make large pores diminish, small pores disappear and pore volumes reduce. The gas permeances of CLA-PAN membranes increase as the increasing of cross-linking temperature and holding time due to the volatilization of small molecules. The CLA-PAN membranes demonstrate excellent thermal and chemical stabilities and present good prospects for application in ultrafiltration for water treatment and for use as a substrate for nanofiltration or gas separation with an aggressive and demanding environment.

  10. Development of new ultrafiltration techniques maintaining in-situ hydrochemical conditions for colloidal study

    International Nuclear Information System (INIS)

    Aosai, Daisuke; Yamamoto, Yuhei; Mizuno, Takashi

    2011-01-01

    Chemical state of elements in groundwater is one of the most important information for understanding behavior of elements in underground environment. Chemical state of elements controlled mainly by groundwater physico-chemical parameters. Because the change of physico-chemical parameters of groundwater, due to pressure release and oxidation during sampling, causes changes in chemical state of elements, systematic methodologies for understanding in situ chemical state is required. In this study, in order to understand chemical state of elements in groundwater, an ultrafiltration instrument for maintaining in-situ pressure and anaerobic conditions was developed. The instrument developed in this study for ultrafiltration made of passivated Stainless Used Steel (SUS) materials, was designed to keep groundwater samples maintaining in-situ pressure/anaerobic conditions. Ultrafiltration of groundwater was conducted at a borehole drilled from the 200 mbGL (meters below ground level) Sub-stage at a depth of 200 m at the Mizunami Underground Research Laboratory. Chemical analyses of groundwater were also conducted using samples filtered under both pressurized/anaerobic and atmospheric conditions and passivated SUS materials with different elapsed times after passivation. The results indicate that our ultrafiltration method is suitable for collection of filtered groundwater and passivation is an essential treatment before ultrafiltration. (author)

  11. The importance of pretreatment tailoring on the performance of ultrafiltration membranes to treat two-phase olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Ochando Pulido, J. M.

    2015-03-01

    Full Text Available In this work, the performance of an ultrafiltration (UF membrane in the treatment of the effluents by-produced by olive mills is addressed by applying different pretreatments on the raw effluents. By conducting a photo-catalytic process (UV/TiO2 PC after pH-temperature flocculation (pH-T F higher threshold flux values were observed for all feed stocks than by applying solely the pH-T F process, with an 18.8–34.2% increment. In addition, the performance of the UF membrane was also improved in terms of rejection efficiency, such that higher rejection values were yielded by the membrane for the organic pollutants (RCOD by 48.5 vs. 39.9% and 53.4 vs. 42.0%. The UF membrane performance was also improved in terms of the volume feed recovery factor (VFR, achieving up to 88.2 vs. 87.2% and 90.7 vs. 89.3%. Results in the same line were also observed when the highly polluted olives oil washing wastewater raw stream was previously mixed with the effluent stream coming from the washing of the olives. This permits the UF to permeate, achieving the standard limits to reuse the purified effluent for irrigation purposes (COD values below 1000 mg·L−1, which makes the treatment process cost-effective and results in making the olive oil production process environmentally friendly.En este estudio se aborda el rendimiento de una membrana de ultrafiltración (UF para el tratamiento de los efluentes generados por la industria oleícola, mediante la aplicación de distintos pretratamientos. Tras aplicar un proceso fotocatalítico (UV/TiO2 PC después de una floculación pH-temperatura (pH-T F se observaron flujos límite para todos los efluentes mayores que tras la aplicación únicamente del proceso pH-T F, con incrementos del 18.8–34.2 %. Además, el rendimiento de la membrana de UF mejoró en términos de eficiencia de rechazo, con mayores valores de rechazo respecto de los contaminantes orgánicos (RCOD, 48.5 vs. 39.9 % y 53.4 vs. 42.0 %. El rendimiento de

  12. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Andalaft, E; Vega, R; Correa, M; Araya, R; Loyola, P [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1997-02-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs.

  13. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    International Nuclear Information System (INIS)

    Andalaft, E.; Vega, R.; Correa, M.; Araya, R.; Loyola, P.

    1997-01-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs

  14. Impact of operation conditions, foulant adsorption, and chemical cleaning on the nanomechanical properties of ultrafiltraion hollow fiber membranes

    KAUST Repository

    Gutierrez, Leonardo; Keucken, Alexander; Aubry, Cyril; Zaouri, Noor A.; Teychene, Benoit; Croue, Jean-Philippe

    2018-01-01

    This study analyzed the change in nanomechanical properties of ultrafiltration hollow fiber membranes harvested from pilot-scale units after twelve months of operation. Quantitative Nanomechanical Mapping technique was used to distinguish between

  15. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh

    2017-01-19

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti-fouling layer can include a stimuli responsive layer and a dynamic protective layer applied over the stimuli responsive layer that can be a coating on a surface of the membrane. The stimuli responsive polymer layer can act as an adhesive prior to coating with the dynamic protective layer to aid in adhering the dynamic protective layer to the membrane surface. The dynamic protective layer can be formed by suitable nanoparticles that can prevent adhesion of foulants directly to the membrane surface. The stimuli responsive layer can be responsive to physio- chemical stimuli to cause a release of the stimuli responsive layer and the dynamic protective layer including foulants from the membrane.

  16. Replacement of hazardous chromium impregnating agent from silver/copper/chromium-impregnated active carbon using triethylenediamine to remove hydrogen sulfide, trichloromethane, ammonia, and sulfur dioxide.

    Science.gov (United States)

    Wu, Li-Chun; Chung, Ying-Chien

    2009-03-01

    Activated carbon (AC) is widely used as an effective adsorbent in many applications, including industrial-scale air purification systems and air filter systems in gas masks. In general, ACs without chemical impregnation are good adsorbents of organic vapors but poor adsorbents of low-molecular-weight or polar gases such as chlorine, sulfur dioxide (SO2), formaldehyde, and ammonia (NH3). Impregnated ACs modified with metallic impregnating agents (ASC-carbons; e.g., copper, chromium, and silver) enhance the adsorbing properties of the ACs for simultaneously removing specific poisonous gases, but disposal of the chromium metal salt used to impregnate the ACs has the potential to result in situations that are toxic to both humans and the environment, thereby necessitating the search for replaceable organic impregnating agents that represent a much lower risk. The aim of this study was to assess the gas removal efficiency of an AC in which the organic impregnating agent triethylenediamine (TEDA) largely replaced the metallic impregnating agent chromium. We assessed batch and continuous adsorption capacities in situ for removing simulated hydrogen sulfide (H2S), trichloromethane (CHCl3), NH3, and SO2 gases. Brunauer-Emmet-Teller measurements and scanning electron microscopy analyses identified the removal mechanism by which TEDA-impregnated AS-carbon (dechromium ASC-carbon) adsorbs gases and determined the removal capacity for H2S, CHCl3, NH3, and SO2 to be 311, 258, 272, and 223 mg/g-C, respectively. These results demonstrate that TEDA-impregnated AS-carbon is significantly more efficient than ASC-carbon in adsorbing these four gases. Organic TEDA-impregnating agents have also been proven to be a reliable and environmental friendly agent and therefore a safe replacement of the hazardous chromium found in conventional ASC-carbon used in removing toxic gases from the airstream.

  17. Enzyme immobilization by fouling in ultrafiltration membranes: Impact of membrane configuration and type on flux behavior and biocatalytic conversion efficacy

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2014-01-01

    Enzyme-immobilization in membranes accomplished by fostering membrane fouling was evaluated. Four different membrane configurations and five membranes were compared for immobilization of alcohol dehydrogenase (ADH) in terms of enzyme loading, permeate flux and final biocatalytic conversion...... and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations...... for the different results. The work confirms that fouling-induced enzyme immobilization is a promising option for enhancing biocatalytic productivity, and highlights the significance of the membrane type and configuration for optimal performance....

  18. Cake layers and long filtration times protect ceramic micro-filtration membranes for fouling

    NARCIS (Netherlands)

    Lu, J.

    2013-01-01

    The objective of this research was to decrease membrane fouling of a ceramic microfiltration system and at the same time increase the recovery. A conventional operation in micro- and ultrafiltration is an in-line coagulation and a frequent hydraulic backwash. The idea about these frequent backwashes

  19. Improved permeation performance and fouling-resistance of Poly(vinyl chloride/Polycarbonate blend membrane with added Pluronic F127

    Directory of Open Access Journals (Sweden)

    Supateekan Pacharasakoolchai

    2014-04-01

    Full Text Available The aim of this work was to prepare and characterize poly(vinyl chloride (PVC/polycarbonate (PC blend membranes for use in ultrafiltration. Pluronic F127 was used as an additive to modify the membrane surface of the PVC/PC blended membranes. The PVC/PC blend membrane was first prepared using the phase inversion method from a casting solution of PVC with small amount of PC in N-methylpyrrolidone (NMP and water as the non-solvent. The morphologies structure and properties, such as tensile strength, water flux, and bovine serum albumin (BSA rejection of the blend membrane were studied. Increased amounts of PC resulted in an increase in the water flux and ability to reject protein. A concentration of 0.75 wt% PC provided the best improvement in tensile strength of blend membrane. Addition of different amounts of pluronic F127 to the casting solution of PVC/PC with a PC concentration of 0.75 wt% resulted in a decrease in the water contact angle that demonstrated the improvement of hydrophilicity of blend membrane. Scanning electron microscopy photographs showed that the modified PVC/PC membranes had a bigger pore volume in the porous sub-layer compared to the PVC/PC control membrane. The PVC/PC membrane with added Pluronic F127 exhibited a much higher flux and rejection of BSA in a protein filtration experiment than the PVC/PC membrane. An increase in flux recovery ratio of PVC/PC/pluronic 127 blend membrane indicated that the modified membranes could reduce membrane fouling useful for ultrafiltration.

  20. Nutrient recovery from the dry grind process using sequential micro and ultrafiltration of thin stillage.

    Science.gov (United States)

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2010-06-01

    The effectiveness of microfiltration (MF) and ultrafiltration (UF) for nutrient recovery from a thin stillage stream was determined. When a stainless steel MF membrane (0.1microm pore size) was used, the content of solids increased from 7.0% to 22.8% with a mean permeate flux rate of 45L/m(2)/h (LMH), fat increased and ash content decreased. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Permeate flux profiles were evaluated for regenerated cellulose membranes (YM1, YM10 and YM100) with molecular weight cut offs of 1, 10 and 100kDa. UF increased total solids, protein and fat and decreased ash in retentate stream. When permeate streams from MF were subjected to UF, retentate total solids concentrations similar to those of commercial syrup (23-28.8%) were obtained. YM100 had the highest percent permeate flux decline (70% of initial flux) followed by YM10 and YM1 membranes. Sequential filtration improved permeate flux rates of the YM100 membrane (32.6-73.4LMH) but the percent decline was also highest in a sequential MF+YM100 system. Protein recovery was the highest in YM1 retentate. Removal of solids, protein and fat from thin stillage may generate a permeate stream that may improve water removal efficiency and increase water recycling. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Natural gas purification using supported ionic liquid membrane

    NARCIS (Netherlands)

    Althuluth, M.A.M.; Overbeek, J.P.; Wees, H.J.; Zubeir, L.F.; Haije, W.G.; Berrouk, A.S.; Peters, C.J.; Kroon, M.C.

    2015-01-01

    This paper examines the possibility of the application of a supported ionic liquid membrane (SILM) for natural gas purification. The ionic liquid (IL) 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]) was impregnated successfully in the ¿-alumina layer of a tubular

  2. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Ricardo Couto

    2015-01-01

    Full Text Available In this work, a supported ionic liquid membrane (SILM was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA] ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2 and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73 for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids.

  3. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng; Heijman, Sebastiaan G J; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  4. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng

    2012-09-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  5. In-line quantification and characterization of membrane fouling

    KAUST Repository

    Bucs, Szilard

    2016-06-16

    Methods of detecting, quantifying and/or characterizing the fouling of a device from a combination of pressure and spectroscopic data are provided. The device can be any device containing components susceptible to fouling. Components can include membranes, pipes, or reactors. Suitable devices include membrane devices, heat exchangers, and chemical or bio-reactors. Membrane devices can include, for example, microfiltration devices, ultrafiltration devices, nanofiltration devices, reverse osmosis, forward osmosis, osmosis, reverse electrodialysis, electro- deionisation or membrane distillation devices. The methods can be applied to any type of membrane, including tubular, spiral, hollow fiber, flat sheet, and capillary membranes. The spectroscopic characterization can include measuring one or more of the absorption, fluorescence, or raman spectroscopic data of one or more foulants. The methods can allow for the early detection and/or characterization of fouling. The characterization can include determining the specific foulant(s) or type of foulant(s) present. The characterization of fouling can allow for the selection of an appropriate de-fouling method and timing.

  6. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R

    2010-01-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO 2 (SCCO 2 ). The solubility of CO 2 in PCL allows for the impregnation of CO 2 -soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO 2 to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35 0 C and 40 0 C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  7. Membrane processes in production of functional whey components

    Directory of Open Access Journals (Sweden)

    Lutfiye Yilmaz-Ersan

    2009-12-01

    Full Text Available In recent years, whey has been recognised as a major source of nutritional and functional ingredients for the food industry. Commercial whey products include various powders, whey protein concentrates and isolates, and fractionated proteins, such as a-lactalbumin and b-lactoglobulin. The increased interest in separation and fractionation of whey proteins arises from the differences in their functional, biological and nutritional properties. In response to concerns about environmental aspects, research has been focused on membrane filtration technology, which provides exciting new opportunities for large-scale protein and lactose fractionation. Membrane separation is such technique in which particles are separated according to their molecular size. The types of membrane processing techniques are ultrafiltration, microfiltration, reverse osmosis, pervaporation, electrodialysis and nanofiltration. A higher purification of whey proteins is possible by combining membrane separation with ion-exchange. This paper provides an overview of types and applications of membrane separation techniques

  8. Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine

    Directory of Open Access Journals (Sweden)

    Shah Nasrullah

    2016-09-01

    Full Text Available Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively, and adsorption selectivity (2.72 and 2.98 respectively. However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.

  9. Impregnation of leather during "freeze-drying"

    DEFF Research Database (Denmark)

    Storch, Mikkel; Vestergaard Poulsen Sommer, Dorte; Hovmand, Ida

    2016-01-01

    Freeze-drying is a recognized method for the preservation of waterlogged objects. Naturally, freeze-drying has also been used for waterlogged archaeological leather often after treatment with Na2.EDTA and impregnation with PEG; but the treated leather sometimes suffers from “excessive drying......” becoming too stiff and brittle. The aim of this study was to examine the effect of a conventional freeze-drying method against an alternative freeze-drying method that preserves the natural moisture content of the leather. Both new and archaeological waterlogged leather were included in the study...... suggest that the process which takes place within the leather during the freeze-drying in not actual freeze-drying, but rather a sophisticated way of distributing the impregnating agent. The pure ice phase freezes out, but the impregnating agent remains liquid as the temperature does not become low enough...

  10. Crude biodiesel refining using membrane ultra-filtration process: An environmentally benign process

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Ceramic membrane separation system was developed to simultaneously remove free glycerol and soap from crude biodiesel. Crude biodiesel produced was ultra-filtered by multi-channel tubular membrane of the pore size of 0.05 μm. The effects of process parameters: transmembrane pressure (TMP, bar, temperature (°C and flow rate (L/min on the membrane system were evaluated. The process parameters were then optimized using Central Composite Design (CCD coupled with Response Surface Methodology (RSM. The best retention coefficients (%R for free glycerol and soap were 97.5% and 96.6% respectively. Further, the physical properties measured were comparable to those obtained in ASTMD6751-03 and EN14214 standards.

  11. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.; Lounici, Hakim; Abdi, Nadia; Drouiche, Nadjib; Ghaffour, NorEddine; Pauss, André ; Mameri, Nabil

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER

  12. The potentialities of the complexation ultrafiltration technique for the decontamination of fission product contaminated aqueous effluents; Potentialites de la complexation - ultrafiltration a la decontamination d`effluents radioactifs en produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Thibert, V

    1995-07-01

    Many nuclear researchers and industrial operators lay emphasis on improving the back end of the fuel cycle. A major problem concerns the liquid wastes generated by the reprocessing plant at La Hague, discharged into the sea after treatment in the Effluent Treatment Station (STE) (3), and which have become crucial matter. The activity of these wastes is well below the current legal limits, and is constantly decreasing these last years. To bring it close to zero, and ambitious goal, entails innovative new reprocessing techniques. We accordingly investigated the possibilities of complexation-ultrafiltration, a technique that uses water-soluble macromolecules to complex the target elements to be separated. We first achieved the strontium (II) separation with poly-acrylic and poly-sulfonic acids. The effects of pH and NaNO{sub 3} concentration influence on Sr (II) complexation were studied. The Sr (II) complexation and concentration phases, followed by cation de-complexation to recover the polymer, were also taken into account. This research, combined with a potentiometric study of the polymers, offered a close understanding of the chemical systems involved, and of the operating conditions and limits of complexation-ultrafiltration. The laboratory results were also validated on a tangential ultrafiltration pilot plant. We then used complexation-ultrafiltration to treat a real effluent generated bu La Hague`s STE 3 plant. This experiment demonstrated minimum 90 % decontamination of Sr (II) (with polyacrylate complexing agent), and also for {sup 134-137}Cs (with simple ultrafiltration). The use of two polyamides allowed partial decontamination of the effluent for {sup 60}Co and {sup 106}Ru. This work therefore offers a global approach to complexation-ultrafiltration, from laboratory to pilot scale, on real and simulated effluents. The future of this technique relies chiefly on the ability to solve the problem of polymer recovery. (Abstract Truncated)

  13. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R, E-mail: n.foster@unsw.edu.a [Supercritical Fluids Research Group, School of Chemical Sciences and Engineering, University of New South Wales, NSW 2052 (Australia)

    2010-03-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO{sub 2} (SCCO{sub 2}). The solubility of CO{sub 2} in PCL allows for the impregnation of CO{sub 2}-soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO{sub 2} to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35{sup 0}C and 40 {sup 0}C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  14. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation

    KAUST Repository

    Karunakaran, Madhavan

    2014-03-01

    A simple and efficient approach towards the fabrication of a skinned membrane with highly ordered pores in the nanometer range is presented here. We successfully combined the self-assembly of PS-b-PEO block copolymer and water induced phase separation for the preparation of isoporous PS-b-PEO block copolymer membranes. We produced for the first time asymmetric isoporous PS-b-PEO membranes with a 100nm thin isoporous separating layer using water at room temperature as coagulant. This was possible by careful selection of the block lengths and the solvent system. FESEM, AFM and TEM measurements were employed to characterize the nanopores of membranes. The pure water fluxes were measured and the flux of membrane was exceptionally high (around 800Lm-2h-1bar-1). Protein rejection measurements were carried out for this membrane and the membrane had a retention of about 67% of BSA and 99% of γ-globulin. © 2013 Elsevier B.V.

  15. Selective removal of dissolved toxic metals from groundwater by ultrafiltration in combination with chemical treatment

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; McConeghy, G.J.; Martin, J.F.

    1989-09-01

    An alternative in-place process for the removal of toxic heavy metals based on aqueous solution chemistry and treatment is being evaluated under the auspices of the Emerging Technologies Program funded through the USEPA's Superfund Innovative Technology Evaluation Program. The technique involves the contacting of aqueous solutions containing the heavy metal contaminants with low concentrations of polyelectrolytes, and then removing the polyelectrolytes from solution with ultrafiltration membranes. The first phase of the program is considered complete. Success has been achieved for the separation of soluble, heavy metal ions: cadmium, lead, and mercury even in the presence of an organic compound, toluene. Removal was successful at alkaline conditions, using any combination of membrane material or polyelectrolyte. Arsenic was removed, but not effectively, using the current polyelectrolytes, simply because arsenic is present as an anionic species rather than as a cationic species. Optimization of the process variables is nearing completion and pilot and field testing will take place in the second year of the program to verify the process under realistic conditions and to establish process economics

  16. Exploration of permeability and antifouling performance on modified cellulose acetate ultrafiltration membrane with cellulose nanocrystals.

    Science.gov (United States)

    Lv, Jinling; Zhang, Guoquan; Zhang, Hanmin; Yang, Fenglin

    2017-10-15

    Cellulose nanocrystals (CNCs) were introduced into cellulose diacetate (CDA) matrix via immerged phase-inversion process, aiming to improve the filtration and antifouling performance of CNCs/CDA blending membrane. The effects of CNCs on membrane morphologies, hydrophilicity, permeability and antifouling property were investigated. Results showed that the incorporation of CNCs into CDA membrane could effectively enhance the permeability and antifouling property of CNCs/CDA blending membrane by optimizing membrane microstructure and improving membrane hydrophilicity. A high pure water flux of 173.8L/m 2 h was achieved for the CNCs/CDA blending membrane at 200KPa, which is 24 times that of the CDA membrane (7.2L/m 2 h). The bovine serum albumin (BSA) adsorption amount of the CNCs/CDA blending membrane decreased about 48% compared to that of the CDA membrane. Additionally, the CNCs/CDA blending membrane exhibited better antifouling performance with the flux recovery ratio (FRR) of 89.5% after three fouling cycles, compared to 59.7% for the CDA membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. RECOVERY OF PROTEIN FROM MUNG BEAN STARCH PROCESSING WASTEWATER BY ROTATING ULTRAFILTRATION

    Directory of Open Access Journals (Sweden)

    PENPORN SRINIWORN

    2016-07-01

    Full Text Available Mung bean wastewater containing valuable protein is very potential to be recovered for reuse. In this study, rotary disk ultrafiltration was employed to recover this protein. The effects of transmembrane pressure (TMP and membrane rotational speeds on process efficiency were studied and the optimum condition was chosen based on membrane permeate flux and protein retention. The results suggested that the use of TMP of 1.2 bar and rotating speed of 1,683 rpm under total recycle mode tended to achieve highest permeate flux (43 L/m3h compared to those using lower TMP and rotating speeds. The permeate fluxes under total recycle mode and batch concentration mode tended to increase with processing time, indicating the effectiveness of rotating shear force. In addition, the effect of stabilization technique on process performance under batch concentration mode was also studied. However, the variable did not show positive impacts on permeate flux and protein retention improvement. The optimum condition to achieve volume concentration factor (VCF of 5 was TMP of 1.2 bar and rotating speed of 1,403 rpm without stabilization. Under this condition, the average flux, protein retention and energy consumption were 42 L/m2h, 96% and 81 kWh/m3, respectively.

  18. Ultrafiltration-based degumming of crude rice bran oil using a polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sehn, G.A.R.; GonCalves, L.A.G.; Ming, C.C.

    2016-07-01

    Membrane technology has been gaining momentum in industrial processes, especially in food technology. It is believed to simplify processes, reduce energy consumption, and eliminate pollutants. The objective was to study the performance of polyvinylidene fluoride (PVDF) and polyethersulfone (PES) polymeric membranes in the degumming of the miscella of crude rice bran oil by using a bench-scale tangential filtration module. In addition, oil miscella filtration techniques using hexane and anhydrous ethyl alcohol solvents were compared. All membranes showed the retention of phospholipids and high flow rates. However, the best performance was observed using the 50-kDa PVDF membrane in miscella hexane solvent, with a 95.5% retention of the phosphorus concentration (by a factor of 1.4), resulting in a permeate with 29 mg·kg−1 of phosphorus and an average flow rate of 48.1 L·m−2·h−1. This technology can be used as a low-pollution, economical alternative for the de-gumming of crude rice bran oil, being effective in the removal of hydratable and non-hydratable phospholipids, resulting in oils with a low phosphorus content. (Author)

  19. New aspects of the possible sites of ultrafiltration in annelids (oligochaeta).

    Science.gov (United States)

    Hansen, U

    1995-02-01

    Electron microscopic investigations of blood vessels were conducted to show sites of filtration such as podocytes or fenestrated endothelia. The endothelia of the blood vessels of Aelosoma hemprichi, Nais elinguis, Dero obtusa and Enchytraeus buchholzi consist of myoendothelial cells, chloragocytes and podocytes. The podocytes form large archs over a considerable area of the vessels. On the lumen side of the vessel there are several columnar processes which split into numerous small pedicels. The gaps between the adjacent pedicles are bridged by slit membranes. The podocytes are restricted to the front part of the ventral vessel. They are presumed to form a filtration surface. Furthermore, some parts of the ventral vessel are formed by a fenestrated endothelium, mainly in Enchytraeus buchholzi. In the vascular system of E. buchholzi two separate filtration sites were found. Additionally to the filtration site between ventral vessel and coelomic cavity a second filtration site was found in the front part of the body between blood sinus and coelomic cavity. In such areas the basement membrane is the only continuous layer between the blood vessel and the coelomic cavity. Its thickness is in the range of 40 nm. Possible filtration sites in the form of podocytes and irregular fenestrations could be localized at the border between the blood compartment and the coelomic compartment. It can be presumed that the primary urine may be formed by ultrafiltration of blood.

  20. Ultrafiltration (UF Pilot Plant for Municipal Wastewater Reuse in Agriculture: Impact of the Operation Mode on Process Performance

    Directory of Open Access Journals (Sweden)

    Dario Falsanisi

    2010-11-01

    Full Text Available Following increasing interest in the use of UltraFiltration (UF membrane processes as an alternative advanced disinfection technique, the performance of a UF pilot plant was investigated under two opposite operating conditions (“stressed operating condition” versus “conventional operating condition”. The results indicate that for both conditions, the reclaimed effluent complied with the Italian regulations for unrestricted wastewater reuse (i.e., Total Suspended Solids (TSS < 10 mg/L; Chemical Oxygen Demand (COD < 100 mg/L and Escherichia coli < 10 CFU/100 mL. On the other hand, when compared with the Title 22 of the California Wastewater Reclamation Criteria, only the effluent produced under the “conventional operating condition” met the stipulated water quality standards (i.e., TSS and turbidity undetectable and total coliforms < 2.2 CFU/100 mL. It should be noted that, in spite of the nominal cut-off size, total coliforms breakthrough was indeed occasionally observed. A localized membrane pore micro-enlargement mechanism was hypothesized to explain the total coliforms propagation in the ultrafiltered effluent, as monitoring of the membrane permeability and transmembrane pressure highlighted that gel/cake formation had only a minor contribution to the overall membrane fouling mechanism with respect to pore plugging and pore narrowing mechanisms.

  1. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    Science.gov (United States)

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  2. Structural Study and Modification of Support Layer for Forward Osmosis Membranes

    KAUST Repository

    Shi, Meixia

    2016-06-01

    Water scarcity is a serious global issue, due to the increasing population and developing economy, and membrane technology is an essential way to address this problem. Forward osmosis (FO) is an emerging membrane process, due to its low energy consumption (not considering the draw solute regeneration). A bottleneck to advance this technology is the design of the support layer for FO membranes to minimize the internal concentration polarization. In this dissertation, we focus on the structural study and modification of the support layer for FO membranes. Firstly, we digitally reconstruct different membrane morphologies in 3D and propose a method for predicting performance in ultrafiltration operations. Membranes with analogous morphologies are later used as substrate for FO membranes. Secondly, we experimentally apply substrates with different potentially suitable morphologies as an FO support layer. We investigate their FO performance after generating a selective polyamide layer on the top, by interfacial polymerization. Among the different substrates we include standard asymmetric porous membranes prepared from homopolymers, such as polysulfone. Additionally block copolymer membrane and Anodisc alumina membrane are chosen based on their exceptional structures, with cylindrical pores at least in part. 3D digitally reconstructed porous substrates, analogous to those investigated for ultrafiltration, are then used to model the performance in FO operation. Finally, we analyze the effect of intermediate layers between the porous substrate and the interfacial polymerized layer. We investigate two materials including chitosan and hydrogel. The main results are the following. Pore-scale modeling for digital membrane generation effectively predicts the velocity profile in different layers of the membrane and the performance in UF experiments. Flow simulations confirm the advantage of finger-like substrates over sponge-like ones, when high water permeance is sought

  3. Membrane separation using nano-pores; Nano poa wo riyoshita makubunri

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, S. [Fukuoka Women`s Univ., Fukuoka (Japan)

    1995-08-01

    The membrane constituted by nano-pore only (NF membrane) is sold on the market recently as the membranes used for the matter separations in addition to the reverse osmosis membrane for changing seawater into fresh water, dialysis membrane used for artificial kidney, ultrafiltration membrane used for the separation and condensation of protein and the micro-filter used for removing microbe. It is possible for the membrane constituted by nano-pore to remove the virus with the size being from 20 to 300 nm. In this paper, the pore structure of NF membrane is explained, and then its application as the membrane for removing virus is described. Especially, it is possible for NF membrane to remove the virus with smallest size (parvovirus, etc.), prion albumen (bovine serum pathogen, etc.) and the special gene such as cancer, and it is further applied to the condensation and refining of virus and genes. The broader application of nano-pore to the control of the transportation of micro-particles in the future is expected. 3 refs., 2 figs.

  4. Identification of the Allergenic Ingredients in Reduning Injection by Ultrafiltration and High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2016-01-01

    Full Text Available Reduning injection is a traditional Chinese medicine injection which has multiple functions such as clearing heat, dispelling wind, and detoxification. Although Reduning injection was widely utilized, reports of its allergenicity emerged one after another. However, there is little research on its allergenic substances. The aim of this study is to evaluate the sensitization of Reduning injection and explore the underlying cause of the anaphylactic reaction. The main ingredients in Reduning injection were analyzed before and after ultrafiltration. Ultrafiltrate Reduning injection, unfiltered Reduning injection, egg albumin, Tween-80, and nine effective components in Reduning injection were utilized to sensitize guinea pigs. The serum 5-hydroxytryptamine level was used to assess the sensitization effect of Reduning injection. We found a significant decrease in Tween-80 content comparing to other components in the injection after ultrafiltration. Unfiltered Reduning injection, Tween-80, chlorogenic acid, and cryptochlorogenin acid caused remarkable anaphylactoid reaction on guinea pigs while ultrafiltration Reduning resulted in a significantly lower degree of sensitization. Our results suggest that ultrafiltration could significantly reduce the sensitization of Reduning injection, which is likely due to the decrease of Tween-80. We also conjectured that the form of chlorogenic acid and cryptochlorogenin acid within the complex solution mixture may also affect the sensitizing effect.

  5. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  6. Impact of impregnation with boron compounds on combustion ...

    African Journals Online (AJOL)

    This study examined the impacts of varnishing after impregnation with boron compounds on combustion properties of oriental beech. The test samples prepared from oriental beech (Fagus orientalis Lipsky) wood were impregnated according to ASTM D 1413–76–99 with boric acid (Ba) or borax (Bx) using a vacuum ...

  7. Wood construction and magnetic characteristics of impregnated type magnetic wood

    International Nuclear Information System (INIS)

    Oka, Hideo; Hojo, Atsushi; Seki, Kyoushiro; Takashiba, Toshio

    2002-01-01

    The results of experiments involving the AC and DC magnetic characteristics of impregnated type magnetic wood were studied by taking into consideration the wood construction and fiber direction. The experimental results show that the sufficient amount of impregnated magnetic fluid varies depending on the fiber direction and length, and the grain face of the wood material. The impregnated type magnetic wood sample that is fully impregnated by magnetic fluid has a 60% saturation magnetization compared to the saturation magnetization of magnetic fluid. Samples for which the wood fiber direction was the same as the direction of the magnetic path had a higher magnetization intensity and permeability

  8. Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure

    DEFF Research Database (Denmark)

    Zarebska, Agata; Amor, Angel Cid; Ciurkot, Klaudia

    2015-01-01

    Over time fouling leads to membrane wetting. This is the biggest obstacle to widespread use of membrane distillation (MD) for ammonia removal from animal slurry. Feed pretreatment and cleaning strategies of membrane surfaces are the most common methods to prevent or diminish fouling phenomena....... This study investigates preliminary fouling of polypropylene (PP) and polytetrafluoroethylene (PTFE) membranes. A model manure solution was used as feed. In addition cleaning efficiencies with deionized water, NaOH/citric acid, and Novadan agents were studied. Further microfiltration and ultrafiltration were...... examined as manure pretreatment to diminish fouling. To this end polyvinylidene fluoride membranes (PVDF 0.2 µm and 150 kDa respectively) were used. Organic fouling was shown to be dominant. For the model manure solution the fouling comprised lipids, carbohydrates and proteins. For pig slurry the fouling...

  9. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels.

    Science.gov (United States)

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping

    2017-12-20

    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  10. Physicochemical and Microbiological Properties of Yogurt-cheese Manufactured with Ultrafiltrated Cow's Milk and Soy Milk Blends

    OpenAIRE

    Lee, Na-Kyoung; Mok, Bo Ram; Jeewanthi, Renda Kankanamge Chaturika; Yoon, Yoh Chang; Paik, Hyun-Dong

    2015-01-01

    The objective of this study was to develop yogurt-cheese using cow?s milk, ultrafiltrated cow?s milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow?s milk, and stored at 4? during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made withou...

  11. PROTECTIVE TREATMENT OF WOOD IMPREGNATING COMPOSITION OF PETROCHEMICAL WASTE

    Directory of Open Access Journals (Sweden)

    T. V. Maslakova

    2015-01-01

    Full Text Available The paper presents results of experimental and theoretical studies aimed at expanding the applications of the copolymers on the basis of the waste styrene production. One of the areas is used as impregnating compositions of wood materials, selection of optimal conditions modification on samples of the most widely used in the industry of wood, such as birch, aspen and other. Studies were conducted to obtain and use an impregnating compositions based on copolymers synthesized from waste products of styrene and the cubic remainder rectification of ethylbenzene (CRRE for the protective treatment of birch wood. Identified physic-chemical characteristics of physical mixtures of copolymers «CORS», «STAM», CRRE at different ratios. Studied the process of modification birch using the method of experiment planning greco-latin square of the fourth order, and the influence of such factors as the temperature of the impregnating composition, the duration of the impregnation, the temperature and duration of thermal treatment on the performance moisture resistance of wood. Were established optimal conditions modification birch wood treated impregnating compositions on the basis of physical mixtures of copolymer «CORS» with CRRE and copolymer «STAM» with CRRE is the mixing ratio 2:1, the duration and temperature of the impregnation 7 h and 95 0C, time and temperature of heat treatment 7 h and 170 0C, respectively. A sealing composition containing CRRE with copolymer «STAM» 1:2 is more preferable, as in the structure of the copolymer «STAM» contains carboxyl and anhydrite group. Thus was justified use for the modification of natural wood impregnating compositions on the basis of physical mixtures of CRRE with copolymers «CORS» and «STAM», which improve the properties of wood, increase moisture and weather resistance more than twice.

  12. Ultra-filtration measurement using CT imaging technology

    International Nuclear Information System (INIS)

    Lu Junfeng; Lu Wenqiang

    2009-01-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  13. Functionalized nanoparticle interactions with polymeric membranes.

    Science.gov (United States)

    Ladner, D A; Steele, M; Weir, A; Hristovski, K; Westerhoff, P

    2012-04-15

    A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) on porous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ≈ 2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependent not only on surface functionality but on NP core material (Ag, TiO(2), or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Antifouling membranes for sustainable water purification: strategies and mechanisms.

    Science.gov (United States)

    Zhang, Runnan; Liu, Yanan; He, Mingrui; Su, Yanlei; Zhao, Xueting; Elimelech, Menachem; Jiang, Zhongyi

    2016-10-24

    One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.

  15. THE EFFECT OF THE TYPE OF ADMIXTURE ON THE PROPERTIES OF POLYACRYLONITRILE MEMBRANES MODIFIED WITH NANOTUBES, GRAPHENE OXIDE AND GRAPHENE

    Directory of Open Access Journals (Sweden)

    Beata Fryczkowska

    2017-09-01

    Full Text Available This paper presents the results of research on the production of composite polyacrylonitrile (PAN membranes with nanotubes (MWCNT, graphene (RG and graphene oxide (GO addition. All of the specified additions differ diametrically in terms of properties, starting from the spatial structure of the particles, up to the chemical properties. Membranes were obtained using phase inversion method from a solution of N,N-dimethylformamide (DMF. Subsequently, the impact of the nano-addition on the transport and separation properties of the membranes were investigated using Millipore AMICON ultrafiltration kit. Membranes with graphene addition (PAN/RG are characterized by the best transport properties and the highest specific permeate flux values in the range of ~913÷1006 [dm3/m2×h] for working pressure of 2.0 MPa. To test the separation properties, electroplating waste water generated in one of the Silesian galvanizing plants was used. The qualitative and quantitative composition of the waste water was tested by UV-Vis spectrophotometer (HACH and absorption atomic spectrometry (AAS. The ultrafiltration process carried out on composite membranes allows for the complete removal of phosphate ions and ~88÷94% of iron from the waste water. The rejection coefficient of the remaining metals is high: ~ 35 ÷ 85% for copper and ~ 17 ÷ 100% for cadmium.

  16. The determination of ultrafiltrable calcium and magnesium in serum.

    Science.gov (United States)

    Danielson, B G; Pallin, E; Sohtell, M

    1982-01-01

    Ultrafiltrate of human serum was investigated in order to evaluate the serum content of calcium and magnesium. The acid and base concentrations and pH of the serum was altered through titration with HCl- or NaOH-solutions. The Pco2 was varied in the titrated serum using different carbon dioxide tensions. This was performed when serum was filtered in a recycling system. It is shown that the analysis of calcium and magnesium have to be done under anaerobic conditions or at standardized pH and Pco2 situations, as the concentrations vary with both pH and Pco2. The concentration ratio between ultrafiltrate and serum for calcium and magnesium was found to be 0.56 and 0.74 respectively at pH=7.41 and Pco2=40 mmHg.

  17. Inorganic membranes for separative techniques: from uranium isotope separation to non-nuclear fields

    International Nuclear Information System (INIS)

    Charpin, J.; Rigny, P.

    1989-01-01

    Uranium enrichment leads to the development of inorganic porous barriers - either ceramic or metallic. A wide range of these products had considerable potential for the improvement of filtration techniques in liquid media (ultrafiltration and microfiltration). This is how a new generation of inorganic membranes was created reputed for their performance and especially for their lifetime and their behaviour (mechanical and temperature stability, corrosion resistance). These membranes now have a respectable position in applications in the agro-food biotechnology industries, to give only two examples. Before the non-nuclear applications of inorganic membranes are presented, their success in the nuclear power industry are pointed out

  18. Radiation hardenable impregnating agents for the consolidating conservation of wooden objects

    International Nuclear Information System (INIS)

    Schaudy, R.

    1985-01-01

    Radiation hardenable impregnating agents offer some advantages over the conventional agents. At the author's institution objects up to 110 cm length can be impregnated for conservation. More than 200 monomers and resins have been investigated. The procedure of impregnation is outlined and some kinds of wooden objects conserved in this way listed. (G.W.)

  19. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert sponge...

  20. Tunable-Porosity Membranes From Discrete Nanoparticles

    Science.gov (United States)

    Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.

    2015-01-01

    Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130–150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol−1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer. PMID:26626565

  1. Physicochemical properties of vanadium impregnated Al-PILCs: Effect of vanadium source

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Suna, E-mail: sunabalci@gazi.edu.tr; Tecimer, Aylin

    2015-03-01

    Graphical abstract: - Highlights: • Vanadium was incorporated into Al-PILC using NaVO{sub 3} or VOSO{sub 4}·3H{sub 2}O precursors by wet impregnation, washing after wet impregnation and impregnation from solution methods. • The layered structure of the supports was retained after the vanadium incorporation. • Incorporation took place both by settling and ion exchange mechanism with the treatment VOSO{sub 4}·3H{sub 2}O precursor while settling was dominant in the use of NaVO{sub 3} precursor. • Treatment with VOSO{sub 4}·3H{sub 2}O which was acidic in solution resulted in more structural deformation. • V{sub 2}O{sub 5} and VO{sub 2} were found as the major oxide forms on the impregnated samples. Loading of vanadyl sulfate hydrate (VOSO{sub 4}·H{sub 2}O) resulted in higher V/Si ratio. Most of the vanadium was bonded in +5 oxide form. • Changes in the FTIR signals after vanadium incorporation caused by Brønsted and Lewis sites, silanol, water and vanadium vibrations were occured. • Dehydroxylation of the structure took place around 300 °C. Samples obtained by impregnation and washing after wet impregnation methods resulted in similar mass losses and the wet impregnated sample showed the highest mass loss among the impregnated samples. - Summary: Clay from the Middle Anatolian previously pillared by Al{sub 13}-Keggin ions and then calcined at 300 °C (Al-PILC) was impregnated with aqueous solutions of vanadium precursors by impregnation from solution (I), wet impregnation (WI) and washing after wet impregnation (WWI) methods. The crystal and textural properties were evaluated by X-ray powder diffraction (XRD), nitrogen sorption and transmission electron microscopy (TEM) images. Vanadium incorporation into the Al-PILC resulted decreases in the basal spacing from 1.75 nm to 1.35 nm with the preserved typical layered structure. The use of sodium metavanadate (NaVO{sub 3}) as the source and the impregnation from solution as the incorporation method

  2. Development of metal catalyst impregnation technology for membrane-based oxygen removal system

    International Nuclear Information System (INIS)

    Kim, Mun Soo; Lee, Doo Ho; Kang, Duk Won

    2005-01-01

    Dissolved oxygen(DO) is a primary cause of PWSCC and its content in reactor coolant system in NPPs has been strictly controlled by various DO removal methods. There are several removal methods of DO, such as vacuum degasification, thermal deaeration, and reductive removal by oxygen scavengers. Although the operation principles of vacuum degasification and thermal deaeration are simple, these methods require a lot of energy for operation and show lower efficiency. And these methods have a few handicaps such as temperature, pH, toxicity, high cost of installation and so on. For the purpose of developing the best method for DO removal from make-up water storage tank, it is necessary to overcome the disadvantages of hydrazine treatment. From this point of view, membrane-based oxygen removal system (MORS) has many advantages than other methods for example, friendly environmental process, versatility of operation conditions with high temperature and low pressure, small space, low cost, etc. Recently de-gassing membrane is widely used in power plant's feed water system for DO removal. De-gassing membrane has some advantages; it removes other dissolved gases such as CO2, N2, as well as O2, and is more economical than Catalytic resin-based Oxygen Removal System. In this study, to obtain better efficiency of MORS, we modified the polypropylene (PP) hollow fiber membrane by plasma treatment and ion beam irradiation supported platinum(Pt), palladium(Pd) as metal catalyst on the surface of the membrane

  3. Transport of Carbon Dioxide through a Biomimetic Membrane

    Directory of Open Access Journals (Sweden)

    Efstathios Matsaridis

    2011-01-01

    Full Text Available Biomimetic membranes (BMM based on polymer filters impregnated with lipids or their analogues are widely applied in numerous areas of physics, biology, and medicine. In this paper we report the design and testing of an electrochemical system, which allows the investigation of CO2 transport through natural membranes such as alveoli barrier membrane system and also can be applied for solid-state measurements. The experimental setup comprises a specially designed two-compartment cell with BMM connected with an electrochemical workstation placed in a Faraday cage, two PH meters, and a nondispersive infrared gas analyzer. We prove, experimentally, that the CO2 transport through the natural membranes under different conditions depends on pH and displays a similar behavior as natural membranes. The influence of different drugs on the CO2 transport process through such membranes is discussed.

  4. Impregnation transition in a powder

    Science.gov (United States)

    Raux, Pascal; Cockenpot, Heloise; Quere, David; Clanet, Christophe

    2011-11-01

    When an initially dry pile of micrometrical grains comes into contact with a liquid, one can observe different behaviors, function of the wetting properties. If the contact angle with the solid is low, the liquid will invade the pile (impregnation), while for higher contact angles, the grains will stay dry. We present an experimental study of this phenomenon: a dry pile of glass beads is deposed on the liquid surface, and we vary the contact angle of the liquid on the grains. We report a critical contact angle below which impregnation always occurs, and develop a model to explain its value. Different parameters modifying this critical contact angle are also investigated. Collaboration with Marco Ramaioli, Nestle Research Center, Lausanne, Switzerland.

  5. Durability of Gamma Irradiated Polymer Impregnated Blended Cement Pastes

    International Nuclear Information System (INIS)

    Khattab, M.M.; Abdel-Rahman, H.A.; Younes, M.M.

    2010-01-01

    This study is focusing on durability and performance of the neat blended cement paste as well as those of the polymer-impregnated paste towards seawater and various concentrations of magnesium sulfate solutions up to 6 months of curing. The neat blended cement paste is prepared by a partial substitution of ordinary Portland cement with 5% of active rice husk ash (RHA). These samples were cured under tap water for 7 days. Similar samples were impregnated with unsaturated polyester resin (UPE) and subjected to various doses of gamma rays ranging from 10 to 50 kGy. The results showed that the irradiated impregnated specimens gave higher values of compressive strength than the neat blended cement paste specimens. On immersing the neat blended cement specimens and polymer impregnated specimens especially that irradiated at 30 kGy in seawater and different concentrations of magnesium sulfate solutions up to 6 months of curing, the results showed that the polymer impregnated blended cement (OPC-RHA-UPE) paste have a good resistance towards aggressive media as compared to the neat blended cement (OPC-RHA) paste. The results also indicated that the sea water has a greater corrosive effect than the magnesium sulfate solutions. These results were confirmed by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP)

  6. Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with triethylenediamine.

    Science.gov (United States)

    Wu, Li-Chun; Chang, Tsu-Hua; Chung, Ying-Chien

    2007-12-01

    Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-impregnated ASC-carbons removed the simulated gases.

  7. The potentialities of the complexation ultrafiltration technique for the decontamination of fission product contaminated aqueous effluents

    International Nuclear Information System (INIS)

    Thibert, V.

    1995-07-01

    Many nuclear researchers and industrial operators lay emphasis on improving the back end of the fuel cycle. A major problem concerns the liquid wastes generated by the reprocessing plant at La Hague, discharged into the sea after treatment in the Effluent Treatment Station (STE) 3), and which have become crucial matter. The activity of these wastes is well below the current legal limits, and is constantly decreasing these last years. To bring it close to zero, and ambitious goal, entails innovative new reprocessing techniques. We accordingly investigated the possibilities of complexation-ultrafiltration, a technique that uses water-soluble macromolecules to complex the target elements to be separated. We first achieved the strontium (II) separation with poly-acrylic and poly-sulfonic acids. The effects of pH and NaNO 3 concentration influence on Sr (II) complexation were studied. The Sr (II) complexation and concentration phases, followed by cation de-complexation to recover the polymer, were also taken into account. This research, combined with a potentiometric study of the polymers, offered a close understanding of the chemical systems involved, and of the operating conditions and limits of complexation-ultrafiltration. The laboratory results were also validated on a tangential ultrafiltration pilot plant. We then used complexation-ultrafiltration to treat a real effluent generated bu La Hague's STE 3 plant. This experiment demonstrated minimum 90 % decontamination of Sr (II) (with polyacrylate complexing agent), and also for 134-137 Cs (with simple ultrafiltration). The use of two polyamides allowed partial decontamination of the effluent for 60 Co and 106 Ru. This work therefore offers a global approach to complexation-ultrafiltration, from laboratory to pilot scale, on real and simulated effluents. The future of this technique relies chiefly on the ability to solve the problem of polymer recovery. In other respect, complexation-ultrafiltration clearly offers a

  8. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  9. PERFORMANCE AND SELECTIVITY OF CERAMIC MEMBRANES IN THE ULTRAFILTRATION OF MODEL EMULSION IN SALINE

    Directory of Open Access Journals (Sweden)

    Konrad ĆWIRKO

    2017-04-01

    Full Text Available Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application – significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.

  10. Highly efficient forward osmosis based on porous membranes--applications and implications.

    Science.gov (United States)

    Qi, Saren; Li, Ye; Zhao, Yang; Li, Weiyi; Tang, Chuyang Y

    2015-04-07

    For the first time, forward osmosis (FO) was performed using a porous membrane with an ultrafiltration (UF)-like rejection layer and its feasibility for high performance FO filtration was demonstrated. Compared to traditional FO membranes with dense rejection layers, the UF-like FO membrane was 2 orders of magnitude more permeable. This gave rise to respectable FO water flux even at ultralow osmotic driving force, for example, 7.6 L/m(2).h at an osmotic pressure of merely 0.11 bar (achieved by using a 0.1% poly(sodium 4-styrene-sulfonate) draw solution). The membrane was applied to oil/water separation, and a highly stable FO water flux was achieved. The adoption of porous FO membranes opens a door to many new opportunities, with potential applications ranging from wastewater treatment, valuable product recovery, and biomedical applications. The potential applications and implications of porous FO membranes are addressed in this paper.

  11. Development of polyelectrolyte multilayer thin film composite membrane for water desalination application

    KAUST Repository

    Fadhillah, F.; Zaidi, S.M.J.; Khan, Z.; Khaled, M.M.; Rahman, F.; Hammond, P.T.

    2013-01-01

    Thin film composite membranes were fabricated via spin assisted layer by layer (SA-LbL) assembly by depositing alternate layers of poly(allyl amine hydrochloride) (PAH) and poly(acrylic acid) (PAA) on a polysulfone (PSF) ultrafiltration membrane as support. The suitability of these membranes for potential water purification applications was explored by testing the stability of the deposited thin films and their permeation characteristic using cross-flow permeation cell. Permeation test conducted at a pressure of 40bar, temperature of 25°C, pH of 6 and feed water concentration of 2000ppm NaCl demonstrated that the PAH/PAA multilayer film deposited on polysulfone support remained stable and intact under long-term test conditions. The 120 bilayers of PAH/PAA membrane tested at the above condition showed flux of 15L/m2.h and salt rejection of 65%. The membrane performance evaluation also revealed that SA-LbL PAH/PAA membrane follows the characteristics of the solution diffusion membrane. © 2013 Elsevier B.V.

  12. Development of polyelectrolyte multilayer thin film composite membrane for water desalination application

    KAUST Repository

    Fadhillah, F.

    2013-06-01

    Thin film composite membranes were fabricated via spin assisted layer by layer (SA-LbL) assembly by depositing alternate layers of poly(allyl amine hydrochloride) (PAH) and poly(acrylic acid) (PAA) on a polysulfone (PSF) ultrafiltration membrane as support. The suitability of these membranes for potential water purification applications was explored by testing the stability of the deposited thin films and their permeation characteristic using cross-flow permeation cell. Permeation test conducted at a pressure of 40bar, temperature of 25°C, pH of 6 and feed water concentration of 2000ppm NaCl demonstrated that the PAH/PAA multilayer film deposited on polysulfone support remained stable and intact under long-term test conditions. The 120 bilayers of PAH/PAA membrane tested at the above condition showed flux of 15L/m2.h and salt rejection of 65%. The membrane performance evaluation also revealed that SA-LbL PAH/PAA membrane follows the characteristics of the solution diffusion membrane. © 2013 Elsevier B.V.

  13. The transfer of rare earth elements through liquid extraction membranes

    International Nuclear Information System (INIS)

    Kapranchik, V.P.; Proyaev, V.V.; Kopyrin, A.A.

    1988-01-01

    The transfer of rare earth elements through liquid extraction membranes, presenting Dacron nuclear filters, impregnated by extractants of different types (tributylphosphine oxide; di-2-ethylhexylphosphoric acid, HDEHP; trioctylamine, TOA) is investigated. It is ascertained that in systems with extractant-carriers TOA and HDEHP inversion of dependences of flow values and distribution coefficients on the element atomic number is observed. Mathematical model of transfer, permitting to establish relation between extractional and transport characteristics of the membrane, is suggested

  14. Characteristics of scandate-impregnated cathodes with sub-micron scandia-doped matrices

    International Nuclear Information System (INIS)

    Yuan Haiqing; Gu Xin; Pan Kexin; Wang Yiman; Liu Wei; Zhang Ke; Wang Jinshu; Zhou Meiling; Li Ji

    2005-01-01

    We describe in this paper scandate-impregnated cathodes with sub-micron scandia-doped tungsten matrices having an improved uniformity of the Sc distribution. The scandia-doped tungsten powders were made by both liquid-solid doping and liquid-liquid doping methods on the basis of previous research. By improving pressing, sintering and impregnating procedures, we have obtained scandate-impregnated cathodes with a good uniformity of the Sc 2 O 3 - distribution. The porosity of the sub-micron structure matrix and content of impregnants inside the matrix are similar to those of conventionally impregnated cathodes. Space charge limited current densities of more than 30 A/cm 2 at 850 deg. C b have been obtained in a reproducible way. The current density continuously increases during the first 2000 h life test at 950 deg. C b with a dc load of 2 A/cm 2 and are stable for at least 3000 h

  15. Effects of impregnation with boron compounds on the surface ...

    African Journals Online (AJOL)

    Liebl.) which met the requirements of ASTM D 358 were impregnated according to ASTM D 1413 with boric acid (Ba) and borax (Bx) by vacuum technique. After impregnation, surfaces were coated with cellulosic, synthetic, polyurathane, water-based, acrylic and acid hardening varnishes in accordance with ASTM D 3023 ...

  16. Decontamination by ultrafiltration of low radioactivity waste water from fuel element fabrication

    International Nuclear Information System (INIS)

    Muller, H.M.

    1984-01-01

    It could be demonstrated that waste waters which contain uranium in a filterable form, such as laundry and floor-cleaning waste, can be sufficiently decontaminated by means of ultra-filtration. In the case of process waste solutions, which contain uranium in a dissolved form, high decontamination factors could be achieved by means of flocculation or coprecipitation. The following methods were tested: - flocculation with Fe (OH) 3 , - coprecipitation with CaHPO 4 , - precipitation with K 4 (Fe(CN) 6 ). The phosphate precipitation, whereby the uranium is probably coprecipitated as Ca(UO 2 ) 2 (PO 4 ) 2 , was found to be the most reliable method. Difficulties were encountered when complex-forming anions, notably carbonate, oxalate and fluoride were present. These necessitate specific pretreatment steps. Whether ultrafiltration then still remains an economical option must be judged in each individual case. The application of the methods so far developed on combined waste streams remains an object for further research. In combination with a phosphate precipitation, ultrafiltration is a suitable method for the decontamination of low-activity, uranium-contaminated waste waters

  17. FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes.

    Science.gov (United States)

    Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil

    2017-11-01

    In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (T g ) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Supercritical CO2 impregnation of polyethylene components for medical purposes

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2007-01-01

    Full Text Available Modem hip and knee endoprosthesis are produced in titanium and to reduce the friction at the contact area polymer parts, mainly ultra-high molecular weight polyethylene (UHMW-PE, are installed. The polyethylene is impregnated with a-tocopherol (vitamin E before processing for remarkable decrease of oxidative degradation. Cross linked UHMW-PE offers much higher stability, but a-tocopherol cannot be added before processing, because a-tocopherol hinders the cross linking process accompanied by a heavy degradation of the vitamin. The impregnation of UHMW-PE with a-tocopherol has to be performed after the cross linking process and an accurate concentration has to be achieved over the cross section of the whole material. In the first tests UHMW-PE-cubes were stored in pure a-tocopherol under inert atmosphere at temperatures from 100 to 150 °C resulting in a high mass fraction of a-tocopherol in the edge zones and no constant concentration over the cross section. For better distribution and for regulating the mass fraction of a-tocopherol in the cross linked UHMW-PE material supercritical CO2 impregnation tests were investigated. Again UHMW-PE-cubes were impregnated in an autoclave with a-tocopherol dissolved in supercritical CO2 at different pressures and temperatures with variable impregnation times and vitamin E concentrations. Based on the excellent results of supercritical CO2 impregnation standard hip and knee cups were stabilized nearly homogeneously with varying mass fraction of a-tocopherol.

  19. Impregnation of soft biological specimens with thermosetting resins and elastomers.

    Science.gov (United States)

    von Hagens, G

    1979-06-01

    A new method for impregnation of biological specimens with thermosetting resins and elastomers is described. The method has the advantage that the original relief of the surface is retained. The impregnation is carried out by utilizing the difference between the high vapor tension of the intermedium (e.g., methylene chloride) and the low vapor tension of the solution to be polymerized. After impregnation, the specimen is subject to polymerization conditions without surrounding embedding material. The optical and mechanical properties can be selected by proper choice from various kinds of resins and different procedures, for example, by complete or incomplete impregnation. Acrylic resins, polyester resins, epoxy resins, polyurethanes and silicone rubber have been found suitable for the method. Excellent results have been obtained using transparent silicone rubber since after treatment the specimens are still flexible and resilient, and have retained their natural appearance.

  20. X-ray initiated polymerization of wood impregnants

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Marshall R.; Galloway, Richard A. [IBA Industrial, Inc., Edgewood, NY (United States); Berejka, Anthony J. [Ionicorp, Huntington, NY 11743 (United States)], E-mail: berejka@msn.com; Montoney, Daniel [Strathmore Products, Syracuse, NY (United States); Driscoll, Mark; Smith, Leonard; Scott Larsen, L. [State University of New York, SUNY-ESF, Syracuse, NY (United States)

    2009-07-15

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  1. X-ray initiated polymerization of wood impregnants

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Galloway, Richard A.; Berejka, Anthony J.; Montoney, Daniel; Driscoll, Mark; Smith, Leonard; Scott Larsen, L.

    2009-01-01

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  2. Polymer-filled microcontainers for oral delivery loaded using supercritical impregnation

    DEFF Research Database (Denmark)

    Marizza, Paolo; Keller, Stephan Sylvest; Müllertz, Anette

    2014-01-01

    with a quasi-no-waste performance. Then ketoprofen is impregnated in the polymer matrix by using supercritical carbon dioxide (scCO2) as loading medium. The amount of polymer is controlled by the volume and the number of droplets of dispensed polymer and drug loading is tuned by varying the impregnation...... procedures. This work proposes an effective loading technique for a poorly soluble model drug in microcontainers, by combining inkjet printing and supercritical fluid impregnation. Well defined quantities of poly(vinyl pyrrolidone) (PVP) solutions are dispensed into microcontainers by inkjet printing...

  3. Laser incising of wood: Impregnation of columns with water-soluble dye

    International Nuclear Information System (INIS)

    Hattori, N.; Ando, K.; Kitayama, S.; Nakamura, Y.

    1994-01-01

    To know whether or not laser incising is a useful pre-treatment technique in impregnating a chemical fluid into lumber, pin holes were made in columns of hinoki (Chamaecyparis obtusa Endl.), sugi (Cryptomeria japonica D. Don), karamatsu (Larix leptolepis Gordon) and douglas-fir (Pseudo-tsuga menziesii Franco) with 1.7 kW CO2 laser, and a water-soluble dye was impregnated into these columns with a local pressure impregnation device. Retentions, and lengths and widths of penetrations from each hole were measured quantitatively. Referring to the results of the preparatory experiment mentioned above, incising patterns for sugi and douglas-fir were designed, and the same water-soluble dye was impregnated into the laser-incised columns as well as into non-incised ones with the vacuum-pressure method to obtain penetrated layers with the target depths completely. As a result, a retention of 200 kg/m3 of dye could be achieved for a column of douglas-fir even if it is a species difficult to impregnate. The penetrated layer also could be formed completely at the depth of the laser incision. Therefore, it is concluded that laser incising can be used for the pre-treatment before impregnation of wood columns. (author)

  4. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture

    KAUST Repository

    Karunakaran, Madhavan

    2016-11-28

    Advanced membrane systems with high flux and sufficient selectivity are required for industrial gas separation processes. In order to achieve high flux and high selectivity, the membrane material should be as thin as possible and it should have selective sieving channels and long term stability. This could be achieved by designing a three component material consisting of a blend of an ionic liquid and graphene oxide covered by a highly permeable low selective polymeric coating. By using a simple dip coating technique, we prepared high flux and CO selective ultrathin graphene oxide (GO)/ionic liquid membranes on a porous ultrafiltration support. The ultrathin composite membranes derived from GO/ionic liquid complex displays remarkable combinations of permeability (CO flux: 37 GPU) and selectivity (CO/N selectivity: 130) that surpass the upper bound of ionic liquid membranes for CO/N separation. Moreover, the membranes were stable when tested for 120 hours.

  5. An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents.

    Science.gov (United States)

    Khansary, Milad Asgarpour; Mellat, Mostafa; Saadat, Seyed Hassan; Fasihi-Ramandi, Mahdi; Kamali, Mehdi; Taheri, Ramezan Ali

    2017-02-01

    To analyze polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, here an in-through investigation on the suitability and compatibility of various polymers has been carried out. For this work, estradiol, estrone, testosterone, progesterone, estriol, mestranol, and ethinylestradiol were considered. A total number of 452 polymers were analyzed and initially screened using Hansen solubility parameters. The identified good pairs of hormones and polymers then were examined to obtain the equilibrium capacity of hormones removal from water effluents using a modified Flory-Huggins model. A distribution coefficient was defined as the ratio of hormones in water effluent phase and polymer phase. For removal of mestranol, estradiol and ethinylestradiol, no compatible polymer was identified based on initial screening of collected database. Three compatible polymers were identified for estriol. For progesterone, a wide variety of polymers was identified as good matching of polar, dispersion and hydrogen forces contributions can be observed for these pairs. For estrone, only two polymers can be proposed due to the mismatch observed between polar, dispersion and hydrogen forces contributions of other polymers and this hormone. The phase calculations showed that not all the identified good pairs could be used for practical separation applications. The domain of applicability of each good pair was investigated and potential polymers for practical micropollutants removal together with their removal capacity were represented in terms of phase envelops. The theoretical approach follows fundamental chemical thermodynamic equations and then can be simply applied for any system of interest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A Mathematical Model of Repeated Impregnation of Porous Bodies with Solutions of Polymers

    Directory of Open Access Journals (Sweden)

    I. V. Glebov

    2015-01-01

    Full Text Available The paper describes basic methods of impregnating porous bodies with solutions of polymers and their use to manufacture prepregs. It also describes the existing methods of manufacturing multilayer prepregs to produce aerospace coating of the spacecraft "Soyuz". It is shown that these prepregs have to meet high requirements for the content of the polymer, as compared with other composite materials, about 35 - 40% of the mass. Methods used for their manufacturing are long-term and non-controllable. The assumption is made that using the vacuum impregnation technology of a woven material will allow to accelerate the manufacturing process of these prepregs and improve their quality.In reviewing the technical literature have been found works on modeling the processes of impregnation, but they are aimed only at studying the speed of the woven material impregnation by various fluids and determining the time of impregnation. There were no models found to define prepreg parameters during the process of multiple impregnations. The aim of this work is to develop the simple mathematical model, which enables us to predict the polymer content of volatile products in the prepreg after each cycle of multiple impregnation of woven material with a solution of the polymer.To consider the vacuum impregnation method are used the prepregs based on silica and silica-nylon stitch-bonding fabric and bakelite varnish LBS-4 containing 50 - 60% of phenol resin and the solvent with minor impurities of pure phenol and water, as an example. To describe the process of vacuum impregnation of the porous work-piece is developed a mathematical description of the process of filling the porous space of the material with a varnish. It is assumed that the varnish components fill the porous space of the material in the same proportion as they are contained in the varnish.It is shown that a single impregnation cannot ensure the content of phenol resin in the prepreg over 32%, which does

  7. Effect of template on chiral separation of phenylalanine using molecularly imprinted membrane in aqueous medium

    International Nuclear Information System (INIS)

    Haq, N.U.

    2014-01-01

    Wet phase inversion method was used to prepare L-Phenylalanine (L-Phe) and D-Phenylalanine (D-Phe) imprinted poly ((acrylonitrile)-co-(acrylic acid)) membranes for chiral separation. Ultrafiltration experiments were conducted to evaluate the chiral separation ability of the prepared membrane towards racemate aqueous solution of Phenylalanine. The continuous permselectivity was observed by novel membrane. The chiral resolution ability of L-Phe imprinted membrane was much better than that of D-Phe. It was observed that both membranes simultaneously, selectively reject, selectively adsorbed and selectively permeate solute. The achieved adsorption selectivities of L-Phe imprinted membrane (AlphaAds)L and D-Phe imprinted membrane (AlphaAds)D were 2.6 and 2.40 respectively. Permselectivity of L-Phe imprinted membrane (AlphaPerm)L was 2.56 while D-Phe imprinted membrane permselectivity (AlphaPerm)D was 2.03. The rejection selectivities of L-Phe and D-Phe imprinted membranes were (AlphaRej)L=0.32 and (AlphaRej)D =0.28 respectively. (author)

  8. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Xiaomin [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Hu, Yuyan; Feng, Yuheng [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Dai, Xiaohu [National Engineering Research Centre for Urban Pollution Control, Tongji University, Shanghai 200092 (China); College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-01-05

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  9. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    International Nuclear Information System (INIS)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-01

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  10. Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane.

    Science.gov (United States)

    Dietz, Carin H J T; Kroon, Maaike C; Di Stefano, Michela; van Sint Annaland, Martin; Gallucci, Fausto

    2017-12-14

    For the first time, 12 different supported deep eutectic solvent (DES) liquid membranes were prepared and characterized. These membranes consist of a polymeric support impregnated with a hydrophobic DES. First, the different membranes were characterized and their stability in water and air was determined. Subsequently, the supported DES liquid membranes were applied for the recovery of furfural (FF) and hydroxymethylfurfural (HMF) from aqueous solutions. The effects of substrate properties (e.g. pore size), DES properties (e.g. viscosity) and concentrations of FF and HMF in the feed phase on the observed diffusivities and permeabilities were assessed. It was found that the addition of DES enhances the transport of FF and HMF through the polymeric membrane support. In particular, the use of the DES consisting of thymol + lidocaine (in the molar ratio 2 : 1) impregnated in a polyethylene support resulted in enhanced transport for both FF and HMF, and is most interesting for (in situ) isolation of FF and HMF from aqueous solutions, e.g. in biorefinery processes.

  11. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  12. Radioactive liquid effluent management - state of art and the role of membrane processes

    International Nuclear Information System (INIS)

    Panicker, S.T.; Prabhakar, S.; Misra, B.M.; Ramani, M.P.S.

    1990-01-01

    This report reviews the conventional methods involving filtration, chemical precipitation, evaporation and ion exchange, employed for the treatment of low level radioactive effluents. The role of membrane processes, particularly reverse osmosis and ultrafiltration has been assessed with a view to increase the effectiveness of the existing methods. After overviewing the practices followed in major countries, a possible scheme has been proposed. (author). 66 refs., 4 tabs., figs

  13. Opportunities for membrane technologies in the treatment of mining and mineral process streams and effluents

    International Nuclear Information System (INIS)

    Awadalla, F.T.; Kumar, A.

    1994-01-01

    The membrane separation technologies of microfiltration, ultrafiltration, nanofiltration, and reverse osmosis are suitable for treating many dilute streams and effluents generated in mining and mineral processing. Membrane technologies are capable of treating these dilute streams in order to produce clean permeate water for recycle and a concentrate that can potentially be used for valuable metals recovery. Membrane technologies can be utilized alone, or in combination with other techniques as a polishing step, in these separation processes. A review of potential applications of membranes for the treatment of different process streams and effluents for water recycling and pollution control is given here. Although membranes may not be optimum in all applications, these technologies are recognized in the mining sector for the many potential advantages they can provide. 59 refs

  14. Separation of racemic mixture by ultrafiltration of enantioselective micelles. 1 Effect of pH on separation and regeneration

    NARCIS (Netherlands)

    Overdevest, P.E.M.; Bruin, de T.J.M.; Riet, van 't K.; Keurentjes, J.T.F.; Padt, van der A.

    2001-01-01

    Many enantiomer separation systems are studied to meet the increasing demand for enantiopure compounds. One way to obtain pure enantiomers is to apply enantioselective micelles in ultrafiltration systems. We have studied the separation of phenylalanine (Phe) enantiomers by the ultrafiltration of

  15. Novel cellobiose 2-epimerases for the production of epilactose from milk ultrafiltrate containing lactose.

    Science.gov (United States)

    Krewinkel, Manuel; Kaiser, Jana; Merz, Michael; Rentschler, Eva; Kuschel, Beatrice; Hinrichs, Jörg; Fischer, Lutz

    2015-06-01

    A selected number of enzymes have recently been assigned to the emerging class of cellobiose 2-epimerases (CE). All CE convert lactose to the rare sugar epilactose, which is regarded as a new prebiotic. Within this study, the gene products of 2 potential CE genes originating from the mesophilic bacteria Cellulosilyticum lentocellum and Dysgonomonas gadei were recombinantly produced in Escherichia coli and purified by chromatography. The enzymes have been identified as novel CE by sequence analysis and biochemical characterizations. The biochemical characterizations included the determination of the molecular weight, the substrate spectrum, and the kinetic parameters, as well as the pH and temperature profiles in buffer and food matrices. Both identified CE epimerize cellobiose and lactose into the C2 epimerization products glucosylmannose and epilactose, respectively. The epimerization activity for lactose was maximal at pH 8.0 or 7.5 and 40°C in defined buffer systems for the CE from C. lentocellum and the CE from D. gadei, respectively. In addition, biotransformations of the foodstuff milk ultrafiltrate containing lactose were demonstrated. The CE from D. gadei was produced in a stirred-tank reactor (12 L) and purified using an automatic system. Enzyme production and purification in this scale indicates that a future upscaling of CE production is possible. The bioconversions of lactose in milk ultrafiltrate were carried out either in a batch process or in a continuously operated enzyme membrane reactor (EMR) process. Both processes ran at an industrially relevant low temperature of 8°C to reduce undesirable microbial growth. The enzyme was reasonably active at the low process temperature because the CE originated from a mesophilic organism. An epilactose yield of 29.9% was achieved in the batch process within 28 h of operation time. In the continuous EMR process, the epilactose yield in the product stream was lower, at 18.5%. However, the enzyme productivity

  16. Studies of properties of rubber wood with impregnation of polymer

    Indian Academy of Sciences (India)

    Impregnation of rubber wood has been carried out under different conditions by using styrene as grafting monomer and glycidyl methacrylate (GMA) as crosslinker. Properties such as dimensional stability, water absorption, hardness, tensile strength, flexural strength, etc of the impregnated wood have been checked and ...

  17. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Chang Qigang; Lin Wei; Ying Weichi

    2010-01-01

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  18. Harvesting of Dunaliella salina by membrane filtration at pilot scale

    KAUST Repository

    Monte, Joana

    2017-09-02

    The microalgae Dunaliella salina is industrially produced due to its high content in carotenoids induced by low nitrogen and high salinity conditions. D. salina with low carotenoids content also produces other added value compounds, however its recovery have hardly been studied. This work aims to examine the potential of pre-concentrating D. salina by membrane processing prior to a final harvesting step by low-shear centrifugation. The aim is to minimize the overall energy expenditure and reduce capital costs, while assuring a minimal loss of cell integrity. This task is challenging, considering the sensitivity of D. salina to shear. Harvesting of D. salina by ultrafiltration allowed reaching a final concentration factor of 5.9, with an average permeate flux of 31 L/(m2 h). The Total Cost of Ownership and energy consumption for harvesting are respectively 52% and 45% lower when applying a two-step approach with pre-concentration (ultrafiltration) compared to only harvesting by centrifugation.

  19. Harvesting of Dunaliella salina by membrane filtration at pilot scale

    KAUST Repository

    Monte, Joana; Sá , Marta; Galinha, Clá udia F.; Costa, Luí s; Hoekstra, Herre; Brazinha, Carla; Crespo, Joã o G.

    2017-01-01

    The microalgae Dunaliella salina is industrially produced due to its high content in carotenoids induced by low nitrogen and high salinity conditions. D. salina with low carotenoids content also produces other added value compounds, however its recovery have hardly been studied. This work aims to examine the potential of pre-concentrating D. salina by membrane processing prior to a final harvesting step by low-shear centrifugation. The aim is to minimize the overall energy expenditure and reduce capital costs, while assuring a minimal loss of cell integrity. This task is challenging, considering the sensitivity of D. salina to shear. Harvesting of D. salina by ultrafiltration allowed reaching a final concentration factor of 5.9, with an average permeate flux of 31 L/(m2 h). The Total Cost of Ownership and energy consumption for harvesting are respectively 52% and 45% lower when applying a two-step approach with pre-concentration (ultrafiltration) compared to only harvesting by centrifugation.

  20. Making equipment to process paddy water for providing drinking water by using Ozone-UVC& Ultrafiltration

    Science.gov (United States)

    Styani, E.; Dja'var, N.; Irawan, C.; Hanafi

    2018-01-01

    This study focuses on making equipment which is useful to process paddy water to be consumable as drinking water by using ozone-UVC and ultrafiltration. The equipment which is made by the process of ozone-UVC and ultrafiltration or reverse osmosis is driven by electric power generated from solar panels. In the experiment, reverse osmosis system with ozone-UVC reactor proves to be good enough in producing high quality drinking water.

  1. The effect of type and mixture of resin on the properties of impregnated paper

    Directory of Open Access Journals (Sweden)

    hossein Kermanian

    2017-05-01

    Full Text Available This study was carried out in order to investigate the effects of different types of resins and also their mixtures on the impregnated paper properties. In this regard, pure urea resin (100%, mixture of melamine and urea resins with various combinations (60/40 and 70/30 and 50/50, mixture of nano-fiber cellulose ratios of 1, 2 and 3 percent with urea resin and pure PVA (100% were used to impregnate of newsprint basic paper of Mazandaran wood and paper industries. Immersion of samples in the impregnation step were done in two time of 5 and 10 seconds. Next, melamine resin was used for surface coating and then absorption of resin in the impregnation and coating process measured. Results showed that in the impregnation step with pure urea (100%, in the respect of absorption rate and surface properties of melamine paper, the best time of impregnation was obtained 10 seconds. In the combined treatment, adding up to 30% melamine to urea resin, as impregnation step resin, offers better properties in terms of stain resistance, cigarette resistance, resistance to cracking and resistance to hot water steam for impregnatedmade paper. By adding nanocellulose up to 1% in impregnation resin, better properties is obtained for melamine paper. Also, PVA as impregnation resin, can be offer similar quality to pure urea in the resulting melamine papers.

  2. Evaluation and control of poisoning of impregnated carbons used for organic iodide removal

    International Nuclear Information System (INIS)

    Kovach, J.L.; Rankovic, L.

    1979-01-01

    By the evaluation of the chemical reactions which have taken place on impregnated activated carbon surfaces exposed to nuclear reactor atmospheric environments, the role of various impregnants has been studied. The evaluation shows several different paths for the aging and posioning to take place. The four major causes were found to be: organic solvent contamination; inorganic acid gas contamination; formation of organic acids on carbon surface; and, formation of SO 2 from carbon sulfur content. Prevention of poisoning by the first two paths can be accomplished only by procedural changes within the facility. However the last three poisoning paths can be controlled to some extent by the selection of carbon pretreatment techniques and the type of impregnant used. Results were generated by evaluating used carbons from 14 nuclear power plants and by artificial poisoning of laboratory impregnated carbons. Impregnants which have antioxidant properties, besides reaction with organic iodides, can increase the life of the impregnated activated carbons

  3. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Soshnikova, Yulia M., E-mail: yuliasoshnikova@gmail.com [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Roman, Svetlana G.; Chebotareva, Natalia A. [A.N. Bach Institute of Biochemistry (Russian Federation); Baum, Olga I. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Obrezkova, Mariya V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Gillis, Richard B.; Harding, Stephen E. [University of Nottingham, National Centre for Macromolecular Hydrodynamics (United Kingdom); Sobol, Emil N. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Lunin, Valeriy V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation)

    2013-11-15

    The paper presents preparation and characterization of starch-modified Fe{sub 3}O{sub 4} nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  4. The rapid determination of americium curium, and uranium in urine by ultrafiltration

    International Nuclear Information System (INIS)

    Stradling, G.N.; Popplewell, D.S.; Ham, G.J.; Griffin, R.

    1975-01-01

    The rapid ultrafiltration method developed for the assay of plutonium has been extended to the determination of americium, curium and uranium in urine. The limits of detection for americium and curium, and uranium are 0.09 and 0.12 dm -1 l -1 respectively, and the analysis time excluding counting less than 2 hours. The method can therefor be effectively used as a rapid screening procedure. When the reference level for plutonium is exceeded, the α activity may require to be characterised. The single ultrafiltration technique must be modified for turbid urine samples. The method is inappropriate, except for uranium, when the urine contains DTPA. (author)

  5. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  6. Removal of some ions from the radioactive liquid wastes by means of membrane techniques

    International Nuclear Information System (INIS)

    Roman, Gabriela; Garganciuc, Dana; Batrinescu, Gheorghe; Popescu, Georgeta

    2000-01-01

    The radioactive wastes imply important problems in the pollution control. Contrary to the case of other liquid wastes, which are specifically treated depending on the nature of pollutants, the liquid radioactive wastes are treated as a function of their activity (high, medium or low) and not depending on the nature of radioisotopes. The paper presents the advantages of the membrane processes as comparing with the classical processes in the removal of some ions from liquid radioactive waste up to values admissible of the current standards. Two types of radioactive liquid solutions were processed namely: one solution from the decontamination of the parts of an installation and other from the decontamination of primary circuit of the nuclear power plant. The first solution was treated with ultrafiltration and reverse osmosis, the retention for radioactive and toxic elements ranging between 14 - 69% for ultrafiltration and 63 - 99% for reverse osmosis. The second solution was processed only with reverse osmosis, a retention between 64 - 98% being obtained. The tests proved that by reverse osmosis membrane process a good removal efficiency of radioactive elements from liquid waste is obtained, corresponding to the requirements imposed by the current regulations. (author)

  7. EM Task 9 - Centrifugal Membrane Filtration

    International Nuclear Information System (INIS)

    Stevens, B.G.; Stepan, D.J.; Hetland, M.D.

    1998-01-01

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  8. Treatment of car wash wastewater by UF membranes

    Science.gov (United States)

    Istirokhatun, Titik; Destianti, Puti; Hargianintya, Adenira; Oktiawan, Wiharyanto; Susanto, Heru

    2015-12-01

    The existence of car wash service facilitates car owners to remove dirt and grime from their vehicles. However, the dirt washed off vehicles as well as the cleaning materials themselves may be harmful to the environment if they are not properly managed and discharged. Many technologies have been proposed to treat car wash wastewater such as coagulation flocculation, tricking filter and flocculation-flotation. Nevertheless, these technologies have low efficiency to eliminate oil and small organic compounds. Ultrafiltration (UF) membranes were used in this study to treat car wash wastewater. This study investigated the performance of UF membranes under various pressures to remove COD, oil and grease, and also turbidity from car wash waste water. The membrane performance was examined by investigation of permeate flux and membrane rejection. The results meet the standard of environmental regulation and it is possible to be reused. The highest rejection was shown by PES10 (polyethersulfone 10 kDa) in 1 bar operation with complete rejection for both turbidity and oil and grace and 95% rejection for COD.

  9. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yan [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; Zhang, Chao [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; He, Ai [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; Yang, Shang-Jin [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; Wu, Guang-Peng [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; Darling, Seth B. [Nanoscience & Technology Division, Argonne National Laboratory, 9700 South Cass Avenue Lemont IL 60439 USA; Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Xu, Zhi-Kang [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China

    2017-05-16

    Membrane fouling is one of the most severe problems restricting membrane separation technology for wastewater treatment. This work reports a photocatalytic nanofiltration membrane (NFM) with self-cleaning property fabricated using a facile biomimetic mineralization process. In this strategy, a polydopamine (PDA)/polyethyleneimine (PEI) intermediate layer is fabricated on an ultrafiltration membrane via a co-deposition method followed by mineralization of a photocatalytic layer consisting of beta-FeOOH nanorods. The PDA-PEI layer acts both as a nanofiltration selective layer and an intermediate layer for anchoring the beta-FeOOH nanorods via strong coordination complexes between Fe3+ and catechol groups. In visible light, the beta-(F)eOOH layer exhibits efficient photocatalytic activity for degrading dyes through the photo-Fenton reaction in the presence of hydrogen peroxide, endowing the NFM concurrently with effective nanofiltration performance and self-cleaning capability. Moreover, the mineralized NFMs exhibit satisfactory stability under simultaneous filtration and photocatalysis processing, showing great potential in advanced wastewater treatment.

  10. Recent developments in membrane-based separations in biotechnology processes: review.

    Science.gov (United States)

    Rathore, A S; Shirke, A

    2011-01-01

    Membrane-based separations are the most ubiquitous unit operations in biotech processes. There are several key reasons for this. First, they can be used with a large variety of applications including clarification, concentration, buffer exchange, purification, and sterilization. Second, they are available in a variety of formats, such as depth filtration, ultrafiltration, diafiltration, nanofiltration, reverse osmosis, and microfiltration. Third, they are simple to operate and are generally robust toward normal variations in feed material and operating parameters. Fourth, membrane-based separations typically require lower capital cost when compared to other processing options. As a result of these advantages, a typical biotech process has anywhere from 10 to 20 membrane-based separation steps. In this article we review the major developments that have occurred on this topic with a focus on developments in the last 5 years.

  11. Osmotic membrane bioreactor for phenol biodegradation under continuous operation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, Prashant; Loh, Kai-Chee, E-mail: chelohkc@nus.edu.sg

    2016-03-15

    Highlights: • Osmotic membrane bioreactor was used for phenol biodegradation in continuous mode. • Extractant impregnated membranes were used to alleviate substrate inhibition. • Phenol removal was achieved through both biodegradation and membrane rejection. • Phenol concentrations up to 2500 mg/L were treated at HRT varying in 2.8–14 h. • A biofilm removal strategy was formulated to improve bioreactor sustainability. - Abstract: Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600–2000 mg/L, and also at spiked concentrations of 2500 mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5–6 days at removal rates varying between 2000 and 5500 mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2–7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4 h. A washing cycle, comprising 1 h osmotic backwashing using 0.5 M NaCl and 2 h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500 cm{sup −1}, 1450–1450 cm{sup −1} and 1200–1000 cm{sup −1}, indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.

  12. [Ultrafiltration versus intravenous diuretics in decompensated heart failure: a meta-analysis of randomized controlled trials].

    Science.gov (United States)

    Zhao, Yu-liang; Zhang, Ling; Yang, Ying-ying; Tang, Yi; Liu, Fang; Fu, Ping

    2013-08-13

    To explore whether ultrafiltration is superior to intravenous diuretics in ameliorating fluid overload and preserving renal functions in decompensated heart failure patients. By searching in Pubmed, Cochrane Library, Embase, Springer, WanFang, CQVIP, CNKI and CBM database as well as related Chinese journals, qualified randomized controlled trials (RCTs) were included for meta-analysis by Revman 5.0 and STATA 10.0. Six RCTs were included with 241 patients in ultrafiltration group and 240 patients in intravenous diuretics group. Pooled analyses demonstrated ultrafiltration was superior to intravenous diuretics in the aspects of weight loss (WMD = 1.44 kg, 95%CI:0.33-2.55 kg, P = 0.01) and fluid removal (WMD = 1.23 kg, 95%CI:0.63-1.82 kg, P diuretics in mitigating fluid overload. No intergroup difference was observed in renal function preservation, mortality or rehospitalization.

  13. The use of ceramic membranes for radioactive solutions purification

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2002-01-01

    Membrane permeation combined with complexation was tested for radioactive wastes processing purpose. The results of experiments with MEMBRALOX and CeRAM INSIDE filtering elements are presented in the paper. The pore size of ceramic membranes was in 1kD-100 nm range. The experiments were performed with non-active and with radioactive model solutions and original radioactive waste samples. To achieve high decontamination factors the process was enhanced by chemical complexation. Such complexants as poly(acrylic) acid and polyacrylic)acid salts of different crosslinking, polyethylenimine and cyanoferrates were tested. The experiments showed the significant increase of retention and decontamination factors while before ultrafiltration macromolecular ligands were added. The effectiveness of complexation by each ligand is strongly dependent on pH and alkali metals concentration. (author)

  14. Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes.

    Science.gov (United States)

    Schwermer, Carsten Ulrich; Krzeminski, Pawel; Wennberg, Aina Charlotte; Vogelsang, Christian; Uhl, Wolfgang

    2018-02-01

    The effectivity of different treatment stages at two large wastewater treatment plants (WWTPs) located in Oslo, Norway, to remove antibiotic resistant Escherichia coli from municipal wastewater was investigated. The WWTPs were effective in reducing the total cultivable E. coli. The E. coli in WWTP samples were mainly resistant to ampicillin (6-27%) and trimethoprim-sulfamethoxazole (5-24%), and, to a lesser extent, tetracycline (3-14%) and ciprofloxacin (0-7%). In the first WWTP, a clear decrease in the percentage of E. coli resistant to these antibiotics was found, with the main removal occurring during physical/chemical treatment. In the second WWTP, the percentage of cultivable resistant E. coli did not display a considerable change. During laboratory-scale membrane filtration of WWTP effluents using ultrafiltration (UF) and nanofiltration (NF) membranes, all E. coli, including those resistant to antibiotics, were removed completely. The results imply that UF and NF processes are potent measures to remove antibiotic resistant bacteria (ARB) during post-treatment of WWTP effluents, thus reducing the potential spread of antibiotic resistance in the receiving aquatic environment.

  15. Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration

    KAUST Repository

    Yu, Haizhou

    2015-09-21

    The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.

  16. A review of recent advances in molecular simulation of graphene-derived membranes for gas separation

    Science.gov (United States)

    Fatemi, Seyyed Mahmood; Abbasi, Zeynab; Rajabzadeh, Halimeh; Hashemizadeh, Seyyed Ali; Deldar, Amir Noori

    2017-07-01

    To obtain an ideal membrane for gas separation the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have well-defined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. These attractive properties of graphene-derived membranes introduce them as appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions. The current effort has focused on two issues, including the review of the most newly progression on drilling holes in single graphene membranes for making ultrathin membranes for gas separation, and studying functionalized nanoporous sheet and graphene-derived membranes, including doped graphene, graphene oxide, fluorographene, and reduced graphene oxide from theoretical perspectives for making functional coatings for nano ultrafiltration for gas separation. We investigated the basic mechanism of separation by membranes derived from graphene and relevant possible applications. Functionalized nanoporous membranes as novel approach are characterized by low energy cost in realizing high throughput molecular-sieving separation.

  17. A kinetic study of pyrolysis in pitch impregnated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kocaefe, D.; Charette, A.; Ferland, J.; Couderc, P.; Saint-Romain, J.L. (Universite du Quebec a Chicoutini, Chicoutini, PQ (Canada))

    1990-12-01

    A study was conducted on carbon electrodes which were impregnated with three different pitches. The focus of the study was to investigate the pyrolysis of pitch impregnated electrodes. For the purposes of the research an experimental technique and calculation procedure were developed. A kinetic model was used to interpret the data, comparison of model predictions and experimental data showed good agreement. 17 refs., 10 figs., 2 tabs.

  18. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  19. Alteration of polyethersulphone membranes through UV-induced modification using various materials: A brief review

    Directory of Open Access Journals (Sweden)

    Law Yong Ng

    2017-05-01

    Full Text Available Polyethersulphone (PES membranes have been widely applied in various separation applications such as microfiltration, ultrafiltration and nanofiltration. This has occurred as these membranes are easy to form, have good mechanical strength and good chemical stability (resistant to acidic or alkaline conditions due to the presence of aromatic hydrocarbon groups in the structure. PES membranes are commonly fabricated through the phase inversion method due to the simplicity of the process. However, PES membranes are generally hydrophobic, which usually requires them to be modified before application. In most cases, these methods can reduce the hydrophobicity of the membrane surface and thus reduce membrane fouling during application. This review will further discuss the recently developed UV-induced modifications of PES membranes. The UV-induced grafting method is easy to apply to existing PES membranes, with or without the need for a photo-initiator. Additionally, nanoparticles entrapped in PES membranes subsequently exposed to UV-irradiation have been reported to possess photo-catalytic activity. However, UV-irradiation methods still require special care in order to produce membranes with the best performance.

  20. Physicochemical and Microbiological Properties of Yogurt-cheese Manufactured with Ultrafiltrated Cow's Milk and Soy Milk Blends

    Science.gov (United States)

    Lee, Na-Kyoung; Mok, Bo Ram; Jeewanthi, Renda Kankanamge Chaturika; Yoon, Yoh Chang; Paik, Hyun-Dong

    2015-01-01

    The objective of this study was to develop yogurt-cheese using cow’s milk, ultrafiltrated cow’s milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow’s milk, and stored at 4℃ during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made without soy milk. Yogurt-cheese made using ultrafiltrated cow’s milk showed the highest yield. However, yogurt-cheese made with added soy milk had higher protein content and titratable acidity than yogurt-cheese made using raw and ultrafiltrated cow’s milk. Fat and lactose contents in the yogurt-cheese made with added soy milk were lower. Yogurt-cheeses made with added soy milk contained several soy protein bands corresponding to the sizes of α2-, β-, and κ-casein band. Yogurt-cheese made with added soy milk had similar elasticity to yogurt-cheese made without soy milk but had lower cohesiveness. There was no significant difference in the number of lactic acid bacteria in the different cheeses, as all had over 8.0 Log CFU/g. Considering these data and the fact that proteins and fats of vegetable origin with high biological value were observed as well as unsaturated fats, yogurt-cheese made with added soy milk can be considered to be a functional food. PMID:26761829

  1. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    International Nuclear Information System (INIS)

    Groger, H.

    1997-01-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis

  2. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  3. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    Science.gov (United States)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  5. Dimensionally stable Nafion-polyethylene composite membranes for direct methanol fuel cell applications

    NARCIS (Netherlands)

    Yildirim, M.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2008-01-01

    Nafion ® impregnated Solupor ®, microporous UHMWPE film, (N-PE), Nafion ®117 (N117) and a membrane prepared using a DE2020 Nafion ® dispersion (DE2020) were characterized with respect to their swelling degree (SD), methanol cross-over, proton conductivity and DMFC performance at various methanol

  6. Drug smuggling using clothing impregnated with cocaine.

    Science.gov (United States)

    McDermott, Seán D; Power, John D

    2005-11-01

    A case study is presented where a woman travelling from South America to the Republic of Ireland was detained at Dublin Airport and articles of clothing she had in her luggage were found to be impregnated with cocaine. The study shows that the amount of powder recovered from the garments was approximately 14% of the total weight of the garments. The cocaine was in the form of cocaine hydrochloride and the purity was approximately 80%. An examination of the garments under filtered light highlighted the areas exposed to cocaine and indicated that the method of impregnation was by pouring liquid containing cocaine onto the clothing.

  7. Comparison of ultrafiltration and dissolved air flotation efficiencies in industrial units during the papermaking process

    OpenAIRE

    Monte Lara, Concepción; Ordóñez Sanz, Ruth; Hermosilla Redondo, Daphne; Sánchez González, Mónica; Blanco Suárez, Ángeles

    2011-01-01

    The efficiency of an ultrafiltration unit has been studied and compared with a dissolved air flotation system to get water with a suited quality to be reused in the process. The study was done at a paper mill producing light weight coated paper and newsprint paper from 100% recovered paper. Efficiency was analysed by removal of turbidity, cationic demand, total and dissolved chemical oxygen demand, hardness, sulphates and microstickies. Moreover, the performance of the ultrafiltration unit an...

  8. Industrial applications of membrane processes in chemistry and energy generation; Applications industrielles des procedes membranaires en chimie et production d'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The French membranes club (CFM), with the sustain of the French institute of petroleum (IFP) has organized this meeting which aims to present the most recent industrial realizations in the domain of membrane processes in the chemistry and energy generation sectors. This document gathers the abstracts of the presentations: 1 - hydrogen purification and CO{sub 2} extraction: development of polymer matrix and metal nano-particulate hybrid membranes for selective membrane applications; study of silicone-based mixed matrix membranes for hydrogen purification via inverse selectivity principle; CO{sub 2} capture from gaseous effluents for its sequestration: role and limitations of membrane processes; membranes and processes for the abatement of the acid gas content of smokes; new structural model for Nafion{sup R} membranes, the benchmark polymer for low temperature fuel cells; 2 - molecular screen-based membranes: MFI-alumina nano-composite ceramic membranes: preparation and characterization, gaseous transport and separation; characterization and permeation properties of supported MFI membranes; in-situ measurement of butane isomers diffusion in MFI zeolite membranes through transient permeation tests; 3 - vapors separation: stability of silver particulates in PA12-PTMO/AgBF{sub 4} composite membranes and its effect on the easier ethylene transport inside these membranes; 4 - separation of liquid organic mixtures: isomers separation using cyclo-dextrins bearing membranes: application to the extraction and separation of xylene isomers; electrodialysis in organic environment: application to the electro-synthesis; study of polymer materials permeability; 5 - treatment of industrial waters: use of NanoFlux software in the modeling of nano-filtration membrane processes in the chemical industry: elimination of sulfate impurities from 'Chloralkali' brines; ultra-filtration of a wastewater containing partially emulsified oil; efficiency of a hybrid membrane separation

  9. Energy rationalization in the dairy industry through the use of ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Faletti, L; Peri, C

    1987-02-01

    This study is one of several made by Italian universities on behalf of ENEL to razionalize the energy demand pattern of some industrial branches and identify, among the various solutions, those that might bring about primary energy saving through the use of electricity. Specifically, this study was undertaken to verify the applicability of certain diaphragm separation technologies such as ultrafiltration in Italy, and to assess their energy-efficiency in terms of primary energy. Research carried out on this subject and the industrial experience of the last years point to the possibility of using ultrafiltration in the manufacture of typical soft cheese in direct competition with conventional technologies. The expected benefits of greater yield and energy saving are of great national economic relevance, since Italy imports both the raw material (milk) and energy resources.

  10. Preliminary Study on the Removal of Steroidal Estrogens Using TiO2-Doped PVDF Ultrafiltration Membranes

    Directory of Open Access Journals (Sweden)

    Mingquan Wang

    2016-04-01

    Full Text Available Steroidal estrogens are a representative type of endocrine-disrupting chemical contaminant that has been detected in surface water. In this paper, modified polyvinylidene fluoride (PVDF membranes were prepared by adding different amounts of polyvinyl pyrrolidone (PVP and nano-TiO2 particles. PVDF-PVP membrane adsorption, UV photolysis and PVDF-PVP-TiO2 membrane photocatalysis performance were investigated by considering the rejection of estrone (E1 and 17β-estradiol (E2 in the cross-flow filtration experiments. The mechanism of photocatalytic degradation on TiO2-doped PVDF membranes was also evaluated. The results from the study indicated that adding PVP and nano-TiO2 appropriately in PVDF membranes could be an effective method for better E1and E2 rejection due to adsorption and photocatalytic degradation.

  11. Evaluation of optimal silver amount for the removal of methyl iodide on silver-impregnated adsorbents

    International Nuclear Information System (INIS)

    Park, G.I.; Cho, I.H.; Kim, J.H.; Oh, W.Z.

    2001-01-01

    The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver-impregnated zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver impregnation amount for the removal of methyl iodide at temperatures up to 300 deg. C. The degree of adsorption efficiency of methyl iodide on silver-impregnated adsorbent is strongly dependent on impregnation amount and process temperature. A quantitative comparison of adsorption efficiencies on three adsorbents in a fixed bed was investigated. The influence of temperature, methyl iodide concentration and silver impregnation amount on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It shows that the effective impregnation ratio was about 10wt%, based on the degree of silver utilization for the removal of methyl iodide. The practical applicability of silver-impregnated zeolite for the removal of radioiodine generated from the DUPIC process was consequently proposed. (author)

  12. The sampling of sulfur dioxide in air with impregnated filter paper

    NARCIS (Netherlands)

    Huygen, C.

    1963-01-01

    A method is suggested for the sampling of sulfur dioxide in air with impregnated filter paper instead of bubblers. The best aqueous impregnating solution contained potassium hydroxide with glycerol or triethanolamine. The possibilities and limitations of the method are discussed. High collection

  13. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes.

    Science.gov (United States)

    Song, Yingjun; Wang, David K; Birkett, Greg; Martens, Wayde; Duke, Mikel C; Smart, Simon; Diniz da Costa, João C

    2016-07-29

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  14. Investigation of Filtration Membranes from the Dairy Protein Industry for Residual Fouling Using Infrared Spectroscopy and Chemometrics

    DEFF Research Database (Denmark)

    Jensen, Jannie Krog

    the reversible fouling can be removed/cleaned. The aim of this thesis is to investigate the residual fouling that is deposited on ultrafiltration and microfiltration membranes after usage. The membrane surfaces are investigated using infrared spectroscopy with an attenuated reflectance sampling unit...... and this is thesis work highlights the strengths and weaknesses of using infrared spectroscopy to investigate residual fouling on membranes and in particular the challenges with the infrared penetration depth when layering in the samples occurs. Real size production membrane cartridges at different stages of use...... microfiltration membrane cartridges were investigated with Attenuated- Total-Reflection Fourier-Transform-Infrared (ATR FT-IR) to map the residual fouling on both types of cartridges. The height of the characteristic amide peaks from proteins were used to determine the relative concentrations. The first...

  15. Physical and chemical durability of cement impregnated epoxy resin

    International Nuclear Information System (INIS)

    Suryantoro

    1997-01-01

    Immobilization of simulation radioactive waste contains Cs and Sr with cement impregnated epoxy resin has been done. Low level liquid waste in 30% weight mixed cement homogeneously and then set in its curing time about 28 days. Waste from was impregnated with epoxy resin (Bisphenol-A-diglycidylether) and use Triethylenteramin as catalyst. the sample of cement impregnated epoxy resin 2.5 cm x 2.5 cm in diameter and length was tested by Paul Weber. The compressive strength was obtained of 4.08 kN.cm - 2. The sochxlet apparatus was run on flow rate of 300 ml/hour at 100 o C and during 24 hours. The leaching rate of Cs was round on 5.5 x 10 - 4 g.cm - 2.d - 1 and Sr was 6.1 x 10 - 4 g.cm - 2.d - 1 (author)

  16. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald Kamil

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  17. The sampling of hydrogen sulfide in air with impregnated filter paper

    NARCIS (Netherlands)

    Huygen, C.

    1964-01-01

    A method is proposed for the quantitative collection of hydrogen sulfide in air on impregnated filter paper. An aqueous solution of potassium hydroxide, potassium zincate and glycerol is used as impregnating fluid. The stability of the collected sulfide and the efficiency of collection at different

  18. The Effect of Water Repellent Surface Impregnation on Durability of Cement-Based Materials

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2017-01-01

    Full Text Available In many cases, service life of reinforced concrete structures is severely limited by chloride penetration until the steel reinforcement or by carbonation of the covercrete. Water repellent treatment on the surfaces of cement-based materials has often been considered to protect concrete from these deteriorations. In this paper, three types of water repellent agents have been applied on the surface of concrete specimens. Penetration profiles of silicon resin in treated concrete have been determined by FT-IR spectroscopy. Water capillary suction, chloride penetration, carbonation, and reinforcement corrosion in both surface impregnated and untreated specimens have been measured. Results indicate that surface impregnation reduced the coefficient of capillary suction of concrete substantially. An efficient chloride barrier can be established by deep impregnation. Water repellent surface impregnation by silanes also can make the process of carbonation action slow. In addition, it also has been concluded that surface impregnation can provide effective corrosion protection to reinforcing steel in concrete with migrating chloride. The improvement of durability and extension of service life for reinforced concrete structures, therefore, can be expected through the applications of appropriate water repellent surface impregnation.

  19. Synthesis of inorganic materials in a supercritical carbon dioxide medium. Application to ceramic cross-flow filtration membranes preparation

    International Nuclear Information System (INIS)

    Papet, Sebastien

    2000-01-01

    Membrane separations, using cross-flow mineral ceramic membranes, allows fractionation of aqueous solutions due to the molecular sieve effect and electrostatic charges. To obtain a high selectivity, preparation of new selective ceramic membranes is necessary. We propose in this document two different routes to prepare such cross-flow tubular mineral membranes. In the first exposed method, a ceramic material is used, titanium dioxide, synthesized in supercritical carbon dioxide by the hydrolysis of an organometallic precursor of the oxide. The influence of operating parameters is similar to what is observed during a liquid-phase synthesis (sol-gel process), and leads us to control the size and texture of the prepared particles. This material is then used to prepare mineral membrane with a compressed layer process. The particles are mixed with organic components to form a liquid suspension. A layer is then deposited on the internal surface of a tubular porous support by slip-casting. The layer is then dried and compressed on the support before sintering. The obtained membranes arc in the ultrafiltration range. A second process has been developed in this work. It consists on the hydrolysis, in a supercritical CO 2 medium, of a precursor of titanium dioxide infiltrated into the support. The obtained material is then both deposited on the support but also infiltrated into the porosity. This new method leads to obtain ultrafiltration membranes that retain molecules which molecular weight is round 4000 g.mol -1 . Furthermore, we studied mass transfer mechanisms in cross-flow filtration of aqueous solutions. An electrostatic model, based on generalized Nernst-Planck equation that takes into account electrostatic interactions between solutes and the ceramic material, lead us to obtain a good correlation between experimental results and the numerical simulation. (author) [fr

  20. Synthesis and characterization of biomorphic CeO2 obtained by using egg shell membrane as template

    Directory of Open Access Journals (Sweden)

    Marija Prekajski

    2014-06-01

    Full Text Available A new technology based on bio-templating approach was proposed in this paper. Egg-shell membrane (ESM has been employed as a natural biotemplate. Fibrous oxide ceramics was prepared by wet impregnation of biological template with water solution of cerium nitrate. The template was derived from membranes of fresh chicken eggs. Repeated impregnation, pyrolysis and final calcination in the range of 600 to 1200 °C in air resulted in template burnout and consolidation of the oxide layers. At low temperatures, the obtained products had structure which corresponded to the negative replication of biological templates. Unique bio-morphic CeO2 microstructures with interwoven networks were synthesized and characterized by scanning electron microscope (SEM and X-ray diffraction (XRD, whereas low-temperature nitrogen adsorption (BET method was used in order to characterize porous properties.