WorldWideScience

Sample records for ultrafast photonic materials

  1. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    Science.gov (United States)

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-04-01

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ultrafast Graphene Photonics and Optoelectronics

    Science.gov (United States)

    2017-04-14

    AFRL-AFOSR-JP-TR-2017-0032 Ultrafast Graphene Photonics and Optoelectronics Kuang-Hsiung Wu National Chiao Tung University Final Report 04/14/2017...DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Ultrafast Graphene Photonics and Optoelectronics 5a.  CONTRACT NUMBER 5b...Prescribed by ANSI Std. Z39.18 Final Report for AOARD Grant FA2386-13-1-4022 “Ultrafast Graphene Photonics and Optoelectronics” Date May 23th, 2016

  3. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels

    OpenAIRE

    Yue, Youfeng; Kurokawa, Takayuki; Haque, Md Anamul; Nakajima, Tasuku; Nonoyama, Takayuki; Li, Xufeng; Kajiwara, Itsuro; Gong, Jian Ping

    2014-01-01

    Photonic crystals with tunability in the visible region are of great interest for controlling light diffraction. Mechanochromic photonic materials are periodically structured soft materials designed with a photonic stop-band that can be tuned by mechanical forces to reflect specific colours. Soft photonic materials with broad colour tunability and fast colour switching are invaluable for application. Here we report a novel mechano-actuated, soft photonic hydrogel that has an ultrafast-respons...

  4. Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.

    Science.gov (United States)

    MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J

    2018-02-02

    Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.

  5. Photonic-assisted ultrafast THz wireless access

    DEFF Research Database (Denmark)

    Yu, Xianbin; Chen, Ying; Galili, Michael

    THz technology has been considered feasible for ultrafast wireless data communi- cation, to meet the increasing demand on next-generation fast wireless access, e.g., huge data file transferring and fast mobile data stream access. This talk reviews recent progress in high-speed THz wireless...

  6. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels.

    Science.gov (United States)

    Yue, Youfeng; Kurokawa, Takayuki; Haque, Md Anamul; Nakajima, Tasuku; Nonoyama, Takayuki; Li, Xufeng; Kajiwara, Itsuro; Gong, Jian Ping

    2014-08-18

    Photonic crystals with tunability in the visible region are of great interest for controlling light diffraction. Mechanochromic photonic materials are periodically structured soft materials designed with a photonic stop-band that can be tuned by mechanical forces to reflect specific colours. Soft photonic materials with broad colour tunability and fast colour switching are invaluable for application. Here we report a novel mechano-actuated, soft photonic hydrogel that has an ultrafast-response time, full-colour tunable range, high spatial resolution and can be actuated by a very small compressive stress. In addition, the material has excellent mechanical stability and the colour can be reversibly switched at high frequency more than 10,000 times without degradation. This material can be used in optical devices, such as full-colour display and sensors to visualize the time evolution of complicated stress/strain fields, for example, generated during the motion of biological cells.

  7. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  8. Ultrafast optical switching in three-dimensional photonic crystals

    OpenAIRE

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude and may result in a true revolution in nanotechnology. The heart of such devices would likely be an optical switching element. This thesis analyzes different regimes of ultrafast all-optical switchin...

  9. Ultrafast terahertz electrodynamics of photonic and electronic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Liang [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis summarizes my work on using ultrafast laser pulses to study Terahertz (THz) electrodynamics of photonic and electronic nanostructures and microstructures. Ultrafast timeresolved (optical, NIR, MIR, THz) pump-probe spectroscopy setup has been successfully built, which enables me to perform a series of relevant experiments. Firstly, a novel high e ciency and compact THz wave emitter based on split-ring-resonators has been developed and characterized. The emitter can be pumped at any wavelength by tailoring the magnetic resonance and could generate gapless THz waves covering the entire THz band. Secondly, two kinds of new photonic structures for THz wave manipulation have been successfully designed and characterized. One is based on the 1D and 2D photo-imprinted di ractive elements. The other is based on the photoexcited double-split-ring-resonator metamaterials. Both structures are exible and can modulate THz waves with large tunability. Thirdly, the dark excitons in semiconducting singlewalled carbon nanotubes are studied by optical pump and THz probe spectroscopy, which provides the rst insights into the THz responses of nonequilibrium excitonic correlations and dynamics from the dark ground states in carbon nanotubes. Next, several on-going projects are brie y presented such as the study of ultrafast THz dynamics of Dirac fermions in topological insulator Bi2Se3 with Mid-infrared excitation. Finally, the thesis ends with a summary of the completed experiments and an outlook of the future plan.

  10. Ultrafast photon counting applied to resonant scanning STED microscopy.

    Science.gov (United States)

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  11. New developments in photon and materials research

    CERN Document Server

    2013-01-01

    This book presents the most recent updates in the field of photon and optical materials research. It is devoted to various interdisciplinary subjects such as fundamental photon physics, bio and medical photon physics, ultrafast non-linear optics, quasiparticle excitation and spectroscopy, coherent mid-infrared (IR) light sources, functional optoelectronic materials and optical fibres, and quantum nano-structured devices for various important technological applications. It contains 19 authoritative peer-reviewed chapters regarding experimental and theoretical research in these fields, contributed by young scientists and engineers (assistant or associate professor level) along with well-established experts. The response of materials to electromagnetic fields, namely light-matter interaction, has been of special concern in fundamental optical sciences. The ability to fabricate and/or engineer new materials and structures is giving rise to revolutionary changes in the field, which also includes soft condensed mat...

  12. Ultrafast Bessel beams: advanced tools for laser materials processing

    Science.gov (United States)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  13. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  14. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  15. Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals

    NARCIS (Netherlands)

    Euser, T.G.; Wei, Hong; Kalkman, Jeroen; Jun, Yoonho; Polman, Albert; Norris, David J.; Vos, Willem L.

    2007-01-01

    We present ultrafast optical switching experiments on three-dimensional photonic band gap crystals. Switching the Si inverse opal is achieved by optically exciting free carriers by a two-photon process. We probe reflectivity in the frequency range of second order Bragg diffraction where the photonic

  16. Ultra-Fast Low Energy Switching Using an InP Photonic Crystal H0 Nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2013-01-01

    Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting.......Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting....

  17. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  18. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics.

    Science.gov (United States)

    Chen, Hao; Yin, Jinde; Yang, Jingwei; Zhang, Xuejun; Liu, Mengli; Jiang, Zike; Wang, Jinzhang; Sun, Zhipei; Guo, Tuan; Liu, Wenjun; Yan, Peiguang

    2017-11-01

    In this Letter, high-quality WS 2 film and MoS 2 film were vertically stacked on the tip of a single-mode fiber in turns to form heterostructure (WS 2 -MoS 2 -WS 2 )-based saturable absorbers with all-fiber integrated features. Their nonlinear saturable absorption properties were remarkable, such as a large modulation depth (∼16.99%) and a small saturable intensity (6.23  MW·cm -2 ). Stable pulses at 1.55 μm with duration as short as 296 fs and average power as high as 25 mW were obtained in an erbium-doped fiber laser system. The results demonstrate that the proposed heterostructures own remarkable nonlinear optical properties and offer a platform for adjusting nonlinear optical properties by stacking different transition-metal dichalcogenides or modifying the thickness of each layer, paving the way for engineering functional ultrafast photonics devices with desirable properties.

  19. OSA Trends in Optics and Photonics Series. Volume 13: Ultrafast Electronics and Optoelectronics

    Science.gov (United States)

    1997-01-01

    tomography. Many materials such as plastics, cardboard, wood and rubber have good transparency in the terahertz frequency range. Hence, this new...Ultrafast processes in semiconductors. Introduction Nonlinear Bragg reflector ( NBR ) consists of periodically distributed optical nonlinearity coexisting...with multiple reflection and group-delay dispersion. Recent theoretical analyses showed the potential of NBR in ultrafast optoelectronics such as all

  20. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    International Nuclear Information System (INIS)

    Fotakis, C; Zorba, V; Stratakis, E; Athanassiou, A; Tzanetakis, P; Zergioti, I; Papagoglou, D G; Sambani, K; Filippidis, G; Farsari, M; Pouli, V; Bounos, G; Georgiou, S

    2007-01-01

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  1. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Directory of Open Access Journals (Sweden)

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  2. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    Science.gov (United States)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  3. Ultra-Fast Flash Observatory for observation of early photons from gamma ray bursts

    DEFF Research Database (Denmark)

    Park, I. H.; Ahmad, S.; Barrillon, P.

    2012-01-01

    We describe the space project of Ultra-Fast Flash Observatory (UFFO) which will observe early optical photons from gamma-ray bursts (GRBs) with a sub-second optical response, for the first time. The UFFO will probe the early optical rise of GRBs, opening a completely new frontier in GRB and trans...

  4. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman

    2016-06-08

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  5. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    International Nuclear Information System (INIS)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya

    2008-01-01

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC

  6. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xyjiang@mit.edu

    2008-06-07

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC.

  7. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    International Nuclear Information System (INIS)

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha; Ropers, Claus

    2015-01-01

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy

  8. Ultrafast electrical control of a resonantly driven single photon source

    International Nuclear Information System (INIS)

    Cao, Y.; Bennett, A. J.; Ellis, D. J. P.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2014-01-01

    We demonstrate generation of a pulsed stream of electrically triggered single photons in resonance fluorescence, by applying high frequency electrical pulses to a single quantum dot in a p-i-n diode under resonant laser excitation. Single photon emission was verified, with the probability of multiple photon emission reduced to 2.8%. We show that despite the presence of charge noise in the emission spectrum of the dot, resonant excitation acts as a “filter” to generate narrow bandwidth photons

  9. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  10. Ultrafast optics. Ultrafast optical control by few photons in engineered fiber.

    Science.gov (United States)

    Nissim, R; Pejkic, A; Myslivets, E; Kuo, B P; Alic, N; Radic, S

    2014-07-25

    Fast control of a strong optical beam by a few photons is an outstanding challenge that limits the performance of quantum sensors and optical processing devices. We report that a fast and efficient optical gate can be realized in an optical fiber that has been engineered with molecular-scale accuracy. Highly efficient, distributed phase-matched photon-photon interaction was achieved in the fiber with locally controlled, nanometer-scale core variations. A three-photon input was used to manipulate a Watt-scale beam at a speed exceeding 500 gigahertz. In addition to very fast beam control, the results provide a path to developing a new class of sensitive receivers capable of operating at very high rates. Copyright © 2014, American Association for the Advancement of Science.

  11. Photon-trapping micro/nanostructures for high linearity in ultra-fast photodiodes

    Science.gov (United States)

    Cansizoglu, Hilal; Gao, Yang; Perez, Cesar Bartolo; Ghandiparsi, Soroush; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-08-01

    Photodetectors (PDs) in datacom and computer networks where the link length is up to 300 m, need to handle higher than typical input power used in other communication links. Also, to reduce power consumption due to equalization at high speed (>25Gb/s), the datacom links will use PAM-4 signaling instead of NRZ with stringent receiver linearity requirements. Si PDs with photon-trapping micro/nanostructures are shown to have high linearity in output current verses input optical power. Though there is less silicon material due to the holes, the micro-/nanostructured holes collectively reradiate the light to an in-plane direction of the PD surface and can avoid current crowding in the PD. Consequently, the photocurrent per unit volume remains at a low level contributing to high linearity in the photocurrent. We present the effect of design and lattice patterns of micro/nanostructures on the linearity of ultra-fast silicon PDs designed for high speed multi gigabit data networks.

  12. Non-Poissonian photon statistics from macroscopic photon cutting materials.

    Science.gov (United States)

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T

    2017-05-24

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  13. Ultrafast optical switching in three-dimensional photonic crystals

    NARCIS (Netherlands)

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude

  14. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    Science.gov (United States)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  15. Advancing non-equilibrium ARPES experiments by a 9.3 eV coherent ultrafast photon source

    Energy Technology Data Exchange (ETDEWEB)

    Cilento, F., E-mail: federico.cilento@elettra.eu [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Crepaldi, A. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Manzoni, G.; Sterzi, A. [Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); Zacchigna, M. [C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Bugnon, Ph.; Berger, H. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Parmigiani, F. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); International Faculty, University of Köln, 50937 Köln (Germany)

    2016-02-15

    The quest for investigating the non-equilibrium dynamics of the band structure of strongly-correlated materials over their entire Brillouin zone is a primary objective. However, the actual ultrafast UV light sources are not suitable for addressing several critical questions in the field. Here we report on a novel light source generating sub-250 fs, 9.3 eV photon energy light pulses at 250 kHz repetition rate, obtained via third-harmonic generation in Xe of frequency-doubled 50 fs laser pulses at 1.55 eV. By reporting the measured band dispersion of a Cu(111) crystal and the non-equilibrium dynamics of the Bi{sub 2}Se{sub 3} topological insulator, we prove that this source is suitable for studying the non-equilibrium dynamics of the entire Fermi surface of several complex materials, with high signal statistics and limited space-charge effect.

  16. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  17. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  18. Simple and efficient methods for the accurate evaluation of patterning effects in ultrafast photonic switches

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe

    2011-01-01

    Although patterning effects (PEs) are known to be a limiting factor of ultrafast photonic switches based on semiconductor optical amplifiers (SOAs), a simple approach for their evaluation in numerical simulations and experiments is missing. In this work, we experimentally investigate and verify...... as well as the operation bit rate. Furthermore, a simple and effective method for probing the maximum PEs is demonstrated, which may relieve the computational effort or the experimental difficulties associated with the use of long PRBSs for the simulation or characterization of SOA-based switches. Good...... agrement with conventional PRBS characterization is obtained. The method is suitable for quick and systematic estimation and optimization of the switching performance....

  19. Ultrafast Dephasing and Incoherent Light Photon Echoes in Organic Amorphous Systems

    Science.gov (United States)

    Yano, Ryuzi; Matsumoto, Yoshinori; Tani, Toshiro; Nakatsuka, Hiroki

    1989-10-01

    Incoherent light photon echoes were observed in organic amorphous systems (cresyl violet in polyvinyl alcohol and 1,4-dihydroxyanthraquinone in polymethacrylic acid) by using temporally-incoherent nanosecond laser pulses. It was found that an echo decay curve of an organic amorphous system is composed of a sharp peak which decays very rapidly and a slowly decaying wing at the tail. We show that the persistent hole burning (PHB) spectra were reproduced by the Fourier-cosine transforms of the echo decay curves. We claim that in general, we must take into account the multi-level feature of the system in order to explain ultrafast dephasing at very low temperatures.

  20. Single-photon Coulomb explosion of methanol using broad bandwidth ultrafast EUV pulses.

    Science.gov (United States)

    Luzon, Itamar; Jagtap, Krishna; Livshits, Ester; Lioubashevski, Oleg; Baer, Roi; Strasser, Daniel

    2017-05-31

    Single-photon Coulomb explosion of methanol is instigated using the broad bandwidth pulse achieved through high-order harmonics generation. Using 3D coincidence fragment imaging of one molecule at a time, the kinetic energy release (KER) and angular distributions of the products are measured in different Coulomb explosion (CE) channels. Two-body CE channels breaking either the C-O or the C-H bonds are described as well as a proton migration channel forming H 2 O + , which is shown to exhibit higher KER. The results are compared to intense-field Coulomb explosion measurements in the literature. The interpretation of broad bandwidth single-photon CE data is discussed and supported by ab initio calculations of the predominant C-O bond breaking CE channel. We discuss the importance of these findings for achieving time resolved imaging of ultrafast dynamics.

  1. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS.

  2. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    International Nuclear Information System (INIS)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun

    2008-01-01

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS

  3. Non-Poissonian photon statistics from macroscopic photon cutting materials

    NARCIS (Netherlands)

    De Jong, Mathijs; Meijerink, A; Rabouw, Freddy T.

    2017-01-01

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and

  4. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bolme, Cindy B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, David S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  5. Development of functional materials by using ultrafast laser pulses

    Science.gov (United States)

    Shimotsuma, Y.; Sakakura, M.; Miura, K.

    2018-01-01

    The polarization-dependent periodic nanostructures inside various materials are successfully induced by ultrafast laser pulses. The periodic nanostructures in various materials can be empirically classified into the following three types: (1) structural deficiency, (2) expanded structure, (3) partial phase separation. Such periodic nanostructures exhibited not only optical anisotropy but also intriguing electric, thermal, and magnetic properties. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures in semiconductors could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. More recently we have also confirmed that the periodic nanostructures in glass are related to whether a large amount of non-bridged oxygen is present. In the presentation, we demonstrate new possibilities for functionalization of common materials ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion, based on the indicated phenomena.

  6. Soliton-based ultrafast multi-wavelength nonlinear switching in dual-core photonic crystal fibre

    International Nuclear Information System (INIS)

    Stajanca, P; Pysz, D; Michalka, M; Bugar, I; Andriukaitis, G; Balciunas, T; Fan, G; Baltuska, A

    2014-01-01

    Systematic experimental study of ultrafast multi-wavelength all-optical switching performance in a dual-core photonic crystal fibre is presented. The focus is on nonlinearly induced switching between the two output ports at non-excitation wavelengths, which are generated during nonlinear propagation of femtosecond pulses in the anomalous dispersion region of a dual-core photonic crystal fibre made of multicomponent glass. Spatial and spectral characteristics of the fibre output radiation were measured separately for both fibre cores under various polarization and intensity conditions upon selective, individual excitation of each fibre core. Polarization-controlled nonlinear switching performance at multiple non-excitation wavelengths was demonstrated in the long-wavelength optical communication bands and beyond. Depending on the input pulse polarization, narrowband switching operation at 1560 nm and 1730 nm takes place with double core extinction ratio contrasts of 9 dB and 14.5 dB, respectively. Moreover, our approach allows switching with simultaneous wavelength shift from 1650 to 1775 nm with extinction ratio contrast larger than 18 dB. In addition, non-reciprocal behaviour of the soliton fission process under different fibre core excitations was observed and its effect on the multi-wavelength nonlinear switching performance was explained, taking into account the slight dual-core structure asymmetry. The obtained results represent ultrafast all-optical switching with an extended dimension of wavelength shift, controllable with both the input radiation intensity and the polarization by simple propagation along a 14 mm long fibre. (paper)

  7. Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals.

    Science.gov (United States)

    Diroll, Benjamin T; Schramke, Katelyn S; Guo, Peijun; Kortshagen, Uwe R; Schaller, Richard D

    2017-10-11

    Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows for selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective mass at high effective hole temperatures lead to a subpicosecond change of the dielectric function, resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27%, and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates subpicosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting the modulation of transmittance at telecommunications wavelengths. The results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.

  8. Ultrafast Digital Printing toward 4D Shape Changing Materials.

    Science.gov (United States)

    Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao

    2017-02-01

    Ultrafast 4D printing (printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  10. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@sci.lebedev.ru; Makarov, S. V.; Rudenko, A. A. [Lebedev Physical Institute (Russian Federation); Saltuganov, P. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A. [Lebedev Physical Institute (Russian Federation); Apostolova, T. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energetics (Bulgaria)

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  11. Infrared photonic bandgap materials and structures

    Science.gov (United States)

    Sundaram, S. K.; Keller, P. E.; Riley, B. J.; Martinez, J. E.; Johnson, B. R.; Allen, P. J.; Saraf, L. V.; Anheier, N. C., Jr.; Liau, F.

    2006-02-01

    Three-dimensional periodic dielectric structure can be described by band theory, analogous to electron waves in a crystal. Photonic band gap (PBG) structures were introduced in 1987. The PBG is an energy band in which optical modes, spontaneous emission, and zero-point fluctuations are all absent. It was first theoretically predicted that a three-dimensional photonic crystal could have a complete band gap. E. Yablonovitch built the first three-dimensional photonic crystal (Yablonovite) on microwave length scale, with a complete PBG. In nature, photonic crystals occur as semiprecious opal and the microscopic structures on the wings of some tropical butterflies, which are repeating structures (PBG structure/materials) that inhibit the propagation of some frequencies of light. Pacific Northwest National Laboratory (PNNL) has been developing tunable (between 3.5 and 16 μm) quantum cascade lasers (QCL), chalcogenides, and all other components for an integrated approach to chemical sensing. We have made significant progress in modeling and fabrication of infrared photonic band gap (PBG) materials and structures. We modeled several 2-D designs and defect configurations. Transmission spectra were computed by the Finite Difference Time Domain Method (with FullWAVE TM). The band gaps were computed by the Plane Wave Expansion Method (with BandSOLVE TM). The modeled designs and defects were compared and the best design was identified. On the experimental front, chalcogenide glasses were used as the starting materials. As IIS 3, a common chalcogenide, is an important infrared (IR) transparent material with a variety of potential applications such as IR sensors, waveguides, and photonic crystals. Wet-chemical lithography has been extended to PBG fabrication and challenges identified. An overview of results and challenges will be presented.

  12. Excitonic and photonic processes in materials

    CERN Document Server

    Williams, Richard

    2015-01-01

    This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic.  Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators, and materials with novel optical properties.  Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics,  border security, and nuclear nonproliferation.  Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.

  13. PREFACE: Ultrafast biophotonics Ultrafast biophotonics

    Science.gov (United States)

    Gu, Min; Reid, Derryck; Ben-Yakar, Adela

    2010-08-01

    The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and

  14. Ultra-Fast Flash Observatory for the observation of early photons from gamma-ray bursts

    DEFF Research Database (Denmark)

    Park, I H; Brandt, Søren; Budtz-Jørgensen, Carl

    2013-01-01

    One of the least documented and understood aspects of gamma-ray bursts (GRBs) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small s...

  15. Ultra-Fast Flash Observatory (uffo) for Observation of Early Photons from Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Park, I. H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    One of the least documented and understood aspects of gamma-ray bursts (GRB) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small sp...

  16. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2016-01-01

    In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...

  17. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2012-01-01

    Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...

  18. Photon activation analysis on building materials

    International Nuclear Information System (INIS)

    Schulze, D.; Heller, W.; Kupsch, H.

    1988-01-01

    With regard to the planned construction of a new microtron, first investigations on raw materials for the aerated concrete production have been done to clear up the possibilities of photon activation analysis (PAA). Irradiations have been partly carried out on linear accelerators with a self-developed moveable activation equipment. PAA results of qualitative and quantitative elemental analysis are described. The detection of chlorine is important for studying the oversalting processes in buildings. (author)

  19. Engineered Multifunctional Nanophotonic Materials for Ultrafast Optical Switching

    Science.gov (United States)

    2012-11-02

    and Co3 + placed at tetrahedral and octahedral sites, respectively. Single -layer thin films of Co3O4 nanoparticles have large optical nonlinearity and...the first two methodologies in systems having weakly resonant structures, including 3-D and/or 1-D photonic crystal structures (i.e. nonlinear Bragg...Nonlinear optical transmission of lead phthalocyanine-doped nematic liquid crystal composites for multiscale nonlinear switching from nanosecond to

  20. New photonic devices for ultrafast pulse processing operating on the basis of the diffraction-dispersion analogy

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Company, Victor; Minguez-Vega, Gladys; Climent, Vicent; Lands, Jesus [GROC-UJI, Departament de Fisica, Universitat Jaume I, 12080 Castello (Spain); Andres, Pedro [Departament d' Optica, Universitat de Valencia, 46100 Burjassot (Spain)], E-mail: lancis@fca.uji.es

    2008-11-01

    The space-time analogy is a well-known topic within wave optics that brings together some results from beam diffraction and pulse dispersion. On the above basis, and taking as starting point some classical concepts in Optics, several photonic devices have been proposed during the last few years with application in rapidly evolving fields such as ultrafast (femtosecond) optics or RF and microwave signal processing. In this contribution, we briefly review the above ideas with particular emphasis in the generation of trains of ultrafast pulses from periodic modulation of the phase of a CW laser source. This is the temporal analogue of Fresnel diffraction by a pure phase grating. Finally, we extend the analogy to the partially coherent case, what enables us to design an original technique for wavelength-to-time mapping of the spectrum of a temporally stationary source. Results of laboratory experiments concerning the generation of user-defined radio-frequency waveforms and filtering of microwave signals will be shown. The devices are operated with low-cost incoherent sources.

  1. Hybrid materials for optics and photonics.

    Science.gov (United States)

    Lebeau, Benedicte; Innocenzi, Plinio

    2011-02-01

    The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics. In the present critical review, we have focused our attention on three main research areas: passive and active optical hybrid sol-gel materials, and integrated optics. This is far from exhaustive but enough to give an overview of the huge potential of these materials in photonics and optics (254 references).

  2. Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response

    International Nuclear Information System (INIS)

    Falcao-Filho, E.L.; Araujo, Cid B. de; Bosco, C.A.C.; Maciel, G.S.; Acioli, L.H.; Nalin, M.; Messaddeq, Y.

    2005-01-01

    Antimony glasses based on the composition Sb 2 O 3 -SbPO 4 were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n 2 , of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response ( 2 was observed by adding lead oxide to the Sb 2 O 3 -SbPO 4 composition. Large values of n 2 ≅10 -14 cm 2 /W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications

  3. Nuclear materials identification by photon interrogation

    International Nuclear Information System (INIS)

    Pozzi, S.A.; Monville, M.; Padovani, E.

    2005-01-01

    We describe a preliminary modification to the Monte Carlo codes MCNP-X and MCNP-PoliMi that is aimed at simulating the neutron and photon field generated by interrogating fissile (and non-fissile) material with a high energy photon source. Photo-atomic and photo-nuclear collisions are modeled, with particular emphasis on the generation of secondary particles that are emitted as a result of these interactions. The simulations can be used to design and analyze measurements that are performed in a wide variety of scenarios. An application of the methodology to the interrogation of packages on a luggage belt conveyor is presented. Preliminary results show that it is possible to detect 5 Kg of highly enriched uranium in a package by measuring the correlation function between 2 detectors. This correlation function is based on the detection of prompt radiation from photonuclear events

  4. Photon CT scanning of advanced ceramic materials

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Ellingson, W.A.

    1987-02-01

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  5. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    The proposer requested funding for laser equipment that would be used to study engineered nanometric energetic materials consisting of nanometer metal particles, passivation layers and oxidizing binders...

  6. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    International Nuclear Information System (INIS)

    Hernando, Jordi; Hoogenboom, Jacob; Dijk, Erik van; Garcia-Parajo, Maria; Hulst, Niek F. van

    2008-01-01

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed

  7. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Jordi [Dept. de Quimica, Universitat Autonoma Barcelona, 08193 Cerdanyola del Valles (Spain); Hoogenboom, Jacob [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain); Dijk, Erik van [Applied Optics Group, MESA Institute for Nanotechnology, University of Twente, 7500AE Enschede (Netherlands); Garcia-Parajo, Maria [IBEC-Institute of BioEngineering of Catalunya, 08028 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain); Hulst, Niek F. van [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain) and ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain)], E-mail: Niek.vanHulst@ICFO.es

    2008-05-15

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed.

  8. Ultra-fast flash observatory for detecting the early photons from gamma-ray bursts

    DEFF Research Database (Denmark)

    Lim, H.; Jeong, S.; Ahn, K.-B.

    ) for the fast measurement of the UV-optical photons from GRBs, and a gamma-ray monitor for energy measurement. The triggering is done by the UFFO burst Alert & Trigger telescope (UBAT) using the hard X-ray from GRBs and the UV/optical Trigger Assistant Telescope (UTAT) using the UV/optical photons from GRBs...

  9. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    .... The needed equipment was ordered and installed, and assembled into a working SFG set up that has been tested on a model system consisting of a self assembled monolayer of alkane on gold. The next step will be to finish integrating the carbon dioxide laser system and to begin looking at aluminum based energetic materials.

  10. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  11. The Investigation of New Magnetic Materials and Their Phenomena Using Ultrafast Fresnel Transmission Electron Microscopy

    Science.gov (United States)

    Schliep, Karl B.

    State-of-the-art technology drives scientific progress, pushing the boundaries of our current understanding of fundamental processes and mechanisms. Our continual scientific advancement is hindered only by what we can observe and experimentally verify; thus, it is reasonable to assert that instrument development and improvement is the cornerstone for technological and intellectual growth. For example, the invention of transmission electron microscopy (TEM) allowed us to observe nanoscale phenomena for the first time in the 1930s and even now it is invaluable in the development of smaller, faster electronics. As we uncover more about the fundamentals of nanoscale phenomena, we have realized that images alone reveal only a snapshot of the story; to continue progressing we need a way to observe the entire scene unfold (e.g. how defects affect the flow of current across a transistor or how thermal energy propagates in nanoscale systems like graphene). Recently, by combining the spatial resolution of a TEM with the temporal resolution of ultrafast lasers, ultrafast electron microscopy ? or microscope ? (UEM) has allowed us to simultaneously observe transient nanoscale phenomena at ultrafast timescales. Ultrafast characterization techniques allow for the investigation of a new realm of previously unseen phenomenon inherent to the transient electronic, magnetic, and structural properties of materials. However, despite the progress made in ultrafast techniques, capturing the nanoscale spatial sub-ns temporal mechanisms and phenomenon at play in magnetic materials (especially during the operation of magnetic devices) has only recently become possible using UEM. With only a handful of instruments available, magnetic characterization using UEM is far from commonplace and any advances made are sparsely reported, and further, specific to the individual instrument. In this dissertation, I outline the development of novel magnetic materials and the establishment of a UEM lab at

  12. Novel fluorescence adjustable photonic crystal materials

    Science.gov (United States)

    Zhu, Cheng; Liu, Xiaoxia; Ni, Yaru; Fang, Jiaojiao; Fang, Liang; Lu, Chunhua; Xu, Zhongzi

    2017-11-01

    Novel photonic crystal materials (PCMs) with adjustable fluorescence were fabricated by distributing organic fluorescent powders of Yb0.2Er0.4Tm0.4(TTA)3Phen into the opal structures of self-assembled silica photonic crystals (PCs). Via removing the silica solution in a constant speed, PCs with controllable thicknesses and different periodic sizes were obtained on glass slides. Yb0.2Er0.4Tm0.4(TTA)3Phen powders were subsequently distributed into the opal structures. The structures and optical properties of the prepared PCMs were investigated. Finite-difference-time-domain (FDTD) calculation was used to further analyze the electric field distributions in PCs with different periodic sizes while the relation between periodic sizes and fluorescent spectra of PCMs was discussed. The results showed that the emission color of the PCMs under irradiation of 980 nm laser can be easily adjusted from green to blue by increasing the periodic size from 250 to 450 nm.

  13. Amorphous silicon as high index photonic material

    Science.gov (United States)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  14. Proceedings of the joint meeting of ultrafast pulse high intensity laser research collaboration and JAEA-KPSI 7th symposium on advanced photon research

    International Nuclear Information System (INIS)

    2007-03-01

    The Joint Meeting of Ultrafast Pulse High Intensity Laser Research Collaboration and JAEA-KPSI 7th Symposium on Advanced Photon Research was jointly held at Kansai Photon Research Institute, Japan Atomic Energy Agency (JAEA-KPSI) in Kizu, Kyoto on May 10-12, 2006. This report consists of contributed papers for the speeches and poster presentations including joint research and cooperative research performed in FY2004 and FY2005 with Japan Atomic Energy Research Institute (JAERI). The 47 of the presented papers are indexed individually. (J.P.N.)

  15. Ultrafast S1 and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    International Nuclear Information System (INIS)

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A.; Hashimoto, Hideki

    2011-01-01

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S 1 or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S 2 state or two-photon excitation to the symmetry-forbidden S 1 state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S 1 .

  16. Ultrafast S{sub 1} and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kosumi, Daisuke, E-mail: kosumi@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kusumoto, Toshiyuki [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fujii, Ritsuko; Sugisaki, Mitsuru [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan); Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko [South Product Co. Ltd., 12-75 Suzaki, Uruma-shi, Okinawa 904-2234 (Japan); Frank, Harry A. [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Hashimoto, Hideki, E-mail: hassy@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan)

    2011-03-15

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S{sub 1} or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S{sub 2} state or two-photon excitation to the symmetry-forbidden S{sub 1} state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S{sub 1}.

  17. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  18. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat; Yang, Haoze; Mohammed, Omar F.

    2016-01-01

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  19. Ordered materials for organic electronics and photonics.

    Science.gov (United States)

    O'Neill, Mary; Kelly, Stephen M

    2011-02-01

    We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  1. Fano resonance control in a photonic crystal structure and its application to ultrafast switching

    DEFF Research Database (Denmark)

    Yu, Yi; Heuck, Mikkel; Hu, Hao

    2014-01-01

    We experimentally demonstrate a photonic crystal structure that allows easy and robust control of the Fano spectrum. Its operation relies on controlling the amplitude of light propagating along one of the light paths in the structure from which the Fano resonance is obtained. Short-pulse dynamic ...... reshaping effect of the nonlinear Fano transfer function. As an example, we present a system application of a Fano structure, demonstrating its advantages by the experimental realiza- tion of 10 Gbit/s all-optical modulation with optical control power less than 1mW.......We experimentally demonstrate a photonic crystal structure that allows easy and robust control of the Fano spectrum. Its operation relies on controlling the amplitude of light propagating along one of the light paths in the structure from which the Fano resonance is obtained. Short-pulse dynamic...

  2. An ultrafast NbN hot-electron single-photon detector for electronic applications

    International Nuclear Information System (INIS)

    Lipatov, A; Okunev, O; Smirnov, K; Chulkova, G; Korneev, A; Kouminov, P; Gol'tsman, G; Zhang, J; Slysz, W; Verevkin, A; Sobolewski, R

    2002-01-01

    We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10x10 μm 2 , SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 I c for photons with wavelengths shorter than 1.3 μm

  3. Photonic Structure-Integrated Two-Dimensional Material Optoelectronics

    Directory of Open Access Journals (Sweden)

    Tianjiao Wang

    2016-12-01

    Full Text Available The rapid development and unique properties of two-dimensional (2D materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form photonic structure/2D material hybrid systems so that the device performance can be manipulated in controllable ways. Here, we first introduce the photocurrent-generation mechanisms of 2D material-based optoelectronics and their performance. We then offer an overview and evaluation of the state-of-the-art of hybrid systems, where 2D material optoelectronics are integrated with photonic structures, especially plasmonic nanostructures, photonic waveguides and crystals. By combining with those photonic structures, the performance of 2D material optoelectronics can be further enhanced, and on the other side, a high-performance modulator can be achieved by electrostatically tuning 2D materials. Finally, 2D material-based photodetector can also become an efficient probe to learn the light-matter interactions of photonic structures. Those hybrid systems combine the advantages of 2D materials and photonic structures, providing further capacity for high-performance optoelectronics.

  4. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated

  5. EDITORIAL: Photorefractive materials and effects for photonics

    Science.gov (United States)

    Vlad, V. I.; Fazio, E.; Damzen, M.

    2003-11-01

    This special issue of Journal of Optics A: Pure and Applied Optics is devoted to a mature field of nonlinear optics: photorefractive materials and effects for photonics. Photorefractivity was discovered long time ago by A Ashkin et al in 1966 and since then much work has been performed to characterize the phenomenon and to apply it. Nevertheless, research in this field remain very active and productive, in both basic and applied directions. Some leading groups worldwide present their most up-to-date investigations of photorefractive materials and effects, as well as their applications in photonics. Thus, the papers in this issue report new results in three directions: photorefractive material researches, wave propagation (particularly solitons) through these nonlinear optical materials, and various applications and devices using photorefractive effects. The challenging goal of photorefractive material research is to find sensitive and fast materials for information transmission and processing. P M Johansen studies the fundamental problem of space--charge field formation in photorefractives. V Marinova et al show that light-induced properties of Ru-doped Bi12TiO20 (BTO) crystals has an extended sensitivity in the near infrared region. H A Al-Attar and O Taqatqa introduce a new photorefractive polymer composite for their interesting properties for optical data storage. R Ramos-Garcia et al perform measurements of absorption coefficient and refractive index changes in photorefractive quantum wells of GaAs. A Radoua et al characterize by two-wave mixing the photorefractive Ba0.77Ca0.23TiO3:Rh crystals (BCT) at 1.06 mum, and M K Balakirev et al study the photorefractive effect upon all optical poling of glass. Wave propagation and solitons are intensively studied in photorefractive crystals due to the possibility of obtaining steady-state spatial solitons, dynamic waveguiding and soliton interactions at low laser intensity. W Ramadan et al introduce a new procedure to

  6. Ultrafast biophotonics

    CERN Document Server

    Vasa, P

    2016-01-01

    This book presents emerging contemporary optical techniques of ultrafast science which have opened entirely new vistas for probing biological entities and processes. The spectrum reaches from time-resolved imaging and multiphoton microscopy to cancer therapy and studies of DNA damage. The book displays interdisciplinary research at the interface of physics and biology. Emerging topics on the horizon are also discussed, like the use of squeezed light, frequency combs and terahertz imaging as the possibility of mimicking biological systems. The book is written in a manner to make it readily accessible to researchers, postgraduate biologists, chemists, engineers, and physicists and students of optics, biomedical optics, photonics and biotechnology.

  7. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Michael J. [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zalden, Peter [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chen, Frank [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Weems, Ben [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Chatzakis, Ioannis [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Hoffmann, Matthias C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); JARA–Fundamentals of Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M., E-mail: aaronl@stanford.edu [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  8. Photon interrogation for bulk measurement of transuranic materials

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.

    1981-01-01

    Investigation and assay of high atomic number materials may be accomplished in near real-time through use of photon interrogation. Photon interrogation, as used here, involves the use of high-energy photons to induce fission and then detect neutrons associated with the fission. This technique has the advantage that the interrogating particle and the detected particle are different. The discussion here will include: (1) neutron production; (2) photon production; (3) neutron counting; (4) sensitivity; and (5) problems associated with large containers. In summary, the attributes and limitations of photon interrogation can be stated as: near real-time accountability; interrogating particle different than detected particle; ability to count prompt or delayed neutrons depending on matrix; radiography or therapy accelerators available; cannot distinguish between fission and fertile material; and interrogated material must be well characterized to obtain safeguards quality results

  9. Ultrafast two-photon absorption optical thresholding of spectrally coded pulses

    Science.gov (United States)

    Zheng, Z.; Shen, S.; Sardesai, H.; Chang, C.-C.; Marsh, J. H.; Karkhanehchi, M. M.; Weiner, A. M.

    1999-08-01

    We report studies on two-photon absorption (TPA) GaAs p-i-n waveguide photodetectors as optical thresholders for proposed ultrashort pulse optical code-division multiple-access (CDMA) systems. For either chirped optical pulses or spectrally phase coded pseudonoise bursts, the TPA photocurrent response reveals a strong pulseshape dependence and shows good agreement with theoretical predictions and results from conventional SHG measurements. The performance limits of the TPA optical thresholders set by the encoded bandwidth in the spectral encoding-decoding process are also discussed based on numerical simulations. Our results show the feasibility of applying such devices as nonlinear intensity discriminators in ultrahigh-speed optical network applications.

  10. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman; Liu, Changxu; Muskens, Otto L.; Fratalocchi, Andrea; Di  Falco, Andrea

    2016-01-01

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems

  11. Bottom-Up Assembly and Applications of Photonic Materials

    Directory of Open Access Journals (Sweden)

    Hanbin Zheng

    2016-05-01

    Full Text Available The assembly of colloidal building-blocks is an efficient, inexpensive and flexible approach for the fabrication of a wide variety of photonic materials with designed shapes and large areas. In this review, the various assembly routes to the fabrication of colloidal crystals and their post-assembly modifications to the production of photonic materials are first described. Then, the emerging applications of the colloidal photonic structures in various fields such as biological and chemical sensing, anti-reflection, photovoltaics, and light extraction are summarized.

  12. Nanostructured silicon for photonics from materials to devices

    CERN Document Server

    Gaburro, Z; Daldosso, N

    2006-01-01

    The use of light to channel signals around electronic chips could solve several current problems in microelectronic evolution including: power dissipation, interconnect bottlenecks, input/output from/to optical communication channels, poor signal bandwidth, etc. It is unfortunate that silicon is not a good photonic material: it has a poor light-emission efficiency and exhibits a negligible electro-optical effect. Silicon photonics is a field having the objective of improving the physical properties of silicon; thus turning it into a photonic material and permitting the full convergence of elec

  13. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Sean Patrick; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji

    2014-11-01

    We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

  14. Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible

    Energy Technology Data Exchange (ETDEWEB)

    Nurmikko, Arto; Humphrey, Maris

    2014-07-10

    The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide

  15. Ultrafast crystallization and thermal stability of In-Ge doped eutectic Sb70Te30 phase change material

    International Nuclear Information System (INIS)

    Lee Meiling; Miao Xiangshui; Ting Leehou; Shi Luping

    2008-01-01

    Effect of In and Ge doping in the form of In 2 Ge 8 Sb 85 Te 5 on optical and thermal properties of eutectic Sb 70 Te 30 alloys was investigated. Crystalline structure of In 2 Ge 8 Sb 85 Te 5 phase change material consists of a mixture of phases. Thermal analysis shows higher crystallization temperature and activation energy for crystallization. Isothermal reflectivity-time measurement shows a growth-dominated crystallization mechanism. Ultrafast crystallization speed of 30 ns is realized upon irradiation by blue laser beam. The use of ultrafast and thermally stable In 2 Ge 8 Sb 85 Te 5 phase change material as mask layer in aperture-type super-resolution near-field phase change disk is realized to increase the carrier-to-noise ratio and thermal stability

  16. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    International Nuclear Information System (INIS)

    Villa-Aleman, E.; Houk, A.; Spencer, W.

    2017-01-01

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  17. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Houk, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  18. Rolled-up nanotechnology: 3D photonic materials by design

    International Nuclear Information System (INIS)

    Böttner, Stefan; Jorgensen, Matthew R.; Schmidt, Oliver G.

    2016-01-01

    Rolled-up nanotechnology involves the deposition of strained material layers for subsequent release and relaxation into functional structures with applications spanning several disciplines. Originally developed for use with semiconductor materials, over the last decade the processes involved in rolled-up nanotechnology have been applied across a wide palette of materials resulting in applications (among others) in micro robotics, energy storage, electronics, and photonics. Here we highlight the key advancements and future directions in rolled-up photonics, focusing on the diverse demonstrations of rolled-up three-dimensional microresonators which enable integrated sensing, micro-lasing, and out-of-plane routing of light.

  19. Photonic band gap materials: design, synthesis, and applications

    International Nuclear Information System (INIS)

    John, S.

    2000-01-01

    Full text: Unlike semiconductors which facilitate the coherent propagation of electrons, photonic band gap (PBG) materials execute their novel functions through the coherent localization of photons. I review and discuss our recent synthesis of a large scale three-dimensional silicon photonic crystal with a complete photonic band gap near 1.5 microns. When a PBG material is doped with impurity atoms which have an electronic transition that lies within the gap, spontaneous emission of light from the atom is inhibited. Inside the gap, the photon forms a bound state to the atom. Outside the gap, radiative dynamics in the colored vacuum is highly non Markovian. I discuss the influence of these memory effects on laser action. When spontaneous emission is absent, the next order radiative effect (resonance dipole dipole interaction between atoms) must be incorporated leading to anomalous nonlinear optical effects which occur at a much lower threshold than in ordinary vacuum. I describe the collective switching of two-level atoms near a photonic band edge, by external laser field, from a passive state to one exhibiting population inversion. This effect is forbidden in ordinary vacuum. However, in the context of a PBG material, this effect may be utilized for an all-optical transistor. Finally, I discuss the prospects for a phase sensitive, single atom quantum memory device, onto which information may be written by an external laser pulse

  20. Photon management with index-near-zero materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhu; Yu, Zongfu [Department of Electrical and Computer Engineering, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Wang, Ziyu [Department of Foundation, Southeast University, Chengxian College, 210018 Nanjing (China)

    2016-08-01

    Index-near-zero materials can be used for effective photon management. They help to restrict the angle of acceptance, resulting in greatly enhanced light trapping limit. In addition, these materials also decrease the radiative recombination, leading to enhanced open circuit voltage and energy efficiency in direct bandgap solar cells.

  1. Capturing Structural Snapshots during Photochemical Reactions with Ultrafast Raman Spectroscopy: From Materials Transformation to Biosensor Responses.

    Science.gov (United States)

    Fang, Chong; Tang, Longteng; Oscar, Breland G; Chen, Cheng

    2018-06-21

    Chemistry studies the composition, structure, properties, and transformation of matter. A mechanistic understanding of the pertinent processes is required to translate fundamental knowledge into practical applications. The current development of ultrafast Raman as a powerful time-resolved vibrational technique, particularly femtosecond stimulated Raman spectroscopy (FSRS), has shed light on the structure-energy-function relationships of various photosensitive systems. This Perspective reviews recent work incorporating optical innovations, including the broad-band up-converted multicolor array (BUMA) into a tunable FSRS setup, and demonstrates its resolving power to watch metal speciation and photolysis, leading to high-quality thin films, and fluorescence modulation of chimeric protein biosensors for calcium ion imaging. We discuss advantages of performing FSRS in the mixed time-frequency domain and present strategies to delineate mechanisms by tracking low-frequency modes and systematically modifying chemical structures with specific functional groups. These unique insights at the chemical-bond level have started to enable the rational design and precise control of functional molecular machines in optical, materials, energy, and life sciences.

  2. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) 10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  3. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Taeho [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Kandyla, Maria [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 116-35 (Greece)

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  4. Metallic photonic band-gap materials

    International Nuclear Information System (INIS)

    Sigalas, M.M.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M.

    1995-01-01

    We calculate the transmission and absorption of electromagnetic waves propagating in two-dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there is substantial difference between the s- and p-polarized waves. The p-polarized waves exhibit behavior similar to the dielectric PBG's. But, the s-polarized waves have a cutoff frequency below which there are no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but there are important differences related to the topology of the structure. For 3D structures with isolated metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG's, while for 3D structures with the metal forming a continuous network (network topology), there is a cutoff frequency below which there are no propagating modes. The systems with the network topology may have some interesting applications for frequencies less than about 1 THz where the absorption can be neglected. We also study the role of the defects in the metallic structures

  5. Materials for optoelectronic devices, OEICs and photonics

    International Nuclear Information System (INIS)

    Schloetterer, H.; Quillec, M.; Greene, P.D.; Bertolotti, M.

    1991-01-01

    The aim of the contributors in this volume is to give a current overview on the basic properties of nonlinear optical materials for optoelectronics and integrated optics. They provide a cross-linkage between different materials (III-V, II-VI, Si-Ge, etc.), various sample dimensions (from bulk crystals to quantum dots), and a range of techniques from growth (LPE to MOMBE) and for processing from surface passivation to ion beams. Major growth techniques and materials are discussed, including the sophisticated technologies required to exploit the exciting properties of low dimensional semiconductors. These proceedings will prove an invaluable guide to the current state of optoelectronic materials development, as well as indicating the growth techniques that will be in use around the year 2000

  6. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    Science.gov (United States)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  7. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials.

    Science.gov (United States)

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-10-27

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed.

  8. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Directory of Open Access Journals (Sweden)

    Yunfei Shang

    2015-10-01

    Full Text Available Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous, gallium arsenide (GaAs solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed

  9. Photonic crystal materials and their application in biomedicine.

    Science.gov (United States)

    Chen, Huadong; Lou, Rong; Chen, Yanxiao; Chen, Lili; Lu, Jingya; Dong, Qianqian

    2017-11-01

    Photonic crystal (PC) materials exhibit unique structural colors that originate from their intrinsic photonic band gap. Because of their highly ordered structure and distinct optical characteristics, PC-based biomaterials have advantages in the multiplex detection, biomolecular screening and real-time monitoring of biomolecules. In addition, PCs provide good platforms for drug loading and biomolecule modification, which could be applied to biosensors and biological carriers. A number of methods are now available to fabricate PC materials with variable structure colors, which could be applied in biomedicine. Emphasis is given to the description of various applications of PC materials in biomedicine, including drug delivery, biodetection and tumor screening. We believe that this article will promote greater communication among researchers in the fields of chemistry, material science, biology, medicine and pharmacy.

  10. Photonic band gap materials: Technology, applications and challenges

    International Nuclear Information System (INIS)

    Johri, M.; Ahmed, Y.A.; Bezboruah, T.

    2006-05-01

    Last century has been the age of Artificial Materials. One material that stands out in this regard is the semiconductor. The revolution in electronic industry in the 20th century was made possible by the ability of semiconductors to microscopically manipulate the flow of electrons. Further advancement in the field made scientists suggest that the new millennium will be the age of photonics in which artificial materials will be synthesized to microscopically manipulate the flow of light. One of these will be Photonic Band Gap material (PBG). PBG are periodic dielectric structures that forbid propagation of electromagnetic waves in a certain frequency range. They are able to engineer most fundamental properties of electromagnetic waves such as the laws of refraction, diffraction, and emission of light from atoms. Such PBG material not only opens up variety of possible applications (in lasers, antennas, millimeter wave devices, efficient solar cells photo-catalytic processes, integrated optical communication etc.) but also give rise to new physics (cavity electrodynamics, localization, disorder, photon-number-state squeezing). Unlike electronic micro-cavity, optical waveguides in a PBG microchip can simultaneously conduct hundreds of wavelength channels of information in a three dimensional circuit path. In this article we have discussed some aspects of PBG materials and their unusual properties, which provided a foundation for novel practical applications ranging from clinical medicine to information technology. (author)

  11. Photonics in Environment and Energy. A technology roadmap for SMEs on new photonic devices and materials

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Jonathan; Salingre, Anthony; Vitale, David; Yatsunenko, Sergey; Lojkowski, Witold

    2012-11-01

    Scientific and technological developments in photonics will have a major influence on lots of industries over the next ten to fifteen years. In this highly evolving field, the long-term competitiveness of companies, and especially of Small and Medium sized Enterprises (SMEs), mainly depends on their ability to offer a good product and to establish a successful market position, which is well connected to the management of the hidden potential in existing technological capabilities. Technology roadmaps are interesting tools used to portray the structural and temporal relationships among science, technology and applications and thus help in the decision-making process to remain successful on the market. The present roadmap aims at identifying technological trends for new photonic devices and nanophotonic materials, mainly in terms of market development. It has the main objective to inform SMEs about new scientific discoveries and developments in photonics and their related problem-solving potential for future products and applications in the Environment and Energy sector. This roadmap is part of a set of four roadmaps about the use of photonic technologies in the industrial sectors of ICT, Heath and Well-being, Environment and Energy and Safety and Security. They were developed in the course of the European project PhotonicRoadSME. Altogether, these roadmaps will contribute to support SMEs in their strategic planning for future applications and products.

  12. Band Gap Optimization Design of Photonic Crystals Material

    Science.gov (United States)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  13. Polarization catastrophe in nanostructures doped in photonic band gap materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-11-30

    In the presence of the dipole-dipole interaction, we have studied a possible dielectric catastrophe in photonic band gap materials doped with an ensemble of four-level nanoparticles. It is found that the dielectric constant of the system has a singularity when the resonance energy lies within the bands. This phenomenon is known as the dielectric catastrophe. It is also found that this phenomenon depends on the strength of the dipole-dipole interaction.

  14. Bright Two-Photon Emission and Ultra-Fast Relaxation Dynamics in a DNA-Templated Nanocluster Investigated by Ultra-Fast Spectroscopy

    Science.gov (United States)

    2012-01-01

    Research Office (Materials program) and the National Science Foundation ( Polymer program) for support of this work. Reference (1) Mie, G. Beiträge...Quantum Effects in Optical Spectra. The Journal of Physical Chemistry B 1997, 101, 7885–7891. (6) Jin, R. Quantum sized, thiolate -protected gold...Physics Letters 1997, 266, 91–98. (13) Ackerson, C. J.; Jadzinsky, P. D.; Kornberg, R. D. Thiolate ligands for synthesis of water-soluble gold clusters

  15. Photonic devices based on black phosphorus and related hybrid materials

    International Nuclear Information System (INIS)

    Vitiello, M.S.; Viti, L.

    2016-01-01

    Artificial semiconductor heterostructures played a pivotal role in modern electronic and photonic technologies, providing a highly effective means for the manipulation and control of carriers, from the visible to the far-infrared, leading to the development of highly efficient devices like sources, detectors and modulators. The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in devices based on inorganic two-dimensional (2D) materials. Amongst them, black phosphorus (BP) recently showed an extraordinary potential in a variety of applications across micro-electronics and photonics. With an energy gap between the gapless graphene and the larger gap transition metal dichalcogenides, BP can form the basis for a new generation of high-performance photonic devices that could be specifically engineered to comply with different applications, like transparent saturable absorbers, fast photocounductive switches and low noise photodetectors, exploiting its peculiar electrical, thermal and optical anisotropy. This paper will review the latest achievements in black-phosphorus–based THz photonics and discuss future perspectives of this rapidly developing research field.

  16. Fourteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV

    2005-01-01

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  17. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  18. Progress in photon science basics and applications

    CERN Document Server

    2017-01-01

    This book features chapters based on lectures presented by world-leading researchers of photon science from Russia and Japan at the first “STEPS Symposium on Photon Science” held in Tokyo in March 2015. It describes recent progress in the field of photon science, covering a wide range of interest to experts in the field, including laser-plasma interaction, filamentation and its applications, laser assisted electron scattering, exotic properties of light, ultrafast imaging, molecules and clusters in intense laser fields, photochemistry and spectroscopy of novel materials, laser-assisted material synthesis, and photon technology.

  19. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    Science.gov (United States)

    Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.

    1998-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.

  20. Inkjet Printing of Functional Materials for Optical and Photonic Applications

    Science.gov (United States)

    Alamán, Jorge; Alicante, Raquel; Peña, Jose Ignacio; Sánchez-Somolinos, Carlos

    2016-01-01

    Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges. PMID:28774032

  1. Inkjet Printing of Functional Materials for Optical and Photonic Applications

    Directory of Open Access Journals (Sweden)

    Jorge Alamán

    2016-11-01

    Full Text Available Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges.

  2. Revealing the ultrafast charge carrier dynamics in organo metal halide perovskite solar cell materials using time resolved THz spectroscopy

    Science.gov (United States)

    Ponseca, C. S., Jr.; Sundström, V.

    2016-03-01

    Ultrafast charge carrier dynamics in organo metal halide perovskite has been probed using time resolved terahertz (THz) spectroscopy (TRTS). Current literature on its early time characteristics is unanimous: sub-ps charge carrier generation, highly mobile charges and very slow recombination rationalizing the exceptionally high power conversion efficiency for a solution processed solar cell material. Electron injection from MAPbI3 to nanoparticles (NP) of TiO2 is found to be sub-ps while Al2O3 NPs do not alter charge dynamics. Charge transfer to organic electrodes, Spiro-OMeTAD and PCBM, is sub-ps and few hundreds of ps respectively, which is influenced by the alignment of energy bands. It is surmised that minimizing defects/trap states is key in optimizing charge carrier extraction from these materials.

  3. Ultra-fast Sensor for Single-photon Detection in a Wide Range of the Electromagnetic Spectrum

    Directory of Open Access Journals (Sweden)

    Astghik KUZANYAN

    2016-12-01

    Full Text Available The results of computer simulation of heat distribution processes taking place after absorption of single photons of 1 eV-1 keV energy in three-layer sensor of the thermoelectric detector are being analyzed. Different geometries of the sensor with tungsten absorber, thermoelectric layer of cerium hexaboride and tungsten heat sink are considered. It is shown that by changing the sizes of the sensor layers it is possible to obtain transducers for registration of photons within the given spectral range with required energy resolution and count rate. It is concluded that, as compared to the single layer sensor, the thee-layer sensor has a number of advantages and demonstrate characteristics that make possible to consider the thermoelectric detector as a real alternative to superconducting single photon detectors.

  4. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Melnikov, Vasily; Khan, Jafar Iqbal; Mohammed, Omar F.

    2015-01-01

    , we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions

  5. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    Wang, Lin; Wang, Li-Gang

    2015-01-01

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  6. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  7. Detection of fissionable materials in cargoes using monochromatic photon radiography

    Science.gov (United States)

    Danagoulian, Areg; Lanza, Richard; O'Day, Buckley; LNSP Team

    2015-04-01

    The detection of Special Nuclear Materials (e.g. Pu and U) and nuclear devices in the commercial cargo traffic is one of the challenges posed by the threat of nuclear terrorism. Radiography and active interrogation of heavily loaded cargoes require ~ 1 - 10MeV photons for penetration. In a proof-of-concept system under development at MIT, the interrogating monochromatic photon beam is produced via a 11B(d , nγ) 12C reaction. To achieve this, a boron target is used along with the 3 MeV d+ RFQ accelerator at MIT-Bates. The reactions results in the emission of very narrow 4.4 MeV and 15.1 MeV gammas lines. The photons, after traversing the cargo, are detected by an array of NaI(Tl) detectors. A spectral analysis of the transmitted gammas allows to independently determine the areal density and the atomic number (Z) of the cargo. The proposed approach could revolutionize cargo inspection, which, in its current fielded form has to rely on simple but high dose bremsstrahlung sources. Use of monochromatic sources would significantly reduce the necessary dose and allow for better determination of the cargo's atomic number. The general methodology will be described and the preliminary results from the proof-of-concept system will be presented and discussed. Supported by NSF/DNDO Collaborative Research ARI-LA Award ECCS-1348328.

  8. Detection of nuclear material by photon activation inside cargo containers

    Science.gov (United States)

    Gmar, Mehdi; Berthoumieux, Eric; Boyer, Sébastien; Carrel, Frédérick; Doré, Diane; Giacri, Marie-Laure; Lainé, Frédéric; Poumarède, Bénédicte; Ridikas, Danas; Van Lauwe, Aymeric

    2006-05-01

    Photons with energies above 6 MeV can be used to detect small amounts of nuclear material inside large cargo containers. The method consists in using an intense beam of high-energy photons (bremsstrahlung radiation) in order to induce reactions of photofission on actinides. The measurement of delayed neutrons and delayed gammas emitted by fission products brings specific information on localization and quantification of the nuclear material. A simultaneous measurement of both of these delayed signals can overcome some important limitations due to matrix effects like heavy shielding and/or the presence of light elements as hydrogen. We have a long experience in the field of nuclear waste package characterization by photon interrogation and we have demonstrated that presently the detection limit can be less than one gram of actinide per ton of package. Recently we tried to extend our knowledge to assess the performance of this method for the detection of special nuclear materials in sea and air freights. This paper presents our first results based on experimental measurements carried out in the SAPHIR facility, which houses a linear electron accelerator with the energy range from 15 MeV to 30 MeV. Our experiments were also modeled using the full scale Monte Carlo techniques. In addition, and in a more general frame, due to the lack of consistent data on photonuclear reactions, we have been working on the development of a new photonuclear activation file (PAF), which includes cross sections for more than 600 isotopes including photofission fragment distributions and delayed neutron tables for actinides. Therefore, this work includes also some experimental results obtained at the ELSA electron accelerator, which is more adapted for precise basic nuclear data measurements.

  9. Organic-inorganic hybrid material SUNCONNECT® for photonic integrated circuit

    Science.gov (United States)

    Nawata, Hideyuki; Oshima, Juro; Kashino, Tsubasa

    2018-02-01

    In this paper, we report the feature and properties about organic-inorganic hybrid material, "SUNCONNECT®" for photonic integrated circuit. "SUNCONNECT®" materials have low propagation loss at 1310nm (0.29dB/cm) and 1550nm (0.45dB/cm) respectively. In addition, the material has high thermal resistance both high temperature annealing test at 300°C and also 260°C solder heat resistance test. For actual device application, high reliability is required. 85°C /85% test was examined by using multi-mode waveguide. As a result, it indicated that variation of insertion loss property was not changed significantly after high temperature / high humidity test. For the application to photonic integrated circuit, it was demonstrated to fabricate polymer optical waveguide by using three different methods. Single-micron core pattern can be fabricated on cladding layer by using UV lithography with proximity gap exposure. Also, single-mode waveguide can be also fabricated with over cladding. On the other hands, "Mosquito method" and imprint method can be applied to fabricate polymer optical waveguide. Remarkably, these two methods can fabricate gradedindex type optical waveguide without using photo mask. In order to evaluate the optical performance, NFP's observation, measurement of insertion loss and propagation loss by cut-back methods were carried out by using each waveguide sample.

  10. Will silicon be the photonic material of the third millenium?

    International Nuclear Information System (INIS)

    Pavesi, L

    2003-01-01

    Silicon microphotonics, a technology which merges photonics and silicon microelectronic components, is rapidly evolving. Many different fields of application are emerging: transceiver modules for optical communication systems, optical bus systems for ULSI circuits, I/O stages for SOC, displays, .... In this review I will give a brief motivation for silicon microphotonics and try to give the state-of-the-art of this technology. The ingredient still lacking is the silicon laser: a review of the various approaches will be presented. Finally, I will try to draw some conclusions where silicon is predicted to be the material to achieve a full integration of electronic and optical devices. (topical review)

  11. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    Science.gov (United States)

    Yang, Xiaoyu; Yang, Jinghuan; Hu, Xiaoyong; Zhu, Yu; Yang, Hong; Gong, Qihuang

    2015-08-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials.

  12. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    International Nuclear Information System (INIS)

    Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2015-01-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm 2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials

  13. Ultrafast Photoresponsive Starburst and Dendritic Fullerenyl Nanostructures for Broadband Nonlinear Photonic Material Applications

    Science.gov (United States)

    2014-08-20

    suited to the biological optical window of 800–1100 nm. Accordingly, selective attachment of combined DPAF-Cn and CPAF-Cn antenna moieties as hybrid...61- carbonyl )-9,9-dioctadecyl-2-diphenyl- aminofluorene, C60(>DPAF-C18) (1). To a mixture of C60 (0.75 g, 1.1 mmol) and 7-α-bromoacetyl-9,9...volume. Crude product was precipitated by the addition of methanol and isolated by centrifugation (8000 rpm, 20 min). The isolated solid was found to

  14. DURIP: An Ultrafast Testbed for Comprehensive Characterization of Photonics, Electronic, and Optoelectronic Properties of Inegrated Nanophotonic Structures

    Science.gov (United States)

    2017-10-14

    Department of the Army position, policy or decision , unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES...characterization equipment to an al- ready available photonic characterization setup. The following table details of the spent budget and the list of purchased ...measure the response of a high-speed optical signal processing platform. The same architecture also can be used to charac- terize high-speed

  15. Anomalous electromagnetically induced transparency in photonic-band-gap materials

    International Nuclear Information System (INIS)

    Singh, Mahi R.

    2004-01-01

    The phenomenon of electromagnetically induced transparency has been studied when a four-level atom is located in a photonic band gap material. Quantum interference is introduced by driving the two upper levels of the atom with a strong pump laser field. The top level and one of the ground levels are coupled by a weak probe laser field and absorption takes place between these two states. The susceptibility due to the absorption for this transition has been calculated by using the master equation method in linear response theory. Numerical simulations are performed for the real and imaginary parts of the susceptibility for a photonic band gap material whose gap-midgap ratio is 21%. It is found that when resonance frequencies lie within the band, the medium becomes transparent under the action of the strong pump laser field. More interesting results are found when one of the resonance frequencies lies at the band edge and within the band gap. When the resonance frequency lies at the band edge, the medium becomes nontransparent even under a strong pump laser field. On the other hand, when the resonance frequency lies within the band gap, the medium becomes transparent even under a weak pump laser field. In summary, we found that the medium can be transformed from the transparent state to the nontransparent state just by changing the location of the resonance frequency. We call these two effects anomalous electromagnetically induced transparency

  16. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    International Nuclear Information System (INIS)

    Smallwood, Christopher L.; Lanzara, Alessandra; Jozwiak, Christopher; Zhang Wentao

    2012-01-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å −1 , and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ . The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  17. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    Science.gov (United States)

    Smallwood, Christopher L.; Jozwiak, Christopher; Zhang, Wentao; Lanzara, Alessandra

    2012-12-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å-1, and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi2Sr2CaCu2O8+δ. The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  18. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  19. Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met)

    Science.gov (United States)

    Gamaly, E. G.; Rode, A. V.

    2018-03-01

    Swift excitation of transparent dielectrics by ultrashort and highly intense laser pulse leads to ultra-fast re-structuring of the electronic landscape and generates many transient material states, which are continuously reshaped in accord with the changing pulse intensity. These unconventional transient material states, which exhibit simultaneously both dielectric and metallic properties, we termed here as the `Die-Met' states. The excited material is transparent and conductive at the same time. The real part of permittivity of the excited material changes from positive to negative values with the increase of excitation, which affects strongly the interaction process during the laser pulse. When the incident field has a component along the permittivity gradient, the amplitude of the field increases resonantly near the point of zero permittivity, which dramatically changes the interaction mode and increases absorption in a way that is similar to the resonant absorption in plasma. The complex 3D structure of the permittivity makes a transparent part of the excited dielectric (at ɛ 0 > ɛ re > 0) optically active. The electro-magnetic wave gets a twisted trajectory and accrues the geometric phase while passing through such a medium. Both the phase and the rotation of the polarisation plane depend on the 3D permittivity structure. Measuring the transmission, polarisation and the phase of the probe beam allows one to quantitatively identify these new transient states. We discuss the revelations of this effect in different experimental situations and their possible applications.

  20. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence

    Science.gov (United States)

    Belli, F.; Abdolvand, A.; Travers, J. C.; Russell, P. St. J.

    2018-01-01

    We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ˜300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.

  1. Ultrafast optical pump terahertz-probe spectroscopy of strongly correlated electron materials

    International Nuclear Information System (INIS)

    Averitt, R.D.; Taylor, Antoinette J.; Thorsmolle, V.K.; Jia, Quanxi; Lobad, A.I.; Trugman, S.A.

    2001-01-01

    We have used optical-pump far-infrared probe spectroscopy to probe the low energy electron dynamics of high temperature superconductors and colossal magnetoresistance manganites. For the superconductor YBa2Cu3O7, picosecond conductivity measurements probe the interplay between Cooper-pairs and quasiparticles. In optimally doped films, the recovery time for long-range phase-coherent pairing increases from ∼1.5 ps at 4K to ∼3.5 ps near Tc, consistent with the closing of the superconducting gap. For underdoped films, the measured recovery time is temperature independent (3.5 ps) in accordance with the presence of a pseudogap. Ultrafast picosecond measurements of optically induced changes in the absolute conductivity of La0:7M0:3MnO3 thin films (M = Ca, Sr) from 10K to ∼0.9Tc reveal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from optically induced modification of the effective phonon temperature. The slower component, related to spin-lattice relaxation, has a lifetime that increases upon approaching Tc from below in accordance with an increasing spin specific heat. Our results indicate that for T<< Tc, the conductivity is determined by incoherent phonons while spin fluctuations dominate near Tc.

  2. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  3. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    International Nuclear Information System (INIS)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. (topical review)

  4. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Fudouzi

    2011-01-01

    Full Text Available In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  5. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Science.gov (United States)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. PMID:27877454

  6. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  7. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  8. CHARACTERIZATION OF GEOLOGICAL MATERIALS USING ION AND PHOTON BEAMS

    International Nuclear Information System (INIS)

    TOROK, SZ.B.; JONES, K.W.; TUNIZ, C.

    1998-01-01

    Geological specimens are often complex materials that require different analytical methods for their characterization. The parameters of interest may include the chemical composition of major, minor and trace elements. The chemical compounds incorporated in the minerals, the crystal structure and isotopic composition need to be considered. Specimens may be highly heterogeneous thus necessitating analytical methods capable of measurements on small sample volumes with high spatial resolution and sensitivity. Much essential information on geological materials can be obtained by using ion or photon beams. In this chapter we describe the principal analytical techniques based on particle accelerators, showing some applications that are hardly possible with conventional methods. In particular, the following techniques will be discussed: (1) Synchrotron radiation (SR) induced X-ray emission (SRIXE) and particle-induced X-ray emission (PEE) and other ion beam techniques for trace element analysis. (2) Accelerator mass spectrometry (AMS) for ultra sensitive analysis of stable nuclides and long-lived radionuclides. In most of the cases also the possibilities of elemental and isotopic analysis with high resolution will be discussed

  9. Multiplicity Analysis during Photon Interrogation of Fissionable Material

    International Nuclear Information System (INIS)

    Clarke, Shaun D.; Pozzi, Sara A.; Padovani, Enrico; Downar, Thomas J.

    2007-01-01

    Simulation of multiplicity distributions with the Monte Carlo method is difficult because each history is treated individually. In order to accurately model the multiplicity distribution, the intensity and time width of the interrogation pulse must be incorporated into the calculation. This behavior dictates how many photons arrive at the target essentially simultaneously. In order to model the pulse width correctly, a Monte Carlo code system consisting of modified versions of the codes MCNPX and MCNP-PoliMi has been developed in conjunction with a post-processing algorithm to operate on the MCNP-PoliMi output file. The purpose of this subroutine is to assemble the interactions into groups corresponding to the number of interactions which would occur during a given pulse. The resulting multiplicity distributions appear more realistic and capture the higher-order multiplets which are a product of multiple reactions occurring during a single accelerator pulse. Plans are underway to gather relevant experimental data to verify and validate the methodology developed and presented here. This capability will enable the simulation of a large number of materials and detector geometries. Analysis of this information will determine the feasibility of using multiplicity distributions as an identification tool for special nuclear material.

  10. Studies on nanosecond 532nm and 355nm and ultrafast 515nm and 532nm laser cutting super-hard materials

    Science.gov (United States)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2017-02-01

    In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.

  11. Novel Plasmonic Materials and Nanodevices for Integrated Quantum Photonics

    Science.gov (United States)

    Shalaginov, Mikhail Y.

    Light-matter interaction is the foundation for numerous important quantum optical phenomena, which may be harnessed to build practical devices with higher efficiency and unprecedented functionality. Nanoscale engineering is seen as a fruitful avenue to significantly strengthen light-matter interaction and also make quantum optical systems ultra-compact, scalable, and energy efficient. This research focuses on color centers in diamond that share quantum properties with single atoms. These systems promise a path for the realization of practical quantum devices such as nanoscale sensors, single-photon sources, and quantum memories. In particular, we explored an intriguing methodology of utilizing nanophotonic structures, such as hyperbolic metamaterials, nanoantennae, and plasmonic waveguides, to improve the color centers performance. We observed enhancement in the color center's spontaneous emission rate, emission directionality, and cooperativity over a broad optical frequency range. Additionally, we studied the effect of plasmonic environments on the spin-readout sensitivity of color centers. The use of CMOS-compatible epitaxially grown plasmonic materials in the design of these nanophotonic structures promises a new level of performance for a variety of integrated room-temperature quantum devices based on diamond color centers.

  12. Two-Photon Absorbing Molecules as Potential Materials for 3D Optical Memory

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2014-01-01

    Full Text Available In this review, recent advances in two-photon absorbing photochromic molecules, as potential materials for 3D optical memory, are presented. The investigations introduced in this review indicate that 3D data storage processing at the molecular level is possible. As 3D memory using two-photon absorption allows advantages over existing systems, the use of two-photon absorbing photochromic molecules is preferable. Although there are some photochromic molecules with good properties for memory, in most cases, the two-photon absorption efficiency is not high. Photochromic molecules with high two-photon absorption efficiency are desired. Recently, molecules having much larger two-photon absorption cross sections over 10,000 GM (GM= 10−50 cm4 s molecule−1 photon−1 have been discovered and are expected to open the way to realize two-photon absorption 3D data storage.

  13. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Liu Zheng; Gong Qihuang

    2008-01-01

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed

  14. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: xiaoyonghu@pku.edu.cn; Liu Zheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2008-01-14

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed.

  15. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  16. Probing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials

    Science.gov (United States)

    Piekiel, Nicholas William

    2012-01-01

    Energetic materials (EMs) are substances with a high amount of stored energy and the ability to release that energy at a rapid rate. Nanothermites and green organic energetics are two classes of EMs which have gained significant interest as they each have desirable properties over traditional explosives. These systems also possess downfalls, which…

  17. Study on photon sensitivity of silicon diodes related to materials used for shielding

    International Nuclear Information System (INIS)

    Moiseev, T.

    1999-01-01

    Large area silicon diodes used in electronic neutron dosemeters have a significant over-response to X- and gamma-rays, highly non-linear at photon energies below 200 keV. This over-response to photons is proportional to the diode's active area and strongly affects the neutron sensitivity of such dosemeters. Since silicon diodes are sensitive to light and electromagnetic fields, most diode detector assemblies are provided with a shielding, sometimes also used as radiation filter. In this paper, the influence of materials covering the diode's active area is investigated using the MCNP-4A code by estimating the photon induced pulses in a typical silicon wafer (300 μm thickness and 1 cm diameter) when provided with a front case cover. There have been simulated small-size diode front covers made of several materials with low neutron interaction cross-sections like aluminium, TEFLON, iron and lead. The estimated number of induced pulses in the silicon wafer is calculated for each type of shielding at normal photon incidence for several photon energies from 9.8 keV up to 1.15 MeV and compared with that in a bare silicon wafer. The simulated pulse height spectra show the origin of the photon-induced pulses in silicon for each material used as protective cover: the photoelectric effect for low Z front case materials at low-energy incident photons (up to about 65 keV) and the Compton and build-up effects for high Z case materials at higher photon energies. A simple means to lower and flatten the photon response of silicon diodes over an extended X- and gamma rays energy range is proposed by designing a composed photon filter. (author)

  18. Study on Photon Sensitivity of Silicon Diodes Related to Materials Used for Shielding

    International Nuclear Information System (INIS)

    Moiseev, T.

    2000-01-01

    Large area Silicon diodes used in electronic neutron dosemeters have a significant over-response to X and gamma rays, highly non-linear at photon energies below 200 keV. This over-response to photons is proportional to the diodes active area and strongly affects the neutron sensitivity of such dosemeters. Since Silicon diodes are sensitive to light and electromagnetic fields, most diode detector assemblies are provided with a shielding, sometimes also used as radiation filter. In this paper, the influence of materials covering the diode's active area is investigated using the MCNP-4A code by estimating the photon induced pulses in a typical silicon wafer (300 μm thickness and 1 cm diameter) when provided with a front case cover. There have been simulated small-size diode front covers made of several materials with low neutron interaction cross-sections like aluminium, TEFLON, iron and lead. The estimated number of induced pulses in the silicon wafer is calculated for each type of shielding at normal photon incidence for several photon energies from 9.8 keV up to 1.15 MeV and compared with that in a bare silicon wafer. The simulated pulse height spectra show the origin of the photon induced pulses in silicon for each material used as protective cover: the photoelectric effect for low Z front case materials at low energy incident photons (up to about 65 keV) and the Compton and build-up effects for high Z case materials at higher photon energies. A simple means to lower and flatten the photon response of silicon diodes over an extended X and gamma rays energy range is proposed by designing a composed photon filter. (author)

  19. Self-Assembly of Nanocomposite Nonlinear Optical Materials for Photonic Devices, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program targets the development of new highly anisotropic nonlinear optical nanocomposite materials for NASA and non-NASA applications in advanced photonic and...

  20. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2015-09-14

    In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

  1. Preface to Special Topic: Emerging materials for photonics

    Directory of Open Access Journals (Sweden)

    Miriam S. Vitiello

    2017-03-01

    Full Text Available Photonics plays a major role in all aspects of human life. It revolutionized science by addressing fundamental scientific questions and by enabling key functions in many interdisciplinary fields spanning from quantum technologies to information and communication science, and from biomedical research to industrial process monitoring and life entertainment.

  2. Preface to Special Topic: Emerging materials for photonics

    Science.gov (United States)

    Vitiello, Miriam S.; Razeghi, Manijeh

    2017-03-01

    Photonics plays a major role in all aspects of human life. It revolutionized science by addressing fundamental scientific questions and by enabling key functions in many interdisciplinary fields spanning from quantum technologies to information and communication science, and from biomedical research to industrial process monitoring and life entertainment.

  3. On-chip photonic memory elements employing phase-change materials.

    Science.gov (United States)

    Rios, Carlos; Hosseini, Peiman; Wright, C David; Bhaskaran, Harish; Pernice, Wolfram H P

    2014-03-05

    Phase-change materials integrated into nanophotonic circuits provide a flexible way to realize tunable optical components. Relying on the enormous refractive-index contrast between the amorphous and crystalline states, such materials are promising candidates for on-chip photonic memories. Nonvolatile memory operation employing arrays of microring resonators is demonstrated as a route toward all-photonic chipscale information processing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrafast optical manipulation of atomic motion in multilayer Ge-Sb-Te phase change materials

    Directory of Open Access Journals (Sweden)

    Fons P.

    2013-03-01

    Full Text Available Phase change random access memory devices have evolved dramatically with the recent development of superlattice structure of Ge-Sb-Te material (GST-SL in terms of its low power consumption. The phase change in GST-SL is mainly characterized by the displacement of Ge atoms. Here we examine a new phase change method, that is the manipulation of Ge-Te bonds using linearly-polarized femtosecond near-infrared optical pulses. As a result, we found that the p-polarized pump pulse is more effective in inducing the reversible and irreversible displacement of Ge atoms along [111] direction in the local structure. This structural change would be induced by the anisotropic carrier-phonon interaction along the [111] direction created by the p-polarized pulse.

  5. Generation of ultrafast pulse via combined effects of stimulated

    Indian Academy of Sciences (India)

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are ...

  6. Avant-Garde Ultrafast Laser Writing

    Directory of Open Access Journals (Sweden)

    Kazansky P. G.

    2013-11-01

    Full Text Available Ultrafast laser processing of transparent materials reveals new phenomena. Reviewed, are recent demonstrations of 5D optical memory, vortex polarization and Airy beam converters employing self-assembled nanostructuring, ultrafast laser calligraphy and polarization writing control using pulses with tilted front.

  7. Calculation of HPGe Detector Response for NRF Photons Scattered from Threat Materials

    International Nuclear Information System (INIS)

    Park, B. G.; Choi, H. D.

    2009-01-01

    Nuclear Resonance Fluorescence (NRF) is a process of resonant nuclear absorption of photons, followed by deexcitation with emission of fluorescence photons. The cross section of NRF photons process is given by σ i max ≡ 2π(λ/2π) 2 2J+1/2J 0 +1 Γ 0 Γ i /Γ tot 2 , where λ is the wavelength of the photon, J 0 and J are the nuclear spins of the ground state and excited state, respectively, Γ 0 , Γ i and Γ tot are decay width for deexcitation to the ground state, to the i-th mode state and total decay width, respectively. NRF based security inspection technique uses the signatures of resonance energies of the fluorescence photon scattered from nuclides of the illicit materials in cargo container. NRF can be used to identify the material type, quantity and location. It is performed by measuring the fluorescence photon and the transmitted photon spectrum while irradiating Bremsstrahlung photon beam to the sample

  8. Fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam method

    International Nuclear Information System (INIS)

    Xu Xingsheng; Chen Hongda; Xiong Zhigang; Jin Aizi; Gu Changzhi; Cheng Bingying; Zhang Daozhong

    2007-01-01

    In this paper, we introduced the fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam machine, it shows that the method of focused-ion beam can fabricate two-dimensional photonic crystal and photonic crystal device efficiently, and the quality of the fabricated photonic crystal is high. Using the focused-ion beam method, we fabricate photonic crystal wavelength division multiplexer, and its characteristics are analyzed

  9. Two dimensional tunable photonic crystals and n doped semiconductor materials

    International Nuclear Information System (INIS)

    Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.

    2015-01-01

    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications

  10. Ultrafast MR Imaging in Pediatric Neuroradiology

    International Nuclear Information System (INIS)

    Singh, R.K.; Smith, J.T.; Wilkinson, I.D.; Griffiths, P.D.

    2003-01-01

    Purpose: To compare the diagnostic information obtained from ultrafast MR imaging with standard MR imaging techniques in pediatric neuroradiology. The goal was to judge whether ultrafast methods can be used to replace standard methods and reduce the need for sedation or general anesthesia as a result of the considerably shorter scan times. Material and Methods: Our prospective study involved 125 patients. Routine clinical imaging was performed along with two ultrafast methods. Single shot fast spin echo (SSFSE) was used to give T2-weighted images and an echo planar imaging (EPI) sequence to provide a T1-weighted images. The ultrafast images were presented to an experienced neuro radiologist who was also given the information present on the initial referral card. These reports based on the ultrafast images were then compared with the formal radiologic report made solely on the basis of the standard imaging. Results: The overall sensitivity and specificity for ultrafast imaging when compared to the reference standard were 78% and 98% with positive and negative predictive values of 98% and 76%. Pathologies characterized by small areas of subtle T2 prolongation were difficult or impossible to see on the ultrafast images but otherwise they provided reliable information. Conclusions: This paper demonstrates that ultrafast MR imaging can diagnose many pediatric intracranial abnormalities as well as standard methods. Anatomic resolution limits its capacity to define subtle developmental anomalies and contrast resolution limitations of the ultrafast methods reduce the detection of pathology characterized by subtle T2 prolongation

  11. Using photons for non-destructive testing of thick materials: a simulation study

    International Nuclear Information System (INIS)

    Oishi, Ryutaro; Nagai, Hideki

    2004-01-01

    Positron annihilation spectroscopy using positron annihilation lifetimes has been successfully studied for non-destructive material testing. A positron inspection probe is annihilated with an electron at the front of the material. The application of the positron lifetime method is restricted to thin materials. A photon with energy exceeding 1.02MeV reaches the materials' depth and can produce a positron through γ-conversion. Such a photon-produced positron is a probe for thick materials. The probability of γ-conversion, however, is low. The method of photon-produced positron annihilation lifetimes is restricted by statistics. We estimated the expected number of events and the statistical uncertainties of the lifetime measurements for a non-destructive test, such as an SUS316 fatigue monitoring, to construct a fatigue-monitoring system

  12. Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials

    CERN Document Server

    Markos, Peter

    2010-01-01

    This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects,

  13. Octonacci photonic crystals with negative refraction index materials

    Science.gov (United States)

    Brandão, E. R.; Vasconcelos, M. S.; Anselmo, D. H. A. L.

    2016-12-01

    We investigate the optical transmission spectra for s-polarized (TE) and p-polarized (TM) waves in one-dimensional photonic quasicrystals on a quasiperiodic multilayer structure made up by alternate layers of SiO2 and metamaterials, organized by following the Octonacci sequence. Maxwell's equations and the transfer-matrix technique are used to derive the transmission spectra for the propagation of normally and obliquely incident optical fields. We assume Drude-Lorentz-type dispersive response for the dielectric permittivity and magnetic permeability of the metamaterials. For normally incident waves, we observe that the spectra does not have self-similar behavior or mirror symmetry and it also features the absence of optical band gap. Also for normally incident waves, we show regions of full transmittance when the incident angle θC = 0° in a particular frequency range.

  14. Measurements of Ultra-Fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors

    International Nuclear Information System (INIS)

    Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.

    2017-01-01

    Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.

  15. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  16. Hyperuniform Disordered photonic bandgap materials, from 2D to 3D, and their applications

    Science.gov (United States)

    Man, Weining; Florescu, Marian; Sahba, Shervin; Sellers, Steven

    Recently, hyperuniform disordered systems attracted increasing attention due to their unique physical properties and the potential possibilities of self-assembling them. We had introduced a class of 2D hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's isotropic photonic bandgap. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. Beyond our previous experimental work using macroscopic samples with microwave radiation, we demonstrated functional devices based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. We further extended the design, fabrication, and characterization of the disordered photonic system into 3D. We also identify local self-uniformity as a novel measure of a disordered network's internal structural similarity, which we found crucial for photonic band gap formation. National Science Foundations award DMR-1308084.

  17. Comparative evaluation of photon cross section libraries for materials of interest in PET Monte Carlo simulations

    CERN Document Server

    Zaidi, H

    1999-01-01

    the many applications of Monte Carlo modelling in nuclear medicine imaging make it desirable to increase the accuracy and computational speed of Monte Carlo codes. The accuracy of Monte Carlo simulations strongly depends on the accuracy in the probability functions and thus on the cross section libraries used for photon transport calculations. A comparison between different photon cross section libraries and parametrizations implemented in Monte Carlo simulation packages developed for positron emission tomography and the most recent Evaluated Photon Data Library (EPDL97) developed by the Lawrence Livermore National Laboratory was performed for several human tissues and common detector materials for energies from 1 keV to 1 MeV. Different photon cross section libraries and parametrizations show quite large variations as compared to the EPDL97 coefficients. This latter library is more accurate and was carefully designed in the form of look-up tables providing efficient data storage, access, and management. Toge...

  18. Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials

    International Nuclear Information System (INIS)

    Lidorikis, E.; Sigalas, M. M.; Economou, E. N.; Soukoulis, C. M.

    2000-01-01

    By using two ab initio numerical methods, we study the effects that disorder has on the spectral gaps and on wave localization in two-dimensional photonic-band-gap materials. We find that there are basically two different responses depending on the lattice realization (solid dielectric cylinders in air or vice versa), the wave polarization, and the particular form under which disorder is introduced. Two different pictures for the photonic states are employed, the ''nearly free'' photon and the ''strongly localized'' photon. These originate from the two different mechanisms responsible for the formation of the spectral gaps, i.e., multiple scattering and single scatterer resonances, and they qualitatively explain our results. (c) 2000 The American Physical Society

  19. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams.

    Science.gov (United States)

    von Voigts-Rhetz, P; Anton, M; Vorwerk, H; Zink, K

    2016-02-07

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range [Formula: see text] up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction [Formula: see text] depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of [Formula: see text] on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry.

  20. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  1. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana; Aly, Shawkat Mohammede; Goswami, Subhadip; Alarousu, Erkki; Usman, Anwar; Schanze, Kirk S.; Mohammed, Omar F.

    2015-01-01

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  2. Interactions of low-power photons with natural opals—PBG materials, photonic control, natural metamaterials, spontaneous laser emissions, and band-gap boundary responses

    International Nuclear Information System (INIS)

    Stem, Michelle R.

    2012-01-01

    Four views of each of the opal research specimens in white light (for in-article or cover), in the same order as the specimens depicted in Fig. 3 of the main manuscript. A.On the left: 1.5 carat oval cabochon precious fire opal. B.In the center: 2.5 carats faceted fancy shield precious fire contra luz with mild adularescence. C.On the right: 5.0 carats round cabochon precious crystal opal with blue adularescence. Highlights: ► Emission of micro-lasers from microspheroid cluster boundary zones (quantum dots). ► Lasers illuminated or fluoresced the intra-opal structures of microspheroid photonic glass clusters. ► Microspheroid boundaries are durable to low power light sources. ► Display of previously unknown low power photonic optic properties. ► The research specimens are natural metamaterials. - Abstract: One overall goal of this research was to examine types of naturally-occurring opals that exhibit photonic control to learn about previously-unknown properties of naturally occurring photonic control that may be developed for broader applications. Three different photon sources were applied consecutively to three different types of natural, flawless, gem-quality precious opals. Two photon sources were lasers (green and red) and one was simulated daylight tungsten white. As each type of precious opal was exposed to each of the photon sources, the respective refractions, reflections, and transmissions were studied. This research is the first to show that applying various pleochroic and laser photon sources to these types of opals revealed significant information regarding naturally occurring photonic control, metamaterials, spontaneous laser emissions, and microspheroid cluster (inter-PBG zone) boundary effects. Plus, minimizing ambient light and the use of low power photon sources were critical to observing the properties regarding this photonic materials research. This research yielded information applicable to the development of materials to advance

  3. ITMO Photonics: center of excellence

    Science.gov (United States)

    Voznesenskaya, Anna; Bougrov, Vladislav; Kozlov, Sergey; Vasilev, Vladimir

    2016-09-01

    ITMO University, the leading Russian center in photonics research and education, has the mission to train highlyqualified competitive professionals able to act in conditions of fast-changing world. This paradigm is implemented through creation of a strategic academic unit ITMO Photonics, the center of excellence concentrating organizational, scientific, educational, financial, laboratory and human resources. This Center has the following features: dissemination of breakthrough scientific results in photonics such as advanced photonic materials, ultrafast optical and quantum information, laser physics, engineering and technologies, into undergraduate and graduate educational programs through including special modules into the curricula and considerable student's research and internships; transformation of the educational process in accordance with the best international educational practices, presence in the global education market in the form of joint educational programs with leading universities, i.e. those being included in the network programs of international scientific cooperation, and international accreditation of educational programs; development of mechanisms for the commercialization of innovative products - results of scientific research; securing financial sustainability of research in the field of photonics of informationcommunication systems via funding increase and the diversification of funding sources. Along with focusing on the research promotion, the Center is involved in science popularization through such projects as career guidance for high school students; interaction between student's chapters of international optical societies; invited lectures of World-famous experts in photonics; short educational programs in optics, photonics and light engineering for international students; contests, Olympics and grants for talented young researchers; social events; interactive demonstrations.

  4. X-ray Studies of Materials Dynamics at MHATT-CAT Sector 7 , Advanced Photon Source. Final report

    International Nuclear Information System (INIS)

    Roy Clarke

    2006-01-01

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-03ER46023 during the period 12/01/02-11/30/05. The funding supported a vigorous scientific program allowing the PI to achieve leadership in a number of important areas. In particular, research carried out during this period has opened way to ultrafast dynamics studies of materials by combining the capabilities of synchrotron radiation with those of ultrafast lasers. This enables the initiation of laser-induced excitations and studies of their subsequent dynamics using laser-pump/x-ray probe techniques. Examples of such excitations include phonons, shock waves, excitons, spin-waves, and polaritons. The breadth of phenomena that can now be studied in the time-domain is very broad, revealing new phenomena and mechanisms that are critical to many applications of materials

  5. Topology Optimization for Photonic Crystal Waveguide Intersection with Wide and Flat Bandwidths in Ultra-Fast All-Optical Switch (PC-SMZ)

    DEFF Research Database (Denmark)

    Sugimoto, Y; Watanabe, Y; Ikeda, N

    2006-01-01

    Numerical and experimental studies on the photonic crystal waveguide intersection based on the topology optimization design method are reported and the effectiveness is shown by achieving high transmission spectra with low crosstalk for the straightforward beam-propagation line....

  6. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    Science.gov (United States)

    Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin G.; Abdeldayem, Hossin A.; Smith, David D.; Witherow, William K.

    1997-01-01

    Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, PolyDiAcetylenes (PDA's) and PhthaloCyanines (Pc's) are excellent NonLinear Optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing. Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at the Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriation device designs consistent with selected applications. One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in a thermalgradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.

  7. Simulation of photon attenuation coefficients for high effective shielding material Lead-Boron Polyethyene

    Science.gov (United States)

    Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.

    2017-12-01

    The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.

  8. Photon energy conversion by near-zero permittivity nonlinear materials

    Science.gov (United States)

    Luk, Ting S.; Sinclair, Michael B.; Campione, Salvatore

    2017-12-19

    Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (.lamda./42 thick) on a glass substrate for a pump wavelength of 1.4 .mu.m was demonstrated. A conversion efficiency of 3.3.times.10.sup.-6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  9. Integrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials

    Directory of Open Access Journals (Sweden)

    Hyung-Jong Lee

    2011-06-01

    Full Text Available Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully commercialized polymeric integrated optic devices, variable optical attenuators and digital optical switches, are reviewed in this paper. Utilizing unique properties of optical polymers which are not available in other optical materials, novel polymeric optical devices are proposed including widely tunable external cavity lasers and integrated optical current sensors.

  10. Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies

    Science.gov (United States)

    Mirji, Rajeshwari; Lobo, Blaise

    2017-06-01

    The gamma ray mass attenuation coefficients of ten synthetic polymeric materials, namely, polyethylene (PE), polystyrene (PS), polycarbonate (PC), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), Polyethylene terephthalate (PET), Polyvinyl pyrrolidone (PVP), Polytetrafluoroethylene (PTFE), Polypropylene (PP) and Polymethyl methacrylate (PMMA) have been calculated using second order polynomial equation and logarithmic interpolation formula at selected gamma photon energies, in the energy range starting from 14.4 keV up to 1332 keV. It is important to note that second order polynomial equation fits very well with NIST data for all the polymeric materials considered here, for gamma photon energies ranging from 300 keV up to 2000 keV. Third order polynomial fitting is best suited for lower gamma photon energies (from 10 keV up to 200 keV).

  11. Photonics

    Science.gov (United States)

    1991-01-01

    Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.

  12. High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies

    International Nuclear Information System (INIS)

    de Lustrac, A.; Gadot, F.; Akmansoy, E.; Brillat, T.

    2001-01-01

    In this letter, we experimentally demonstrate the capability of a controllable photonic bandgap (CPBG) material to conform the emitted radiation of a planar antenna at 12 GHz. The CPBG material is a variable conductance lattice fabricated with high-frequency PIN diodes soldered along metallic stripes on dielectric printed boards. Depending on the diode bias, the emitted radiation of the antenna can be either transmitted or totally reflected by the material. In the transmission state, the antenna radiation is spatially filtered by the CPBG material in a sharp beam perpendicular to the surface of the material. [copyright] 2001 American Institute of Physics

  13. Novel biocompatible materials for in vivo two-photon polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Torgersen, J.

    2013-07-01

    Two-photon polymerisation (2PP) is a versatile laser fabrication technique that allows the creation of 3D structures at micro- and nanometre precision. The structures are created additively in direct accordance to a computer-aided design (CAD). It requires tightly focused fs-pulsed light sources usually operating in the near infrared wavelength range. In this region, biological tissues exhibit a window of transparency and only absorb light minimally. When operating below a certain pulse energy threshold, the laser light does not cause any cellular damage. This theoretically allows inducing 2PP in the presence of living biological tissues and cells. Suitable biocompatible formulations that can render bioactive constructs would potentially allow building a dynamic environment with topographical, chemical and mechanical cues similar to that of the natural extracellular matrix. In that way, 2PP would allow to alter key elements of this environment without changing any other influencing factors. To explore these possibilities, 2PP has to overcome two main limitations, the slow process speeds and the lack of available optimised formulations. In this thesis, we report the design and realisation of a 2PP experimental setup, which allows fabricating hydrogel structures from novel water-based formulations. Writing speeds of above 100 mm/s are feasible, which is the highest speed reported in 2PP. Moreover, the presented components have the potential to be formed in vivo, in the presence of living cells and tissues. Using water-soluble two-photon optimised photoinitiators, we could effectively cross-link acrylates in formulations of up to 80% water content. As acrylates show a tendency towards Michael addition to proteins, we explored the use of vinyl ester and vinyl carbonate monomers for 2PP. In contrast to acrylic polymers, which form potentially toxic poly (acrylic acid), vinyl ester and carbonate polymers form biocompatible poly (vinyl alcohol) during degradation

  14. Structured Light-Matter Interactions Enabled By Novel Photonic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Litchinitser, Natalia [Univ. at Buffalo, NY (United States); Feng, Liang [Univ. at Buffalo, NY (United States)

    2017-05-02

    The synergy of complex materials and complex light is expected to add a new dimension to the science of light and its applications [1]. The goal of this program is to investigate novel phenomena emerging at the interface of these two branches of modern optics. While metamaterials research was largely focused on relatively “simple” linearly or circularly polarized light propagation in “complex” nanostructured, carefully designed materials with properties not found in nature, many singular optics studies addressed “complex” structured light transmission in “simple” homogeneous, isotropic, nondispersive transparent media, where both spin and orbital angular momentum are independently conserved. However, if both light and medium are complex so that structured light interacts with a metamaterial whose optical materials properties can be designed at will, the spin or angular momentum can change, which leads to spin-orbit interaction and many novel optical phenomena that will be studied in the proposed project. Indeed, metamaterials enable unprecedented control over light propagation, opening new avenues for using spin and quantum optical phenomena, and design flexibility facilitating new linear and nonlinear optical properties and functionalities, including negative index of refraction, magnetism at optical frequencies, giant optical activity, subwavelength imaging, cloaking, dispersion engineering, and unique phase-matching conditions for nonlinear optical interactions. In this research program we focused on structured light-matter interactions in complex media with three particularly remarkable properties that were enabled only with the emergence of metamaterials: extreme anisotropy, extreme material parameters, and magneto-electric coupling–bi-anisotropy and chirality.

  15. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors

    NARCIS (Netherlands)

    Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M.

    2014-01-01

    Current developments in the field of thermotropic chiral-nematic liquid crystals as sensors are discussed. These one dimensional photonic materials are based on low molecular weight liquid crystals and chiral-nematic polymeric networks. For both low molecular weight LCs and polymer networks,

  16. Focused-ion-beam nano-structuring of photonic cavities in dielectric materials

    NARCIS (Netherlands)

    Ay, F.; Pollnau, Markus

    Focused ion beam (FIB) milling is an emerging technology that enables fast, reliable and well-controlled nanometer-size feature definition. In this work we will discuss applications of the tool in the area of photonics. The FIB technique can be adapted and optimized almost for any material system

  17. Instrumental neutron and photon activation analyses of selected geochemical reference materials

    Czech Academy of Sciences Publication Activity Database

    Mizera, Jiří; Řanda, Zdeněk

    2010-01-01

    Roč. 284, č. 1 (2010), s. 157-163 ISSN 0236-5731 R&D Projects: GA AV ČR IAA300130706 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron activation analysis * photon activation analysis * geochemical reference materials Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.777, year: 2010

  18. Instrumental neutron and photon activation analyses of selected geochemical reference materials

    Czech Academy of Sciences Publication Activity Database

    Mizera, Jiří; Řanda, Z.

    2010-01-01

    Roč. 284, č. 1 (2010), s. 157-163 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z30460519 Keywords : neutron activation analysis * photon activation analysis * geochemical reference materials Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Analytical chemistry Impact factor: 0.777, year: 2010

  19. Two-photon polymerization of an epoxy-acrylate resin material system

    International Nuclear Information System (INIS)

    Winfield, R.J.; O'Brien, S.

    2011-01-01

    Improved material systems are of great interest in the development of two-photon polymerization techniques for the fabrication of three dimensional micro- and nano-structures. The properties of the photosensitive resin are important in the realisation of structures with submicron dimensions. In this study investigation of a custom organic resin, cross-linked by a two-photon induced process, using a femtosecond Ti:sapphire laser, is described. A structural, optical and mechanical analysis of the optimised material is presented. The influence of both material system and laser processing parameters on achievable micro-structure and size is presented as are representative structures. Parameters include: laser power, photo-initiator concentration and material composition.

  20. Searching for illicit materials using nuclear resonance fluorescence stimulated by narrow-band photon sources

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.S., E-mail: johnson329@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); San Jose State University, San Jose, CA 95192 (United States); Hagmann, C.A.; Hall, J.M.; McNabb, D.P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kelley, J.H.; Huibregtse, C. [North Carolina State University, Raleigh, NC 27695 (United States); Kwan, E.; Rusev, G.; Tonchev, A.P. [Duke University, Durham, NC 27708 (United States)

    2012-08-15

    We report the results of an experimental study of the sensitivity of two distinct classes of systems that exploit nuclear resonance fluorescence (NRF) to search for illicit materials in containers. One class of systems is based on the direct detection of NRF photons emitted from isotopes of interest. The other class infers the presence of a particular isotope by observing the preferential attenuation of resonant photons in the incident beam. We developed a detailed analytical model for both approaches. We performed experiments to test the model using depleted uranium as a surrogate for illicit material and used tungsten as a random choice for shielding. We performed the experiments at Duke University's High Intensity Gamma Source (HIGS). Using the methodology we detail in this paper one can use this model to estimate the performance of potential inspection systems in certifying containers as free of illicit materials and for detecting the presence of those same materials.

  1. Photon Interaction Studies with Some Glasses and Building Materials

    International Nuclear Information System (INIS)

    Singh, Harvinder; Singh, Kulwant; Sharma, Gopi; Nathuram, R.; Sahota, H.S.

    2002-01-01

    Mass attenuation coefficients of some shielding materials, namely, Bakelite, black cement, white cement, plaster of paris, and concrete were determined at 356-, 511-, 662-, 1173-, and 1332-keV energies, and those of glasses containing oxides of B, Cd, Pb, and Bi were determined only at 662 keV using a narrow beam transmission method. These coefficients of glasses were then used to determine their interaction cross sections, effective atomic numbers, and electron densities. Good agreement was observed between the experimental and theoretical values. It has been proven that glasses have a potential application as a transparent radiation shielding

  2. Photon-Electron Interactions in Dirac Quantum Materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaodong [Univ. of Washington, Seattle, WA (United States). Dept. of Material Science and Engineering

    2017-11-10

    The objective of this proposal was to explore the fundamental light-matter interactions in a new class of Dirac quantum materials, atomically thin transition metal dichalcogenides (TMDs). Monolayer TMDs are newly discovered two-dimensional semiconductors with direct bandgap. Due to their hexagonal lattice structure, the band edge localizes at corner of Brillouin zone, i.e. “Dirac valleys”. This gives the corresponding electron states a “valley index” (or pseudospin) in addition to the real spin. Remarkably, the valley pseudospins have circularly polarized optical selection rules, providing the first solid state system for dynamic control of the valley degree of freedom. During this award, we have developed a suite of advanced nano-optical spectroscopy tools in the investigation and manipulation of charge, spin, and valley degrees of freedom in monolayer semiconductors. Emerging physical phenomena, such as quantum coherence between valley pseudospins, have been demonstrated for the first time in solids. In addition to monolayers, we have developed a framework in engineering, formulating, and understanding valley pseudospin physics in 2D heterostructures formed by different monolayer semiconductors. We demonstrated long-lived valley-polarized interlayer excitons with valley-dependent many-body interaction effects. These works push the research frontier in understanding the light-matter interactions in atomically-thin quantum materials for protentional transformative energy technologies.

  3. Skin damage probabilities using fixation materials in high-energy photon beams

    International Nuclear Information System (INIS)

    Carl, J.; Vestergaard, A.

    2000-01-01

    Patient fixation, such as thermoplastic masks, carbon-fibre support plates and polystyrene bead vacuum cradles, is used to reproduce patient positioning in radiotherapy. Consequently low-density materials may be introduced in high-energy photon beams. The aim of the this study was to measure the increase in skin dose when low-density materials are present and calculate the radiobiological consequences in terms of probabilities of early and late skin damage. An experimental thin-windowed plane-parallel ion chamber was used. Skin doses were measured using various overlaying low-density fixation materials. A fixed geometry of a 10 x 10 cm field, a SSD = 100 cm and photon energies of 4, 6 and 10 MV on Varian Clinac 2100C accelerators were used for all measurements. Radiobiological consequences of introducing these materials into the high-energy photon beams were evaluated in terms of early and late damage of the skin based on the measured surface doses and the LQ-model. The experimental ion chamber save results consistent with other studies. A relationship between skin dose and material thickness in mg/cm 2 was established and used to calculate skin doses in scenarios assuming radiotherapy treatment with opposed fields. Conventional radiotherapy may apply mid-point doses up to 60-66 Gy in daily 2-Gy fractions opposed fields. Using thermoplastic fixation and high-energy photons as low as 4 MV do increase the dose to the skin considerably. However, using thermoplastic materials with thickness less than 100 mg/cm 2 skin doses are comparable with those produced by variation in source to skin distance, field size or blocking trays within clinical treatment set-ups. The use of polystyrene cradles and carbon-fibre materials with thickness less than 100 mg/cm 2 should be avoided at 4 MV at doses above 54-60 Gy. (author)

  4. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  5. Broadband one-dimensional photonic crystal wave plate containing single-negative materials.

    Science.gov (United States)

    Chen, Yihang

    2010-09-13

    The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.

  6. Photonics in South Africa

    CSIR Research Space (South Africa)

    Bollig, C

    2007-12-01

    Full Text Available : photonics, ultrafast and ultra- intense laser science (Heinrich Schwoerer, University of Stellenbosch); quantum information processing and communication (Francesco Petruccione, University of KwaZulu-Natal); medicinal chemistry and nanotechnology... of experience in diamond research, where scientists are now turning their attention to diamond for photonic devices. �ere is an active community in South Africa studying the potential of diamond as a single-photon source for applications in quantum...

  7. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion

    Science.gov (United States)

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O’Hanlon, Sally; Geaney, Hugh; O’Dwyer, Colm

    2016-01-01

    Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided. PMID:27877904

  8. Ultrafast Optical Signal Processing with Bragg Structures

    Directory of Open Access Journals (Sweden)

    Yikun Liu

    2017-05-01

    Full Text Available The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.

  9. Seeing in 4D with electrons: development of ultrafast electron microscopy at Caltech

    International Nuclear Information System (INIS)

    Baskin, J.S.; Zewail, A.H.

    2014-01-01

    The vision to develop 4D electron microscopy, a union of the capabilities of electron microscopy with ultrafast techniques to capture clearly defined images of the nano-scale structure of a material at each step in the course of its chemical or physical transformations, has been pursued at Caltech for the last decade. In this contribution, we will give a brief overview of the capabilities of three currently active Caltech 4D microscopy laboratories. Ongoing work is illustrated by a description of the most recent application of photon-induced near-field electron microscopy (PINEM), a field made possible only by the development of the 4D ultrafast electron microscopy (UEM). An appendix gives the various applications made so far and the historic roots of the development at Caltech. (authors)

  10. Wave propagation inside one-dimensional photonic crystals with single-negative materials

    International Nuclear Information System (INIS)

    Wang Ligang; Chen Hong; Zhu Shiyao

    2006-01-01

    The propagation of light waves in one-dimensional photonic crystals (1DPCs) composed of alternating layers of two kinds of single-negative materials is investigated theoretically. The phase velocity is negative when the frequency of the light wave is smaller than the certain critical frequency ω cr , while the Poynting vector is always positive. At normal incidence, such 1DPCs may act as equivalent left-handed materials. At the inclined incidence, the effective wave vectors inside such 1DPCs do refract negatively, while the effective energy flows do not refract negatively. Therefore, at the inclined incidence, the 1DPCs are not equivalent to the left-handed materials

  11. Evaluation of two water-equivalent phantom materials for output calibration of photon and electron beams

    International Nuclear Information System (INIS)

    Liu Lizhong; Prasad, Satish C.; Bassano, Daniel A.

    2003-01-01

    Two commercially available water-equivalent solid phantom materials were evaluated for output calibration in both photon (6-15 MV) and electron (6-20 MeV) beams. The solid water 457 and virtual water materials have the same chemical composition but differ in manufacturing process and density. A Farmer-type ionization chamber was used for measuring the output of the photon beams at 5- and 10-cm depth and electron beams at maximum buildup depth in the solid phantoms and in natural water. The water-equivalency correction factor for the solid materials is defined as the ratio of the chamber reading in natural water to that in the solid at the same linear depth. For photon beams, the correction factor was found to be independent of depth and was 0.987 and 0.993 for 6- and 15-MV beams, respectively, for solid water. For virtual water, the corresponding correction factors were 0.993 and 0.998 for 6- and 15-MV beams, respectively. For electron beams, the correction factors ranged from 1.013 to 1.007 for energies of 6 to 20 MeV for both solid materials. This indicated that the water-equivalency of these materials is within ± 1.3%, making them suitable substitutes for natural water in both photon and electron beam output measurements over a wide energy range. These correction factors are slightly larger than the manufacturers' advertised values (± 1.0% for solid water and ± 0.5% for virtual water). We suggest that these corrections are large enough in most cases and should be applied in the calculation of beam outputs

  12. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials

    International Nuclear Information System (INIS)

    Prasad, S.; Singh, Vivek; Singh, A. K.

    2013-01-01

    The transfer matrix method is used to study the effect of the permittivity profile on the reflectivity of a one dimensional plasma photonic crystal having exponentially graded material. The analysis shows that the proposed structure works as a perfect mirror within a certain frequency range. These frequency ranges can be completely controlled by the permittivity profile of a graded dielectric layer. As expected we observed that these frequency ranges are also controlled by plasma parameters. (plasma technology)

  13. Developing intra-curricular photonics educational material for secondary schools in Europe

    Science.gov (United States)

    Prasad, Amrita; Debaes, Nathalie; Fischer, Robert; Thienpont, Hugo

    2014-07-01

    There is an imminent shortage of skilled workforce facing Europe's hi-tech industries mainly due to the declining interest of young people in science and engineering careers. To avert this trend the European Union funded the development of the `Photonics Explorer' - an intra-curricular educational kit designed to engage, excite and educate students about the fascination of working with optics hands-on, in their own classrooms! Each kit equips teachers with class sets of experimental components provided within a supporting didactic framework based on guided inquiry based learning techniques. The material has been specifically designed to integrate into the curriculum and enhance and complement the teaching and learning of science in the classroom. The kits are provided free of charge to teachers, in conjunction with teacher training courses. The main challenge of this program was the development of educational material that seamlessly integrates into the various national curricula across Europe. To achieve this, the development process included a preparatory EU wide curricula survey and a special `Review and Revise' process bringing together the expertise of over 35 teachers and pedagogic experts. This paper reports on the results of the preparatory study which identified two specific age groups at secondary schools for photonics educational material, the didactic content of the Photonics Explorer kit resulting from a pan-European collaboration of key stakeholders, EU wide dissemination and sustainability of the program.

  14. Optics Communications: Special issue on Polymer Photonics and Its Applications

    Science.gov (United States)

    Zhang, Ziyang; Pitwon, Richard C. A.; Feng, Jing

    2016-03-01

    In the last decade polymer photonics has witnessed a tremendous boost in research efforts and practical applications. Polymer materials can be engineered to exhibit unique optical and electrical properties. Extremely transparent and reliable passive optical polymers have been made commercially available and paved the ground for the development of various waveguide components. Advancement in the research activities regarding the synthesis of active polymers has enabled devices such as ultra-fast electro-optic modulators, efficient white light emitting diodes, broadband solar cells, flexible displays, and so on. The fabrication technology is not only fast and cost-effective, but also provides flexibility and broad compatibility with other semiconductor processing technologies. Reports show that polymers have been integrated in photonic platforms such as silicon-on-insulator (SOI), III-V semiconductors, and silica PLCs, and vice versa, photonic components made from a multitude of materials have been integrated, in a heterogeneous/hybrid manner, in polymer photonic platforms.

  15. Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography

    Directory of Open Access Journals (Sweden)

    Thomas Weidinger

    2016-01-01

    Full Text Available This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs in computed tomography. It is based on local approximations (surrogates of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD.

  16. Ultrasensitive Sensing Material Based on Opal Photonic Crystal for Label-Free Monitoring of Transferrin.

    Science.gov (United States)

    Wu, Enqi; Peng, Yuan; Zhang, Xihao; Bai, Jialei; Song, Yanqiu; He, Houluo; Fan, Longxing; Qu, Xiaochen; Gao, Zhixian; Liu, Ying; Ning, Baoan

    2017-02-22

    A new opal photonic crystal (PC) sensing material, allowing label-free detection of transferrin (TRF), is proposed in the current study. This photonic crystal was prepared via a vertical convective self-assembly method with monodisperse microspheres polymerized by methyl methacrylate (MMA) and 3-acrylamidophenylboronic acid (AAPBA). FTIR, TG, and DLS were used to characterize the components and particle size of the monodisperse microspheres. SEM was used to observe the morphology of the PC. The diffraction peak intensity decreases as the TRF concentration increase. This was due to the combination of TRF to the boronic acid group of the photonic crystal. After condition optimization, a standard curve was obtained and the linear range of TRF concentration was from 2 × 10 -3 ng/mL to 200 ng/mL. Measurement of TRF concentration in simulated urine sample was also investigated using the sensing material. The results indicated that the PC provided a cheap, label-free, and easy-to-use alternative for TRF determination in clinical diagnostics.

  17. Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states.

    Science.gov (United States)

    Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K

    2013-08-16

    We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.

  18. A New Route for High-Purity Organic Materials: High-Pressure-Ramp-Induced Ultrafast Polymerization of 2-(Hydroxyethyl)Methacrylate

    Science.gov (United States)

    Evlyukhin, E.; Museur, L.; Traore, M.; Perruchot, C.; Zerr, A.; Kanaev, A.

    2015-12-01

    The synthesis of highly biocompatible polymers is important for modern biotechnologies and medicine. Here, we report a unique process based on a two-step high-pressure ramp (HPR) for the ultrafast and efficient bulk polymerization of 2-(hydroxyethyl)methacrylate (HEMA) at room temperature without photo- and thermal activation or addition of initiator. The HEMA monomers are first activated during the compression step but their reactivity is hindered by the dense glass-like environment. The rapid polymerization occurs in only the second step upon decompression to the liquid state. The conversion yield was found to exceed 90% in the recovered samples. The gel permeation chromatography evidences the overriding role of HEMA2•• biradicals in the polymerization mechanism. The HPR process extends the application field of HP-induced polymerization, beyond the family of crystallized monomers considered up today. It is also an appealing alternative to typical photo- or thermal activation, allowing the efficient synthesis of highly pure organic materials.

  19. Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure.

    Science.gov (United States)

    Mehdizadeh, Farhad; Soroosh, Mohammad; Alipour-Banaei, Hamed; Farshidi, Ebrahim

    2017-03-01

    In this paper, we propose what we believe is a novel all-optical analog-to-digital converter (ADC) based on photonic crystals. The proposed structure is composed of a nonlinear triplexer and an optical coder. The nonlinear triplexer is for creating discrete levels in the continuous optical input signal, and the optical coder is for generating a 2-bit standard binary code out of the discrete levels coming from the nonlinear triplexer. Controlling the resonant mode of the resonant rings through optical intensity is the main objective and working mechanism of the proposed structure. The maximum delay time obtained for the proposed structure was about 5 ps and the total footprint is about 1520  μm2.

  20. Ultrafast magnon generation in an Fe film on Cu(100).

    Science.gov (United States)

    Schmidt, A B; Pickel, M; Donath, M; Buczek, P; Ernst, A; Zhukov, V P; Echenique, P M; Sandratskii, L M; Chulkov, E V; Weinelt, M

    2010-11-05

    We report on a combined experimental and theoretical study of the spin-dependent relaxation processes in the electron system of an iron film on Cu(100). Spin-, time-, energy- and angle-resolved two-photon photoemission shows a strong characteristic dependence of the lifetime of photoexcited electrons on their spin and energy. Ab initio calculations as well as a many-body treatment corroborate that the observed properties are determined by relaxation processes involving magnon emission. Thereby we demonstrate that magnon emission by hot electrons occurs on the femtosecond time scale and thus provides a significant source of ultrafast spin-flip processes. Furthermore, engineering of the magnon spectrum paves the way for tuning the dynamic properties of magnetic materials.

  1. Omnidirectional Photonic Band Gap Using Low Refractive Index Contrast Materials and its Application in Optical Waveguides

    KAUST Repository

    Vidal Faez, Angelo

    2012-07-01

    Researchers have argued for many years that one of the conditions for omnidirectional reflection in a one-dimensional photonic crystal is a strong refractive index contrast between the two constituent dielectric materials. Using numerical simulations and the theory of Anderson localization of light, in this work we demonstrate that an omnidirectional band gap can indeed be created utilizing low refractive index contrast materials when they are arranged in a disordered manner. Moreover, the size of the omnidirectional band gap becomes a controllable parameter, which now depends on the number of layers and not only on the refractive index contrast of the system, as it is widely accepted. This achievement constitutes a major breakthrough in the field since it allows for the development of cheaper and more efficient technologies. Of particular interest is the case of high index contrast one-dimensional photonic crystal fibers, where the propagation losses are mainly due to increased optical scattering from sidewall roughness at the interfaces of high index contrast materials. By using low index contrast materials these losses can be reduced dramatically, while maintaining the confinement capability of the waveguide. This is just one of many applications that could be proven useful for this discovery.

  2. Advanced processing methods to introduce and preserve dipole orientation in organic electro-optic materials for next generation photonic devices

    Science.gov (United States)

    Huang, Su

    Organic electro-optic (E-O) materials have attracted considerable research attention in the past 20 years due to their rising potentials in a lot of novel photonic applications, such as high-speed telecommunication, terahertz generation and ultra-fast optical interconnections. Chapter 2 of this dissertation focuses on a barrier layer approach to improve the poling efficiency of electro-optic polymers. First of all, high conduction current from excessive charge injection is identified as a fundamental challenge of effective poling. After analyzing the conduction mechanism, we introduce a sol-gel derived thin titanium dioxide (TiO2) layer that can significantly block excessive charge injection and reduce the leakage current during high field poling. Ultralarge E-O coefficients, up to 160-350 pm/V at 1310 nm have been achieved by poling with such a barrier, which are 26%-40% higher than the results poled without such a TiO2 layer. This enhancement is explained by the suppressed charge injection and space charge accumulation by the insertion of the high injection barrier from the TiO2 barrier layer. In Chapter 3, the impact of the inserted barrier layer on the temporal alignment stability of E-O polymers is discussed. Considerable stability enhancement is confirmed using both standard 500-hour temporal alignment stability test at 85 °C and thermally stimulated discharge method. We suggest that the enhancement comes from improved stability of the screening charge. During poling the additional barrier layer helps to lower the injection and thus the space charge accumulation. And this reduced space charge accumulation further helps to replace the space charge part in the total formulation of screening charge with more stable interface trapped charge. We thus expand this knowledge to a group of other materials that can also block excessive charge injection and suppressed space charge accumulation, including dielectric polymers polyvinyl alcohol (PVA), poly(4-vinylphenol

  3. Band structure of comb-like photonic crystals containing meta-materials

    Science.gov (United States)

    Weng, Yi; Wang, Zhi-Guo; Chen, Hong

    2007-09-01

    We study the transmission properties and band structure of comb-like photonic crystals (PC) with backbones constructed of meta-materials (negative-index materials) within the frame of the interface response theory. The result shows the existence of a special band gap at low frequency. This gap differs from the Bragg gaps in that it is insensitive to the geometrical scaling and disorder. In comparison with the zero-average-index gap in one-dimensional PC made of alternating positive- and negative-index materials, the gap is obviously deeper and broader, given the same system parameters. In addition, the behavior of its gap-edges is also different. One gap-edge is decided by the average permittivity whereas the other is only subject to the changing of the permeability of the backbone. Due to this asymmetry of the two gap-edges, the broadening of the gap could be realized with much freedom and facility.

  4. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Science.gov (United States)

    Klimov, N. S.; Putrik, A. B.; Linke, J.; Pitts, R. A.; Zhitlukhin, A. M.; Kuprianov, I. B.; Spitsyn, A. V.; Ogorodnikova, O. V.; Podkovyrov, V. L.; Muzichenko, A. D.; Ivanov, B. V.; Sergeecheva, Ya. V.; Lesina, I. G.; Kovalenko, D. V.; Barsuk, V. A.; Danilina, N. A.; Bazylev, B. N.; Giniyatulin, R. N.

    2015-08-01

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic-martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, "corrugated" surface, with hills and valleys spaced by 0.2-2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  5. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, N.S., E-mail: klimov@triniti.ru [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Putrik, A.B. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Linke, J. [Forschungszentrum Jülich GmbH, EURATOM Association, Jülich D-52425 (Germany); Pitts, R.A. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Zhitlukhin, A.M. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Kuprianov, I.B. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Spitsyn, A.V. [NRC «Kurchatov Institute», Akademika Kurchatova pl., 1, Moscow 123182 (Russian Federation); Ogorodnikova, O.V. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Ivanov, B.V.; Sergeecheva, Ya.V.; Lesina, I.G. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Kovalenko, D.V.; Barsuk, V.A.; Danilina, N.A. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Bazylev, B.N. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Giniyatulin, R.N. [Efremov Institute, Doroga na Metallostroy, 3 bld., Metallostroy, Saint-Petersburg 196641 (Russian Federation)

    2015-08-15

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic–martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, “corrugated” surface, with hills and valleys spaced by 0.2–2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  6. Single-Photon Ionization Soft-X-Ray Laser Mass Spectrometry of Potential Hydrogen Storage Materials

    Science.gov (United States)

    Dong, F.; Bernstein, E. R.; Rocca, J. J.

    A desk-top size capillary discharge 46.9 nm lasear is applied in the gas phase study of nanoclusters. The high photon energy allows for single-photon ionization mass spectrometry with reduced cluster fragmentation. In the present studies, neutral Al m C n and Al m C n H x cluster are investigation for the first time. Single photon ionization through 46.9 nm, 118 nm, 193 nm lasers is used to detect neutral cluster distributions through time of flight mass spectrometry. Al m C n clusters are generated through laser ablation of a mixture of Al and C powders pressed into a disk. An oscillation of the vertical ionization energies (VIEs) of Al m C n clusters is observed in the experiments. The VIEs of Al m C n clusters changes as a function of the numbers of Al and C atoms in the clusters. Al m C n H x clusters are generated through an Al ablation plasma-hydrocarbon reaction, an Al-C ablation plasma reacting with H2 gas, or through cold Al m C n clusters reacting with H2 gas in a fast flow reactor. DFT and ab inito calculations are carried out to explore the structures, IEs, and electronic structures of Al m C n H x clusters. C=C bonds are favored for the lowest energy structures for Al m C n clusters. Be m C n H x are generated through a beryllium ablation plasma-hydrocarbon reaction and detected by single photon ionization of 193 nm laser. Both Al m C n H x and Be m C n H x are considered as potential hydrogen storage materials.

  7. Photon correlation spectroscopic analysis of a natural electret material: Carnauba wax

    Science.gov (United States)

    Barbosa, G. A.; Russi, R.; Pires, A. S. T.; Mesquita, O. N.

    1981-02-01

    For the first time, photon correlation spectroscopy is applied to the study of an electret material. We show that the average self-diffusion parameter of Carnauba wax in liquid phase, from 85 to 170 °C can be written as D=D0+A exp[-ΔE/k(T-T0)], where D0=1.6×10-10 and A=20×10-10 cm2/sec, ΔE=82 cm-1 and T0=68 °C

  8. Wave propagation in ordered, disordered, and nonlinear photonic band gap materials

    Energy Technology Data Exchange (ETDEWEB)

    Lidorikis, Elefterios [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    Photonic band gap materials are artificial dielectric structures that give the promise of molding and controlling the flow of optical light the same way semiconductors mold and control the electric current flow. In this dissertation the author studied two areas of photonic band gap materials. The first area is focused on the properties of one-dimensional PBG materials doped with Kerr-type nonlinear material, while, the second area is focused on the mechanisms responsible for the gap formation as well as other properties of two-dimensional PBG materials. He first studied, in Chapter 2, the general adequacy of an approximate structure model in which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers, or 6-functions, while the rest of the space is linear. This model had been used before, but its range of validity and the physical reasons for its limitations were not quite clear yet. He performed an extensive examination of many aspects of the model's nonlinear response and comparison against more realistic models with finite-width nonlinear layers, and found that the d-function model is quite adequate, capturing the essential features in the transmission characteristics. The author found one exception, coming from the deficiency of processing a rigid bottom band edge, i.e. the upper edge of the gaps is always independent of the refraction index contrast. This causes the model to miss-predict that there are no soliton solutions for a positive Kerr-coefficient, something known to be untrue.

  9. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules.

    Science.gov (United States)

    Min, Yi; Jiang, Bo; Wu, Ci; Xia, Simin; Zhang, Xiaodan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2014-08-22

    In this work, 1.9 μm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 μm superficially porous materials with 0.18 μm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 μm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 μm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 μm superficially porous silica packing materials would be promising in the ultra-fast and high

  10. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  11. Analysis of marine sediment and lobster hepatopancreas reference materials by instrumental photon activation

    International Nuclear Information System (INIS)

    Landsberger, S.; Davidson, W.F.

    1985-01-01

    By use of instrumental photon activation analysis, twelve trace (As, Ba, Cr, Co, Mn, Ni, Pb, Sb, Sr, U, Zn, and Zr) and eight minor (C, Na, Mg, Co, K, Ca, Tl, and Fe) elements were determined in a certified marine sediment standard reference material as well as eight trace (Mn, Ni, Cu, Zn, As, Sr, Cd, and Pb) and four minor (Na, Mg, Cl, and Ca) elements in a certified marine tissue (lobster hepatopancreas) standard reference material. The precision and accuracy of the present results when compared to the accepted values clearly demonstrate the reliability of this nondestructive technique and its applicability to marine environmental or marine geochemical studies. 24 references, 4 figures, 3 tables

  12. Dosimetric characteristics of Thermo-Shield material for orthovoltage photon beams

    International Nuclear Information System (INIS)

    Bahmaid, Mohammad; Kim, Siyong; Liu, Chihray R.; Palta, Jatinder R.

    2003-01-01

    Conventionally, lead has been used for field shaping in orthovoltage radiation therapy. Recently, a compensator material named Thermo-Shield was presented for field shaping in electron beams. Thermo-Shield is composed of nontoxic, high atomic weight metal particles dispersed in a thermoplastic matrix. It is manually moldable and conforms to human anatomy or any shape at temperatures of 108-132 degree sign F. It is reusable and can be continuously reshaped to better fit the treatment field. Dosimetric characteristics of thermoplastic material were studied for Philips RT250 orthovoltage photon beams ranging from 75 to 250 kVp. It was found that Thermo-Shield should be four to five times thicker than lead to achieve the same transmission (less than 5%). However, it did not cause significant degradation in penumbra. Clinical procedures for use are discussed

  13. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    Science.gov (United States)

    Shen, Xiaohan

    With the rapid advances in the development of nanotechnology, nowadays, the sizes of elementary unit, i.e. transistor, of micro- and nanoelectronic devices are well deep into nanoscale. For the pursuit of cheaper and faster nanoscale electronic devices, the size of transistors keeps scaling down. As the miniaturization of the nanoelectronic devices, the electrical resistivity increases dramatically, resulting rapid growth in the heat generation. The heat generation and limited thermal dissipation in nanoscale materials have become a critical problem in the development of the next generation nanoelectronic devices. Copper (Cu) is widely used conducting material in nanoelectronic devices, and the electron-phonon scattering is the dominant contributor to the resistivity in Cu nanowires at room temperature. Meanwhile, phonons are the main carriers of heat in insulators, intrinsic and lightly doped semiconductors. The thermal transport is an ensemble of phonon transport, which strongly depends on the phonon frequency. In addition, the phonon transport in nanoscale materials can behave fundamentally different than in bulk materials, because of the spatial confinement. However, the size effect on electron-phonon scattering and frequency dependent phonon transport in nanoscale materials remain largely unexplored, due to the lack of suitable experimental techniques. This thesis is mainly focusing on the study of carrier dynamics and acoustic phonon transport in nanoscale materials. The weak photothermal interaction in Cu makes thermoreflectance measurement difficult, we rather measured the reflectivity change of Cu induced by absorption variation. We have developed a method to separately measure the processes of electron-electron scattering and electron-phonon scattering in epitaxial Cu films by monitoring the transient reflectivity signal using the resonant probe with particular wavelengths. The enhancement on electron-phonon scattering in epitaxial Cu films with thickness

  14. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  15. Switching mechanism due to the spontaneous emission cancellation in photonic band gap materials doped with nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Canada N6A 3K7 (Canada)]. E-mail: msingh@uwo.ca

    2007-03-26

    We have investigated the switching mechanism due to the spontaneous emission cancellation in a photonic band gap (PBG) material doped with an ensemble of four-level nano-particles. The effect of the dipole-dipole interaction has also been studied. The linear susceptibility has been calculated in the mean field theory. Numerical simulations for the imaginary susceptibility are performed for a PBG material which is made from periodic dielectric spheres. It is predicted that the system can be switched between the absorbing state and the non-absorbing state by changing the resonance energy within the energy bands of the photonic band gap material.0.

  16. Experimental Observations of Nuclear Activity in Deuterated Materials Subjected to a Low-Energy Photon Beam

    Science.gov (United States)

    Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.; hide

    2017-01-01

    Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.

  17. Development of new type of nonlinear optical materials with a function of ultrafast optical modulation; Chokosoku hikari reiki hencho kino wo motsu atarashii hisenkei kogaku zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, H. [Shizuoka University, Shizuoka (Japan). Research Institute of Electronics

    1995-12-15

    Ultrafast modulation of second harmonies from a Langmuir-Blodgett film consisting of a ruthenium complex was demonstrated for the first time. The mechanism of the modulator of SHG intensity on laser irradiation was ascribed to the change of molecular hyperpolarizability of the ruthenium complex on going from the ground state to the excited state. 9 refs., 12 figs.

  18. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  19. Fatigue life extension of epoxy materials using ultrafast epoxy-SbF5 healing system introduced by manual infiltration

    Directory of Open Access Journals (Sweden)

    X. J. Ye

    2015-03-01

    Full Text Available The present paper is devoted to the verification of the capability of epoxy-SbF5 system as a healing chemistry for rapidly retarding and/or arresting fatigue cracks in epoxy materials at room temperature. Owing to the very fast curing speed of epoxy catalyzed by SbF5, epoxy monomer and the hardener (ethanol solution of SbF5–ethanol complex are successively infiltrated into the fracture plane under cyclic loading during the tension-tension fatigue test. As a result, the mechanisms including hydrodynamic pressure crack tip shielding, polymeric wedge and adhesive bonding of the healing agent are revealed. It is found that the healing agent forms solidified wedge at the crack tip within 20 s after start of polymerization of the epoxy monomer, so that the highest healing effect is offered at the moment. The epoxy-SbF5 system proves to be effective in rapidly obstructing fatigue crack propagation (despite that its cured version has lower fracture toughness than the matrix, and satisfies the requirement of constructing fast self-healing polymeric materials.

  20. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.

    Science.gov (United States)

    Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-30

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  1. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials

    Directory of Open Access Journals (Sweden)

    Giulio Gorni

    2018-01-01

    Full Text Available Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  2. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials

    Science.gov (United States)

    Gorni, Giulio; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-01

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications. PMID:29385706

  3. Characterization of the phantom material virtual water in high-energy photon and electron beams.

    Science.gov (United States)

    McEwen, M R; Niven, D

    2006-04-01

    The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.

  4. Investigation of 1-cm dose equivalent for photons behind shielding materials

    International Nuclear Information System (INIS)

    Hirayama, Hideo; Tanaka, Shun-ichi

    1991-03-01

    The ambient dose equivalent at 1-cm depth, assumed equivalent to the 1-cm dose equivalent in practical dose estimations behind shielding slabs of water, concrete, iron or lead for normally incident photons having various energies was calculated by using conversion factors for a slab phantom. It was compared with the 1-cm depth dose calculated with the Monte Carlo code EGS4. It was concluded from this comparison that the ambient dose equivalent calculated by using the conversion factors for the ICRU sphere could be used for the evaluation of the 1-cm dose equivalent for the sphere phantom within 20% errors. Average and practical conversion factors are defined as the conversion factors from exposure to ambient dose equivalent in a finite slab or an infinite one, respectively. They were calculated with EGS4 and the discrete ordinates code PALLAS. The exposure calculated with simple estimation procedures such as point kernel methods can be easily converted to ambient dose equivalent by using these conversion factors. The maximum value between 1 and 30 mfp can be adopted as the conversion factor which depends only on material and incident photon energy. This gives the ambient dose equivalent on the safe side. 13 refs., 7 figs., 2 tabs

  5. Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing.

    Science.gov (United States)

    Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng

    2013-07-19

    Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ultrafast demagnetisation dependence on film thickness: A TDDFT calculation

    Science.gov (United States)

    Singh, N.; Sharma, S.

    2018-04-01

    Ferromagnetic materials when subjected to intense laser pulses leads to reduction of their magnetisation on an ultrafast scale. Here, we perform an ab-initio calculation to study the behavior of ultrafast demagnetisation as a function of film thickness for Nickel as compared to the bulk of the material. In thin films surface formation results in amplification of demagnetisation with the percentage of demagnetisation depending upon the film thickness.

  7. Photonic band gap materials in butterfly scales: A possible source of 'blueprints'

    International Nuclear Information System (INIS)

    Kertesz, K.; Molnar, G.; Vertesy, Z.; Koos, A.A.; Horvath, Z.E.; Mark, G.I.; Tapaszto, L.; Balint, Zs.; Tamaska, I.; Deparis, O.; Vigneron, J.P.; Biro, L.P.

    2008-01-01

    The color generating nanoarchitectures in the cover scales of the blue (dorsal)-green (ventral) wing surfaces of the butterfly Albulina metallica were investigated by scanning electron microscopy and cross-sectional transmission electron microscopy. A layered, quasiordered structure was revealed in both the dorsal and ventral scales, with different order parameters, associated with their different colors. A successful attempt was made to reproduce the biological structure in the form of a quasiordered composite (SiO/(In and SiO)) multilayer structure using standard thin film deposition techniques. The position of the reflectance maxima of this artificial structure could be tailored by controlling the size of the In inclusions through oxidation. Our results show that photonic band gap materials of biologic origin may constitute valuable blueprints for artificial structures

  8. Application of an efficient materials perturbation technique to Monte Carlo photon transport calculations in borehole logging

    International Nuclear Information System (INIS)

    Picton, D.J.; Harris, R.G.; Randle, K.; Weaver, D.R.

    1995-01-01

    This paper describes a simple, accurate and efficient technique for the calculation of materials perturbation effects in Monte Carlo photon transport calculations. It is particularly suited to the application for which it was developed, namely the modelling of a dual detector density tool as used in borehole logging. However, the method would be appropriate to any photon transport calculation in the energy range 0.1 to 2 MeV, in which the predominant processes are Compton scattering and photoelectric absorption. The method enables a single set of particle histories to provide results for an array of configurations in which material densities or compositions vary. It can calculate the effects of small perturbations very accurately, but is by no means restricted to such cases. For the borehole logging application described here the method has been found to be efficient for a moderate range of variation in the bulk density (of the order of ±30% from a reference value) or even larger changes to a limited portion of the system (e.g. a low density mudcake of the order of a few tens of mm in thickness). The effective speed enhancement over an equivalent set of individual calculations is in the region of an order of magnitude or more. Examples of calculations on a dual detector density tool are given. It is demonstrated that the method predicts, to a high degree of accuracy, the variation of detector count rates with formation density, and that good results are also obtained for the effects of mudcake layers. An interesting feature of the results is that relative count rates (the ratios of count rates obtained with different configurations) can usually be determined more accurately than the absolute values of the count rates. (orig.)

  9. A unified statistical framework for material decomposition using multienergy photon counting x-ray detectors

    International Nuclear Information System (INIS)

    Choi, Jiyoung; Kang, Dong-Goo; Kang, Sunghoon; Sung, Younghun; Ye, Jong Chul

    2013-01-01

    Purpose: Material decomposition using multienergy photon counting x-ray detectors (PCXD) has been an active research area over the past few years. Even with some success, the problem of optimal energy selection and three material decomposition including malignant tissue is still on going research topic, and more systematic studies are required. This paper aims to address this in a unified statistical framework in a mammographic environment.Methods: A unified statistical framework for energy level optimization and decomposition of three materials is proposed. In particular, an energy level optimization algorithm is derived using the theory of the minimum variance unbiased estimator, and an iterative algorithm is proposed for material composition as well as system parameter estimation under the unified statistical estimation framework. To verify the performance of the proposed algorithm, the authors performed simulation studies as well as real experiments using physical breast phantom and ex vivo breast specimen. Quantitative comparisons using various performance measures were conducted, and qualitative performance evaluations for ex vivo breast specimen were also performed by comparing the ground-truth malignant tissue areas identified by radiologists.Results: Both simulation and real experiments confirmed that the optimized energy bins by the proposed method allow better material decomposition quality. Moreover, for the specimen thickness estimation errors up to 2 mm, the proposed method provides good reconstruction results in both simulation and real ex vivo breast phantom experiments compared to existing methods.Conclusions: The proposed statistical framework of PCXD has been successfully applied for the energy optimization and decomposition of three material in a mammographic environment. Experimental results using the physical breast phantom and ex vivo specimen support the practicality of the proposed algorithm

  10. Hybrid photonic-crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Travers, John C.; Abdolvand, Amir

    2017-01-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various...... is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated...... with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse...

  11. On-chip photonic synapse.

    Science.gov (United States)

    Cheng, Zengguang; Ríos, Carlos; Pernice, Wolfram H P; Wright, C David; Bhaskaran, Harish

    2017-09-01

    The search for new "neuromorphic computing" architectures that mimic the brain's approach to simultaneous processing and storage of information is intense. Because, in real brains, neuronal synapses outnumber neurons by many orders of magnitude, the realization of hardware devices mimicking the functionality of a synapse is a first and essential step in such a search. We report the development of such a hardware synapse, implemented entirely in the optical domain via a photonic integrated-circuit approach. Using purely optical means brings the benefits of ultrafast operation speed, virtually unlimited bandwidth, and no electrical interconnect power losses. Our synapse uses phase-change materials combined with integrated silicon nitride waveguides. Crucially, we can randomly set the synaptic weight simply by varying the number of optical pulses sent down the waveguide, delivering an incredibly simple yet powerful approach that heralds systems with a continuously variable synaptic plasticity resembling the true analog nature of biological synapses.

  12. The disorder effect on the performance of novel waveguides constructed in two-dimensional amorphous photonic materials

    International Nuclear Information System (INIS)

    Chen Xiao; Wang Yi-Quan

    2011-01-01

    On the basis of two-dimensional amorphous photonic materials, we have designed a novel waveguide by inserting thinner cylindrical inclusions in the centre of basic hexagonal units of the amorphous structure along a given path. This waveguide in amorphous structure is similar to the coupled resonator optical waveguides in periodic photonic crystals. The transmission of this waveguide for S-polarized waves is investigated by a multiple-scattering method. Compared with the conventional waveguide by removing a line of cells from amorphous photonic materials, the guiding properties of this waveguide, including the transmissivity and bandwidth, are improved significantly. Then we study the effect of various types of positional disorder on the functionality of this device. Our results show that the waveguide performance is quite sensitive to the disorder located on the boundary layer of the waveguide, but robust against the disorder in the other area in amorphous structure except the waveguide border. This disorder effect in amorphous photonic materials is similar to the case in periodic photonic crystals. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. High Harmonic Generation XUV Spectroscopy for Studying Ultrafast Photophysics of Coordination Complexes

    Science.gov (United States)

    Ryland, Elizabeth S.; Lin, Ming-Fu; Benke, Kristin; Verkamp, Max A.; Zhang, Kaili; Vura-Weis, Josh

    2017-06-01

    Extreme ultraviolet (XUV) spectroscopy is an inner shell technique that probes the M_{2,3}-edge excitation of atoms. Absorption of the XUV photon causes a 3p→3d transition, the energy and shape of which is directly related to the element and ligand environment. This technique is thus element-, oxidation state-, spin state-, and ligand field specific. A process called high-harmonic generation (HHG) enables the production of ultrashort (˜20fs) pulses of collimated XUV photons in a tabletop instrument. This allows transient XUV spectroscopy to be conducted as an in-lab experiment, where it was previously only possible at accelerator-based light sources. Additionally, ultrashort pulses provide the capability for unprecedented time resolution (˜50fs IRF). This technique has the capacity to serve a pivotal role in the study of electron and energy transfer processes in materials and chemical biology. I will present the XUV transient absorption instrument we have built, along with ultrafast transient M_{2,3}-edge absorption data of a series of small inorganic molecules in order to demonstrate the high specificity and time resolution of this tabletop technique as well as how our group is applying it to the study of ultrafast electronic dynamics of coordination complexes.

  14. Light propagation in two-dimensional photonic crystals based on uniaxial polar materials: results on polaritonic spectrum

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Pérez-Quintana, I. V.; Mora-Ramos, M. E.

    2017-03-01

    The dispersion relations of two-dimensional photonic crystals made of uniaxial polaritonic cylinders arranged in triangular lattice are calculated. The particular case of the transverse magnetic polarization is taken into account. Three different uniaxial materials showing transverse phonon-polariton excitations are considered: aluminum nitride, gallium nitride, and indium nitride. The study is carried out by means of the finite-difference time-domain technique for the solution of Maxwell equations, together with the method of the auxiliary differential equation. It is shown that changing the filling fraction can result in the modification of both the photonic and polaritonic bandgaps in the optical dispersion relations. Wider gaps appear for smaller filling fraction values, whereas a larger number of photonic bandgaps will occur within the frequency range considered when a larger filling fraction is used. The effect of including the distinct wurtzite III-V nitride semiconductors as core materials in the cylinders embedded in the air on the photonic properties is discussed as well, highlighting the effect of the dielectric anisotropy on the properties of the polaritonic part of the photonic spectrum.

  15. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  16. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    International Nuclear Information System (INIS)

    Kumpová, I.; Jandejsek, I.; Jakůbek, J.; Vopálenský, M.; Vavřík, D.; Fíla, T.; Koudelka, P.; Kytýř, D.; Zlámal, P.; Gantar, A.

    2016-01-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical

  17. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    Science.gov (United States)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  18. Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft X-ray photons

    International Nuclear Information System (INIS)

    Sayre, D.; Feder, R.; Spiller, E.; Kirz, J.; Kim, D.M.

    1977-01-01

    The minimum radiation dosage in a specimen consistent with transmission microscopy at resolution d and specimen thickness t is calculated for model specimens resembling biological materials in their natural state. The calculations cover 10 4 -10 7 eV electrons and 1.3-90 A photons in a number of microscopy modes. The results indicate that over a considerable part of the (t,d)-plane transmission microscopy on such specimens can be carried out at lower dosage with photons than with electrons. Estimates of the maximum resolutions obtainable with electrons and photons, consistent with structural survival of the specimen, are obtained, as are data on optimal operating conditions for microscopy with the two particles

  19. Quantification of Fissile Materials by Photon Activation Method in a Highly Shielded Enclosure

    International Nuclear Information System (INIS)

    Dighe, P.M.; Pithawa, C.K.; Goswami, A.; Dixit, K.P.; Mittal, K.C.; Sunil, C.; Sarkar, P.K.; Mukhopadhyay, P.K.; Patil, R.K.; Srivastava, G.P.; Ganesan, S.; Venugopal, V.

    2010-01-01

    For active and non-destructive quantitative identification of heavily shielded fissile materials, photo fission is one of the most often used techniques. High energy photon beams can be conveniently generated with the help of electron LINACs. 10MeV energy electron LINACs are extensively used for various industrial applications such as food irradiation, X-ray radiography, etc. The radiological safety consideration favours the use of electron beam of upto 10 MeV energy. The photonuclear data available on 10 MeV end point energy is very scarce. The present paper gives the results of our initial experiments carried out using natural uranium samples at 10 MeV LINAC facility. Water cooled tantalum target converter was used to produce intense Bremsstrahlung to induce photofission in the samples. Neutron detection system consists of six numbers of high sensitivity Helium-3 proportional counters and gamma detection system consists of two numbers of 76 mm diameter BGO scintillators. Delayed neutron and delayed gamma radiations were measured and analyzed. The mass to count rate relationship has been established for both delayed neutron and gamma radiations. Delayed gamma decay constants of natural uranium have been derived for the 10 MeV end point energy. (author)

  20. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    Science.gov (United States)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  1. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    International Nuclear Information System (INIS)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-01-01

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  2. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities.

    Science.gov (United States)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-01

    A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  3. Optically reconfigurable metasurfaces and photonic devices based on phase change materials

    Science.gov (United States)

    Wang, Qian; Rogers, Edward T. F.; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I.

    2016-01-01

    Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.

  4. Investigation of the two-photon polymerisation of a Zr-based inorganic-organic hybrid material system

    International Nuclear Information System (INIS)

    Bhuian, B.; Winfield, R.J.; O'Brien, S.; Crean, G.M.

    2006-01-01

    Two-photon polymerisation of photo-sensitive materials allows the fabrication of three dimensional micro- and nano-structures for photonic, electronic and micro-system applications. However the usable process window and the applicability of this fabrication technique is significantly determined by the properties of the photo-sensitive material employed. In this study investigation of a custom inorganic-organic hybrid system, cross-linked by a two-photon induced process, is described. The material was produced by sol-gel synthesis using a silicon alkoxide species that also possessed methacrylate functionality. Stabilized zirconium alkoxide precursors were added to the precursor solution in order to reduce drying times and impart enhanced mechanical stability to deposited films. This enabled dry films to be used in the polymerisation process. A structural, optical and mechanical analysis of the optimised sol-gel material is presented. A Ti:sapphire laser with 80 MHz repetition rate, 100 fs pulse duration and 795 nm is used. The influence of both material system and laser processing parameters including: laser power, photo-initiator concentration and zirconium loading, on achievable micro-structure and size is presented

  5. Ultrafast gas switching experiments

    International Nuclear Information System (INIS)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1993-01-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes Khz at > 100 kV/m E field

  6. Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.

    Science.gov (United States)

    Shimizu, Katsuhiko

    2018-05-15

    Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk, resulting in the development of sericulture and the textile industry. Silk is generally white, so dyeing is required to obtain colored fiber. However, the dyeing process involves harsh conditions and generates a large volume of waste water, which have environmentally and economically negative impacts. Although some strains produce cocoons that contain pigments derived from the mulberry leaves that they eat, the pigments are distributed in the sericin layer and are lost during gumming. In trials for production of colored silk by feeding silkworms on diets containing dyes, only limited species of dye molecules were incorporated into the silk threads. A method for the generation of transgenic silkworm was established in conjunction with the discovery of green fluorescent protein (GFP), and silkworms carrying the GFP gene spun silk threads that formed cocoons that glowed bright green and still retained the original properties of silk. A wide range of color variation of silk threads has been obtained by replacing the GFP gene with the genes of other fluorescent proteins chosen from the fluorescent protein palette. The genetically modified silk with photonic properties can be processed to form various products including linear threads, 2D fabrics, and 3D materials. The transgenic colored silk could be economically advantageous due to addition of a new value to silk and reduction of cost for water waste, and environmentally preferable for saving water. Here, I review the literature regarding the production methods of fluorescent silk from transgenic silkworms and present examples of genetically modified color silk.

  7. Photoelectron Yield and Photon Reflectivity from Candidate LHC Vacuum Chamber Materials with Implications to the Vacuum Chamber Design

    CERN Document Server

    Baglin, V; Gröbner, Oswald

    1998-01-01

    Studies of the photoelectron yield and photon reflectivity at grazing incidence (11 mrad) from candidate LHC vacuum chamber materials have been made on a dedicated beam line on the Electron Positron A ccumulator (EPA) ring at CERN. These measurements provide realistic input toward a better understanding of the electron cloud phenomena expected in the LHC. The measurements were made using synchrotro n radiation with critical photon energies of 194 eV and 45 eV; the latter corresponding to that of the LHC at the design energy of 7 TeV. The test materials are mainly copper, either, i) coated by co- lamination or by electroplating onto stainless steel, or ii) bulk copper prepared by special machining. The key parameters explored were the effect of surface roughness on the reflectivity and the pho toelectron yield at grazing photon incidence, and the effect of magnetic field direction on the yields measured at normal photon incidence. The implications of the results on the electron cloud phenom ena, and thus the L...

  8. The phonon-polariton spectrum of one-dimensional Rudin-Shapiro photonic superlattices with uniaxial polar materials

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.

    2015-11-01

    The properties of the optical-phonon-associated polaritonic modes that appear under oblique light incidence in 1D superlattices made of photonic materials are studied. The investigated systems result from the periodic repetition of quasiregular Rudin-Shapiro (RS) multilayer units. It is assume that the structure consists of both passive non-dispersive layers of constant refraction index and active layers of uniaxial polar materials. In particular, we consider III-V wurtzite nitrides. The optical axis of these polaritonic materials is taken along the growth direction. Maxwell equations are solved using the transfer matrix technique for all admissible values of the incidence angle.

  9. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.

    Science.gov (United States)

    Akimov, A V; Tanaka, Y; Pevtsov, A B; Kaplan, S F; Golubev, V G; Tamura, S; Yakovlev, D R; Bayer, M

    2008-07-18

    The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets generated in a metal transducer by subpicosecond laser pulses. These studies show that light with energies close to the photonic band gap can be efficiently modulated by hypersonic waves.

  10. Microcomputed tomography with a second generation photon-counting x-ray detector: contrast analysis and material separation

    Science.gov (United States)

    Wang, X.; Meier, D.; Oya, P.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2010-04-01

    The overall aim of this work was to evaluate the potential for improving in vivo small animal microCT through the use of an energy resolved photon-counting detector. To this end, we developed and evaluated a prototype microCT system based on a second-generation photon-counting x-ray detector which simultaneously counted photons with energies above six energy thresholds. First, we developed a threshold tuning procedure to reduce the dependence of detector uniformity and to reduce ring artifacts. Next, we evaluated the system in terms of the contrast-to-noise ratio in different energy windows for different target materials. These differences provided the possibility to weight the data acquired in different windows in order to optimize the contrast-to-noise ratio. We also explored the ability of the system to use data from different energy windows to aid in distinguishing various materials. We found that the energy discrimination capability provided the possibility for improved contrast-to-noise ratios and allowed separation of more than two materials, e.g., bone, soft-tissue and one or more contrast materials having K-absorption edges in the energy ranges of interest.

  11. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    International Nuclear Information System (INIS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding

  12. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)

    2015-01-13

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  13. Wave Propagation in Linear and Nonlinear Photonic Band-Gap Materials

    National Research Council Canada - National Science Library

    Venakides, Stephanos

    2003-01-01

    .... Development of 3D boundary element code for EM scattering off photonic crystal slabs. Development of 2D FDTD code that includes nonlinearities and use in studying resonant phenomena. Nonlinear Effects...

  14. Neuromorphic photonic networks using silicon photonic weight banks.

    Science.gov (United States)

    Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2017-08-07

    Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

  15. Influence of material and geometry on the performance of superconducting nanowire single-photon detectors

    CERN Document Server

    Henrich, Dagmar

    2013-01-01

    Superconducting Nanowire Single-Photon Detectors offer the capability to detect electromagnetic waves on a single photon level in a wavelength range that far exceeds that of alternative detector types. However, above a certain threshold wavelength, the efficiency of those detectors decreases stronlgy, leading to a poor performance in the far-infrared range. Influences on this threshold are studied and approaches for improvement are verified experimentally by measurement of the device performance.

  16. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.

    Science.gov (United States)

    Schäfer, Christian G; Lederle, Christina; Zentel, Kristina; Stühn, Bernd; Gallei, Markus

    2014-11-01

    In this work, the preparation of highly thermoresponsive and fully reversible stretch-tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate-co-ethyl acrylate) (PDEGMEMA-co-PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt-shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano- and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV-induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross-linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA-containing colloidal architectures, application of the melt-shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli-responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantum and Classical Optics of Plasmonic Systems: 3D/2D Materials and Photonic Topological Insulators

    Science.gov (United States)

    Hassani Gangaraj, Seyyed Ali

    analysis of the Green's function for the surface plasmonic wave contribution of the Sommerfeld integral. The Sommerfeld integral form of the Green's function can be time-consuming to evaluate, and here, it has been shown that for the surface waves, this integral can be evaluated efficiently as a mixture of continuous and discrete spectrums associated to the radiation of the source into the ambient space and energy coupled to the SPPs. Graphene strip arrays provide directive surface waves in the low THz regime, and unperturbed black phosphorus provides a similar response for higher frequency ranges. All plasmonic devices are impacted by SPP diffraction at surface defects and discontinuities. In particular, for reciprocal materials a surface defect/discontinuity can both scatter a forward mode into a backward mode (and vice versa) and cause significant radiation/diffraction of the SPP. The presence of a backward state comes from time reversal (TR) symmetry; when broken, a backward state may be absent, and reflection at a discontinuity can be suppressed. As a result, surface energy becomes unidirectional and follows the contour of the interface. This type of system can be broadly classified as a photonic topological insulators (PTIs). The properties of PTIs are quantified by the Berry phase, Berry connection, and an invariant known as the Chern number. Also the physical meaning of the Berry phase, connection, and curvature, how these quantities arise in electromagnetic problems, and the significance of Chern numbers for unidirectional, scattering-immune surface wave propagation are discussed. The Chern numbers for the electromagnetic modes supported by a biased plasma have been calculated. It has been demonstrated that the modes supported by biased plasmas indeed possess non-trivial Chern numbers, which leads to the propagation of a topologically protected and unidirectional surface modes (energy) at the interface between the biased plasma and topologically trivial material

  18. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  19. Progress in ultrafast laser processing and future prospects

    Science.gov (United States)

    Sugioka, Koji

    2017-03-01

    The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.

  20. Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Dong, Daoyi; Petersen, Ian R.

    2017-01-01

    optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating...... nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in multilevel quantum...... systems. To that end, a multiobjective optimization algorithm is developed to find an optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical responses while maximizing the probability of single-photon absorption between quantum states. This work...

  1. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    Science.gov (United States)

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, Simon

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  3. Two-photon or higher-order absorbing optical materials and methods of use

    Science.gov (United States)

    Marder, Seth (Inventor); Perry, Joseph (Inventor)

    2012-01-01

    Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.

  4. Exploring Heterogeneous and Time-Varying Materials for Photonic Applications, Towards Solutions for the Manipulation and Confinement of Light.

    KAUST Repository

    San Roman Alerigi, Damian

    2014-01-01

    Over the past several decades our understanding and meticulous characterization of the transient and spatial properties of materials evolved rapidly. The results present an exciting field for discovery, and craft materials to control and reshape light that we are just beginning to fathom. State-of-the-art nano-deposition processes, for example, can be utilized to build stratified waveguides made of thin dielectric layers, which put together result in a material with effective abnormal dispersion. Moreover, materials once deemed well known are revealing astonishing properties, v.gr. chalcogenide glasses undergo an atomic reconfiguration when illuminated with electrons or photons, this ensues in a temporal modification of its permittivity and permeability which could be used to build new Photonic Integrated Circuits.. This work revolves around the characterization and model of heterogeneous and time-varying materials and their applications, revisits Maxwell's equations in the context of nonlinear space- and time-varying media, and based on it introduces a numerical scheme that can be used to model waves in this kind of media. Finally some interesting applications for light confinement and beam transformations are shown.

  5. Exploring Heterogeneous and Time-Varying Materials for Photonic Applications, Towards Solutions for the Manipulation and Confinement of Light.

    KAUST Repository

    San Roman Alerigi, Damian

    2014-11-01

    Over the past several decades our understanding and meticulous characterization of the transient and spatial properties of materials evolved rapidly. The results present an exciting field for discovery, and craft materials to control and reshape light that we are just beginning to fathom. State-of-the-art nano-deposition processes, for example, can be utilized to build stratified waveguides made of thin dielectric layers, which put together result in a material with effective abnormal dispersion. Moreover, materials once deemed well known are revealing astonishing properties, v.gr. chalcogenide glasses undergo an atomic reconfiguration when illuminated with electrons or photons, this ensues in a temporal modification of its permittivity and permeability which could be used to build new Photonic Integrated Circuits.. This work revolves around the characterization and model of heterogeneous and time-varying materials and their applications, revisits Maxwell\\'s equations in the context of nonlinear space- and time-varying media, and based on it introduces a numerical scheme that can be used to model waves in this kind of media. Finally some interesting applications for light confinement and beam transformations are shown.

  6. TNG calculations and evaluations of photon production data for some ENDF/B-VI materials

    International Nuclear Information System (INIS)

    Fu, C.Y.

    1994-01-01

    Among the new evaluations in the ENDF/B-VI general purpose files, 25 were based on calculations using TNG, a consistent Hauser-Feshbach pre-equilibrium nuclear model code. The photon production cross sections and spectra were calculated simultaneously with the particle emission cross sections and spectra, assuring energy balance for each reaction. The theories used in TNG for these calculations are summarized. Several examples of photon production data, taken from the ENDF/B-VI files, are compared with the available experimental data

  7. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  8. Energy and intensity distributions of 0.279 MeV multiply Compton-scattered photons in soldering material

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.

    2007-01-01

    An inverse response matrix converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a photon spectrum. This also results in extraction of intensity distribution of multiply scattered events originating from interactions of 0.279 MeV photons with thick targets of soldering material. The observed pulse-height distributions are a composite of singly and multiply scattered events in addition to bremmstrahlung-and Rayleigh-scattered events. To evaluate the contribution of multiply scattered events, the spectrum of singly scattered events contributing to inelastic Compton peak is reconstructed analytically. The optimum thickness (saturation depth), at which the number of multiply scattered events saturates, has been measured. Monte Carlo calculations also support the present results

  9. Ultrafast light matter interaction in CdSe/ZnS core-shell quantum dots

    Science.gov (United States)

    Yadav, Rajesh Kumar; Sharma, Rituraj; Mondal, Anirban; Adarsh, K. V.

    2018-04-01

    Core-shell quantum dot are imperative for carrier (electron and holes) confinement in core/shell, which provides a stage to explore the linear and nonlinear optical phenomena at the nanoscalelimit. Here we present a comprehensive study of ultrafast excitation dynamics and nonlinear optical absorption of CdSe/ZnS core shell quantum dot with the help of ultrafast spectroscopy. Pump-probe and time-resolved measurements revealed the drop of trapping at CdSe surface due to the presence of the ZnS shell, which makes more efficient photoluminescence. We have carried out femtosecond transient absorption studies of the CdSe/ZnS core-shell quantum dot by irradiation with 400 nm laser light, monitoring the transients in the visible region. The optical nonlinearity of the core-shell quantum dot studied by using the Z-scan technique with 120 fs pulses at the wavelengths of 800 nm. The value of two photon absorption coefficients (β) of core-shell QDs extracted as80cm/GW, and it shows excellent benchmark for the optical limiting onset of 2.5GW/cm2 with the low limiting differential transmittance of 0.10, that is an order of magnitude better than graphene based materials.

  10. Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures

    Science.gov (United States)

    Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Dong Woo; Park, Kyung Hyun

    2018-01-01

    Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.

  11. Molecular engineering with artificial atoms: designing a material platform for scalable quantum spintronics and photonics

    Science.gov (United States)

    Doty, Matthew F.; Ma, Xiangyu; Zide, Joshua M. O.; Bryant, Garnett W.

    2017-09-01

    Self-assembled InAs Quantum Dots (QDs) are often called "artificial atoms" and have long been of interest as components of quantum photonic and spintronic devices. Although there has been substantial progress in demonstrating optical control of both single spins confined to a single QD and entanglement between two separated QDs, the path toward scalable quantum photonic devices based on spins remains challenging. Quantum Dot Molecules, which consist of two closely-spaced InAs QDs, have unique properties that can be engineered with the solid state analog of molecular engineering in which the composition, size, and location of both the QDs and the intervening barrier are controlled during growth. Moreover, applied electric, magnetic, and optical fields can be used to modulate, in situ, both the spin and optical properties of the molecular states. We describe how the unique photonic properties of engineered Quantum Dot Molecules can be leveraged to overcome long-standing challenges to the creation of scalable quantum devices that manipulate single spins via photonics.

  12. International Conference on Applications of Photonic Technology, Communications, Sensing, Materials and Signal Processing

    CERN Document Server

    Lessard, Roger; ICAPT '96; Applications of photonic technology 2

    1997-01-01

    This book presents a current review ofphotonic technologies and their applications. The papers published in this book are extended versions of the papers presented at the Inter­ national Conference on Applications ofPhotonic Technology (ICAPT'96) held in Montreal, Canada, on July 29 to August 1, 1996. The theme of this event was "Closing the Gap Between Theory, Developments and Applications. " The term photonics covers both optics and optical engineering areas of growing sci­ entific and commercial importance throughout the world. It is estimated that photonic tech­ nology-related applications to increase exponentially over the next few years and will play a significant role in the global economy by reaching a quarter of a trillion of US dollars by the year 2000. The global interest and advancements of this technology are represented in this book, where leading scientists of twenty-two countries with advanced technology in photon­ ics present their latest results. The papers selected herein are ...

  13. New cubic perovskites for one- and two-photon water splitting using the computational materials repository

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Landis, David; Thygesen, Kristian Sommer

    2012-01-01

    screening of around 19 000 oxides, oxynitrides, oxysulfides, oxyfluorides, and oxyfluoronitrides in the cubic perovskite structure with PEC applications in mind. We address three main applications: light absorbers for one- and two-photon water splitting and high-stability transparent shields to protect...

  14. Precision Controlled Carbon Materials for Next-Generation Optoelectronic and Photonic Devices

    Science.gov (United States)

    2018-01-08

    engineer next-generation carbon-based optoelectronic and photonic devices with superior performance and capabilities. These devices include carbon...electronics; (4) nanostructured graphene plasmonics; and (5) polymer-nanotube conjugate chemistry . (1) Semiconducting carbon nanotube-based...applications (In Preparation, 2018). (5) Polymer-nanotube conjugate chemistry Conjugated polymers can be exploited as agents for selectively wrapping and

  15. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer

    Science.gov (United States)

    Zhang, Ziyi; Yako, Motoki; Ju, Kan; Kawai, Naoyuki; Chaisakul, Papichaya; Tsuchizawa, Tai; Hikita, Makoto; Yamada, Koji; Ishikawa, Yasuhiko; Wada, Kazumi

    2017-12-01

    A new materials group to implement dense wavelength division multiplexing (DWDM) in Si photonics is proposed. A large thermo-optic (TO) coefficient of Si malfunctions multiplexer/demultiplexer (MUX/DEMUX) on a chip under thermal fluctuation, and thus DWDM implementation, has been one of the most challenging targets in Si photonics. The present study specifies an optical materials group for DWDM by a systematic survey of their TO coefficients and refractive indices. The group is classified as mid-index contrast optics (MiDex) materials, and non-stoichiometric silicon nitride (SiNx) is chosen to demonstrate its significant thermal stability. The TO coefficient of non-stoichiometric SiNx is precisely measured in the temperature range 24-76 °C using the SiNx rings prepared by two methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). The CVD-SiNx ring reveals nearly the same TO coefficient reported for stoichiometric CVD-Si3N4, while the value for the PVD-SiNx ring is slightly higher. Both SiNx rings lock their resonance frequencies within 100 GHz in this temperature range. Since CVD-SiNx needs a high temperature annealing to reduce N-H bond absorption, it is concluded that PVD-SiNx is suited as a MiDex material introduced in the CMOS back-end-of-line. Further stabilization is required, considering the crosstalk between two channels; a 'silicone' polymer is employed to compensate for the temperature fluctuation using its negative TO coefficient, called athermalization. This demonstrates that the resonance of these SiNx rings is locked within 50 GHz at the same temperature range in the wavelength range 1460-1620 nm (the so-called S, C, and L bands in optical fiber communication networks). A further survey on the MiDex materials strongly suggests that Al2O3, Ga2O3 Ta2O5, HfO2 and their alloys should provide even more stable platforms for DWDM implementation in MiDex photonics. It is discussed that the MiDex photonics will find various applications

  16. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer.

    Science.gov (United States)

    Zhang, Ziyi; Yako, Motoki; Ju, Kan; Kawai, Naoyuki; Chaisakul, Papichaya; Tsuchizawa, Tai; Hikita, Makoto; Yamada, Koji; Ishikawa, Yasuhiko; Wada, Kazumi

    2017-01-01

    A new materials group to implement dense wavelength division multiplexing (DWDM) in Si photonics is proposed. A large thermo-optic (TO) coefficient of Si malfunctions multiplexer/demultiplexer (MUX/DEMUX) on a chip under thermal fluctuation, and thus DWDM implementation, has been one of the most challenging targets in Si photonics. The present study specifies an optical materials group for DWDM by a systematic survey of their TO coefficients and refractive indices. The group is classified as mid-index contrast optics (MiDex) materials, and non-stoichiometric silicon nitride (SiN x ) is chosen to demonstrate its significant thermal stability. The TO coefficient of non-stoichiometric SiN x is precisely measured in the temperature range 24-76 °C using the SiN x rings prepared by two methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). The CVD-SiN x ring reveals nearly the same TO coefficient reported for stoichiometric CVD-Si 3 N 4 , while the value for the PVD-SiN x ring is slightly higher. Both SiN x rings lock their resonance frequencies within 100 GHz in this temperature range. Since CVD-SiN x needs a high temperature annealing to reduce N-H bond absorption, it is concluded that PVD-SiN x is suited as a MiDex material introduced in the CMOS back-end-of-line. Further stabilization is required, considering the crosstalk between two channels; a 'silicone' polymer is employed to compensate for the temperature fluctuation using its negative TO coefficient, called athermalization. This demonstrates that the resonance of these SiN x rings is locked within 50 GHz at the same temperature range in the wavelength range 1460-1620 nm (the so-called S, C, and L bands in optical fiber communication networks). A further survey on the MiDex materials strongly suggests that Al 2 O 3 , Ga 2 O 3 Ta 2 O 5 , HfO 2 and their alloys should provide even more stable platforms for DWDM implementation in MiDex photonics. It is discussed that the MiDex photonics

  17. Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials

    International Nuclear Information System (INIS)

    Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T

    1998-01-01

    The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)

  18. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: Key information from ultrafast electronic spectroscopy

    KAUST Repository

    Kar, Prasenjit; Sardar, Samim; Alarousu, Erkki; Sun, Jingya; Seddigi, Zaki Shakir Abdullah; Ahmed, Saleh Abdel Mgeed; Danish, Ekram Yousif; Mohammed, Omar F.; Pal, Samir Kumar

    2014-01-01

    ProtoporphyrinIX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: Key information from ultrafast electronic spectroscopy

    KAUST Repository

    Kar, Prasenjit

    2014-07-10

    ProtoporphyrinIX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    Science.gov (United States)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  1. Efficient light amplification in low gain materials due to a photonic band edge effect

    Czech Academy of Sciences Publication Activity Database

    Ondič, Lukáš; Pelant, Ivan

    2012-01-01

    Roč. 20, č. 7 (2012), s. 7071-7080 ISSN 1094-4087 R&D Projects: GA MŠk LC510; GA AV ČR(CZ) IAA101120804; GA AV ČR KJB100100903 Institutional research plan: CEZ:AV0Z10100521 Keywords : photonic crystals * nanostructures * theory and design Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.546, year: 2012

  2. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    Science.gov (United States)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  3. A study of photon interaction in some building materials: High-volume admixture of blast furnace slag into Portland cement

    International Nuclear Information System (INIS)

    Kurudirek, Murat; Tuerkmen, Ibrahim; Ozdemir, Yueksel

    2009-01-01

    Total mass attenuation coefficients, mean free paths (MFP), half-value (HVT) and tenth-value (TVT) thicknesses of Portland cement and three mixtures have been calculated in function of the energy from 1 keV to 100 GeV. Both in the low- and high-energy region there were significant variations in those parameters where photoelectric process and pair production partially dominates, respectively. In general, the attenuation parameters were found to vary with chemical composition, density of given material and photon energy.

  4. A study of photon interaction in some building materials: High-volume admixture of blast furnace slag into Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey)], E-mail: mkurudirek@gmail.com; Tuerkmen, Ibrahim [Faculty of Engineering, Department of Civil Engineering, Ataturk University, 25240 Erzurum (Turkey); Ozdemir, Yueksel [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey)

    2009-09-15

    Total mass attenuation coefficients, mean free paths (MFP), half-value (HVT) and tenth-value (TVT) thicknesses of Portland cement and three mixtures have been calculated in function of the energy from 1 keV to 100 GeV. Both in the low- and high-energy region there were significant variations in those parameters where photoelectric process and pair production partially dominates, respectively. In general, the attenuation parameters were found to vary with chemical composition, density of given material and photon energy.

  5. Qualitative characteristics and comparison of volatile fraction of vodkas made from different botanical materials by comprehensive two-dimensional gas chromatography and the electronic nose based on the technology of ultra-fast gas chromatography.

    Science.gov (United States)

    Wiśniewska, Paulina; Śliwińska, Magdalena; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2017-03-01

    Vodka is a spirit-based beverage made from ethyl alcohol of agricultural origin. At present, increasingly more vodka brands have labels that specify the botanical origin of the product. Until now, the techniques for distinguishing between vodkas of different botanical origin have been costly, time-consuming and insufficient for making a distinction between vodka produced from similar raw materials. Therefore, it is of utmost importance to find a fast and relatively inexpensive technique for conducting such tests. In the present study, we employed comprehensive two-dimensional gas chromatography (GC×GC) and an electronic nose based on the technology of ultra-fast GC with chemometric methods such as partial least square discriminant analysis, discriminant function analysis and soft independent modeling of class analogy. Both techniques allow a distinction between the vodkas produced from different raw materials. In the case of GC×GC, the differences between vodkas were more noticeable than in the analysis by electronic nose; however, the electronic nose allowed the significantly faster analysis of vodkas. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Ultrafast THz saturable absorption in doped semiconductors at room temperature

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, M. V.

    2011-01-01

    Ultrafast Phenomena XVII presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultraf...

  7. Progress in neuromorphic photonics

    Science.gov (United States)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  8. Ultrafast dynamics of correlated electrons

    International Nuclear Information System (INIS)

    Rettig, Laurenz

    2012-01-01

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T c 4 superconductor Bi 2 Sr 2 CaCu 2 O 8+δ reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the suppression of momentum

  9. Ultrafast dynamics of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Laurenz

    2012-07-09

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the

  10. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  11. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  12. SU-E-T-608: Perturbation Corrections for Alanine Dosimeters in Different Phantom Materials in High-Energy Photon Beams

    International Nuclear Information System (INIS)

    Voigts-Rhetz, P von; Czarnecki, D; Anton, M; Zink, K

    2015-01-01

    Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from 60 Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k env for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted with BEAMnrc to a 60 Co unit and an Elekta (E nom =6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n e /n e,w ) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k env =0.9991+0.0049 *((n e /n e,w )−0.7659) 3 Conclusion: A perturbation correction factor k env accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n e /n e,w ) between 1 and 1.4. For denser materials such as bone or much less dense

  13. Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Tong Tao; Li Jinggao; Longtin, Jon P.

    2004-01-01

    Ultrafast laser micromachining provides many advantages for precision micromachining. One challenging problem, however, particularly for multilayer and heterogeneous materials, is how to prevent a given material from being ablated, as ultrafast laser micromachining is generally material insensitive. We present a real-time feedback control system for an ultrafast laser micromachining system based on laser-induced breakdown spectroscopy (LIBS). The characteristics of ultrafast LIBS are reviewed and discussed so as to demonstrate the feasibility of the technique. Comparison methods to identify the material emission patterns are developed, and several of the resulting algorithms were implemented into a real-time computer control system. LIBS-controlled micromachining is demonstrated for the fabrication of microheater structures on thermal sprayed materials. Compared with a strictly passive machining process without any such feedback control, the LIBS-based system provides several advantages including less damage to the substrate layer, reduced machining time, and more-uniform machining features

  14. Study of the material photon and electron background and the liquid argon detector veto efficiency of the CDEX-10 experiment

    International Nuclear Information System (INIS)

    Su Jian; Zeng Zhi; Ma Hao

    2015-01-01

    The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the low mass region. Here we present a study of the predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within the GEANT4 program. Then the photon and electron background level in the energy region of interest (< 10 -2 events·kg 1 ·day -1 ·keV -1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of the CDEX-10 experiment, 0.1cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible. (authors)

  15. Effects of loss factors on zero permeability and zero permittivity gaps in 1D photonic crystal containing DNG materials

    International Nuclear Information System (INIS)

    Aghajamali, Alireza; Alamfard, Tannaz; Barati, Mahmood

    2014-01-01

    The effects of electric and magnetic loss factors on zero-= and zero-= gaps in a one-dimensional lossy photonic crystal composed of double-negative and double-positive materials are theoretically investigated by employing the characteristic matrix method. This study contradicts the previous reports as it indicates that by applying the inevitable factors of electric and magnetic losses to the double-negative material, the zero-= and zero-= gaps appear simultaneously in the transmission spectrum, being independent of the incidence angle and polarizations. Moreover, the results show that these gaps appear not only for an oblique incidence but also in the case of normal incidence, and their appearance at the normal incidence is directly related to the magnetic and electric loss factors. Besides, the results indicate that as the loss factors and angle of incidence increase, the width of both gaps also increases

  16. Hybrid photonic-crystal fiber

    Science.gov (United States)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  17. Inverse gold photonic crystals and conjugated polymer coated opals for functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Landon, P.B.; Gutierrez, Jose; Ferraris, John P.; Martinez, I.L.; Giridharagopal, Rajiv; Wu, Y.-C.; Lee, Sergey; Parikh, Kunjal; Gillespie, Jessica; Ussery, Geoffrey; Karimi, Behzad; Baughman, Ray; Zakhidov, Anvar; Glosser, R

    2003-10-01

    Inverse gold photonic crystals templated from synthetic opals with a face centered cubic (FCC) crystal lattice were constructed by heat converting gold chloride to metallic gold. Tetrahedral formations constructed of alternating large and small octahedrons oriented in the zinc sulfide structure were created by controlling the infiltration of gold chloride. Silica spheres were coated with polyanilinesulfonic acid, polypyrrole, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and 5 nm colloidal gold. Ordinary yeast cells were coated with polyanilinesulfonic acid, polypyrrole and 5 nm colloidal gold. Spheres coated with MEH-PPV were dispersed in H{sub 2}O and coated with polyelectrolytes which recharged and sterically stabilized the colloidal surfaces. The recharged spheres self-assembled by sedimentation with a FCC crystalline lattice possessing 500 {mu}m wide and 1 mm long crystallites. Silica spheres with diameters as large as 1500 {mu}m were self-assembled along the [1 0 0] direction of the FCC crystal lattice. Opals infiltrated with gold and opals constructed from polymer coated spheres were co-infiltrated with polypropylene yielding inverse polypropylene composite photonic crystals.

  18. Beyond 100 Gbit/s wireless connectivity enabled by THz photonics

    DEFF Research Database (Denmark)

    Yu, Xianbin; Jia, Shi; Pang, Xiaodan

    2017-01-01

    Beyond 100Gbit/s wireless connectivity is appreciated in many scenarios, such as big data wireless cloud, ultrafast wireless download, large volume data transfer, etc. In this paper, we will present our recent achievements on beyond 100Gbit/s ultrafast terahertz (THz) wireless links enabled by TH...... photonics....

  19. Ultrafast laser-semiconductor interactions

    International Nuclear Information System (INIS)

    Schile, L.A.

    1996-01-01

    Studies of the ultrafast (< 100 fs) interactions of infrared, sub-100 fs laser pulses with IR, photosensitive semiconductor materials InGaAs, InSb, and HgCdTe are reported. Both the carrier dynamics and the associated Terahertz radiation from these materials are discussed. The most recent developments of femtosecond (< 100 fs) Optical Parametric Oscillators (OPO) has extended the wavelength range from the visible to 5.2 μm. The photogenerated semiconductor free carrier dynamics are determined in the 77 to 300 degrees K temperature range using the Transmission Correlation Peak (TCP) method. The electron-phonon scattering times are typically 200 - 600 fs. Depending upon the material composition and substrate on which the IR crystalline materials are deposited, the nonlinear TCP absorption gives recombination rates as fast as 10's of picoseconds. For the HgCdTe, there exists a 400 fs electron-phonon scattering process along with a much longer 3600 fs loss process. Studies of the interactions of these ultrashort laser pulses with semiconductors produce Terahertz (Thz) radiative pulses. With undoped InSb, there is a substantial change in the spectral content of this THz radiation between 80 - 260 degrees K while the spectrum of Te-doped InSb remains nearly unchanged, an effect attributed to its mobility being dominated by impurity scattering. At 80 degrees K, the terahertz radiation from undoped InSb is dependent on wavelength, with both a higher frequency spectrum and much larger amplitudes generated at longer wavelengths. No such effect is observed at 260 degrees K. Finally, new results on the dependence of the emitted THz radiation on the InSb crystal's orientation is presented

  20. Carrier dynamics in graphene. Ultrafast many-particle phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Malic, E.; Brem, S.; Jago, R. [Department of Physics, Chalmers University of Technology, Goeteborg (Sweden); Winzer, T.; Wendler, F.; Knorr, A. [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany); Mittendorff, M.; Koenig-Otto, J.C.; Schneider, H.; Helm, M.; Winnerl, S. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Ploetzing, T.; Neumaier, D. [Advanced Microelectronic Center Aachen, AMO GmbH, Aachen (Germany)

    2017-11-15

    Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valence and the conduction band changes the number of charge carriers and gives rise to a significant carrier multiplication - an ultrafast many-particle phenomenon that is promising for the design of highly efficient photodetectors. Furthermore, the vanishing density of states at the Dirac point combined with ultrafast phonon-induced intraband scattering results in an accumulation of carriers and a population inversion suggesting the design of graphene-based terahertz lasers. Here, we review our work on the ultrafast carrier dynamics in graphene and Landau-quantized graphene is presented providing a microscopic view on the appearance of carrier multiplication and population inversion. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. 9th International Symposium on Ultrafast Processes in Spectroscopy

    CERN Document Server

    Silvestri, S; Denardo, G

    1996-01-01

    This volume is a collection of papers presented at the Ninth International Symposium on "Ultrafast Processes in Spectroscopy" (UPS '95) held at the International Centre for Theo­ retical Physics (ICTP), Trieste (Italy), October 30 -November 3, 1995. These meetings have become recognized as the major forum in Europe for discussion of new work in this rapidly moving field. The UPS'95 Conference in Trieste brought together a multidisciplinary group of researchers sharing common interests in the generation of ultrashort optical pulses and their application to studies of ultrafast phenomena in physics, chemistry, material science, electronics, and biology. It was attended by approximately 250 participants from 20 countries and the five-day program comprises more than 200 papers. The progress of both technology and applications in the field of ultrafast processes during these last years is truly remarkable. The advent of all solid state femtosecond lasers and the extension of laser wavelengths by frequency convers...

  2. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique

    KAUST Repository

    Adhikari, Aniruddha; Eliason, Jeffrey K.; Sun, Jingya; Bose, Riya; Flannigan, David J.; Mohammed, Omar F.

    2016-01-01

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent

  3. Fiscal 2000 survey report. Research on creation of microspheric photonic material; 2000 nendo bishokyu photonics zairyo no sosei ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Experiments were conducted under microgravity for findings on the creation of microspheric photonic materials which are high in sphericity. The experiments were carried out at the fall type microgravity facility of Japan Microgravity Center (JAMIC). In the experiments on the ground surface and under microgravity, glass specimens of 3BaO-97B{sub 2}O{sub 3} mol%, 4BaO-96B{sub 2}O{sub 3} mol%, and 2SrO-98B{sub 2}O{sub 3} mol% were tested. They were heated, melted, and cooled for the on-site observation of phase splitting in them. It was found as the result that, in the case of specimen 3BaO-97B{sub 2}O{sub 3}, the phase splitting start under microgravity was similar to that on the ground surface while the nucleation velocity was lower under microgravity. Specimen 2SrO-98B{sub 2}O{sub 3} mol% exhibited an approximately 0.5-second delay in its phase splitting start under microgravity as compared with its ground surface behavior. As for the nucleation velocity under microgravity, the value was same as that on the ground surface in the first half but, in the second half, it was lower than that on the ground surface. The said approximately 0.5-second delay in the phase splitting start was, when the cooling rate was taken into consideration, attributed to an approximately 6.5 degrees C fall in the phase splitting start temperature, and this suggested that phase splitting was suppressed under microgravity. (NEDO)

  4. Development of Ultrafast Indirect Flash Heating Methods for RDX

    Science.gov (United States)

    2014-02-01

    8 1 1. Introduction The mission of the Multiscale Response of Energetic Materials program is to establish...vinyl nitrate ) Films. J. Phys. Chem. A 2004, 108 (43), 9342–9347. 11 12. Gottfried, J. L.; de Lucia, F. C., Jr.; Piraino, S. M. Ultrafast Laser

  5. Ultrafast dynamics and laser action of organic semiconductors

    CERN Document Server

    Vardeny, Zeev Valy

    2009-01-01

    Spurred on by extensive research in recent years, organic semiconductors are now used in an array of areas, such as organic light emitting diodes (OLEDs), photovoltaics, and other optoelectronics. In all of these novel applications, the photoexcitations in organic semiconductors play a vital role. Exploring the early stages of photoexcitations that follow photon absorption, Ultrafast Dynamics and Laser Action of Organic Semiconductors presents the latest research investigations on photoexcitation ultrafast dynamics and laser action in pi-conjugated polymer films, solutions, and microcavities.In the first few chapters, the book examines the interplay of charge (polarons) and neutral (excitons) photoexcitations in pi-conjugated polymers, oligomers, and molecular crystals in the time domain of 100 fs-2 ns. Summarizing the state of the art in lasing, the final chapters introduce the phenomenon of laser action in organics and cover the latest optoelectronic applications that use lasing based on a variety of caviti...

  6. Two-photon Absorption In Quantum Dots,quantum Dashes And Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ravinder

    2009-08-31

    We have proposed the use of USQDs for various deep-tissue biological imaging applications, notably wavelength-multiplexed multicolor imaging and intra-nuclear studies such as those involving cell apoptosis, and have studied the issue of maximizing two-photon absorption-induced fluorescence (TPAF) signals from CdSe/ZnS USQDs to be used for this application. In particular, using 2 nm USQDs, we have shown that the TPAF signal at 780 nm is ~ 8 times that at 850 nm and 68 times that at 900 nm, two wavelengths that have been used in previous studies using CdSe/ZnS SQDs for deep-tissue imaging of biological studies via TPAF .

  7. Quantum Optics 6 - Quantum Engineering of Atoms and Photons - Conference Materials

    International Nuclear Information System (INIS)

    2005-01-01

    The conference organized by Center for Theoretical Physics, Institute of Physics and Warsaw University, sponsored by European Science Foundation, was held in Krynica (120 km south-east of Cracow), Poland, June 13-18 2005. This was the sixth conference of the cycle, the previous one was held in Koscielisko, Poland in 2001. This time the main subject of the conference was: Quantum Engineering of Atoms and Photons. The meeting was focused on the physics of ultracold quantum gases, which without doubts determines the frontiers of the modern atomic, molecular and optical physics. Special attention was also be given to quantum information processing, both from theoretical and experimental point of view, including possible realizations in ultracold quantum gases. The conference consisted of invited lectures and a poster session. Competition for the best poster was held, sponsored by Journal of Optics B and Journal of Physics B - for more on this, including the results of the competition visit. (author)

  8. Facile detection of toxic ingredients in seafood using biologically enabled photonic crystal materials

    Science.gov (United States)

    Kong, Xianming; Squire, Kenneth; Wang, Alan X.

    2018-02-01

    Surface-enhanced Raman scattering (SERS) spectroscopy has attracted considerable attention recently as a powerful detection platform in biosensing because of the wealth of inherent information ascertained about the chemical and molecular composition of a sample. However, real-world samples are often composed of many components, which renders the detection of constitutes of mixed samples very challenging for SERS sensing. Accordingly, separation techniques are needed before SERS measurements. Thin layer chromatography (TLC) is a simple, fast and costeffective technique for analyte separation and can a play pivotal role for on-site sensing. However, combining TLC with SERS is only successful to detect a limited number of analytes that have large Raman scattering cross sections. As a kind of biogenic amine, histamine (2-(4-imidazolyl)-ethylamine) has a relationship with many health problems resulting from seafood consumption occurring worldwide. Diatomaceous earth consists of fossilized remains of diatoms, a type of hard-shelled algae. As a kind of natural photonic biosilica from geological deposits, it has a variety of unique properties including highly porous structure, excellent adsorption capacity, and low cost. In addition, the two dimensional periodic pores on diatomite earth with hierarchical nanoscale photonic crystal features can enhance the localized optical field. Herein, we fabricate TLC plates from diatomite as the stationary phase combining with SERS to separate and detect histamine from seafood samples. We have proved that the diatomite on the TLC plate not only functions as stationary phase, but also provides additional Raman enhancement, in which the detection limit of 2 ppm was achieved for pyrene in mixture.

  9. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  10. Characterization of the phantom material Virtual WaterTM in high-energy photon and electron beams

    International Nuclear Information System (INIS)

    McEwen, M.R.; Niven, D.

    2006-01-01

    The material Virtual Water TM has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water TM were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence--the water/Virtual Water TM dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement ( TM at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Wate TM . However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values

  11. Modal expansions in periodic photonic systems with material loss and dispersion

    DEFF Research Database (Denmark)

    Wolff, Christian; Busch, Kurt; Mortensen, N. Asger

    2018-01-01

    in the presence of material dispersion can be overcome. We then formulate expressions for the band-structure derivative (∂ω)/(∂k) (complex group velocity) and the local and total density of transverse optical states. Our exact expressions hold for 3D periodic arrays of materials with arbitrary dispersion...

  12. Material recognition with the Medipix photon counting colour X-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Norlin, B. E-mail: borje.norlin@mh.se; Manuilskiy, A.; Nilsson, H.-E.; Froejdh, C

    2004-09-21

    An energy sensitive imaging system like Medipix1 has proved to be promising in distinguishing different materials in an X-ray image of an object. We propose a general method utilising X-ray energy information for material recognition. For objects where the thickness of the materials is unknown, a convenient material parameter to identify is K={alpha}{sub 1}/{alpha}{sub 2}, which is the ratio of the logarithms of the measured transmissions ln(t{sub 1})/ln(t{sub 2}). If a database of the parameter K for different materials and energies is created, this method can be used for material recognition independent of the thickness of the materials. Series of images of an object consisting of aluminium and silicon were taken with different energy thresholds. The X-ray absorption for silicon and aluminium is very similar for the range 40-60 keV and only differs for lower energies. The results show that it is possible to distinguish between aluminium and silicon on images achieved by Medipix1 using a standard dental source. By decreasing the spatial resolution a better contrast between the materials was achieved. The resolution of contrasts shown by the histograms was close to the limit of the system due to the statistical noise of the signal.

  13. Ultrafast Microscopy of Energy and Charge Transport

    Science.gov (United States)

    Huang, Libai

    The frontier in solar energy research now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. Advancing the field requires transformative experimental tools that probe energy transfer processes from the nano to the meso lengthscales. To address this challenge, we aim to understand multi-scale energy transport across both multiple length and time scales, coupling simultaneous high spatial, structural, and temporal resolution. In my talk, I will focus on our recent progress on visualization of exciton and charge transport in solar energy harvesting materials from the nano to mesoscale employing ultrafast optical nanoscopy. With approaches that combine spatial and temporal resolutions, we have recently revealed a new singlet-mediated triplet transport mechanism in certain singlet fission materials. This work demonstrates a new triplet exciton transport mechanism leading to favorable long-range triplet exciton diffusion on the picosecond and nanosecond timescales for solar cell applications. We have also performed a direct measurement of carrier transport in space and in time by mapping carrier density with simultaneous ultrafast time resolution and 50 nm spatial precision in perovskite thin films using transient absorption microscopy. These results directly visualize long-range carrier transport of 220nm in 2 ns for solution-processed polycrystalline CH3NH3PbI3 thin films. The spatially and temporally resolved measurements reported here underscore the importance of the local morphology and establish an important first step towards discerning the underlying transport properties of perovskite materials.

  14. A Monte Carlo Study of the Photon Spectrum due to the Different Materials Used in the Construction of Flattening Filters of LINAC

    Directory of Open Access Journals (Sweden)

    J. S. Estepa Jiménez

    2017-01-01

    Full Text Available Different types the spectrum of photons were studied; they were emitted from the flattening filter of a LINAC Varian 2100 C/D that operates at 15 MV. The simplified geometry of the LINAC head was calculated using the MCNPX code based on the studies of the materials of the flattening filter, namely, SST, W, Pb, Fe, Ta, Al, and Cu. These materials were replaced in the flattening filter to calculate the photon spectra at the output of this device to obtain the spectrum that makes an impact with the patient. The different spectra obtained were analyzed and compared to the emission from the original spectra configuration of the LINAC, which uses material W. In the study, different combinations of materials were considered in order to establish differences between the use of different materials and the original material, with the objective of establishing advantages and disadvantages from a clinical standpoint.

  15. Optical Manipulation of a Magnon-Photon Hybrid System.

    Science.gov (United States)

    Braggio, C; Carugno, G; Guarise, M; Ortolan, A; Ruoso, G

    2017-03-10

    We demonstrate an all-optical method for manipulating the magnetization in a 1-mm yttrium-iron-garnet (YIG) sphere placed in a ∼0.17  T uniform magnetic field. A harmonic of the frequency comb delivered by a multi-GHz infrared laser source is tuned to the Larmor frequency of the YIG sphere to drive magnetization oscillations, which in turn give rise to a radiation field used to thoroughly investigate the phenomenon. The radiation damping issue that occurs at high frequency and in the presence of highly magnetizated materials has been overcome by exploiting the magnon-photon strong coupling regime in microwave cavities. Our findings demonstrate an effective technique for ultrafast control of the magnetization vector in optomagnetic materials via polarization rotation and intensity modulation of an incident laser beam. We eventually get a second-order susceptibility value of ∼10^{-7}  cm^{2}/MW for single crystal YIG.

  16. Porous glasses as a matrix for incorporation of photonic materials. Pore determination by positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Reisfeld, Pore determination by positron annihilation lifetime spectroscopy R.; Saraidarov, T.; Jasinska, B.

    2004-07-01

    Porous glasses prepared by the sol-gel technique have a variety of applications when incorporated by photonic materials: tunable lasers, sensors, luminescence solar concentrators, semiconductor quantum dots, biological markers. The known methods of pore size determinations, the nitrogen adsorption and mercury porosimetry allow to determine the sizes of open pores. Positron annihilation lifetime spectroscopy (PALS) allows to determine pore sizes also of closed pores. As an example we have performed measurements of non-doped zirconia-silica-polyurethane (ZSUR) ormocer glasses and the same glasses doped with lead sulfide quantum dots. The pore radii range between 0.25-0.38 nm, total surface area 15.5-23.8 m 2/g.

  17. Transparency and spontaneous emission in a densely doped photonic band gap material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2006-12-28

    The susceptibility has been calculated for a photonic crystal in the presence of spontaneous cancellation and dipole-dipole interaction. The crystal is densely doped with an ensemble of four-level nano-particles in Y-type configuration. Probe and a pump laser fields are applied to manipulate the absorption coefficient of the system. The expression of the susceptibility has been calculated in the linear response regime of the probe field but nonlinear terms are included for the pump field. It is found that in the presence of spontaneous emission cancellation there is an increase in the height of the two absorption peaks however the phenomenon of electromagnetically induced transparency (EIT) is not affected. On the other hand, there is a change in the height and location of the two peaks in the presence of dipole-dipole interactions. For certain values the particle density of the system can be switched from the EIT state to the non-EIT state. It is also found that when the resonance energies for two spontaneous emission channels lie close to the band edge, the EIT phenomenon disappears.

  18. Plasmon-Enhanced Photonic Crystal Negative Index Materials for Superlensing Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Negative index materials (NIMs) offer tremendous potential for the formation of highly compact as well as large-area deployable thin-film optical components. Omega...

  19. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  20. Photon-photon interactions

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1980-01-01

    A brief summary of the present status of photon-photon interactions is presented. Stress is placed on the use of two-photon collisions to test present ideas on the quark constituents of hadrons and on the theory of strong interactions

  1. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Energy Technology Data Exchange (ETDEWEB)

    Krausová, Ivana [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Mizera, Jiří, E-mail: mizera@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Řanda, Zdeněk; Chvátil, David; Krist, Pavel [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic)

    2015-01-01

    Reliable determination of low concentrations of fluorine in geological and coal samples is difficult. It usually requires tedious decomposition and dissolution of the sample followed by chemical conversion of fluorine into its anionic form. The present paper examines possibilities of non-destructive determination of fluorine, mainly in minerals, rocks and coal, by instrumental photon activation analysis (IPAA) using the MT-25 microtron. The fluorine assay consists of counting the positron–electron annihilation line of {sup 18}F at 511 keV, which is a product of the photonuclear reaction {sup 19}F(γ, n){sup 18}F and a pure positron emitter. The assay is complicated by the simultaneous formation of other positron emitters. The main contributors to interference in geological samples are from {sup 45}Ti and {sup 34m}Cl, whereas those from {sup 44}Sc and {sup 89}Zr are minor. Optimizing beam energy and irradiation-decay-counting times, together with using interfering element calibration standards, allowed reliable IPAA determination of fluorine in selected USGS and CRPG geochemical reference materials, NIST coal reference materials, and NIST RM 8414 Bovine Muscle. In agreement with the published data obtained by PIGE, the results of the F assay by IPAA have revealed erroneous reference values provided for the NIST reference materials SRM 1632 Bituminous Coal and RM 8414 Bovine Muscle. The detection limits in rock and coal samples are in the range of 10–100 μg g{sup −1}.

  2. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.

    Science.gov (United States)

    Ovsianikov, Aleksandr; Schlie, Sabrina; Ngezahayo, Anaclet; Haverich, Axel; Chichkov, Boris N

    2007-01-01

    We report on recent advances in the fabrication of three-dimensional (3D) scaffolds for tissue engineering and regenerative medicine constructs using a two-photon polymerization technique (2PP). 2PP is a novel CAD/CAM technology allowing the fabrication of any computer-designed 3D structure from a photosensitive polymeric material. The flexibility of this technology and the ability to precisely define 3D construct geometry allows issues associated with vascularization and patient-specific tissue fabrication to be directly addressed. The fabrication of reproducible scaffold structures by 2PP is important for systematic studies of cellular processes and better understanding of in vitro tissue formation. In this study, 2PP was applied for the generation of 3D scaffold-like structures, using the photosensitive organic-inorganic hybrid polymer ORMOCER (ORganically MOdified CERamics) and epoxy-based SU8 materials. By comparing the proliferation rates of cells grown on flat material surfaces and under control conditions, it was demonstrated that ORMOCER and SU8 are not cytotoxic. Additional tests show that the DNA strand breaking of GFSHR-17 granulosa cells was not affected by the presence of ORMOCER. Furthermore, gap junction conductance measurements revealed that ORMOCER did not alter the formation of cell-cell junctions, critical for functional tissue growth. The possibilities of seeding 3D structures with cells were analysed. These studies demonstrate the great potential of 2PP technique for the manufacturing of scaffolds with controlled topology and properties.

  3. Fluctuation-induced forces on an atom near a photonic topological material

    Science.gov (United States)

    Silveirinha, Mário G.; Gangaraj, S. Ali Hassani; Hanson, George W.; Antezza, Mauro

    2018-02-01

    We theoretically study the Casimir-Polder force on an atom in an arbitrary initial state in a rather general electromagnetic environment wherein the materials may have a nonreciprocal bianisotropic dispersive response. It is shown that under the Markov approximation the force has resonant and nonresonant contributions. We obtain explicit expressions for the optical force both in terms of the system Green function and of the electromagnetic modes. We apply the theory to the particular case wherein a two-level system interacts with a topological gyrotropic material, showing that the nonreciprocity enables exotic light-matter interactions and the opportunity to sculpt and tune the Casimir-Polder forces on the nanoscale. With a quasistatic approximation, we obtain a simple analytical expression for the optical force and unveil the crucial role of surface plasmons in fluctuation-induced forces. Finally, we derive the Green function for a gyrotropic material half-space in terms of a Sommerfeld integral.

  4. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    International Nuclear Information System (INIS)

    Nadrowitz, Roger; Feyerabend, Thomas

    2001-01-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved

  5. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Nadrowitz, Roger; Feyerabend, Thomas [Medical University of Luebeck, Germany, Department of Radiotherapy and Nuclear Medicine, Ratzeburger Allee 160, Luebeck, D-23538 (Germany)

    2001-06-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved.

  6. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań (Poland); Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey); Nojima, S. [Yokohama City University, Department of Nanosystem Science, Graduate School of Nanobioscience, Kanazawa Ku, 22-2 Seto, Yokohama, Kanagawa 2360027 (Japan); Alici, K. B. [TUBITAK Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey); Ozbay, Ekmel [Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey)

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a

  7. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P

    2017-01-01

    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  8. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.

    Science.gov (United States)

    Curtis, Tyler E; Roeder, Ryan K

    2017-10-01

    Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in

  9. Ultrafast disk technology enables next generation micromachining laser sources

    Science.gov (United States)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues

  10. Photon activation analysis using internal standards: some studies of the analysis of environmental materials

    Energy Technology Data Exchange (ETDEWEB)

    Masumoto, K; Yagi, M

    1986-01-01

    The authors report the application of the internal standard method to the simultaneous determination of trace elements in environmental reference materials. The standard soil material used was IAEA CRM Soil-5. The power plant fly ash reference used was NBS SRM-1633a. Fifteen target elements, including As, Ba and Ce, were determined. Internal standards were supplied by six elements, including Na and Mg. Although there were several interfering elements, their effect could be eliminated by utilizing more than one gamma-ray peak and carrying out appropriate corrections. The values determined for most of the target elements were well within the certified range. Measured concentrations were of the orders of 10 to 1000 ..mu..g/g. 6 references, 2 figures, 5 tables.

  11. Ultra-fast transient plasmonics using transparent conductive oxides

    Science.gov (United States)

    Ferrera, Marcello; Carnemolla, Enrico G.

    2018-02-01

    During the last decade, plasmonic- and metamaterial-based applications have revolutionized the field of integrated photonics by allowing for deep subwavelength confinement and full control over the effective permittivity and permeability of the optical environment. However, despite the numerous remarkable proofs of principle that have been experimentally demonstrated, few key issues remain preventing a widespread of nanophotonic technologies. Among these fundamental limitations, we remind the large ohmic losses, incompatibility with semiconductor industry standards, and largely reduced dynamic tunability of the optical properties. In this article, in the larger context of the new emerging field of all-dielectric nanophotonics, we present our recent progresses towards the study of large optical nonlinearities in transparent conducting oxides (TCOs) also giving a general overview of the most relevant and recent experimental attainments using TCO-based technology. However, it is important to underline that the present article does not represent a review paper but rather an original work with a broad introduction. Our work lays in a sort of ‘hybrid’ zone in the middle between high index contrast systems, whose behaviour is well described by applying Mie scattering theory, and standard plasmonic elements where optical modes originate from the electromagnetic coupling with the electronic plasma at the metal-to-dielectric interface. Beside remaining in the context of plasmonic technologies and retaining all the fundamental peculiarities that promoted the success of plasmonics in the first place, our strategy has the additional advantage to allow for large and ultra-fast tunability of the effective complex refractive index by accessing the index-near-zero regime in bulk materials at telecom wavelength.

  12. Materials analysis using x-ray linear attenuation coefficient measurements at four photon energies

    International Nuclear Information System (INIS)

    Midgley, S M

    2005-01-01

    The analytical properties of an accurate parameterization scheme for the x-ray linear attenuation coefficient are examined. The parameterization utilizes an additive combination of N compositional- and energy-dependent coefficients. The former were derived from a parameterization of elemental cross-sections using a polynomial in atomic number. The compositional-dependent coefficients are referred to as the mixture parameters, representing the electron density and higher order statistical moments describing elemental distribution. Additivity is an important property of the parameterization, allowing measured x-ray linear attenuation coefficients to be written as linear simultaneous equations, and then solved for the unknown coefficients. The energy-dependent coefficients can be determined by calibration from measurements with materials of known composition. The inverse problem may be utilized for materials analysis, whereby the simultaneous equations represent multi-energy linear attenuation coefficient measurements, and are solved for the mixture parameters. For in vivo studies, the choice of measurement energies is restricted to the diagnostic region (approximately 20 keV to 150 keV), where the parameterization requires N ≥ 4 energies. We identify a mathematical pathology that must be overcome in order to solve the inverse problem in this energy regime. An iterative inversion strategy is presented for materials analysis using four or more measurements, and then tested against real data obtained at energies 32 keV to 66 keV. The results demonstrate that it is possible to recover the electron density to within ±4% and fourth mixture parameter. It is also a key finding that the second and third mixture parameters cannot be recovered, as they are of minor importance in the parameterization at diagnostic x-ray energies

  13. Measurement of californium-252 gamma photons depth dose distribution in tissue equivalent material. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Fadel, M A; El-Fiki, M A; Eissa, H M; Abdel-Hafez, A; Naguib, S H [National Institute of Standards, Cairo (Egypt)

    1996-03-01

    Phantom of tissue equivalent material with and without bone was used measuring depth dose distribution of gamma-rays from californium-252 source. The source was positioned at center of perspex walled phantom. Depth dose measurements were recorded for X, Y and Z planes at different distances from source. TLD 700 was used for measuring the dose distribution. Results indicate that implantation of bone in tissue equivalent medium cause changes in the gamma depth dose distribution which varies according to variation in bone geometry. 9 figs.

  14. Exploring matter through photons and neutrons: from biological molecules to designer materials

    International Nuclear Information System (INIS)

    Chidambaram, R.; Hosur, M.V.; Ramanadham, M.; Godwal, B.K.

    2000-01-01

    Understanding structure-property relationships of naturally occurring materials has been the aim of scientific research for centuries. The discovery of short wavelength x-rays and neutrons in the 20th century provided a means of studying molecular structure. The methodology of x-ray and neutron diffraction has been successfully applied to determine structures of molecules across disciplines of physics, chemistry, biology, biochemistry and medicine. Typical applications in physics include study of phase transformations, elasticity measurements, magnetic structure, surface scattering etc. In chemistry, the applications have ranged from routine structure determinations of reaction intermediates or natural products to refinement of quantum chemical parameters of atomic and molecular charge densities. The science of crystallography has had a profound effect on the disciplines of biology and medicine. A whole new discipline and industry was created when the structure of DNA was discovered through x-ray diffraction

  15. Investigation of Electron Transfer-Based Photonic and Electro-Optic Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Bromenshenk, Jerry J; Abbott, Edwin H; Dickensheets, David; Donovan, Richard P; Hobbs, J D; Spangler, Lee; McGuirl, Michele A; Spangler, Charles; Rebane, Aleksander; Rosenburg, Edward; Schmidt, V H; Singel, David J

    2008-03-28

    Montana's state program began its sixth year in 2006. The project's research cluster focused on physical, chemical, and biological materials that exhibit unique electron-transfer properties. Our investigators have filed several patents and have also have established five spin-off businesses (3 MSU, 2 UM) and a research center (MT Tech). In addition, this project involved faculty and students at three campuses (MSU, UM, MT Tech) and has a number of under-represented students, including 10 women and 5 Native Americans. In 2006, there was an added emphasis on exporting seminars and speakers via the Internet from UM to Chief Dull Knife Community College, as well as work with the MT Department of Commerce to better educate our faculty regarding establishing small businesses, licensing and patent issues, and SBIR program opportunities.

  16. The Structural Engineering Strategy for Photonic Material Research and Device Development

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2007-01-01

    Full Text Available A new structural engineering strategy is introduced for optimizing the fabrication of arrayed nanorod materials, optimizing superlattice structures for realizing a strong coupling, and directly developing nanophotonic devices. The strategy can be regarded as “combinatorial” because of the high efficiency in optimizing structures. In this article, this strategy was applied to grow ZnO nanorod arrays, and to develop a new multifunctional photodetector using such nanorod arrays, which is able to simultaneously detect power, energy, and polarization of an incident ultraviolet radiation. The strategy was also used to study the extraordinary dielectric behavior of relaxor ferroelectric lead titanate doped lead magnesium niobate heterophase superlattices in the terahertz frequencies, in order to investigate their dielectric polariton physics and the potential to be integrated with tunable surface resonant plasmonics devices.

  17. Laser Welding Characterization of Kovar and Stainless Steel Alloys as Suitable Materials for Components of Photonic Devices Packaging

    International Nuclear Information System (INIS)

    Fadhali, M. M. A.; Zainal, Saktioto J.; Munajat, Y.; Jalil, A.; Rahman, R.

    2010-01-01

    The weldability of Kovar and stainless steel alloys by Nd:YAG laser beam is studied through changing of some laser beam parameters. It has been found that there is a suitable interaction of the pulsed laser beam of low power laser pulse with both the two alloys. The change of thermophysical properties with absorbed energy from the laser pulse is discussed in this paper which reports the suitability of both Kovar and stainless steel 304 as the base materials for photonic devices packaging. We used laser weld system (LW4000S from Newport) which employs Nd:YAG laser system with two simultaneous beams output for packaging 980 nm high power laser module. Results of changing both laser spot weld width and penetration depth with changing both the pulse peak power density, pulse energy and pulse duration show that there are good linear relationships between laser pulse energy or peak power density and pulse duration with laser spot weld dimensions( both laser spot weld width and penetration depth). Therefore we concluded that there should be an optimization for both the pulse peak power and pulse duration to give a suitable aspect ratio (laser spot width to penetration depth) for achieving the desired welds with suitable penetration depth and small spot width. This is to reduce the heat affected zone (HAZ) which affects the sensitive optical components. An optimum value of the power density in the order of 10 5 w/cm 2 found to be suitable to induce melting in the welded joints without vaporization. The desired ratio can also be optimized by changing the focus position on the target material as illustrated from our measurements. A theoretical model is developed to simulate the temperature distribution during the laser pulse heating and predict the penetration depth inside the material. Samples have been investigated using SEM with EDS. The metallographic measurements on the weld spot show a suitable weld yield with reasonable weld width to depth ratio.

  18. Ultrafast strain engineering in complex oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Paul; Caviglia, Andrea; Hu, Wanzheng; Bromberger, Hubertus; Singla, Rashmi; Mitrano, Matteo; Hoffmann, Matthias C.; Kaiser, Stefan; Foerst, Michael [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Scherwitzl, Raoul; Zubko, Pavlo; Gariglio, Sergio; Triscone, Jean-Marc [Departement de Physique de la Matiere Condensee, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneve 4, Geneva (Switzerland); Cavalleri, Andrea [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Department of Physics, Clarendon Laboratory, University of Oxford (United Kingdom)

    2012-07-01

    The mechanical coupling between the substrate and the thin film is expected to be effective on the ultrafast timescale, and could be exploited for the dynamic control of materials properties. Here, we demonstrate that a large-amplitude mid-infrared field, made resonant with a stretching mode of the substrate, can switch the electronic properties of a thin film across an interface. Exploiting dynamic strain propagation between different components of a heterostructure, insulating antiferromagnetic NdNiO{sub 3} is driven through a prompt, five-order-of-magnitude increase of the electrical conductivity, with resonant frequency and susceptibility that is controlled by choice of the substrate material. Vibrational phase control, extended here to a wide class of heterostructures and interfaces, may be conductive to new strategies for electronic phase control at THz repetition rates.

  19. Photon-photon collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved

  20. Photon-photon collisions

    International Nuclear Information System (INIS)

    Haissinski, J.

    1986-06-01

    The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2

  1. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  2. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Science.gov (United States)

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  3. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  4. Ultrafast spectroscopy of biological photoreceptors

    NARCIS (Netherlands)

    Kennis, J.T.M.; Groot, M.L.

    2007-01-01

    We review recent new insights on reaction dynamics of photoreceptors proteins gained from ultrafast spectroscopy. In Blue Light sensing Using FAD (BLUF) domains, a hydrogen-bond rearrangement around the flavin chromophore proceeds through a radical-pair mechanism, by which light-induced electron and

  5. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  6. Photonic crystals: towards nanoscale photonic devices

    National Research Council Canada - National Science Library

    Lourtioz, J.-M

    2005-01-01

    .... From this point of view, the emergence of photonic bandgap materials and photonic crystals at the end of the 1980s can be seen as a revenge to the benefit this time of optics and electromagnetism. In the same way as the periodicity of solid state crystals determines the energy bands and the conduction properties of electrons, the periodical structur...

  7. Proposal for arbitrary-order temporal integration of ultrafast optical signals using a single uniform-period fiber Bragg grating.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2008-07-01

    A simple and practical all-fiber design for implementing arbitrary-order temporal integration of ultrafast optical waveforms is proposed and numerically investigated. We demonstrate that an ultrafast photonics integrator of any desired integration order can be implemented using a uniform-period fiber Bragg grating (FBG) with a properly designed amplitude-only grating apodization profile. In particular, the grating coupling strength must vary according to the (N-1) power of the fiber distance for implementing an Nth-order photonics integrator (N=1,2,...). This approach requires the same level of practical difficulty for realizing any given integration order. The proposed integration devices operate over a limited time window, which is approximately fixed by the round-trip propagation time in the FBG. Ultrafast arbitrary-order all-optical integrators capable of accurate operation over nanosecond time windows can be implemented using readily feasible FBGs.

  8. Open-air ionisation chambers with walls of soft-tissue equivalent material for measuring photon doses

    International Nuclear Information System (INIS)

    Vialettes, H.; Anceau, J.C.; Grand, M.; Petit, G.

    1968-01-01

    The ionisation chambers presented in this report constitute a contribution to research into methods of carrying out correct determinations in the field of health physics. The use of a mixture of teflon containing 42.5 per cent by weight of carbon for the chamber walls makes it possible to measure directly the dose absorbed in air through 300 mg/cm 2 of soft tissue and, consequently, the dose absorbed in the soft tissues with a maximum error of 10 per cent for photon energies of between 10 keV and 10 MeV. Furthermore since this material does not contain hydrogen, the chamber has a sensitivity to neutrons which is much less than other chambers in current use. Finally the shape of these chambers has been studied with a view to obtaining a satisfactory measurement from the isotropy point of view; for example for gamma radiation of 27 keV, the 3 litre chamber is isotropic to within 10 per cent over 270 degrees, and the 12 litre chamber is isotropic to within 10 per cent over 300 degrees; for 1.25 MeV gamma radiation this range is extended over 330 degrees for the 3 litre chamber, and 360 degrees for the 12 litre chamber. This report presents the measurements carried out with these chambers as well as the results obtained. These results are then compared to those obtained with other chambers currently used in the field of health physics. (authors) [fr

  9. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Weathersby, S. P.; Brown, G.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K., E-mail: lrk@slac.stanford.edu; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); and others

    2015-07-15

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  10. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    Science.gov (United States)

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.

  11. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  12. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  13. Ultrafast pulse lasers jump to macro applications

    Science.gov (United States)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  14. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    Science.gov (United States)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  15. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy.

    Science.gov (United States)

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Akbari, Fatemeh; Mehrpouyan, Mohammad; Sobhkhiz Sabet, Leila

    2016-03-01

    The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm(2) applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam's energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided.

  16. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Ghorbani, Mahdi; Akbari, Fatemah; Sabet, Leila S.; Mehrpouyan, Mohammad

    2016-01-01

    The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm 2 applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam’s energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided.

  17. Impact system for ultrafast synchrotron experiments

    International Nuclear Information System (INIS)

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Luo, S. N.; Hooks, D. E.; Iverson, A. J.; Fezzaa, K.

    2013-01-01

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 ± 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  18. Ultrafast Melting of Carbon Induced by Intense Proton Beams

    International Nuclear Information System (INIS)

    Pelka, A.; Guenther, M. M.; Harres, K.; Otten, A.; Roth, M.; Gregori, G.; Gericke, D. O.; Vorberger, J.; Glenzer, S. H.; Kritcher, A. L.; Heathcote, R.; Li, B.; Neely, D.; Kugland, N. L.; Niemann, C.; Makita, M.; Riley, D.; Mithen, J.; Schaumann, G.; Schollmeier, M.

    2010-01-01

    Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.

  19. Novel Organic Materials for Multi-photon Photopolymerization and Photografting: Powerful Tools for Precise Microfabracation and Functionalization in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.

    2013-07-01

    Two-photon excitation provides the possibility of the activation of chemical or physical processes with high spatial resolution in 3D. Such strategy has been widely used in microfabrication of photonic crystals, polymer-based optical waveguides on integrated circuit boards, high-density 3D optical data storage and other industries requiring high precision. Since the photo-activated chemical or physical processes are confined only within the small focal volume, excellent spatial control could be obtained. Moreover, the excitation source with long wavelength offers the advantages of deeper tissue penetration and less photodamage, making 2PA especially suitable for various biological applications, such as bioimaging and in-vivo biofabrications. The development of novel two-photon absorption (2PA) active organic materials is essential to realize the desired functions. The first part of the thesis focuses on the novel 2PA photoinitiators (2PIs) used for two-photon induced photopolymerization (2PP), a versatile technique for precise 3D microfabrications. High initiation efficiency is the most important character for an efficient PI. Based on a potent lead structure 1,5-bis(4-(N,N-dibutylamino) phenyl)penta-1,4-diyn-3-one, several aromatic ketone-based 2PIs containing triple bonds and dialkylamino groups were synthesized via Sonogashira coupling reactions. 2, 7-substituted fluorenone-based PI B3FL, with the largest 2PA cross section of 440 GM at 800 nm, exhibited the broadest processing windows among the investigated PIs. The double bonds conversion of the cross-linking polymeric network and the mechanical properties of the microstructures were also evaluated by FTIR and nanoindentation measurements, respectively. Beside initiation efficiency of PIs, the ease and cost of preparation are also critical factors from practical aspect. To overcome the problem of the reported 2PIs derived from the complicated syntheses and expensive catalysts, a series of linear and cyclic

  20. Ultrafast Synaptic Events in a Chalcogenide Memristor

    Science.gov (United States)

    Li, Yi; Zhong, Yingpeng; Xu, Lei; Zhang, Jinjian; Xu, Xiaohua; Sun, Huajun; Miao, Xiangshui

    2013-04-01

    Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 105 times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.

  1. OCCAMS: Optically Controlled and Corrected Active Meta-material Space Structures (Ultra-Lightweight Photonic Muscle Space Structures Phase II)

    Data.gov (United States)

    National Aeronautics and Space Administration — Photons weigh nothing. Why must even small space telescopes have high mass? Our team has demonstrated this is not the case using a completely novel approach to...

  2. Advanced Photonic Hybrid Materials

    Science.gov (United States)

    2015-07-01

    methyltriethoxysilane precursors and a fast condensation step  using  aminopropytriethoxysilane.  This  method  was  previously  used  to  entrap   efficiently  high...particles  are more  mobile   than  the  bigger  ones  and  tend  to  orientate  faster.  The  short  kinetics  of  the  shrinkage/evaporation process allows

  3. Ultrafast Thermal Transport at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, David [Univ. of Illinois, Champaign, IL (United States); Murphy, Catherine [Univ. of Illinois, Champaign, IL (United States); Martin, Lane [Univ. of Illinois, Champaign, IL (United States)

    2014-10-21

    Our research program on Ultrafast Thermal Transport at Interfaces advanced understanding of the mesoscale science of heat conduction. At the length and time scales of atoms and atomic motions, energy is transported by interactions between single-particle and collective excitations. At macroscopic scales, entropy, temperature, and heat are the governing concepts. Key gaps in fundamental knowledge appear at the transitions between these two regimes. The transport of thermal energy at interfaces plays a pivotal role in these scientific issues. Measurements of heat transport with ultrafast time resolution are needed because picoseconds are the fundamental scales where the lack of equilibrium between various thermal excitations becomes a important factor in the transport physics. A critical aspect of our work has been the development of experimental methods and model systems that enabled more precise and sensitive investigations of nanoscale thermal transport.

  4. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E.; Domröse, Till; Gatzmann, J. Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha, E-mail: sascha.schaefer@phys.uni-goettingen.de; Ropers, Claus, E-mail: claus.ropers@uni-goettingen.de

    2017-05-15

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. - Highlights: • First implementation of an ultrafast TEM employing a nanoscale photocathode. • Localized single photon-photoemission from nanoscopic field emitter yields low emittance ultrashort electron pulses. • Electron pulses focused down to ~9 Å, with a duration of 200 fs and an energy width of 0.6 eV are demonstrated. • Quantitative characterization of ultrafast electron gun emittance and brightness. • A range of applications of high coherence ultrashort electron pulses is shown.

  5. Ultrafast comparison of personal genomes

    OpenAIRE

    Mauldin, Denise; Hood, Leroy; Robinson, Max; Glusman, Gustavo

    2017-01-01

    We present an ultra-fast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into 'genome fingerprints' that can be readily compared across sequencing technologies and reference versions. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. This enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative s...

  6. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  7. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  8. Fundamentals of ultrafast laser-material interaction

    Czech Academy of Sciences Publication Activity Database

    Shugaev, M.V.; Wu, Ch.; Armbruster, O.; Naghilou, A.; Brouwer, N.; Ivanov, D.S.; Derrien, Thibault; Bulgakova, Nadezhda M.; Kautek, W.; Rethfeld, B.; Zhigilei, L.

    2016-01-01

    Roč. 41, č. 12 (2016), s. 960-968 ISSN 0883-7694 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S EU Projects: European Commission(XE) 657424 - QuantumLaP Institutional support: RVO:68378271 Keywords : femtosecond laser * Coulomb explosion * microscopic mechanisms * electron-diffraction * molecular- dynamics * metal targets * ablation * surface * dielectrics Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 5.199, year: 2016

  9. Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF

    Science.gov (United States)

    Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul

    2016-07-01

    Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF

  10. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  11. The study of electromagnetic wave propagation in photonic crystals via planewave based transfer (scattering) matrix method with active gain material applications

    Science.gov (United States)

    Li, Ming

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional (2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Further more, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. First, the planewave based transfer (scattering) matrix method (TMM) is described in every detail along with a brief review of photonic crystal history (Chapter 1 and 2). As a frequency domain method, TMM has the following major advantages over other numerical methods: (1) the planewave basis makes Maxwell's Equations a linear algebra problem and there are mature numerical package to solve linear algebra problem such as Lapack and Scalapack (for parallel computation). (2) Transfer (scattering) matrix method make 3D problem into 2D slices and link all slices together via the scattering matrix (S matrix) which reduces computation time and memory usage dramatically and makes 3D real photonic crystal devices design possible; and this also makes the simulated domain no length limitation along the propagation direction (ideal for waveguide simulation). (3) It is a frequency domain method and calculation results are all for steady state, without the influences of finite time span convolution effects and/or transient effects. (4) TMM can treat dispersive material (such as metal at visible light) naturally without introducing any additional computation; and meanwhile TMM can also deal with anisotropic material and magnetic material (such as perfectly matched layer) naturally from its algorithms. (5) Extension of TMM to deal with active gain material can be done through an iteration procedure with gain

  12. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  13. Ultrafast photocurrents in monolayer MoS2

    Science.gov (United States)

    Parzinger, Eric; Wurstbauer, Ursula; Holleitner, Alexander W.

    Two-dimensional transition metal dichalcogenides such as MoS2 have emerged as interesting materials for optoelectronic devices. In particular, the ultrafast dynamics and lifetimes of photoexcited charge carriers have attracted great interest during the last years. We investigate the photocurrent response of monolayer MoS2 on a picosecond time scale utilizing a recently developed pump-probe spectroscopy technique based on coplanar striplines. We discuss the ultrafast dynamics within MoS2 including photo-thermoelectric currents and the impact of built-in fields due to Schottky barriers as well as the Fermi level pinning at the contact region. We acknowledge support by the ERC via Project 'NanoREAL', the DFG via excellence cluster 'Nanosystems Initiative Munich' (NIM), and through the TUM International Graduate School of Science and Engineering (IGSSE) and BaCaTeC.

  14. Ultrafast collinear scattering and carrier multiplication in graphene.

    Science.gov (United States)

    Brida, D; Tomadin, A; Manzoni, C; Kim, Y J; Lombardo, A; Milana, S; Nair, R R; Novoselov, K S; Ferrari, A C; Cerullo, G; Polini, M

    2013-01-01

    Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.

  15. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...... of the ultra-fast nonlinear response of silicon photonic waveguides. These chips offer ultra-broadband wavelength operation, ultra-high timing resolution and ultra-fast response, and when used appropriately offer energy-efficient switching. In this presentation we review some all-optical functionalities based...... on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show...

  16. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  17. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  18. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    Science.gov (United States)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  19. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  20. Photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of α/sub s/ and Λ/sup ms/ from the γ*γ → π 0 form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from γγ → H anti H, reconstruction of sigma/sub γγ/ from exclusive channels at low W/sub γγ/, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z 0 and W +- beams from e → eZ 0 and e → nu W will become important. 44 references

  1. Photon-photon collisions

    International Nuclear Information System (INIS)

    Field, J.H.

    1984-01-01

    The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e + e - storage rings. After a complete presentation of the helicity amplitude formalism for the general process e + e - → Xe + e - , various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range

  2. Attenuation analysis of neutrons and photons generated by 52-MeV protons transmitted through shielding materials

    International Nuclear Information System (INIS)

    Uwamino, Y.; Nakamura, T.

    1983-01-01

    Attenuation of neutrons and photons transmitted through grahite, iron, water and ordinary concrete assemblies were studied using gold foils for thermal neutron and an NE-213 organic scintillation detector with an (n-γ) discrimination technique for spectral measurements. Source neutrons and photons were produced by 52-MeV proton bombardment of a 21.4-mm-thick graphite target placed in front of the assembly. The distributions of the light output from the scintillator were unfolded by the revised FERDO code. These experimental results were used as benchmark data on neutron and photon penetration by neutrons energy above 15MeV. Multigroup Monte Carlo, one-dimensional ANISN and two-dimensional DOT-3.5 transport calculations were performed with the DLC-58/HELLO group cross sections to compare with the measurement and to evaluate the cross sections. The DOT code was also used for the estimation of room-scattered neutron and photon contribution to the measured spectra. The results of the ANISN calculation of neutrons and the three-dimensional Monte Carlo calculation agreed with the experimental values except for high energy neutrons transmitted through water and graphite. The agreement of both calculations was well within the accuracy of 7% in the measured attenuation coefficients. For photons, the ANISN calculation gave >20% overestimation of the attenuation coefficients in the case of deep penetration through the medium for which the photon mean-free-path is shorter than that of neutrons, such as in iron and concrete. The result of the DOT calculation of neutrons down to thermal energy agreed well with the gold foil measurement in the absolute value. (author)

  3. Trade-off between Photon Management Efficacy and Material Quality in Thin-Film Solar Cells on Nanostructured Substrates of High Aspect Ratio Structures

    Directory of Open Access Journals (Sweden)

    Alan H. Chin

    2018-04-01

    Full Text Available Although texturing of the transparent electrode of thin-film solar cells has long been used to enhance light absorption via light trapping, such texturing has involved low aspect ratio features. With the recent development of nanotechnology, nanostructured substrates enable improved light trapping and enhanced optical absorption via resonances, a process known as photon management, in thin-film solar cells. Despite the progress made in the development of photon management in thin-film solar cells using nanostructures substrates, the structural integrity of the thin-film solar cells deposited onto such nanostructured substrates is rarely considered. Here, we report the observation of the reduction in the open circuit voltage of amorphous silicon solar cells deposited onto a nanostructured substrate with increasing areal number density of high aspect ratio structures. For a nanostructured substrate with the areal number density of such nanostructures increasing in correlation with the distance from one edge of the substrate, a correlation between the open circuit voltage reduction and the increase of the areal number density of high aspect ratio nanostructures of the front electrode of the small-size amorphous silicon solar cells deposited onto different regions of the substrate with graded nanostructure density indicates the effect of the surface morphology on the material quality, i.e., a trade-off between photon management efficacy and material quality. This observed trade-off highlights the importance of optimizing the morphology of the nanostructured substrate to ensure conformal deposition of the thin-film solar cell.

  4. The Study of Electromagnetic Wave Propogation in Photonic Crystals Via Planewave Based Transfer (Scattering) Matrix Method with Active Gain Material Applications

    Energy Technology Data Exchange (ETDEWEB)

    LI, Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.

  5. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  6. LCLS: Ultrafast Science

    International Nuclear Information System (INIS)

    Bucksbaum, Philip

    2005-01-01

    Everyone knows that lasers can be bright. From Goldfinger to Star Wars, intense lasers carry a 'death ray' reputation in popular culture. But what is intense light, anyway? How can you even make or direct something that will blast to smithereens any material that it encounters? And how can something as ephemeral as a ray of light turn into an irresistible force? Is there an ultimate intensity, a brightest light? We'll answer these questions, and more.

  7. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  8. EDITORIAL: The next photonic revolution The next photonic revolution

    Science.gov (United States)

    Zheludev, Nikolay I.

    2009-11-01

    This special section on Nanophotonics and Metamaterials is a follow-up to the second European Topical Meeting of the NANOMETA series of meetings (see www.nanometa.org) which took place on 5-8 January 2009, in Seefeld, Austria. The main idea of the first NANOMETA meeting held in 2007 was to bring together the mature community of microwave electrical engineers with the emerging community of photonics researchers interested in the physics of light coupled to nanostructures. In recent years the research landscape has shifted dramatically. A wider proliferation of nanofabrication techniques such as electron beam lithography, nanoimprint and focused ion beam milling, diagnostics techniques such as near-field scanning imaging, cathodoluminescence with nanoscale resolution and micro-spectrometry, and the availability of affordable broadband and ultrafast optical sources, have moved the research focus of the NANOMETA community to the optical domain. Quite naturally the ideas of the nonlinearity of materials and the coherency of light in the nanoscale realm have been widely discussed. Driven by the dream of untapped device and material functionality, nonlinear and switchable nanophotonic devices and photonic metamaterials, along with the concept of tailoring the electromagnetic space with metamaterials, appear to be the main avenues along which the subject will develop in the coming years. Indeed, in the last 20 years photonics has played a key role in creating the world as we know it, with enormous beneficial social impact worldwide. It is impossible to imagine modern society without the globe-spanning broadband internet and mobile telephony made possible by the implementation of optical fibre core networks, optical disc data storage (underpinned by the development of compact semiconductor lasers), modern image display technologies and laser-assisted manufacturing. We now anticipate that the next photonic revolution will continue to grow, explosively fuelled by a new

  9. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Czech Academy of Sciences Publication Activity Database

    Krausová, I.; Mizera, Jiří; Řanda, Z.; Chvátil, D.; Krist, P.

    2015-01-01

    Roč. 342, JAN (2015), s. 82-86 ISSN 0168-583X Institutional support: RVO:67985891 Keywords : fluorine * instrumental photon activation analysis * IPAA * coal Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  10. The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Tang, Yi-Jun; Zhen, Jian-Ping

    2014-01-01

    In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered

  11. Facile construction of dual bandgap optical encoding materials with PS@P(HEMA-co-AA)/SiO2-TMPTA colloidal photonic crystals

    Science.gov (United States)

    Tian, Yu; Zhang, Jing; Liu, Si-Si; Yang, Shengyang; Yin, Su-Na; Wang, Cai-Feng; Chen, Li; Chen, Su

    2016-07-01

    An operable strategy for the construction of dual-reflex optical code materials from bilayer or Janus-structure colloidal photonic crystals (CPCs) has been established in this work. In this process, monodispersed submicrometer polystryene@poly(2-hydroxyethyl methacrylate-co-acrylic acid) hydrogel microspheres with soft-shell/hard-core structure and monodispersed colloidal silica spheres were fabricated. These two kinds of colloidal units can be facilely integrated into a single material without optical signal interference because they are well isolated for the immiscibility between water and ethoxylated trimethylolpropane triacrylate (TMPTA) and the upper layer of SiO2-TMPTA is a kind of transparent. Moreover, diverse optical code series with different dual photonic bandgaps can be obtained via tuning the colloid sizes. Compared to the conventional single-reflex CPCs, the as-prepared dual-reflex optical code materials represented high information capacity in encoding process. More interesting, delicate code pattern has been also achieved on the optical film via the silk-screen printing technique, which will greatly extend the dual-reflex optical code materials to practical uses in areas containing bio-encoding, anti-counterfeiting, and flexible displays.

  12. COST 288: Nanoscale and Ultrafast Photonics. Action Identification Data

    Science.gov (United States)

    2008-08-01

    heterodyne measurements (WG2-approved by MC) 10. June 20-July 1, 2005 -Dr. Angel Valle (Spanish) (Instituto de Fisica de Cantabria, Santander...modulation in VCSELs - A. Valle (Instituto de Fisica de Cantabria, Spain), K. Panajotov (Vrije Universiteit Brussel) and M. Sciamanna (LMOPS CNRS UMR...A. Valle (Instituto de Fisica de Cantabria, Spain), has performed a STSM in collaboration with K. Panajotov (Vrije Universiteit Brussel) and with

  13. Mid-Infrared Photonic Devices Fabricated by Ultrafast Laser Inscription

    Science.gov (United States)

    2016-07-01

    pump focusing lens (f= 40 mm), M2 and M3 are HR dielectric mirrors, CM is a concave chirped mirror, GSA is a graphene -based saturable absorber...inscribe waveguide in CaF2. Passive modelocking is achieved using a SESAM or few layer graphene saturable absorber. Assuming the mode-locked...domains. The voltage was left on until the sample returned to room temperature. The electrodes (silver paint ) on the positive and negative c-axis

  14. Topology optimization of ultra-fast nano-photonic switches

    DEFF Research Database (Denmark)

    Elesin, Yuriy; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    2011-01-01

    The aim of this paper is to demonstrate 1D switch designs obtained by topology optimization which show better performance than the designs considered in the literature. Such devices are non-linear and their performance depends on the efficiency of light-matter interaction. Simple optical switches...

  15. Intensified CCD for ultrafast diagnostics

    International Nuclear Information System (INIS)

    Cheng, J.; Tripp, G.; Coleman, L.

    1978-01-01

    Many of the present laser fusion diagnostics are recorded on either ultrafast streak cameras or on oscilloscopes. For those experiments in which a large volume of data is accumulated, direct computer processing of the information becomes important. We describe an approach which uses a RCA 52501 back-thinned CCD sensor to obtain direct electron readouts for both the streak camera and the CRT. Performance of the 100 GHz streak camera and the 4 GHz CRT are presented. Design parameters and computer interfacing for both systems are described in detail

  16. Compression of Ultrafast Laser Beams

    Science.gov (United States)

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  17. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    Science.gov (United States)

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  18. Spin-controlled ultrafast vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Höpfner, Henning; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.

    2014-05-01

    Spin-controlled semiconductor lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. In particular, spin-controlled vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. Most important, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. We present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers by the relaxation oscillation frequency and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than these. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future. Different aspects of the spin and polarization dynamics, its connection to birefringence and bistability in the cavity, controlled switching of the oscillations, and the limitations of this novel approach will be analysed theoretically and experimentally for spin-polarized VCSELs at room temperature.

  19. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers

    Science.gov (United States)

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.

    2017-01-01

    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies. PMID:28211471

  20. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    International Nuclear Information System (INIS)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.

    2016-01-01

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO_2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

  1. Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers.

    Science.gov (United States)

    Ji, Ziheng; Hong, Hao; Zhang, Jin; Zhang, Qi; Huang, Wei; Cao, Ting; Qiao, Ruixi; Liu, Can; Liang, Jing; Jin, Chuanhong; Jiao, Liying; Shi, Kebin; Meng, Sheng; Liu, Kaihui

    2017-12-26

    Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS 2 /WS 2 bilayer with various stacking configurations, by optical two-color ultrafast pump-probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.

  2. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  3. Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation.

    Science.gov (United States)

    Lv, Jinman; Shang, Zhen; Tan, Yang; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-08-07

    We report the surface cladding-like waveguide fabricated by the cooperation of the ultrafast laser writing and the ion irradiation. The ultrafast laser writes tracks near the surface of the Nd:YAG crystal, constructing a semi-circle columnar structure with a decreased refractive index of - 0.00208. Then, the Nd:YAG crystal is irradiated by the Carbon ion beam, forming an enhanced-well in the semi-circle columnar with an increased refractive index of + 0.0024. Tracks and the enhanced-well consisted a surface cladding-like waveguide. Utilizing this cladding-like waveguide as the gain medium for the waveguide lasing, optimized characterizations were observed compared with the monolayer waveguide. This work demonstrates the refractive index of the Nd:YAG crystal can be well tailored by the cooperation of the ultrafast laser writing and the ion irradiation, which provides an convenient way to fabricate the complex and multilayered photonics devices.

  4. CONFERENCE: Photon-photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Despite being difficult to observe, photon-photon collisions have opened up a range of physics difficult, or even impossible, to access by other methods. The progress which has been made in this field was evident at the fifth international workshop on photon-photon collisions, held in Aachen from 13-16 April and attended by some 120 physicists

  5. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Czech Academy of Sciences Publication Activity Database

    Krausová, Ivana; Mizera, Jiří; Řanda, Zdeněk; Chvátil, David; Krist, Pavel

    2015-01-01

    Roč. 342, JAN (2015), s. 82-86 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA13-27885S Institutional support: RVO:61389005 Keywords : Fluorine * instrumental photon activation analysis * IPAA * coal Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  6. Precise material identification method based on a photon counting technique with correction of the beam hardening effect in X-ray spectra

    International Nuclear Information System (INIS)

    Kimoto, Natsumi; Hayashi, Hiroaki; Asahara, Takashi; Mihara, Yoshiki; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro

    2017-01-01

    The aim of our study is to develop a novel material identification method based on a photon counting technique, in which the incident and penetrating X-ray spectra are analyzed. Dividing a 40 kV X-ray spectra into two energy regions, the corresponding linear attenuation coefficients are derived. We can identify the materials precisely using the relationship between atomic number and linear attenuation coefficient through the correction of the beam hardening effect of the X-ray spectra. - Highlights: • We propose a precise material identification method to be used as a photon counting system. • Beam hardening correction is important, even when the analysis is applied to the short energy regions in the X-ray spectrum. • Experiments using a single probe-type CdTe detector were performed, and Monte Carlo simulation was also carried out. • We described the applicability of our method for clinical diagnostic X-ray imaging in the near future.

  7. Measurement of polarization dependence of two-photon absorption coefficient in InP using extended Z-scan technique for thick materials

    Science.gov (United States)

    Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki

    2018-03-01

    The two-photon absorption coefficient β in InP has been measured in the wavelength range of 1640 to 1800 nm by the Z-scan technique in relatively thick materials. The values of β have been evaluated from the fit to the equation including the spatial and temporal profiles of the focused Gaussian beam. The polarization dependence of β has also been measured. The dependence has been expressed very well by the expression of β with the imaginary part of the third-order nonlinear susceptibility tensor χ(3).

  8. Ultrafast photoelectron spectroscopy of small molecule organic films

    Science.gov (United States)

    Read, Kendall Laine

    As research in the field of ultrafast optics has produced shorter and shorter pulses, at an ever-widening range of frequencies, ultrafast spectroscopy has grown correspondingly. In particular, ultrafast photoelectron spectroscopy allows direct observation of electrons in transient or excited states, regardless of the eventual relaxation mechanisms. High-harmonic conversion of 800nm, femtosecond, Ti:sapphire laser pulses allows excite/probe spectroscopy down into atomic core level states. To this end, an ultrafast, X-UV photoelectron spectroscopic system is described, including design considerations for the high-harmonic generation line, the time of flight detector, and the subsequent data collection electronics. Using a similar experimental setup, I have performed several ultrafast, photoelectron excited state decay studies at the IBM, T. J. Watson Research Center. All of the observed materials were electroluminescent thin film organics, which have applications as the emitter layer in organic light emitting devices. The specific materials discussed are: Alq, BAlq, DPVBi, and Alq doped with DCM or DMQA. Alq:DCM is also known to lase at low photoexcitation thresholds. A detailed understanding of the involved relaxation mechanisms is beneficial to both applications. Using 3.14 eV excite, and 26.7 eV probe, 90 fs laser pulses, we have observed the lowest unoccupied molecular orbital (LUMO) decay rate over the first 200 picoseconds. During this time, diffusion is insignificant, and all dynamics occur in the absence of electron transport. With excitation intensities in the range of 100μJ/cm2, we have modeled the Alq, BAlq, and DPVBi decays via bimolecular singlet-singlet annihilation. At similar excitations, we have modeled the Alq:DCM decay via Förster transfer, stimulated emission, and excimeric formation. Furthermore, the Alq:DCM occupied to unoccupied molecular orbital energy gap was seen to shrink as a function of excite-to-probe delay, in accordance with the

  9. Ultrafast secondary emission x-ray imaging detectors

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Majewski, S.

    1991-07-01

    Fast high accuracy, x-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electron emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantage of solid x-ray detectors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanoseconds) response. These x-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation,with a reduced dE/dx background. We present experimental results on the operation of the secondary emission x-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors based on CsI transition radiation convertors. (author)

  10. Ultrafast quantum random number generation based on quantum phase fluctuations.

    Science.gov (United States)

    Xu, Feihu; Qi, Bing; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong

    2012-05-21

    A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we experimentally demonstrate an ultrafast QRNG at a rate over 6 Gbits/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with postprocessing. We quantify the quantum randomness through min-entropy by modeling our system and employ two randomness extractors--Trevisan's extractor and Toeplitz-hashing--to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.

  11. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-01-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  12. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero

    2017-05-31

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  13. Ultrafast probing of core hole localization in N2.

    Science.gov (United States)

    Schöffler, M S; Titze, J; Petridis, N; Jahnke, T; Cole, K; Schmidt, L Ph H; Czasch, A; Akoury, D; Jagutzki, O; Williams, J B; Cherepkov, N A; Semenov, S K; McCurdy, C W; Rescigno, T N; Cocke, C L; Osipov, T; Lee, S; Prior, M H; Belkacem, A; Landers, A L; Schmidt-Böcking, H; Weber, Th; Dörner, R

    2008-05-16

    Although valence electrons are clearly delocalized in molecular bonding frameworks, chemists and physicists have long debated the question of whether the core vacancy created in a homonuclear diatomic molecule by absorption of a single x-ray photon is localized on one atom or delocalized over both. We have been able to clarify this question with an experiment that uses Auger electron angular emission patterns from molecular nitrogen after inner-shell ionization as an ultrafast probe of hole localization. The experiment, along with the accompanying theory, shows that observation of symmetry breaking (localization) or preservation (delocalization) depends on how the quantum entangled Bell state created by Auger decay is detected by the measurement.

  14. Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting

    Science.gov (United States)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-01

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a ``super pressing'' state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  15. A Superconducting Dual-Channel Photonic Switch.

    Science.gov (United States)

    Srivastava, Yogesh Kumar; Manjappa, Manukumara; Cong, Longqing; Krishnamoorthy, Harish N S; Savinov, Vassili; Pitchappa, Prakash; Singh, Ranjan

    2018-06-05

    The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high-T c ) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation-less dynamic features of superconductors to be utilized for designing high-performance active subwavelength photonic devices with extremely low-loss operation. Here, dual-channel, ultrafast, all-optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high-T c yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation-relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low-loss, ultrafast, and ultrasensitive dual-channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    Science.gov (United States)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  17. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  18. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  19. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  20. Ultrafast Ge-Te bond dynamics in a phase-change superlattice

    NARCIS (Netherlands)

    Malvestuto, Marco; Caretta, Antonio; Casarin, Barbara; Cilento, Federico; Dell'Angela, Martina; Fausti, Daniele; Calarco, Raffaella; Kooi, Bart J.; Varesi, Enrico; Robertson, John; Parmigiani, Fulvio

    2016-01-01

    A long-standing question for avant-garde data storage technology concerns the nature of the ultrafast photoinduced phase transformations in the wide class of chalcogenide phase-change materials (PCMs). Overall, a comprehensive understanding of the microstructural evolution and the relevant kinetics

  1. Low damage electrical modification of 4H-SiC via ultrafast laser irradiation

    Science.gov (United States)

    Ahn, Minhyung; Cahyadi, Rico; Wendorf, Joseph; Bowen, Willie; Torralva, Ben; Yalisove, Steven; Phillips, Jamie

    2018-04-01

    The electrical properties of 4H-SiC under ultrafast laser irradiation in the low fluence regime (engineering spatially localized structural and electronic modification of wide bandgap materials such as 4H-SiC with relatively low surface damage via low temperature processing.

  2. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements.

    Science.gov (United States)

    Heilpern, Tal; Manjare, Manoj; Govorov, Alexander O; Wiederrecht, Gary P; Gray, Stephen K; Harutyunyan, Hayk

    2018-05-10

    Developing a fundamental understanding of ultrafast non-thermal processes in metallic nanosystems will lead to applications in photodetection, photochemistry and photonic circuitry. Typically, non-thermal and thermal carrier populations in plasmonic systems are inferred either by making assumptions about the functional form of the initial energy distribution or using indirect sensors like localized plasmon frequency shifts. Here we directly determine non-thermal and thermal distributions and dynamics in thin films by applying a double inversion procedure to optical pump-probe data that relates the reflectivity changes around Fermi energy to the changes in the dielectric function and in the single-electron energy band occupancies. When applied to normal incidence measurements our method uncovers the ultrafast excitation of a non-Fermi-Dirac distribution and its subsequent thermalization dynamics. Furthermore, when applied to the Kretschmann configuration, we show that the excitation of propagating plasmons leads to a broader energy distribution of electrons due to the enhanced Landau damping.

  3. Graphene and carbon nanotubes ultrafast relaxation dynamics and optics

    CERN Document Server

    Malic, Ermin

    2013-01-01

    The book introduces the reader into the ultrafast nanoworld of graphene and carbon nanotubes, including their microscopic tracks and unique optical finger prints. The author reviews the recent progress in this field by combining theoretical and experimental achievements. He offers a clear theoretical foundation by presenting transparently derived equations. Recent experimental breakthroughs are reviewed. By combining both theory and experiment as well as main results and detailed theoretical derivations, the book turns into an inevitable source for a wider audience from graduate students to researchers in physics, materials science, and electrical engineering who work on optoelectronic devices, renewable energies, or in the semiconductor industry.

  4. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted...

  5. EDITORIAL: Photonic terahertz technology

    Science.gov (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    femtosecond lasers operating at high repetition rate (~100 MHz). The system described by Planken et al was initially optimized for high-speed pixel-by-pixel THz imaging, which they do not describe here but rather focus on developments in THz microscopy. The second paper, by Kübler et al, presents pioneering work towards ultra-wide-bandwidth THz pulses which exhibit spectral content reaching far into the mid-IR, tremendously widening the covered frequency range, and hence shortening the time resolution, of THz spectroscopy. The third paper, by Löffler et al, deals with the state of the art in THz measurement systems relying on amplified laser pulses. Finally, Krotkus et al focus on low-temperature-grown (LT) GaAs, arguably the most important material for ultrafast optoelectronic switching and present in many THz sources and detectors, and in other emerging materials of similar kind. This leads directly to the second topic of this collection of papers, 'Continuous-Wave Photomixing Technology', based on THz-wave generation by down-conversion of continuous-wave (cw) laser radiation. This newer branch of THz photonics opens the possibility of obtaining tunable narrow-band THz radiation and of detecting it with high signal-to-noise ratio at room temperature. CW photomixing has received much attention over the last few years mainly because it has the potential to provide the compact and low-cost THz measurement systems needed for market applications beyond the scientific realm, with the sources of light for mixing being semiconductor (or fibre) lasers with or without optical amplifiers. Six papers outline recent developments in this subfield. We should also point towards a seventh paper, by Kawase et al, which is to be found in the section on 'Chemical and Biochemical Recognition', and which discusses an interesting hybrid approach generating tunable quasi-cw THz radiation with the help of nanosecond laser pulses. Of the six papers mentioned, the first, by Tani et al, summarizes

  6. Photonics: Technology project summary

    Science.gov (United States)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  7. Controllable Absorption and Dispersion Properties of an RF-driven Five-Level Atom in a Double-Band Photonic-Band-Gap Material

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue

    2011-01-01

    The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-band-gap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by the upper and lower bands in such a PBG material, thus leading to some curious phenomena. Numerical simulations are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. A new method for studying the transport of gamma photons in various geological materials by combining the SSNTD technique with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Merzouki, A.; Bourzik, W.; Sfairi, T.

    2000-01-01

    The gamma dose rate due to the uranium and thorium series as well as the potassium 40 nuclei represents a large fraction of the total dose rate from the natural background. Natural gamma-activities of rock and soil samples collected from volcanic areas have been determined using gamma-ray spectrometry. The corresponding gamma dose rates in air have been measured by means of thermoluminescence (TL) dosimeters. Annual absorbed gamma dose rates have been evaluated in different soil samples belonging to an archaeological site by using experimental and calculational methods. Uranium and thorium contents in different geological samples have been determined by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) and calculating the probabilities for alpha particles emitted by the uranium and thorium series to reach and be registered on the SSNTD films. A new method has been developed based on calculating the self-absorption and transmission coefficients of the gamma photons emitted by the uranium and thorium families as well as the potassium 40 isotope for evaluating the gamma dose rate in the considered geological samples. Transport of gamma-photons across parallelepipedic blocks of the geological materials studied has been investigated. Gamma dose rates have been evaluated in the atmosphere of different geological deposits. (author)

  9. Material decomposition through weighted imaged subtraction in dual-energy spectral mammography with an energy-resolved photon-counting detector using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)

    2017-09-15

    Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

  10. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials.

    Science.gov (United States)

    Rodriguez, Alejandro W; Ilic, Ognjen; Bermel, Peter; Celanovic, Ivan; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G

    2011-09-09

    We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.

  11. PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2013-02-01

    Carbon-based nanomaterials—single-wall carbon nanotubes (SWCNTs) and graphene, in particular—have emerged in the last decade as novel low-dimensional systems with extraordinary properties. Because they are direct-bandgap systems, SWCNTs are one of the leading candidates to unify electronic and optical functions in nanoscale circuitry; their diameter-dependent bandgaps can be utilized for multi-wavelength devices. Graphene's ultrahigh carrier mobilities are promising for high-frequency electronic devices, while, at the same time, it is predicted to have ideal properties for terahertz generation and detection due to its unique zero-gap, zero-mass band structure. There have been a large number of basic optical studies on these materials, but most of them were performed in the weak-excitation, quasi-equilibrium regime. In order to probe and assess their performance characteristics as optoelectronic materials under device-operating conditions, it is crucial to strongly drive them and examine their optical properties in highly non-equilibrium situations and with ultrashot time resolution. In this section, the reader will find the latest results in this rapidly growing field of research. We have assembled contributions from some of the leading experts in ultrafast and nonlinear optical spectroscopy of carbon-based nanomaterials. Specific topics featured include: thermalization, cooling, and recombination dynamics of photo-generated carriers; stimulated emission, gain, and amplification; ultrafast photoluminescence; coherent phonon dynamics; exciton-phonon and exciton-plasmon interactions; exciton-exciton annihilation and Auger processes; spontaneous and stimulated emission of terahertz radiation; four-wave mixing and harmonic generation; ultrafast photocurrents; the AC Stark and Franz-Keldysh effects; and non-perturbative light-mater coupling. We would like to express our sincere thanks to those who contributed their latest results to this special section, and the

  12. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Seymour, Colin, E-mail: seymouc@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Mothersill, Carmel E., E-mail: mothers@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada)

    2014-01-15

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some “bystander effects” that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 10{sup 10} protons mm{sup −2} s{sup −1}. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  13. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI.

    Science.gov (United States)

    Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U

    2017-09-01

    We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  14. Photonic Hypercrystals

    Directory of Open Access Journals (Sweden)

    Evgenii E. Narimanov

    2014-10-01

    Full Text Available We introduce a new “universality class” of artificial optical media—photonic hypercrystals. These hyperbolic metamaterials, with periodic spatial variation of dielectric permittivity on subwavelength scale, combine the features of optical metamaterials and photonic crystals. In particular, surface waves supported by a hypercrystal possess the properties of both the optical Tamm states in photonic crystals and surface-plasmon polaritons at the metal-dielectric interface.

  15. Linear and ultrafast nonlinear plasmonics of single nano-objects

    Science.gov (United States)

    Crut, Aurélien; Maioli, Paolo; Vallée, Fabrice; Del Fatti, Natalia

    2017-03-01

    Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell’s equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump-probe experiments performed on individual

  16. Operation of beam line facilities for real-time x-ray studies at Sector 7 of the advanced photon source. Final Report

    International Nuclear Information System (INIS)

    Clarke, Roy

    2003-01-01

    This Final Report documents the research accomplishments achieved in the first phase of operations of a new Advanced Photon Source beam line (7-ID MHATT-CAT) dedicated to real-time x-ray studies. The period covered by this report covers the establishment of a world-class facility for time-dependent x-ray studies of materials. During this period many new and innovative research programs were initiated at Sector 7 with support of this grant, most notably using a combination of ultrafast lasers and pulsed synchrotron radiation. This work initiated a new frontier of materials research: namely, the study of the dynamics of materials under extreme conditions of high intensity impulsive laser irradiation

  17. Ultra-Fast Hadronic Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab; Lukić, Strahinja [VINCA Inst. Nucl. Sci., Belgrade; Mokhov, Nikolai [Fermilab; Striganov, Sergei [Fermilab; Ujić, Predrag [VINCA Inst. Nucl. Sci., Belgrade

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.

  18. Ultrafast palladium diffusion in germanium

    KAUST Repository

    Tahini, Hassan Ali

    2015-01-01

    The slow transport of dopants through crystal lattices has hindered the development of novel devices. Typically atoms are contained within deep potential energy wells which necessitates multiple attempts to hop between minimum energy positions. This is because the bonds that constrain atoms are strongest at the minimum positions. As they hop between sites the bonds must be broken, only to re-form as the atoms slide into adjacent minima. Here we demonstrate that the Pd atoms introduced into the Ge lattice behave differently. They retain bonds as the atoms shift across so that at the energy maximum between sites Pd still exhibits strong bonding characteristics. This reduces the energy maximum to almost nothing (a migration energy of only 0.03 eV) and means that the transport of Pd through the Ge lattice is ultrafast. We scrutinize the bonding characteristics at the atomic level using quantum mechanical simulation tools and demonstrate why Pd behaves so differently to other metals we investigated (i.e. Li, Cu, Ag, Pt and Au). Consequently, this fundamental understanding can be extended to systems where extremely rapid diffusion is desired, such as radiation sensors, batteries and solid oxide fuel cells.

  19. The photo refractive polymers, physics and photonic applications of these new materials; Los polimeros fotorrefractivos, fisica y aplicaciones fotonicas de estos nuevos materiales

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, J. L. [Centro de Investigacion en Optica, Leon, Guanajuato (Mexico); Garcia M, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2001-12-01

    This paper is a review about the new photo refractive organic materials and their potential photonic applications, the photo refractive polymers. The physical properties required for observing photo refractivity, including charge generation, transport, and nonlinear optical properties are discussed for amorphous polymers. The nonlinear optical properties on a macroscopic level are related to the microscopic properties by using the Oriented Gas model. Four Wave Mixing (FWM) and Two Beam Coupling (TBC) experiments, to investigate the photo refractive properties of the material by measuring the diffraction efficiency {eta} of the polymeric gratings, and the optical gain coefficient {eta} are described. Kogelnik's Coupled Wave model to describe the photo refractive polymeric gratings is reviewed. Finally some applications of these new polymers are presented. [Spanish] Este articulo es una revision sobre los nuevos materiales organicos fotorrrefractivos y sus potenciales aplicaciones fotonicas: los polimeros fotorrefractivos. Se discuten las propiedades fisicas requeridas para observar fotorrefractividad, incluyendo la generacion de cargas, el transporte y las propiedades opticas no lineales en polimeros amorfos. Usando el modelo de gas orientado, se muestra como se relacionan las propiedades opticas no lineales a nivel marcoscopico con las propiedades microscopicas. Se describen los experimentos de mezcla de cuatro ondas (FWM) y dos ondas (TBC) para investigar las propiedades fotorrefractivas del material, midiendo la eficiencia de difraccion {eta} de las rejillas polimericas y el coeficiente de ganancia optica {eta}. Se revisa el modelo de ondas acopladas de Kogelnik para describir las rejillas polimericas fotorrefractivas. Finalmente se presentan algunas aplicaciones de estos nuevos polimeros.

  20. Roadmap of ultrafast x-ray atomic and molecular physics

    Science.gov (United States)

    Young, Linda; Ueda, Kiyoshi; Gühr, Markus; Bucksbaum, Philip H.; Simon, Marc; Mukamel, Shaul; Rohringer, Nina; Prince, Kevin C.; Masciovecchio, Claudio; Meyer, Michael; Rudenko, Artem; Rolles, Daniel; Bostedt, Christoph; Fuchs, Matthias; Reis, David A.; Santra, Robin; Kapteyn, Henry; Murnane, Margaret; Ibrahim, Heide; Légaré, François; Vrakking, Marc; Isinger, Marcus; Kroon, David; Gisselbrecht, Mathieu; L'Huillier, Anne; Wörner, Hans Jakob; Leone, Stephen R.

    2018-02-01

    X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm-2) of x-rays at wavelengths down to ˜1 Ångstrom, and HHG provides unprecedented time resolution (˜50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ˜280 eV (44 Ångstroms) and the bond length in methane of ˜1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since

  1. Principles of photonics

    CERN Document Server

    Liu, Jia-Ming

    2016-01-01

    With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.

  2. Ultrafast Raman scattering in gas-filled hollow-core fibers

    OpenAIRE

    Belli, Federico

    2017-01-01

    The experimental and numerical work reported here is rooted in ultrafast molecular phenomena and nonlinear fiber optics, which are brought together in a deceptively simple system: a homo-nuclear molecular gas (e.g. H2,D2) loaded in the hollow-core of a broad-band guiding photonic crystal fiber (PCF) and exposed to ultrashort pulses of moderate energies (∼ μJ). On one hand, the choice of a molecular gas as the nonlinear medium provides a rich playground for light-matter interactions. ...

  3. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, F. P., E-mail: fpsturm@lbl.gov [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institut für Kernphysik, Universität Frankfurt, Max-von-Laue Str. 1, D-60438 Frankfurt (Germany); Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Belkacem, A.; Weber, Th. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ranitovic, P. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged H6720 (Hungary)

    2016-06-15

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  4. Silicon photonic integration in telecommunications

    Directory of Open Access Journals (Sweden)

    Christopher Richard Doerr

    2015-08-01

    Full Text Available Silicon photonics is the guiding of light in a planar arrangement of silicon-based materials to perform various functions. We focus here on the use of silicon photonics to create transmitters and receivers for fiber-optic telecommunications. As the need to squeeze more transmission into a given bandwidth, a given footprint, and a given cost increases, silicon photonics makes more and more economic sense.

  5. Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching

    Science.gov (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2017-03-01

    Polarization switching of picosecond laser pulses is a fundamental concept in signal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986); V. R. Almeida et al., Nature 431, 1081 (2004); and A. A. P. Pohl et al., Photonics Sens. 3, 1 (2013)]. Conventional switching devices rely on the electro-optical Pockels effect and work at radio frequencies. The ensuing gating time of several nanoseconds is a bottleneck for faster switches which is set by the performance of state-of-the-art high-voltage electronics. Here we show that by substituting the electric field of several kV/cm provided by modern electronics by the MV/cm field of a single-cycle THz laser pulse, the electro-optical gating process can be driven orders of magnitude faster, at THz frequencies. In this context, we introduce diamond as an exceptional electro-optical material and demonstrate a pulse gating time as fast as 100 fs using sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in the insulator diamond is fully governed by the THz pulse shape. The presented THz-based electro-optical approach overcomes the bandwidth and switching speed limits of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gating technology for the first time in the THz frequency range. We finally show that the presented THz polarization gating technique is applicable for advanced beam diagnostics. As a first example, we demonstrate tomographic reconstruction of a THz pulse in three dimensions.

  6. Progress in Ultrafast Intense Laser Science II

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2007-01-01

    This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Its progress is being stimulated by the recent development of ultrafast laser technologies. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields and the texts are written at a level accessible to newcomers and graduate students, each chapter beginning with an introductory overview.

  7. Progress in ultrafast intense laser science XI

    CERN Document Server

    Yamanouchi, Kaoru; Martin, Philippe

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  8. Progress in ultrafast intense laser science

    CERN Document Server

    Yamanouchi, Kaoru; Mathur, Deepak

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  9. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  10. Photonic integration and photonics-electronics convergence on silicon platform

    CERN Document Server

    Liu, Jifeng; Baba, Toshihiko; Vivien, Laurent; Xu, Dan-Xia

    2015-01-01

    Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference de...

  11. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    International Nuclear Information System (INIS)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-01-01

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus s intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications

  12. Ultrafast laser pump/x-ray probe experiments

    International Nuclear Information System (INIS)

    Larsson, J.; Judd, E.; Schuck, P.J.

    1997-01-01

    In an ongoing project aimed at probing solids using x-rays obtained at the ALS synchrotron with a sub-picosecond time resolution following interactions with a 100 fs laser pulse, the authors have successfully performed pump-probe experiments limited by the temporal duration of ALS-pulse. They observe a drop in the diffraction efficiency following laser heating. They can attribute this to a disordering of the crystal. Studies with higher temporal resolution are required to determine the mechanism. The authors have also incorporated a low-jitter streakcamera as a diagnostic for observing time-dependant x-ray diffraction. The streakcamera triggered by a photoconductive switch was operated at kHz repetition rates. Using UV-pulses, the authors obtain a temporal response of 2 ps when averaging 5000 laser pulses. They demonstrate the ability to detect monochromatized x-ray radiation from a bend-magnet with the streak camera by measuring the pulse duration of a x-ray pulse to 70 ps. In conclusion, the authors show a rapid disordering of an InSb crystal. The resolution was determined by the duration of the ALS pulse. They also demonstrate that they can detect x-ray radiation from a synchrotron source with a temporal resolution of 2ps, by using an ultrafast x-ray streak camera. Their set-up will allow them to pursue laser pump/x-ray probe experiments to monitor structural changes in materials with ultrafast time resolution

  13. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  14. Time evolution of photon-pulse propagation in scattering and absorbing media: The dynamic radiative transfer system

    Science.gov (United States)

    Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.

    2018-03-01

    A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.

  15. Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements

    NARCIS (Netherlands)

    Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Reiger, E.; Dorenbos, S.; Zwiller, V.; Milostnaya, I.; Minaeva, O.

    2007-01-01

    We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured (~100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast

  16. Experimental demonstration of non-reciprocal transmission in a nonlinear photonic-crystal Fano structure

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao

    2015-01-01

    We suggest and experimentally demonstrate a photonic-crystal structure with more than 30 dB difference between forward and backward transmission levels. The non-reciprocity relies on the combination of ultrafast carrier nonlinearities and spatial symmetry breaking in a Fano structure employing...

  17. Inverse photon-photon processes

    International Nuclear Information System (INIS)

    Carimalo, C.; Crozon, M.; Kesler, P.; Parisi, J.

    1981-12-01

    We here consider inverse photon-photon processes, i.e. AB → γγX (where A, B are hadrons, in particular protons or antiprotons), at high energies. As regards the production of a γγ continuum, we show that, under specific conditions the study of such processes might provide some information on the subprocess gg γγ, involving a quark box. It is also suggested to use those processes in order to systematically look for heavy C = + structures (quarkonium states, gluonia, etc.) showing up in the γγ channel. Inverse photon-photon processes might thus become a new and fertile area of investigation in high-energy physics, provided the difficult problem of discriminating between direct photons and indirect ones can be handled in a satisfactory way

  18. Quantum Computation with Ultrafast Laser Pulse Shaping

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Quantum Computation with Ultrafast Laser Pulse Shaping. Debabrata Goswami. General Article Volume 10 Issue 6 June 2005 pp 8-14. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Ultrafast spectroscopy of model biological membranes

    NARCIS (Netherlands)

    Ghosh, Avishek

    2009-01-01

    In this PhD thesis, I have described the novel time-resolved sum-frequency generation (TR-SFG) spectroscopic technique that I developed during the course of my PhD research and used it study the ultrafast vibrational, structural and orientational dynamics of water molecules at model biological

  20. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.

    Science.gov (United States)

    Hu, Yumei; Jiang, Xiaomei; Zhang, Laiying; Fan, Jiao; Wu, Weitai

    2013-10-15

    Noninvasive monitoring of glucose in tears is highly desirable in tight glucose control. The polymerized crystalline colloidal array (PCCA) that can be incorporated into contact lens represents one of the most promising materials for noninvasive monitoring of glucose in tears. However, low sensitivity and slow time response of the PCCA reported in previous arts has limited its clinical utility. This paper presents a new PCCA, denoted as NIR-PCCA, comprising a CCA of glucose-responsive sub-micrometered poly(styrene-co-acrylamide-co-3-acrylamidophenylboronic acid) microgels embedded within a slightly positive charged hydrogel matrix of poly(acrylamide-co-2-(dimethylamino)ethyl acrylate). This newly designed NIR-PCCA can reflect near-infrared (NIR) light, whose intensity (at 1722 nm) would decrease evidently with increasing glucose concentration over the physiologically relevant range in tears. The lowest glucose concentration reliably detectable was as low as ca. 6.1 μg/dL. The characteristic response time τ(sensing) was 22.1±0.2s when adding glucose to 7.5 mg/dL, and the higher the glucose concentration is, the faster the time response. Such a rationally designed NIR-PCCA is well suited for ratiometric NIR sensing of tear glucose under physiological conditions, thereby likely to bring this promising glucose-sensing material to the forefront of analytical devices for diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit.

    Science.gov (United States)

    Zhang, Qihang; Zhang, Yifei; Li, Junying; Soref, Richard; Gu, Tian; Hu, Juejun

    2018-01-01

    In this Letter, we propose a broadband, nonvolatile on-chip switch design in the telecommunication C-band with record low loss and crosstalk. The unprecedented device performance builds on: 1) a new optical phase change material (O-PCM) Ge 2 Sb 2 Se 4 Te 1 (GSST), which exhibits significantly reduced optical attenuation compared to traditional O-PCMs, and 2) a nonperturbative design that enables low-loss device operation beyond the classical figure-of-merit (FOM) limit. We further demonstrate that the 1-by-2 and 2-by-2 switches can serve as basic building blocks to construct nonblocking and nonvolatile on-chip switching fabric supporting arbitrary numbers of input and output ports.

  2. SU-E-J-239: Influence of RF Coil Materials On Surface and Buildup Dose From a 6MV Photon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Ghila, A; Fallone, B; Rathee, S [Cross Cancer Institute, Edmonton, AB (United Kingdom)

    2015-06-15

    Purpose: In order to perform real time tumour tracking using an integrated Linac-MR, images have to be acquired during irradiation. MRI uses RF coils in close proximity to the imaged volume. Given current RF coil designs this means that the high energy photons will be passing through the coil before reaching the patient. This study experimentally investigates the dose modifications that occur due to the presence of various RF coil materials in the treatment beam. Methods: Polycarbonate, copper or aluminum tape, and Teflon were used to emulate the base, conductor and cover respectively of a surface RF coil. These materials were placed at various distances from the surface of polystyrene or solid water phantoms which were irradiated in the presence of no magnetic field, a transverse 0.2T magnetic field, and a parallel 0.2T magnetic field. Percent depth doses were measured using ion chambers. Results: A significant increase in surface and buildup dose is observed. The surface dose is seen to decrease with an increasing separation between the emulated coil and the phantom surface, when no magnetic field is present. When a transverse magnetic field is applied the surface dose decreases faster with increasing separation, as some of the electrons created in the coil are curved away from the phantom’s surface. When a parallel field is present the surface dose stays approximately constant for small separations, only slightly decreasing for separations greater than 5cm, since the magnetic field focuses the electrons produced in the coil materials not allowing them to scatter. Conclusion: Irradiating a patient through an RF coil leads to an increase in the surface and buildup doses. Mitigating this increase is important for the successful clinical use of either a transverse or a parallel configuration Linac-MR unit. This project is partially supported by an operating grant from the Canadian Institute of Health Research (CIHR MOP 93752)

  3. Proposed development of novel diagnostics for intense, ultrafast laser-plasma experiments at JAEA-KPSI

    International Nuclear Information System (INIS)

    Bolton, Paul R.; Tatchyn, Roman; Fukuda, Yuji; Kando, Masaki; Daito, Izuru; Ma, Jinglong; Chen, Liming; Pirozhkov, Alexander; Tajima, Toshiki

    2007-01-01

    Development of new diagnostics is critical for future laser-plasma accelerators, laser-driven light sources and for x-ray FELs. Recent laser wakefield electron acceleration developments and novel beam-based light source schemes (such as free electron lasers) obviate the need for next generation ultrafast diagnostics, capable of temporal resolution of a few femtoseconds (and in some cases attoseconds) for laser pulses (high order harmonics), x-ray pulses and electron bunches. Single shot detection capability in noninvasive and parasitic modes is also important. Alterations of laser pulse spectra and the associated dynamics can be informative diagnostics. The portion of a high intensity laser pulse that is transmitted through a self-induced underdense plasma (such as in laser wakefield acceleration LWFA schemes) carries the effects of plasma processes it has experienced. A distinction between the self-modulated laser wakefield (SMLWF) acceleration regime and the forced laser wakefield (FLWF) acceleration regime is in the spectral signature of the transmitted ir laser pulse. The former regime generates sidebands from stimulated Raman forward scattering (SRS-F) and the latter exhibits general spectral broadening that evidences ir laser pulse compression. Transmitted spectral effects can diagnose these acceleration regimes. Existing noninvasive electro-optic (EO) schemes for detection of ultrashort electron bunches are limited by material properties to temporal resolution at the 50-100 femtosecond level. While timing jitter at conventional accelerators is of this order (or greater), single bunch longitudinal profile measurements can require improvement of at least an order of magnitude. A new FO technique is described here which monitors enhancement and associated dynamics of spectral components in a probe pulse. Three correlation schemes for detecting ultrashort x-ray pulses are described. Two-photon absorption in tailored ion targets is proposed for scanning auto

  4. Perspective: Ultrafast magnetism and THz spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Walowski, Jakob; Münzenberg, Markus [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2016-10-14

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  5. Perspective: Ultrafast magnetism and THz spintronics

    International Nuclear Information System (INIS)

    Walowski, Jakob; Münzenberg, Markus

    2016-01-01

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  6. Static and Ultrafast Transient Photophysics of Mono- and Dual-Branched Triarylamines

    International Nuclear Information System (INIS)

    Feng-Ming, Li; Wen-Ke, Feng; Shu-Feng, Wang; Qi-Huang, Gong; Fan-Shun, Meng; He, Tian

    2010-01-01

    Mono- and dual-branched molecules, {4-[2-(4-benzothiazol-2-yl-phenyl)-vinyl]-phenyl}-(4-methoxy-phenyl) -phenyl-amine (BS1) and bis-{4-[2-(4-benzothiazol-2-yl-phenyl)-vinyl]-phenyl}-(4-methoxy-phenyl) -phenyl-amine (BS2), are investigated with one- and two-photon static spectroscopy, and the femtosecond fluorescence up-conversion technique. The molecules show branch-based fluorescence emission at low quantum yield. Ultrafast non-radiative decay on a picosecond time scale is found and is attributed to intramolecular charge-transfer bridged by the central triphenylamine. The two-photon absorption cross-sections of BS1 and BS2 are 19.1 and 19.4 GM, respectively. (cross-disciplinary physics and related areas of science and technology)

  7. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity.

    Science.gov (United States)

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2014-05-23

    Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access.

  8. Streak camera imaging of single photons at telecom wavelength

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Donohue, John Matthew; Czerniuk, Thomas; Aßmann, Marc; Bayer, Manfred; Brecht, Benjamin; Silberhorn, Christine

    2018-01-01

    Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.

  9. Photon generator

    Science.gov (United States)

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  10. Optics of globular photonic crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2007-01-01

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter ∼200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  11. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique

    KAUST Repository

    Adhikari, Aniruddha

    2016-12-15

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent spatial resolution of electron microscopes with the temporal resolution of ultrafast femtosecond laser-based spectroscopy. The ingenious use of pulsed photoelectrons to probe surfaces and volumes of materials enables time-resolved snapshots of the dynamics to be captured in a way hitherto impossible by other conventional techniques. The flexibility of 4D-UEM lies in the fact that it can be used in both the scanning (S-UEM) and transmission (UEM) modes depending upon the type of electron microscope involved. While UEM can be employed to monitor elementary structural changes and phase transitions in samples using real-space mapping, diffraction, electron energy-loss spectroscopy, and tomography, S-UEM is well suited to map ultrafast dynamical events on materials surfaces in space and time. This review provides an overview of the unique features that distinguish these techniques and also illustrates the applications of both S-UEM and UEM to a multitude of problems relevant to materials science and chemistry.

  12. High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)

    Science.gov (United States)

    Yang, Chuan; Zhang, Haibin

    2017-03-01

    For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.

  13. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  14. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    International Nuclear Information System (INIS)

    Wang, Zhixun; Cheng, Yongzhi; Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-01-01

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band

  15. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhixun; Cheng, Yongzhi, E-mail: cyz0715@126.com; Nie, Yan; Wang, Xian; Gong, Rongzhou, E-mail: rzhgong@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-07

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  16. Optical nonlinearities and ultrafast all-optical switching of m-plane GaN in the near-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yu; Zhou, Feng; Yang, Junyi; Yang, Yong [College of Physics, Optoelectronics and Energy, Soochow University, 215006 Suzhou (China); Xiao, Zhengguo; Wu, Xingzhi [Department of Physics, Harbin Institute of Technology, 150001 Harbin (China); Song, Yinglin, E-mail: ylsong@hit.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, 215006 Suzhou (China); Department of Physics, Harbin Institute of Technology, 150001 Harbin (China)

    2015-06-22

    We reported a systematic investigation on the three-photon absorption (3PA) spectra and wavelength dispersion of Kerr refraction of bulk m-plane GaN crystal with both polarization E⊥c and E//c by femtosecond Z-scan technique in the near-infrared region from 760 to 1030 nm. Both 3PA spectra and Kerr refraction dispersion were in good agreement with two-band models. The calculated nonlinear figure of merit and measured ultrafast nonlinear refraction dynamics via femtosecond pump-probe with phase object method revealed that m-plane GaN would be a promising candidate for ultrafast all-optical switching and autocorrelation applications at telecommunication wavelengths.

  17. Ultrafast spectral interferometry of resonant secondary emission from quantum wells: From Rayleigh scattering to coherent emission from biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve...... the coherent field associated with Rayleigh component using ultrafast spectral interferometry or Tadpole, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our observation demonstrates that Rayleigh scattering from static disorder is inherently a non-ergodic process...... invalidating the use of current theories using ensemble averages to describe our observations. Furthermore, we report here a new and hitherto unknown coherent scattering mechanism involving the two-photon coherence associated with the biexciton transition. The process leaves an exciton behind taking up...

  18. Ultrafast pulse generation in integrated arrays of anapole nanolasers

    KAUST Repository

    Gongora, J. S. Totero

    2017-11-02

    One of the main challenges in photonics is the integration of ultrafast coherent sources in silicon compatible platforms at the nanoscale [1]. Generally, the emission of ultra-short pulses is achieved by synchronizing the cavity modes of the system via external active components, such as, e.g., Q-switch or saturable absorbers. Consequently, the required optical setups are complex and difficult to integrate on-chip. To address these difficulties, we propose a novel type of integrated source based on the spontaneous synchronization of several near-field nanolasers. We design our near-field lasers by considering the nonlinear amplification of non-radiating Anapole modes [2]. Anapoles represent an intriguing non-conventional state of radiation, whose excitation is responsible for the formation of scattering suppression states in dielectric nanostructures [3]. Due to their inherent near-field emission properties, an ensemble of anapole-based nanolasers represent an ideal candidate to investigate and tailor spontaneous synchronization phenomena in a silicon-compatible framework. Additionally, their mutual non-linear interaction can be precisely controlled within standard nanofabrication tolerances.

  19. Hotspot-mediated non-dissipative and ultrafast plasmon passage

    Science.gov (United States)

    Roller, Eva-Maria; Besteiro, Lucas V.; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O.; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.

  20. Ultrafast X-ray Imaging of Fuel Sprays

    Science.gov (United States)

    Wang, Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.