WorldWideScience

Sample records for ultrafast optical pump

  1. Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.

    Science.gov (United States)

    Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan

    2016-02-01

    We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.

  2. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    Science.gov (United States)

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  3. Ultrafast optical pump terahertz-probe spectroscopy of strongly correlated electron materials

    International Nuclear Information System (INIS)

    Averitt, R.D.; Taylor, Antoinette J.; Thorsmolle, V.K.; Jia, Quanxi; Lobad, A.I.; Trugman, S.A.

    2001-01-01

    We have used optical-pump far-infrared probe spectroscopy to probe the low energy electron dynamics of high temperature superconductors and colossal magnetoresistance manganites. For the superconductor YBa2Cu3O7, picosecond conductivity measurements probe the interplay between Cooper-pairs and quasiparticles. In optimally doped films, the recovery time for long-range phase-coherent pairing increases from ∼1.5 ps at 4K to ∼3.5 ps near Tc, consistent with the closing of the superconducting gap. For underdoped films, the measured recovery time is temperature independent (3.5 ps) in accordance with the presence of a pseudogap. Ultrafast picosecond measurements of optically induced changes in the absolute conductivity of La0:7M0:3MnO3 thin films (M = Ca, Sr) from 10K to ∼0.9Tc reveal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from optically induced modification of the effective phonon temperature. The slower component, related to spin-lattice relaxation, has a lifetime that increases upon approaching Tc from below in accordance with an increasing spin specific heat. Our results indicate that for T<< Tc, the conductivity is determined by incoherent phonons while spin fluctuations dominate near Tc.

  4. Electrical versus optical pumping of quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Mørk, Jesper

    2001-01-01

    The influence of the pumping mechanism for the dynamical properties of quantum dot amplifiers is investigated for 10, 40 and 160 GHz signals. A fast response is predicted in the case of optical pumping in the wetting layer (WL). The combination of fast relaxation and capture times and the presence...... of a reservoir of carriers in the WL opens up for the possibility of ultrafast gain recovery in QD devices. The strength of optical contra electrical pumping is that it reduces the bottleneck effect of a slow WL. Optical pumping thus allows significant improvement of the dynamical properties of QD devices....

  5. Dynamic characterization of silicon nanowires using a terahertz optical asymmetric demultiplexer-based pump-probe scheme

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.

    2012-01-01

    Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....

  6. Optically pumped terahertz sources

    Institute of Scientific and Technical Information of China (English)

    ZHONG Kai; SHI Wei; XU DeGang; LIU PengXiang; WANG YuYe; MEI JiaLin; YAN Chao; FU ShiJie; YAO JianQuan

    2017-01-01

    High-power terahertz (THz) generation in the frequency range of0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago,enabling new technological breakthroughs in spectroscopy,communication,imaging,etc.By using optical (laser) pumping methods with near-or mid-infrared (IR) lasers,flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology.This paper overviews various optically pumped THz sources,including femtosecond laser based ultrafast broadband THz generation,monochromatic widely tunable THz generation,single-mode on-chip THz source from photomixing,and the traditional powerful THz gas lasers.Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well.It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.

  7. Optical Detection in Ultrafast Short Wavelength Science

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Hall, Chris J.

    2010-01-01

    A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

  8. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  9. Optical nonlinearities and ultrafast all-optical switching of m-plane GaN in the near-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yu; Zhou, Feng; Yang, Junyi; Yang, Yong [College of Physics, Optoelectronics and Energy, Soochow University, 215006 Suzhou (China); Xiao, Zhengguo; Wu, Xingzhi [Department of Physics, Harbin Institute of Technology, 150001 Harbin (China); Song, Yinglin, E-mail: ylsong@hit.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, 215006 Suzhou (China); Department of Physics, Harbin Institute of Technology, 150001 Harbin (China)

    2015-06-22

    We reported a systematic investigation on the three-photon absorption (3PA) spectra and wavelength dispersion of Kerr refraction of bulk m-plane GaN crystal with both polarization E⊥c and E//c by femtosecond Z-scan technique in the near-infrared region from 760 to 1030 nm. Both 3PA spectra and Kerr refraction dispersion were in good agreement with two-band models. The calculated nonlinear figure of merit and measured ultrafast nonlinear refraction dynamics via femtosecond pump-probe with phase object method revealed that m-plane GaN would be a promising candidate for ultrafast all-optical switching and autocorrelation applications at telecommunication wavelengths.

  10. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    Science.gov (United States)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  11. PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2013-02-01

    Journal of Physics: Condensed Matter staff for their help, patience and professionalism. Since this is a fast-moving field, there is absolutely no way of presenting definitive answers to all open questions, but we hope that this special section will provide an overview of the current state of knowledge regarding this topic. Furthermore, we hope that the exciting science and technology described in this section will attract and inspire other researchers and students working in related fields to enter into the study of ultrafast and nonlinear optical phenomena in carbon-based nanostructures. Ultrafast and nonlinear optics in carbon nanomaterials contents Ultrafast and nonlinear optics in carbon nanomaterialsJunichiro Kono The impact of pump fluence on carrier relaxation dynamics in optically excited grapheneT Winzer and E Malic Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behaviorS Winnerl, F Göttfert, M Mittendorff, H Schneider, M Helm, T Winzer, E Malic, A Knorr, M Orlita, M Potemski, M Sprinkle, C Berger and W A de Heer Nonlinear optics of graphene in a strong magnetic fieldXianghan Yao and Alexey Belyanin Theory of coherent phonons in carbon nanotubes and graphene nanoribbonsG D Sanders, A R T Nugraha, K Sato, J-H Kim3, J Kono3, R Saito and C J Stanton Non-perturbative effects of laser illumination on the electrical properties of graphene nanoribbons Hernán L Calvo, Pablo M Perez-Piskunow, Horacio M Pastawski, Stephan Roche and Luis E F Foa Torres Transient absorption microscopy studies of energy relaxation in graphene oxide thin film Sean Murphy and Libai Huang Femtosecond dynamics of exciton localization: self-trapping from the small to the large polaron limit F X Morrissey, J G Mance, A D Van Pelt and S L Dexheimer

  12. New Aspects of Photocurrent Generation at Graphene pn Junctions Revealed by Ultrafast Optical Measurements

    Science.gov (United States)

    Aivazian, Grant; Sun, Dong; Jones, Aaron; Ross, Jason; Yao, Wang; Cobden, David; Xu, Xiaodong

    2012-02-01

    The remarkable electrical and optical properties of graphene make it a promising material for new optoelectronic applications. However, one important, but so far unexplored, property is the role of hot carriers in charge and energy transport at graphene interfaces. Here we investigate the photocurrent (PC) dynamics at a tunable graphene pn junction using ultrafast scanning PC microscopy. Pump-probe measurements show a temperature dependent relaxation time of photogenerated carriers that increases from 1.5ps at 290K to 4ps at 20K; while the amplitude of the PC is independent of the lattice temperature. These observations imply that it is hot carriers, not phonons, which dominate ultrafast energy transport. Gate dependent measurements show many interesting features such as pump induced saturation, enhancement, and sign reversal of probe generated PC. These observations reveal that the underlying PC mechanism is a combination of the thermoelectric and built-in electric field effects. Our results enhance the understanding of non-equilibrium electron dynamics, electron-electron interactions, and electron-phonon interactions in graphene. They also determine fundamental limits on ultrafast device operation speeds (˜500 GHz) for graphene-based photodetectors.

  13. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  14. Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

    Science.gov (United States)

    Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.

    2018-02-01

    To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.

  15. Silicon based ultrafast optical waveform sampling

    DEFF Research Database (Denmark)

    Ji, Hua; Galili, Michael; Pu, Minhao

    2010-01-01

    A 300 nmx450 nmx5 mm silicon nanowire is designed and fabricated for a four wave mixing based non-linear optical gate. Based on this silicon nanowire, an ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as th......A 300 nmx450 nmx5 mm silicon nanowire is designed and fabricated for a four wave mixing based non-linear optical gate. Based on this silicon nanowire, an ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode......-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained. The temporal resolution of the sampling system is estimated to 360 fs....

  16. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements.

    Science.gov (United States)

    Heilpern, Tal; Manjare, Manoj; Govorov, Alexander O; Wiederrecht, Gary P; Gray, Stephen K; Harutyunyan, Hayk

    2018-05-10

    Developing a fundamental understanding of ultrafast non-thermal processes in metallic nanosystems will lead to applications in photodetection, photochemistry and photonic circuitry. Typically, non-thermal and thermal carrier populations in plasmonic systems are inferred either by making assumptions about the functional form of the initial energy distribution or using indirect sensors like localized plasmon frequency shifts. Here we directly determine non-thermal and thermal distributions and dynamics in thin films by applying a double inversion procedure to optical pump-probe data that relates the reflectivity changes around Fermi energy to the changes in the dielectric function and in the single-electron energy band occupancies. When applied to normal incidence measurements our method uncovers the ultrafast excitation of a non-Fermi-Dirac distribution and its subsequent thermalization dynamics. Furthermore, when applied to the Kretschmann configuration, we show that the excitation of propagating plasmons leads to a broader energy distribution of electrons due to the enhanced Landau damping.

  17. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Science.gov (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  18. Ultrafast laser pump/x-ray probe experiments

    International Nuclear Information System (INIS)

    Larsson, J.; Judd, E.; Schuck, P.J.

    1997-01-01

    In an ongoing project aimed at probing solids using x-rays obtained at the ALS synchrotron with a sub-picosecond time resolution following interactions with a 100 fs laser pulse, the authors have successfully performed pump-probe experiments limited by the temporal duration of ALS-pulse. They observe a drop in the diffraction efficiency following laser heating. They can attribute this to a disordering of the crystal. Studies with higher temporal resolution are required to determine the mechanism. The authors have also incorporated a low-jitter streakcamera as a diagnostic for observing time-dependant x-ray diffraction. The streakcamera triggered by a photoconductive switch was operated at kHz repetition rates. Using UV-pulses, the authors obtain a temporal response of 2 ps when averaging 5000 laser pulses. They demonstrate the ability to detect monochromatized x-ray radiation from a bend-magnet with the streak camera by measuring the pulse duration of a x-ray pulse to 70 ps. In conclusion, the authors show a rapid disordering of an InSb crystal. The resolution was determined by the duration of the ALS pulse. They also demonstrate that they can detect x-ray radiation from a synchrotron source with a temporal resolution of 2ps, by using an ultrafast x-ray streak camera. Their set-up will allow them to pursue laser pump/x-ray probe experiments to monitor structural changes in materials with ultrafast time resolution

  19. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.

    2007-01-01

    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  20. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics

    DEFF Research Database (Denmark)

    Morris, James M.; Mackenzie, Mark D.; Petersen, Christian Rosenberg

    2018-01-01

    Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero-dispersi...... ultrafast laser inscribed waveguide devices in GASIR-1 for mid-IR integrated optics applications. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.......Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero......-dispersion wavelength. Z-scan measurements of bulk samples have also been performed to determine the nonlinear refractive index. Finally, midIR supercontinuum generation has been shown when pumping the waveguides with femtosecond pulses centered at 4.6 mu m. Supercontinuum spanning approximately 4 mu m from 2.5 to 6...

  1. Time zero determination for FEL pump-probe studies based on ultrafast melting of bismuth.

    Science.gov (United States)

    Epp, S W; Hada, M; Zhong, Y; Kumagai, Y; Motomura, K; Mizote, S; Ono, T; Owada, S; Axford, D; Bakhtiarzadeh, S; Fukuzawa, H; Hayashi, Y; Katayama, T; Marx, A; Müller-Werkmeister, H M; Owen, R L; Sherrell, D A; Tono, K; Ueda, K; Westermeier, F; Miller, R J D

    2017-09-01

    A common challenge for pump-probe studies of structural dynamics at X-ray free-electron lasers (XFELs) is the determination of time zero (T 0 )-the time an optical pulse (e.g., an optical laser) arrives coincidently with the probe pulse (e.g., a XFEL pulse) at the sample position. In some cases, T 0 might be extracted from the structural dynamics of the sample's observed response itself, but generally, an independent robust method is required or would be superior to the inferred determination of T 0 . In this paper, we present how the structural dynamics in ultrafast melting of bismuth can be exploited for a quickly performed, reliable and accurate determination of T 0 with a precision below 20 fs and an overall experimental accuracy of 50 fs to 150 fs (estimated). Our approach is potentially useful and applicable for fixed-target XFEL experiments, such as serial femtosecond crystallography, utilizing an optical pump pulse in the ultraviolet to near infrared spectral range and a pixelated 2D photon detector for recording crystallographic diffraction patterns in transmission geometry. In comparison to many other suitable approaches, our method is fairly independent of the pumping wavelength (UV-IR) as well as of the X-ray energy and offers a favorable signal contrast. The technique is exploitable not only for the determination of temporal characteristics of the experiment at the interaction point but also for investigating important conditions affecting experimental control such as spatial overlap and beam spot sizes.

  2. Time zero determination for FEL pump-probe studies based on ultrafast melting of bismuth

    Directory of Open Access Journals (Sweden)

    S. W. Epp

    2017-09-01

    Full Text Available A common challenge for pump-probe studies of structural dynamics at X-ray free-electron lasers (XFELs is the determination of time zero (T0—the time an optical pulse (e.g., an optical laser arrives coincidently with the probe pulse (e.g., a XFEL pulse at the sample position. In some cases, T0 might be extracted from the structural dynamics of the sample's observed response itself, but generally, an independent robust method is required or would be superior to the inferred determination of T0. In this paper, we present how the structural dynamics in ultrafast melting of bismuth can be exploited for a quickly performed, reliable and accurate determination of T0 with a precision below 20 fs and an overall experimental accuracy of 50 fs to 150 fs (estimated. Our approach is potentially useful and applicable for fixed-target XFEL experiments, such as serial femtosecond crystallography, utilizing an optical pump pulse in the ultraviolet to near infrared spectral range and a pixelated 2D photon detector for recording crystallographic diffraction patterns in transmission geometry. In comparison to many other suitable approaches, our method is fairly independent of the pumping wavelength (UV–IR as well as of the X-ray energy and offers a favorable signal contrast. The technique is exploitable not only for the determination of temporal characteristics of the experiment at the interaction point but also for investigating important conditions affecting experimental control such as spatial overlap and beam spot sizes.

  3. Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals.

    Science.gov (United States)

    Diroll, Benjamin T; Schramke, Katelyn S; Guo, Peijun; Kortshagen, Uwe R; Schaller, Richard D

    2017-10-11

    Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows for selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective mass at high effective hole temperatures lead to a subpicosecond change of the dielectric function, resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27%, and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates subpicosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting the modulation of transmittance at telecommunications wavelengths. The results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.

  4. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator

    Science.gov (United States)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-03-01

    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  5. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  6. High Speed Pump-Probe Apparatus for Observation of Transitional Effects in Ultrafast Laser Micromachining Processes

    Directory of Open Access Journals (Sweden)

    Ilya Alexeev

    2015-12-01

    Full Text Available A pump-probe experimental approach has been shown to be a very efficient tool for the observation and analysis of various laser matter interaction effects. In those setups, synchronized laser pulses are used to create an event (pump and to simultaneously observe it (probe. In general, the physical effects that can be investigated with such an apparatus are restricted by the temporal resolution of the probe pulse and the observation window. The latter can be greatly extended by adjusting the pump-probe time delay under the assumption that the interaction process remains fairly reproducible. Unfortunately, this assumption becomes invalid in the case of high-repetition-rate ultrafast laser material processing, where the irradiation history strongly affects the ongoing interaction process. In this contribution, the authors present an extension of the pump-probe setup that allows to investigate transitional and dynamic effects present during ultrafast laser machining performed at high pulse repetition frequencies.

  7. Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces

    KAUST Repository

    Sartorello, Giovanni

    2016-06-06

    We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time scale. Pump-probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response. © 2016 American Chemical Society.

  8. Electro-optic sampling for time resolving relativistic ultrafast electron diffraction

    International Nuclear Information System (INIS)

    Scoby, C. M.; Musumeci, P.; Moody, J.; Gutierrez, M.; Tran, T.

    2009-01-01

    The Pegasus laboratory at UCLA features a state-of-the-art electron photoinjector capable of producing ultrashort (<100 fs) high-brightness electron bunches at energies of 3.75 MeV. These beams recently have been used to produce static diffraction patterns from scattering off thin metal foils, and it is foreseen to take advantage of the ultrashort nature of these bunches in future pump-probe time-resolved diffraction studies. In this paper, single shot 2-d electro-optic sampling is presented as a potential technique for time of arrival stamping of electron bunches used for diffraction. Effects of relatively low bunch charge (a few 10's of pC) and modestly relativistic beams are discussed and background compensation techniques to obtain high signal-to-noise ratio are explored. From these preliminary tests, electro-optic sampling is suitable to be a reliable nondestructive time stamping method for relativistic ultrafast electron diffraction at the Pegasus lab.

  9. Propagation of complex shaped ultrafast pulses in highly optically dense samples

    International Nuclear Information System (INIS)

    Davis, J. C.; Fetterman, M. R.; Warren, W. S.; Goswami, D.

    2008-01-01

    We examine the propagation of shaped (amplitude- and frequency-modulated) ultrafast laser pulses through optically dense rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation all strongly depend on the laser pulse shape. For example, frequency swept pulses, which produce adiabatic passage in the optically thin limit (independent of the sign of the frequency sweep), behave unexpectedly in optically dense samples. Paraxial Maxwell optical Bloch equations can model our ultrafast pulse propagation results well and provide insight

  10. Tracking of the nuclear wavepacket motion in cyanine photoisomerization by ultrafast pump-dump-probe spectroscopy.

    Science.gov (United States)

    Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei

    2011-06-01

    Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections. © 2011 American Chemical Society

  11. Versatile ultrafast pump-probe imaging with high sensitivity CCD camera

    OpenAIRE

    Pezeril , Thomas; Klieber , Christoph; Temnov , Vasily; Huntzinger , Jean-Roch; Anane , Abdelmadjid

    2012-01-01

    International audience; A powerful imaging technique based on femtosecond time-resolved measurements with a high dynamic range, commercial CCD camera is presented. Ultrafast phenomena induced by a femtosecond laser pump are visualized through the lock-in type acquisition of images recorded by a femtosecond laser probe. This technique allows time-resolved measurements of laser excited phenomena at multiple probe wavelengths (spectrometer mode) or conventional imaging of the sample surface (ima...

  12. Ultrafast S1 and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    International Nuclear Information System (INIS)

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A.; Hashimoto, Hideki

    2011-01-01

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S 1 or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S 2 state or two-photon excitation to the symmetry-forbidden S 1 state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S 1 .

  13. Ultrafast electron diffraction studies of optically excited thin bismuth films

    International Nuclear Information System (INIS)

    Rajkovic, Ivan

    2008-01-01

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  14. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  15. Effect of wetting-layer density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Kim, Jungho; Yu, Bong-Ahn

    2015-01-01

    We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases. (paper)

  16. Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas

    Science.gov (United States)

    Soavi, Giancarlo; Valle, Giuseppe Della; Biagioni, Paolo; Cattoni, Andrea; Longhi, Stefano; Cerullo, Giulio; Brida, Daniele

    Ultrafast thermalization of electrons in metal nanostructures is studied by means of pump-probe spectroscopy. We track in real-time the plasmon resonance evolution, providing a tool for understanding and controlling gold nanoantennas non-linear optical response.

  17. Ultrafast carrier dynamics in bilayer graphene studied by broadband infrared pump-probe spectroscopy

    Science.gov (United States)

    Limmer, Thomas; da Como, Enrico; Niggebaum, Alexander; Feldmann, Jochen

    2010-03-01

    Recently, bilayer graphene gained a large interest because of its electrically tunable gap appearing in the middle infrared part of the electromagnetic spectrum. This feature is expected to open a number of applications of bilayer graphene in optoelectronics. In this communication we report on the first pump-probe experiment on a single bilayer flake with an unprecedented probe photon energy interval (0.25 -- 1.3 eV). Single flakes were prepared by mechanical exfoliation of graphite and transferred to calcium fluoride substrates. When illuminated with 800 nm (1.5 eV) pump pulses the induced change in transmission shows an ultrafast saturation of the interband transitions from 1.3 to 0.5 eV. In this energy range the saturation recovery occurs within 3 ps and is consistent with an ultrafast relaxation of hot carriers. Interestingly, we report on the observation of a resonance at 0.4 eV characterized by a longer dynamics. The results are discussed considering many-body interactions.

  18. Ultrafast terahertz electrodynamics of photonic and electronic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Liang [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis summarizes my work on using ultrafast laser pulses to study Terahertz (THz) electrodynamics of photonic and electronic nanostructures and microstructures. Ultrafast timeresolved (optical, NIR, MIR, THz) pump-probe spectroscopy setup has been successfully built, which enables me to perform a series of relevant experiments. Firstly, a novel high e ciency and compact THz wave emitter based on split-ring-resonators has been developed and characterized. The emitter can be pumped at any wavelength by tailoring the magnetic resonance and could generate gapless THz waves covering the entire THz band. Secondly, two kinds of new photonic structures for THz wave manipulation have been successfully designed and characterized. One is based on the 1D and 2D photo-imprinted di ractive elements. The other is based on the photoexcited double-split-ring-resonator metamaterials. Both structures are exible and can modulate THz waves with large tunability. Thirdly, the dark excitons in semiconducting singlewalled carbon nanotubes are studied by optical pump and THz probe spectroscopy, which provides the rst insights into the THz responses of nonequilibrium excitonic correlations and dynamics from the dark ground states in carbon nanotubes. Next, several on-going projects are brie y presented such as the study of ultrafast THz dynamics of Dirac fermions in topological insulator Bi2Se3 with Mid-infrared excitation. Finally, the thesis ends with a summary of the completed experiments and an outlook of the future plan.

  19. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Chen, Hou - Tong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  20. Ultrafast optical switching in three-dimensional photonic crystals

    OpenAIRE

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude and may result in a true revolution in nanotechnology. The heart of such devices would likely be an optical switching element. This thesis analyzes different regimes of ultrafast all-optical switchin...

  1. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman

    2016-06-08

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  2. Ultrafast S{sub 1} and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kosumi, Daisuke, E-mail: kosumi@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kusumoto, Toshiyuki [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fujii, Ritsuko; Sugisaki, Mitsuru [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan); Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko [South Product Co. Ltd., 12-75 Suzaki, Uruma-shi, Okinawa 904-2234 (Japan); Frank, Harry A. [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Hashimoto, Hideki, E-mail: hassy@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan)

    2011-03-15

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S{sub 1} or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S{sub 2} state or two-photon excitation to the symmetry-forbidden S{sub 1} state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S{sub 1}.

  3. Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts

    Science.gov (United States)

    Karasawa, Naoki

    2018-04-01

    Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.

  4. Silicon nanowires for ultra-fast and ultrabroadband optical signal processing

    DEFF Research Database (Denmark)

    Ji, Hua; Hu, Hao; Pu, Minhao

    2015-01-01

    In this paper, we present recent research on silicon nanowires for ultra-fast and ultra-broadband optical signal processing at DTU Fotonik. The advantages and limitations of using silicon nanowires for optical signal processing are revealed through experimental demonstrations of various optical...

  5. Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids

    International Nuclear Information System (INIS)

    Polli, D.; Antognazza, M.R.; Brida, D.; Lanzani, G.; Cerullo, G.; De Silvestri, S.

    2008-01-01

    We use pump-probe spectroscopy with broadband detection to study electronic energy relaxation and coherent vibrational dynamics in carotenoids. A fast optical multichannel analyzer combined with a non-collinear optical parametric amplifier allows simultaneous acquisition of the differential transmission dynamics on the 500-700 nm wavelength range with sub-10-fs temporal resolution. The broad spectral coverage enables on the one hand a detailed study of the ultrafast bright-to-dark state internal conversion process; on the other hand, the tracking of the motion of the vibrational wavepacket launched on the ground state multidimensional potential energy surface. We present results on all-trans β-carotene and on a long-chain polyene in solution. The developed experimental setup enables the straightforward acquisition and analysis of coherent vibrational dynamics, highlighting time-frequency domain features with extreme resolution

  6. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    Science.gov (United States)

    Yang, Xiaoyu; Yang, Jinghuan; Hu, Xiaoyong; Zhu, Yu; Yang, Hong; Gong, Qihuang

    2015-08-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials.

  7. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    International Nuclear Information System (INIS)

    Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2015-01-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm 2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials

  8. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  9. Ultrafast optical ranging using microresonator soliton frequency combs

    Science.gov (United States)

    Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M. H. P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; Freude, W.; Kippenberg, T. J.; Koos, C.

    2018-02-01

    Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.

  10. Ultrafast gain dynamics in InAs/InGaAs quantum dot amplifiers

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Märcher

    2000-01-01

    The ultrafast dynamics of gain and refractive index in an electrically pumped InAs-InGaAs quantum-dot (QD) optical amplifier are measured at room temperature using differential transmission with femtosecond time resolution. Both absorption and gain regions are investigated. While the absorption...

  11. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode

    Science.gov (United States)

    Löbl, Matthias C.; Söllner, Immo; Javadi, Alisa; Pregnolato, Tommaso; Schott, Rüdiger; Midolo, Leonardo; Kuhlmann, Andreas V.; Stobbe, Søren; Wieck, Andreas D.; Lodahl, Peter; Ludwig, Arne; Warburton, Richard J.

    2017-10-01

    We demonstrate full charge control, narrow optical linewidths, and optical spin pumping on single self-assembled InGaAs quantum dots embedded in a 162.5 -nm -thin diode structure. The quantum dots are just 88 nm from the top GaAs surface. We design and realize a p -i -n -i -n diode that allows single-electron charging of the quantum dots at close-to-zero applied bias. In operation, the current flow through the device is extremely small resulting in low noise. In resonance fluorescence, we measure optical linewidths below 2 μ eV , just a factor of 2 above the transform limit. Clear optical spin pumping is observed in a magnetic field of 0.5 T in the Faraday geometry. We present this design as ideal for securing the advantages of self-assembled quantum dots—highly coherent single-photon generation, ultrafast optical spin manipulation—in the thin diodes required in quantum nanophotonics and nanophononics applications.

  12. PREFACE: Ultrafast biophotonics Ultrafast biophotonics

    Science.gov (United States)

    Gu, Min; Reid, Derryck; Ben-Yakar, Adela

    2010-08-01

    The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and

  13. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hvam, Jørn Märcher

    2007-01-01

    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  14. Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots

    Directory of Open Access Journals (Sweden)

    I. Khanonkin

    2017-03-01

    Full Text Available The charge carrier dynamics of improved InP-based InAs/AlGaInAs quantum dot (QD semiconductor optical amplifiers are examined employing the multi-wavelength ultrafast pump-probe measurement technique. The transient transmission response of the continuous wave probe shows interesting dynamical processes during the initial 2-3 ps after the pump pulse, when carriers originating from two photon absorption contribute the least to the recovery. The effects of optical excitations and electrical bias levels on the recovery dynamics of the gain in energetically different QDs are quantified and discussed. The experimental observations are validated qualitatively using a comprehensive finite-difference time-domain model by recording the time evolution of the charge carriers in the QDs ensemble following the pulse.

  15. Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    1999-01-01

    We demonstrate a new detection scheme for pump-probe and four-wave mixing heterodyne experiments, using balanced detection and a dual-phase lock-in for spectral filtering. The technique allows the use of low repetition-rate laser systems, as is demonstrated on an InGaAsP/InP bulk optical amplifier...... at 1.53 mym. Ultrafast pump-induced changes in the amplitude and phase of the transmitted probe signal are simultaneously measured, going from small to large signal changes and with no need of an absolute phase calibration, showing the versatility and the sensitivity of this detection scheme....... The results for small perturbations are consistent with previous pump-probe experiments reported in literature. Time-resolved four-wave mixing in the absorption regime of the device is measured, and compared with numerical simulations, indicating a 100 fs dephasing time....

  16. Femtosecond Time-resolved Optical Polarigraphy (FTOP)

    International Nuclear Information System (INIS)

    Aoshima, S.; Fujimoto, M.; Hosoda, M.; Tsuchiya, Y.

    2000-01-01

    A novel time-resolved imaging technique named FTOP (Femtosecond Time-resolved Optical Polarigraphy) for visualizing the ultrafast propagation dynamics of intense light pulses in a medium has been proposed and demonstrated. Femtosecond snapshot images can be created with a high spatial resolution by imaging only the polarization components of the probe pulse; these polarization components change due to the instantaneous birefringence induced by the pump pulse in the medium. Ultrafast temporal changes in the two-dimensional spatial distribution of the optical pulse intensity were clearly visualized in consecutive images by changing the delay between the pump and probe. We observe that several filaments appear and then come together before the vacuum focus due to nonlinear effects in air. We also prove that filamentation dynamics such as the formation position and the propagation behavior are complex and are strongly affected by the pump energy. The results collected clearly show that this method FTOP succeeds for the first time in directly visualizing the ultrafast dynamics of the self-modulated nonlinear propagation of light. (author)

  17. Locking Lasers to RF in an Ultrafast FEL

    International Nuclear Information System (INIS)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  18. Cooperative photo-induced effects: from photo-magnetism under continuous irradiation to ultra-fast phenomena - study through optical spectroscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Glijer, D.

    2006-12-01

    The control with ultra-short laser pulses of the collective and concerted transformation of molecules driving a macroscopic state switching on an ultra-fast time scale in solid state opens new prospects in materials science. The goal is to realize at the material level what happens at the molecular level in femto-chemistry. These processes are highly cooperative and highly non-linear, leading to self-amplification and self-organization within the material, a so-called photo-induced phase transition with a new long range order (structural, magnetic, ferroelectric,...). Two families of molecular compounds have been studied here: first of all, spin transition materials changing from a diamagnetic state over to a paramagnetic state under the effect of temperature or under continuous laser excitation. It concerns photo-active molecular bi-stability prototype materials in solid state, whose switching has been studied during X-ray diffraction, optical reflectivity and magnetism experiments. Then we have studied charge-transfer molecular systems, prototype compounds for ultrafast photo-induced phase transitions: insulator-metal, neutral-ionic....As well as ultrafast optical experiments, time-resolved X ray crystallography is a key technique in order to follow at the atomic level the different steps of the photo-induced transformation and thus to observe the involved mechanisms. We have underlined a process of photo-formation of one-dimensional nano-domains of lattice-relaxed charge-transfer excitations, governing the photo-induced phase transition of the molecular charge-transfer complex TTF-CA by the first time-resolved diffuse scattering measurements. Moreover, a new femtosecond laser-plasma source and a optical pump-probe spectroscopy set-up with a highly sensitive detecting system have been developed in this work. The results presented here will be an illustration of the present scientific challenges existing on the one hand with the development of projects of major

  19. Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.

    Science.gov (United States)

    Shang, Jingzhi; Yu, Ting; Lin, Jianyi; Gurzadyan, Gagik G

    2011-04-26

    Ultrafast quasiparticle dynamics in graphene grown by chemical vapor deposition (CVD) has been studied by UV pump/white-light probe spectroscopy. Transient differential transmission spectra of monolayer graphene are observed in the visible probe range (400-650 nm). Kinetics of the quasiparticle (i.e., low-energy single-particle excitation with renormalized energy due to electron-electron Coulomb, electron-optical phonon (e-op), and optical phonon-acoustic phonon (op-ap) interactions) was monitored with 50 fs resolution. Extending the probe range to near-infrared, we find the evolution of quasiparticle relaxation channels from monoexponential e-op scattering to double exponential decay due to e-op and op-ap scattering. Moreover, quasiparticle lifetimes of mono- and randomly stacked graphene films are obtained for the probe photon energies continuously from 1.9 to 2.3 eV. Dependence of quasiparticle decay rate on the probe energy is linear for 10-layer stacked graphene films. This is due to the dominant e-op intervalley scattering and the linear density of states in the probed electronic band. A dimensionless coupling constant W is derived, which characterizes the scattering strength of quasiparticles by lattice points in graphene.

  20. Ultrafast chiroptical spectroscopy: Monitoring optical activity in quick time

    Directory of Open Access Journals (Sweden)

    Hanju Rhee

    2011-12-01

    Full Text Available Optical activity spectroscopy provides rich structural information of biologically important molecules in condensed phases. However, a few intrinsic problems of conventional method based on electric field intensity measurement scheme prohibited its extension to time domain technique. We have recently developed new types of optical activity spectroscopic methods capable of measuring chiroptical signals with femtosecond pulses. It is believed that these novel approaches will be applied to a variety of ultrafast chiroptical studies.

  1. OSA Trends in Optics and Photonics Series. Volume 13: Ultrafast Electronics and Optoelectronics

    Science.gov (United States)

    1997-01-01

    tomography. Many materials such as plastics, cardboard, wood and rubber have good transparency in the terahertz frequency range. Hence, this new...Ultrafast processes in semiconductors. Introduction Nonlinear Bragg reflector ( NBR ) consists of periodically distributed optical nonlinearity coexisting...with multiple reflection and group-delay dispersion. Recent theoretical analyses showed the potential of NBR in ultrafast optoelectronics such as all

  2. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    Science.gov (United States)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  3. Ultrafast Optical Signal Processing with Bragg Structures

    Directory of Open Access Journals (Sweden)

    Yikun Liu

    2017-05-01

    Full Text Available The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.

  4. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    Science.gov (United States)

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-04-01

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  6. Recombination emissions and spectral blueshift of pump radiation from ultrafast laser induced plasma in a planar water microjet

    Science.gov (United States)

    Anija, M.; Philip, Reji

    2009-09-01

    We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 10 15 W/cm 2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.

  7. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.

    2014-12-04

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  8. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.; Hong, X.; Jin, C.; Shi, S.-F.; Chang, C.-Y. S.; Chiu, Ming-Hui; Li, Lain-Jong; Wang, F.

    2014-01-01

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  9. Effect of heat sink layer on ultrafast magnetization recovery of FeCo films

    International Nuclear Information System (INIS)

    Ren, Y; Zhao, J Q; Zhang, Z Z; Jin, Q Y; Hu, H N; Zhou, S M

    2008-01-01

    For FeCo alloy thin films with Ag, Cu, Pt, Ta and Cr as heat sink layers, ultrafast demagnetization and recovery processes of transient magnetization have been studied by the time-resolved magneto-optical Kerr effect. For all samples, the ultrafast demagnetization process is accomplished within almost the same time interval of 500 fs, which is independent of the heat sink layer material and the pump fluence. The recovery rate of the FeCo film grown on the Si(1 0 0) substrate is enhanced with a heat sink layer. In addition, the recovery rate is found to be independent of the heat sink layer thickness; it decreases with increasing pump fluence. Among all heat sink layers, the sample with the Cr layer achieves the highest recovery rate because it has the same bcc structure as that of the FeCo layer and the small lattice mismatch. The sample with the Ta layer, has the largest damage threshold of pump fluence because of the highest melting point

  10. Parametric spectro-temporal analyzer (PASTA) for ultrafast optical performance monitoring

    Science.gov (United States)

    Zhang, Chi; Wong, Kenneth K. Y.

    2013-12-01

    Ultrafast optical spectrum monitoring is one of the most challenging tasks in observing ultrafast phenomena, such as the spectroscopy, dynamic observation of the laser cavity, and spectral encoded imaging systems. However, conventional method such as optical spectrum analyzer (OSA) spatially disperses the spectrum, but the space-to-time mapping is realized by mechanical rotation of a grating, so are incapable of operating at high speed. Besides the spatial dispersion, temporal dispersion provided by dispersive fiber can also stretches the spectrum in time domain in an ultrafast manner, but is primarily confined in measuring short pulses. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a 100-MHz frame rate and can measure arbitrary waveforms. For the first time, we observe the dynamic spectrum of an ultrafast swept-source: Fourier domain mode-locked (FDML) laser, and the spectrum evolution of a laser cavity during its stabilizing process. In addition to the basic single-lens structure, the multi-lens configurations (e.g. telescope or wide-angle scope) will provide a versatile operating condition, which can zoom in to achieve 0.05-nm resolution and zoom out to achieve 10-nm observation range, namely 17 times zoom in/out ratio. In view of the goal of achieving spectrum analysis with fine accuracy, PASTA provides a promising path to study the real-time spectrum of some dynamic phenomena and non-repetitive events, with orders of magnitude enhancement in the frame rate over conventional OSAs.

  11. Testing ultrafast mode-locking at microhertz relative optical linewidth.

    Science.gov (United States)

    Martin, Michael J; Foreman, Seth M; Schibli, T R; Ye, Jun

    2009-01-19

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb.We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 microHZ relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  12. Testing ultrafast mode-locking at microhertz relative optical linewidth

    OpenAIRE

    Martin, Michael J.; Foreman, Seth M.; Schibli, T. R.; Ye, Jun

    2008-01-01

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb. We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 micro Hz relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  13. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to a pump laser exciting processes in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe a scheme for synchronizing femtosecond x-ray pulses relative to a pump laser. X-ray pulses of <100 fs duration are generated from a proposed source based on a recirculating superconducting linac [1,2,3]. Short x-ray pulses are obtained by a process of electron pulse compression, followed by transverse temporal correlation of the electrons, and ultimately x-ray pulse compression. Timing of the arrival of the x-ray pulse with respect to the pump laser is found to be dominated by the operation of the deflecting cavities which provide the transverse temporal correlation of the electrons. The deflecting cavities are driven from a highly stable RF signal derived from a modelocked laser oscillator which is also the origin of the pump l aser pulses

  14. Study of the ultrafast polarization dynamics in lithium borohydride by means of femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Stingl, Johannes

    2013-01-01

    In this thesis the ultrafast electronic polarisation in the crystalline material lithium borohydride (LiBH 4 ) is examined. The material is excited by a femtosecond long optical pulse and scanned by a likewise short X-ray pulse. Using X-ray scattering the optically induced spatial rearrangement of electronic charge can be directly mapped with atomic spatial resolution. Copper K-alpha X-rays for the experiment are produced in a laboratory table-top laserplasma source with 1 kHz repetition rate. This radiation is then focused on a powdered sample. Debye-Scherrer rings produced from powder diffraction are collected on a large area detector and processed to yield intensity profiles. Using pump-probe technique the change in diffracted intensity, triggered by excitation with a femtosecond optical pulse is examined. The temporal resolution is given by the delay between pump and probe pulse. This way insight is gained into the dynamic electronic evolution of the system. Intensity changes can be correlated to changes in charge density in the relevant material to elucidate structural dynamics on the femtosecond time scale. Lithium borohydride was chosen since it displays necessary characteristics for the exploration of ultrafast electronic polarisation. Up to date there has been no spatially resolved research in the femtosecond regime elucidating this electronic phenomenon. This work presents the ultrafast resonse in Lithiumborhydrid (LiBH 4 ) to strong electronic fields with optical frequencies, which leads to charge relocation accompanied by electronic polarisation.

  15. Real-time ultrafast dynamics of dense, hot matter measured by pump-probe Doppler spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lad, Amit D; Mondal, S; Narayanan, V; Ahmed, Saima; Kumar, G Ravindra; Rajeev, P P; Robinson, A P L [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxfordshire (United Kingdom); Pasley, J, E-mail: amitlad@tifr.res.i [Department of Physics, University of York, Heslington, York (United Kingdom)

    2010-08-01

    A detailed understanding of the critical surface motion of high intensity laser produced plasma is very crucial for understanding the interaction. We employ the two colour pump-probe technique to report the first ever femtosecond scale ultrafast dynamics measurement of the critical surface of a solid plasma produced by a relativistically intense, femtosecond pump laser beam (10{sup 18} W/cm{sup 2}, 30 fs, 800 nm) on an aluminium target. We observe the Doppler shift of a time delayed probe laser beam (10{sup 12} W/cm{sup 2}, 80 fs, 400 nm) up to delays of 30 ps. Such unravelling of dynamics has not been possible in earlier measurements, which typically used the self reflection of a powerful pump pulse. We observe time dependent red and blue shifts and measure their magnitudes to infer plasma expansion velocity and acceleration and thereby the plasma profile. Our results are very well reproduced by 1D hydrodynamic simulation (HYADES code).

  16. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    Science.gov (United States)

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  17. Optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-01-01

    The current status and future prospects for the optically pumped polarized H - ion source are discussed. At the present time H - ion currents of 60 μA and with a polarization of 65% have been produced. The ion current and polarization can be increased significantly if the optically pumped Na charge exchange target density and polarization can be increased. Studies of wall surfaces that permit many bounces before depolarizing the Na electron spin and studies of radiation trapping in optically pumped Na indicate that the Na target density and polarization can be increased substantially. 27 refs., 6 figs., 2 tabs

  18. Laser optical pumping of sodium and lithium atom beams

    International Nuclear Information System (INIS)

    Cusma, J.T.

    1983-01-01

    The method of optical pumping with a continuous wave dye laser has been used to produce beams of polarized 23 Na atoms and polarized 6 Li atoms. Optical pumping of a 23 Na atom beam using either a multimode dye laser or a single frequency dye laser with a double passed acousto-optic modulator results in electron spin polarizations of 0.70-0.90 and nuclear spin polarizations of 0.75-0.90. Optical pumping of a 6 Li atom beam using a single frequency dye laser either with an acousto-optic modulator or with Doppler shift pumping results in electron spin polarizations of 0.77-0.95 and nuclear spin polarizations greater than 0.90. The polarization of the atom beam is measured using either the laser induced fluorescence in an intermediate magnetic field or a 6-pole magnet to determine the occupation probabilities of the ground hyperfine sublevels following optical pumping. The results of the laser optical pumping experiments agree with the results of a rate equation analysis of the optical pumping process which predicts that nearly all atoms are transferred into a single sublevel for our values of laser intensity and interaction time. The use of laser optical pumping in a polarized ion source for nuclear scattering experiments is discussed. The laser optical pumping method provides a means of constructing an intense source of polarized Li and Na ions

  19. Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals

    NARCIS (Netherlands)

    Euser, T.G.; Wei, Hong; Kalkman, Jeroen; Jun, Yoonho; Polman, Albert; Norris, David J.; Vos, Willem L.

    2007-01-01

    We present ultrafast optical switching experiments on three-dimensional photonic band gap crystals. Switching the Si inverse opal is achieved by optically exciting free carriers by a two-photon process. We probe reflectivity in the frequency range of second order Bragg diffraction where the photonic

  20. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    International Nuclear Information System (INIS)

    Schaefer, Thomas; Hampel, Uwe; Technische Univ. Dresden

    2017-01-01

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  1. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Thomas [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Technische Univ. Dresden (Germany). AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering

    2017-07-15

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  2. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  3. Cost Effective, Scalable Optically Pumped Molecular Laser

    National Research Council Canada - National Science Library

    Nicholson, Jeff

    2001-01-01

    An optically pumped, For laser was demonstrated operating at 4.0 micrometers. This is the first demonstration of an HBr laser by direct optical pumping of the 0 right arrow 3 vibrational overtone band at 1.34 micrometers...

  4. Nonlinear ultrafast optical response in organic molecular crystals

    Science.gov (United States)

    Rahman, Talat S.; Turkowski, Volodymyr; Leuenberger, Michael N.

    2012-02-01

    We analyze possible nonlinear excitonic effects in the organic molecule crystals by using a combined time-dependent DFT and many-body approach. In particular, we analyze possible effects of the time-dependent (retarded)interaction between different types of excitations, Frenkel excitons, charge transfer excitons and excimers, on the electric and the optical response of the system. We pay special attention to the case of constant electric field and ultrafast pulses, including that of four-wave mixing experiments. As a specific application we examine the optical excitations of pentacene nanocrystals and compare the results with available experimental data.[1] Our results demostrate that the nonlinear effects can play an important role in the optical response of these systems. [1] A. Kabakchiev, ``Scanning Tunneling Luminescence of Pentacene Nanocrystals'', PhD Thesis (EPFL, Lausanne, 2010).

  5. Optically pumped polarized alkali atomic beams and targets

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    The optical pumping of 23 Na and 6 Li atomic beams is discussed. Experiments on the optical pumping of 23 Na atomic beams using either a single mode dye laser followed by a double passed acousto-optic modulator or a multimode dye laser are reported. The optical pumping of a 23 Na vapor target for use in a polarized H - ion source is discussed. Results on the use of viton as a wall coating with a long relaxation time are reported. 31 references, 6 figures, 3 tables

  6. Linear and ultrafast nonlinear plasmonics of single nano-objects

    Science.gov (United States)

    Crut, Aurélien; Maioli, Paolo; Vallée, Fabrice; Del Fatti, Natalia

    2017-03-01

    Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell’s equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump-probe experiments performed on individual

  7. Characterisation and setup of a noncollinear optical parametric amplifier and investigation of ultrafast dynamics of Na/Cu(111)

    Energy Technology Data Exchange (ETDEWEB)

    Wegkamp, Daniel; Krenz, Marcel; Wolf, Martin [Fritz Haber Institute of the MPG, Dept. of Physical Chemistry, Berlin (Germany); Freie Universitaet Berlin, Dept. of Physics, Berlin (Germany); Bovensiepen, Uwe [Universitaet Duisburg-Essen, Dept. of Physics, Duisburg (Germany); Freie Universitaet Berlin, Dept. of Physics, Berlin (Germany)

    2010-07-01

    To study ultrafast dynamics on a femtosecond timescale, laser pulses of comparable and shorter scale are used in this work in combination with 2-photon photoemission. Here, we report the principle, setup, and characterisation of a femtosecond light-source based on a noncollinear optical parametric amplifier (NOPA) and its application in studying the dynamics of Na/Cu(111) following. Laser pulses with duration <20 fs have been generated in the visible spectral range using a 300 kHz regenerative amplifier. In a single color scheme (h{nu}=2.3 eV) the NOPA pulses are used to excite and photoemit hot electrons, which are detected with a time of flight (TOF) spectrometer. With time independent measurements the binding energy of the adsorbate-induced resonance at 2 eV is observed in agreement with. As a function of pump-probe delay a time-dependent binding energy shift of the Na resonance with -2 meV/fs is observed. This shift is explained as a pump-induced movement of the sodium adsorbate away from the surface.

  8. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution

    NARCIS (Netherlands)

    Papagiannakis, E.; Vengris, M.; Larsen, D.S.; van Stokkum, I.H.M.; Hiller, R.G.; van Grondelle, R.

    2006-01-01

    Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited

  9. Cascaded nonlinearities for ultrafast nonlinear optical science and applications

    DEFF Research Database (Denmark)

    Bache, Morten

    the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...

  10. Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films

    Science.gov (United States)

    Abreu, Elsa; Gilbert Corder, Stephanie N.; Yun, Sun Jin; Wang, Siming; Ramírez, Juan Gabriel; West, Kevin; Zhang, Jingdi; Kittiwatanakul, Salinporn; Schuller, Ivan K.; Lu, Jiwei; Wolf, Stuart A.; Kim, Hyun-Tak; Liu, Mengkun; Averitt, Richard D.

    2017-09-01

    Ultrafast optical pump-optical probe and optical pump-terahertz probe spectroscopy were performed on vanadium dioxide (VO2) and vanadium sesquioxide (V2O3 ) thin films over a wide temperature range. A comparison of the experimental data from these two different techniques and two different vanadium oxides, in particular a comparison of the spectral weight oscillations generated by the photoinduced longitudinal acoustic modulation, reveals the strong electron-phonon coupling that exists in both materials. The low-energy Drude response of V2O3 appears more amenable than VO2 to ultrafast strain control. Additionally, our results provide a measurement of the temperature dependence of the sound velocity in both systems, revealing a four- to fivefold increase in VO2 and a three- to fivefold increase in V2O3 across the insulator-to-metal phase transition. Our data also confirm observations of strong damping and phonon anharmonicity in the metallic phase of VO2, and suggest that a similar phenomenon might be at play in the metallic phase of V2O3 . More generally, our simple table-top approach provides relevant and detailed information about dynamical lattice properties of vanadium oxides, paving the way to similar studies in other complex materials.

  11. An ultrafast study of Zinc Phthalocyanine in DMSO

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2010-10-01

    Full Text Available The ultrafast dynamics of Zinc Phthalocyanine was studied using trasient absorption pump probe spectroscopy. Zinc Phthalocyanine was excited (pumped) at 672nm and probed by a white light continuum. The pump-probe technique used in this study...

  12. Optically pumped laser systems

    International Nuclear Information System (INIS)

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  13. Modelling multi-pulse population dynamics from ultrafast spectroscopy.

    Directory of Open Access Journals (Sweden)

    Luuk J G W van Wilderen

    2011-03-01

    Full Text Available Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio- physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox that describes the finite bleach (orientation effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective excitation (photoselection and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical

  14. Modelling multi-pulse population dynamics from ultrafast spectroscopy.

    Science.gov (United States)

    van Wilderen, Luuk J G W; Lincoln, Craig N; van Thor, Jasper J

    2011-03-21

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is

  15. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    Science.gov (United States)

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  16. Ultrafast Gain Dynamics in Quantum Dot Amplifiers: Theoretical Analysis and Experimental Investigations

    DEFF Research Database (Denmark)

    Poel, Mike van der; Gehrig, Edeltraud; Hess, Ortwin

    2005-01-01

    Ultrafast gain dynamics in an optical amplifier with an active layer of self-organized quantum dots (QDs) emitting near 1.3$muhbox m$is characterized experimentally in a pump-probe experiment and modeled theoretically on the basis of QD Maxwell–Bloch equations. Experiment and theory are in good......$factor) is theoretically predicted and demonstrated in the experiments. The fundamental analysis reveals the underlying physical processes and indicates limitations to QD-based devices....

  17. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, V.; McBranch, D.; Schwarz, C.

    1998-08-10

    Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

  18. Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers.

    Science.gov (United States)

    Ji, Ziheng; Hong, Hao; Zhang, Jin; Zhang, Qi; Huang, Wei; Cao, Ting; Qiao, Ruixi; Liu, Can; Liang, Jing; Jin, Chuanhong; Jiao, Liying; Shi, Kebin; Meng, Sheng; Liu, Kaihui

    2017-12-26

    Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS 2 /WS 2 bilayer with various stacking configurations, by optical two-color ultrafast pump-probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.

  19. Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap.

    Science.gov (United States)

    Woody, Michael S; Capitanio, Marco; Ostap, E Michael; Goldman, Yale E

    2018-04-30

    We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.

  20. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  1. Topological insulator: Bi{sub 2}Se{sub 3}/polyvinyl alcohol film-assisted multi-wavelength ultrafast erbium-doped fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bo; Yao, Yong, E-mail: yaoyong@hit.edu.cn; Yang, Yan-Fu; Yuan, Yi-Jun; Wang, Rui-Lai [Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Wang, Shu-Guang; Ren, Zhong-Hua [Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Yan, Bo [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-02-14

    We experimentally demonstrate a multi-wavelength ultrafast erbium-doped fiber laser incorporating a μm-scale topological insulator: Bi{sub 2}Se{sub 3}/Polyvinyl Alcohol film as both an excellent saturable absorber for mode-locking and a high-nonlinear medium to induce a giant third order optical nonlinear effect for mitigating the mode competition of erbium-doped fiber laser and stabilizing the multi-wavelength oscillation. By properly adjusting the pump power and the polarization state, the single-, dual-, triple-, four-wavelength mode-locking pulse could be stably initiated. For the four-wavelength operation, we obtain its pulse width of ∼22 ps and a fundamental repetition rate of 8.83 MHz. The fiber laser exhibits the maximum output power of 9.7 mW with the pulse energy of 1.1 nJ and peak power of 50 W at the pump power of 155 mW. Our study shows that the simple, stable, low-cost multi-wavelength ultrafast fiber laser could be applied in various potential fields, such as optical communication, biomedical research, and radar system.

  2. Ultrafast light matter interaction in CdSe/ZnS core-shell quantum dots

    Science.gov (United States)

    Yadav, Rajesh Kumar; Sharma, Rituraj; Mondal, Anirban; Adarsh, K. V.

    2018-04-01

    Core-shell quantum dot are imperative for carrier (electron and holes) confinement in core/shell, which provides a stage to explore the linear and nonlinear optical phenomena at the nanoscalelimit. Here we present a comprehensive study of ultrafast excitation dynamics and nonlinear optical absorption of CdSe/ZnS core shell quantum dot with the help of ultrafast spectroscopy. Pump-probe and time-resolved measurements revealed the drop of trapping at CdSe surface due to the presence of the ZnS shell, which makes more efficient photoluminescence. We have carried out femtosecond transient absorption studies of the CdSe/ZnS core-shell quantum dot by irradiation with 400 nm laser light, monitoring the transients in the visible region. The optical nonlinearity of the core-shell quantum dot studied by using the Z-scan technique with 120 fs pulses at the wavelengths of 800 nm. The value of two photon absorption coefficients (β) of core-shell QDs extracted as80cm/GW, and it shows excellent benchmark for the optical limiting onset of 2.5GW/cm2 with the low limiting differential transmittance of 0.10, that is an order of magnitude better than graphene based materials.

  3. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features

    Energy Technology Data Exchange (ETDEWEB)

    Cina, Jeffrey A., E-mail: cina@uoregon.edu; Kovac, Philip A. [Department of Chemistry and Biochemistry, and Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403 (United States); Jumper, Chanelle C. [Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada); Dean, Jacob C.; Scholes, Gregory D., E-mail: gscholes@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-05-07

    We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to a simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done.

  4. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  5. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Jérémy R. Rouxel

    2017-07-01

    Full Text Available Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O provide different local windows onto the parity breaking geometry change thus revealing the enantiomer asymmetry.

  6. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  7. QoS support over ultrafast TDM optical networks

    Science.gov (United States)

    Narvaez, Paolo; Siu, Kai-Yeung; Finn, Steven G.

    1999-08-01

    HLAN is a promising architecture to realize Tb/s access networks based on ultra-fast optical TDM technologies. This paper presents new research results on efficient algorithms for the support of quality of service over the HLAN network architecture. In particular, we propose a new scheduling algorithm that emulates fair queuing in a distributed manner for bandwidth allocation purpose. The proposed scheduler collects information on the queue of each host on the network and then instructs each host how much data to send. Our new scheduling algorithm ensures full bandwidth utilization, while guaranteeing fairness among all hosts.

  8. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  9. Octave-Spanning Mid-IR Supercontinuum Generation with Ultrafast Cascaded Nonlinearities

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Liu, Xing

    2014-01-01

    An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation....

  10. Proposal for arbitrary-order temporal integration of ultrafast optical signals using a single uniform-period fiber Bragg grating.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2008-07-01

    A simple and practical all-fiber design for implementing arbitrary-order temporal integration of ultrafast optical waveforms is proposed and numerically investigated. We demonstrate that an ultrafast photonics integrator of any desired integration order can be implemented using a uniform-period fiber Bragg grating (FBG) with a properly designed amplitude-only grating apodization profile. In particular, the grating coupling strength must vary according to the (N-1) power of the fiber distance for implementing an Nth-order photonics integrator (N=1,2,...). This approach requires the same level of practical difficulty for realizing any given integration order. The proposed integration devices operate over a limited time window, which is approximately fixed by the round-trip propagation time in the FBG. Ultrafast arbitrary-order all-optical integrators capable of accurate operation over nanosecond time windows can be implemented using readily feasible FBGs.

  11. Mathematical model of an optically pumped molecular laser

    CSIR Research Space (South Africa)

    Botha, LR

    2009-07-01

    Full Text Available A mathematical model was developed that accurately predicts the performance of an optically pumped HBr laser. Relatively high conversion efficiency was achieved. Tm pumped Ho:YLF is a viable source for pumping HBr laser, while HBr can be scaled...

  12. Ultrafast optical generation of squeezed magnon states and long lifetime coherent LO phonons

    Science.gov (United States)

    Zhao, Jimin

    2005-12-01

    Ultrafast optical pulses have been used to generate, probe, and control low-energy elementary excitations in crystals. In particular, we report the first experimental demonstration of the generation of quantum squeezed states of magnons (collective spin-wave excitations) in a magnetic material, and new progress in experimental investigation of anharmonic interactions in a semiconductor. The mechanism for the magnon squeezing is two-magnon impulsive stimulated Raman scattering (ISRS). Femtosecond laser pulses have been used to coherently correlate degenerate counter-propagating magnons in the antiferromagnetic insulator MnF2. In the squeezed state, fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground-state quantum noise. Similar experiments were also performed in another antiferromagnetic insulator, FeF2, for which the squeezing effect is one order of magnitude larger. We have also investigated the anharmonic interaction of the low-frequency E2 phonon in ZnO through ISRS. Temperature dependence of the linewidth and frequency indicates that the two-phonon up-conversion process is the dominant decay channel and isotopic disorder may be the main limit on the lifetime at low temperature. We have observed the longest lifetime of an optical phonon mode in a solid (211 ps at 5 K). And we have found that pump-probe experiments, compared with spontaneous Raman spectroscopy, have extremely high accuracy in determining the frequency of a low-lying excitation.

  13. Optical bistability via quantum interference from incoherent pumping and spontaneous emission

    International Nuclear Information System (INIS)

    Sahrai, M.; Asadpour, S.H.; Sadighi-Bonabi, R.

    2011-01-01

    We theoretically investigate the optical bistability (OB) in a V-type three-level atomic system confined in a unidirectional ring cavity via incoherent pumping field. It is shown that the threshold of optical bistability can be controlled by the rate of an incoherent pumping field and by interference mechanism arising from the spontaneous emission and incoherent pumping field. We demonstrate that the optical bistability converts to optical multi-stability (OM) by the quantum interference mechanism. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. → The threshold of optical bistability can be controlled by the quantum interferences. → OB converts to optical multi-stability (OM) by the quantum interferences. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.

  14. Static and ultrafast optical properties of nanolayered composites. Gold nanoparticles embedded in polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, Mareike

    2012-08-16

    In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratification of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images verified this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump

  15. Exploring Ultrafast Structural Dynamics for Energetic Enhancement or Disruption

    Science.gov (United States)

    2016-03-01

    it. In a pump -push/ dump probe experiment, a secondary laser pulse (push/ dump ) is used after the initial perturbation due to the pump pulse. The...increased. The pump -push/ dump probe technique is a difficult experiment that requires a highly stable laser source. Ultrafast pump -probe experiments...decomposition of solids. Journal of Applied Physics. 2001;89:4156–4166. 17. Kee TW. Femtosecond pump -push-probe and pump - dump -probe spectroscopy of

  16. 1.28 Tbit/s/channel single-polarization DQPSK transmission over 525 km using ultrafast time-domain optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Tomiyama, Y.

    2010-01-01

    A single-channel 1.28 Tbit/s transmission over 525 km is demonstrated for the first time with a single-polarization DQPSK signal. Ultrafast time-domain optical Fourier transformation is successfully applied to DQPSK signals and results in improved performance and increased system margin.......A single-channel 1.28 Tbit/s transmission over 525 km is demonstrated for the first time with a single-polarization DQPSK signal. Ultrafast time-domain optical Fourier transformation is successfully applied to DQPSK signals and results in improved performance and increased system margin....

  17. Avant-Garde Ultrafast Laser Writing

    Directory of Open Access Journals (Sweden)

    Kazansky P. G.

    2013-11-01

    Full Text Available Ultrafast laser processing of transparent materials reveals new phenomena. Reviewed, are recent demonstrations of 5D optical memory, vortex polarization and Airy beam converters employing self-assembled nanostructuring, ultrafast laser calligraphy and polarization writing control using pulses with tilted front.

  18. Giant narrowband twin-beam generation along the pump-energy propagation direction

    Science.gov (United States)

    Pérez, Angela M.; Spasibko, Kirill Yu; Sharapova, Polina R.; Tikhonova, Olga V.; Leuchs, Gerd; Chekhova, Maria V.

    2015-07-01

    Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators.

  19. Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator.

    Science.gov (United States)

    Azaña, José

    2008-01-01

    It is demonstrated that a uniform fiber Bragg grating (FBG) working in the linear regime inherently behaves as an optical temporal integrator over a limited time window. Specifically, the reflected temporal waveform from a weak-coupling uniform FBG is proportional to the time integral of an (arbitrary) optical pulse launched at the component input. This integration extends over a time window fixed by the duration of the squarelike temporal impulse response of the FBG. Ultrafast all-optical integrators capable of accurate operation over nanosecond time windows can be implemented using readily feasible FBGs. The introduced concepts are demonstrated by numerical simulations.

  20. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  1. Spherical transceivers for ultrafast optical wireless communications

    Science.gov (United States)

    Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.

    2016-02-01

    Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.

  2. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping

    International Nuclear Information System (INIS)

    Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen; Chang Yung-Yung

    2011-01-01

    A system is designed to observe the phenomena of electromagnetically induced transparency and optical pumping in cesium D 1 and D 2 lines at room temperature. When a pump laser is frequency-locked on the top of a hyperfine transition and the frequency of the probe laser scans over another hyperfine transition, a spectrum of V-type electromagnetically induced transparency or an optical pumping can be observed depending on whether the two lasers share a common ground state. Therefore, these results can be used to identify the unknown hyperfine transitions of the D 1 line transitions. For educational purposes, this system is helpful for understanding the electromagnetically induced transparency and the optical pumping

  3. Design of high-efficiency diffractive optical elements towards ultrafast mid-infrared time-stretched imaging and spectroscopy

    Science.gov (United States)

    Xie, Hongbo; Ren, Delun; Wang, Chao; Mao, Chensheng; Yang, Lei

    2018-02-01

    Ultrafast time stretch imaging offers unprecedented imaging speed and enables new discoveries in scientific research and engineering. One challenge in exploiting time stretch imaging in mid-infrared is the lack of high-quality diffractive optical elements (DOEs), which encode the image information into mid-infrared optical spectrum. This work reports the design and optimization of mid-infrared DOE with high diffraction-efficiency, broad bandwidth and large field of view. Using various typical materials with their refractive indices ranging from 1.32 to 4.06 in ? mid-infrared band, diffraction efficiencies of single-layer and double-layer DOEs have been studied in different wavelength bands with different field of views. More importantly, by replacing the air gap of double-layer DOE with carefully selected optical materials, one optimized ? triple-layer DOE, with efficiency higher than 95% in the whole ? mid-infrared window and field of view greater than ?, is designed and analyzed. This new DOE device holds great potential in ultrafast mid-infrared time stretch imaging and spectroscopy.

  4. All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current.

    Science.gov (United States)

    Müller, K; Kaldewey, T; Ripszam, R; Wildmann, J S; Bechtold, A; Bichler, M; Koblmüller, G; Abstreiter, G; Finley, J J

    2013-01-01

    The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2-5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2-10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.

  5. Ultrafast THz saturable absorption in doped semiconductors at room temperature

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, M. V.

    2011-01-01

    Ultrafast Phenomena XVII presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultraf...

  6. Optimisation of the parameters of a pump chamber for solid-state lasers with diode pumping by the optical boiler method

    Energy Technology Data Exchange (ETDEWEB)

    Kiyko, V V; Kislov, V I; Ofitserov, E N; Suzdal' tsev, A G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    A pump chamber of the optical boiler type for solid-state lasers with transverse laser diode pumping is studied theoretically and experimentally. The pump chamber parameters are optimised using the geometrical optics approximation for the pump radiation. According to calculations, the integral absorption coefficient of the active element at a wavelength of 808 nm is 0.75 – 0.8 and the relative inhomogeneity of the pump radiation distribution over the active element volume is 17% – 19%. The developed pump chamber was used in a Nd:YAG laser. The maximum cw output power at a wavelength of 1064 nm was ∼480 W at the optical efficiency up to 19.6%, which agrees with theoretical estimates. (lasers)

  7. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    Science.gov (United States)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  8. Spin-state studies with XES and RIXS: From static to ultrafast

    DEFF Research Database (Denmark)

    Vankó, György; Bordage, Amélie; Glatzel, Pieter

    2013-01-01

    We report on extending hard X-ray emission spectroscopy (XES) along with resonant inelastic X-ray scattering (RIXS) to study ultrafast phenomena in a pump-probe scheme at MHz repetition rates. The investigated systems include low-spin (LS) FeII complex compounds, where optical pulses induce a spin...... to multiplet calculations. The 1s2p RIXS, measured at the Fe 1s pre-edge region, shows variations after laser excitation, which are consistent with the formation of the HS state. Our results demonstrate that X-ray spectroscopy experiments with overall rather weak signals, such as RIXS, can now be reliably...

  9. BRIEF COMMUNICATIONS: Optically pumped ultraviolet BR2 laser

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, N. P.; Protasov, Yu S.; Ushmarov, E. Yu

    1989-12-01

    A report is given of lasing achieved for the first time in optically pumped molecular bromine (D' 3Π2g→A' 3π2u, λL approx 292 nm). It was pumped by thermal vacuum ultraviolet radiation emitted by plasmadynamic discharges of magnetoplasma compressors, formed directly in the laser active medium. An output energy of ~ 1.1 J was obtained per laser pulse of ~ 5-μs duration from a Br2:Ar approx 1:450 active mixture at a pressure of ~ 4 atm. A comparison was made of the experimental output parameters of optically pumped Br2, I2, and XeF (B-X) lasers when their geometries and excitation energies were identical.

  10. Ultrafast dynamic optical prop erties of graphene%石墨烯超快动态光学性质∗

    Institute of Scientific and Technical Information of China (English)

    金芹; 董海明; 韩奎; 王雪峰

    2015-01-01

    Graphene exhibits excellent ultrafast optical properties due to its unique electronic structure. In this paper we investigate theoretically the ultrafast dynamic optical properties of graphene based on the Bloch-equations, and introduce the theoretical model of graphene. First, we give the energy which has a linear relationship with the wave vector k. The behavior of electrons in the vicinity of the two Dirac points can be described by the massless Dirac-equation, thus we have the Dirac equation of graphene. Second, we discuss the interaction between graphene and light field. The Bloch-equations of graphene are obtained through the Heisenberg equation and then we discuss the photon carriers ,electric polarization and optical current change over time by analyzing the Bloch-equations. It is found that the nonequilibrium carriers in graphene induced by a terahertz field can be built in 20–200 fs due to the Pauli blocking and the conservation of energy principle. The photon carrier density will increase with the frequency of enhanced light field. Thus an optical current can be created rapidly within 1 ps. A graphene system responds linearly to the external optical field for √2evFE0t≪~ω, while the graphene systems respond nonlinearly to the external optical field, where E0 andωare respectively the intensity and the frequency of the light, t is the time and vF the Dirac velocity in graphene. The electric polarization and optical current increase with increasing photon energies. These theoretical results are in agreement with recent experimental findings and indicate that graphene exhibits important features and has practical applications in the ultrafast optic filed, especially in terahertz field.

  11. Probing ultrafast carrier tunneling dynamics in individual quantum dots and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Kai; Bechtold, Alexander; Kaldewey, Timo; Zecherle, Markus; Wildmann, Johannes S.; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J. [Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748, Garching (Germany); Ruppert, Claudia; Betz, Markus [Experimentelle Physik 2, TU Dortmund, 44221, Dortmund (Germany); Krenner, Hubert J. [Lehrstuhl fuer Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT), Universitaet Augsburg, Universitaetsstr 1, 86159, Augsburg (Germany); Villas-Boas, Jose M. [Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902, Uberlandia, MG (Brazil)

    2013-02-15

    Ultrafast pump-probe spectroscopy is employed to directly monitor the tunneling of charge carriers from single and vertically coupled quantum dots and probe intra-molecular dynamics. Immediately after resonant optical excitation, several peaks are observed in the pump-probe spectrum arising from Coulomb interactions between the photogenerated charge carriers. The influence of few-Fermion interactions in the photoexcited system and the temporal evolution of the optical response is directly probed in the time domain. In addition, the tunneling times for electrons and holes from the QD nanostructure are independently determined. In polarization resolved measurements, near perfect Pauli-spin blockade is observed in the spin-selective absorption spectrum as well as stimulated emission. While electron and hole tunneling from single quantum dots is shown to be well explained by the WKB formalism, for coupled quantum dots pronounced resonances in the electron tunneling rate are observed arising from elastic and inelastic electron tunneling between the different dots. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Ultra-Fast Low Energy Switching Using an InP Photonic Crystal H0 Nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2013-01-01

    Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting.......Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting....

  13. Graphene and carbon nanotubes ultrafast relaxation dynamics and optics

    CERN Document Server

    Malic, Ermin

    2013-01-01

    The book introduces the reader into the ultrafast nanoworld of graphene and carbon nanotubes, including their microscopic tracks and unique optical finger prints. The author reviews the recent progress in this field by combining theoretical and experimental achievements. He offers a clear theoretical foundation by presenting transparently derived equations. Recent experimental breakthroughs are reviewed. By combining both theory and experiment as well as main results and detailed theoretical derivations, the book turns into an inevitable source for a wider audience from graduate students to researchers in physics, materials science, and electrical engineering who work on optoelectronic devices, renewable energies, or in the semiconductor industry.

  14. Electro-optic sampling at 90 degree interaction geometry for time-of-arrival stamping of ultrafast relativistic electron diffraction

    Directory of Open Access Journals (Sweden)

    C. M. Scoby

    2010-02-01

    Full Text Available In this paper we study a new geometry setup for electro-optic sampling (EOS where the electron beam runs parallel to the ⟨110⟩ face of a ZnTe crystal and the probe laser is perpendicular to it and to the beam path. The simple setup is used to encode the time-of-arrival information of a 3.5  MeV<10  pC electron bunch on the spatial profile of the laser pulse. The electric field lines inside the dielectric bend at an angle due to a relatively large (n∼3 index of refraction of the ZnTe crystal. We found theoretically and experimentally that the EOS signal can be maximized with a proper choice of incoming laser polarization angle. We achieved single-shot nondestructive measurement of the relative time of arrival between the pump and the probe beams thus improving the temporal resolution of ultrafast relativistic electron diffraction experiments.

  15. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  16. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  17. Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules

    Science.gov (United States)

    Krupa, Katarzyna; Nithyanandan, K.; Andral, Ugo; Tchofo-Dinda, Patrice; Grelu, Philippe

    2017-06-01

    Real-time access to the internal ultrafast dynamics of complex dissipative optical systems opens new explorations of pulse-pulse interactions and dynamic patterns. We present the first direct experimental evidence of the internal motion of a dissipative optical soliton molecule generated in a passively mode-locked erbium-doped fiber laser. We map the internal motion of a soliton pair molecule by using a dispersive Fourier-transform imaging technique, revealing different categories of internal pulsations, including vibrationlike and phase drifting dynamics. Our experiments agree well with numerical predictions and bring insights to the analogy between self-organized states of lights and states of the matter.

  18. Time-resolved pump-probe experiments at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Glownia, James; /SLAC /Stanford U., Appl. Phys. Dept.; Cryan, J.; /SLAC /Stanford U., Phys. Dept.; Andreasson, J.; /Uppsala U.; Belkacem, A.; /LBNL, Berkeley; Berrah, N.; /Western Michigan U.; Blaga, C.L.; /Ohio State U.; Bostedt, C.; Bozek, J.; /SLAC; DiMauro, L.F.; /Ohio State U.; Fang, L.; /Western Michigan U.; Frisch, J.; /SLAC; Gessner, O.; /LBNL; Guhr, M.; /SLAC; Hajdu, J.; /Uppsala U.; Hertlein, M.P.; /LBNL; Hoener, M.; /Western Michigan U. /LBNL; Huang, G.; Kornilov, O.; /LBNL; Marangos, J.P.; /Imperial Coll., London; March, A.M.; /Argonne; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  19. Ultrafast release and capture of carriers in InGaAs/GaAs quantum dots observed by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Porte, Henrik; Jepsen, Peter Uhd; Daghestani, N.

    2009-01-01

    We observe ultrafast release and capture of charge carriers in InGaAs/GaAs quantum dots in a room-temperature optical pump-terahertz probe experiment sensitive to the population dynamics of conducting states. In case of resonant excitation of the quantum dot ground state, the maximum conductivity...... is achieved at approximately 35 ps after photoexcitation, which is assigned to release of carriers from the quantum dots. When exciting carriers into the conduction band of the barriers, depletion of the conductivity via carrier capture into the quantum dots with a few picosecond pump fluence-dependent time...

  20. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers

  1. White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region

    International Nuclear Information System (INIS)

    Perumbilavil, Sreekanth; Sankar, Pranitha; Priya Rose, T.; Philip, Reji

    2015-01-01

    Wavelength dispersion of optical power limiting is an important factor to be considered while designing potential optical limiters for laser safety applications. We report the observation of broadband, ultrafast optical limiting in reduced graphene oxide (rGO), measured by a single open aperture Z-scan using a white light continuum (WLC) source. WLC Z-scan is fast when the nonlinearity is to be measured over broad wavelength ranges, and it obviates the need for an ultrafast tunable laser making it cost-economic compared to conventional Z-scan. The nonlinearity arises from nondegenerate two-photon absorption, owing mostly to the crystallinity and extended π conjugation of rGO

  2. Microfabricated optically pumped magnetometer arrays for biomedical imaging

    Science.gov (United States)

    Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.

    2017-02-01

    Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.

  3. Push-pull optical pumping of pure superposition states

    International Nuclear Information System (INIS)

    Jau, Y.-Y.; Miron, E.; Post, A.B.; Kuzma, N.N.; Happer, W.

    2004-01-01

    A new optical pumping method, 'push-pull pumping', can produce very nearly pure, coherent superposition states between the initial and the final sublevels of the important field-independent 0-0 clock resonance of alkali-metal atoms. The key requirement for push-pull pumping is the use of D1 resonant light which alternates between left and right circular polarization at the Bohr frequency of the state. The new pumping method works for a wide range of conditions, including atomic beams with almost no collisions, and atoms in buffer gases with pressures of many atmospheres

  4. Optical--microwave pumping of alkali atoms and population capture

    International Nuclear Information System (INIS)

    Aleksandrov, E.B.; Vershovskii, A.K.

    1985-01-01

    The steady-state distribution of the populations of the hyperfine sublevels of the ground state of alkali atoms is calculated for the case in which the atoms are subjected to a spectrally selective optical pumping on 2 S 1 /sub // 2 -- 2 P/sub 1/2,3/2/ transitions and a simultaneous pumping by microwave fields which are at resonance with transitions in the hyperfine structure of the ground state, F = 2, M/sub F/ = +- 2, +- 1bold-arrow-left-rightF = 1, M/sub F/ = +- 1. The addition of the microwave pumping is shown to substantially increase the population difference for the O--O transition in the hyperfine structure. During selective optical pumping of the F = 1 level, the population inversion which can be achieved for the O--O transition is limited by the effect of population capture. This capture can be eliminated by using incoherent microwave fields. The quality factor of the O--O resonance is calculated as a function of the parameters of the pump. The outlook for the use of composite pumping in frequency-stabilization systems is discussed

  5. Theory of pump–probe ultrafast photoemission and X-ray absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori

    2016-01-15

    Highlights: • Pump–probe ultrafast XAFS and XPS spectra are theoretically studied. • Keldysh Green's function theory is applied. • Important many-body effects are explicitly included. - Abstract: Keldysh Green's function approach is extensively used in order to derive practical formulas to analyze pump–probe ultrafast photoemission and X-ray absorption spectra. Here the pump pulse is strong enough whereas the probe X-ray pulse can be treated by use of a perturbation theory. We expand full Green's function in terms of renormalized Green's function without the interaction between electrons and probe pulse. The present theoretical formulas allow us to handle the intrinsic and extrinsic losses, and furthermore resonant effects in X-ray Absorption Fine Structures (XAFS). To understand the radiation field screening in XPS spectra, we have to use more sophisticated theoretical approach. In the ultrafast XPS and XAFS analyses the intrinsic and extrinsic loss effects can interfere as well. In the XAFS studies careful analyses are necessary to handle extrinsic losses in terms of damped photoelectron propagation. The nonequilibrium dynamics after the pump pulse irradiation is well described by use of the time-dependent Dyson orbitals. Well above the edge threshold, ultrafast photoelectron diffraction and extended X-ray absorption fine structure (EXAFS) provide us with transient structural change after the laser pump excitations. In addition to these slow processes, the rapid oscillation in time plays an important role related to pump electronic excitations. Near threshold detailed information could be obtained for the combined electronic and structural dynamics. In particular high-energy photoemission and EXAFS are not so influenced by the details of excited states by pump pulse. Random-Phase Approximation (RPA)-boson approach is introduced to derive some practical formulas for time-dependent intrinsic amplitudes.

  6. Spin-state studies with XES and RIXS: From static to ultrafast

    International Nuclear Information System (INIS)

    Vankó, György; Bordage, Amélie; Glatzel, Pieter; Gallo, Erik; Rovezzi, Mauro; Gawelda, Wojciech; Galler, Andreas; Bressler, Christian; Doumy, Gilles; March, Anne Marie; Kanter, Elliot P.; Young, Linda; Southworth, Stephen H.; Canton, Sophie E.; Uhlig, Jens; Smolentsev, Grigory; Sundström, Villy; Haldrup, Kristoffer; Brandt van Driel, Tim; Nielsen, Martin M.

    2013-01-01

    Highlights: ► We study light-induced spin-state transition of Fe(II) complexes in solution. ► Laser-pump-X-ray-probe spectroscopy is extended to MHz repetition rates. ► XES and RIXS compare well with the static spectra at thermal spin transition. ► The typical assumptions used in XES line shape analysis are validated. -- Abstract: We report on extending hard X-ray emission spectroscopy (XES) along with resonant inelastic X-ray scattering (RIXS) to study ultrafast phenomena in a pump-probe scheme at MHz repetition rates. The investigated systems include low-spin (LS) Fe II complex compounds, where optical pulses induce a spin-state transition to their (sub)nanosecond-lived high-spin (HS) state. Time-resolved XES clearly reflects the spin-state variations with very high signal-to-noise ratio, in agreement with HS–LS difference spectra measured at thermal spin crossover, and reference HS–LS systems in static experiments, next to multiplet calculations. The 1s2p RIXS, measured at the Fe 1s pre-edge region, shows variations after laser excitation, which are consistent with the formation of the HS state. Our results demonstrate that X-ray spectroscopy experiments with overall rather weak signals, such as RIXS, can now be reliably exploited to study chemical and physical transformations on ultrafast time scales

  7. Ultra-fast movies of thin-film laser ablation

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  8. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    Science.gov (United States)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  9. Ultrafast Relaxation Dynamics of the Optical Nonlinearity in Nanometric Gold Particles

    International Nuclear Information System (INIS)

    Puech, K.; Blau, W.J.

    2001-01-01

    Measurements of the resonantly enhanced, third-order nonlinear optical properties of gold nanostructures exhibiting reduced charge-carrier mobility in three dimensions were performed with a number of ultrafast nonlinear optical techniques. The size of the particles investigated was varied between 5 and 40 nm. The magnitude of the nonlinear susceptibility is of the order of 5.10 -16 m 2 V -2 at resonance and an order of magnitude lower off-resonance. The response time of the nonlinearity is found to be extremely fast and could not be resolved in the experiments undertaken here. The only statement that can be made in this regard is that the phase relaxation time is of the order of or less than 20 fs while the energy relaxation time is of the order of or less than 75 fs

  10. Tests of a prototype multiplexed fiber-optic ultra-fast FADC data acquisition system for the MAGIC telescope

    International Nuclear Information System (INIS)

    Bartko, H.; Goebel, F.; Mirzoyan, R.; Pimpl, W.; Teshima, M.

    2005-01-01

    Ground-based Atmospheric Air Cherenkov Telescopes (ACTs) are successfully used to observe very high energy (VHE) gamma rays from celestial objects. The light of the night sky (LONS) is a strong background for these telescopes. The gamma ray pulses being very short, an ultra-fast read-out of an ACT can minimize the influence of the LONS. This allows one to lower the so-called tail cuts of the shower image and the analysis energy threshold. It could also help to suppress other unwanted backgrounds. Fast 'flash' analog-to-digital converters (FADCs) with GSamples/s are available commercially; they are, however, very expensive and power consuming. Here we present a novel technique of Fiber-Optic Multiplexing which uses a single 2 GSamples/s FADC to digitize 16 read-out channels consecutively. The analog signals are delayed by using optical fibers. The multiplexed (MUX) FADC read-out reduces the cost by about 85% compared to using one ultra-fast FADC per read-out channel. Two prototype multiplexers, each digitizing data from 16 channels, were built and tested. The ultra-fast read-out system will be described and the test results will be reported. The new system will be implemented for the read-out of the 17 m diameter MAGIC telescope camera

  11. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity.

    Science.gov (United States)

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2014-05-23

    Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access.

  12. Controlling the optical bistability and multistability in a two-level pumped-probe system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Sahrai, Mostafa; Masoumeh Mousavi, Seyede

    2010-01-01

    We study the behavior of the optical bistability (OB) and multistability (OM) in a two-level pumped-probe atomic system by means of a unidirectional ring cavity. We show that the optical bistability in a two-level atomic system can be controlled by adjusting the intensity of the pump field and the detuning between two fields. We find that applying the pumping field decreases the threshold of the optical bistability.

  13. Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.

    Science.gov (United States)

    Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni

    2018-03-15

    In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

  14. Cooperative photo-induced effects: from photo-magnetism under continuous irradiation to ultra-fast phenomena - study through optical spectroscopy and X-ray diffraction; Effets photo-induits cooperatifs: du photomagnetisme sous irradiation continue aux phenomenes ultrarapides - etude par spectroscopie optique et diffraction X

    Energy Technology Data Exchange (ETDEWEB)

    Glijer, D

    2006-12-15

    The control with ultra-short laser pulses of the collective and concerted transformation of molecules driving a macroscopic state switching on an ultra-fast time scale in solid state opens new prospects in materials science. The goal is to realize at the material level what happens at the molecular level in femto-chemistry. These processes are highly cooperative and highly non-linear, leading to self-amplification and self-organization within the material, a so-called photo-induced phase transition with a new long range order (structural, magnetic, ferroelectric,...). Two families of molecular compounds have been studied here: first of all, spin transition materials changing from a diamagnetic state over to a paramagnetic state under the effect of temperature or under continuous laser excitation. It concerns photo-active molecular bi-stability prototype materials in solid state, whose switching has been studied during X-ray diffraction, optical reflectivity and magnetism experiments. Then we have studied charge-transfer molecular systems, prototype compounds for ultrafast photo-induced phase transitions: insulator-metal, neutral-ionic....As well as ultrafast optical experiments, time-resolved X ray crystallography is a key technique in order to follow at the atomic level the different steps of the photo-induced transformation and thus to observe the involved mechanisms. We have underlined a process of photo-formation of one-dimensional nano-domains of lattice-relaxed charge-transfer excitations, governing the photo-induced phase transition of the molecular charge-transfer complex TTF-CA by the first time-resolved diffuse scattering measurements. Moreover, a new femtosecond laser-plasma source and a optical pump-probe spectroscopy set-up with a highly sensitive detecting system have been developed in this work. The results presented here will be an illustration of the present scientific challenges existing on the one hand with the development of projects of major

  15. Optically pumped polarized 23Na vapor target for use in polarized ion source. Technical progress report

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    We are currently measuring relaxation times in an optically pumped 23 Na vapor target. Our research is directed toward improvements in the optically pumped Na vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source and especially the optically pumped Na vapor target employed in this source as well as discussing the progress of our research on relaxation times in an optically pumped Na vapor target. 30 references, 6 figures, 3 tables

  16. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Wang, Tao; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-01-01

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz 1/2 is achieved with gradiometer arrangement

  17. Optical Pumping of Molecular Gases

    Science.gov (United States)

    1976-04-01

    ser emission ott a The typical experimental apparatus is shown i.- Fig. *series of green and yellow molecular B-X’-basnd transi- 2. For B-bantd optical...with A, at 0. 473 pim and that Na2 may operate as a flash -lamp -pumped laser X,... at 0. 54 umn the Doppler widths are AwD - 12.42 source with buffer

  18. Observation of an octave-spanning supercontinuum in the mid-infrared using ultrafast cascaded nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Liu, Xing; Zhou, Binbin

    2014-01-01

    An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation. ©OSA 2014.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation. ©OSA 2014....

  19. Optical pumping-assisted electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Jiang Wei; Chen Qunfeng; Zhang Yongsheng; Guo, G.-C.

    2006-01-01

    In this paper we report an observation of the two-photon absorption in a four-level system in hot 87 Rb vapor based on the proposal of Harris and Yamamoto [Phys. Rev. Lett. 81, 3611 (1998)]. We show that this effect is reduced in hot atoms due to the non-Doppler-free nature of this scheme. Then we report a phenomenon that could be used in the same application of Harris and Yamamoto. The main result is a great enhancement of electromagnetically induced transparency (EIT) effect in hot 87 Rb vapor caused by optical pumping. We find that when the single photon detuning is near zero the EIT signal is dramatically enhanced by an optical pumping field. More interestingly when the single photon detuning is larger the signal can be changed from a sharp Raman peak to a sharp EIT dip. The full width at half maximum of the peak and dip are narrow and subnatural

  20. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Taeho [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Kandyla, Maria [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 116-35 (Greece)

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  1. Reversible ultrafast melting in bulk CdSe

    International Nuclear Information System (INIS)

    Wu, Wenzhi; He, Feng; Wang, Yaguo

    2016-01-01

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm 2 , ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe

  2. Development of high-power optically-pumped far-infrared lasers for plasma diagnostics

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Yamanaka, Tatsuhiko; Mitsuishi, Akiyoshi; Fujita, Shigeru; Tsunawaki, Yoshiaki.

    1982-01-01

    The activities for developing an over 0.1-MW optically-pumped 385-μm D 2 O laser and a CW optically-pumped 382.9-μm CH 2 F 2 laser as local oscillator for measurement of ion temperature in Tokamaks are described. (author)

  3. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica; Usman, Anwar; Gereige, Issam; Duren, Jeroen Van; Lyssenko, Vadim; Leo, Karl; Mohammed, Omar F.

    2015-01-01

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  4. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica

    2015-04-14

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  5. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  6. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    Science.gov (United States)

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  7. A dual-optically-pumped polarized negative deuterium ion source

    International Nuclear Information System (INIS)

    Kinsho, M.; Mori, Y.; Ikegami, K.; Takagi, A.

    1994-01-01

    An optically pumped polarized H - source (OPPIS), which is based on the charge exchange between H + ions and electron-spin-polarized alkali atoms has been developed at KEK. Just by applying this scheme to a deuteron beam, it is difficult to obtain a highly vector polarized deuteron beam. To obtain highly vector polarized D - ions, we have developed a 'dual optical pumping type' of polarized D - source. With this scheme, a 100% vector nuclear-spin polarization for D - ions is possible in principle. In a preliminary experiment, a 60% of vector nuclear-spin polarized D - ions was obtained. (author)

  8. Ultrafast collinear scattering and carrier multiplication in graphene.

    Science.gov (United States)

    Brida, D; Tomadin, A; Manzoni, C; Kim, Y J; Lombardo, A; Milana, S; Nair, R R; Novoselov, K S; Ferrari, A C; Cerullo, G; Polini, M

    2013-01-01

    Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.

  9. Metastability-exchange optical pumping of 3He for neutron polarizers

    International Nuclear Information System (INIS)

    Gentile, T.R.; Thompson, A.K.; Snow, W.M.

    1995-01-01

    Research is underway at NIST and IU to develop neutron polarizers that are based on polarized 3 He. Such polarizers rely on the strong spin dependence of the cross section for neutron capture by polarized 3 He. Two methods can produce the high density of polarized 3 He gas (10 19 -10 20 cm -3 ) required for an effective neutron polarizer: spin-exchange optical pumping, which is performed directly at high pressure (1-10 bar), and metastability-exchange optical pumping, in which the gas is polarized at low pressure (1 mbar) and then compressed. While we are pursuing both methods, progress in the metastable method will be discussed. The features of the metastable method are the high rate at which the gas can be polarized and the inherent separation of the optical pumping and target cells. In a landmark achievement, researchers at the Univ. of Mainz have developed a piston compressor that can fill a 130 cm 3 cell to a pressure of 7 bar of 45% polarized 3 He gas in 2 hours. We plan to develop a compressor and test it at the NIST Cold Neutron Research Facility. We have constructed a metastable-pumping apparatus at NIST and have obtained 76% polarization with a pumping rate of 1.2 x 10 18 atoms/sec in a 0.4 mbar, 270 cm 3 cell

  10. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  11. Tunable third-harmonic probe for non-degenerate ultrafast pump ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... 413–417. Tunable third-harmonic probe for non-degenerate ultrafast ... A beam splitter was used to split the beam into two with the power ratio of ... Now polarization of the 800-nm beam is made to be parallel with the 400-nm.

  12. Kinetic analysis of rare gas metastable production and optically pumped Xe lasers

    Science.gov (United States)

    Demyanov, A. V.; Kochetov, I. V.; Mikheyev, P. A.; Azyazov, V. N.; Heaven, M. C.

    2018-01-01

    Optically pumped all-rare-gas lasers use metastable rare gas atoms as the lasing species in mixtures with He or Ar buffer gas. The metastables are generated in a glow discharge, and we report model calculations for the optimal production of Ne*, Ar*, Kr* and Xe*. Discharge efficiency was estimated by solving the Boltzmann equation. Laser efficiency, gain and output power of the CW optically pumped Xe laser were assessed as functions of heavier rare gas content, pressure, optical pump intensity and the optical path length. It was found that, for efficient operation the heavier rare gas content has to be of the order of one percent or less, and the total pressure—in the range 0.3-1.5 atm. Output power and specific discharge power increase approximately linearly with pump intensity over the output range from 300-500 W cm-2. Ternary mixtures Xe:Ar:He were found to be the most promising. Total laser efficiency was found to be nearly the same for pumping the 2p8 or 2p9 state, reaching 61%-70% for a pump intensity of ~720 W cm-2 when the Xe fraction was in the range 0.001 ÷ 0.01 and Ar fraction—0.1 ÷ 0.5. However, when the 2p8 state was pumped, the maximum total efficiency occurred at larger pressures than for pumping of the 2p9 state. The discharge power density required to sustain a sufficient Xe* number density was in the range of tens of watts per cubic centimeter for 50% Ar in the mixture.

  13. Nuclear radiation detected optical pumping of neutron deficient Hg isotopes

    International Nuclear Information System (INIS)

    Bonn, J.

    1975-01-01

    The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 0 -6s6p 3 P 1 (lambda = 2537 A) resonance line of the investigated isotope and the Hg lamp. The orientation build up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magnetic moments, electric quadrupole moments and isotopic shift are obtained for 181 Hg- 191 Hg using the β-asymmetry as detector. The extension of the method using the γ-anisotropy is discussed and measurements on 193 Hg are presented. (orig./HK)

  14. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shymanovich, U.

    2007-11-13

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  15. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Shymanovich, U.

    2007-01-01

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  16. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  17. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  18. Quantum mechanical features of optically pumped CW FIR lasers

    Science.gov (United States)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  19. Population branching in the conical intersection of the retinal chromophore revealed by multipulse ultrafast optical spectroscopy.

    Science.gov (United States)

    Zgrablić, Goran; Novello, Anna Maria; Parmigiani, Fulvio

    2012-01-18

    The branching ratio of the excited-state population at the conical intersection between the S(1) and S(0) energy surfaces (Φ(CI)) of a protonated Schiff base of all-trans retinal in protic and aprotic solvents was studied by multipulse ultrafast transient absorption spectroscopy. In particular, pump-dump-probe experiments allowed to isolate the S(1) reactive state and to measure the photoisomerization time constant with unprecedented precision. Starting from these results, we demonstrate that the polarity of the solvent is the key factor influencing the Φ(CI) and the photoisomerization yield. © 2011 American Chemical Society

  20. Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.

    Science.gov (United States)

    MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J

    2018-02-02

    Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.

  1. Ultrafast biophotonics

    CERN Document Server

    Vasa, P

    2016-01-01

    This book presents emerging contemporary optical techniques of ultrafast science which have opened entirely new vistas for probing biological entities and processes. The spectrum reaches from time-resolved imaging and multiphoton microscopy to cancer therapy and studies of DNA damage. The book displays interdisciplinary research at the interface of physics and biology. Emerging topics on the horizon are also discussed, like the use of squeezed light, frequency combs and terahertz imaging as the possibility of mimicking biological systems. The book is written in a manner to make it readily accessible to researchers, postgraduate biologists, chemists, engineers, and physicists and students of optics, biomedical optics, photonics and biotechnology.

  2. Optical pumping and negative luminescence polarization in charged GaAs quantum dots

    Science.gov (United States)

    Shabaev, Andrew; Stinaff, Eric A.; Bracker, Allan S.; Gammon, Daniel; Efros, Alexander L.; Korenev, Vladimir L.; Merkulov, Igor

    2009-01-01

    Optical pumping of electron spins and negative photoluminescence polarization are observed when interface quantum dots in a GaAs quantum well are excited nonresonantly by circularly polarized light. Both observations can be explained by the formation of long-lived dark excitons through hole spin relaxation in the GaAs quantum well prior to exciton capture. In this model, optical pumping of resident electron spins is caused by capture of dark excitons and recombination in charged quantum dots. Negative polarization results from accumulation of dark excitons in the quantum well and is enhanced by optical pumping. The dark exciton model describes the experimental results very well, including intensity and bias dependence of the photoluminescence polarization and the Hanle effect.

  3. Ultrafast Non-Thermal Electron Dynamics in Single Layer Graphene

    Directory of Open Access Journals (Sweden)

    Novoselov K.S.

    2013-03-01

    Full Text Available We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times.

  4. Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response

    International Nuclear Information System (INIS)

    Falcao-Filho, E.L.; Araujo, Cid B. de; Bosco, C.A.C.; Maciel, G.S.; Acioli, L.H.; Nalin, M.; Messaddeq, Y.

    2005-01-01

    Antimony glasses based on the composition Sb 2 O 3 -SbPO 4 were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n 2 , of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response ( 2 was observed by adding lead oxide to the Sb 2 O 3 -SbPO 4 composition. Large values of n 2 ≅10 -14 cm 2 /W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications

  5. Rovibrational optical pumping of a molecular beam

    Science.gov (United States)

    Cournol, A.; Pillet, P.; Lignier, H.; Comparat, D.

    2018-03-01

    The preparation of molecules in well-defined internal states is essential for various studies in fundamental physics and physical chemistry. It is thus of particular interest to find methods that increase the brightness of molecular beams. Here, we report on rotational and vibrational pumpings of a supersonic beam of barium monofluoride molecules. With respect to previous works, the time scale of optical vibrational pumping has been greatly reduced by enhancing the spectral power density in the vicinity of the appropriate molecular transitions. We demonstrate a complete transfer of the rovibrational populations lying in v″=1 -3 into the vibrational ground-state v″=0 . Rotational pumping, which requires efficient vibrational pumping, has been also demonstrated. According to a Maxwell-Boltzmann description, the rotational temperature of our sample has been reduced by a factor of ˜8 . In this fashion, the population of the lowest rotational levels increased by more than one order of magnitude.

  6. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  7. Ultrafast Charge Photogeneration in MEH-PPV Charge-Transfer Complexes

    NARCIS (Netherlands)

    Bakulin, Artem A.; Paraschuk, Dmitry Yu; Pshenichnikov, Maxim S.; van Loosdrecht, Paul H. M.; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E; Schoenlein, RW

    2009-01-01

    Visible-pump - IR-probe spectroscopy is used to study the ultrafast charge dynamics in MEH-PPV based charge-transfer complexes and donor-acceptor blends. Transient anisotropy of the polymer polaron band provides invaluable insights into excitation localisation and charge-transfer pathways.

  8. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    Science.gov (United States)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  9. Pump-induced optical distortions in disk amplifier modules: holographic and interferometric measurements

    International Nuclear Information System (INIS)

    Linford, G.J.; Chau, H.H.; Glaze, J.A.; Layne, C.B.; Rainer, F.

    1975-01-01

    Interferometric measurements have been made of the optical distortions induced in laser disk amplifiers during the flashlamp pumping pulse. Both conventional interferometric methods and the techniques of double exposure holographic interferometry were used to identify four major sources of pump-induced optical distortions: subsonic intrusion of hot gas (traced to leakage of atmospheric oxygen into the amplifier), microexplosions of dust particles, thermally induced optical distortions in the glass disks, and gaseous optical distortion effects caused by turbulent flow of the purging nitrogen gas supply used within the laser amplifier head. Methods for reducing or eliminating the effects of each of these optical distortions are described

  10. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  11. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    Directory of Open Access Journals (Sweden)

    Giovanni M. Vanacore

    2017-07-01

    Full Text Available Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.

  12. Rate equation modelling of the optically pumped spin-exchange source

    International Nuclear Information System (INIS)

    Stenger, J.; Rith, K.

    1995-01-01

    Sources for spin polarized hydrogen or deuterium, polarized via spin-exchange of a laser optically pumped alkali metal, can be modelled by rate equations. The rate equations for this type of source, operated either with hydrogen or deuterium, are given explicitly with the intention of providing a useful tool for further source optimization and understanding. Laser optical pumping of alkali metal, spin-exchange collisions of hydrogen or deuterium atoms with each other and with alkali metal atoms are included, as well as depolarization due to flow and wall collisions. (orig.)

  13. Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning

    National Research Council Canada - National Science Library

    Rebane, Aleksander

    2001-01-01

    .... This allowed us to record image holograms with 150-fs duration pulses without need to accumulate the SHB effect from many exposures. Results of this research show that it is possible to perform optical recording of data in frequency-domain on ultrafast time scale. These results can be used also as a new diagnostic tool for femtosecond dynamics in various ultrafast optical interactions.

  14. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Michael J. [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zalden, Peter [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chen, Frank [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Weems, Ben [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Chatzakis, Ioannis [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Hoffmann, Matthias C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); JARA–Fundamentals of Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M., E-mail: aaronl@stanford.edu [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  15. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF, 07738 (Mexico); Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510, Mexico, DF (Mexico); Rangel-Rojo, R [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada Apartado Postal 360, Ensenada, BC, 22860 (Mexico); Torres-Martinez, R, E-mail: crstorres@yahoo.com.mx [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada Unidad Queretaro, Instituto Politecnico Nacional, Santiago de Queretaro, Queretaro, 76090 (Mexico)

    2011-09-02

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  16. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    International Nuclear Information System (INIS)

    Torres-Torres, C; Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A; Rangel-Rojo, R; Torres-Martinez, R

    2011-01-01

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  17. Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots

    Science.gov (United States)

    Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.

    2005-02-01

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  18. Holography and thermalization in optical pump-probe spectroscopy

    Science.gov (United States)

    Bagrov, A.; Craps, B.; Galli, F.; Keränen, V.; Keski-Vakkuri, E.; Zaanen, J.

    2018-04-01

    Using holography, we model experiments in which a 2 +1 D strange metal is pumped by a laser pulse into a highly excited state, after which the time evolution of the optical conductivity is probed. We consider a finite-density state with mildly broken translation invariance and excite it by oscillating electric field pulses. At zero density, the optical conductivity would assume its thermalized value immediately after the pumping has ended. At finite density, pulses with significant dc components give rise to slow exponential relaxation, governed by a vector quasinormal mode. In contrast, for high-frequency pulses the amplitude of the quasinormal mode is strongly suppressed, so that the optical conductivity assumes its thermalized value effectively instantaneously. This surprising prediction may provide a stimulus for taking up the challenge to realize these experiments in the laboratory. Such experiments would test a crucial open question faced by applied holography: are its predictions artifacts of the large N limit or do they enjoy sufficient UV independence to hold at least qualitatively in real-world systems?

  19. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  20. Frequency comb generation in a continuously pumped optical parametric oscillator

    Science.gov (United States)

    Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.

    2018-02-01

    We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.

  1. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  2. Effects of optical pumping in the photo-excitation of organic triplet states

    International Nuclear Information System (INIS)

    Lin, Tien-Sung; Yang, Tran-Chin; Sloop, David J.

    2013-01-01

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping

  3. Effects of optical pumping in the photo-excitation of organic triplet states

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Sung, E-mail: lin@wustl.edu; Yang, Tran-Chin; Sloop, David J.

    2013-08-30

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping.

  4. Optical pumping of electron and nuclear spin in a negatively-charged quantum dot

    Science.gov (United States)

    Bracker, Allan; Gershoni, David; Korenev, Vladimir

    2005-03-01

    We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.

  5. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  6. Ultrafast self-modulation of the optical absorption spectrum under conditions of both the ultrashort optical pumping and superluminescence in GaAs

    International Nuclear Information System (INIS)

    Ageeva, N. N.; Bronevoi, I. L.; Krivonosov, A. N.; Stegantsov, S. V.

    2006-01-01

    Self-modulation of the optical absorption spectrum is observed during the picosecond photogeneration of charge carriers and intense superluminescence in GaAs. As the picosecond delay τ of the probing pulse with respect to the pump pulse is varied in the region of τ < 0, the local points of the absorption intensification (juts) shift along the spectrum (the modulation resembles a running wave). As the value of τ is varied in the vicinity of τ = 0, the juts in the spectrum arise and disappear at approximately fixed photon energies (the modulation resembles a standing wave). At certain photon energies, the dependence of the rate of variation in the absorption coefficient dα/dτ on τ is found to be modulated by pulsations, similarly to the previously observed modulation of the picosecond stimulated emission from GaAs. Presumably, the spectrum self-modulation represents (and, thus, reveals) the modulation of the electron distribution in the conduction band. This modulation is caused by the fact that the evolution of the electron-population depletion at the bottom of the conduction band during superluminescence reflects (due to the electron-phonon interaction) on the population of the upper energy levels in the band

  7. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  8. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  9. THz dynamics of nanoconfined water by ultrafast optical spectroscopy

    International Nuclear Information System (INIS)

    Taschin, A; Bartolini, P; Torre, R

    2017-01-01

    We investigated the vibrational dynamics and structural relaxation of water nanoconfined in porous silica samples with a pore size of 4 nm at different levels of hydration and temperature. We used the time-resolved optical Kerr effect (OKE), a spectroscopic technique that enables investigation of ultrafast water dynamics in a wide time (0.1–10 ps) or frequency (10 – 0.1 THz) window. At low hydration levels corresponding to two complete superficial water layers, no freezing occurs and the water remains mobile at all investigated temperatures. Meanwhile, at full hydration we witness a partial ice formation at about 248 K that coexists with the surface water remaining in the supercooled state. At low hydration, both structural and vibrational dynamics show significant modifications compared to bulk liquid water. This is due to the strong interaction of the water molecules with silica surfaces. Inner water, however, reveals relaxation dynamics very similar to bulk water. (paper)

  10. A Phase-Controlled Optical Parametric Amplifier Pumped by Two Phase-Distorted Laser Beams

    International Nuclear Information System (INIS)

    Hong-Yan, Ren; Lie-Jia, Qian; Peng, Yuan; He-Yuan, Zhu; Dian-Yuan, Fan

    2010-01-01

    We theoretically study the phase characteristic of optical parametric amplification (OPA) or chirped pulse OPA (OPCPA) pumped by two phase-distorted laser beams. In the two-beam-pumped optical parametric amplification (TBOPA), due to spatial walk-off, both of the pump phase distortions will be partly transferred to signal in a single crystal so as to degrade the signal beam-quality, which will be more serious in high-energy OPCPA. An OPA configuration with a walkoff-compensated crystal pair is demonstrated for reducing the signal phase distortion experienced in the first stage and ensuring the signal phase independent of two pump phase distortions through the second crystal, hence maintaining the signal beam-quality. Such a TBOPA is similar to the conventional quantum laser amplifier by means of eliminating its sensitivity to the phase and number of the pump beams

  11. Optical silencing of C. elegans cells with light-driven proton pumps.

    Science.gov (United States)

    Okazaki, Ayako; Takahashi, Megumi; Toyoda, Naoya; Takagi, Shin

    2014-08-01

    Recent development of optogenetic techniques, which utilize light-driven ion channels or ion pumps for controlling the activity of excitable cells, has greatly facilitated the investigation of nervous systems in vivo. A new generation of optical silencers includes outward-directed proton pumps, such as Arch, which have several advantages over currently widely used halorhodopsin (NpHR). These advantages include the resistance to inactivation during prolonged illumination and the ability to generate a larger optical current from low intensity light. C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. In this article, we will outline the practical aspects of using of Arch and other proton pumps as optogenetic tools in C. elegans. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Multi-quantum excitation in optically pumped alkali atom: rare gas mixtures

    Science.gov (United States)

    Galbally-Kinney, K. L.; Rawlins, W. T.; Davis, S. J.

    2014-03-01

    Diode-pumped alkali laser (DPAL) technology offers a means of achieving high-energy gas laser output through optical pumping of the D-lines of Cs, Rb, and K. The exciplex effect, based on weak attractive forces between alkali atoms and polarizable rare gas atoms (Ar, Kr, Xe), provides an alternative approach via broadband excitation of exciplex precursors (XPAL). In XPAL configurations, we have observed multi-quantum excitation within the alkali manifolds which result in infrared emission lines between 1 and 4 μm. The observed excited states include the 42FJ states of both Cs and Rb, which are well above the two-photon energy of the excitation laser in each case. We have observed fluorescence from multi-quantum states for excitation wavelengths throughout the exciplex absorption bands of Cs-Ar, Cs-Kr, and Cs-Xe. The intensity scaling is roughly first-order or less in both pump power and alkali concentration, suggesting a collisional energy pooling excitation mechanism. Collisional up-pumping appears to present a parasitic loss term for optically pumped atomic systems at high intensities, however there may also be excitation of other lasing transitions at infrared wavelengths.

  13. Optical silencing of body wall muscles induces pumping inhibition in Caenorhabditis elegans

    OpenAIRE

    Takahashi, Megumi; Takagi, Shin

    2017-01-01

    Feeding, a vital behavior in animals, is modulated depending on internal and external factors. In the nematode Caenorhabditis elegans, the feeding organ called the pharynx ingests food by pumping driven by the pharyngeal muscles. Here we report that optical silencing of the body wall muscles, which drive the locomotory movement of worms, affects pumping. In worms expressing the Arch proton pump or the ACR2 anion channel in the body wall muscle cells, the pumping rate decreases after activatio...

  14. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  15. Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching

    Science.gov (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2017-03-01

    Polarization switching of picosecond laser pulses is a fundamental concept in signal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986); V. R. Almeida et al., Nature 431, 1081 (2004); and A. A. P. Pohl et al., Photonics Sens. 3, 1 (2013)]. Conventional switching devices rely on the electro-optical Pockels effect and work at radio frequencies. The ensuing gating time of several nanoseconds is a bottleneck for faster switches which is set by the performance of state-of-the-art high-voltage electronics. Here we show that by substituting the electric field of several kV/cm provided by modern electronics by the MV/cm field of a single-cycle THz laser pulse, the electro-optical gating process can be driven orders of magnitude faster, at THz frequencies. In this context, we introduce diamond as an exceptional electro-optical material and demonstrate a pulse gating time as fast as 100 fs using sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in the insulator diamond is fully governed by the THz pulse shape. The presented THz-based electro-optical approach overcomes the bandwidth and switching speed limits of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gating technology for the first time in the THz frequency range. We finally show that the presented THz polarization gating technique is applicable for advanced beam diagnostics. As a first example, we demonstrate tomographic reconstruction of a THz pulse in three dimensions.

  16. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  17. Progress in ultrafast intense laser science

    CERN Document Server

    Yamanouchi, Kaoru; Mathur, Deepak

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  18. A novel optical tool for controlling and probing ultrafast surface dynamics

    International Nuclear Information System (INIS)

    Yang, Yudong

    2017-12-01

    Ultrashort pulse laser sources have been greatly developed over the past few decades. The available pulse duration has been reduced to the single-cycle pulse regime. The discovery of high harmonic generation has freed us from the limitation of the laser wavelength. Moreover, the demonstration of isolated attosecond pulse generation has indicated the advent of the attosecond science era. Attosecond pulses undoubtedly allow one to study ultrafast dynamics with unprecedented time resolution. However, physical systems with genuine attosecond time scale dynamics are rather challenging to find. Ultrafast surface charge transfer, which is an important process in photochemistry and electrochemistry, is a good candidate experimental system exhibiting attosecond electronic dynamics. Specifically, the ultrafast surface charge transfer on the c(4 x 2)S/Ru(0001) surface was previously studied and the charge transfer time inferred to be 320 as using core-hole clock spectroscopy at a synchrotron facility. In order to measure this benchmark attosecond electronic dynamics with real time-resolving methods, pump pulses centered at 160 eV and probe pulses centered at 40 eV are required. To this end, a dedicated attosecond experimental beamline including an ultrashort laser pulse source and an attosecond pulse generation and characterization setup has been designed and is being developed. The author of this thesis was responsible for the construction of the attosecond experimental beamline which will be used ultrafast surface charge transfer studies. In this thesis, a completely functional attosecond extreme ultraviolet (XUV) beamline, which includes a few-cycle laser pulse source, an attosecond pulse generation and characterization setup, is described. A commercial Ti:sapphire-based chirped-pulse amplification (CPA) laser system is the overall source of the beamline. The laser system is actively carrier-envelope phase (CEP) stabilized and the output pulse duration is ∝35 fs. The

  19. A novel optical tool for controlling and probing ultrafast surface dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yudong

    2017-12-15

    Ultrashort pulse laser sources have been greatly developed over the past few decades. The available pulse duration has been reduced to the single-cycle pulse regime. The discovery of high harmonic generation has freed us from the limitation of the laser wavelength. Moreover, the demonstration of isolated attosecond pulse generation has indicated the advent of the attosecond science era. Attosecond pulses undoubtedly allow one to study ultrafast dynamics with unprecedented time resolution. However, physical systems with genuine attosecond time scale dynamics are rather challenging to find. Ultrafast surface charge transfer, which is an important process in photochemistry and electrochemistry, is a good candidate experimental system exhibiting attosecond electronic dynamics. Specifically, the ultrafast surface charge transfer on the c(4 x 2)S/Ru(0001) surface was previously studied and the charge transfer time inferred to be 320 as using core-hole clock spectroscopy at a synchrotron facility. In order to measure this benchmark attosecond electronic dynamics with real time-resolving methods, pump pulses centered at 160 eV and probe pulses centered at 40 eV are required. To this end, a dedicated attosecond experimental beamline including an ultrashort laser pulse source and an attosecond pulse generation and characterization setup has been designed and is being developed. The author of this thesis was responsible for the construction of the attosecond experimental beamline which will be used ultrafast surface charge transfer studies. In this thesis, a completely functional attosecond extreme ultraviolet (XUV) beamline, which includes a few-cycle laser pulse source, an attosecond pulse generation and characterization setup, is described. A commercial Ti:sapphire-based chirped-pulse amplification (CPA) laser system is the overall source of the beamline. The laser system is actively carrier-envelope phase (CEP) stabilized and the output pulse duration is ∝35 fs. The

  20. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    Directory of Open Access Journals (Sweden)

    Francesco Pennacchio

    2017-07-01

    Full Text Available Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect. Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  1. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  2. Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters.

    Science.gov (United States)

    Kang, Kwangu; Koh, Yee Kan; Chiritescu, Catalin; Zheng, Xuan; Cahill, David G

    2008-11-01

    We describe a simple approach for rejecting unwanted scattered light in two types of time-resolved pump-probe measurements, time-domain thermoreflectance (TDTR) and time-resolved incoherent anti-Stokes Raman scattering (TRIARS). Sharp edged optical filters are used to create spectrally distinct pump and probe beams from the broad spectral output of a femtosecond Ti:sapphire laser oscillator. For TDTR, the diffusely scattered pump light is then blocked by a third optical filter. For TRIARS, depolarized scattering created by the pump is shifted in frequency by approximately 250 cm(-1) relative to the polarized scattering created by the probe; therefore, spectral features created by the pump and probe scattering can be easily distinguished.

  3. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    International Nuclear Information System (INIS)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-01-01

    Miniature ( 3 ) vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm 3 as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm 3 volume) test setup based on the M z magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors

  4. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  5. Progress in Ultrafast Intense Laser Science

    CERN Document Server

    Yamanouchi, Kaoru; Li, Ruxin; Chin, See Leang

    2009-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This fourth volume covers a broad range of topics from this interdisciplinary research field, focusing on strong field ionization of atoms; excitation, ionization and fragmentation of molecules; nonlinear intense optical phenomena and attosecond pulses; and laser - solid interactions and photoemission.

  6. Spin-controlled ultrafast vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Höpfner, Henning; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.

    2014-05-01

    Spin-controlled semiconductor lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. In particular, spin-controlled vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. Most important, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. We present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers by the relaxation oscillation frequency and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than these. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future. Different aspects of the spin and polarization dynamics, its connection to birefringence and bistability in the cavity, controlled switching of the oscillations, and the limitations of this novel approach will be analysed theoretically and experimentally for spin-polarized VCSELs at room temperature.

  7. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  8. Ultrafast photocurrents in monolayer MoS2

    Science.gov (United States)

    Parzinger, Eric; Wurstbauer, Ursula; Holleitner, Alexander W.

    Two-dimensional transition metal dichalcogenides such as MoS2 have emerged as interesting materials for optoelectronic devices. In particular, the ultrafast dynamics and lifetimes of photoexcited charge carriers have attracted great interest during the last years. We investigate the photocurrent response of monolayer MoS2 on a picosecond time scale utilizing a recently developed pump-probe spectroscopy technique based on coplanar striplines. We discuss the ultrafast dynamics within MoS2 including photo-thermoelectric currents and the impact of built-in fields due to Schottky barriers as well as the Fermi level pinning at the contact region. We acknowledge support by the ERC via Project 'NanoREAL', the DFG via excellence cluster 'Nanosystems Initiative Munich' (NIM), and through the TUM International Graduate School of Science and Engineering (IGSSE) and BaCaTeC.

  9. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution.

    Science.gov (United States)

    Papagiannakis, Emmanouil; Vengris, Mikas; Larsen, Delmar S; van Stokkum, Ivo H M; Hiller, Roger G; van Grondelle, Rienk

    2006-01-12

    Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited S2 state populates two excited states, the S1 and the intramolecular charge-transfer (ICT) state, at a ratio determined by the excitation wavelength. The ensuing spectral evolution occurs on the time scale of a few picoseconds and suggests the equilibration of these states. Dumping the stimulated emission of the ICT state with an additional 800-nm pulse after 400- and 530-nm excitation preferentially removes the ICT state contribution from the broad excited-state absorption, allowing for its spectral characterization. At the same time, an unrelaxed ground-state species, which has a subpicosecond lifetime, is populated. The application of the 800-nm pulse at early times, when the S2 state is still populated, led to direct generation of the peridinin cation, observed for the first time in a transient absorption experiment. The excited and ground electronic states manifold of peridinin has been reconstructed using target analysis; this approach combined with the measured multipulse spectroscopic data allows us to estimate the spectra and time scales of the corresponding transient states.

  10. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  11. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  12. Research and development on optically pumped polarized ion sources. Technical progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1985-07-01

    During the past year we have studied the relaxation times in an optically pumped 23 Na vapor target, studied the effects of radiation trapping on the polarization in a Na vapor target, and have studied the effects of spin exchange collisions on a beam of fast H 0 atoms as they pass through a polarized alkali target. This research is directed toward improvements in the optically pumped Na or other alkali vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source as well as discussing the progress of our research on optically pumped Na or other alkali vapor targets. 81 refs., 9 figs

  13. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    Science.gov (United States)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  14. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03

    Miniature (optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  15. Optical pumping of hot phonons in GaAs

    International Nuclear Information System (INIS)

    Collins, C.L.; Yu, P.Y.

    1982-01-01

    Optical pumping of hot LO phonons in GaAs has been studied as a function of the excitation photon frequency. The experimental results are in good agreement with a model calculation which includes both inter- and intra-valley electron-phonon scatterings. The GAMMA-L and GAMMA-X intervalley electron-phonon interactions in GaAs have been estimated

  16. Progress in ultrafast intense laser science XI

    CERN Document Server

    Yamanouchi, Kaoru; Martin, Philippe

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  17. Progress in Ultrafast Intense Laser Science II

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2007-01-01

    This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Its progress is being stimulated by the recent development of ultrafast laser technologies. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields and the texts are written at a level accessible to newcomers and graduate students, each chapter beginning with an introductory overview.

  18. Hybrid optical pumping of K and Rb atoms in a paraffin coated vapor cell

    Science.gov (United States)

    Li, Wenhao; Peng, Xiang; Budker, Dmitry; Wickenbrock, Arne; Pang, Bo; Zhang, Rui; Guo, Hong

    2017-10-01

    Dynamic hybrid optical pumping effects with a radio-frequency-field-driven nonlinear magneto-optical rotation (RF NMOR) scheme are studied in a dual-species paraffin coated vapor cell. By pumping K atoms and probing $^{87}$Rb atoms, we achieve an intrinsic magnetic resonance linewidth of 3 Hz and the observed resonance is immune to power broadening and light-shift effects. Such operation scheme shows favorable prospects for atomic magnetometry applications.

  19. Self-organized plasmonic metasurfaces for all-optical modulation

    Science.gov (United States)

    Della Valle, G.; Polli, D.; Biagioni, P.; Martella, C.; Giordano, M. C.; Finazzi, M.; Longhi, S.; Duò, L.; Cerullo, G.; Buatier de Mongeot, F.

    2015-06-01

    We experimentally demonstrate a self-organized metasurface with a polarization dependent transmittance that can be dynamically controlled by optical means. The configuration consists of tightly packed plasmonic nanowires with a large dispersion of width and height produced by the defocused ion-beam sputtering of a thin gold film supported on a silica glass. Our results are quantitatively interpreted according to a theoretical model based on the thermomodulational nonlinearity of gold and a finite-element numerical analysis of the absorption and scattering cross-sections of the nanowires. We found that the polarization sensitivity of the metasurface can be strongly enhanced by pumping with ultrashort laser pulses, leading to potential applications in ultrafast all-optical modulation and switching of light.

  20. Microsecond pulsed optical parametric oscillator pumped by a Q-switched fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Adel, P.; Auerbach, M.; Fallnich, C.; Gross, P.; Boller, Klaus J.

    2003-01-01

    We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-ms-long pulses from an actively Q-switched

  1. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    Science.gov (United States)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  2. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  3. Self-pumped optical phase conjugation and light oscillation in Fe doped KNbO 3

    Science.gov (United States)

    Medrano, C.; Ingold, M.; Günter, P.

    1990-07-01

    We report different experiments on self-pumped phase conjugation in iron doped KNbO 3 crystals at room temperature. Self-pumped phase conjugate reflectivities of a linear cavity, an external ring mirror and a configuration where no external optical elements are required have been measured. Using the passive ring resonator a reflectivity of 30% of a self-pumped phase conjugate mirror has been measured at room temperature. In the configuration requiring no external optical elements besides the KNbO 3 crystal a reflectivity of 12% has been measured. In degenerate four-wave mixing phase conjugate reflectivities of up to 270% have been observed in the diffusion recording mode.

  4. Optically controlled tunable dispersion compensators based on pumped fiber gratings.

    Science.gov (United States)

    Shu, Xuewen; Sugden, Kate; Bennion, Ian

    2011-08-01

    We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment. © 2011 Optical Society of America

  5. rf streak camera based ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  6. Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Dong, Daoyi; Petersen, Ian R.

    2017-01-01

    optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating...... nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in multilevel quantum...... systems. To that end, a multiobjective optimization algorithm is developed to find an optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical responses while maximizing the probability of single-photon absorption between quantum states. This work...

  7. Update on The Ultra-Fast Flash Observatory (UFFO) Pathfinder

    DEFF Research Database (Denmark)

    Grossan, B.; Brandt, Søren; Budtz-Jørgensen, Carl

    2011-01-01

    The Ultra-Fast Flash Observatory (UFFO) uses an X/gamma and an optical/UV instrument to observe gamma-ray bursts (GRB) starting milliseconds after burst trigger and location. The X/gamma instrument, a standard coded-mask camera, locates the GRB and triggers the system. The optical/UV instrument, ...

  8. Microwave-controlled ultrafast synthesis of uniform silver nanocubes and nanowires

    Science.gov (United States)

    Zhao, Tian; Fan, Jun-Bing; Cui, Jing; Liu, Jin-Hua; Xu, Xiao-Bo; Zhu, Ming-Qiang

    2011-01-01

    Synthesis of well-defined silver nanostructure in terms of size and shape has been strongly motivated by the requirements to their size- and shape-dependent optical properties which achieve their practical applications ranging from biosensing to catalysis and optics. In this Letter, an ultrafast synthetic process for the well-defined Ag nanocubes and nanowires have been developed, which simply involve the microwave-mediated polyol reduction of silver nitrate in ethylene glycol by adding different amount sodium sulfide (Na2S) into the solution. The possible growth and evolution process of the Ag nanocubes and nanowires involves the microwave ultrafast nucleation and growth followed by oxidative etching of Ag nanocrystals.

  9. Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle.

    Science.gov (United States)

    Serebryannikov, E E; Zheltikov, A M

    2014-07-25

    Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.

  10. 200 ps FWHM and 100 MHz repetition rate ultrafast gated camera for optical medical functional imaging

    Science.gov (United States)

    Uhring, Wilfried; Poulet, Patrick; Hanselmann, Walter; Glazenborg, René; Zint, Virginie; Nouizi, Farouk; Dubois, Benoit; Hirschi, Werner

    2012-04-01

    The paper describes the realization of a complete optical imaging device to clinical applications like brain functional imaging by time-resolved, spectroscopic diffuse optical tomography. The entire instrument is assembled in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The resulting light pulses, at four wavelengths, are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera; there are resolved according to their time of flight inside the head. The very core of the intensified camera system is the image intensifier tube and its associated electrical pulse generator. The ultrafast generator produces 50 V pulses, at a repetition rate of 100 MHz and a width corresponding to the 200 ps requested gate. The photocathode and the Micro-Channel-Plate of the intensifier have been specially designed to enhance the electromagnetic wave propagation and reduce the power loss and heat that are prejudicial to the quality of the image. The whole instrumentation system is controlled by an FPGA based module. The timing of the light pulses and the photocathode gating is precisely adjustable with a step of 9 ps. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications.

  11. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  12. A high field optical-pumping spin-exchange polarized deuterium source

    International Nuclear Information System (INIS)

    Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Poelker, M.; Potterveld, D.H.; Young, L.; Zeidman, B.; Toporkov, D.

    1992-01-01

    Recent results from a prototype high field optical-pumping spin-exchange polarized deuterium source are presented. Atomic polarization as high as 62% have been observed with an intensity of 6.3 x 10 17 atoms-sec -1 and 65% dissociation fraction

  13. Polarised two-photon excitation of quantum well excitons for manipulation of optically pumped terahertz lasers

    Energy Technology Data Exchange (ETDEWEB)

    Slavcheva, G., E-mail: gsk23@bath.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Kavokin, A.V., E-mail: A.Kavokin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Spin Optics Laboratory, St. Petersburg State University, 1, Ulyanovskaya 198504 (Russian Federation)

    2014-11-15

    Optical pumping of excited exciton states in a semiconductor quantum well embedded in a microcavity is a tool for realisation of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarisation of both pumping photons. Five-fold variation of the threshold power for terahertz lasing by switching from circular to co-linear pumping is predicted. We identify photon polarisation configurations for achieving maximum THz photon generation quantum efficiency.

  14. Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements.

    Science.gov (United States)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Yang; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-20

    A shock wave (SW) is characterized as a large pressure fluctuation that typically lasts only a few milliseconds. On the battlefield, SWs pose a serious threat to soldiers who are exposed to explosions, which may lead to blast-induced traumatic brain injuries. SWs can also be used beneficially and have been applied to a variety of medical treatments due to their unique interaction with tissues and cells. Consequently, it is important to have sensors that can quantify SW dynamics in order to better understand the physical interaction between body tissue and the incident acoustic wave. In this paper, the ultrafast fiber-optic sensor based on the Fabry-Perot interferometric principle was designed and four such sensors were fabricated to quantify a blast event within different media, simultaneously. The compact design of the fiber-optic sensor allows for a high degree of spatial resolution when capturing the wavefront of the traveling SW. Several blast event experiments were conducted within different media (e.g., air, rubber membrane, and water) to evaluate the sensor's performance. This research revealed valuable knowledge for further study of SW behavior and SW-related applications.

  15. Ultrafast excited and ground-state dynamics of the green fluorescent protein chromophore in solution

    NARCIS (Netherlands)

    Vengris, M.; van Stokkum, I.H.M.; He, X.; Bell, A.F.; Tonge, P.J.; van Grondelle, R.; Larsen, D.S.

    2004-01-01

    Ultrafast dispersed pump-dump-probe spectroscopy was applied to HBDI (4′-hydroxybenzylidene-2,3-dimethylimidazolinone), a model green fluorescent protein (GFP) chromophore in solution with different protonation states. The measured three-dimensional data was analyzed using a global analysis method

  16. Ultrafast lattice dynamics in photoexcited nanostructures. Femtosecond X-ray diffraction with optimized evaluation schemes

    International Nuclear Information System (INIS)

    Schick, Daniel

    2013-01-01

    Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO 3 . Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO 3 . This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO 3 . In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the

  17. Ultrafast Control of Magnetism in Ferromagnetic Semiconductors via Photoexcited Transient Carriers

    Energy Technology Data Exchange (ETDEWEB)

    Cotoros, Ingrid A. [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The field of spintronics offers perspectives for seamless integration of coupled and inter-tunable electrical and magnetic properties in a single device. For integration of the spin degree of freedom with current electronic technology, new semiconductors are needed that show electrically-tunable magnetic properties at room temperature and above. Dilute magnetic semiconductors derived from III-V compounds, like GaMnAs and InMnAs, show coupled and tunable magnetic, transport, and optical properties, due to the fact that their ferromagnetism is hole-mediated. These unconventional materials are ideal systems for manipulating the magnetic order by changing the carrier polarization, population density, and energy band distribution of the complementary subsystem of holes. This is the main theme we cover in this thesis. In particular, we develop a unique setup by use of ultraviolet pump, near-infrared probe femtosecond laser pulses, that allows for magneto-optical Kerr effect (MOKE) spectroscopy experiments. We photo-excite transient carriers in our samples, and measure the induced transient magnetization dynamics. One set of experiments performed allowed us to observe for the first time enhancement of the ferromagnetic order in GaMnAs, on an ultrafast time scale of hundreds of picoseconds. The corresponding transient increase of Curie temperature (Tc, the temperature above which a ferromagnetic material loses its permanent magnetism) of about 1 K for our experimental conditions is a very promising result for potential spintronics applications, especially since it is seconded by observation of an ultrafast ferromagnetic to paramagnetic phase transition above Tc. In a different set of experiments, we "write" the magnetization in a particular orientation in the sample plane. Using an ultrafast scheme, we alter the distribution of holes in the system and detect signatures of the particular memory state in the subsequent magnetization dynamics, with unprecedented hundreds of

  18. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  19. Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2013-01-01

    In this letter we present an intracavity pumped continuous wave (CW) doubly resonant optical parametric oscillator (OPO) based on Cr 3+ :LiCaAlF 6 (Cr:LiCAF) as the material generating the OPO pump wave and periodically poled stoichiometric lithium tantalate (PPSLT) as the nonlinear material. The OPO pump wave is spectrally narrowed and tuned by means of an external cavity, thus allowing self-injection locking of the OPO pump wavelength. When operated near degeneracy, the constructed OPO enables a fast tuning of the parametrically generated wavelengths in response to small perturbations of the phase-matching condition. The Cr:LiCAF emission band is especially well suited to provide dual-wavelength oscillation in the optical communications 1550 nm band as a result of the parametric oscillation in PPSLT. (letter)

  20. All-optical signal processing using InP photonic-crystal nanocavity switches

    DEFF Research Database (Denmark)

    Yu, Yi; Vukovic, Dragana; Heuck, Mikkel

    2014-01-01

    In this paper, we present recent progress in experimental characterization of InP photonic-crystal nanocavity switches. Pump-probe measurements on an InP PhC H0 cavity show large-contrast ultrafast switching at low pulse energy. At large pulse energies, a large resonance shift passing across...... for the joint effects of fast carrier diffusion, slow surface and bulk recombination. Utilizin g the simple InP PhC nanocavity structure, we successfully dem onstrate 10-Gb/s RZ- OOK all-optical modulation with low energy consumption....

  1. Coherent combination of ultrafast fiber amplifiers

    International Nuclear Information System (INIS)

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N

    2016-01-01

    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  2. Packaging of high-power bars for optical pumping and direct applications

    Science.gov (United States)

    Heinemann, Stefan; An, Haiyan; Barnowski, Tobias; Jiang, John; Negoita, Viorel; Roff, Robert; Vethake, Thilo; Boucke, Konstantin; Treusch, Georg

    2015-03-01

    Continuous cost reduction, improved reliability and modular platform guide the design of our next generation heatsink and packaging process. Power scaling from a single device effectively lowers the cost, while electrical insulation of the heatsink, low junction temperature and hard solder enable high reliability. We report on the latest results for scaling the output power of bars for optical pumping and materials processing. The epitaxial design and geometric structures are specific for the application, while packaging with minimum thermal impedance, low stress and low smile are generic features. The isolated heatsink shows a thermal impedance of 0.2 K/W and the maximum output power is limited by the requirement of a junction temperature of less than 68oC for high reliability. Low contact impedance are addressed for drive currents of 300 A. For pumping applications, bars with a fill factor of 60% are deployed emitting more than 300 W of output power with an efficiency of about 55% and 8 bars are arranged in a compact pump module emitting 2 kW of collimated power suitable for pumping disk lasers. For direct applications we target coupling kilowatts of output powers into fibers of 100 μm diameter with 0.1 NA based on dense wavelength multiplexing. Low fill factor bars with large optical waveguide and specialized coating also emit 300 W.

  3. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  4. Performance of continuous wave and acousto-optically Q-switched Tm, Ho: YAP laser pumped by diode laser

    Science.gov (United States)

    Li, Guoxing; Xie, Wenqiang; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang

    2018-02-01

    A two-end-pumped a-cut Tm(0.5%), Ho(0.5%):YAP laser output at 2119nm is reported under cryogenic temperature. The maximum output power reached to 7.76W with the incident pump power of 24.2W in CW mode. With the acousto-optically Q-switch, an average power of 7.3W can be obtained, when the pulse repetition frequency was 7.5 kHz. The corresponding optical-to-optical conversion efficiency was 30.2% and the slope efficiency was 31.4%. Then, the laser output characteristics in the repetition frequency of 7.5 kHz and 10kHz were researched. The output power, the optical-to-optical conversion efficiency and slope efficiency were increased with the increase of the repetition frequency. In the same repetition frequency, the pulse duration was decreasing with the growth of the incident pump power.

  5. Soliton-effect generation of Raman pulses in optical fibers with slowly decreasing dispersion

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    We suggested that single-mode fibers with slowly decreasing dispersion (FSDD) should be used for the generation of tunable ultrashort RAman pulses. A mathematical model is obtained for the description of ultrafast stimulated Raman scattering in optical fibers with slowly decreasing dispersion. Numerical simulations show that, under identical pump conditions, Raman pulse generated from this kind of fiber is shorter with a higher peak power than that generated from conventional fibers. This means that the Raman threshold of fibers with slowly decreasing dispersion may be lower than that of conventional fibers. Given pump conditions, we found that the highest peak power and narrowest width of the Raman pulse correspond to an optimal decrement velocity of the fiber dispersion

  6. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity

  7. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....

  8. Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes

    Energy Technology Data Exchange (ETDEWEB)

    Benayas, A.; Jaque, D. [Universidad Autonoma de Madrid, Departamento de Fisica de Materiales, Madrid (Spain); Silva, W.F.; Jacinto, C. [Universidade Federal de Alagoas, Grupo de Fotonica e Fluidos Complexos, Instituto de Fisica, Maceio, Alagoas (Brazil); Rodenas, A.; Thomsom, R.R.; Psaila, N.D.; Reid, D.T.; Kar, A.K. [Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh (United Kingdom); Vazquez de Aldana, J. [Universidad de Salamanca, Grupo de Optica, Departamento de Fisica Aplicada, Facultad de Ciencias Fisicas, Salamanca (Spain); Chen, F.; Tan, Y. [Shandong University, School of Physics, Jinan (China); Torchia, G.A. [CONICET-CIC, Centro de Investigaciones Opticas, La Plata (Argentina)

    2011-07-15

    We report the improvement of ultrafast laser written optical waveguides in Yb:YAG ceramics by tailoring the presence of heat accumulation effects. From a combination of ytterbium micro-luminescence and micro-Raman structural analysis, maps of lattice defects and stress fields have been obtained. We show how laser annealing can strongly reduce the concentration of defects and also reduce compressive stress, leading to an effective 50% reduction in the propagation losses and to more extended and symmetric propagation modes. (orig.)

  9. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  10. Ultrafast transient-absorption of the solvated electron in water

    International Nuclear Information System (INIS)

    Kimura, Y.; Alfano, J.C.; Walhout, P.K.; Barbara, P.F.

    1994-01-01

    Ultrafast near infrared (NIR)-pump/variable wavelength probe transient-absorption spectroscopy has been performed on the aqueous solvated electron. The photodynamics of the solvated electron excited to its p-state are qualitatively similar to previous measurements of the dynamics of photoinjected electrons at high energy. This result confirms the previous interpretation of photoinjected electron dynamics as having a rate-limiting bottleneck at low energies presumably involving the p-state

  11. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  12. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  13. State-Resolved Metal Nanoparticle Dynamics Viewed through the Combined Lenses of Ultrafast and Magneto-optical Spectroscopies.

    Science.gov (United States)

    Zhao, Tian; Herbert, Patrick J; Zheng, Hongjun; Knappenberger, Kenneth L

    2018-05-08

    Electronic carrier dynamics play pivotal roles in the functional properties of nanomaterials. For colloidal metals, the mechanisms and influences of these dynamics are structure dependent. The coherent carrier dynamics of collective plasmon modes for nanoparticles (approximately 2 nm and larger) determine optical amplification factors that are important to applied spectroscopy techniques. In the nanocluster domain (sub-2 nm), carrier coupling to vibrational modes affects photoluminescence yields. The performance of photocatalytic materials featuring both nanoparticles and nanoclusters also depends on the relaxation dynamics of nonequilibrium charge carriers. The challenges for developing comprehensive descriptions of carrier dynamics spanning both domains are multifold. Plasmon coherences are short-lived, persisting for only tens of femtoseconds. Nanoclusters exhibit discrete carrier dynamics that can persist for microseconds in some cases. On this time scale, many state-dependent processes, including vibrational relaxation, charge transfer, and spin conversion, affect carrier dynamics in ways that are nonscalable but, rather, structure specific. Hence, state-resolved spectroscopy methods are needed for understanding carrier dynamics in the nanocluster domain. Based on these considerations, a detailed understanding of structure-dependent carrier dynamics across length scales requires an appropriate combination of spectroscopic methods. Plasmon mode-specific dynamics can be obtained through ultrafast correlated light and electron microscopy (UCLEM), which pairs interferometric nonlinear optical (INLO) with electron imaging methods. INLO yields nanostructure spectral resonance responses, which capture the system's homogeneous line width and coherence dynamics. State-resolved nanocluster dynamics can be obtained by pairing ultrafast with magnetic-optical spectroscopy methods. In particular, variable-temperature variable-field (VTVH) spectroscopies allow quantification

  14. Shaping of picosecond pulses for pumping optical parametric amplification

    International Nuclear Information System (INIS)

    Fueloep, J.A.; Krausz, F.; Major, Zs.; Horvath, B.

    2006-01-01

    Complete test of publication follows. The use of temporally shaped pump pulses for optical parametric amplification (OPA) is expected to facilitate an increase of efficiency and suppression of possible spectral distortions in this process, since the gain sensitively depends on the pump intensity. Our simulations confirmed such beneficial effect of temporally shaped pump pulses on the OPA process. With the aim to realize an optimized OPA stage pumped by shaped pulses, a novel method for passively shaping narrow band picosecond pulses has been developed. The method is based on the pulse-stacking principle, where replicas of the incoming pulse are created in a specially designed four-beam interferometer. The replicas are recombined with appropriate delays. The interferometer design allows for a unique flexibility in varying the pulse shape, since all relevant degrees of freedom, such as relative intensities and delays between the pulse replicas are independently adjustable. According to our calculations a pulse with a flat-top time profile would provide optimal conditions in the OPA process. Usually the pump pulse needs to be amplified in a conventional laser amplifier prior to the OPA. Our cross-correlation measurements showed that we are able to obtain shaped amplified pulses by shaping the amplifier input. Furthermore, by precompensating the distortions introduced by the amplifier we demonstrated our capability to produce amplified pulses with a flat-top time profile.

  15. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Directory of Open Access Journals (Sweden)

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  16. Optically pumped semiconductor lasers for atomic and molecular physics

    Science.gov (United States)

    Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.

    2015-03-01

    Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics.

  17. Optical system design of a speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed second harmonic generation from a TZDW source

    Science.gov (United States)

    Yao, Yuhong; Knox, Wayne H.

    2015-03-01

    We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.

  18. Magnetic-field-induced crossover from the inverse Faraday effect to the optical orientation in EuTe

    Science.gov (United States)

    Pavlov, V. V.; Pisarev, R. V.; Nefedov, S. G.; Akimov, I. A.; Yakovlev, D. R.; Bayer, M.; Henriques, A. B.; Rappl, P. H. O.; Abramof, E.

    2018-05-01

    A time-resolved optical pump-probe technique has been applied for studying the ultrafast dynamics in the magnetic semiconductor EuTe near the absorption band gap. We show that application of external magnetic field up to 6 T results in crossover from the inverse Faraday effect taking place on the femtosecond time scale to the optical orientation phenomenon with an evolution in the picosecond time domain. We propose a model which includes both these processes, possessing different spectral and temporal properties. The circularly polarized optical pumping induces the electronic transition 4 f 7 5 d 0 → 4 f 6 5 d 1 forming the absorption band gap in EuTe. The observed crossover is related to a strong magnetic-field shift of the band gap in EuTe at low temperatures. It was found that manipulation of spin states on intrinsic defect levels takes place on a time scale of 19 ps in the applied magnetic field of 6 T.

  19. Ultrafast signal processing in quantum dot amplifiers through effective spectral holeburning

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper; Uskov, A. V.

    2002-01-01

    suitable for ultrafast signal processing. The basis of this property is that the process of spectral hole burning (SHB) can become very effective. We consider a traveling wave optical amplifier consisting of the dot states, which interact with the optical signal (no inhomogeneous broadening included...

  20. Ultrafast optics. Ultrafast optical control by few photons in engineered fiber.

    Science.gov (United States)

    Nissim, R; Pejkic, A; Myslivets, E; Kuo, B P; Alic, N; Radic, S

    2014-07-25

    Fast control of a strong optical beam by a few photons is an outstanding challenge that limits the performance of quantum sensors and optical processing devices. We report that a fast and efficient optical gate can be realized in an optical fiber that has been engineered with molecular-scale accuracy. Highly efficient, distributed phase-matched photon-photon interaction was achieved in the fiber with locally controlled, nanometer-scale core variations. A three-photon input was used to manipulate a Watt-scale beam at a speed exceeding 500 gigahertz. In addition to very fast beam control, the results provide a path to developing a new class of sensitive receivers capable of operating at very high rates. Copyright © 2014, American Association for the Advancement of Science.

  1. Prospects for a deuterium internal target, tensor polarized by optical pumping: spin exchange

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    The prospects for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) appropriate for nuclear physics studies in medium and high energy particle storage rings are discussed. Using the technique of electron spin exchange with an optically pumped sodium (or potassium) vapor, we hope to polarize deuterium at a rate approx. 10 17 atoms/sec. Predictions for the deuterium polarization for a particular target cell design will be presented leading to the identification of the required optical pumping power and cell wall depolarization probability to attain optimum performance. The technical obstacles to be surmounted in such a target design will also be discussed

  2. Wall relaxation rates for an optically pumped NA vapor

    International Nuclear Information System (INIS)

    Swenson, D.R.; Anderson, L.W.

    1986-01-01

    The wall relaxation rates for an optically pumped Na vapor have been measured for a variety of wall surfaces. We find that fluorocarbon rubber (Fluorel, Viton) and organosilicones (silicone rubber, dry film) at a temperature of 250 C have respectively relaxation rates that correspond on the average to 10 to 15 and 200 to 500 bounces before depolarization occurs. 7 refs., 3 figs

  3. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    Directory of Open Access Journals (Sweden)

    L. van Rensburg

    2010-01-01

    Full Text Available Measurements of ultrafast transient processes, of temporal durations in the picosecond and femtosecond regime, are made possible by femtosecond pump probe transient absorption spectroscopy. Such an ultrafast pump probe transient absorption setup has been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper we report on our first results obtained with Malachite green as a benchmark. Malachite green was chosen because the lifetime of its excited state is well known. We also present experimental results of the ultrafast energy transfer of light-harvesting complexes in samples prepared from spinach leaves. Various pump wavelengths in the range 600–680 nm were used; the probe was a white light continuum spanning 420–700 nm. The experimental setup is described in detail in this paper. Results obtained with these samples are consistent with those expected and achieved by other researchers in this field.

  4. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.

    2015-10-12

    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  5. A nonlinear plasmonic waveguide based all-optical bidirectional switching

    Science.gov (United States)

    Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong

    2018-01-01

    In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.

  6. Fiber Laser Pumped Continuous-wave Singly-resonant Optical Parametric Oscillator

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.; Fejer, Martin M.

    2002-01-01

    We report on the first fiber-pumped CW LiNbO/sub 3/ optical parametric oscillator (OPO). The OPO is singly resonant (SRO) and generates idler wavelengths in the range of 3.0 /spl mu/m to 3.7 /spl mu/m with a maximum output power of 1.9 watt.

  7. Ultrafast magnetodynamics with free-electron lasers

    Science.gov (United States)

    Malvestuto, Marco; Ciprian, Roberta; Caretta, Antonio; Casarin, Barbara; Parmigiani, Fulvio

    2018-02-01

    The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.

  8. High-power extended cavity laser optimized for optical pumping ot Rb

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Číp, Ondřej; Lazar, Josef

    2007-01-01

    Roč. 18, č. 9 (2007), N77-N80 ISSN 0957-0233 R&D Pro jects: GA ČR GA102/04/2109; GA MŠk(CZ) LC06007; GA AV ČR IAA200650504; GA AV ČR IAA1065303 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser diode * emission linewidth * diffraction grating * optical pumping * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.297, year: 2007

  9. Ultrafast nonlinear optical processes in metal-dielectric nanocomposites and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Hyon

    2012-04-13

    This work reports results of a theoretical study of nonlinear optical processes in metal-dielectric nanocomposites used for the increase of the nonlinear coefficients and for plasmonic field enhancement. The main results include the study of the transient saturable nonlinearity in dielectric composites doped with metal nanoparticles, its physical mechanism as well its applications in nonlinear optics. For the study of the transient response, a time-depending equation for the dielectric function of the nanocomposite using the semi-classical two-temperature model is derived. By using this approach, we study the transient nonlinear characteristics of these materials in comparison with preceding experimental measurements. The results show that these materials behave as efficient saturable absorbers for passive mode-locking of lasers in the spectral range from the visible to near IR. We present results for the modelocked dynamics in short-wavelength solid-state and semiconductor disk lasers; in this spectral range other efficient saturable absorbers do not exist. We suggest a new mechanism for the realization of slow light phenomenon by using glasses doped with metal nanoparticles in a pump-probe regime near the plasmonic resonance. Furthermore, we study femtosecond plasmon generation by mode-locked surface plasmon polariton lasers with Bragg reflectors and metal-gain-absorber layered structures. In the final part of the thesis, we present results for high-order harmonic generation near a metallic fractal rough surface. The results show a possible reduction of the pump intensities by three orders of magnitudes and two orders of magnitudes higher efficiency compared with preceding experimental results by using bow-tie nanostructures.

  10. Frequency-resolved pump-probe characterization of femtosecond infrared pulses

    NARCIS (Netherlands)

    Yeremenko, S.; Baltuška, A.; Haan, F. de; Pshenichnikov, M.S.; Wiersma, D.A.

    2002-01-01

    A novel method for ultrashort IR pulse characterization is presented. The technique utilizes a frequency-resolved pump-probe geometry that is common in applications of ultrafast spectroscopy, without any modifications of the setup. The experimental demonstration of the method was carried out to

  11. Applications and Optimization of Optical Time Lenses based on Four-Wave Mixing in Highly Nonlinear Fibre

    DEFF Research Database (Denmark)

    Lillieholm, Mads

    2017-01-01

    Optical Fourier transformations enabled by the versatile time lens (quadratic phase modulator), have been demonstrated for numerous optical signal processing applications. Applications include ultrafast optical oscilloscopes, high resolution spectralanalysers, and the processing of ultrahigh......-speed communication signals, to enable e.g. such varied applications as phase regeneration for wavelength-division multiplexing (WDM) signals, conversion between spectrally efficient formats and receivers with reduced complexity for advanced optical multiplexing formats. Four-wave mixing (FWM) is showing promise...... of HNLF for different applications, and to a novel generic method based on only two tunable CW lasers, which allows for accurate prediction of the FWM performance in HNLF with chirped pump pulses.Then, a composite dispersion-flattened HNLF (DF-HNLF) is proposed and assembled to mitigate the effects...

  12. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    Science.gov (United States)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  13. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@sci.lebedev.ru; Makarov, S. V.; Rudenko, A. A. [Lebedev Physical Institute (Russian Federation); Saltuganov, P. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A. [Lebedev Physical Institute (Russian Federation); Apostolova, T. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energetics (Bulgaria)

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  14. Ultrafast dynamics in CeTe{sub 3} near the pressure-induced charge-density-wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Tauch, Jonas; Obergfell, Manuel [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Schaefer, Hanjo [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Demsar, Jure [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Institute of Physics, Johannes Gutenberg-University Mainz (Germany); Giraldo, Paula; Fisher, Ian R. [Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University (United States); Pashkin, Alexej [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2015-07-01

    Femtosecond pump-probe spectroscopy is an efficient tool for studying ultrafast dynamics in strongly correlated electronic systems, in particular, compounds with a charge-density-wave (CDW) order. Application of external pressure often leads to a suppression of a CDW state due to an impairment of the Fermi surface nesting. We combine time-resolved optical spectroscopy and diamond anvil cell technology to study electron and lattice dynamics in tri-telluride compound CeTe{sub 3}. Around pressures of 4 GPa we observe a gradual vanishing of the relaxation process related to the recombination of the photoexcited quasiparticles. The coherent oscillations of the phonon modes coupled to the CDW order parameter demonstrate even more dramatic suppression with increasing pressure. These observations clearly indicate a transition into the metallic state of CeTe{sub 3} induced by the external pressure.

  15. Perspective: Ultrafast magnetism and THz spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Walowski, Jakob; Münzenberg, Markus [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2016-10-14

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  16. Perspective: Ultrafast magnetism and THz spintronics

    International Nuclear Information System (INIS)

    Walowski, Jakob; Münzenberg, Markus

    2016-01-01

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  17. An atom trap relying on optical pumping

    International Nuclear Information System (INIS)

    Bouyer, P.; Lemonde, P.; Ben Dahan, M.; Michaud, A.; Salomon, C.; Dalibard, J.

    1994-01-01

    We have investigated a new radiation pressure trap which relies on optical pumping and does not require any magnetic field. It employs six circularly polarized divergent beams and works on the red of a J g →J e = J g + 1 atomic transition with J g ≥1/2. We have demonstrated this trap with cesium atoms from a vapour cell using the 852 nm J g = 4→J e = 5 resonance transition. The trap contained up to 3.10 7 atoms in a cloud of 1/√e radius of 330 μm. (orig.)

  18. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    Science.gov (United States)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  19. Ultrafast photocurrents and terahertz radiation in gallium arsenide and carbon based nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Prechtel, Hans Leonhard

    2011-08-15

    In this thesis we developed a measurement technique based on a common pump-probe scheme and coplanar stripline circuits that enables time-resolved photocurrent measurements of contacted nanosystems with a micrometer spatial and a picosecond time resolution. The measurement technique was applied to lowtemperature grown gallium arsenide (LT-GaAs), carbon nanotubes (CNTs), graphene, and p-doped gallium arsenide (GaAs) nanowires. The various mechanisms responsible for the generation of current pulses by pulsed laser excitation were reviewed. Furthermore the propagation of the resulting electromagnetic radiation along a coplanar stripline circuit was theoretically and numerically treated. The ultrafast photocurrent response of low-temperature grown GaAs was investigated. We found two photocurrent pulses in the time-resolved response. We showed that the first pulse is consistent with a displacement current pulse. We interpreted the second pulse to result from a transport current process. We further determined the velocity of the photo-generated charge carriers to exceed the drift, thermal and quantum velocities of single charge carriers. Hereby, we interpreted the transport current pulse to stem from an electron-hole plasma excitation. We demonstrated that the photocurrent response of CNTs comprises an ultrafast displacement current and a transport current. The data suggested that the photocurrent is finally terminated by the recombination lifetime of the charge carriers. To the best of our knowledge, we presented in this thesis the first recombination lifetime measurements of contacted, suspended, CVD grown CNT networks. In addition, we studied the ultrafast photocurrent dynamics of freely suspended graphene contacted by metal electrodes. At the graphene-metal interface, we demonstrated that built-in electric fields give rise to a photocurrent with a full-width-half-maximum of a few picoseconds and that a photo-thermoelectric effect generates a current with a decay time

  20. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal

    2017-05-08

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  1. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  2. Ultra-Fast Flash Observatory for observation of early photons from gamma ray bursts

    DEFF Research Database (Denmark)

    Park, I. H.; Ahmad, S.; Barrillon, P.

    2012-01-01

    We describe the space project of Ultra-Fast Flash Observatory (UFFO) which will observe early optical photons from gamma-ray bursts (GRBs) with a sub-second optical response, for the first time. The UFFO will probe the early optical rise of GRBs, opening a completely new frontier in GRB and trans...

  3. Ultrafast quantum control of ionization dynamics in krypton.

    Science.gov (United States)

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  4. Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation

    Science.gov (United States)

    Rustagi, Avinash; Stanton, C. J.

    2016-11-01

    We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.

  5. Orientation of Ar(3P2) atoms by laser optical pumping

    International Nuclear Information System (INIS)

    Giberson, K.W.; Hart, M.W.; Hammond, M.S.; Dunning, F.B.; Walters, G.K.

    1984-01-01

    A beam of argon metastable atoms with a high degree of electron-spin polarization has been produced by optical pumping using an Oxazine 750 dye laser. The beam is suitable for the study of electron spin and orbital orientation dependences in a variety of collision processes

  6. RESEARCH OF THERMO-OPTICAL INHOMOGENEITIES IN Yb-Er GLASS AT DIODE PUMPING

    Directory of Open Access Journals (Sweden)

    V. Khramov

    2016-03-01

    Full Text Available Subject of Research. Investigation method of thermo-optical distortions in solid-state lasers was developed and presented. The method can be easily used for research of small diameter (approximately 2 mm active elements. Method. The experimental method described in this paper is based on the registration of deviation of the energy center of the probe beam passing through the thermally stressed active element. Main Results. We have presented experimental results of the thermal lens optical power research in the active element made of Yb-Er glass pumped transversely by a laser diode in the following modes: without generating, free-running and Q-switching. We have submitted obtained dependences of the optical power on the pumping energy. The measurements have been performed for the two polarization components at two wavelengths (632.8 nm and 1550 nm showing the absence of explicit astigmatism of the thermal lens. Practical Relevance. Knowledge of the thermal regime of such lasers gives the possibility for more precise calculation of the resonator parameters in terms of the thermal lens occurrence.

  7. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  8. Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mycek, M.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1995-12-01

    The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

  9. Diffraction contrast as a sensitive indicator of femtosecond sub-nanoscale motion in ultrafast transmission electron microscopy

    Science.gov (United States)

    Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.

    2013-09-01

    With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.

  10. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  11. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  12. Fundamentals of attosecond optics

    CERN Document Server

    Chang, Zenghu

    2011-01-01

    Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances th

  13. Development of an Ultrafast Scanning Tunneling Microscope for Dynamic Surface Studies

    National Research Council Canada - National Science Library

    Nunes

    1999-01-01

    .... The microscope has demonstrated atomic resolution. We have a femtosecond laser system, optics for delivering ultrafast laser pulses to the STM, and a computer controlled delay line for time-resolved measurements...

  14. Modeling of the gain distribution for diode pumping of a solid-state laser rod with nonimaging optics.

    Science.gov (United States)

    Koshel, R J; Walmsley, I A

    1993-03-20

    We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.

  15. Hot-electrons-induced ultrafast demagnitization in Co/Pt multilayers

    NARCIS (Netherlands)

    Bergeard, N.; Hehn, M.; Mangin, S.; Lengaigne, G.; Montaigne, F.; Lalieu, M. L. M.; Koopmans, B.; Malinowski, G.

    2016-01-01

    Using specially engineered structures to tailor the optical absorption in a metallic multilayer, we analyze the magnetization dynamics of a Co/Pt multilayer buried below a thick Cu layer. We demonstrate that hot electrons alone can very efficiently induce ultrafast demagnetization. Simulations based

  16. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    Science.gov (United States)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy

  17. The laser control system for the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Kadantsev, S.G.; Levy, C.D.P.; Mouat, M.M.

    1994-08-01

    The optically pumped polarized H - ion source at TRIUMF produces up to 100 μΑ dc of 78% polarized beam within an emittance of 1.0 π mm mrad and is now being prepared for an upcoming experiment at TRIUMF that will measure parity violation in pp scattering at 230 MeV. The optical pumping is accomplished by argon laser pumped Ti-sapphire lasers. The laser control system provides monitoring and precision control of the lasers for fast spin reversal up to 200 s -1 . To solve the problems of laser power and frequency stabilization during fast spin flipping, techniques and algorithms have been developed that significantly reduce the variation of laser frequency and power between spin states. The upgraded Faraday rotation system allows synchronous measurement of Rb thickness and polarization while spin flipping. The X Window environment provides both local and remote control to laser operators via a local area network and X window terminals. In this new environment issues such as access authorization, response time, operator interface consistency and ease of use are of particular importance. (author)

  18. Optical pumping of Rb by Ti:Sa laser and high-power laser diode

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Rychnovský, Jan; Lazar, Josef

    2006-01-01

    Roč. 8, č. 1 (2006), s. 350-354 ISSN 1454-4164 R&D Projects: GA AV ČR IAA1065303; GA ČR GA102/04/2109 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical pumping * Ti:Sa laser * laser diode * emission linewidth * spectroscopy * laser frequency stabilization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.106, year: 2006

  19. High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)

    Science.gov (United States)

    Yang, Chuan; Zhang, Haibin

    2017-03-01

    For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.

  20. High peak power THz source for ultrafast electron diffraction

    Directory of Open Access Journals (Sweden)

    Shengguang Liu

    2018-01-01

    Full Text Available Terahertz (THz science and technology have already become the research highlight at present. In this paper, we put forward a device setup to carry out ultrafast fundamental research. A photocathode RF gun generates electron bunches with ∼MeV energy, ∼ps bunch width and about 25pC charge. The electron bunches inject the designed wiggler, the coherent radiation at THz spectrum emits from these bunches and increases rapidly until the saturation at ∼MW within a short wiggler. THz pulses can be used as pump to stimulate an ultra-short excitation in some kind of sample. Those electron bunches out of wiggler can be handled into bunches with ∼1pC change, small beam spot and energy spread to be probe. Because the pump and probe comes from the same electron source, synchronization between pump and probe is inherent. The whole facility can be compacted on a tabletop.

  1. Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method

    International Nuclear Information System (INIS)

    Lee, W.T.; Tong Xin; Rich, Dennis; Liu Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee

    2009-01-01

    In recent years, polarized 3 He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3 He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3 He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3 He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3 He gas using the SEOP method.

  2. Observation of coherent optical phonons excited by femtosecond laser radiation in Sb films by ultrafast electron diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Ischenko, A. A. [Moscow Technological University, Institute of High Chemical Technologies (Russian Federation); Kochikov, I. V. [Moscow State University (Russian Federation); Misochko, O. V. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation); Chekalin, S. V.; Ryabov, E. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

    2017-03-15

    The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinations of these phonon modes in the Sb sample have also been experimentally observed.

  3. Investigating Optical Properties of One-Dimensional Photonic Crystals Containing Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Mahshid Mokhtarnejad

    2017-01-01

    Full Text Available This study examined MQWs made of InGaAs/GaAs, InAlAs/InP, and InGaAs/InP in terms of their band structure and reflectivity. We also demonstrated that the reflectivity of MQWs under normal incident was at maximum, while both using a strong pump and changing incident angle reduced it. Reflectivity of the structure for a weak probe pulse depends on polarization, intensity of the pump pulse, and delay between the probe pulse and the pump pulse. So this system can be used as an ultrafast all-optical switch which is inspected by the transfer matrix method. After studying the band structure of the one-dimensional photonic crystal, the optical stark effect (OSE was considered on it. Due to the OSE on virtual exciton levels, the switching time can be in the order of picoseconds. Moreover, it is demonstrated that, by introducing errors in width of barrier and well as well as by inserting defect, the reflectivity is reduced. Thus, by employing the mechanism of stark effect MQWs band-gaps can be easily controlled which is useful in designing MWQ based optical switches and filters. By comparing the results, we observe that the reflectivity of MWQ containing 200 periods of InAlAs/InP quantum wells shows the maximum reflectivity of 96%.

  4. 110 GHz rapid, continous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser

    NARCIS (Netherlands)

    Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, Klaus J.

    2005-01-01

    A singly-resonant continuous-wave optical parametric oscillator (cw-OPO) pumped by a fiber-amplified diode laser is described. Tuning of the pump source allowed the OPO output to be tuned continuously, without mode-hops, over 110 GHz in 29 ms. Discontinuous pump tuning over 20 nm in the region of

  5. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  6. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  7. Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green's function analysis

    Science.gov (United States)

    Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard

    2012-03-01

    The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.

  8. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Science.gov (United States)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  9. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    International Nuclear Information System (INIS)

    Bracker, Allan S; Gammon, Daniel; Korenev, Vladimir L

    2008-01-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

  10. Ultrafast excited state relaxation in long-chain polyenes

    International Nuclear Information System (INIS)

    Antognazza, Maria Rosa; Lueer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio

    2010-01-01

    Graphical abstract: Excited state dynamics of a long-chain polyene studied by femtosecond pump-probe spectroscopy. - Abstract: We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2 , followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  11. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Directory of Open Access Journals (Sweden)

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  12. Sun-pumped lasers: revisiting an old problem with nonimaging optics.

    Science.gov (United States)

    Cooke, D

    1992-12-20

    The techniques of nonimaging optics have permitted the production of a world-record intensity of sunlight, 72 W/mm(2), by using a sapphire concentrator. Such an intensity exceeds the intensity of light at the surface of the Sun itself (63 W/mm(2)) by 15% and may have useful applications in pumping lasers, which require high intensities of light to function. The author describes the production of high-intensity sunlight and reports its application in generating over 3 W of laser power from a 72.5-cm-diameter telescope mirror at an efficiency exceeding that typically attained in approaches not involving nonimaging optics.

  13. Highly Efficient Optical Pumping of Spin Defects in Silicon Carbide for Stimulated Microwave Emission

    Science.gov (United States)

    Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.

    2018-05-01

    We investigate the pump efficiency of silicon-vacancy-related spins in silicon carbide. For a crystal inserted into a microwave cavity with a resonance frequency of 9.4 GHz, the spin population inversion factor of 75 with the saturation optical pump power of about 350 mW is achieved at room temperature. At cryogenic temperature, the pump efficiency drastically increases, owing to an exceptionally long spin-lattice relaxation time exceeding one minute. Based on the experimental results, we find realistic conditions under which a silicon carbide maser can operate in continuous-wave mode and serve as a quantum microwave amplifier.

  14. Performance demonstration of a single-frequency optically-pumped cesium beam frequency standard for space applications

    Science.gov (United States)

    Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.

    2017-11-01

    Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.

  15. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers

    Science.gov (United States)

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.

    2017-01-01

    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies. PMID:28211471

  16. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  17. Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg

    2001-01-01

    Measurements of ultrafast gain recovery in self-assembled InAs quantum-dot (QD) amplifiers are explained by a comprehensive numerical model. The on excited state carriers are found to act as a reservoir for the optically active ground state carriers resulting in an ultrafast gain recovery as long...... as the excited state is well populated. However, when pulses are injected into the device at high-repetition frequencies, the response of a on amplifier is found to be limited by the wetting-layer dynamics....

  18. 9th International Symposium on Ultrafast Processes in Spectroscopy

    CERN Document Server

    Silvestri, S; Denardo, G

    1996-01-01

    This volume is a collection of papers presented at the Ninth International Symposium on "Ultrafast Processes in Spectroscopy" (UPS '95) held at the International Centre for Theo­ retical Physics (ICTP), Trieste (Italy), October 30 -November 3, 1995. These meetings have become recognized as the major forum in Europe for discussion of new work in this rapidly moving field. The UPS'95 Conference in Trieste brought together a multidisciplinary group of researchers sharing common interests in the generation of ultrashort optical pulses and their application to studies of ultrafast phenomena in physics, chemistry, material science, electronics, and biology. It was attended by approximately 250 participants from 20 countries and the five-day program comprises more than 200 papers. The progress of both technology and applications in the field of ultrafast processes during these last years is truly remarkable. The advent of all solid state femtosecond lasers and the extension of laser wavelengths by frequency convers...

  19. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang

    2002-01-01

    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  20. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  1. X-ray Pulse Length Characterization using the Surface Magneto Optic Kerr Effect

    International Nuclear Information System (INIS)

    Krejcik, P.; SLAC

    2006-01-01

    It will be challenging to measure the temporal profile of the hard X-ray SASE beam independently from the electron beam in the LCLS and other 4th generation light sources. A fast interaction mechanism is needed that can be probed by an ultrafast laser pulse in a pump-probe experiment. It is proposed to exploit the rotation in polarization of light reflected from a thin magnetized film, known as the surface magneto optic Kerr effect (SMOKE), to witness the absorption of the x-ray pulse in the thin film. The change in spin orbit coupling induced by the x-ray pulse occurs on the subfemtosecond time scale and changes the polarization of the probe beam. The limitation to the technique lies with the bandwidth of the probe laser pulse and how short the optical pulse can be made. The SMOKE mechanism will be described and the choices of materials for use with 1.5 (angstrom) x-rays. A schematic description of the pump-probe geometry for x-ray diagnosis is also described

  2. High efficiency and good beam quality of electro-optic, cavity-dumped and double-end pumped Nd:YLF laser

    Science.gov (United States)

    Tang, X. X.; Fan, Z. W.; Qiu, J. S.; Lian, F. Q.; Zhang, X. L.

    2012-06-01

    In this paper, we describe a Nd:YLF laser based on high-speed RTP electro-optical cavity dumping technique. Two home-made 150 W fiber pump modules are used from both sides to pump Nd:YLF crystal. Coupling systems are the key elements in end-pumped solid-state lasers, the aberrations of which greatly affect the efficiency of the lasers. In order to get high efficient and good quality laser output, the optical software ZEMAX is used to design a four-piece coupling system. When the pumped energy is 32 mJ at the repetition rate of 1 Hz, the output energy is 6.5 mJ with 2.5 ns pulse width. When the pumped energy is 13.1 W at the repetition rate of 200 Hz, the output energy is 2.2 W with small M 2 factor where M {/x 2} is 1.04, and M {/y 2} is 1.05, and the light-light conversion efficiency is up to 16.8%.

  3. Ultrafast measurements of chlorine dioxide photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ludowise, P.D.

    1997-08-01

    Time-resolved mass spectrometry and time-resolved photoelectron spectroscopy are used to study the ultrafast photodissociation dynamics of chlorine dioxide, an important constituent in stratospheric ozone depletion. Chapter 1 introduces these pump/probe techniques, in which a femtosecond pump pulse excites a molecule to a dissociative state. At a later time, a second femtosecond probe pulse ionizes the molecule. The resulting mass and photoelectron spectra are acquired as a function of the delay between the pump and probe pulses, which follows the evolution of the molecule on the excited state. A comparison to other techniques used to study reaction dynamics is discussed. Chapter 2 includes a detailed description of the design and construction of the experimental apparatus, which consists of a femtosecond laser system, a molecular beam time-of-flight spectrometer, and a data acquisition system. The time-of-flight spectrometer is specifically designed to have a short flight distance to maximize the photoelectron collection efficiency without degrading the resolution, which is limited by the bandwidth of the femtosecond laser system. Typical performance of the apparatus is demonstrated in a study of the time-resolved photoelectron spectroscopy of nitric oxide. The results of the time-resolved mass spectrometry experiments of chlorine dioxide are presented in Chapter 3. Upon excitation to the A {sup 2}A{sub 2} state near 3.2 eV, the molecule dissociates through an indirect two-step mechanism. The direct dissociation channel has been predicted to be open, but is not observed. A quantum beat is observed in the OClO{sup +} species, which is described as a vibrational coherence of the optically prepared A {sup 2}A{sub 2} state. Chapter 4 presents the results of the time-resolved photoelectron experiments of chlorine dioxide. At short delay time, the quantum beat of the OClO{sup +} species is observed in the X {sup 1}A{sub 1} state of the ion. At infinite delay, the signal

  4. Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser

    Science.gov (United States)

    Liu, Meng; Li, Heng; Luo, Ai-Ping; Cui, Hu; Xu, Wen-Cheng; Luo, Zhi-Chao

    2018-03-01

    Ultrafast fiber lasers have been demonstrated to be great platforms for the investigation of soliton dynamics. The soliton molecules, as one of the most fascinating nonlinear phenomena, have been a hot topic in the field of nonlinear optics in recent years. Herein, we experimentally observed the real-time evolving behavior of soliton molecule in an ultrafast fiber laser by using the dispersive Fourier transformation technology. Several types of evolving soliton molecules were obtained in our experiments, such as soliton molecules with monotonically or chaotically evolving phase, flipping and hopping phase. These results would be helpful to the communities interested in soliton nonlinear dynamics as well as ultrafast laser technologies.

  5. Note: Spin-exchange optical pumping in a van

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, C.; Liagre, L. [SB2SM, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette (France); Boutin, C.; Mari, E.; Léonce, E.; Carret, G.; Coltrinari, B.; Berthault, P., E-mail: patrick.berthault@cea.fr [NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2016-01-15

    The advent of spin-hyperpolarization techniques designed to overcome the sensitivity issue of nuclear magnetic resonance owing to polarization transfer from more ordered systems has recently raised great enthusiasm. However, the out-of-equilibrium character of the polarization requires a close proximity between the area of production and the site of use. We present here a mobile spin-exchange optical pumping setup that enables production of laser-polarized noble gases in a standalone mode, in close proximity to hospitals or research laboratories. Only compressed air and mains power need to be supplied by the host laboratory.

  6. Simplified approach for quantitative calculations of optical pumping

    International Nuclear Information System (INIS)

    Atoneche, Fred; Kastberg, Anders

    2017-01-01

    We present a simple and pedagogical method for quickly calculating optical pumping processes based on linearised population rate equations. The method can easily be implemented on mathematical software run on modest personal computers, and can be generalised to any number of concrete situations. We also show that the method is still simple with realistic experimental complications taken into account, such as high level degeneracy, impure light polarisation, and an added external magnetic field. The method and the associated mathematical toolbox should be of value in advanced physics teaching, and can also facilitate the preparation of research tasks. (paper)

  7. The TRIUMF optically-pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Levy, C.D.P.; Jayamanna, K.; McDonald, M.; Schmor, P.W.; Van Oers, W.T.H.; Welz, J.; Wight, G.W.; Dutto, G.; Zelenski, A.N.; Sakae, T.

    1995-09-01

    The TRIUMF dc optically-pumped polarized H - ion source (OPPIS) produces 200 μA dc H - current at 85% polarization within a normalized emittance (90%) of 0.8 π mm mrad, for operations at the TRIUMF cyclotron. As a result of development of the ECR primary proton source, 1.6 mA dc polarized H - current is produced within a normalized emittance of 2 π mm mrad, suitable for high energy accelerators. The OPPIS has also been developed for use in a parity non-conservation experiment which has very severe limits on permissible helicity-correlated changes in beam current and energy. (author)

  8. The TRIUMF optically-pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Levy, C.D.P.; Jayamanna, K.; McDonald, M.

    1995-09-01

    The TRIUMF dc optically-pumped polarized H - ion source (OPPIS) produces 200 microA dc H - current at 85% polarization within a normalized emittance (90%) of 0.8 π mm mrad, for operations at the TRIUMF cyclotron. As a result of development of the ECR primary proton source, 1.6 mA dc polarized H - current is produced within a normalized emittance of 2 π mm mrad, suitable for high energy accelerators. The OPPIS has also been developed for use in a parity non-conservation experiment which has very severe limits on permissible helicity-correlated changes in beam current and energy

  9. Simplified approach for quantitative calculations of optical pumping

    Science.gov (United States)

    Atoneche, Fred; Kastberg, Anders

    2017-07-01

    We present a simple and pedagogical method for quickly calculating optical pumping processes based on linearised population rate equations. The method can easily be implemented on mathematical software run on modest personal computers, and can be generalised to any number of concrete situations. We also show that the method is still simple with realistic experimental complications taken into account, such as high level degeneracy, impure light polarisation, and an added external magnetic field. The method and the associated mathematical toolbox should be of value in advanced physics teaching, and can also facilitate the preparation of research tasks.

  10. Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Shabalin, Yu V; Konyashkin, A V; Kostryukov, P V; Olenin, A N; Tunkin, V G; Morozov, V B; Rusov, V A; Telegin, L S; Yakovlev, D V

    2005-01-01

    The results of the development of repetitively pulsed, diode-pumped, electro-optically controlled picosecond Nd:YAG lasers of two designs are presented. The first design uses the active-passive mode locking with electro-optical lasing control and semiconductor saturable absorber mirrors (SESAM). This design allows the generation of 15-50-ps pulses with an energy up to 0.5 mJ and a maximum pulse repetition rate of 100 Hz. The laser of the second design generates 30-ps pulses due to combination of positive and negative electro-optical feedback and the control of the electro-optical modulator by the photocurrent of high-speed semiconductor structures. (active media. lasers)

  11. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power

    NARCIS (Netherlands)

    Graf, T.; McConnell, G.; Ferguson, A.I.; Bente, E.A.J.M.; Burns, D.; Dawson, M.D.

    1999-01-01

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461–1601 nm based on a high-power Nd:YVO4 laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically

  12. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2.

    Science.gov (United States)

    Nie, Zhaogang; Long, Run; Sun, Linfeng; Huang, Chung-Che; Zhang, Jun; Xiong, Qihua; Hewak, Daniel W; Shen, Zexiang; Prezhdo, Oleg V; Loh, Zhi-Heng

    2014-10-28

    Femtosecond optical pump-probe spectroscopy with 10 fs visible pulses is employed to elucidate the ultrafast carrier dynamics of few-layer MoS2. A nonthermal carrier distribution is observed immediately following the photoexcitation of the A and B excitonic transitions by the ultrashort, broadband laser pulse. Carrier thermalization occurs within 20 fs and proceeds via both carrier-carrier and carrier-phonon scattering, as evidenced by the observed dependence of the thermalization time on the carrier density and the sample temperature. The n(-0.37 ± 0.03) scaling of the thermalization time with carrier density suggests that equilibration of the nonthermal carrier distribution occurs via non-Markovian quantum kinetics. Subsequent cooling of the hot Fermi-Dirac carrier distribution occurs on the ∼ 0.6 ps time scale via carrier-phonon scattering. Temperature- and fluence-dependence studies reveal the involvement of hot phonons in the carrier cooling process. Nonadiabatic ab initio molecular dynamics simulations, which predict carrier-carrier and carrier-phonon scattering time scales of 40 fs and 0.5 ps, respectively, lend support to the assignment of the observed carrier dynamics.

  13. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    Science.gov (United States)

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  14. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump-probe experiments.

    Science.gov (United States)

    Scoby, Cheyne M; Li, R K; Musumeci, P

    2013-04-01

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  16. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  17. Progress in ultrafast intense laser science XIII

    CERN Document Server

    III, Wendell; Paulus, Gerhard

    2017-01-01

    This thirteenth volume covers a broad range of topics from this interdisciplinary research field, focusing on atoms, molecules, and clusters interacting in intense laser field and high-order harmonics generation and their applications. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, the interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.   .

  18. Progress in ultrafast intense laser science XII

    CERN Document Server

    Roso, Luis; Li, Ruxin; Mathur, Deepak; Normand, Didier

    2015-01-01

    This  volume covers a broad range of topics focusing on atoms, molecules, and clusters interacting in intense laser field, laser induced filamentation, and laser plasma interaction and application. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. .

  19. Thermally induced optical deformation of a Nd:YVO4 active disk under the action of multi-beam spatially periodic diode pumping

    Science.gov (United States)

    Guryev, D. A.; Nikolaev, D. A.; Tsvetkov, V. B.; Shcherbakov, I. A.

    2018-05-01

    A study of how the transverse distribution of an optical path changes in a Nd:YVO4 active disk was carried out in a ten-beam spatially periodic diode pumping in the one-dimensional case. The pumping beams’ transverse dimensions were comparable with the distances between them. The investigations were carried out using laser interferometry methods. It was found that the optical thickness changing in the active disk along the line of pumping spots was well described by a Gaussian function.

  20. Optical-response properties in an atom-assisted optomechanical system with a mechanical pump

    Science.gov (United States)

    Sun, Xue-Jian; Chen, Hao; Liu, Wen-Xiao; Li, Hong-Rong

    2017-05-01

    We investigate the optical-response properties of a coherent-mechanical pumped optomechanical system (OMS) coupled to a Λ-type three-level atomic ensemble. Due to the optomechanical and the cavity-atom couplings, the optomechanically induced transparency (OMIT) and electromagnetically induced transparency (EIT) phenomena could both be observed from our proposal. In the presence of a coherent mechanical pump, we show that the OMIT behavior of the probe field exhibits a phase-dependent effect, leading to the switch from OMIT to optomechanically induced absorption or amplification, while the feature of EIT remains unchanged. The distinctly different effects of the mechanical pump on OMIT and EIT behavior assure us that the absorption (amplification) and transparency of the output probe field can be simultaneously observed. Moreover, a tunable switch from slow to fast light can also be realized by tuning the phase and amplitude of the mechanical pump. In particular, the presence of the atomic ensemble can further adjust the group delay, providing additional flexibility for achieving the tunable switch.

  1. Recent results of the pulsed optically pumped rubidium clock

    Science.gov (United States)

    Levi, F.; Micalizio, S.; Godone, A.; Calosso, C.; Bertacco, E.

    2017-11-01

    A laboratory prototype of a pulsed optically pumped (POP) clock based on a rubidium cell with buffer gas is described. This clock has shown very interesting physical and metrological features, such as negligible light-shift, strongly reduced cavity-pulling and very good frequency stability. In this regard, an Allan deviation of σy(τ) = 1.2 τ-1/2 for measurement times up to τ = 105 s has been measured. These results confirm the interesting perspectives of such a frequency standard and make it very attractive for several technological applications, such as radionavigation.

  2. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  3. Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum.

    Science.gov (United States)

    West, Robert G; Bína, David; Fuciman, Marcel; Kuznetsova, Valentyna; Litvín, Radek; Polívka, Tomáš

    2018-05-01

    We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77 K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (pump-dump-probe regime, with the dump pulse centered in the spectral region of ICT stimulated emission at 950 nm and applied at 2 ps after excitation, proved that the S 1 and ICT states of fucoxanthin in FCP are individual, yet coupled entities. Analysis of the pump-dump-probe data suggested that the main energy donor in the slow S 1 /ICT-Chl a route is the S 1 part of the S 1 /ICT potential surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Research and development on optically pumped polarized ion sources. Technical progress report, July 1, 1985-June 30, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-07-01

    The development of an optically pumped polarized 23 Na target is discussed. The three categories of research are: (1) electron spin relaxation of the 23 Na due to wall collisions; (2) effects of radiation trapping on the polarization that can be produced in an alkali target by optical pumping; and (3) the effects of spin exchange collisions in the polarization of a fast H 0 beam formed by charge transfer as an H + beam passes through a polarized alkali target. 90 refs., 7 figs

  5. Initial operating experience and recent development on the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Schmor, P.W.; Law, W.M.; Levy, C.D.P.; McDonald, M.

    1988-01-01

    A polarized H - ion source using optical pumping techniques has been developed at TRIUMF. This source was used to demonstrate (on an ion source test stand) the feasibility of producing 10- μA of ∼ 60% polarized H - ion beam in a dc mode suitable for injection into the TRIUMF cyclotron. The source has been installed in a 300 kV high voltage terminal connected to the cyclotron via a recently constructed beam transport line. A polarization of 80% is anticipated near the end of 1988 after the installation of a superconducting solenoid to the source. In this paper the authors describe the initial operating experience, recent developments, and the future plans for the TRIUMF optically pumped polarized ion source

  6. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2016-01-01

    An overview of recent progress on time lens based advanced optical signal processing is presented, with a special focus on all-optical ultrafast 640 Gbit/s all-channel serial-to-parallel conversion, and scalable WDM regeneration....

  7. Optical near-fields & nearfield optics

    OpenAIRE

    Meixner, Alfred J; Leiderer, Paul

    2014-01-01

    Optical methods provide exceedingly powerful tools in science and technology for measuring, analyzing and manipulating, from optical microscopy and spectroscopy to the characterization of ultrafast processes by femtosecond pulses and the modification of materials by intense laser radiation. However, when it comes to applications in the nanometer-regime, the conventional optical techniques suffer from the resolution limit – formulated by Ernst Abbe one and a half centuries ago – that light can...

  8. Quantum modeling of ultrafast photoinduced charge separation

    Science.gov (United States)

    Rozzi, Carlo Andrea; Troiani, Filippo; Tavernelli, Ivano

    2018-01-01

    Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.

  9. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3

    International Nuclear Information System (INIS)

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-01-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs

  10. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    International Nuclear Information System (INIS)

    Hernando, Jordi; Hoogenboom, Jacob; Dijk, Erik van; Garcia-Parajo, Maria; Hulst, Niek F. van

    2008-01-01

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed

  11. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Jordi [Dept. de Quimica, Universitat Autonoma Barcelona, 08193 Cerdanyola del Valles (Spain); Hoogenboom, Jacob [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain); Dijk, Erik van [Applied Optics Group, MESA Institute for Nanotechnology, University of Twente, 7500AE Enschede (Netherlands); Garcia-Parajo, Maria [IBEC-Institute of BioEngineering of Catalunya, 08028 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain); Hulst, Niek F. van [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain) and ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain)], E-mail: Niek.vanHulst@ICFO.es

    2008-05-15

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed.

  12. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  13. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    Science.gov (United States)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  14. Progress in Ultrafast Intense Laser Science III

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2008-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This third volume covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.

  15. Progress in Ultrafast Intense Laser Science VIII

    CERN Document Server

    Nisoli, Mauro; Hill, Wendell; III, III

    2012-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.

  16. Progress in Ultrafast Intense Laser Science VI

    CERN Document Server

    Yamanouchi, Kaoru; Bandrauk, André D

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This sixth volume covers a broad range of topics from this interdisciplinary research field, focusing on responses of molecules to ultrashort intense laser pulses, generation and characterization of attosecond pulses and high-order harmonics, and filamentation and laser-plasma interaction.

  17. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    Science.gov (United States)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  18. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    International Nuclear Information System (INIS)

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha; Ropers, Claus

    2015-01-01

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy

  19. Twin optically-pumped far-infrared CH3OH laser for plasma diagnostics

    International Nuclear Information System (INIS)

    Yamanaka, M.; Takeda, Y.; Tanigawa, S.; Nishizawa, A.

    1980-01-01

    A twin optically-pumped far-infrared CH 3 OH laser has been constructed for use in plasma diagnostics. The antisymmetric doublet due to the Raman-type resonant two-photon transition is reproducibly observed at 118.8 microns. With the 118.8-micron line, it is found that CH 3 OH absorption line center is 16 + or - 1 MHz higher than the pump 9.7-micron P(36) CO 2 laser line center. It is shown that the Raman-type resonant two-photon transition is useful in order to get several MHz phase modulation for the far-infrared laser interferometer. Some preliminary performances of this twin laser for the modulated interferometer are described

  20. Synthesis, Characterization, and Ultrafast Dynamics of Metal, Metal Oxide, and Semiconductor Nanomaterials

    OpenAIRE

    Wheeler, Damon Andreas

    2013-01-01

    SYNTHESIS, CHARACTERIZATION, AND ULTRAFAST DYNAMICS OF METAL, METAL OXIDE, AND SEMICONDUCTOR NANOMATERIALSABSTRACTThe optical properties of each of the three main classes of inorganic nanomaterials, metals, metal oxides, and semiconductors differ greatly due to the intrinsically different nature of the materials. These optical properties are among the most fascinating and useful aspects of nanomaterials with applications spanning cancer treatment, sensors, lasers, and solar cells. One techn...

  1. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  2. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  3. Fourteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV

    2005-01-01

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  4. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.

    Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  5. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  6. Direct emission of chirality controllable femtosecond LG01 vortex beam

    Science.gov (United States)

    Wang, S.; Zhang, S.; Yang, H.; Xie, J.; Jiang, S.; Feng, G.; Zhou, S.

    2018-05-01

    Direct emission of a chirality controllable ultrafast LG01 mode vortex optical beam from a conventional z-type cavity design SESAM (SEmiconductor Saturable Absorber Mirror) mode locked LD pumped Yb:Phosphate laser has been demonstrated. A clean 360 fs vortex beam of ˜45.7 mW output power has been achieved. A radial shear interferometer has been built to determine the phase singularity and the wavefront helicity of the ultrafast output laser. Theoretically, it is found that the LG01 vortex beam is obtained via the combination effect of diagonal HG10 mode generation by off-axis pumping and the controllable Gouy phase difference between HG10 and HG01 modes in the sagittal and tangential planes. The chirality of the LG01 mode can be manipulated by the pump position to the original point of the laser cavity optical axis.

  7. Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states.

    Science.gov (United States)

    Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K

    2013-08-16

    We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.

  8. User oriented end-station on VUV pump-probe magneto-optical ellipsometry at ELI beamlines

    Science.gov (United States)

    Espinoza, Shirly; Neuber, Gerd; Brooks, Christopher D.; Besner, Bastian; Hashemi, Maryam; Rübhausen, Michael; Andreasson, Jakob

    2017-11-01

    A state of the art ellipsometer for user operations is being implemented at ELI Beamlines in Prague, Czech Republic. It combines three of the most promising and exotic forms of ellipsometry: VUV, pump-probe and magneto-optical ellipsometry. This new ellipsometer covers a spectral operational range from the NIR up to the VUV, with high through-put between 1 and 40 eV. The ellipsometer also allows measurements of magneto-optical spectra with a 1 kHz switchable magnetic field of up to 1.5 T across the sample combining ellipsometry and Kerr spectroscopy measurements in an unprecedented spectral range. This form of generalized ellipsometry enables users to address diagonal and off-diagonal components of the dielectric tensor within one measurement. Pump-probe measurements enable users to study the dynamic behaviour of the dielectric tensor in order to resolve the time-domain phenomena in the femto to 100 ns range.

  9. Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser

    Science.gov (United States)

    Li, Chun; Liu, Jie; Guo, Zhinan; Zhang, Han; Ma, Weiwei; Wang, Jingya; Xu, Xiaodong; Su, Liangbi

    2018-01-01

    A multilayer black phosphorus, as a novel two dimensional saturable absorber, has superb saturable absorption properties for a Er:CaF2 solid-state pulse laser. The pulse laser is realized at mid-infrared region with the passively Q-switched technology by a diode-pumping. The high-quality black phosphorus saturable absorber is fabricated by liquid phase exfoliation method. The pulse laser generates the pulses operation with the pulse duration of 954.8 ns, the repetition rate of 41.93 kHz, the pulse energy of 4.25 μJ and the peak power of 4.45 W. Our work demonstrates that black phosphorus could be used as a kind of efficient mid-infrared region optical absorber for ultrafast photonics.

  10. Optical magnetic flux generation in superconductor

    Indian Academy of Sciences (India)

    Keywords. Ultrafast phenomena; femtosecond laser; optical magnetic flux generation. PACS Nos 85.25.Oj; 74.25.-q; 42.65.Re. 1. Introduction. Excitation and observation of ultrafast phenomena in solid states are of essential interest in the field of condensed matter physics. Recent femtosecond (fs) laser technology is now.

  11. The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers.

    Science.gov (United States)

    Liu, Jian-Hua; Jing, Dong-Yang; Wang, Liang-Liang; Li, Yang; Quan, Wei; Fang, Jian-Cheng; Liu, Wu-Ming

    2017-07-28

    The hybrid optical pumping spin exchange relaxation free (SERF) atomic magnetometers can realize ultrahigh sensitivity measurement of magnetic field and inertia. We have studied the 85 Rb polarization of two types of hybrid optical pumping SERF magnetometers based on 39 K- 85 Rb- 4 He and 133 Cs- 85 Rb- 4 He respectively. Then we found that 85 Rb polarization varies with the number density of buffer gas 4 He and quench gas N 2 , pumping rate of pump beam and cell temperature respectively, which will provide an experimental guide for the design of the magnetometer. We obtain a general formula on the fundamental sensitivity of the hybrid optical pumping SERF magnetometer due to shot-noise. The formula describes that the fundamental sensitivity of the magnetometer varies with the number density of buffer gas and quench gas, the pumping rate of pump beam, external magnetic field, cell effective radius, measurement volume, cell temperature and measurement time. We obtain a highest fundamental sensitivity of 1.5073 aT/Hz 1/2 (1 aT = 10 -18 T) with 39 K- 85 Rb- 4 He magnetometer between above two types of magnetometers when 85 Rb polarization is 0.1116. We estimate the fundamental sensitivity limit of the hybrid optical pumping SERF magnetometer to be superior to 1.8359 × 10 -2 aT/Hz 1/2 , which is higher than the shot-noise-limited sensitivity of 1 aT/Hz 1/2 of K SERF atomic magnetometer.

  12. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  13. Watching proton transfer in real time: Ultrafast photoionization-induced proton transfer in phenol-ammonia complex cation.

    Science.gov (United States)

    Shen, Ching-Chi; Tsai, Tsung-Ting; Wu, Jun-Yi; Ho, Jr-Wei; Chen, Yi-Wei; Cheng, Po-Yuan

    2017-10-28

    In this paper, we give a full account of our previous work [C. C. Shen et al., J. Chem. Phys. 141, 171103 (2014)] on the study of an ultrafast photoionization-induced proton transfer (PT) reaction in the phenol-ammonia (PhOH-NH 3 ) complex using ultrafast time-resolved ion photofragmentation spectroscopy implemented by the photoionization-photofragmentation pump-probe detection scheme. Neutral PhOH-NH 3 complexes prepared in a free jet are photoionized by femtosecond 1 + 1 resonance-enhanced multiphoton ionization via the S 1 state. The evolving cations are then probed by delayed pulses that result in ion fragmentation, and the ionic dynamics is followed by measuring the parent-ion depletion as a function of the pump-probe delay time. By comparing with systems in which PT is not feasible and the steady-state ion photofragmentation spectra, we concluded that the observed temporal evolutions of the transient ion photofragmentation spectra are consistent with an intracomplex PT reaction after photoionization from the initial non-PT to the final PT structures. Our experiments revealed that PT in [PhOH-NH 3 ] + cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the time scale to complete the reaction can be much slower and is determined by the rate of energy dissipation into other modes.

  14. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    Science.gov (United States)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  15. Nonlocal plasmonic response of doped and optically pumped graphene, MoS2, and black phosphorus

    Science.gov (United States)

    Petersen, René; Pedersen, Thomas Garm; Javier García de Abajo, F.

    2017-11-01

    Plasmons in two-dimensional (2D) materials have emerged as a new source of physical phenomena and optoelectronic applications due in part to the relatively small number of charge carriers on which they are supported. Unlike conventional plasmonic materials, they possess a large Fermi wavelength, which can be comparable with the plasmon wavelength, thus leading to unusually strong nonlocal effects. Here, we study the optical response of a selection of 2D crystal layers (graphene, MoS2, and black phosphorus) with inclusion of nonlocal and thermal effects. We extensively analyze their plasmon dispersion relations and focus on the Purcell factor for the decay of an optical emitter in close proximity to the material as a way to probe nonlocal and thermal effects, with emphasis placed on the interplay between temperature and doping. The results are based on tight-binding modeling of the electronic structure combined with the random-phase approximation response function in which the temperature enters through the Fermi-Dirac electronic occupation distribution. Our study provides a route map for the exploration and exploitation of the ultrafast optical response of 2D materials.

  16. Fundamentals of metastability exchange optical pumping in helium

    International Nuclear Information System (INIS)

    Batz, M; Nacher, P-J; Tastevin, G

    2011-01-01

    Advances in metastability exchange optical pumping (MEOP) at high laser powers, but also at high gas pressures and high magnetic field strengths, has provided strong motivation for revisiting the understanding of the limitations of this powerful technique. A comprehensive model has been developed for improved description of the combined effects of OP, ME, and relaxation, and of detailed MEOP features observed over the broad range of operating conditions. A brief description is provided, with illustrative comparisons of computed and experimental results. This improved tool is used to explain the excellent photon efficiency of OP obtained at all field strengths. It is combined with an angular momentum budget approach to quantitatively investigate the newly discovered strong OP-enhanced polarisation losses that currently limits MEOP performance.

  17. Fundamentals of metastability exchange optical pumping in helium

    Science.gov (United States)

    Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    Advances in metastability exchange optical pumping (MEOP) at high laser powers, but also at high gas pressures and high magnetic field strengths, has provided strong motivation for revisiting the understanding of the limitations of this powerful technique. A comprehensive model has been developed for improved description of the combined effects of OP, ME, and relaxation, and of detailed MEOP features observed over the broad range of operating conditions. A brief description is provided, with illustrative comparisons of computed and experimental results. This improved tool is used to explain the excellent photon efficiency of OP obtained at all field strengths. It is combined with an angular momentum budget approach to quantitatively investigate the newly discovered strong OP-enhanced polarisation losses that currently limits MEOP performance.

  18. Hyperfine relaxation of an optically pumped cesium vapor

    International Nuclear Information System (INIS)

    Tornos, J.; Amare, J.C.

    1986-01-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a σ-polarized D 1 -light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D 0 = 0.101 +- 0.010 cm 2 s -1 at 0 0 C and 760 Torr; relaxation cross section by Cs-Ar collisions, σ/sub c/ = (104 +- 5) x 10 -23 cm 2 ; relaxation cross section by Cs-Cs (spin exchange) collisions, σ/sub e//sub x/ = (1.63 +- 0.13) x 10 -14 cm 2

  19. Progress in Ultrafast Intense Laser Science Volume V

    CERN Document Server

    Yamanouchi, Kaoru; Ledingham, Kenneth

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This fifth volume covers a broad range of topics from this interdisciplinary research field, focusing on coherent responses of gaseous and condensed matter to ultrashort intense laser pulses, propagation of intense laser pulses, and laser-plasma interaction and its applications.

  20. Ultrafast Phase Comparator for Phase-Locked Loop-Based Optoelectronic Clock Recovery Systems

    DEFF Research Database (Denmark)

    Gomez-Agis, F.; Oxenløwe, Leif Katsuo; Kurimura, S.

    2009-01-01

    The authors report on a novel application of a chi((2)) nonlinear optical device as an ultrafast phase comparator, an essential element that allows an optoelectronic phase-locked loop to perform clock recovery of ultrahigh-speed optical time-division multiplexed (OTDM) signals. Particular interest...... is devoted to a quasi-phase-matching adhered-ridge-waveguide periodically poled lithium niobate (PPLN) device, which shows a sufficient high temporal resolution to resolve a 640 Gbits OTDM signal....

  1. Emission characteristics of electrically- and optically-pumped single ZnO micro-spherical crystal

    Science.gov (United States)

    Nakamura, D.; Shimogaki, T.; Tetsuyama, N.; Fusazaki, K.; Mizokami, Y.; Higashihata, M.; Ikenoue, H.; Okada, T.

    2014-03-01

    Zinc oxide (ZnO) nano/microstructures have been attractive as the building blocks for the efficient opto-electronic devices in the ultraviolet (UV) region. We have succeeded in growing the ZnO micro/nanosphere by a simple laser ablation in the air, and therefore we have obtained UV lasing from the sphere under optical pumping. Recently, large size of several 10 micrometer ZnO microspheres were grown using Nd:YAG laser without Q-switching, and ZnO microsphere/p-GaN heterojunction were fabricated to obtain the electroluminescence (EL) from the microsphere by electrical pumping. Room-temperature EL in near-UV region with peak wavelength of 400 nm is observed under forward bias.

  2. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI.

    Science.gov (United States)

    Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U

    2017-09-01

    We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  3. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources.

    Science.gov (United States)

    Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei

    2018-05-01

    We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150  nm with a -10  dB bandwidth of ∼13.2  THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.

  4. Femtosecond Carrier Dynamics and Modelocking in Monolithic CPM Lasers. [SB1

    DEFF Research Database (Denmark)

    Brorson, S.D.; Bischoff, Svend; MØrk, J.

    1996-01-01

    Femtosecond pump-probe measurements of the dynamics in both forward- and reverse-biased semiconductor optical waveguides arepresented. Slow (nanosecond) as well as ultrafast (femtosecond) dynamics are observed in both kinds of structures....

  5. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  6. Ultrafast all-optical signal processing using semiconductor optical amplifiers

    NARCIS (Netherlands)

    Li, Z.

    2007-01-01

    As the bit rate of one wavelength channel and the number of channels keep increasing in the telecommunication networks thanks to the advancement of optical transmission technologies, switching is experiencing the transition from the electrical domain to the optical domain. All-optical signal

  7. The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers

    Directory of Open Access Journals (Sweden)

    David C. Brown

    2016-01-01

    Full Text Available Ultrafast laser physics continues to advance at a rapid pace, driven primarily by the development of more powerful and sophisticated diode-pumping sources, the development of new laser materials, and new laser and amplification approaches such as optical parametric chirped-pulse amplification. The rapid development of high average power cryogenic laser sources seems likely to play a crucial role in realizing the long-sought goal of powerful ultrafast sources that offer concomitant high peak and average powers. In this paper, we review the optical, thermal, thermo-optic and laser parameters important to cryogenic laser technology, recently achieved laser and laser materials progress, the progression of cryogenic laser technology, discuss the importance of cryogenic laser technology in ultrafast laser science, and what advances are likely to be achieved in the near-future.

  8. Femtosecond laser studies of ultrafast intramolecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  9. Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Weihong; Li Tanping; Zhang Luyuan; Yang Yi; Kao Yating; Wang Lijuan [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States); Zhong Dongping [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States)], E-mail: dongping@mps.ohio-state.edu

    2008-06-23

    Quenching of tryptophan fluorescence in proteins has been critical to the understanding of protein dynamics and enzyme reactions using tryptophan as a molecular optical probe. We report here our systematic examinations of potential quenching residues with more than 40 proteins. With site-directed mutation, we placed tryptophan to desired positions or altered its neighboring residues to screen quenching groups among 20 amino acid residues and of peptide backbones. With femtosecond resolution, we observed the ultrafast quenching dynamics within 100 ps and identified two ultrafast quenching groups, the carbonyl- and sulfur-containing residues. The former is glutamine and glutamate residues and the later is disulfide bond and cysteine residue. The quenching by the peptide-bond carbonyl group as well as other potential residues mostly occurs in longer than 100 ps. These ultrafast quenching dynamics occur at van der Waals distances through intraprotein electron transfer with high directionality. Following optimal molecular orbital overlap, electron jumps from the benzene ring of the indole moiety in a vertical orientation to the LUMO of acceptor quenching residues. Molecular dynamics simulations were invoked to elucidate various correlations of quenching dynamics with separation distances, relative orientations, local fluctuations and reaction heterogeneity. These unique ultrafast quenching pairs, as recently found to extensively occur in high-resolution protein structures, may have significant biological implications.

  10. 40-Gbit/s all-optical circulating shift register with an inverter.

    Science.gov (United States)

    Hall, K L; Donnelly, J P; Groves, S H; Fennelly, C I; Bailey, R J; Napoleone, A

    1997-10-01

    We report what is believed to be the first demonstration of an all-optical circulating shift register using an ultrafast nonlinear interferometer with a polarization-insensitive semiconductor optical amplifier as the nonlinear switching element. The device operates at 40 Gbits/s, to our knowledge the highest speed demonstrated to date. Also, the demonstration proves the cascadability of the ultrafast nonlinear interferometric switch.

  11. An ultra-fast fiber optic pressure sensor for blast event measurements

    International Nuclear Information System (INIS)

    Wu, Nan; Tian, Ye; Wang, Xingwei; Zou, Xiaotian; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie

    2012-01-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry–Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event. (paper)

  12. Temporal overlap estimation based on interference spectrum in CARS microscopy

    Science.gov (United States)

    Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen

    2018-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.

  13. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    Directory of Open Access Journals (Sweden)

    Jasper J. van Thor

    2015-01-01

    Full Text Available In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe” which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  14. A twin optically-pumped far-infrared CH3OH laser for plasma diagnostics

    International Nuclear Information System (INIS)

    Yamanaka, M.; Takeda, Y.; Tanigawa, S.; Nishizawa, A.; Noda, N.

    1979-11-01

    A twin optically-pumped far-infrared CH 3 OH laser has been constructed for use in plasma diagnostics. The anti-symmetric doublet due to the Raman-type resonant two-photon transition is reproducibly observed at 118.8 μm. With the 118.8-μm line, it is obtained from the frequency separation of the anti-symmetric doublet that the CH 3 OH absorption line center is 16 +- 1 MHz higher than the pump 9.7-μm P(36) CO 2 laser line center. It is shown that the Raman-type resonant two-photon transition is useful in order to get several-MHz phase modulation for the far-infrared laser interferometer. Some preliminary performances of this twin laser for the modulated interferometer are described. (author)

  15. Theoretical Simulations and Ultrafast Pump-probe Spectroscopy Experiments in Pigment-protein Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Buck, D. R. [Iowa State Univ., Ames, IA (United States)

    2000-09-12

    Theoretical simulations and ultrafast pump-probe laser spectroscopy experiments were used to study photosynthetic pigment-protein complexes and antennae found in green sulfur bacteria such as Prosthecochloris aestuarii, Chloroflexus aurantiacus, and Chlorobium tepidum. The work focused on understanding structure-function relationships in energy transfer processes in these complexes through experiments and trying to model that data as we tested our theoretical assumptions with calculations. Theoretical exciton calculations on tubular pigment aggregates yield electronic absorption spectra that are superimpositions of linear J-aggregate spectra. The electronic spectroscopy of BChl c/d/e antennae in light harvesting chlorosomes from Chloroflexus aurantiacus differs considerably from J-aggregate spectra. Strong symmetry breaking is needed if we hope to simulate the absorption spectra of the BChl c antenna. The theory for simulating absorption difference spectra in strongly coupled photosynthetic antenna is described, first for a relatively simple heterodimer, then for the general N-pigment system. The theory is applied to the Fenna-Matthews-Olson (FMO) BChl a protein trimers from Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from Chlorobium tepidum. Circular dichroism spectra of the FMO trimer are unusually sensitive to diagonal energy disorder. Substantial differences occur between CD spectra in exciton simulations performed with and without realistic inhomogeneous distribution functions for the input pigment diagonal energies. Anisotropic absorption difference spectroscopy measurements are less consistent with 21-pigment trimer simulations than 7-pigment monomer simulations which assume that the laser-prepared states are localized within a subunit of the trimer. Experimental anisotropies from real samples likely arise from statistical averaging over states with diagonal energies shifted by

  16. Ultrafast MR Imaging in Pediatric Neuroradiology

    International Nuclear Information System (INIS)

    Singh, R.K.; Smith, J.T.; Wilkinson, I.D.; Griffiths, P.D.

    2003-01-01

    Purpose: To compare the diagnostic information obtained from ultrafast MR imaging with standard MR imaging techniques in pediatric neuroradiology. The goal was to judge whether ultrafast methods can be used to replace standard methods and reduce the need for sedation or general anesthesia as a result of the considerably shorter scan times. Material and Methods: Our prospective study involved 125 patients. Routine clinical imaging was performed along with two ultrafast methods. Single shot fast spin echo (SSFSE) was used to give T2-weighted images and an echo planar imaging (EPI) sequence to provide a T1-weighted images. The ultrafast images were presented to an experienced neuro radiologist who was also given the information present on the initial referral card. These reports based on the ultrafast images were then compared with the formal radiologic report made solely on the basis of the standard imaging. Results: The overall sensitivity and specificity for ultrafast imaging when compared to the reference standard were 78% and 98% with positive and negative predictive values of 98% and 76%. Pathologies characterized by small areas of subtle T2 prolongation were difficult or impossible to see on the ultrafast images but otherwise they provided reliable information. Conclusions: This paper demonstrates that ultrafast MR imaging can diagnose many pediatric intracranial abnormalities as well as standard methods. Anatomic resolution limits its capacity to define subtle developmental anomalies and contrast resolution limitations of the ultrafast methods reduce the detection of pathology characterized by subtle T2 prolongation

  17. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Science.gov (United States)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  18. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu, E-mail: suiyu@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Song, Bo, E-mail: songbo@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2016-07-11

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  19. Theoretical model and simulations for a cw exciplex pumped alkali laser.

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Lu, Xiaochuan

    2015-12-14

    The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 10⁷ W/cm² presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.

  20. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens, E-mail: bredenbeck@biophysik.uni-frankfurt.org, E-mail: bredenbeck@biophysik.uni-frankfurt.de [Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  1. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-01-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported

  2. Ultrafast demagnetization enhancement in CoFeB/MgO/CoFeB magnetic tunneling junction driven by spin tunneling current.

    Science.gov (United States)

    He, Wei; Zhu, Tao; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua

    2013-10-07

    The laser-induced ultrafast demagnetization of CoFeB/MgO/CoFeB magnetic tunneling junction is exploited by time-resolved magneto-optical Kerr effect (TRMOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electrons tunneling current. It opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions.

  3. Ultrafast intramolecular relaxation dynamics of Mg- and Zn-bacteriochlorophyll a

    Energy Technology Data Exchange (ETDEWEB)

    Kosumi, Daisuke [Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nakagawa, Katsunori; Sakai, Shunsuke [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nagaoka, Yuya; Maruta, Satoshi; Sugisaki, Mitsuru [CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Dewa, Takehisa [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); PRESTO/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nango, Mamoru [The Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Hashimoto, Hideki [The Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2013-07-21

    Ultrafast excited-state dynamics of the photosynthetic pigment (Mg-)bacteriochlorophyll a and its Zn-substituted form were investigated by steady-state absorption/fluorescence and femtosecond pump-probe spectroscopic measurements. The obtained steady-state absorption and fluorescence spectra of bacteriochlorophyll a in solution showed that the central metal compound significantly affects the energy of the Q{sub x} state, but has almost no effect on the Q{sub y} state. Photo-induced absorption spectra were recorded upon excitation of Mg- and Zn-bacteriochlorophyll a into either their Q{sub x} or Q{sub y} state. By comparing the kinetic traces of transient absorption, ground-state beaching, and stimulated emission after excitation to the Q{sub x} or Q{sub y} state, we showed that the Q{sub x} state was substantially incorporated in the ultrafast excited-state dynamics of bacteriochlorophyll a. Based on these observations, the lifetime of the Q{sub x} state was determined to be 50 and 70 fs for Mg- and Zn-bacteriochlorophyll a, respectively, indicating that the lifetime was influenced by the central metal atom due to the change of the energy gap between the Q{sub x} and Q{sub y} states.

  4. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI

    Directory of Open Access Journals (Sweden)

    C. Gutt

    2017-09-01

    Full Text Available We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q-resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Qz, we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  5. Hyperfine spectrum measurement of an optically pumped far-infrared laser with a Michelson interferometer

    International Nuclear Information System (INIS)

    Zuo, Z G; Ling, F R; Wang, P; Liu, J S; Yao, J Q; Weng, C X

    2013-01-01

    In this letter, we present a Michelson interferometer for the hyperfine spectrum measurement of an optically pumped far-infrared laser with a highest frequency resolution of 3–5 GHz. CH 3 OH gas with a purity of 99.9%, is pumped by the CO 2 9P36 and 9R10 laser lines to generate terahertz lasers with frequencies of 2.52 and 3.11 THz, respectively. Moreover, except for the center frequency, which is in good agreement with theoretical work, some additional frequencies on both sides of the center frequency are obtained at a frequency interval of 0.15 THz. Meanwhile, the mechanism behind the observed experimental results is also investigated. (letter)

  6. All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating.

    Science.gov (United States)

    Zang, Zhigang

    2013-08-10

    A configuration of all-optical switching based on a Signac loop mirror that incorporates an ytterbium-doped fiber and uniform fiber Bragg grating (FBG) is proposed in this paper. It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG. The shift of this ultranarrow transmission spectrum is very sensitive to the intensity of the pump power. Thus, the threshold switching power can be greatly reduced by shifting such narrow transmission spectrum. Compared with the single FBG, the threshold switching power of this configuration is reduced by 4 orders of magnitude. In addition, the results indicate that this optical switching has a high extinction ratio of 20 dB and a ultrafast response time of 3 ns. The operation regime and switching performance under the cross-phase modulation cases are also investigated.

  7. Resonant intersubband polariton-LO phonon scattering in an optically pumped polaritonic device

    Science.gov (United States)

    Manceau, J.-M.; Tran, N.-L.; Biasiol, G.; Laurent, T.; Sagnes, I.; Beaudoin, G.; De Liberato, S.; Carusotto, I.; Colombelli, R.

    2018-05-01

    We report experimental evidence of longitudinal optical (LO) phonon-intersubband polariton scattering processes under resonant injection of light. The scattering process is resonant with both the initial (upper polariton) and final (lower polariton) states and is induced by the interaction of confined electrons with longitudinal optical phonons. The system is optically pumped with a mid-IR laser tuned between 1094 cm-1 and 1134 cm-1 (λ = 9.14 μm and λ = 8.82 μm). The demonstration is provided for both GaAs/AlGaAs and InGaAs/AlInAs doped quantum well systems whose intersubband plasmon lies at a wavelength of ≈10 μm. In addition to elucidating the microscopic mechanism of the polariton-phonon scattering, it is found to differ substantially from the standard single particle electron-LO phonon scattering mechanism, and this work constitutes an important step towards the hopefully forthcoming demonstration of an intersubband polariton laser.

  8. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  9. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  10. Ultrafast Graphene Photonics and Optoelectronics

    Science.gov (United States)

    2017-04-14

    AFRL-AFOSR-JP-TR-2017-0032 Ultrafast Graphene Photonics and Optoelectronics Kuang-Hsiung Wu National Chiao Tung University Final Report 04/14/2017...DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Ultrafast Graphene Photonics and Optoelectronics 5a.  CONTRACT NUMBER 5b...Prescribed by ANSI Std. Z39.18 Final Report for AOARD Grant FA2386-13-1-4022 “Ultrafast Graphene Photonics and Optoelectronics” Date May 23th, 2016

  11. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    Science.gov (United States)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  12. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    2012-01-01

    structure resembling a star- of- David pattern can clearly be seen surrounding the hollow core region. The fiber’s hollow core is created by leaving out...O.R. Wood, An optically pumped CO2 laser. IEEE Journal of Quantum Electronics, 1972. 8(6): p. 598. 19. Schlossberg, H.R. and H.R. Fetterman

  13. Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots

    KAUST Repository

    El-Ballouli, Ala’a O.

    2014-03-19

    We examine ultrafast intraconduction band relaxation and multiple-exciton generation (MEG) in PbS quantum dots (QDs) using transient absorption spectroscopy with 120 fs temporal resolution. The intraconduction band relaxation can be directly and excellently resolved spectrally and temporally by applying broadband pump-probe spectroscopy to excite and detect the wavelengths around the exciton absorption peak, which is located in the near-infrared region. The time-resolved data unambiguously demonstrate that the intraband relaxation time progressively increases as the pump-photon energy increases. Moreover, the relaxation time becomes much shorter as the size of the QDs decreases, indicating the crucial role of spatial confinement in the intraband relaxation process. Additionally, our results reveal the systematic scaling of the intraband relaxation time with both excess energy above the effective energy band gap and QD size. We also assess MEG in different sizes of the QDs. Under the condition of high-energy photon excitation, which is well above the MEG energy threshold, ultrafast bleach recovery due to the nonradiative Auger recombination of the multiple electron-hole pairs provides conclusive experimental evidence for the presence of MEG. For instance, we achieved quantum efficiencies of 159, 129 and 106% per single-absorbed photon at pump photoexcition of three times the band gap for QDs with band gaps of 880 nm (1.41 eV), 1000 nm (1.24 eV) and 1210 nm (1.0 eV), respectively. These findings demonstrate clearly that the efficiency of transferring excess photon energy to carrier multiplication is significantly increased in smaller QDs compared with larger ones. Finally, we discuss the Auger recombination dynamics of the multiple electron-hole pairs as a function of QD size.

  14. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    Science.gov (United States)

    Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert

    2016-11-01

    Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

  15. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy.

    Science.gov (United States)

    Zani, Maurizio; Sala, Vittorio; Irde, Gabriele; Pietralunga, Silvia Maria; Manzoni, Cristian; Cerullo, Giulio; Lanzani, Guglielmo; Tagliaferri, Alberto

    2018-04-01

    The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Laser optically pumped by laser-produced plasma

    International Nuclear Information System (INIS)

    Silfvast, W.T.; Wood, O.R. II.

    1975-01-01

    Laser solids, liquids and gases are pumped by a new technique in which the output from an efficient molecular laser, such as a CO 2 laser, ionizes a medium, such as xenon, into a generally cylindrical plasma volume, in proximity to the pumped laser body. Breakdown yields a visible and ultraviolet-radiation-emitting plasma in that volume to pump the laser body. The spectral radiance of the plasma is significantly higher than that produced by a dc-discharge-heated plasma at nearly all wavelengths in the plasma spectrum. The risetime of radiation from the laser-produced plasma can also be significantly shorter than that of a dc heated plasma. A further advantage resides in the fact that in some applications the attenuating walls needed by flashlamps may be eliminated with the result that laser threshold is more readily reached. Traveling wave excitation may be provided by oblique incidence of the pumping laser beam through the ionizable medium to create sequential ionization of portions of that medium along the length of the pumped laser body. (auth)

  17. Ultrafast photoelectron spectroscopy of small molecule organic films

    Science.gov (United States)

    Read, Kendall Laine

    As research in the field of ultrafast optics has produced shorter and shorter pulses, at an ever-widening range of frequencies, ultrafast spectroscopy has grown correspondingly. In particular, ultrafast photoelectron spectroscopy allows direct observation of electrons in transient or excited states, regardless of the eventual relaxation mechanisms. High-harmonic conversion of 800nm, femtosecond, Ti:sapphire laser pulses allows excite/probe spectroscopy down into atomic core level states. To this end, an ultrafast, X-UV photoelectron spectroscopic system is described, including design considerations for the high-harmonic generation line, the time of flight detector, and the subsequent data collection electronics. Using a similar experimental setup, I have performed several ultrafast, photoelectron excited state decay studies at the IBM, T. J. Watson Research Center. All of the observed materials were electroluminescent thin film organics, which have applications as the emitter layer in organic light emitting devices. The specific materials discussed are: Alq, BAlq, DPVBi, and Alq doped with DCM or DMQA. Alq:DCM is also known to lase at low photoexcitation thresholds. A detailed understanding of the involved relaxation mechanisms is beneficial to both applications. Using 3.14 eV excite, and 26.7 eV probe, 90 fs laser pulses, we have observed the lowest unoccupied molecular orbital (LUMO) decay rate over the first 200 picoseconds. During this time, diffusion is insignificant, and all dynamics occur in the absence of electron transport. With excitation intensities in the range of 100μJ/cm2, we have modeled the Alq, BAlq, and DPVBi decays via bimolecular singlet-singlet annihilation. At similar excitations, we have modeled the Alq:DCM decay via Förster transfer, stimulated emission, and excimeric formation. Furthermore, the Alq:DCM occupied to unoccupied molecular orbital energy gap was seen to shrink as a function of excite-to-probe delay, in accordance with the

  18. Optical/Far-Infrared Control of Low-Dimensional Semiconductor Structures

    National Research Council Canada - National Science Library

    Citrin, David

    2003-01-01

    .... The manipulation of the carrier and optical dynamics will be achieved by the use of specially tailored ultrafast optical pulses, multicolor laser fields, millimeter or submillimeter electromagnetic...

  19. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    International Nuclear Information System (INIS)

    Azima, Armin

    2009-07-01

    Femtosecond pump-probe experiments have extensively been used to follow atomic and molecular motion in time. The very intense extreme ultraviolet XUV light of the Free electron LASer in Hamburg FLASH facility allows to investigate fundamental processes such as direct one or few photon inner shell ionizations. A supplementary Ti:Sapphire near infrared femtosecond laser system allows to perform two-color pump-probe experiments with FLASH involving intense laser fields of hugely different photon energies. Within this work a bunch arrival measurement system has been built, which assists these two-color pump-probe experiments to reduce the temporal jitter of FLASH and to increase the temporal resolution. The diagnostic is based upon an electro-optical detection scheme and measures the relative arrival time between the Ti:Sapphire femtosecond pulse and the electron bunch, which generates the self-amplified by stimulated emission SASE XUV pulse in the undulator section of FLASH. Key feature of the diagnostic is a 150 m long glass fiber pulse transport line, which inflicts non-linear dispersion. A dispersion control system to compensate for this higher order dispersion has been developed including the control and programming of a spatial light phase modulator. It was possible to transport a 90 fs FWHM short near infrared femtosecond laser pulse Fourier limited by the dispersion compensated glass fiber. The electro-optical signal induced by the FLASH electron bunch was generated, characterized and optimized. The signal features beside the designated bunch arrival timing capability the additional possibility to measure the longitudinal electron bunch density distribution of an arbitrary bunch of FLASH in a single shot with a temporal resolution of below 100 fs RMS. Timing and bunch analysis capabilities of the developed diagnostic have been cross-checked with other comparable diagnostics at FLASH like the transversal deflecting cavity structure named LOLA. Finally, the

  20. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Azima, Armin

    2009-07-15

    Femtosecond pump-probe experiments have extensively been used to follow atomic and molecular motion in time. The very intense extreme ultraviolet XUV light of the Free electron LASer in Hamburg FLASH facility allows to investigate fundamental processes such as direct one or few photon inner shell ionizations. A supplementary Ti:Sapphire near infrared femtosecond laser system allows to perform two-color pump-probe experiments with FLASH involving intense laser fields of hugely different photon energies. Within this work a bunch arrival measurement system has been built, which assists these two-color pump-probe experiments to reduce the temporal jitter of FLASH and to increase the temporal resolution. The diagnostic is based upon an electro-optical detection scheme and measures the relative arrival time between the Ti:Sapphire femtosecond pulse and the electron bunch, which generates the self-amplified by stimulated emission SASE XUV pulse in the undulator section of FLASH. Key feature of the diagnostic is a 150 m long glass fiber pulse transport line, which inflicts non-linear dispersion. A dispersion control system to compensate for this higher order dispersion has been developed including the control and programming of a spatial light phase modulator. It was possible to transport a 90 fs FWHM short near infrared femtosecond laser pulse Fourier limited by the dispersion compensated glass fiber. The electro-optical signal induced by the FLASH electron bunch was generated, characterized and optimized. The signal features beside the designated bunch arrival timing capability the additional possibility to measure the longitudinal electron bunch density distribution of an arbitrary bunch of FLASH in a single shot with a temporal resolution of below 100 fs RMS. Timing and bunch analysis capabilities of the developed diagnostic have been cross-checked with other comparable diagnostics at FLASH like the transversal deflecting cavity structure named LOLA. Finally, the

  1. High speed fluorescence imaging with compressed ultrafast photography

    Science.gov (United States)

    Thompson, J. V.; Mason, J. D.; Beier, H. T.; Bixler, J. N.

    2017-02-01

    Fluorescent lifetime imaging is an optical technique that facilitates imaging molecular interactions and cellular functions. Because the excited lifetime of a fluorophore is sensitive to its local microenvironment,1, 2 measurement of fluorescent lifetimes can be used to accurately detect regional changes in temperature, pH, and ion concentration. However, typical state of the art fluorescent lifetime methods are severely limited when it comes to acquisition time (on the order of seconds to minutes) and video rate imaging. Here we show that compressed ultrafast photography (CUP) can be used in conjunction with fluorescent lifetime imaging to overcome these acquisition rate limitations. Frame rates up to one hundred billion frames per second have been demonstrated with compressed ultrafast photography using a streak camera.3 These rates are achieved by encoding time in the spatial direction with a pseudo-random binary pattern. The time domain information is then reconstructed using a compressed sensing algorithm, resulting in a cube of data (x,y,t) for each readout image. Thus, application of compressed ultrafast photography will allow us to acquire an entire fluorescent lifetime image with a single laser pulse. Using a streak camera with a high-speed CMOS camera, acquisition rates of 100 frames per second can be achieved, which will significantly enhance our ability to quantitatively measure complex biological events with high spatial and temporal resolution. In particular, we will demonstrate the ability of this technique to do single-shot fluorescent lifetime imaging of cells and microspheres.

  2. Ultra-Fast Flash Observatory for the observation of early photons from gamma-ray bursts

    DEFF Research Database (Denmark)

    Park, I H; Brandt, Søren; Budtz-Jørgensen, Carl

    2013-01-01

    One of the least documented and understood aspects of gamma-ray bursts (GRBs) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small s...

  3. Ultra-Fast Flash Observatory (uffo) for Observation of Early Photons from Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Park, I. H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    One of the least documented and understood aspects of gamma-ray bursts (GRB) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small sp...

  4. Nonlinear optical studies of surfaces

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1994-07-01

    The possibly of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980's that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect

  5. Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-04-01

    In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.

  6. Ultrafast photoconductor detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davis, B.A.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.

    1987-01-01

    We report the results of an experiment in which we used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When we irradiated the neutron-damaged Cr-doped GaAs detector with 17-MeV electron beams, the temporal response was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. We are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  7. New photonic devices for ultrafast pulse processing operating on the basis of the diffraction-dispersion analogy

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Company, Victor; Minguez-Vega, Gladys; Climent, Vicent; Lands, Jesus [GROC-UJI, Departament de Fisica, Universitat Jaume I, 12080 Castello (Spain); Andres, Pedro [Departament d' Optica, Universitat de Valencia, 46100 Burjassot (Spain)], E-mail: lancis@fca.uji.es

    2008-11-01

    The space-time analogy is a well-known topic within wave optics that brings together some results from beam diffraction and pulse dispersion. On the above basis, and taking as starting point some classical concepts in Optics, several photonic devices have been proposed during the last few years with application in rapidly evolving fields such as ultrafast (femtosecond) optics or RF and microwave signal processing. In this contribution, we briefly review the above ideas with particular emphasis in the generation of trains of ultrafast pulses from periodic modulation of the phase of a CW laser source. This is the temporal analogue of Fresnel diffraction by a pure phase grating. Finally, we extend the analogy to the partially coherent case, what enables us to design an original technique for wavelength-to-time mapping of the spectrum of a temporally stationary source. Results of laboratory experiments concerning the generation of user-defined radio-frequency waveforms and filtering of microwave signals will be shown. The devices are operated with low-cost incoherent sources.

  8. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  9. Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers

    Science.gov (United States)

    Dlott, Dana

    2008-03-01

    Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.

  10. Ultrafast dynamics during the photoinduced phase transition in VO2

    Science.gov (United States)

    Wegkamp, Daniel; Stähler, Julia

    2015-12-01

    The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.

  11. Operation of the optically pumped polarized H- source at LAMPF

    International Nuclear Information System (INIS)

    York, R.L.; Tupa, D.; Swenson, D.R.; van Dyck, O.B.

    1991-01-01

    We report on the first five months of operation of the Optically Pumped Polarized Ion Source (OPPIS) for the nuclear physics research program at LAMPF. The LAMPF OPPIS is unique in using Ti: Sapphire lasers to polarize the potassium charge-exchange medium, and until recently was unique in using a superconducting magnet in the ECR source and polarizer regions. The ECR extraction electrode biasing arrangement is also unique. Typical performance was 25 microamps of peak current (measured at 750 keV) with 55% beam polarization or 15 microamps at 62%. Ion source availability was greater than 90%. We also report our planned improvements in preparation for research operation in May of 1991. 3 refs., 4 figs

  12. Ultrafast modulation of near-field heat transfer with tunable metamaterials

    OpenAIRE

    Cui, Longji; Huang, Yong; Wang, Ju; Zhu, Ke-Yong

    2012-01-01

    We propose a mechanism of active near-field heat transfer modulation relying on externally tunable metamaterials. A large modulation effect is observed and can be explained by the coupling of surface modes, which is dramatically varied in the presence of controllable magnetoelectric coupling in metamaterials. We finally discuss how a practical picosecond-scale thermal modulator can be made. This modulator allows manipulating nanoscale heat flux in an ultrafast and noncontact (by optical means...

  13. Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2.

    Science.gov (United States)

    Schmidt, Robert; Berghäuser, Gunnar; Schneider, Robert; Selig, Malte; Tonndorf, Philipp; Malić, Ermin; Knorr, Andreas; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2016-05-11

    Monolayers of semiconducting transition metal dichalcogenides hold the promise for a new paradigm in electronics by exploiting the valley degree of freedom in addition to charge and spin. For MoS2, WS2, and WSe2, valley polarization can be conveniently initialized and read out by circularly polarized light. However, the underlying microscopic processes governing valley polarization in these atomically thin equivalents of graphene are still not fully understood. Here, we present a joint experiment-theory study on the ultrafast time-resolved intervalley dynamics in monolayer WS2. Based on a microscopic theory, we reveal the many-particle mechanisms behind the observed spectral features. We show that Coulomb-induced intervalley coupling explains the immediate and prominent pump-probe signal in the unpumped valley and the seemingly low valley polarization degrees typically observed in pump-probe measurements compared to photoluminescence studies. The gained insights are also applicable to other light-emitting monolayer transition metal dichalcogenides, such as MoS2 and WSe2, where the Coulomb-induced intervalley coupling also determines the initial carrier dynamics.

  14. Ultrafast Raman scattering in gas-filled hollow-core fibers

    OpenAIRE

    Belli, Federico

    2017-01-01

    The experimental and numerical work reported here is rooted in ultrafast molecular phenomena and nonlinear fiber optics, which are brought together in a deceptively simple system: a homo-nuclear molecular gas (e.g. H2,D2) loaded in the hollow-core of a broad-band guiding photonic crystal fiber (PCF) and exposed to ultrashort pulses of moderate energies (∼ μJ). On one hand, the choice of a molecular gas as the nonlinear medium provides a rich playground for light-matter interactions. ...

  15. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  16. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  17. Characterization of photo-induced valence tautomerism in a cobalt-dioxolene complex by ultrafast spectroscopy

    International Nuclear Information System (INIS)

    Beni, A; Bogani, L; Bussotti, L; Dei, A; Gentili, P L; Righini, R

    2005-01-01

    The valence tautomerism of low-spin Co III (Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin Co II (Cat-N-BQ) 2 that, secondly, reaches the chemical equilibrium with the reactant species

  18. Characterization of photo-induced valence tautomerism in a cobalt-dioxolene complex by ultrafast spectroscopy

    Science.gov (United States)

    Beni, A.; Bogani, L.; Bussotti, L.; Dei, A.; Gentili, P. L.; Righini, R.

    2005-01-01

    The valence tautomerism of low-spin CoIII(Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin CoII(Cat-N-BQ)2 that, secondly, reaches the chemical equilibrium with the reactant species.

  19. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, F. P., E-mail: fpsturm@lbl.gov [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institut für Kernphysik, Universität Frankfurt, Max-von-Laue Str. 1, D-60438 Frankfurt (Germany); Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Belkacem, A.; Weber, Th. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ranitovic, P. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged H6720 (Hungary)

    2016-06-15

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  20. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De

    2007-01-01

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  1. Progress in optics

    CERN Document Server

    Wolf, Emil

    2008-01-01

    In the fourty-six years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series which have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments.- Metamaterials- Polarization Techniques- Linear Baisotropic Mediums- Ultrafast Optical Pulses- Quantum Imaging- Point-Spread Funcions- Discrete Wigner Functions

  2. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    Science.gov (United States)

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  3. A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien, E-mail: adrien.chauvet@epfl.ch; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Tibiletti, Tania; Caffarri, Stefano [Aix Marseille Université, CNRS, CEA, UMR 7265 Biologie Végétale et Microbiologie Environnementales, 13009 Marseille (France)

    2014-10-01

    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ~0.35 ml/s that are suitable to pump laser repetition rates up to ~14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ~250 μl.

  4. Rapid and economical data acquisition in ultrafast frequency-resolved spectroscopy using choppers and a microcontroller.

    Science.gov (United States)

    Guo, Liang; Monahan, Daniele M; Fleming, Graham

    2016-08-08

    Spectrometers and cameras are used in ultrafast spectroscopy to achieve high resolution in both time and frequency domains. Frequency-resolved signals from the camera pixels cannot be processed by common lock-in amplifiers, which have only a limited number of input channels. Here we demonstrate a rapid and economical method that achieves the function of a lock-in amplifier using mechanical choppers and a programmable microcontroller. We demonstrate the method's effectiveness by performing a frequency-resolved pump-probe measurement on the dye Nile Blue in solution.

  5. Transverse pumped laser amplifier architecture

    Science.gov (United States)

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  6. Measurements of gain and index dynamics in quantum dash semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    Ultrafast gain and index recovery of a 1.5um quantum dash amplifier after short pulse amplification is measured using pump-probe spectroscopy. The major part of the gain reduction is found to recover within a few picoseconds....

  7. Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 mu m

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Somers, A.

    2006-01-01

    The authors systematically characterize the ultrafast gain and index recovery of a quantum dash semiconductor optical amplifier after it has amplified a strong femtosecond pulse. The results show a recovery dominated by a fast time constant of 1.4 ps with an ultimate recovery taking place on a 150...

  8. A ZnGeP{sub 2} Optical Parametric Oscillator with Mid-IR Output Power 3 W Pumped by a Tm, Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Guo-Li, Zhu; You-Lun, Ju; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080 (China)

    2009-02-15

    We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The 10-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of 10kHz at wavelength of 2.048 {mu}m. The ZnGeP{sub 2} (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8 {mu}m and 4.45-4.65 {mu}m simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2 {mu}m pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.

  9. New generation of devices for all-optical communications

    International Nuclear Information System (INIS)

    Glesk, I.; Runser, R.J.; Prucnal, P.R.

    2001-01-01

    To increase the transmission capacity of future communication networks is becoming very critical. This task can only be accomplished by taking advantage of optical networks where multiplexing techniques such as Dense Wavelength Division Multiplexing (DWDM) and Optical Time Division Multiplexing (OTDM) are employed. To avoid electronic bottlenecks a whole new generation of ultrafast devices is needed. To fulfill these needs a new class of all optical devices has been proposed and developed. By taking advantage of the nonlinear dynamics in semiconductor optical amplifiers in combination with the fiber interferometers a new generation of ultrafast all-optical de multiplexers and wavelength converters has been demonstrated. Other switching technologies are also promising for the future. The latest technologies in the area of micro machining have created very attractive low cost MEMS. Recently announced use of bubble technology for all-optical switching might also lead to the development of next generation large scale switching fabrics. This paper is an overview of the recent development in these areas. (authors)

  10. Efficient Long Wave IR Laser from Ho:YAG 2 {mu}m Pumped ZnGeP{sub 2} Optical Parametric Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li-Gang,; Bao-Quan, Yao; Xiao-Ming, Duan; Guo-Li, Zhu; Yue-Zhu, Wang; You-Lun, Ju [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2010-01-15

    An efficient high power long wave infrared laser based on ZnGeP{sub 2} optical parametric oscillator pumped by a 2.09 {mu}m Tm:YLF/Ho:YAG laser at 10KHz pulse repetition rate is reported. The pump to idler conversion efficiency is 8% at 15.6 W Ho pump power level and a quantum efficiency of 31 % when the 1'idler wavelength is tuned at 8.08 {mu}m. The wavelength tuning range from 8-9.1 {mu}m is also achieved by rotating the ZGP crystal. (fundamental areas of phenomenology(including applications))

  11. Mode structure in an optically pumped D2O far infrared ring laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Soumagne, G.; Siegrist, M.R.

    1989-07-01

    The mode structures in an optically pumped D 2 O far infrared ring laser and a corresponding linear resonator have been compared. While single mode operation can be obtained over the whole useful pressure range in the ring structure, this is only possible at pressures greater than 8 Torr in the linear resonator case. A numerical model predicts quite well the pulse shape, pressure dependence and influence of the resonator quality in the ring cavity. (author) 12 figs., 8 refs

  12. Resetting in time of recordings in ultra-fast cinematography

    International Nuclear Information System (INIS)

    Leduc, Michel

    In ultra-fast cinematography and photography the treatment and interpretation of the data contained in the recordings demand extremely precise readjustments in time. In the case of whole-image recordings by electro-optical cameras or flash sources the problem is resolved by the use of a chronometric unit taking into account the different events. For naving slit or spectrographic recordings the problem must be detail with differently and marking devices will be used to print resetting pulses on the recording themselves. Different marking devices are described [fr

  13. Pump-probe nonlinear magneto-optical rotation with frequency-modulated light

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Specific types of atomic coherences between Zeeman sublevels can be generated and detected using a method based on nonlinear magneto-optical rotation with frequency-modulated light. Linearly polarized, frequency-modulated light is employed to selectively generate ground-state coherences between Zeeman sublevels for which Δm=2 and Δm=4 in 85 Rb and 87 Rb atoms, and additionally Δm=6 in 85 Rb. The atomic coherences are detected with a separate, unmodulated probe light beam. Separation of the pump and probe beams enables independent investigation of the processes of creation and detection of the atomic coherences. With the present technique the transfer of the Zeeman coherences, including high-order coherences, from excited to ground state by spontaneous emission has been observed

  14. Ultrafast photoconductive detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.; Davis, B.A.

    1987-01-01

    The authors report the results of an experiment in which they used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When they irradiated the neutron-damaged Cr-doped Ga/As detector with 17-MeV electron beams, the temporal response of was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. They are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  15. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  16. All-Optical Signal Processing using Silicon Devices

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Pu, Minhao; Ding, Yunhong

    2014-01-01

    This paper presents an overview of recent wo rk on the use of silicon waveguides for processing optical data signals. We will describe ultra-fast, ultra-broadband, polarisation-insensitive and phase-sensitive applications including processing of spectrally-efficient data formats and optical phase...

  17. Imaging the Ultrafast Photoelectron Transfer Process in Alizarin-TiO2

    Directory of Open Access Journals (Sweden)

    Tatiana Gomez

    2015-07-01

    Full Text Available In this work, we adopt a quantum mechanical approach based on time-dependent density functional theory (TDDFT to study the optical and electronic properties of alizarin supported on TiO2 nano-crystallites, as a prototypical dye-sensitized solar cell. To ensure proper alignment of the donor (alizarin and acceptor (TiO2 nano-crystallite levels, static optical excitation spectra are simulated using time-dependent density functional theory in response. The ultrafast photoelectron transfer from the dye to the cluster is simulated using an explicitly time-dependent, one-electron TDDFT ansatz. The model considers the δ-pulse excitation of a single active electron localized in the dye to the complete set of energetically accessible, delocalized molecular orbitals of the dye/nano-crystallite complex. A set of quantum mechanical tools derived from the transition electronic flux density is introduced to visualize and analyze the process in real time. The evolution of the created wave packet subject to absorbing boundary conditions at the borders of the cluster reveal that, while the electrons of the aromatic rings of alizarin are heavily involved in an ultrafast charge redistribution between the carbonyl groups of the dye molecule, they do not contribute positively to the electron injection and, overall, they delay the process.

  18. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    Science.gov (United States)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  19. Pump-probe study of the formation of rubidium molecules by ultrafast photoassociation of ultracold atoms

    Science.gov (United States)

    McCabe, David J.; England, Duncan G.; Martay, Hugo E. L.; Friedman, Melissa E.; Petrovic, Jovana; Dimova, Emiliya; Chatel, Béatrice; Walmsley, Ian A.

    2009-09-01

    An experimental pump-probe study of the photoassociative creation of translationally ultracold rubidium molecules is presented together with numerical simulations of the process. The formation of loosely bound excited-state dimers is observed as a first step toward a fully coherent pump-dump approach to the stabilization of Rb2 into its lowest ground vibrational states. The population that contributes to the pump-probe process is characterized and found to be distinct from a background population of preassociated molecules.

  20. Transient measurements with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We use a photoconductively gated ultrafast scanning tunneling microscope to resolve laser-induced transients on transmission lines and photoconductors. The photoconductive switch on the tunneling probe is illuminated through a rigidly attached fiber. The use of the fiber enables us to scan across...... the transmission line while the change in delay time between pump beam (on the sample) and probe beam (on the probe) provides the temporal information. The investigated photoconductor sample is a low-temperature-grown GaAs layer placed on a sapphire substrate with a thin, semitransparent gold layer. In tunneling...... mode the probe is sensitive to laser-induced field changes in the semiconductor layer. Laser-induced transient signals of 2.2 ps widths are detected. As for the transmission lines, the signals can be explained by a capacitive coupling across the tunneling gap....

  1. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  2. A passion for precision - from the ultrafast to the ultraslow

    International Nuclear Information System (INIS)

    Haensch, T.W.

    2005-01-01

    Full text: Femtosecond laser optical frequency comb synthesizers have become the established tool for measuring the frequency of light with extreme precision. By permitting phase-coherent comparisons of optical and microwave frequencies, they can serve as the clockwork for ultraprecise optical atomic clocks. Applications to laser spectroscopy of atomic hydrogen permit stringent tests of basic laws of quantum physics. Such experiments can yield accurate values of fundamental constants, and they may reveal slow changes of fundamental constants with the evolution of the universe. Laser frequency comb techniques can also control the light phase of femtosecond laser pulses, thus advancing the frontier of ultrafast science from the femtosecond to the attosecond regime. High harmonic generation with intense femtosecond pulses may extend frequency comb techniques to the extreme ultraviolet and soft x-ray regime, conquering new territory for precision laser spectroscopy and fundamental measurements. (author)

  3. Measurement of asymmetric optical pumping of ions accelerating in a magnetic-field gradient

    International Nuclear Information System (INIS)

    Sun Xuan; Scime, Earl; Miah, Mahmood; Cohen, Samuel; Skiff, Frederick

    2004-01-01

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic-field gradient. The signature is a difference in the laser-induced-fluorescence emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities

  4. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-10-28

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities.

  5. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    International Nuclear Information System (INIS)

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-01-01

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities

  6. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    Science.gov (United States)

    Smallwood, Christopher L.; Jozwiak, Christopher; Zhang, Wentao; Lanzara, Alessandra

    2012-12-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å-1, and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi2Sr2CaCu2O8+δ. The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  7. Ultra-Fast Flash Observatory: Fast Response Space Missions for Early Time Phase of Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Park, I.H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    One of the unexplored domains in the study of gamma-ray bursts (GRBs) is the early time phase of the optical light curve. We have proposed Ultra-Fast Flash Observatory (UFFO) to address this question through extraordinary opportunities presented by a series of small space missions. The UFFO...

  8. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shaozhen; Wei, Wei; Hsieh, Bao-Yu; Pelivanov, Ivan; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K., E-mail: wangrk@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-05-09

    We present single-shot phase-sensitive imaging of propagating mechanical waves within tissue, enabled by an ultrafast optical coherence tomography (OCT) system powered by a 1.628 MHz Fourier domain mode-locked (FDML) swept laser source. We propose a practical strategy for phase-sensitive measurement by comparing the phases between adjacent OCT B-scans, where the B-scan contains a number of A-scans equaling an integer number of FDML buffers. With this approach, we show that micro-strain fields can be mapped with ∼3.0 nm sensitivity at ∼16 000 fps. The system's capabilities are demonstrated on porcine cornea by imaging mechanical wave propagation launched by a pulsed UV laser beam, promising non-contact, real-time, and high-resolution optical coherence elastography.

  9. Exploding conducting film laser pumping apparatus

    Science.gov (United States)

    Ware, K.D.; Jones, C.R.

    1984-04-27

    The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  10. Ultrafast optical manipulation of atomic motion in multilayer Ge-Sb-Te phase change materials

    Directory of Open Access Journals (Sweden)

    Fons P.

    2013-03-01

    Full Text Available Phase change random access memory devices have evolved dramatically with the recent development of superlattice structure of Ge-Sb-Te material (GST-SL in terms of its low power consumption. The phase change in GST-SL is mainly characterized by the displacement of Ge atoms. Here we examine a new phase change method, that is the manipulation of Ge-Te bonds using linearly-polarized femtosecond near-infrared optical pulses. As a result, we found that the p-polarized pump pulse is more effective in inducing the reversible and irreversible displacement of Ge atoms along [111] direction in the local structure. This structural change would be induced by the anisotropic carrier-phonon interaction along the [111] direction created by the p-polarized pulse.

  11. A US Based Ultrafast Interdisciplinary Research Facility

    Science.gov (United States)

    Gueye, Paul; Hill, Wendell; Johnson, Anthony

    2006-10-01

    The US scientific competitiveness on the world arena has substantially decreased due to the lack of funding and training of qualified personnel. Most of the potential workforce found in higher education is composed of foreign students and post-docs. In the specific field of low- and high-field science, the European and Asian communities are rapidly catching-up with the US, even leading in some areas. To remain the leader in ultrafast science and technology, new visions and commitment must be embraced. For that reason, an international effort of more than 70 countries for a US-based interdisciplinary research facility using ultrafast laser technology is under development. It will provide research and educational training, as well as new venues for a strong collaboration between the fields of astrophysics, nuclear/high energy physics, plasma physics, optical sciences, biological and medical physics. This facility will consist of a uniquely designed high contrast multi-lines concept housing twenty experimental rooms shared between four beams:[0.1 TW, 1 kHz], [10 TW, 9 kHz], [100-200 TW, 10 Hz] and [500 TW, 10 Hz]. The detail schematic of this multi-laser system, foreseen research and educational programs, and organizational structure of this facility will be presented.

  12. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL

    Directory of Open Access Journals (Sweden)

    L. Quarrie

    2014-09-01

    Full Text Available The lifetime of Diode-Pumped Alkali Lasers (DPALs is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  13. Double-Arched LD Array Stagger Pumped Electro-Optic Q-Switched Nd:YAG Laser without Water Cooling

    International Nuclear Information System (INIS)

    Xin-Yu, Chen; Guang-Yong, Jin; Yong-Ji, Yu; Chao, Wang; Da-Wei, Hao; Yi-Bo, Wang

    2010-01-01

    We report an experimental study on a double-arched LD array stagger pumped electro-optic Q-switched Nd:YAG laser without water cooling by using a convex-concave compensate resonator. Perfect matching of the gain field inside the rod and the fundamental mode of the cavity is made by this structure. When the repetition rate is 20 Hz, A maximum output energy at 1064 nm wavelength of 176 mJ (M 2 = 1.55) and 9.6 ns FWHM pulse width in fundamental mode Q-switch operation is obtained with LD injection current 120 A. The optical-optical conversion efficiency is 14.7%, the divergence angle of the output beam is about 1.8 mrad. (fundamental areas of phenomenology(including applications))

  14. Enhanced surface structuring by ultrafast XUV/NIR dual action

    Czech Academy of Sciences Publication Activity Database

    Jakubczak, Krzysztof; Mocek, Tomáš; Chalupský, Jaromír; Lee, G.H.; Kim, T.K.; Park, S.B.; Nam, Ch. H.; Hájková, Věra; Toufarová, Martina; Juha, Libor; Rus, Bedřich

    2011-01-01

    Roč. 13, č. 5 (2011), s. 1-12 ISSN 1367-2630 R&D Projects: GA AV ČR KAN300100702; GA MŠk(CZ) LC528; GA MŠk LA08024; GA ČR GC202/07/J008 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : XUV beam * ultrafast NIR laser pulses * high-order harmonics * laser-induced periodic surface structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.177, year: 2011 http://iopscience.iop.org/1367-2630/13/5/053049

  15. Sub-nanosecond periodically poled lithium niobate optical parametric generator and amplifier pumped by an actively Q-switched diode-pumped Nd:YAG microlaser

    Science.gov (United States)

    Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.

    2017-05-01

    A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.

  16. Ultra-fast secure communication with complex systems in classical channels (Conference Presentation)

    KAUST Repository

    Mazzone, Valerio

    2017-04-28

    Developing secure communications is a research area of growing interest. During the past years, several cryptographic schemes have been developed, with Quantum cryptography being a promising scheme due to the use of quantum effects, which make very difficult for an eavesdropper to intercept the communication. However, practical quantum key distribution methods have encountered several limitations; current experimental realizations, in fact, fail to scale up on long distances, as well as in providing unconditional security and speed comparable to classical optical communications channels. Here we propose a new, low cost and ultra-fast cryptographic system based on a fully classical optical channel. Our cryptographic scheme exploits the complex synchronization of two different random systems (one on the side of the sender and another on the side of the receiver) to realize a “physical” one paid system. The random medium is created by an optical chip fabricated through electron beam lithography on a Silicon On Insulator (SOI) substrate. We present experiments with ps lasers and commercial fibers, showing the ultrafast distribution of a random key between two users (Alice and Bob), with absolute no possibility for a passive/active eavesdropper to intercept the communication. Remarkably, this system enables the same security of quantum cryptography, but with the use of a classical communication channel. Our system exploits a unique synchronization that exists between two different random systems, and at such is extremely versatile and can enable safe communications among different users in standards telecommunications channels.

  17. Sensitivity of proposed search for axion-induced magnetic field using optically pumped magnetometers

    Science.gov (United States)

    Chu, P.-H.; Duffy, L. D.; Kim, Y. J.; Savukov, I. M.

    2018-04-01

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014), 10.1103/PhysRevLett.112.131301]. The modification of Maxwell's equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an optically pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10-7 GeV-1 for an axion mass near 3 ×10-10 eV , which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10-11 and 10-7 eV .

  18. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-01-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  19. Characterization of photo-induced valence tautomerism in a cobalt-dioxolene complex by ultrafast spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beni, A [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy); Bogani, L [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy); Bussotti, L [LENS, Universita di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence (Italy); Dei, A [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy); Gentili, P L [LENS, Universita di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence (Italy); Righini, R [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy)

    2005-01-01

    The valence tautomerism of low-spin Co{sup III}(Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin Co{sup II}(Cat-N-BQ){sub 2} that, secondly, reaches the chemical equilibrium with the reactant species.

  20. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.